]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto.c
ofproto: Always terminate OpenFlow description strings
[mirror_ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010 Nicira Networks.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "ofproto.h"
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <net/if.h>
22 #include <netinet/in.h>
23 #include <stdbool.h>
24 #include <stdlib.h>
25 #include "classifier.h"
26 #include "coverage.h"
27 #include "discovery.h"
28 #include "dpif.h"
29 #include "dynamic-string.h"
30 #include "fail-open.h"
31 #include "in-band.h"
32 #include "mac-learning.h"
33 #include "netdev.h"
34 #include "netflow.h"
35 #include "odp-util.h"
36 #include "ofp-print.h"
37 #include "ofproto-sflow.h"
38 #include "ofpbuf.h"
39 #include "openflow/nicira-ext.h"
40 #include "openflow/openflow.h"
41 #include "openvswitch/datapath-protocol.h"
42 #include "packets.h"
43 #include "pinsched.h"
44 #include "pktbuf.h"
45 #include "poll-loop.h"
46 #include "port-array.h"
47 #include "rconn.h"
48 #include "shash.h"
49 #include "status.h"
50 #include "stp.h"
51 #include "stream-ssl.h"
52 #include "svec.h"
53 #include "tag.h"
54 #include "timeval.h"
55 #include "unixctl.h"
56 #include "vconn.h"
57 #include "xtoxll.h"
58
59 #define THIS_MODULE VLM_ofproto
60 #include "vlog.h"
61
62 #include "sflow_api.h"
63
64 enum {
65 TABLEID_HASH = 0,
66 TABLEID_CLASSIFIER = 1
67 };
68
69 struct ofport {
70 struct netdev *netdev;
71 struct ofp_phy_port opp; /* In host byte order. */
72 };
73
74 static void ofport_free(struct ofport *);
75 static void hton_ofp_phy_port(struct ofp_phy_port *);
76
77 static int xlate_actions(const union ofp_action *in, size_t n_in,
78 const flow_t *flow, struct ofproto *ofproto,
79 const struct ofpbuf *packet,
80 struct odp_actions *out, tag_type *tags,
81 bool *may_set_up_flow, uint16_t *nf_output_iface);
82
83 struct rule {
84 struct cls_rule cr;
85
86 uint64_t flow_cookie; /* Controller-issued identifier.
87 (Kept in network-byte order.) */
88 uint16_t idle_timeout; /* In seconds from time of last use. */
89 uint16_t hard_timeout; /* In seconds from time of creation. */
90 bool send_flow_removed; /* Send a flow removed message? */
91 long long int used; /* Last-used time (0 if never used). */
92 long long int created; /* Creation time. */
93 uint64_t packet_count; /* Number of packets received. */
94 uint64_t byte_count; /* Number of bytes received. */
95 uint64_t accounted_bytes; /* Number of bytes passed to account_cb. */
96 tag_type tags; /* Tags (set only by hooks). */
97 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
98
99 /* If 'super' is non-NULL, this rule is a subrule, that is, it is an
100 * exact-match rule (having cr.wc.wildcards of 0) generated from the
101 * wildcard rule 'super'. In this case, 'list' is an element of the
102 * super-rule's list.
103 *
104 * If 'super' is NULL, this rule is a super-rule, and 'list' is the head of
105 * a list of subrules. A super-rule with no wildcards (where
106 * cr.wc.wildcards is 0) will never have any subrules. */
107 struct rule *super;
108 struct list list;
109
110 /* OpenFlow actions.
111 *
112 * A subrule has no actions (it uses the super-rule's actions). */
113 int n_actions;
114 union ofp_action *actions;
115
116 /* Datapath actions.
117 *
118 * A super-rule with wildcard fields never has ODP actions (since the
119 * datapath only supports exact-match flows). */
120 bool installed; /* Installed in datapath? */
121 bool may_install; /* True ordinarily; false if actions must
122 * be reassessed for every packet. */
123 int n_odp_actions;
124 union odp_action *odp_actions;
125 };
126
127 static inline bool
128 rule_is_hidden(const struct rule *rule)
129 {
130 /* Subrules are merely an implementation detail, so hide them from the
131 * controller. */
132 if (rule->super != NULL) {
133 return true;
134 }
135
136 /* Rules with priority higher than UINT16_MAX are set up by ofproto itself
137 * (e.g. by in-band control) and are intentionally hidden from the
138 * controller. */
139 if (rule->cr.priority > UINT16_MAX) {
140 return true;
141 }
142
143 return false;
144 }
145
146 static struct rule *rule_create(struct ofproto *, struct rule *super,
147 const union ofp_action *, size_t n_actions,
148 uint16_t idle_timeout, uint16_t hard_timeout,
149 uint64_t flow_cookie, bool send_flow_removed);
150 static void rule_free(struct rule *);
151 static void rule_destroy(struct ofproto *, struct rule *);
152 static struct rule *rule_from_cls_rule(const struct cls_rule *);
153 static void rule_insert(struct ofproto *, struct rule *,
154 struct ofpbuf *packet, uint16_t in_port);
155 static void rule_remove(struct ofproto *, struct rule *);
156 static bool rule_make_actions(struct ofproto *, struct rule *,
157 const struct ofpbuf *packet);
158 static void rule_install(struct ofproto *, struct rule *,
159 struct rule *displaced_rule);
160 static void rule_uninstall(struct ofproto *, struct rule *);
161 static void rule_post_uninstall(struct ofproto *, struct rule *);
162 static void send_flow_removed(struct ofproto *p, struct rule *rule,
163 long long int now, uint8_t reason);
164
165 struct ofconn {
166 struct list node;
167 struct rconn *rconn;
168 struct pktbuf *pktbuf;
169 int miss_send_len;
170
171 struct rconn_packet_counter *packet_in_counter;
172
173 /* Number of OpenFlow messages queued as replies to OpenFlow requests, and
174 * the maximum number before we stop reading OpenFlow requests. */
175 #define OFCONN_REPLY_MAX 100
176 struct rconn_packet_counter *reply_counter;
177 };
178
179 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *);
180 static void ofconn_destroy(struct ofconn *);
181 static void ofconn_run(struct ofconn *, struct ofproto *);
182 static void ofconn_wait(struct ofconn *);
183 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
184 struct rconn_packet_counter *counter);
185
186 struct ofproto {
187 /* Settings. */
188 uint64_t datapath_id; /* Datapath ID. */
189 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
190 char *mfr_desc; /* Manufacturer. */
191 char *hw_desc; /* Hardware. */
192 char *sw_desc; /* Software version. */
193 char *serial_desc; /* Serial number. */
194 char *dp_desc; /* Datapath description. */
195
196 /* Datapath. */
197 struct dpif *dpif;
198 struct netdev_monitor *netdev_monitor;
199 struct port_array ports; /* Index is ODP port nr; ofport->opp.port_no is
200 * OFP port nr. */
201 struct shash port_by_name;
202 uint32_t max_ports;
203
204 /* Configuration. */
205 struct switch_status *switch_status;
206 struct status_category *ss_cat;
207 struct in_band *in_band;
208 struct discovery *discovery;
209 struct fail_open *fail_open;
210 struct pinsched *miss_sched, *action_sched;
211 struct netflow *netflow;
212 struct ofproto_sflow *sflow;
213
214 /* Flow table. */
215 struct classifier cls;
216 bool need_revalidate;
217 long long int next_expiration;
218 struct tag_set revalidate_set;
219
220 /* OpenFlow connections. */
221 struct list all_conns;
222 struct ofconn *controller;
223 struct pvconn **listeners;
224 size_t n_listeners;
225 struct pvconn **snoops;
226 size_t n_snoops;
227
228 /* Hooks for ovs-vswitchd. */
229 const struct ofhooks *ofhooks;
230 void *aux;
231
232 /* Used by default ofhooks. */
233 struct mac_learning *ml;
234 };
235
236 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
237
238 static const struct ofhooks default_ofhooks;
239
240 static uint64_t pick_datapath_id(const struct ofproto *);
241 static uint64_t pick_fallback_dpid(void);
242 static void send_packet_in_miss(struct ofpbuf *, void *ofproto);
243 static void send_packet_in_action(struct ofpbuf *, void *ofproto);
244 static void update_used(struct ofproto *);
245 static void update_stats(struct ofproto *, struct rule *,
246 const struct odp_flow_stats *);
247 static void expire_rule(struct cls_rule *, void *ofproto);
248 static void active_timeout(struct ofproto *ofproto, struct rule *rule);
249 static bool revalidate_rule(struct ofproto *p, struct rule *rule);
250 static void revalidate_cb(struct cls_rule *rule_, void *p_);
251
252 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
253
254 static void handle_openflow(struct ofconn *, struct ofproto *,
255 struct ofpbuf *);
256
257 static void refresh_port_groups(struct ofproto *);
258
259 static void update_port(struct ofproto *, const char *devname);
260 static int init_ports(struct ofproto *);
261 static void reinit_ports(struct ofproto *);
262
263 int
264 ofproto_create(const char *datapath, const char *datapath_type,
265 const struct ofhooks *ofhooks, void *aux,
266 struct ofproto **ofprotop)
267 {
268 struct odp_stats stats;
269 struct ofproto *p;
270 struct dpif *dpif;
271 int error;
272
273 *ofprotop = NULL;
274
275 /* Connect to datapath and start listening for messages. */
276 error = dpif_open(datapath, datapath_type, &dpif);
277 if (error) {
278 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
279 return error;
280 }
281 error = dpif_get_dp_stats(dpif, &stats);
282 if (error) {
283 VLOG_ERR("failed to obtain stats for datapath %s: %s",
284 datapath, strerror(error));
285 dpif_close(dpif);
286 return error;
287 }
288 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW);
289 if (error) {
290 VLOG_ERR("failed to listen on datapath %s: %s",
291 datapath, strerror(error));
292 dpif_close(dpif);
293 return error;
294 }
295 dpif_flow_flush(dpif);
296 dpif_recv_purge(dpif);
297
298 /* Initialize settings. */
299 p = xzalloc(sizeof *p);
300 p->fallback_dpid = pick_fallback_dpid();
301 p->datapath_id = p->fallback_dpid;
302 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
303 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
304 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
305 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
306 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
307
308 /* Initialize datapath. */
309 p->dpif = dpif;
310 p->netdev_monitor = netdev_monitor_create();
311 port_array_init(&p->ports);
312 shash_init(&p->port_by_name);
313 p->max_ports = stats.max_ports;
314
315 /* Initialize submodules. */
316 p->switch_status = switch_status_create(p);
317 p->in_band = NULL;
318 p->discovery = NULL;
319 p->fail_open = NULL;
320 p->miss_sched = p->action_sched = NULL;
321 p->netflow = NULL;
322 p->sflow = NULL;
323
324 /* Initialize flow table. */
325 classifier_init(&p->cls);
326 p->need_revalidate = false;
327 p->next_expiration = time_msec() + 1000;
328 tag_set_init(&p->revalidate_set);
329
330 /* Initialize OpenFlow connections. */
331 list_init(&p->all_conns);
332 p->controller = ofconn_create(p, rconn_create(5, 8));
333 p->controller->pktbuf = pktbuf_create();
334 p->controller->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
335 p->listeners = NULL;
336 p->n_listeners = 0;
337 p->snoops = NULL;
338 p->n_snoops = 0;
339
340 /* Initialize hooks. */
341 if (ofhooks) {
342 p->ofhooks = ofhooks;
343 p->aux = aux;
344 p->ml = NULL;
345 } else {
346 p->ofhooks = &default_ofhooks;
347 p->aux = p;
348 p->ml = mac_learning_create();
349 }
350
351 /* Register switch status category. */
352 p->ss_cat = switch_status_register(p->switch_status, "remote",
353 rconn_status_cb, p->controller->rconn);
354
355 /* Pick final datapath ID. */
356 p->datapath_id = pick_datapath_id(p);
357 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
358
359 *ofprotop = p;
360 return 0;
361 }
362
363 void
364 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
365 {
366 uint64_t old_dpid = p->datapath_id;
367 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
368 if (p->datapath_id != old_dpid) {
369 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
370 rconn_reconnect(p->controller->rconn);
371 }
372 }
373
374 void
375 ofproto_set_probe_interval(struct ofproto *p, int probe_interval)
376 {
377 probe_interval = probe_interval ? MAX(probe_interval, 5) : 0;
378 rconn_set_probe_interval(p->controller->rconn, probe_interval);
379 if (p->fail_open) {
380 int trigger_duration = probe_interval ? probe_interval * 3 : 15;
381 fail_open_set_trigger_duration(p->fail_open, trigger_duration);
382 }
383 }
384
385 void
386 ofproto_set_max_backoff(struct ofproto *p, int max_backoff)
387 {
388 rconn_set_max_backoff(p->controller->rconn, max_backoff);
389 }
390
391 void
392 ofproto_set_desc(struct ofproto *p,
393 const char *mfr_desc, const char *hw_desc,
394 const char *sw_desc, const char *serial_desc,
395 const char *dp_desc)
396 {
397 struct ofp_desc_stats *ods;
398
399 if (mfr_desc) {
400 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
401 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
402 sizeof ods->mfr_desc);
403 }
404 free(p->mfr_desc);
405 p->mfr_desc = xstrdup(mfr_desc);
406 }
407 if (hw_desc) {
408 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
409 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
410 sizeof ods->hw_desc);
411 }
412 free(p->hw_desc);
413 p->hw_desc = xstrdup(hw_desc);
414 }
415 if (sw_desc) {
416 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
417 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
418 sizeof ods->sw_desc);
419 }
420 free(p->sw_desc);
421 p->sw_desc = xstrdup(sw_desc);
422 }
423 if (serial_desc) {
424 if (strlen(serial_desc) >= sizeof ods->serial_num) {
425 VLOG_WARN("truncating serial_desc, must be less than %zu "
426 "characters",
427 sizeof ods->serial_num);
428 }
429 free(p->serial_desc);
430 p->serial_desc = xstrdup(serial_desc);
431 }
432 if (dp_desc) {
433 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
434 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
435 sizeof ods->dp_desc);
436 }
437 free(p->dp_desc);
438 p->dp_desc = xstrdup(dp_desc);
439 }
440 }
441
442 int
443 ofproto_set_in_band(struct ofproto *p, bool in_band)
444 {
445 if (in_band != (p->in_band != NULL)) {
446 if (in_band) {
447 return in_band_create(p, p->dpif, p->switch_status,
448 p->controller->rconn, &p->in_band);
449 } else {
450 ofproto_set_discovery(p, false, NULL, true);
451 in_band_destroy(p->in_band);
452 p->in_band = NULL;
453 }
454 rconn_reconnect(p->controller->rconn);
455 }
456 return 0;
457 }
458
459 int
460 ofproto_set_discovery(struct ofproto *p, bool discovery,
461 const char *re, bool update_resolv_conf)
462 {
463 if (discovery != (p->discovery != NULL)) {
464 if (discovery) {
465 int error = ofproto_set_in_band(p, true);
466 if (error) {
467 return error;
468 }
469 error = discovery_create(re, update_resolv_conf,
470 p->dpif, p->switch_status,
471 &p->discovery);
472 if (error) {
473 return error;
474 }
475 } else {
476 discovery_destroy(p->discovery);
477 p->discovery = NULL;
478 }
479 rconn_disconnect(p->controller->rconn);
480 } else if (discovery) {
481 discovery_set_update_resolv_conf(p->discovery, update_resolv_conf);
482 return discovery_set_accept_controller_re(p->discovery, re);
483 }
484 return 0;
485 }
486
487 int
488 ofproto_set_controller(struct ofproto *ofproto, const char *controller)
489 {
490 if (ofproto->discovery) {
491 return EINVAL;
492 } else if (controller) {
493 if (strcmp(rconn_get_name(ofproto->controller->rconn), controller)) {
494 return rconn_connect(ofproto->controller->rconn, controller);
495 } else {
496 return 0;
497 }
498 } else {
499 rconn_disconnect(ofproto->controller->rconn);
500 return 0;
501 }
502 }
503
504 static int
505 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
506 const struct svec *svec)
507 {
508 struct pvconn **pvconns = *pvconnsp;
509 size_t n_pvconns = *n_pvconnsp;
510 int retval = 0;
511 size_t i;
512
513 for (i = 0; i < n_pvconns; i++) {
514 pvconn_close(pvconns[i]);
515 }
516 free(pvconns);
517
518 pvconns = xmalloc(svec->n * sizeof *pvconns);
519 n_pvconns = 0;
520 for (i = 0; i < svec->n; i++) {
521 const char *name = svec->names[i];
522 struct pvconn *pvconn;
523 int error;
524
525 error = pvconn_open(name, &pvconn);
526 if (!error) {
527 pvconns[n_pvconns++] = pvconn;
528 } else {
529 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
530 if (!retval) {
531 retval = error;
532 }
533 }
534 }
535
536 *pvconnsp = pvconns;
537 *n_pvconnsp = n_pvconns;
538
539 return retval;
540 }
541
542 int
543 ofproto_set_listeners(struct ofproto *ofproto, const struct svec *listeners)
544 {
545 return set_pvconns(&ofproto->listeners, &ofproto->n_listeners, listeners);
546 }
547
548 int
549 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
550 {
551 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
552 }
553
554 int
555 ofproto_set_netflow(struct ofproto *ofproto,
556 const struct netflow_options *nf_options)
557 {
558 if (nf_options && nf_options->collectors.n) {
559 if (!ofproto->netflow) {
560 ofproto->netflow = netflow_create();
561 }
562 return netflow_set_options(ofproto->netflow, nf_options);
563 } else {
564 netflow_destroy(ofproto->netflow);
565 ofproto->netflow = NULL;
566 return 0;
567 }
568 }
569
570 void
571 ofproto_set_sflow(struct ofproto *ofproto,
572 const struct ofproto_sflow_options *oso)
573 {
574 struct ofproto_sflow *os = ofproto->sflow;
575 if (oso) {
576 if (!os) {
577 struct ofport *ofport;
578 unsigned int odp_port;
579
580 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
581 refresh_port_groups(ofproto);
582 PORT_ARRAY_FOR_EACH (ofport, &ofproto->ports, odp_port) {
583 ofproto_sflow_add_port(os, odp_port,
584 netdev_get_name(ofport->netdev));
585 }
586 }
587 ofproto_sflow_set_options(os, oso);
588 } else {
589 ofproto_sflow_destroy(os);
590 ofproto->sflow = NULL;
591 }
592 }
593
594 void
595 ofproto_set_failure(struct ofproto *ofproto, bool fail_open)
596 {
597 if (fail_open) {
598 struct rconn *rconn = ofproto->controller->rconn;
599 int trigger_duration = rconn_get_probe_interval(rconn) * 3;
600 if (!ofproto->fail_open) {
601 ofproto->fail_open = fail_open_create(ofproto, trigger_duration,
602 ofproto->switch_status,
603 rconn);
604 } else {
605 fail_open_set_trigger_duration(ofproto->fail_open,
606 trigger_duration);
607 }
608 } else {
609 fail_open_destroy(ofproto->fail_open);
610 ofproto->fail_open = NULL;
611 }
612 }
613
614 void
615 ofproto_set_rate_limit(struct ofproto *ofproto,
616 int rate_limit, int burst_limit)
617 {
618 if (rate_limit > 0) {
619 if (!ofproto->miss_sched) {
620 ofproto->miss_sched = pinsched_create(rate_limit, burst_limit,
621 ofproto->switch_status);
622 ofproto->action_sched = pinsched_create(rate_limit, burst_limit,
623 NULL);
624 } else {
625 pinsched_set_limits(ofproto->miss_sched, rate_limit, burst_limit);
626 pinsched_set_limits(ofproto->action_sched,
627 rate_limit, burst_limit);
628 }
629 } else {
630 pinsched_destroy(ofproto->miss_sched);
631 ofproto->miss_sched = NULL;
632 pinsched_destroy(ofproto->action_sched);
633 ofproto->action_sched = NULL;
634 }
635 }
636
637 int
638 ofproto_set_stp(struct ofproto *ofproto OVS_UNUSED, bool enable_stp)
639 {
640 /* XXX */
641 if (enable_stp) {
642 VLOG_WARN("STP is not yet implemented");
643 return EINVAL;
644 } else {
645 return 0;
646 }
647 }
648
649 uint64_t
650 ofproto_get_datapath_id(const struct ofproto *ofproto)
651 {
652 return ofproto->datapath_id;
653 }
654
655 int
656 ofproto_get_probe_interval(const struct ofproto *ofproto)
657 {
658 return rconn_get_probe_interval(ofproto->controller->rconn);
659 }
660
661 int
662 ofproto_get_max_backoff(const struct ofproto *ofproto)
663 {
664 return rconn_get_max_backoff(ofproto->controller->rconn);
665 }
666
667 bool
668 ofproto_get_in_band(const struct ofproto *ofproto)
669 {
670 return ofproto->in_band != NULL;
671 }
672
673 bool
674 ofproto_get_discovery(const struct ofproto *ofproto)
675 {
676 return ofproto->discovery != NULL;
677 }
678
679 const char *
680 ofproto_get_controller(const struct ofproto *ofproto)
681 {
682 return rconn_get_name(ofproto->controller->rconn);
683 }
684
685 void
686 ofproto_get_listeners(const struct ofproto *ofproto, struct svec *listeners)
687 {
688 size_t i;
689
690 for (i = 0; i < ofproto->n_listeners; i++) {
691 svec_add(listeners, pvconn_get_name(ofproto->listeners[i]));
692 }
693 }
694
695 void
696 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
697 {
698 size_t i;
699
700 for (i = 0; i < ofproto->n_snoops; i++) {
701 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
702 }
703 }
704
705 void
706 ofproto_destroy(struct ofproto *p)
707 {
708 struct ofconn *ofconn, *next_ofconn;
709 struct ofport *ofport;
710 unsigned int port_no;
711 size_t i;
712
713 if (!p) {
714 return;
715 }
716
717 /* Destroy fail-open early, because it touches the classifier. */
718 ofproto_set_failure(p, false);
719
720 ofproto_flush_flows(p);
721 classifier_destroy(&p->cls);
722
723 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node,
724 &p->all_conns) {
725 ofconn_destroy(ofconn);
726 }
727
728 dpif_close(p->dpif);
729 netdev_monitor_destroy(p->netdev_monitor);
730 PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) {
731 ofport_free(ofport);
732 }
733 shash_destroy(&p->port_by_name);
734
735 switch_status_destroy(p->switch_status);
736 in_band_destroy(p->in_band);
737 discovery_destroy(p->discovery);
738 pinsched_destroy(p->miss_sched);
739 pinsched_destroy(p->action_sched);
740 netflow_destroy(p->netflow);
741 ofproto_sflow_destroy(p->sflow);
742
743 switch_status_unregister(p->ss_cat);
744
745 for (i = 0; i < p->n_listeners; i++) {
746 pvconn_close(p->listeners[i]);
747 }
748 free(p->listeners);
749
750 for (i = 0; i < p->n_snoops; i++) {
751 pvconn_close(p->snoops[i]);
752 }
753 free(p->snoops);
754
755 mac_learning_destroy(p->ml);
756
757 free(p->mfr_desc);
758 free(p->hw_desc);
759 free(p->sw_desc);
760 free(p->serial_desc);
761 free(p->dp_desc);
762
763 free(p);
764 }
765
766 int
767 ofproto_run(struct ofproto *p)
768 {
769 int error = ofproto_run1(p);
770 if (!error) {
771 error = ofproto_run2(p, false);
772 }
773 return error;
774 }
775
776 static void
777 process_port_change(struct ofproto *ofproto, int error, char *devname)
778 {
779 if (error == ENOBUFS) {
780 reinit_ports(ofproto);
781 } else if (!error) {
782 update_port(ofproto, devname);
783 free(devname);
784 }
785 }
786
787 int
788 ofproto_run1(struct ofproto *p)
789 {
790 struct ofconn *ofconn, *next_ofconn;
791 char *devname;
792 int error;
793 int i;
794
795 if (shash_is_empty(&p->port_by_name)) {
796 init_ports(p);
797 }
798
799 for (i = 0; i < 50; i++) {
800 struct ofpbuf *buf;
801 int error;
802
803 error = dpif_recv(p->dpif, &buf);
804 if (error) {
805 if (error == ENODEV) {
806 /* Someone destroyed the datapath behind our back. The caller
807 * better destroy us and give up, because we're just going to
808 * spin from here on out. */
809 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
810 VLOG_ERR_RL(&rl, "%s: datapath was destroyed externally",
811 dpif_name(p->dpif));
812 return ENODEV;
813 }
814 break;
815 }
816
817 handle_odp_msg(p, buf);
818 }
819
820 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
821 process_port_change(p, error, devname);
822 }
823 while ((error = netdev_monitor_poll(p->netdev_monitor,
824 &devname)) != EAGAIN) {
825 process_port_change(p, error, devname);
826 }
827
828 if (p->in_band) {
829 in_band_run(p->in_band);
830 }
831 if (p->discovery) {
832 char *controller_name;
833 if (rconn_is_connectivity_questionable(p->controller->rconn)) {
834 discovery_question_connectivity(p->discovery);
835 }
836 if (discovery_run(p->discovery, &controller_name)) {
837 if (controller_name) {
838 rconn_connect(p->controller->rconn, controller_name);
839 } else {
840 rconn_disconnect(p->controller->rconn);
841 }
842 }
843 }
844 pinsched_run(p->miss_sched, send_packet_in_miss, p);
845 pinsched_run(p->action_sched, send_packet_in_action, p);
846
847 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node,
848 &p->all_conns) {
849 ofconn_run(ofconn, p);
850 }
851
852 /* Fail-open maintenance. Do this after processing the ofconns since
853 * fail-open checks the status of the controller rconn. */
854 if (p->fail_open) {
855 fail_open_run(p->fail_open);
856 }
857
858 for (i = 0; i < p->n_listeners; i++) {
859 struct vconn *vconn;
860 int retval;
861
862 retval = pvconn_accept(p->listeners[i], OFP_VERSION, &vconn);
863 if (!retval) {
864 ofconn_create(p, rconn_new_from_vconn("passive", vconn));
865 } else if (retval != EAGAIN) {
866 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
867 }
868 }
869
870 for (i = 0; i < p->n_snoops; i++) {
871 struct vconn *vconn;
872 int retval;
873
874 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
875 if (!retval) {
876 rconn_add_monitor(p->controller->rconn, vconn);
877 } else if (retval != EAGAIN) {
878 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
879 }
880 }
881
882 if (time_msec() >= p->next_expiration) {
883 COVERAGE_INC(ofproto_expiration);
884 p->next_expiration = time_msec() + 1000;
885 update_used(p);
886
887 classifier_for_each(&p->cls, CLS_INC_ALL, expire_rule, p);
888
889 /* Let the hook know that we're at a stable point: all outstanding data
890 * in existing flows has been accounted to the account_cb. Thus, the
891 * hook can now reasonably do operations that depend on having accurate
892 * flow volume accounting (currently, that's just bond rebalancing). */
893 if (p->ofhooks->account_checkpoint_cb) {
894 p->ofhooks->account_checkpoint_cb(p->aux);
895 }
896 }
897
898 if (p->netflow) {
899 netflow_run(p->netflow);
900 }
901 if (p->sflow) {
902 ofproto_sflow_run(p->sflow);
903 }
904
905 return 0;
906 }
907
908 struct revalidate_cbdata {
909 struct ofproto *ofproto;
910 bool revalidate_all; /* Revalidate all exact-match rules? */
911 bool revalidate_subrules; /* Revalidate all exact-match subrules? */
912 struct tag_set revalidate_set; /* Set of tags to revalidate. */
913 };
914
915 int
916 ofproto_run2(struct ofproto *p, bool revalidate_all)
917 {
918 if (p->need_revalidate || revalidate_all
919 || !tag_set_is_empty(&p->revalidate_set)) {
920 struct revalidate_cbdata cbdata;
921 cbdata.ofproto = p;
922 cbdata.revalidate_all = revalidate_all;
923 cbdata.revalidate_subrules = p->need_revalidate;
924 cbdata.revalidate_set = p->revalidate_set;
925 tag_set_init(&p->revalidate_set);
926 COVERAGE_INC(ofproto_revalidate);
927 classifier_for_each(&p->cls, CLS_INC_EXACT, revalidate_cb, &cbdata);
928 p->need_revalidate = false;
929 }
930
931 return 0;
932 }
933
934 void
935 ofproto_wait(struct ofproto *p)
936 {
937 struct ofconn *ofconn;
938 size_t i;
939
940 dpif_recv_wait(p->dpif);
941 dpif_port_poll_wait(p->dpif);
942 netdev_monitor_poll_wait(p->netdev_monitor);
943 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
944 ofconn_wait(ofconn);
945 }
946 if (p->in_band) {
947 in_band_wait(p->in_band);
948 }
949 if (p->discovery) {
950 discovery_wait(p->discovery);
951 }
952 if (p->fail_open) {
953 fail_open_wait(p->fail_open);
954 }
955 pinsched_wait(p->miss_sched);
956 pinsched_wait(p->action_sched);
957 if (p->sflow) {
958 ofproto_sflow_wait(p->sflow);
959 }
960 if (!tag_set_is_empty(&p->revalidate_set)) {
961 poll_immediate_wake();
962 }
963 if (p->need_revalidate) {
964 /* Shouldn't happen, but if it does just go around again. */
965 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
966 poll_immediate_wake();
967 } else if (p->next_expiration != LLONG_MAX) {
968 poll_timer_wait(p->next_expiration - time_msec());
969 }
970 for (i = 0; i < p->n_listeners; i++) {
971 pvconn_wait(p->listeners[i]);
972 }
973 for (i = 0; i < p->n_snoops; i++) {
974 pvconn_wait(p->snoops[i]);
975 }
976 }
977
978 void
979 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
980 {
981 tag_set_add(&ofproto->revalidate_set, tag);
982 }
983
984 struct tag_set *
985 ofproto_get_revalidate_set(struct ofproto *ofproto)
986 {
987 return &ofproto->revalidate_set;
988 }
989
990 bool
991 ofproto_is_alive(const struct ofproto *p)
992 {
993 return p->discovery || rconn_is_alive(p->controller->rconn);
994 }
995
996 int
997 ofproto_send_packet(struct ofproto *p, const flow_t *flow,
998 const union ofp_action *actions, size_t n_actions,
999 const struct ofpbuf *packet)
1000 {
1001 struct odp_actions odp_actions;
1002 int error;
1003
1004 error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions,
1005 NULL, NULL, NULL);
1006 if (error) {
1007 return error;
1008 }
1009
1010 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1011 * error code? */
1012 dpif_execute(p->dpif, flow->in_port, odp_actions.actions,
1013 odp_actions.n_actions, packet);
1014 return 0;
1015 }
1016
1017 void
1018 ofproto_add_flow(struct ofproto *p,
1019 const flow_t *flow, uint32_t wildcards, unsigned int priority,
1020 const union ofp_action *actions, size_t n_actions,
1021 int idle_timeout)
1022 {
1023 struct rule *rule;
1024 rule = rule_create(p, NULL, actions, n_actions,
1025 idle_timeout >= 0 ? idle_timeout : 5 /* XXX */,
1026 0, 0, false);
1027 cls_rule_from_flow(&rule->cr, flow, wildcards, priority);
1028 rule_insert(p, rule, NULL, 0);
1029 }
1030
1031 void
1032 ofproto_delete_flow(struct ofproto *ofproto, const flow_t *flow,
1033 uint32_t wildcards, unsigned int priority)
1034 {
1035 struct rule *rule;
1036
1037 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1038 flow, wildcards,
1039 priority));
1040 if (rule) {
1041 rule_remove(ofproto, rule);
1042 }
1043 }
1044
1045 static void
1046 destroy_rule(struct cls_rule *rule_, void *ofproto_)
1047 {
1048 struct rule *rule = rule_from_cls_rule(rule_);
1049 struct ofproto *ofproto = ofproto_;
1050
1051 /* Mark the flow as not installed, even though it might really be
1052 * installed, so that rule_remove() doesn't bother trying to uninstall it.
1053 * There is no point in uninstalling it individually since we are about to
1054 * blow away all the flows with dpif_flow_flush(). */
1055 rule->installed = false;
1056
1057 rule_remove(ofproto, rule);
1058 }
1059
1060 void
1061 ofproto_flush_flows(struct ofproto *ofproto)
1062 {
1063 COVERAGE_INC(ofproto_flush);
1064 classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto);
1065 dpif_flow_flush(ofproto->dpif);
1066 if (ofproto->in_band) {
1067 in_band_flushed(ofproto->in_band);
1068 }
1069 if (ofproto->fail_open) {
1070 fail_open_flushed(ofproto->fail_open);
1071 }
1072 }
1073 \f
1074 static void
1075 reinit_ports(struct ofproto *p)
1076 {
1077 struct svec devnames;
1078 struct ofport *ofport;
1079 unsigned int port_no;
1080 struct odp_port *odp_ports;
1081 size_t n_odp_ports;
1082 size_t i;
1083
1084 svec_init(&devnames);
1085 PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) {
1086 svec_add (&devnames, (char *) ofport->opp.name);
1087 }
1088 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1089 for (i = 0; i < n_odp_ports; i++) {
1090 svec_add (&devnames, odp_ports[i].devname);
1091 }
1092 free(odp_ports);
1093
1094 svec_sort_unique(&devnames);
1095 for (i = 0; i < devnames.n; i++) {
1096 update_port(p, devnames.names[i]);
1097 }
1098 svec_destroy(&devnames);
1099 }
1100
1101 static size_t
1102 refresh_port_group(struct ofproto *p, unsigned int group)
1103 {
1104 uint16_t *ports;
1105 size_t n_ports;
1106 struct ofport *port;
1107 unsigned int port_no;
1108
1109 assert(group == DP_GROUP_ALL || group == DP_GROUP_FLOOD);
1110
1111 ports = xmalloc(port_array_count(&p->ports) * sizeof *ports);
1112 n_ports = 0;
1113 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
1114 if (group == DP_GROUP_ALL || !(port->opp.config & OFPPC_NO_FLOOD)) {
1115 ports[n_ports++] = port_no;
1116 }
1117 }
1118 dpif_port_group_set(p->dpif, group, ports, n_ports);
1119 free(ports);
1120
1121 return n_ports;
1122 }
1123
1124 static void
1125 refresh_port_groups(struct ofproto *p)
1126 {
1127 size_t n_flood = refresh_port_group(p, DP_GROUP_FLOOD);
1128 size_t n_all = refresh_port_group(p, DP_GROUP_ALL);
1129 if (p->sflow) {
1130 ofproto_sflow_set_group_sizes(p->sflow, n_flood, n_all);
1131 }
1132 }
1133
1134 static struct ofport *
1135 make_ofport(const struct odp_port *odp_port)
1136 {
1137 struct netdev_options netdev_options;
1138 enum netdev_flags flags;
1139 struct ofport *ofport;
1140 struct netdev *netdev;
1141 bool carrier;
1142 int error;
1143
1144 memset(&netdev_options, 0, sizeof netdev_options);
1145 netdev_options.name = odp_port->devname;
1146 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1147 netdev_options.may_open = true;
1148
1149 error = netdev_open(&netdev_options, &netdev);
1150 if (error) {
1151 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1152 "cannot be opened (%s)",
1153 odp_port->devname, odp_port->port,
1154 odp_port->devname, strerror(error));
1155 return NULL;
1156 }
1157
1158 ofport = xmalloc(sizeof *ofport);
1159 ofport->netdev = netdev;
1160 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1161 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1162 memcpy(ofport->opp.name, odp_port->devname,
1163 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1164 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1165
1166 netdev_get_flags(netdev, &flags);
1167 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1168
1169 netdev_get_carrier(netdev, &carrier);
1170 ofport->opp.state = carrier ? 0 : OFPPS_LINK_DOWN;
1171
1172 netdev_get_features(netdev,
1173 &ofport->opp.curr, &ofport->opp.advertised,
1174 &ofport->opp.supported, &ofport->opp.peer);
1175 return ofport;
1176 }
1177
1178 static bool
1179 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1180 {
1181 if (port_array_get(&p->ports, odp_port->port)) {
1182 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1183 odp_port->port);
1184 return true;
1185 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1186 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1187 odp_port->devname);
1188 return true;
1189 } else {
1190 return false;
1191 }
1192 }
1193
1194 static int
1195 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1196 {
1197 const struct ofp_phy_port *a = &a_->opp;
1198 const struct ofp_phy_port *b = &b_->opp;
1199
1200 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1201 return (a->port_no == b->port_no
1202 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1203 && !strcmp((char *) a->name, (char *) b->name)
1204 && a->state == b->state
1205 && a->config == b->config
1206 && a->curr == b->curr
1207 && a->advertised == b->advertised
1208 && a->supported == b->supported
1209 && a->peer == b->peer);
1210 }
1211
1212 static void
1213 send_port_status(struct ofproto *p, const struct ofport *ofport,
1214 uint8_t reason)
1215 {
1216 /* XXX Should limit the number of queued port status change messages. */
1217 struct ofconn *ofconn;
1218 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
1219 struct ofp_port_status *ops;
1220 struct ofpbuf *b;
1221
1222 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1223 ops->reason = reason;
1224 ops->desc = ofport->opp;
1225 hton_ofp_phy_port(&ops->desc);
1226 queue_tx(b, ofconn, NULL);
1227 }
1228 if (p->ofhooks->port_changed_cb) {
1229 p->ofhooks->port_changed_cb(reason, &ofport->opp, p->aux);
1230 }
1231 }
1232
1233 static void
1234 ofport_install(struct ofproto *p, struct ofport *ofport)
1235 {
1236 uint16_t odp_port = ofp_port_to_odp_port(ofport->opp.port_no);
1237 const char *netdev_name = (const char *) ofport->opp.name;
1238
1239 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1240 port_array_set(&p->ports, odp_port, ofport);
1241 shash_add(&p->port_by_name, netdev_name, ofport);
1242 if (p->sflow) {
1243 ofproto_sflow_add_port(p->sflow, odp_port, netdev_name);
1244 }
1245 }
1246
1247 static void
1248 ofport_remove(struct ofproto *p, struct ofport *ofport)
1249 {
1250 uint16_t odp_port = ofp_port_to_odp_port(ofport->opp.port_no);
1251
1252 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1253 port_array_set(&p->ports, odp_port, NULL);
1254 shash_delete(&p->port_by_name,
1255 shash_find(&p->port_by_name, (char *) ofport->opp.name));
1256 if (p->sflow) {
1257 ofproto_sflow_del_port(p->sflow, odp_port);
1258 }
1259 }
1260
1261 static void
1262 ofport_free(struct ofport *ofport)
1263 {
1264 if (ofport) {
1265 netdev_close(ofport->netdev);
1266 free(ofport);
1267 }
1268 }
1269
1270 static void
1271 update_port(struct ofproto *p, const char *devname)
1272 {
1273 struct odp_port odp_port;
1274 struct ofport *old_ofport;
1275 struct ofport *new_ofport;
1276 int error;
1277
1278 COVERAGE_INC(ofproto_update_port);
1279
1280 /* Query the datapath for port information. */
1281 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1282
1283 /* Find the old ofport. */
1284 old_ofport = shash_find_data(&p->port_by_name, devname);
1285 if (!error) {
1286 if (!old_ofport) {
1287 /* There's no port named 'devname' but there might be a port with
1288 * the same port number. This could happen if a port is deleted
1289 * and then a new one added in its place very quickly, or if a port
1290 * is renamed. In the former case we want to send an OFPPR_DELETE
1291 * and an OFPPR_ADD, and in the latter case we want to send a
1292 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1293 * the old port's ifindex against the new port, or perhaps less
1294 * reliably but more portably by comparing the old port's MAC
1295 * against the new port's MAC. However, this code isn't that smart
1296 * and always sends an OFPPR_MODIFY (XXX). */
1297 old_ofport = port_array_get(&p->ports, odp_port.port);
1298 }
1299 } else if (error != ENOENT && error != ENODEV) {
1300 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1301 "%s", strerror(error));
1302 return;
1303 }
1304
1305 /* Create a new ofport. */
1306 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1307
1308 /* Eliminate a few pathological cases. */
1309 if (!old_ofport && !new_ofport) {
1310 return;
1311 } else if (old_ofport && new_ofport) {
1312 /* Most of the 'config' bits are OpenFlow soft state, but
1313 * OFPPC_PORT_DOWN is maintained the kernel. So transfer the OpenFlow
1314 * bits from old_ofport. (make_ofport() only sets OFPPC_PORT_DOWN and
1315 * leaves the other bits 0.) */
1316 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1317
1318 if (ofport_equal(old_ofport, new_ofport)) {
1319 /* False alarm--no change. */
1320 ofport_free(new_ofport);
1321 return;
1322 }
1323 }
1324
1325 /* Now deal with the normal cases. */
1326 if (old_ofport) {
1327 ofport_remove(p, old_ofport);
1328 }
1329 if (new_ofport) {
1330 ofport_install(p, new_ofport);
1331 }
1332 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1333 (!old_ofport ? OFPPR_ADD
1334 : !new_ofport ? OFPPR_DELETE
1335 : OFPPR_MODIFY));
1336 ofport_free(old_ofport);
1337
1338 /* Update port groups. */
1339 refresh_port_groups(p);
1340 }
1341
1342 static int
1343 init_ports(struct ofproto *p)
1344 {
1345 struct odp_port *ports;
1346 size_t n_ports;
1347 size_t i;
1348 int error;
1349
1350 error = dpif_port_list(p->dpif, &ports, &n_ports);
1351 if (error) {
1352 return error;
1353 }
1354
1355 for (i = 0; i < n_ports; i++) {
1356 const struct odp_port *odp_port = &ports[i];
1357 if (!ofport_conflicts(p, odp_port)) {
1358 struct ofport *ofport = make_ofport(odp_port);
1359 if (ofport) {
1360 ofport_install(p, ofport);
1361 }
1362 }
1363 }
1364 free(ports);
1365 refresh_port_groups(p);
1366 return 0;
1367 }
1368 \f
1369 static struct ofconn *
1370 ofconn_create(struct ofproto *p, struct rconn *rconn)
1371 {
1372 struct ofconn *ofconn = xmalloc(sizeof *ofconn);
1373 list_push_back(&p->all_conns, &ofconn->node);
1374 ofconn->rconn = rconn;
1375 ofconn->pktbuf = NULL;
1376 ofconn->miss_send_len = 0;
1377 ofconn->packet_in_counter = rconn_packet_counter_create ();
1378 ofconn->reply_counter = rconn_packet_counter_create ();
1379 return ofconn;
1380 }
1381
1382 static void
1383 ofconn_destroy(struct ofconn *ofconn)
1384 {
1385 list_remove(&ofconn->node);
1386 rconn_destroy(ofconn->rconn);
1387 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1388 rconn_packet_counter_destroy(ofconn->reply_counter);
1389 pktbuf_destroy(ofconn->pktbuf);
1390 free(ofconn);
1391 }
1392
1393 static void
1394 ofconn_run(struct ofconn *ofconn, struct ofproto *p)
1395 {
1396 int iteration;
1397
1398 rconn_run(ofconn->rconn);
1399
1400 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1401 /* Limit the number of iterations to prevent other tasks from
1402 * starving. */
1403 for (iteration = 0; iteration < 50; iteration++) {
1404 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1405 if (!of_msg) {
1406 break;
1407 }
1408 if (p->fail_open) {
1409 fail_open_maybe_recover(p->fail_open);
1410 }
1411 handle_openflow(ofconn, p, of_msg);
1412 ofpbuf_delete(of_msg);
1413 }
1414 }
1415
1416 if (ofconn != p->controller && !rconn_is_alive(ofconn->rconn)) {
1417 ofconn_destroy(ofconn);
1418 }
1419 }
1420
1421 static void
1422 ofconn_wait(struct ofconn *ofconn)
1423 {
1424 rconn_run_wait(ofconn->rconn);
1425 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1426 rconn_recv_wait(ofconn->rconn);
1427 } else {
1428 COVERAGE_INC(ofproto_ofconn_stuck);
1429 }
1430 }
1431 \f
1432 /* Caller is responsible for initializing the 'cr' member of the returned
1433 * rule. */
1434 static struct rule *
1435 rule_create(struct ofproto *ofproto, struct rule *super,
1436 const union ofp_action *actions, size_t n_actions,
1437 uint16_t idle_timeout, uint16_t hard_timeout,
1438 uint64_t flow_cookie, bool send_flow_removed)
1439 {
1440 struct rule *rule = xzalloc(sizeof *rule);
1441 rule->idle_timeout = idle_timeout;
1442 rule->hard_timeout = hard_timeout;
1443 rule->flow_cookie = flow_cookie;
1444 rule->used = rule->created = time_msec();
1445 rule->send_flow_removed = send_flow_removed;
1446 rule->super = super;
1447 if (super) {
1448 list_push_back(&super->list, &rule->list);
1449 } else {
1450 list_init(&rule->list);
1451 }
1452 rule->n_actions = n_actions;
1453 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1454 netflow_flow_clear(&rule->nf_flow);
1455 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->created);
1456
1457 return rule;
1458 }
1459
1460 static struct rule *
1461 rule_from_cls_rule(const struct cls_rule *cls_rule)
1462 {
1463 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
1464 }
1465
1466 static void
1467 rule_free(struct rule *rule)
1468 {
1469 free(rule->actions);
1470 free(rule->odp_actions);
1471 free(rule);
1472 }
1473
1474 /* Destroys 'rule'. If 'rule' is a subrule, also removes it from its
1475 * super-rule's list of subrules. If 'rule' is a super-rule, also iterates
1476 * through all of its subrules and revalidates them, destroying any that no
1477 * longer has a super-rule (which is probably all of them).
1478 *
1479 * Before calling this function, the caller must make have removed 'rule' from
1480 * the classifier. If 'rule' is an exact-match rule, the caller is also
1481 * responsible for ensuring that it has been uninstalled from the datapath. */
1482 static void
1483 rule_destroy(struct ofproto *ofproto, struct rule *rule)
1484 {
1485 if (!rule->super) {
1486 struct rule *subrule, *next;
1487 LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) {
1488 revalidate_rule(ofproto, subrule);
1489 }
1490 } else {
1491 list_remove(&rule->list);
1492 }
1493 rule_free(rule);
1494 }
1495
1496 static bool
1497 rule_has_out_port(const struct rule *rule, uint16_t out_port)
1498 {
1499 const union ofp_action *oa;
1500 struct actions_iterator i;
1501
1502 if (out_port == htons(OFPP_NONE)) {
1503 return true;
1504 }
1505 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
1506 oa = actions_next(&i)) {
1507 if (oa->type == htons(OFPAT_OUTPUT) && oa->output.port == out_port) {
1508 return true;
1509 }
1510 }
1511 return false;
1512 }
1513
1514 /* Executes the actions indicated by 'rule' on 'packet', which is in flow
1515 * 'flow' and is considered to have arrived on ODP port 'in_port'.
1516 *
1517 * The flow that 'packet' actually contains does not need to actually match
1518 * 'rule'; the actions in 'rule' will be applied to it either way. Likewise,
1519 * the packet and byte counters for 'rule' will be credited for the packet sent
1520 * out whether or not the packet actually matches 'rule'.
1521 *
1522 * If 'rule' is an exact-match rule and 'flow' actually equals the rule's flow,
1523 * the caller must already have accurately composed ODP actions for it given
1524 * 'packet' using rule_make_actions(). If 'rule' is a wildcard rule, or if
1525 * 'rule' is an exact-match rule but 'flow' is not the rule's flow, then this
1526 * function will compose a set of ODP actions based on 'rule''s OpenFlow
1527 * actions and apply them to 'packet'. */
1528 static void
1529 rule_execute(struct ofproto *ofproto, struct rule *rule,
1530 struct ofpbuf *packet, const flow_t *flow)
1531 {
1532 const union odp_action *actions;
1533 size_t n_actions;
1534 struct odp_actions a;
1535
1536 /* Grab or compose the ODP actions.
1537 *
1538 * The special case for an exact-match 'rule' where 'flow' is not the
1539 * rule's flow is important to avoid, e.g., sending a packet out its input
1540 * port simply because the ODP actions were composed for the wrong
1541 * scenario. */
1542 if (rule->cr.wc.wildcards || !flow_equal(flow, &rule->cr.flow)) {
1543 struct rule *super = rule->super ? rule->super : rule;
1544 if (xlate_actions(super->actions, super->n_actions, flow, ofproto,
1545 packet, &a, NULL, 0, NULL)) {
1546 return;
1547 }
1548 actions = a.actions;
1549 n_actions = a.n_actions;
1550 } else {
1551 actions = rule->odp_actions;
1552 n_actions = rule->n_odp_actions;
1553 }
1554
1555 /* Execute the ODP actions. */
1556 if (!dpif_execute(ofproto->dpif, flow->in_port,
1557 actions, n_actions, packet)) {
1558 struct odp_flow_stats stats;
1559 flow_extract_stats(flow, packet, &stats);
1560 update_stats(ofproto, rule, &stats);
1561 rule->used = time_msec();
1562 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->used);
1563 }
1564 }
1565
1566 static void
1567 rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet,
1568 uint16_t in_port)
1569 {
1570 struct rule *displaced_rule;
1571
1572 /* Insert the rule in the classifier. */
1573 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
1574 if (!rule->cr.wc.wildcards) {
1575 rule_make_actions(p, rule, packet);
1576 }
1577
1578 /* Send the packet and credit it to the rule. */
1579 if (packet) {
1580 flow_t flow;
1581 flow_extract(packet, in_port, &flow);
1582 rule_execute(p, rule, packet, &flow);
1583 }
1584
1585 /* Install the rule in the datapath only after sending the packet, to
1586 * avoid packet reordering. */
1587 if (rule->cr.wc.wildcards) {
1588 COVERAGE_INC(ofproto_add_wc_flow);
1589 p->need_revalidate = true;
1590 } else {
1591 rule_install(p, rule, displaced_rule);
1592 }
1593
1594 /* Free the rule that was displaced, if any. */
1595 if (displaced_rule) {
1596 rule_destroy(p, displaced_rule);
1597 }
1598 }
1599
1600 static struct rule *
1601 rule_create_subrule(struct ofproto *ofproto, struct rule *rule,
1602 const flow_t *flow)
1603 {
1604 struct rule *subrule = rule_create(ofproto, rule, NULL, 0,
1605 rule->idle_timeout, rule->hard_timeout,
1606 0, false);
1607 COVERAGE_INC(ofproto_subrule_create);
1608 cls_rule_from_flow(&subrule->cr, flow, 0,
1609 (rule->cr.priority <= UINT16_MAX ? UINT16_MAX
1610 : rule->cr.priority));
1611 classifier_insert_exact(&ofproto->cls, &subrule->cr);
1612
1613 return subrule;
1614 }
1615
1616 static void
1617 rule_remove(struct ofproto *ofproto, struct rule *rule)
1618 {
1619 if (rule->cr.wc.wildcards) {
1620 COVERAGE_INC(ofproto_del_wc_flow);
1621 ofproto->need_revalidate = true;
1622 } else {
1623 rule_uninstall(ofproto, rule);
1624 }
1625 classifier_remove(&ofproto->cls, &rule->cr);
1626 rule_destroy(ofproto, rule);
1627 }
1628
1629 /* Returns true if the actions changed, false otherwise. */
1630 static bool
1631 rule_make_actions(struct ofproto *p, struct rule *rule,
1632 const struct ofpbuf *packet)
1633 {
1634 const struct rule *super;
1635 struct odp_actions a;
1636 size_t actions_len;
1637
1638 assert(!rule->cr.wc.wildcards);
1639
1640 super = rule->super ? rule->super : rule;
1641 rule->tags = 0;
1642 xlate_actions(super->actions, super->n_actions, &rule->cr.flow, p,
1643 packet, &a, &rule->tags, &rule->may_install,
1644 &rule->nf_flow.output_iface);
1645
1646 actions_len = a.n_actions * sizeof *a.actions;
1647 if (rule->n_odp_actions != a.n_actions
1648 || memcmp(rule->odp_actions, a.actions, actions_len)) {
1649 COVERAGE_INC(ofproto_odp_unchanged);
1650 free(rule->odp_actions);
1651 rule->n_odp_actions = a.n_actions;
1652 rule->odp_actions = xmemdup(a.actions, actions_len);
1653 return true;
1654 } else {
1655 return false;
1656 }
1657 }
1658
1659 static int
1660 do_put_flow(struct ofproto *ofproto, struct rule *rule, int flags,
1661 struct odp_flow_put *put)
1662 {
1663 memset(&put->flow.stats, 0, sizeof put->flow.stats);
1664 put->flow.key = rule->cr.flow;
1665 put->flow.actions = rule->odp_actions;
1666 put->flow.n_actions = rule->n_odp_actions;
1667 put->flags = flags;
1668 return dpif_flow_put(ofproto->dpif, put);
1669 }
1670
1671 static void
1672 rule_install(struct ofproto *p, struct rule *rule, struct rule *displaced_rule)
1673 {
1674 assert(!rule->cr.wc.wildcards);
1675
1676 if (rule->may_install) {
1677 struct odp_flow_put put;
1678 if (!do_put_flow(p, rule,
1679 ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS,
1680 &put)) {
1681 rule->installed = true;
1682 if (displaced_rule) {
1683 update_stats(p, displaced_rule, &put.flow.stats);
1684 rule_post_uninstall(p, displaced_rule);
1685 }
1686 }
1687 } else if (displaced_rule) {
1688 rule_uninstall(p, displaced_rule);
1689 }
1690 }
1691
1692 static void
1693 rule_reinstall(struct ofproto *ofproto, struct rule *rule)
1694 {
1695 if (rule->installed) {
1696 struct odp_flow_put put;
1697 COVERAGE_INC(ofproto_dp_missed);
1698 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put);
1699 } else {
1700 rule_install(ofproto, rule, NULL);
1701 }
1702 }
1703
1704 static void
1705 rule_update_actions(struct ofproto *ofproto, struct rule *rule)
1706 {
1707 bool actions_changed;
1708 uint16_t new_out_iface, old_out_iface;
1709
1710 old_out_iface = rule->nf_flow.output_iface;
1711 actions_changed = rule_make_actions(ofproto, rule, NULL);
1712
1713 if (rule->may_install) {
1714 if (rule->installed) {
1715 if (actions_changed) {
1716 struct odp_flow_put put;
1717 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY
1718 | ODPPF_ZERO_STATS, &put);
1719 update_stats(ofproto, rule, &put.flow.stats);
1720
1721 /* Temporarily set the old output iface so that NetFlow
1722 * messages have the correct output interface for the old
1723 * stats. */
1724 new_out_iface = rule->nf_flow.output_iface;
1725 rule->nf_flow.output_iface = old_out_iface;
1726 rule_post_uninstall(ofproto, rule);
1727 rule->nf_flow.output_iface = new_out_iface;
1728 }
1729 } else {
1730 rule_install(ofproto, rule, NULL);
1731 }
1732 } else {
1733 rule_uninstall(ofproto, rule);
1734 }
1735 }
1736
1737 static void
1738 rule_account(struct ofproto *ofproto, struct rule *rule, uint64_t extra_bytes)
1739 {
1740 uint64_t total_bytes = rule->byte_count + extra_bytes;
1741
1742 if (ofproto->ofhooks->account_flow_cb
1743 && total_bytes > rule->accounted_bytes)
1744 {
1745 ofproto->ofhooks->account_flow_cb(
1746 &rule->cr.flow, rule->odp_actions, rule->n_odp_actions,
1747 total_bytes - rule->accounted_bytes, ofproto->aux);
1748 rule->accounted_bytes = total_bytes;
1749 }
1750 }
1751
1752 static void
1753 rule_uninstall(struct ofproto *p, struct rule *rule)
1754 {
1755 assert(!rule->cr.wc.wildcards);
1756 if (rule->installed) {
1757 struct odp_flow odp_flow;
1758
1759 odp_flow.key = rule->cr.flow;
1760 odp_flow.actions = NULL;
1761 odp_flow.n_actions = 0;
1762 if (!dpif_flow_del(p->dpif, &odp_flow)) {
1763 update_stats(p, rule, &odp_flow.stats);
1764 }
1765 rule->installed = false;
1766
1767 rule_post_uninstall(p, rule);
1768 }
1769 }
1770
1771 static bool
1772 is_controller_rule(struct rule *rule)
1773 {
1774 /* If the only action is send to the controller then don't report
1775 * NetFlow expiration messages since it is just part of the control
1776 * logic for the network and not real traffic. */
1777
1778 if (rule && rule->super) {
1779 struct rule *super = rule->super;
1780
1781 return super->n_actions == 1 &&
1782 super->actions[0].type == htons(OFPAT_OUTPUT) &&
1783 super->actions[0].output.port == htons(OFPP_CONTROLLER);
1784 }
1785
1786 return false;
1787 }
1788
1789 static void
1790 rule_post_uninstall(struct ofproto *ofproto, struct rule *rule)
1791 {
1792 struct rule *super = rule->super;
1793
1794 rule_account(ofproto, rule, 0);
1795
1796 if (ofproto->netflow && !is_controller_rule(rule)) {
1797 struct ofexpired expired;
1798 expired.flow = rule->cr.flow;
1799 expired.packet_count = rule->packet_count;
1800 expired.byte_count = rule->byte_count;
1801 expired.used = rule->used;
1802 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
1803 }
1804 if (super) {
1805 super->packet_count += rule->packet_count;
1806 super->byte_count += rule->byte_count;
1807
1808 /* Reset counters to prevent double counting if the rule ever gets
1809 * reinstalled. */
1810 rule->packet_count = 0;
1811 rule->byte_count = 0;
1812 rule->accounted_bytes = 0;
1813
1814 netflow_flow_clear(&rule->nf_flow);
1815 }
1816 }
1817 \f
1818 static void
1819 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
1820 struct rconn_packet_counter *counter)
1821 {
1822 update_openflow_length(msg);
1823 if (rconn_send(ofconn->rconn, msg, counter)) {
1824 ofpbuf_delete(msg);
1825 }
1826 }
1827
1828 static void
1829 send_error(const struct ofconn *ofconn, const struct ofp_header *oh,
1830 int error, const void *data, size_t len)
1831 {
1832 struct ofpbuf *buf;
1833 struct ofp_error_msg *oem;
1834
1835 if (!(error >> 16)) {
1836 VLOG_WARN_RL(&rl, "not sending bad error code %d to controller",
1837 error);
1838 return;
1839 }
1840
1841 COVERAGE_INC(ofproto_error);
1842 oem = make_openflow_xid(len + sizeof *oem, OFPT_ERROR,
1843 oh ? oh->xid : 0, &buf);
1844 oem->type = htons((unsigned int) error >> 16);
1845 oem->code = htons(error & 0xffff);
1846 memcpy(oem->data, data, len);
1847 queue_tx(buf, ofconn, ofconn->reply_counter);
1848 }
1849
1850 static void
1851 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
1852 int error)
1853 {
1854 size_t oh_length = ntohs(oh->length);
1855 send_error(ofconn, oh, error, oh, MIN(oh_length, 64));
1856 }
1857
1858 static void
1859 hton_ofp_phy_port(struct ofp_phy_port *opp)
1860 {
1861 opp->port_no = htons(opp->port_no);
1862 opp->config = htonl(opp->config);
1863 opp->state = htonl(opp->state);
1864 opp->curr = htonl(opp->curr);
1865 opp->advertised = htonl(opp->advertised);
1866 opp->supported = htonl(opp->supported);
1867 opp->peer = htonl(opp->peer);
1868 }
1869
1870 static int
1871 handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh)
1872 {
1873 struct ofp_header *rq = oh;
1874 queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter);
1875 return 0;
1876 }
1877
1878 static int
1879 handle_features_request(struct ofproto *p, struct ofconn *ofconn,
1880 struct ofp_header *oh)
1881 {
1882 struct ofp_switch_features *osf;
1883 struct ofpbuf *buf;
1884 unsigned int port_no;
1885 struct ofport *port;
1886
1887 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
1888 osf->datapath_id = htonll(p->datapath_id);
1889 osf->n_buffers = htonl(pktbuf_capacity());
1890 osf->n_tables = 2;
1891 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
1892 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
1893 osf->actions = htonl((1u << OFPAT_OUTPUT) |
1894 (1u << OFPAT_SET_VLAN_VID) |
1895 (1u << OFPAT_SET_VLAN_PCP) |
1896 (1u << OFPAT_STRIP_VLAN) |
1897 (1u << OFPAT_SET_DL_SRC) |
1898 (1u << OFPAT_SET_DL_DST) |
1899 (1u << OFPAT_SET_NW_SRC) |
1900 (1u << OFPAT_SET_NW_DST) |
1901 (1u << OFPAT_SET_NW_TOS) |
1902 (1u << OFPAT_SET_TP_SRC) |
1903 (1u << OFPAT_SET_TP_DST));
1904
1905 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
1906 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
1907 }
1908
1909 queue_tx(buf, ofconn, ofconn->reply_counter);
1910 return 0;
1911 }
1912
1913 static int
1914 handle_get_config_request(struct ofproto *p, struct ofconn *ofconn,
1915 struct ofp_header *oh)
1916 {
1917 struct ofpbuf *buf;
1918 struct ofp_switch_config *osc;
1919 uint16_t flags;
1920 bool drop_frags;
1921
1922 /* Figure out flags. */
1923 dpif_get_drop_frags(p->dpif, &drop_frags);
1924 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
1925
1926 /* Send reply. */
1927 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
1928 osc->flags = htons(flags);
1929 osc->miss_send_len = htons(ofconn->miss_send_len);
1930 queue_tx(buf, ofconn, ofconn->reply_counter);
1931
1932 return 0;
1933 }
1934
1935 static int
1936 handle_set_config(struct ofproto *p, struct ofconn *ofconn,
1937 struct ofp_switch_config *osc)
1938 {
1939 uint16_t flags;
1940 int error;
1941
1942 error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc);
1943 if (error) {
1944 return error;
1945 }
1946 flags = ntohs(osc->flags);
1947
1948 if (ofconn == p->controller) {
1949 switch (flags & OFPC_FRAG_MASK) {
1950 case OFPC_FRAG_NORMAL:
1951 dpif_set_drop_frags(p->dpif, false);
1952 break;
1953 case OFPC_FRAG_DROP:
1954 dpif_set_drop_frags(p->dpif, true);
1955 break;
1956 default:
1957 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
1958 osc->flags);
1959 break;
1960 }
1961 }
1962
1963 if ((ntohs(osc->miss_send_len) != 0) != (ofconn->miss_send_len != 0)) {
1964 if (ntohs(osc->miss_send_len) != 0) {
1965 ofconn->pktbuf = pktbuf_create();
1966 } else {
1967 pktbuf_destroy(ofconn->pktbuf);
1968 }
1969 }
1970
1971 ofconn->miss_send_len = ntohs(osc->miss_send_len);
1972
1973 return 0;
1974 }
1975
1976 static void
1977 add_output_group_action(struct odp_actions *actions, uint16_t group,
1978 uint16_t *nf_output_iface)
1979 {
1980 odp_actions_add(actions, ODPAT_OUTPUT_GROUP)->output_group.group = group;
1981
1982 if (group == DP_GROUP_ALL || group == DP_GROUP_FLOOD) {
1983 *nf_output_iface = NF_OUT_FLOOD;
1984 }
1985 }
1986
1987 static void
1988 add_controller_action(struct odp_actions *actions,
1989 const struct ofp_action_output *oao)
1990 {
1991 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
1992 a->controller.arg = oao->max_len ? ntohs(oao->max_len) : UINT32_MAX;
1993 }
1994
1995 struct action_xlate_ctx {
1996 /* Input. */
1997 const flow_t *flow; /* Flow to which these actions correspond. */
1998 int recurse; /* Recursion level, via xlate_table_action. */
1999 struct ofproto *ofproto;
2000 const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a
2001 * null pointer if we are revalidating
2002 * without a packet to refer to. */
2003
2004 /* Output. */
2005 struct odp_actions *out; /* Datapath actions. */
2006 tag_type *tags; /* Tags associated with OFPP_NORMAL actions. */
2007 bool may_set_up_flow; /* True ordinarily; false if the actions must
2008 * be reassessed for every packet. */
2009 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
2010 };
2011
2012 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2013 struct action_xlate_ctx *ctx);
2014
2015 static void
2016 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2017 {
2018 const struct ofport *ofport = port_array_get(&ctx->ofproto->ports, port);
2019
2020 if (ofport) {
2021 if (ofport->opp.config & OFPPC_NO_FWD) {
2022 /* Forwarding disabled on port. */
2023 return;
2024 }
2025 } else {
2026 /*
2027 * We don't have an ofport record for this port, but it doesn't hurt to
2028 * allow forwarding to it anyhow. Maybe such a port will appear later
2029 * and we're pre-populating the flow table.
2030 */
2031 }
2032
2033 odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port;
2034 ctx->nf_output_iface = port;
2035 }
2036
2037 static struct rule *
2038 lookup_valid_rule(struct ofproto *ofproto, const flow_t *flow)
2039 {
2040 struct rule *rule;
2041 rule = rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2042
2043 /* The rule we found might not be valid, since we could be in need of
2044 * revalidation. If it is not valid, don't return it. */
2045 if (rule
2046 && rule->super
2047 && ofproto->need_revalidate
2048 && !revalidate_rule(ofproto, rule)) {
2049 COVERAGE_INC(ofproto_invalidated);
2050 return NULL;
2051 }
2052
2053 return rule;
2054 }
2055
2056 static void
2057 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2058 {
2059 if (!ctx->recurse) {
2060 struct rule *rule;
2061 flow_t flow;
2062
2063 flow = *ctx->flow;
2064 flow.in_port = in_port;
2065
2066 rule = lookup_valid_rule(ctx->ofproto, &flow);
2067 if (rule) {
2068 if (rule->super) {
2069 rule = rule->super;
2070 }
2071
2072 ctx->recurse++;
2073 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2074 ctx->recurse--;
2075 }
2076 }
2077 }
2078
2079 static void
2080 xlate_output_action(struct action_xlate_ctx *ctx,
2081 const struct ofp_action_output *oao)
2082 {
2083 uint16_t odp_port;
2084 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2085
2086 ctx->nf_output_iface = NF_OUT_DROP;
2087
2088 switch (ntohs(oao->port)) {
2089 case OFPP_IN_PORT:
2090 add_output_action(ctx, ctx->flow->in_port);
2091 break;
2092 case OFPP_TABLE:
2093 xlate_table_action(ctx, ctx->flow->in_port);
2094 break;
2095 case OFPP_NORMAL:
2096 if (!ctx->ofproto->ofhooks->normal_cb(ctx->flow, ctx->packet,
2097 ctx->out, ctx->tags,
2098 &ctx->nf_output_iface,
2099 ctx->ofproto->aux)) {
2100 COVERAGE_INC(ofproto_uninstallable);
2101 ctx->may_set_up_flow = false;
2102 }
2103 break;
2104 case OFPP_FLOOD:
2105 add_output_group_action(ctx->out, DP_GROUP_FLOOD,
2106 &ctx->nf_output_iface);
2107 break;
2108 case OFPP_ALL:
2109 add_output_group_action(ctx->out, DP_GROUP_ALL, &ctx->nf_output_iface);
2110 break;
2111 case OFPP_CONTROLLER:
2112 add_controller_action(ctx->out, oao);
2113 break;
2114 case OFPP_LOCAL:
2115 add_output_action(ctx, ODPP_LOCAL);
2116 break;
2117 default:
2118 odp_port = ofp_port_to_odp_port(ntohs(oao->port));
2119 if (odp_port != ctx->flow->in_port) {
2120 add_output_action(ctx, odp_port);
2121 }
2122 break;
2123 }
2124
2125 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2126 ctx->nf_output_iface = NF_OUT_FLOOD;
2127 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2128 ctx->nf_output_iface = prev_nf_output_iface;
2129 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2130 ctx->nf_output_iface != NF_OUT_FLOOD) {
2131 ctx->nf_output_iface = NF_OUT_MULTI;
2132 }
2133 }
2134
2135 static void
2136 xlate_nicira_action(struct action_xlate_ctx *ctx,
2137 const struct nx_action_header *nah)
2138 {
2139 const struct nx_action_resubmit *nar;
2140 int subtype = ntohs(nah->subtype);
2141
2142 assert(nah->vendor == htonl(NX_VENDOR_ID));
2143 switch (subtype) {
2144 case NXAST_RESUBMIT:
2145 nar = (const struct nx_action_resubmit *) nah;
2146 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2147 break;
2148
2149 default:
2150 VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype);
2151 break;
2152 }
2153 }
2154
2155 static void
2156 do_xlate_actions(const union ofp_action *in, size_t n_in,
2157 struct action_xlate_ctx *ctx)
2158 {
2159 struct actions_iterator iter;
2160 const union ofp_action *ia;
2161 const struct ofport *port;
2162
2163 port = port_array_get(&ctx->ofproto->ports, ctx->flow->in_port);
2164 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2165 port->opp.config & (eth_addr_equals(ctx->flow->dl_dst, stp_eth_addr)
2166 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2167 /* Drop this flow. */
2168 return;
2169 }
2170
2171 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2172 uint16_t type = ntohs(ia->type);
2173 union odp_action *oa;
2174
2175 switch (type) {
2176 case OFPAT_OUTPUT:
2177 xlate_output_action(ctx, &ia->output);
2178 break;
2179
2180 case OFPAT_SET_VLAN_VID:
2181 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_VID);
2182 oa->vlan_vid.vlan_vid = ia->vlan_vid.vlan_vid;
2183 break;
2184
2185 case OFPAT_SET_VLAN_PCP:
2186 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_PCP);
2187 oa->vlan_pcp.vlan_pcp = ia->vlan_pcp.vlan_pcp;
2188 break;
2189
2190 case OFPAT_STRIP_VLAN:
2191 odp_actions_add(ctx->out, ODPAT_STRIP_VLAN);
2192 break;
2193
2194 case OFPAT_SET_DL_SRC:
2195 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC);
2196 memcpy(oa->dl_addr.dl_addr,
2197 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2198 break;
2199
2200 case OFPAT_SET_DL_DST:
2201 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST);
2202 memcpy(oa->dl_addr.dl_addr,
2203 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2204 break;
2205
2206 case OFPAT_SET_NW_SRC:
2207 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC);
2208 oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2209 break;
2210
2211 case OFPAT_SET_NW_DST:
2212 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_DST);
2213 oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2214
2215 case OFPAT_SET_NW_TOS:
2216 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_TOS);
2217 oa->nw_tos.nw_tos = ia->nw_tos.nw_tos;
2218 break;
2219
2220 case OFPAT_SET_TP_SRC:
2221 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC);
2222 oa->tp_port.tp_port = ia->tp_port.tp_port;
2223 break;
2224
2225 case OFPAT_SET_TP_DST:
2226 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_DST);
2227 oa->tp_port.tp_port = ia->tp_port.tp_port;
2228 break;
2229
2230 case OFPAT_VENDOR:
2231 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
2232 break;
2233
2234 default:
2235 VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type);
2236 break;
2237 }
2238 }
2239 }
2240
2241 static int
2242 xlate_actions(const union ofp_action *in, size_t n_in,
2243 const flow_t *flow, struct ofproto *ofproto,
2244 const struct ofpbuf *packet,
2245 struct odp_actions *out, tag_type *tags, bool *may_set_up_flow,
2246 uint16_t *nf_output_iface)
2247 {
2248 tag_type no_tags = 0;
2249 struct action_xlate_ctx ctx;
2250 COVERAGE_INC(ofproto_ofp2odp);
2251 odp_actions_init(out);
2252 ctx.flow = flow;
2253 ctx.recurse = 0;
2254 ctx.ofproto = ofproto;
2255 ctx.packet = packet;
2256 ctx.out = out;
2257 ctx.tags = tags ? tags : &no_tags;
2258 ctx.may_set_up_flow = true;
2259 ctx.nf_output_iface = NF_OUT_DROP;
2260 do_xlate_actions(in, n_in, &ctx);
2261
2262 /* Check with in-band control to see if we're allowed to set up this
2263 * flow. */
2264 if (!in_band_rule_check(ofproto->in_band, flow, out)) {
2265 ctx.may_set_up_flow = false;
2266 }
2267
2268 if (may_set_up_flow) {
2269 *may_set_up_flow = ctx.may_set_up_flow;
2270 }
2271 if (nf_output_iface) {
2272 *nf_output_iface = ctx.nf_output_iface;
2273 }
2274 if (odp_actions_overflow(out)) {
2275 odp_actions_init(out);
2276 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
2277 }
2278 return 0;
2279 }
2280
2281 static int
2282 handle_packet_out(struct ofproto *p, struct ofconn *ofconn,
2283 struct ofp_header *oh)
2284 {
2285 struct ofp_packet_out *opo;
2286 struct ofpbuf payload, *buffer;
2287 struct odp_actions actions;
2288 int n_actions;
2289 uint16_t in_port;
2290 flow_t flow;
2291 int error;
2292
2293 error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports);
2294 if (error) {
2295 return error;
2296 }
2297 opo = (struct ofp_packet_out *) oh;
2298
2299 COVERAGE_INC(ofproto_packet_out);
2300 if (opo->buffer_id != htonl(UINT32_MAX)) {
2301 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
2302 &buffer, &in_port);
2303 if (error || !buffer) {
2304 return error;
2305 }
2306 payload = *buffer;
2307 } else {
2308 buffer = NULL;
2309 }
2310
2311 flow_extract(&payload, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow);
2312 error = xlate_actions((const union ofp_action *) opo->actions, n_actions,
2313 &flow, p, &payload, &actions, NULL, NULL, NULL);
2314 if (error) {
2315 return error;
2316 }
2317
2318 dpif_execute(p->dpif, flow.in_port, actions.actions, actions.n_actions,
2319 &payload);
2320 ofpbuf_delete(buffer);
2321
2322 return 0;
2323 }
2324
2325 static void
2326 update_port_config(struct ofproto *p, struct ofport *port,
2327 uint32_t config, uint32_t mask)
2328 {
2329 mask &= config ^ port->opp.config;
2330 if (mask & OFPPC_PORT_DOWN) {
2331 if (config & OFPPC_PORT_DOWN) {
2332 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
2333 } else {
2334 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
2335 }
2336 }
2337 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | OFPPC_NO_FWD)
2338 if (mask & REVALIDATE_BITS) {
2339 COVERAGE_INC(ofproto_costly_flags);
2340 port->opp.config ^= mask & REVALIDATE_BITS;
2341 p->need_revalidate = true;
2342 }
2343 #undef REVALIDATE_BITS
2344 if (mask & OFPPC_NO_FLOOD) {
2345 port->opp.config ^= OFPPC_NO_FLOOD;
2346 refresh_port_groups(p);
2347 }
2348 if (mask & OFPPC_NO_PACKET_IN) {
2349 port->opp.config ^= OFPPC_NO_PACKET_IN;
2350 }
2351 }
2352
2353 static int
2354 handle_port_mod(struct ofproto *p, struct ofp_header *oh)
2355 {
2356 const struct ofp_port_mod *opm;
2357 struct ofport *port;
2358 int error;
2359
2360 error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm);
2361 if (error) {
2362 return error;
2363 }
2364 opm = (struct ofp_port_mod *) oh;
2365
2366 port = port_array_get(&p->ports,
2367 ofp_port_to_odp_port(ntohs(opm->port_no)));
2368 if (!port) {
2369 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
2370 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
2371 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
2372 } else {
2373 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
2374 if (opm->advertise) {
2375 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
2376 }
2377 }
2378 return 0;
2379 }
2380
2381 static struct ofpbuf *
2382 make_stats_reply(uint32_t xid, uint16_t type, size_t body_len)
2383 {
2384 struct ofp_stats_reply *osr;
2385 struct ofpbuf *msg;
2386
2387 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
2388 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
2389 osr->type = type;
2390 osr->flags = htons(0);
2391 return msg;
2392 }
2393
2394 static struct ofpbuf *
2395 start_stats_reply(const struct ofp_stats_request *request, size_t body_len)
2396 {
2397 return make_stats_reply(request->header.xid, request->type, body_len);
2398 }
2399
2400 static void *
2401 append_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp)
2402 {
2403 struct ofpbuf *msg = *msgp;
2404 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
2405 if (nbytes + msg->size > UINT16_MAX) {
2406 struct ofp_stats_reply *reply = msg->data;
2407 reply->flags = htons(OFPSF_REPLY_MORE);
2408 *msgp = make_stats_reply(reply->header.xid, reply->type, nbytes);
2409 queue_tx(msg, ofconn, ofconn->reply_counter);
2410 }
2411 return ofpbuf_put_uninit(*msgp, nbytes);
2412 }
2413
2414 static int
2415 handle_desc_stats_request(struct ofproto *p, struct ofconn *ofconn,
2416 struct ofp_stats_request *request)
2417 {
2418 struct ofp_desc_stats *ods;
2419 struct ofpbuf *msg;
2420
2421 msg = start_stats_reply(request, sizeof *ods);
2422 ods = append_stats_reply(sizeof *ods, ofconn, &msg);
2423 memset(ods, 0, sizeof *ods);
2424 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
2425 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
2426 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
2427 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
2428 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
2429 queue_tx(msg, ofconn, ofconn->reply_counter);
2430
2431 return 0;
2432 }
2433
2434 static void
2435 count_subrules(struct cls_rule *cls_rule, void *n_subrules_)
2436 {
2437 struct rule *rule = rule_from_cls_rule(cls_rule);
2438 int *n_subrules = n_subrules_;
2439
2440 if (rule->super) {
2441 (*n_subrules)++;
2442 }
2443 }
2444
2445 static int
2446 handle_table_stats_request(struct ofproto *p, struct ofconn *ofconn,
2447 struct ofp_stats_request *request)
2448 {
2449 struct ofp_table_stats *ots;
2450 struct ofpbuf *msg;
2451 struct odp_stats dpstats;
2452 int n_exact, n_subrules, n_wild;
2453
2454 msg = start_stats_reply(request, sizeof *ots * 2);
2455
2456 /* Count rules of various kinds. */
2457 n_subrules = 0;
2458 classifier_for_each(&p->cls, CLS_INC_EXACT, count_subrules, &n_subrules);
2459 n_exact = classifier_count_exact(&p->cls) - n_subrules;
2460 n_wild = classifier_count(&p->cls) - classifier_count_exact(&p->cls);
2461
2462 /* Hash table. */
2463 dpif_get_dp_stats(p->dpif, &dpstats);
2464 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
2465 memset(ots, 0, sizeof *ots);
2466 ots->table_id = TABLEID_HASH;
2467 strcpy(ots->name, "hash");
2468 ots->wildcards = htonl(0);
2469 ots->max_entries = htonl(dpstats.max_capacity);
2470 ots->active_count = htonl(n_exact);
2471 ots->lookup_count = htonll(dpstats.n_frags + dpstats.n_hit +
2472 dpstats.n_missed);
2473 ots->matched_count = htonll(dpstats.n_hit); /* XXX */
2474
2475 /* Classifier table. */
2476 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
2477 memset(ots, 0, sizeof *ots);
2478 ots->table_id = TABLEID_CLASSIFIER;
2479 strcpy(ots->name, "classifier");
2480 ots->wildcards = htonl(OFPFW_ALL);
2481 ots->max_entries = htonl(65536);
2482 ots->active_count = htonl(n_wild);
2483 ots->lookup_count = htonll(0); /* XXX */
2484 ots->matched_count = htonll(0); /* XXX */
2485
2486 queue_tx(msg, ofconn, ofconn->reply_counter);
2487 return 0;
2488 }
2489
2490 static void
2491 append_port_stat(struct ofport *port, uint16_t port_no, struct ofconn *ofconn,
2492 struct ofpbuf *msg)
2493 {
2494 struct netdev_stats stats;
2495 struct ofp_port_stats *ops;
2496
2497 /* Intentionally ignore return value, since errors will set
2498 * 'stats' to all-1s, which is correct for OpenFlow, and
2499 * netdev_get_stats() will log errors. */
2500 netdev_get_stats(port->netdev, &stats);
2501
2502 ops = append_stats_reply(sizeof *ops, ofconn, &msg);
2503 ops->port_no = htons(odp_port_to_ofp_port(port_no));
2504 memset(ops->pad, 0, sizeof ops->pad);
2505 ops->rx_packets = htonll(stats.rx_packets);
2506 ops->tx_packets = htonll(stats.tx_packets);
2507 ops->rx_bytes = htonll(stats.rx_bytes);
2508 ops->tx_bytes = htonll(stats.tx_bytes);
2509 ops->rx_dropped = htonll(stats.rx_dropped);
2510 ops->tx_dropped = htonll(stats.tx_dropped);
2511 ops->rx_errors = htonll(stats.rx_errors);
2512 ops->tx_errors = htonll(stats.tx_errors);
2513 ops->rx_frame_err = htonll(stats.rx_frame_errors);
2514 ops->rx_over_err = htonll(stats.rx_over_errors);
2515 ops->rx_crc_err = htonll(stats.rx_crc_errors);
2516 ops->collisions = htonll(stats.collisions);
2517 }
2518
2519 static int
2520 handle_port_stats_request(struct ofproto *p, struct ofconn *ofconn,
2521 struct ofp_stats_request *osr,
2522 size_t arg_size)
2523 {
2524 struct ofp_port_stats_request *psr;
2525 struct ofp_port_stats *ops;
2526 struct ofpbuf *msg;
2527 struct ofport *port;
2528 unsigned int port_no;
2529
2530 if (arg_size != sizeof *psr) {
2531 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
2532 }
2533 psr = (struct ofp_port_stats_request *) osr->body;
2534
2535 msg = start_stats_reply(osr, sizeof *ops * 16);
2536 if (psr->port_no != htons(OFPP_NONE)) {
2537 port = port_array_get(&p->ports,
2538 ofp_port_to_odp_port(ntohs(psr->port_no)));
2539 if (port) {
2540 append_port_stat(port, ntohs(psr->port_no), ofconn, msg);
2541 }
2542 } else {
2543 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
2544 append_port_stat(port, port_no, ofconn, msg);
2545 }
2546 }
2547
2548 queue_tx(msg, ofconn, ofconn->reply_counter);
2549 return 0;
2550 }
2551
2552 struct flow_stats_cbdata {
2553 struct ofproto *ofproto;
2554 struct ofconn *ofconn;
2555 uint16_t out_port;
2556 struct ofpbuf *msg;
2557 };
2558
2559 static void
2560 query_stats(struct ofproto *p, struct rule *rule,
2561 uint64_t *packet_countp, uint64_t *byte_countp)
2562 {
2563 uint64_t packet_count, byte_count;
2564 struct rule *subrule;
2565 struct odp_flow *odp_flows;
2566 size_t n_odp_flows;
2567
2568 packet_count = rule->packet_count;
2569 byte_count = rule->byte_count;
2570
2571 n_odp_flows = rule->cr.wc.wildcards ? list_size(&rule->list) : 1;
2572 odp_flows = xzalloc(n_odp_flows * sizeof *odp_flows);
2573 if (rule->cr.wc.wildcards) {
2574 size_t i = 0;
2575 LIST_FOR_EACH (subrule, struct rule, list, &rule->list) {
2576 odp_flows[i++].key = subrule->cr.flow;
2577 packet_count += subrule->packet_count;
2578 byte_count += subrule->byte_count;
2579 }
2580 } else {
2581 odp_flows[0].key = rule->cr.flow;
2582 }
2583
2584 packet_count = rule->packet_count;
2585 byte_count = rule->byte_count;
2586 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
2587 size_t i;
2588 for (i = 0; i < n_odp_flows; i++) {
2589 struct odp_flow *odp_flow = &odp_flows[i];
2590 packet_count += odp_flow->stats.n_packets;
2591 byte_count += odp_flow->stats.n_bytes;
2592 }
2593 }
2594 free(odp_flows);
2595
2596 *packet_countp = packet_count;
2597 *byte_countp = byte_count;
2598 }
2599
2600 static void
2601 flow_stats_cb(struct cls_rule *rule_, void *cbdata_)
2602 {
2603 struct rule *rule = rule_from_cls_rule(rule_);
2604 struct flow_stats_cbdata *cbdata = cbdata_;
2605 struct ofp_flow_stats *ofs;
2606 uint64_t packet_count, byte_count;
2607 size_t act_len, len;
2608 long long int tdiff = time_msec() - rule->created;
2609 uint32_t sec = tdiff / 1000;
2610 uint32_t msec = tdiff - (sec * 1000);
2611
2612 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
2613 return;
2614 }
2615
2616 act_len = sizeof *rule->actions * rule->n_actions;
2617 len = offsetof(struct ofp_flow_stats, actions) + act_len;
2618
2619 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
2620
2621 ofs = append_stats_reply(len, cbdata->ofconn, &cbdata->msg);
2622 ofs->length = htons(len);
2623 ofs->table_id = rule->cr.wc.wildcards ? TABLEID_CLASSIFIER : TABLEID_HASH;
2624 ofs->pad = 0;
2625 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, &ofs->match);
2626 ofs->duration_sec = htonl(sec);
2627 ofs->duration_nsec = htonl(msec * 1000000);
2628 ofs->cookie = rule->flow_cookie;
2629 ofs->priority = htons(rule->cr.priority);
2630 ofs->idle_timeout = htons(rule->idle_timeout);
2631 ofs->hard_timeout = htons(rule->hard_timeout);
2632 memset(ofs->pad2, 0, sizeof ofs->pad2);
2633 ofs->packet_count = htonll(packet_count);
2634 ofs->byte_count = htonll(byte_count);
2635 memcpy(ofs->actions, rule->actions, act_len);
2636 }
2637
2638 static int
2639 table_id_to_include(uint8_t table_id)
2640 {
2641 return (table_id == TABLEID_HASH ? CLS_INC_EXACT
2642 : table_id == TABLEID_CLASSIFIER ? CLS_INC_WILD
2643 : table_id == 0xff ? CLS_INC_ALL
2644 : 0);
2645 }
2646
2647 static int
2648 handle_flow_stats_request(struct ofproto *p, struct ofconn *ofconn,
2649 const struct ofp_stats_request *osr,
2650 size_t arg_size)
2651 {
2652 struct ofp_flow_stats_request *fsr;
2653 struct flow_stats_cbdata cbdata;
2654 struct cls_rule target;
2655
2656 if (arg_size != sizeof *fsr) {
2657 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
2658 }
2659 fsr = (struct ofp_flow_stats_request *) osr->body;
2660
2661 COVERAGE_INC(ofproto_flows_req);
2662 cbdata.ofproto = p;
2663 cbdata.ofconn = ofconn;
2664 cbdata.out_port = fsr->out_port;
2665 cbdata.msg = start_stats_reply(osr, 1024);
2666 cls_rule_from_match(&target, &fsr->match, 0);
2667 classifier_for_each_match(&p->cls, &target,
2668 table_id_to_include(fsr->table_id),
2669 flow_stats_cb, &cbdata);
2670 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
2671 return 0;
2672 }
2673
2674 struct flow_stats_ds_cbdata {
2675 struct ofproto *ofproto;
2676 struct ds *results;
2677 };
2678
2679 static void
2680 flow_stats_ds_cb(struct cls_rule *rule_, void *cbdata_)
2681 {
2682 struct rule *rule = rule_from_cls_rule(rule_);
2683 struct flow_stats_ds_cbdata *cbdata = cbdata_;
2684 struct ds *results = cbdata->results;
2685 struct ofp_match match;
2686 uint64_t packet_count, byte_count;
2687 size_t act_len = sizeof *rule->actions * rule->n_actions;
2688
2689 /* Don't report on subrules. */
2690 if (rule->super != NULL) {
2691 return;
2692 }
2693
2694 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
2695 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, &match);
2696
2697 ds_put_format(results, "duration=%llds, ",
2698 (time_msec() - rule->created) / 1000);
2699 ds_put_format(results, "priority=%u, ", rule->cr.priority);
2700 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
2701 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
2702 ofp_print_match(results, &match, true);
2703 ofp_print_actions(results, &rule->actions->header, act_len);
2704 ds_put_cstr(results, "\n");
2705 }
2706
2707 /* Adds a pretty-printed description of all flows to 'results', including
2708 * those marked hidden by secchan (e.g., by in-band control). */
2709 void
2710 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
2711 {
2712 struct ofp_match match;
2713 struct cls_rule target;
2714 struct flow_stats_ds_cbdata cbdata;
2715
2716 memset(&match, 0, sizeof match);
2717 match.wildcards = htonl(OFPFW_ALL);
2718
2719 cbdata.ofproto = p;
2720 cbdata.results = results;
2721
2722 cls_rule_from_match(&target, &match, 0);
2723 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
2724 flow_stats_ds_cb, &cbdata);
2725 }
2726
2727 struct aggregate_stats_cbdata {
2728 struct ofproto *ofproto;
2729 uint16_t out_port;
2730 uint64_t packet_count;
2731 uint64_t byte_count;
2732 uint32_t n_flows;
2733 };
2734
2735 static void
2736 aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_)
2737 {
2738 struct rule *rule = rule_from_cls_rule(rule_);
2739 struct aggregate_stats_cbdata *cbdata = cbdata_;
2740 uint64_t packet_count, byte_count;
2741
2742 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
2743 return;
2744 }
2745
2746 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
2747
2748 cbdata->packet_count += packet_count;
2749 cbdata->byte_count += byte_count;
2750 cbdata->n_flows++;
2751 }
2752
2753 static int
2754 handle_aggregate_stats_request(struct ofproto *p, struct ofconn *ofconn,
2755 const struct ofp_stats_request *osr,
2756 size_t arg_size)
2757 {
2758 struct ofp_aggregate_stats_request *asr;
2759 struct ofp_aggregate_stats_reply *reply;
2760 struct aggregate_stats_cbdata cbdata;
2761 struct cls_rule target;
2762 struct ofpbuf *msg;
2763
2764 if (arg_size != sizeof *asr) {
2765 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
2766 }
2767 asr = (struct ofp_aggregate_stats_request *) osr->body;
2768
2769 COVERAGE_INC(ofproto_agg_request);
2770 cbdata.ofproto = p;
2771 cbdata.out_port = asr->out_port;
2772 cbdata.packet_count = 0;
2773 cbdata.byte_count = 0;
2774 cbdata.n_flows = 0;
2775 cls_rule_from_match(&target, &asr->match, 0);
2776 classifier_for_each_match(&p->cls, &target,
2777 table_id_to_include(asr->table_id),
2778 aggregate_stats_cb, &cbdata);
2779
2780 msg = start_stats_reply(osr, sizeof *reply);
2781 reply = append_stats_reply(sizeof *reply, ofconn, &msg);
2782 reply->flow_count = htonl(cbdata.n_flows);
2783 reply->packet_count = htonll(cbdata.packet_count);
2784 reply->byte_count = htonll(cbdata.byte_count);
2785 queue_tx(msg, ofconn, ofconn->reply_counter);
2786 return 0;
2787 }
2788
2789 static int
2790 handle_stats_request(struct ofproto *p, struct ofconn *ofconn,
2791 struct ofp_header *oh)
2792 {
2793 struct ofp_stats_request *osr;
2794 size_t arg_size;
2795 int error;
2796
2797 error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr,
2798 1, &arg_size);
2799 if (error) {
2800 return error;
2801 }
2802 osr = (struct ofp_stats_request *) oh;
2803
2804 switch (ntohs(osr->type)) {
2805 case OFPST_DESC:
2806 return handle_desc_stats_request(p, ofconn, osr);
2807
2808 case OFPST_FLOW:
2809 return handle_flow_stats_request(p, ofconn, osr, arg_size);
2810
2811 case OFPST_AGGREGATE:
2812 return handle_aggregate_stats_request(p, ofconn, osr, arg_size);
2813
2814 case OFPST_TABLE:
2815 return handle_table_stats_request(p, ofconn, osr);
2816
2817 case OFPST_PORT:
2818 return handle_port_stats_request(p, ofconn, osr, arg_size);
2819
2820 case OFPST_VENDOR:
2821 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
2822
2823 default:
2824 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
2825 }
2826 }
2827
2828 static long long int
2829 msec_from_nsec(uint64_t sec, uint32_t nsec)
2830 {
2831 return !sec ? 0 : sec * 1000 + nsec / 1000000;
2832 }
2833
2834 static void
2835 update_time(struct ofproto *ofproto, struct rule *rule,
2836 const struct odp_flow_stats *stats)
2837 {
2838 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
2839 if (used > rule->used) {
2840 rule->used = used;
2841 if (rule->super && used > rule->super->used) {
2842 rule->super->used = used;
2843 }
2844 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, used);
2845 }
2846 }
2847
2848 static void
2849 update_stats(struct ofproto *ofproto, struct rule *rule,
2850 const struct odp_flow_stats *stats)
2851 {
2852 if (stats->n_packets) {
2853 update_time(ofproto, rule, stats);
2854 rule->packet_count += stats->n_packets;
2855 rule->byte_count += stats->n_bytes;
2856 netflow_flow_update_flags(&rule->nf_flow, stats->ip_tos,
2857 stats->tcp_flags);
2858 }
2859 }
2860
2861 static int
2862 add_flow(struct ofproto *p, struct ofconn *ofconn,
2863 struct ofp_flow_mod *ofm, size_t n_actions)
2864 {
2865 struct ofpbuf *packet;
2866 struct rule *rule;
2867 uint16_t in_port;
2868 int error;
2869
2870 if (ofm->flags & htons(OFPFF_CHECK_OVERLAP)) {
2871 flow_t flow;
2872 uint32_t wildcards;
2873
2874 flow_from_match(&flow, &wildcards, &ofm->match);
2875 if (classifier_rule_overlaps(&p->cls, &flow, wildcards,
2876 ntohs(ofm->priority))) {
2877 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
2878 }
2879 }
2880
2881 rule = rule_create(p, NULL, (const union ofp_action *) ofm->actions,
2882 n_actions, ntohs(ofm->idle_timeout),
2883 ntohs(ofm->hard_timeout), ofm->cookie,
2884 ofm->flags & htons(OFPFF_SEND_FLOW_REM));
2885 cls_rule_from_match(&rule->cr, &ofm->match, ntohs(ofm->priority));
2886
2887 error = 0;
2888 if (ofm->buffer_id != htonl(UINT32_MAX)) {
2889 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
2890 &packet, &in_port);
2891 } else {
2892 packet = NULL;
2893 in_port = UINT16_MAX;
2894 }
2895
2896 rule_insert(p, rule, packet, in_port);
2897 ofpbuf_delete(packet);
2898 return error;
2899 }
2900
2901 static int
2902 modify_flow(struct ofproto *p, const struct ofp_flow_mod *ofm,
2903 size_t n_actions, uint16_t command, struct rule *rule)
2904 {
2905 if (rule_is_hidden(rule)) {
2906 return 0;
2907 }
2908
2909 if (command == OFPFC_DELETE) {
2910 long long int now = time_msec();
2911 send_flow_removed(p, rule, now, OFPRR_DELETE);
2912 rule_remove(p, rule);
2913 } else {
2914 size_t actions_len = n_actions * sizeof *rule->actions;
2915
2916 if (n_actions == rule->n_actions
2917 && !memcmp(ofm->actions, rule->actions, actions_len))
2918 {
2919 return 0;
2920 }
2921
2922 free(rule->actions);
2923 rule->actions = xmemdup(ofm->actions, actions_len);
2924 rule->n_actions = n_actions;
2925 rule->flow_cookie = ofm->cookie;
2926
2927 if (rule->cr.wc.wildcards) {
2928 COVERAGE_INC(ofproto_mod_wc_flow);
2929 p->need_revalidate = true;
2930 } else {
2931 rule_update_actions(p, rule);
2932 }
2933 }
2934
2935 return 0;
2936 }
2937
2938 static int
2939 modify_flows_strict(struct ofproto *p, const struct ofp_flow_mod *ofm,
2940 size_t n_actions, uint16_t command)
2941 {
2942 struct rule *rule;
2943 uint32_t wildcards;
2944 flow_t flow;
2945
2946 flow_from_match(&flow, &wildcards, &ofm->match);
2947 rule = rule_from_cls_rule(classifier_find_rule_exactly(
2948 &p->cls, &flow, wildcards,
2949 ntohs(ofm->priority)));
2950
2951 if (rule) {
2952 if (command == OFPFC_DELETE
2953 && ofm->out_port != htons(OFPP_NONE)
2954 && !rule_has_out_port(rule, ofm->out_port)) {
2955 return 0;
2956 }
2957
2958 modify_flow(p, ofm, n_actions, command, rule);
2959 }
2960 return 0;
2961 }
2962
2963 struct modify_flows_cbdata {
2964 struct ofproto *ofproto;
2965 const struct ofp_flow_mod *ofm;
2966 uint16_t out_port;
2967 size_t n_actions;
2968 uint16_t command;
2969 };
2970
2971 static void
2972 modify_flows_cb(struct cls_rule *rule_, void *cbdata_)
2973 {
2974 struct rule *rule = rule_from_cls_rule(rule_);
2975 struct modify_flows_cbdata *cbdata = cbdata_;
2976
2977 if (cbdata->out_port != htons(OFPP_NONE)
2978 && !rule_has_out_port(rule, cbdata->out_port)) {
2979 return;
2980 }
2981
2982 modify_flow(cbdata->ofproto, cbdata->ofm, cbdata->n_actions,
2983 cbdata->command, rule);
2984 }
2985
2986 static int
2987 modify_flows_loose(struct ofproto *p, const struct ofp_flow_mod *ofm,
2988 size_t n_actions, uint16_t command)
2989 {
2990 struct modify_flows_cbdata cbdata;
2991 struct cls_rule target;
2992
2993 cbdata.ofproto = p;
2994 cbdata.ofm = ofm;
2995 cbdata.out_port = (command == OFPFC_DELETE ? ofm->out_port
2996 : htons(OFPP_NONE));
2997 cbdata.n_actions = n_actions;
2998 cbdata.command = command;
2999
3000 cls_rule_from_match(&target, &ofm->match, 0);
3001
3002 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3003 modify_flows_cb, &cbdata);
3004 return 0;
3005 }
3006
3007 static int
3008 handle_flow_mod(struct ofproto *p, struct ofconn *ofconn,
3009 struct ofp_flow_mod *ofm)
3010 {
3011 size_t n_actions;
3012 int error;
3013
3014 error = check_ofp_message_array(&ofm->header, OFPT_FLOW_MOD, sizeof *ofm,
3015 sizeof *ofm->actions, &n_actions);
3016 if (error) {
3017 return error;
3018 }
3019
3020 /* We do not support the emergency flow cache. It will hopefully
3021 * get dropped from OpenFlow in the near future. */
3022 if (ofm->flags & htons(OFPFF_EMERG)) {
3023 /* There isn't a good fit for an error code, so just state that the
3024 * flow table is full. */
3025 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
3026 }
3027
3028 normalize_match(&ofm->match);
3029 if (!ofm->match.wildcards) {
3030 ofm->priority = htons(UINT16_MAX);
3031 }
3032
3033 error = validate_actions((const union ofp_action *) ofm->actions,
3034 n_actions, p->max_ports);
3035 if (error) {
3036 return error;
3037 }
3038
3039 switch (ntohs(ofm->command)) {
3040 case OFPFC_ADD:
3041 return add_flow(p, ofconn, ofm, n_actions);
3042
3043 case OFPFC_MODIFY:
3044 return modify_flows_loose(p, ofm, n_actions, OFPFC_MODIFY);
3045
3046 case OFPFC_MODIFY_STRICT:
3047 return modify_flows_strict(p, ofm, n_actions, OFPFC_MODIFY);
3048
3049 case OFPFC_DELETE:
3050 return modify_flows_loose(p, ofm, n_actions, OFPFC_DELETE);
3051
3052 case OFPFC_DELETE_STRICT:
3053 return modify_flows_strict(p, ofm, n_actions, OFPFC_DELETE);
3054
3055 default:
3056 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
3057 }
3058 }
3059
3060 static int
3061 handle_vendor(struct ofproto *p, struct ofconn *ofconn, void *msg)
3062 {
3063 struct ofp_vendor_header *ovh = msg;
3064 struct nicira_header *nh;
3065
3066 if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) {
3067 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3068 }
3069 if (ovh->vendor != htonl(NX_VENDOR_ID)) {
3070 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3071 }
3072 if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) {
3073 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3074 }
3075
3076 nh = msg;
3077 switch (ntohl(nh->subtype)) {
3078 case NXT_STATUS_REQUEST:
3079 return switch_status_handle_request(p->switch_status, ofconn->rconn,
3080 msg);
3081 }
3082
3083 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
3084 }
3085
3086 static int
3087 handle_barrier_request(struct ofconn *ofconn, struct ofp_header *oh)
3088 {
3089 struct ofp_header *ob;
3090 struct ofpbuf *buf;
3091
3092 /* Currently, everything executes synchronously, so we can just
3093 * immediately send the barrier reply. */
3094 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
3095 queue_tx(buf, ofconn, ofconn->reply_counter);
3096 return 0;
3097 }
3098
3099 static void
3100 handle_openflow(struct ofconn *ofconn, struct ofproto *p,
3101 struct ofpbuf *ofp_msg)
3102 {
3103 struct ofp_header *oh = ofp_msg->data;
3104 int error;
3105
3106 COVERAGE_INC(ofproto_recv_openflow);
3107 switch (oh->type) {
3108 case OFPT_ECHO_REQUEST:
3109 error = handle_echo_request(ofconn, oh);
3110 break;
3111
3112 case OFPT_ECHO_REPLY:
3113 error = 0;
3114 break;
3115
3116 case OFPT_FEATURES_REQUEST:
3117 error = handle_features_request(p, ofconn, oh);
3118 break;
3119
3120 case OFPT_GET_CONFIG_REQUEST:
3121 error = handle_get_config_request(p, ofconn, oh);
3122 break;
3123
3124 case OFPT_SET_CONFIG:
3125 error = handle_set_config(p, ofconn, ofp_msg->data);
3126 break;
3127
3128 case OFPT_PACKET_OUT:
3129 error = handle_packet_out(p, ofconn, ofp_msg->data);
3130 break;
3131
3132 case OFPT_PORT_MOD:
3133 error = handle_port_mod(p, oh);
3134 break;
3135
3136 case OFPT_FLOW_MOD:
3137 error = handle_flow_mod(p, ofconn, ofp_msg->data);
3138 break;
3139
3140 case OFPT_STATS_REQUEST:
3141 error = handle_stats_request(p, ofconn, oh);
3142 break;
3143
3144 case OFPT_VENDOR:
3145 error = handle_vendor(p, ofconn, ofp_msg->data);
3146 break;
3147
3148 case OFPT_BARRIER_REQUEST:
3149 error = handle_barrier_request(ofconn, oh);
3150 break;
3151
3152 default:
3153 if (VLOG_IS_WARN_ENABLED()) {
3154 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
3155 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
3156 free(s);
3157 }
3158 error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
3159 break;
3160 }
3161
3162 if (error) {
3163 send_error_oh(ofconn, ofp_msg->data, error);
3164 }
3165 }
3166 \f
3167 static void
3168 handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet)
3169 {
3170 struct odp_msg *msg = packet->data;
3171 uint16_t in_port = odp_port_to_ofp_port(msg->port);
3172 struct rule *rule;
3173 struct ofpbuf payload;
3174 flow_t flow;
3175
3176 payload.data = msg + 1;
3177 payload.size = msg->length - sizeof *msg;
3178 flow_extract(&payload, msg->port, &flow);
3179
3180 /* Check with in-band control to see if this packet should be sent
3181 * to the local port regardless of the flow table. */
3182 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
3183 union odp_action action;
3184
3185 memset(&action, 0, sizeof(action));
3186 action.output.type = ODPAT_OUTPUT;
3187 action.output.port = ODPP_LOCAL;
3188 dpif_execute(p->dpif, flow.in_port, &action, 1, &payload);
3189 }
3190
3191 rule = lookup_valid_rule(p, &flow);
3192 if (!rule) {
3193 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
3194 struct ofport *port = port_array_get(&p->ports, msg->port);
3195 if (port) {
3196 if (port->opp.config & OFPPC_NO_PACKET_IN) {
3197 COVERAGE_INC(ofproto_no_packet_in);
3198 /* XXX install 'drop' flow entry */
3199 ofpbuf_delete(packet);
3200 return;
3201 }
3202 } else {
3203 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port);
3204 }
3205
3206 COVERAGE_INC(ofproto_packet_in);
3207 pinsched_send(p->miss_sched, in_port, packet, send_packet_in_miss, p);
3208 return;
3209 }
3210
3211 if (rule->cr.wc.wildcards) {
3212 rule = rule_create_subrule(p, rule, &flow);
3213 rule_make_actions(p, rule, packet);
3214 } else {
3215 if (!rule->may_install) {
3216 /* The rule is not installable, that is, we need to process every
3217 * packet, so process the current packet and set its actions into
3218 * 'subrule'. */
3219 rule_make_actions(p, rule, packet);
3220 } else {
3221 /* XXX revalidate rule if it needs it */
3222 }
3223 }
3224
3225 rule_execute(p, rule, &payload, &flow);
3226 rule_reinstall(p, rule);
3227
3228 if (rule->super && rule->super->cr.priority == FAIL_OPEN_PRIORITY
3229 && rconn_is_connected(p->controller->rconn)) {
3230 /*
3231 * Extra-special case for fail-open mode.
3232 *
3233 * We are in fail-open mode and the packet matched the fail-open rule,
3234 * but we are connected to a controller too. We should send the packet
3235 * up to the controller in the hope that it will try to set up a flow
3236 * and thereby allow us to exit fail-open.
3237 *
3238 * See the top-level comment in fail-open.c for more information.
3239 */
3240 pinsched_send(p->miss_sched, in_port, packet, send_packet_in_miss, p);
3241 } else {
3242 ofpbuf_delete(packet);
3243 }
3244 }
3245
3246 static void
3247 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
3248 {
3249 struct odp_msg *msg = packet->data;
3250
3251 switch (msg->type) {
3252 case _ODPL_ACTION_NR:
3253 COVERAGE_INC(ofproto_ctlr_action);
3254 pinsched_send(p->action_sched, odp_port_to_ofp_port(msg->port), packet,
3255 send_packet_in_action, p);
3256 break;
3257
3258 case _ODPL_SFLOW_NR:
3259 if (p->sflow) {
3260 ofproto_sflow_received(p->sflow, msg);
3261 }
3262 ofpbuf_delete(packet);
3263 break;
3264
3265 case _ODPL_MISS_NR:
3266 handle_odp_miss_msg(p, packet);
3267 break;
3268
3269 default:
3270 VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32,
3271 msg->type);
3272 break;
3273 }
3274 }
3275 \f
3276 static void
3277 revalidate_cb(struct cls_rule *sub_, void *cbdata_)
3278 {
3279 struct rule *sub = rule_from_cls_rule(sub_);
3280 struct revalidate_cbdata *cbdata = cbdata_;
3281
3282 if (cbdata->revalidate_all
3283 || (cbdata->revalidate_subrules && sub->super)
3284 || (tag_set_intersects(&cbdata->revalidate_set, sub->tags))) {
3285 revalidate_rule(cbdata->ofproto, sub);
3286 }
3287 }
3288
3289 static bool
3290 revalidate_rule(struct ofproto *p, struct rule *rule)
3291 {
3292 const flow_t *flow = &rule->cr.flow;
3293
3294 COVERAGE_INC(ofproto_revalidate_rule);
3295 if (rule->super) {
3296 struct rule *super;
3297 super = rule_from_cls_rule(classifier_lookup_wild(&p->cls, flow));
3298 if (!super) {
3299 rule_remove(p, rule);
3300 return false;
3301 } else if (super != rule->super) {
3302 COVERAGE_INC(ofproto_revalidate_moved);
3303 list_remove(&rule->list);
3304 list_push_back(&super->list, &rule->list);
3305 rule->super = super;
3306 rule->hard_timeout = super->hard_timeout;
3307 rule->idle_timeout = super->idle_timeout;
3308 rule->created = super->created;
3309 rule->used = 0;
3310 }
3311 }
3312
3313 rule_update_actions(p, rule);
3314 return true;
3315 }
3316
3317 static struct ofpbuf *
3318 compose_flow_removed(const struct rule *rule, long long int now, uint8_t reason)
3319 {
3320 struct ofp_flow_removed *ofr;
3321 struct ofpbuf *buf;
3322 long long int tdiff = time_msec() - rule->created;
3323 uint32_t sec = tdiff / 1000;
3324 uint32_t msec = tdiff - (sec * 1000);
3325
3326 ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf);
3327 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, &ofr->match);
3328 ofr->cookie = rule->flow_cookie;
3329 ofr->priority = htons(rule->cr.priority);
3330 ofr->reason = reason;
3331 ofr->duration_sec = htonl(sec);
3332 ofr->duration_nsec = htonl(msec * 1000000);
3333 ofr->idle_timeout = htons(rule->idle_timeout);
3334 ofr->packet_count = htonll(rule->packet_count);
3335 ofr->byte_count = htonll(rule->byte_count);
3336
3337 return buf;
3338 }
3339
3340 static void
3341 uninstall_idle_flow(struct ofproto *ofproto, struct rule *rule)
3342 {
3343 assert(rule->installed);
3344 assert(!rule->cr.wc.wildcards);
3345
3346 if (rule->super) {
3347 rule_remove(ofproto, rule);
3348 } else {
3349 rule_uninstall(ofproto, rule);
3350 }
3351 }
3352 static void
3353 send_flow_removed(struct ofproto *p, struct rule *rule,
3354 long long int now, uint8_t reason)
3355 {
3356 struct ofconn *ofconn;
3357 struct ofconn *prev;
3358 struct ofpbuf *buf = NULL;
3359
3360 /* We limit the maximum number of queued flow expirations it by accounting
3361 * them under the counter for replies. That works because preventing
3362 * OpenFlow requests from being processed also prevents new flows from
3363 * being added (and expiring). (It also prevents processing OpenFlow
3364 * requests that would not add new flows, so it is imperfect.) */
3365
3366 prev = NULL;
3367 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
3368 if (rule->send_flow_removed && rconn_is_connected(ofconn->rconn)) {
3369 if (prev) {
3370 queue_tx(ofpbuf_clone(buf), prev, prev->reply_counter);
3371 } else {
3372 buf = compose_flow_removed(rule, now, reason);
3373 }
3374 prev = ofconn;
3375 }
3376 }
3377 if (prev) {
3378 queue_tx(buf, prev, prev->reply_counter);
3379 }
3380 }
3381
3382
3383 static void
3384 expire_rule(struct cls_rule *cls_rule, void *p_)
3385 {
3386 struct ofproto *p = p_;
3387 struct rule *rule = rule_from_cls_rule(cls_rule);
3388 long long int hard_expire, idle_expire, expire, now;
3389
3390 hard_expire = (rule->hard_timeout
3391 ? rule->created + rule->hard_timeout * 1000
3392 : LLONG_MAX);
3393 idle_expire = (rule->idle_timeout
3394 && (rule->super || list_is_empty(&rule->list))
3395 ? rule->used + rule->idle_timeout * 1000
3396 : LLONG_MAX);
3397 expire = MIN(hard_expire, idle_expire);
3398
3399 now = time_msec();
3400 if (now < expire) {
3401 if (rule->installed && now >= rule->used + 5000) {
3402 uninstall_idle_flow(p, rule);
3403 } else if (!rule->cr.wc.wildcards) {
3404 active_timeout(p, rule);
3405 }
3406
3407 return;
3408 }
3409
3410 COVERAGE_INC(ofproto_expired);
3411
3412 /* Update stats. This code will be a no-op if the rule expired
3413 * due to an idle timeout. */
3414 if (rule->cr.wc.wildcards) {
3415 struct rule *subrule, *next;
3416 LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) {
3417 rule_remove(p, subrule);
3418 }
3419 } else {
3420 rule_uninstall(p, rule);
3421 }
3422
3423 if (!rule_is_hidden(rule)) {
3424 send_flow_removed(p, rule, now,
3425 (now >= hard_expire
3426 ? OFPRR_HARD_TIMEOUT : OFPRR_IDLE_TIMEOUT));
3427 }
3428 rule_remove(p, rule);
3429 }
3430
3431 static void
3432 active_timeout(struct ofproto *ofproto, struct rule *rule)
3433 {
3434 if (ofproto->netflow && !is_controller_rule(rule) &&
3435 netflow_active_timeout_expired(ofproto->netflow, &rule->nf_flow)) {
3436 struct ofexpired expired;
3437 struct odp_flow odp_flow;
3438
3439 /* Get updated flow stats. */
3440 memset(&odp_flow, 0, sizeof odp_flow);
3441 if (rule->installed) {
3442 odp_flow.key = rule->cr.flow;
3443 odp_flow.flags = ODPFF_ZERO_TCP_FLAGS;
3444 dpif_flow_get(ofproto->dpif, &odp_flow);
3445
3446 if (odp_flow.stats.n_packets) {
3447 update_time(ofproto, rule, &odp_flow.stats);
3448 netflow_flow_update_flags(&rule->nf_flow, odp_flow.stats.ip_tos,
3449 odp_flow.stats.tcp_flags);
3450 }
3451 }
3452
3453 expired.flow = rule->cr.flow;
3454 expired.packet_count = rule->packet_count +
3455 odp_flow.stats.n_packets;
3456 expired.byte_count = rule->byte_count + odp_flow.stats.n_bytes;
3457 expired.used = rule->used;
3458
3459 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
3460
3461 /* Schedule us to send the accumulated records once we have
3462 * collected all of them. */
3463 poll_immediate_wake();
3464 }
3465 }
3466
3467 static void
3468 update_used(struct ofproto *p)
3469 {
3470 struct odp_flow *flows;
3471 size_t n_flows;
3472 size_t i;
3473 int error;
3474
3475 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
3476 if (error) {
3477 return;
3478 }
3479
3480 for (i = 0; i < n_flows; i++) {
3481 struct odp_flow *f = &flows[i];
3482 struct rule *rule;
3483
3484 rule = rule_from_cls_rule(
3485 classifier_find_rule_exactly(&p->cls, &f->key, 0, UINT16_MAX));
3486 if (!rule || !rule->installed) {
3487 COVERAGE_INC(ofproto_unexpected_rule);
3488 dpif_flow_del(p->dpif, f);
3489 continue;
3490 }
3491
3492 update_time(p, rule, &f->stats);
3493 rule_account(p, rule, f->stats.n_bytes);
3494 }
3495 free(flows);
3496 }
3497
3498 static void
3499 do_send_packet_in(struct ofconn *ofconn, uint32_t buffer_id,
3500 const struct ofpbuf *packet, int send_len)
3501 {
3502 struct odp_msg *msg = packet->data;
3503 struct ofpbuf payload;
3504 struct ofpbuf *opi;
3505 uint8_t reason;
3506
3507 /* Extract packet payload from 'msg'. */
3508 payload.data = msg + 1;
3509 payload.size = msg->length - sizeof *msg;
3510
3511 /* Construct ofp_packet_in message. */
3512 reason = msg->type == _ODPL_ACTION_NR ? OFPR_ACTION : OFPR_NO_MATCH;
3513 opi = make_packet_in(buffer_id, odp_port_to_ofp_port(msg->port), reason,
3514 &payload, send_len);
3515
3516 /* Send. */
3517 rconn_send_with_limit(ofconn->rconn, opi, ofconn->packet_in_counter, 100);
3518 }
3519
3520 static void
3521 send_packet_in_action(struct ofpbuf *packet, void *p_)
3522 {
3523 struct ofproto *p = p_;
3524 struct ofconn *ofconn;
3525 struct odp_msg *msg;
3526
3527 msg = packet->data;
3528 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
3529 if (ofconn == p->controller || ofconn->miss_send_len) {
3530 do_send_packet_in(ofconn, UINT32_MAX, packet, msg->arg);
3531 }
3532 }
3533 ofpbuf_delete(packet);
3534 }
3535
3536 static void
3537 send_packet_in_miss(struct ofpbuf *packet, void *p_)
3538 {
3539 struct ofproto *p = p_;
3540 bool in_fail_open = p->fail_open && fail_open_is_active(p->fail_open);
3541 struct ofconn *ofconn;
3542 struct ofpbuf payload;
3543 struct odp_msg *msg;
3544
3545 msg = packet->data;
3546 payload.data = msg + 1;
3547 payload.size = msg->length - sizeof *msg;
3548 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
3549 if (ofconn->miss_send_len) {
3550 struct pktbuf *pb = ofconn->pktbuf;
3551 uint32_t buffer_id = (in_fail_open
3552 ? pktbuf_get_null()
3553 : pktbuf_save(pb, &payload, msg->port));
3554 int send_len = (buffer_id != UINT32_MAX ? ofconn->miss_send_len
3555 : UINT32_MAX);
3556 do_send_packet_in(ofconn, buffer_id, packet, send_len);
3557 }
3558 }
3559 ofpbuf_delete(packet);
3560 }
3561
3562 static uint64_t
3563 pick_datapath_id(const struct ofproto *ofproto)
3564 {
3565 const struct ofport *port;
3566
3567 port = port_array_get(&ofproto->ports, ODPP_LOCAL);
3568 if (port) {
3569 uint8_t ea[ETH_ADDR_LEN];
3570 int error;
3571
3572 error = netdev_get_etheraddr(port->netdev, ea);
3573 if (!error) {
3574 return eth_addr_to_uint64(ea);
3575 }
3576 VLOG_WARN("could not get MAC address for %s (%s)",
3577 netdev_get_name(port->netdev), strerror(error));
3578 }
3579 return ofproto->fallback_dpid;
3580 }
3581
3582 static uint64_t
3583 pick_fallback_dpid(void)
3584 {
3585 uint8_t ea[ETH_ADDR_LEN];
3586 eth_addr_nicira_random(ea);
3587 return eth_addr_to_uint64(ea);
3588 }
3589 \f
3590 static bool
3591 default_normal_ofhook_cb(const flow_t *flow, const struct ofpbuf *packet,
3592 struct odp_actions *actions, tag_type *tags,
3593 uint16_t *nf_output_iface, void *ofproto_)
3594 {
3595 struct ofproto *ofproto = ofproto_;
3596 int out_port;
3597
3598 /* Drop frames for reserved multicast addresses. */
3599 if (eth_addr_is_reserved(flow->dl_dst)) {
3600 return true;
3601 }
3602
3603 /* Learn source MAC (but don't try to learn from revalidation). */
3604 if (packet != NULL) {
3605 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
3606 0, flow->in_port);
3607 if (rev_tag) {
3608 /* The log messages here could actually be useful in debugging,
3609 * so keep the rate limit relatively high. */
3610 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
3611 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
3612 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
3613 ofproto_revalidate(ofproto, rev_tag);
3614 }
3615 }
3616
3617 /* Determine output port. */
3618 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags);
3619 if (out_port < 0) {
3620 add_output_group_action(actions, DP_GROUP_FLOOD, nf_output_iface);
3621 } else if (out_port != flow->in_port) {
3622 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
3623 *nf_output_iface = out_port;
3624 } else {
3625 /* Drop. */
3626 }
3627
3628 return true;
3629 }
3630
3631 static const struct ofhooks default_ofhooks = {
3632 NULL,
3633 default_normal_ofhook_cb,
3634 NULL,
3635 NULL
3636 };