]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
ofproto: Add support for NXAST_RESUBMIT recursion.
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "classifier.h"
28 #include "coverage.h"
29 #include "discovery.h"
30 #include "dpif.h"
31 #include "dynamic-string.h"
32 #include "fail-open.h"
33 #include "in-band.h"
34 #include "mac-learning.h"
35 #include "netdev.h"
36 #include "netflow.h"
37 #include "odp-util.h"
38 #include "ofp-print.h"
39 #include "ofp-util.h"
40 #include "ofproto-sflow.h"
41 #include "ofpbuf.h"
42 #include "openflow/nicira-ext.h"
43 #include "openflow/openflow.h"
44 #include "openvswitch/datapath-protocol.h"
45 #include "packets.h"
46 #include "pinsched.h"
47 #include "pktbuf.h"
48 #include "poll-loop.h"
49 #include "port-array.h"
50 #include "rconn.h"
51 #include "shash.h"
52 #include "status.h"
53 #include "stream-ssl.h"
54 #include "svec.h"
55 #include "tag.h"
56 #include "timeval.h"
57 #include "unixctl.h"
58 #include "vconn.h"
59 #include "vlog.h"
60 #include "xtoxll.h"
61
62 VLOG_DEFINE_THIS_MODULE(ofproto)
63
64 #include "sflow_api.h"
65
66 enum {
67 TABLEID_HASH = 0,
68 TABLEID_CLASSIFIER = 1
69 };
70
71 struct ofport {
72 struct netdev *netdev;
73 struct ofp_phy_port opp; /* In host byte order. */
74 };
75
76 static void ofport_free(struct ofport *);
77 static void hton_ofp_phy_port(struct ofp_phy_port *);
78
79 static int xlate_actions(const union ofp_action *in, size_t n_in,
80 const flow_t *flow, struct ofproto *ofproto,
81 const struct ofpbuf *packet,
82 struct odp_actions *out, tag_type *tags,
83 bool *may_set_up_flow, uint16_t *nf_output_iface);
84
85 struct rule {
86 struct cls_rule cr;
87
88 uint64_t flow_cookie; /* Controller-issued identifier.
89 (Kept in network-byte order.) */
90 uint16_t idle_timeout; /* In seconds from time of last use. */
91 uint16_t hard_timeout; /* In seconds from time of creation. */
92 bool send_flow_removed; /* Send a flow removed message? */
93 long long int used; /* Last-used time (0 if never used). */
94 long long int created; /* Creation time. */
95 uint64_t packet_count; /* Number of packets received. */
96 uint64_t byte_count; /* Number of bytes received. */
97 uint64_t accounted_bytes; /* Number of bytes passed to account_cb. */
98 tag_type tags; /* Tags (set only by hooks). */
99 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
100
101 /* If 'super' is non-NULL, this rule is a subrule, that is, it is an
102 * exact-match rule (having cr.wc.wildcards of 0) generated from the
103 * wildcard rule 'super'. In this case, 'list' is an element of the
104 * super-rule's list.
105 *
106 * If 'super' is NULL, this rule is a super-rule, and 'list' is the head of
107 * a list of subrules. A super-rule with no wildcards (where
108 * cr.wc.wildcards is 0) will never have any subrules. */
109 struct rule *super;
110 struct list list;
111
112 /* OpenFlow actions.
113 *
114 * 'n_actions' is the number of elements in the 'actions' array. A single
115 * action may take up more more than one element's worth of space.
116 *
117 * A subrule has no actions (it uses the super-rule's actions). */
118 int n_actions;
119 union ofp_action *actions;
120
121 /* Datapath actions.
122 *
123 * A super-rule with wildcard fields never has ODP actions (since the
124 * datapath only supports exact-match flows). */
125 bool installed; /* Installed in datapath? */
126 bool may_install; /* True ordinarily; false if actions must
127 * be reassessed for every packet. */
128 int n_odp_actions;
129 union odp_action *odp_actions;
130 };
131
132 static inline bool
133 rule_is_hidden(const struct rule *rule)
134 {
135 /* Subrules are merely an implementation detail, so hide them from the
136 * controller. */
137 if (rule->super != NULL) {
138 return true;
139 }
140
141 /* Rules with priority higher than UINT16_MAX are set up by ofproto itself
142 * (e.g. by in-band control) and are intentionally hidden from the
143 * controller. */
144 if (rule->cr.priority > UINT16_MAX) {
145 return true;
146 }
147
148 return false;
149 }
150
151 static struct rule *rule_create(struct ofproto *, struct rule *super,
152 const union ofp_action *, size_t n_actions,
153 uint16_t idle_timeout, uint16_t hard_timeout,
154 uint64_t flow_cookie, bool send_flow_removed);
155 static void rule_free(struct rule *);
156 static void rule_destroy(struct ofproto *, struct rule *);
157 static struct rule *rule_from_cls_rule(const struct cls_rule *);
158 static void rule_insert(struct ofproto *, struct rule *,
159 struct ofpbuf *packet, uint16_t in_port);
160 static void rule_remove(struct ofproto *, struct rule *);
161 static bool rule_make_actions(struct ofproto *, struct rule *,
162 const struct ofpbuf *packet);
163 static void rule_install(struct ofproto *, struct rule *,
164 struct rule *displaced_rule);
165 static void rule_uninstall(struct ofproto *, struct rule *);
166 static void rule_post_uninstall(struct ofproto *, struct rule *);
167 static void send_flow_removed(struct ofproto *p, struct rule *rule,
168 long long int now, uint8_t reason);
169
170 /* ofproto supports two kinds of OpenFlow connections:
171 *
172 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
173 * maintains persistent connections to these controllers and by default
174 * sends them asynchronous messages such as packet-ins.
175 *
176 * - "Service" connections, e.g. from ovs-ofctl. When these connections
177 * drop, it is the other side's responsibility to reconnect them if
178 * necessary. ofproto does not send them asynchronous messages by default.
179 *
180 * Currently, active (tcp, ssl, unix) connections are always "primary"
181 * connections and passive (ptcp, pssl, punix) connections are always "service"
182 * connections. There is no inherent reason for this, but it reflects the
183 * common case.
184 */
185 enum ofconn_type {
186 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
187 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
188 };
189
190 /* A listener for incoming OpenFlow "service" connections. */
191 struct ofservice {
192 struct hmap_node node; /* In struct ofproto's "services" hmap. */
193 struct pvconn *pvconn; /* OpenFlow connection listener. */
194
195 /* These are not used by ofservice directly. They are settings for
196 * accepted "struct ofconn"s from the pvconn. */
197 int probe_interval; /* Max idle time before probing, in seconds. */
198 int rate_limit; /* Max packet-in rate in packets per second. */
199 int burst_limit; /* Limit on accumulating packet credits. */
200 };
201
202 static struct ofservice *ofservice_lookup(struct ofproto *,
203 const char *target);
204 static int ofservice_create(struct ofproto *,
205 const struct ofproto_controller *);
206 static void ofservice_reconfigure(struct ofservice *,
207 const struct ofproto_controller *);
208 static void ofservice_destroy(struct ofproto *, struct ofservice *);
209
210 /* An OpenFlow connection. */
211 struct ofconn {
212 struct ofproto *ofproto; /* The ofproto that owns this connection. */
213 struct list node; /* In struct ofproto's "all_conns" list. */
214 struct rconn *rconn; /* OpenFlow connection. */
215 enum ofconn_type type; /* Type. */
216
217 /* OFPT_PACKET_IN related data. */
218 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
219 struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */
220 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
221 int miss_send_len; /* Bytes to send of buffered packets. */
222
223 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
224 * requests, and the maximum number before we stop reading OpenFlow
225 * requests. */
226 #define OFCONN_REPLY_MAX 100
227 struct rconn_packet_counter *reply_counter;
228
229 /* type == OFCONN_PRIMARY only. */
230 enum nx_role role; /* Role. */
231 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
232 struct discovery *discovery; /* Controller discovery object, if enabled. */
233 struct status_category *ss; /* Switch status category. */
234 enum ofproto_band band; /* In-band or out-of-band? */
235 };
236
237 /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's
238 * "schedulers" array. Their values are 0 and 1, and their meanings and values
239 * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In
240 * case anything ever changes, check their values here. */
241 #define N_SCHEDULERS 2
242 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0);
243 BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR);
244 BUILD_ASSERT_DECL(OFPR_ACTION == 1);
245 BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR);
246
247 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
248 enum ofconn_type);
249 static void ofconn_destroy(struct ofconn *);
250 static void ofconn_run(struct ofconn *, struct ofproto *);
251 static void ofconn_wait(struct ofconn *);
252 static bool ofconn_receives_async_msgs(const struct ofconn *);
253 static char *ofconn_make_name(const struct ofproto *, const char *target);
254 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
255
256 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
257 struct rconn_packet_counter *counter);
258
259 static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg);
260 static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn);
261
262 struct ofproto {
263 /* Settings. */
264 uint64_t datapath_id; /* Datapath ID. */
265 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
266 char *mfr_desc; /* Manufacturer. */
267 char *hw_desc; /* Hardware. */
268 char *sw_desc; /* Software version. */
269 char *serial_desc; /* Serial number. */
270 char *dp_desc; /* Datapath description. */
271
272 /* Datapath. */
273 struct dpif *dpif;
274 struct netdev_monitor *netdev_monitor;
275 struct port_array ports; /* Index is ODP port nr; ofport->opp.port_no is
276 * OFP port nr. */
277 struct shash port_by_name;
278 uint32_t max_ports;
279
280 /* Configuration. */
281 struct switch_status *switch_status;
282 struct fail_open *fail_open;
283 struct netflow *netflow;
284 struct ofproto_sflow *sflow;
285
286 /* In-band control. */
287 struct in_band *in_band;
288 long long int next_in_band_update;
289 struct sockaddr_in *extra_in_band_remotes;
290 size_t n_extra_remotes;
291
292 /* Flow table. */
293 struct classifier cls;
294 bool need_revalidate;
295 long long int next_expiration;
296 struct tag_set revalidate_set;
297 bool tun_id_from_cookie;
298
299 /* OpenFlow connections. */
300 struct hmap controllers; /* Controller "struct ofconn"s. */
301 struct list all_conns; /* Contains "struct ofconn"s. */
302 enum ofproto_fail_mode fail_mode;
303
304 /* OpenFlow listeners. */
305 struct hmap services; /* Contains "struct ofservice"s. */
306 struct pvconn **snoops;
307 size_t n_snoops;
308
309 /* Hooks for ovs-vswitchd. */
310 const struct ofhooks *ofhooks;
311 void *aux;
312
313 /* Used by default ofhooks. */
314 struct mac_learning *ml;
315 };
316
317 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
318
319 static const struct ofhooks default_ofhooks;
320
321 static uint64_t pick_datapath_id(const struct ofproto *);
322 static uint64_t pick_fallback_dpid(void);
323
324 static void update_used(struct ofproto *);
325 static void update_stats(struct ofproto *, struct rule *,
326 const struct odp_flow_stats *);
327 static void expire_rule(struct cls_rule *, void *ofproto);
328 static void active_timeout(struct ofproto *ofproto, struct rule *rule);
329 static bool revalidate_rule(struct ofproto *p, struct rule *rule);
330 static void revalidate_cb(struct cls_rule *rule_, void *p_);
331
332 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
333
334 static void handle_openflow(struct ofconn *, struct ofproto *,
335 struct ofpbuf *);
336
337 static void refresh_port_groups(struct ofproto *);
338
339 static void update_port(struct ofproto *, const char *devname);
340 static int init_ports(struct ofproto *);
341 static void reinit_ports(struct ofproto *);
342
343 int
344 ofproto_create(const char *datapath, const char *datapath_type,
345 const struct ofhooks *ofhooks, void *aux,
346 struct ofproto **ofprotop)
347 {
348 struct odp_stats stats;
349 struct ofproto *p;
350 struct dpif *dpif;
351 int error;
352
353 *ofprotop = NULL;
354
355 /* Connect to datapath and start listening for messages. */
356 error = dpif_open(datapath, datapath_type, &dpif);
357 if (error) {
358 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
359 return error;
360 }
361 error = dpif_get_dp_stats(dpif, &stats);
362 if (error) {
363 VLOG_ERR("failed to obtain stats for datapath %s: %s",
364 datapath, strerror(error));
365 dpif_close(dpif);
366 return error;
367 }
368 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW);
369 if (error) {
370 VLOG_ERR("failed to listen on datapath %s: %s",
371 datapath, strerror(error));
372 dpif_close(dpif);
373 return error;
374 }
375 dpif_flow_flush(dpif);
376 dpif_recv_purge(dpif);
377
378 /* Initialize settings. */
379 p = xzalloc(sizeof *p);
380 p->fallback_dpid = pick_fallback_dpid();
381 p->datapath_id = p->fallback_dpid;
382 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
383 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
384 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
385 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
386 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
387
388 /* Initialize datapath. */
389 p->dpif = dpif;
390 p->netdev_monitor = netdev_monitor_create();
391 port_array_init(&p->ports);
392 shash_init(&p->port_by_name);
393 p->max_ports = stats.max_ports;
394
395 /* Initialize submodules. */
396 p->switch_status = switch_status_create(p);
397 p->in_band = NULL;
398 p->fail_open = NULL;
399 p->netflow = NULL;
400 p->sflow = NULL;
401
402 /* Initialize flow table. */
403 classifier_init(&p->cls);
404 p->need_revalidate = false;
405 p->next_expiration = time_msec() + 1000;
406 tag_set_init(&p->revalidate_set);
407
408 /* Initialize OpenFlow connections. */
409 list_init(&p->all_conns);
410 hmap_init(&p->controllers);
411 hmap_init(&p->services);
412 p->snoops = NULL;
413 p->n_snoops = 0;
414
415 /* Initialize hooks. */
416 if (ofhooks) {
417 p->ofhooks = ofhooks;
418 p->aux = aux;
419 p->ml = NULL;
420 } else {
421 p->ofhooks = &default_ofhooks;
422 p->aux = p;
423 p->ml = mac_learning_create();
424 }
425
426 /* Pick final datapath ID. */
427 p->datapath_id = pick_datapath_id(p);
428 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
429
430 *ofprotop = p;
431 return 0;
432 }
433
434 void
435 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
436 {
437 uint64_t old_dpid = p->datapath_id;
438 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
439 if (p->datapath_id != old_dpid) {
440 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
441
442 /* Force all active connections to reconnect, since there is no way to
443 * notify a controller that the datapath ID has changed. */
444 ofproto_reconnect_controllers(p);
445 }
446 }
447
448 static bool
449 is_discovery_controller(const struct ofproto_controller *c)
450 {
451 return !strcmp(c->target, "discover");
452 }
453
454 static bool
455 is_in_band_controller(const struct ofproto_controller *c)
456 {
457 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
458 }
459
460 /* Creates a new controller in 'ofproto'. Some of the settings are initially
461 * drawn from 'c', but update_controller() needs to be called later to finish
462 * the new ofconn's configuration. */
463 static void
464 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
465 {
466 struct discovery *discovery;
467 struct ofconn *ofconn;
468
469 if (is_discovery_controller(c)) {
470 int error = discovery_create(c->accept_re, c->update_resolv_conf,
471 ofproto->dpif, ofproto->switch_status,
472 &discovery);
473 if (error) {
474 return;
475 }
476 } else {
477 discovery = NULL;
478 }
479
480 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
481 ofconn->pktbuf = pktbuf_create();
482 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
483 if (discovery) {
484 ofconn->discovery = discovery;
485 } else {
486 char *name = ofconn_make_name(ofproto, c->target);
487 rconn_connect(ofconn->rconn, c->target, name);
488 free(name);
489 }
490 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
491 hash_string(c->target, 0));
492 }
493
494 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
495 * target or turn discovery on or off (these are done by creating new ofconns
496 * and deleting old ones), but it can update the rest of an ofconn's
497 * settings. */
498 static void
499 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
500 {
501 int probe_interval;
502
503 ofconn->band = (is_in_band_controller(c)
504 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
505
506 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
507
508 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
509 rconn_set_probe_interval(ofconn->rconn, probe_interval);
510
511 if (ofconn->discovery) {
512 discovery_set_update_resolv_conf(ofconn->discovery,
513 c->update_resolv_conf);
514 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
515 }
516
517 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
518 }
519
520 static const char *
521 ofconn_get_target(const struct ofconn *ofconn)
522 {
523 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
524 }
525
526 static struct ofconn *
527 find_controller_by_target(struct ofproto *ofproto, const char *target)
528 {
529 struct ofconn *ofconn;
530
531 HMAP_FOR_EACH_WITH_HASH (ofconn, struct ofconn, hmap_node,
532 hash_string(target, 0), &ofproto->controllers) {
533 if (!strcmp(ofconn_get_target(ofconn), target)) {
534 return ofconn;
535 }
536 }
537 return NULL;
538 }
539
540 static void
541 update_in_band_remotes(struct ofproto *ofproto)
542 {
543 const struct ofconn *ofconn;
544 struct sockaddr_in *addrs;
545 size_t max_addrs, n_addrs;
546 bool discovery;
547 size_t i;
548
549 /* Allocate enough memory for as many remotes as we could possibly have. */
550 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
551 addrs = xmalloc(max_addrs * sizeof *addrs);
552 n_addrs = 0;
553
554 /* Add all the remotes. */
555 discovery = false;
556 HMAP_FOR_EACH (ofconn, struct ofconn, hmap_node, &ofproto->controllers) {
557 struct sockaddr_in *sin = &addrs[n_addrs];
558
559 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
560 continue;
561 }
562
563 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
564 if (sin->sin_addr.s_addr) {
565 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
566 n_addrs++;
567 }
568 if (ofconn->discovery) {
569 discovery = true;
570 }
571 }
572 for (i = 0; i < ofproto->n_extra_remotes; i++) {
573 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
574 }
575
576 /* Create or update or destroy in-band.
577 *
578 * Ordinarily we only enable in-band if there's at least one remote
579 * address, but discovery needs the in-band rules for DHCP to be installed
580 * even before we know any remote addresses. */
581 if (n_addrs || discovery) {
582 if (!ofproto->in_band) {
583 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
584 &ofproto->in_band);
585 }
586 if (ofproto->in_band) {
587 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
588 }
589 ofproto->next_in_band_update = time_msec() + 1000;
590 } else {
591 in_band_destroy(ofproto->in_band);
592 ofproto->in_band = NULL;
593 }
594
595 /* Clean up. */
596 free(addrs);
597 }
598
599 static void
600 update_fail_open(struct ofproto *p)
601 {
602 struct ofconn *ofconn;
603
604 if (!hmap_is_empty(&p->controllers)
605 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
606 struct rconn **rconns;
607 size_t n;
608
609 if (!p->fail_open) {
610 p->fail_open = fail_open_create(p, p->switch_status);
611 }
612
613 n = 0;
614 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
615 HMAP_FOR_EACH (ofconn, struct ofconn, hmap_node, &p->controllers) {
616 rconns[n++] = ofconn->rconn;
617 }
618
619 fail_open_set_controllers(p->fail_open, rconns, n);
620 /* p->fail_open takes ownership of 'rconns'. */
621 } else {
622 fail_open_destroy(p->fail_open);
623 p->fail_open = NULL;
624 }
625 }
626
627 void
628 ofproto_set_controllers(struct ofproto *p,
629 const struct ofproto_controller *controllers,
630 size_t n_controllers)
631 {
632 struct shash new_controllers;
633 struct ofconn *ofconn, *next_ofconn;
634 struct ofservice *ofservice, *next_ofservice;
635 bool ss_exists;
636 size_t i;
637
638 /* Create newly configured controllers and services.
639 * Create a name to ofproto_controller mapping in 'new_controllers'. */
640 shash_init(&new_controllers);
641 for (i = 0; i < n_controllers; i++) {
642 const struct ofproto_controller *c = &controllers[i];
643
644 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
645 if (!find_controller_by_target(p, c->target)) {
646 add_controller(p, c);
647 }
648 } else if (!pvconn_verify_name(c->target)) {
649 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
650 continue;
651 }
652 } else {
653 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
654 dpif_name(p->dpif), c->target);
655 continue;
656 }
657
658 shash_add_once(&new_controllers, c->target, &controllers[i]);
659 }
660
661 /* Delete controllers that are no longer configured.
662 * Update configuration of all now-existing controllers. */
663 ss_exists = false;
664 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, hmap_node,
665 &p->controllers) {
666 struct ofproto_controller *c;
667
668 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
669 if (!c) {
670 ofconn_destroy(ofconn);
671 } else {
672 update_controller(ofconn, c);
673 if (ofconn->ss) {
674 ss_exists = true;
675 }
676 }
677 }
678
679 /* Delete services that are no longer configured.
680 * Update configuration of all now-existing services. */
681 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, struct ofservice, node,
682 &p->services) {
683 struct ofproto_controller *c;
684
685 c = shash_find_data(&new_controllers,
686 pvconn_get_name(ofservice->pvconn));
687 if (!c) {
688 ofservice_destroy(p, ofservice);
689 } else {
690 ofservice_reconfigure(ofservice, c);
691 }
692 }
693
694 shash_destroy(&new_controllers);
695
696 update_in_band_remotes(p);
697 update_fail_open(p);
698
699 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
700 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
701 struct ofconn, hmap_node);
702 ofconn->ss = switch_status_register(p->switch_status, "remote",
703 rconn_status_cb, ofconn->rconn);
704 }
705 }
706
707 void
708 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
709 {
710 p->fail_mode = fail_mode;
711 update_fail_open(p);
712 }
713
714 /* Drops the connections between 'ofproto' and all of its controllers, forcing
715 * them to reconnect. */
716 void
717 ofproto_reconnect_controllers(struct ofproto *ofproto)
718 {
719 struct ofconn *ofconn;
720
721 LIST_FOR_EACH (ofconn, struct ofconn, node, &ofproto->all_conns) {
722 rconn_reconnect(ofconn->rconn);
723 }
724 }
725
726 static bool
727 any_extras_changed(const struct ofproto *ofproto,
728 const struct sockaddr_in *extras, size_t n)
729 {
730 size_t i;
731
732 if (n != ofproto->n_extra_remotes) {
733 return true;
734 }
735
736 for (i = 0; i < n; i++) {
737 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
738 const struct sockaddr_in *new = &extras[i];
739
740 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
741 old->sin_port != new->sin_port) {
742 return true;
743 }
744 }
745
746 return false;
747 }
748
749 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
750 * in-band control should guarantee access, in the same way that in-band
751 * control guarantees access to OpenFlow controllers. */
752 void
753 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
754 const struct sockaddr_in *extras, size_t n)
755 {
756 if (!any_extras_changed(ofproto, extras, n)) {
757 return;
758 }
759
760 free(ofproto->extra_in_band_remotes);
761 ofproto->n_extra_remotes = n;
762 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
763
764 update_in_band_remotes(ofproto);
765 }
766
767 void
768 ofproto_set_desc(struct ofproto *p,
769 const char *mfr_desc, const char *hw_desc,
770 const char *sw_desc, const char *serial_desc,
771 const char *dp_desc)
772 {
773 struct ofp_desc_stats *ods;
774
775 if (mfr_desc) {
776 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
777 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
778 sizeof ods->mfr_desc);
779 }
780 free(p->mfr_desc);
781 p->mfr_desc = xstrdup(mfr_desc);
782 }
783 if (hw_desc) {
784 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
785 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
786 sizeof ods->hw_desc);
787 }
788 free(p->hw_desc);
789 p->hw_desc = xstrdup(hw_desc);
790 }
791 if (sw_desc) {
792 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
793 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
794 sizeof ods->sw_desc);
795 }
796 free(p->sw_desc);
797 p->sw_desc = xstrdup(sw_desc);
798 }
799 if (serial_desc) {
800 if (strlen(serial_desc) >= sizeof ods->serial_num) {
801 VLOG_WARN("truncating serial_desc, must be less than %zu "
802 "characters",
803 sizeof ods->serial_num);
804 }
805 free(p->serial_desc);
806 p->serial_desc = xstrdup(serial_desc);
807 }
808 if (dp_desc) {
809 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
810 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
811 sizeof ods->dp_desc);
812 }
813 free(p->dp_desc);
814 p->dp_desc = xstrdup(dp_desc);
815 }
816 }
817
818 static int
819 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
820 const struct svec *svec)
821 {
822 struct pvconn **pvconns = *pvconnsp;
823 size_t n_pvconns = *n_pvconnsp;
824 int retval = 0;
825 size_t i;
826
827 for (i = 0; i < n_pvconns; i++) {
828 pvconn_close(pvconns[i]);
829 }
830 free(pvconns);
831
832 pvconns = xmalloc(svec->n * sizeof *pvconns);
833 n_pvconns = 0;
834 for (i = 0; i < svec->n; i++) {
835 const char *name = svec->names[i];
836 struct pvconn *pvconn;
837 int error;
838
839 error = pvconn_open(name, &pvconn);
840 if (!error) {
841 pvconns[n_pvconns++] = pvconn;
842 } else {
843 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
844 if (!retval) {
845 retval = error;
846 }
847 }
848 }
849
850 *pvconnsp = pvconns;
851 *n_pvconnsp = n_pvconns;
852
853 return retval;
854 }
855
856 int
857 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
858 {
859 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
860 }
861
862 int
863 ofproto_set_netflow(struct ofproto *ofproto,
864 const struct netflow_options *nf_options)
865 {
866 if (nf_options && nf_options->collectors.n) {
867 if (!ofproto->netflow) {
868 ofproto->netflow = netflow_create();
869 }
870 return netflow_set_options(ofproto->netflow, nf_options);
871 } else {
872 netflow_destroy(ofproto->netflow);
873 ofproto->netflow = NULL;
874 return 0;
875 }
876 }
877
878 void
879 ofproto_set_sflow(struct ofproto *ofproto,
880 const struct ofproto_sflow_options *oso)
881 {
882 struct ofproto_sflow *os = ofproto->sflow;
883 if (oso) {
884 if (!os) {
885 struct ofport *ofport;
886 unsigned int odp_port;
887
888 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
889 refresh_port_groups(ofproto);
890 PORT_ARRAY_FOR_EACH (ofport, &ofproto->ports, odp_port) {
891 ofproto_sflow_add_port(os, odp_port,
892 netdev_get_name(ofport->netdev));
893 }
894 }
895 ofproto_sflow_set_options(os, oso);
896 } else {
897 ofproto_sflow_destroy(os);
898 ofproto->sflow = NULL;
899 }
900 }
901
902 uint64_t
903 ofproto_get_datapath_id(const struct ofproto *ofproto)
904 {
905 return ofproto->datapath_id;
906 }
907
908 bool
909 ofproto_has_primary_controller(const struct ofproto *ofproto)
910 {
911 return !hmap_is_empty(&ofproto->controllers);
912 }
913
914 enum ofproto_fail_mode
915 ofproto_get_fail_mode(const struct ofproto *p)
916 {
917 return p->fail_mode;
918 }
919
920 void
921 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
922 {
923 size_t i;
924
925 for (i = 0; i < ofproto->n_snoops; i++) {
926 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
927 }
928 }
929
930 void
931 ofproto_destroy(struct ofproto *p)
932 {
933 struct ofservice *ofservice, *next_ofservice;
934 struct ofconn *ofconn, *next_ofconn;
935 struct ofport *ofport;
936 unsigned int port_no;
937 size_t i;
938
939 if (!p) {
940 return;
941 }
942
943 /* Destroy fail-open and in-band early, since they touch the classifier. */
944 fail_open_destroy(p->fail_open);
945 p->fail_open = NULL;
946
947 in_band_destroy(p->in_band);
948 p->in_band = NULL;
949 free(p->extra_in_band_remotes);
950
951 ofproto_flush_flows(p);
952 classifier_destroy(&p->cls);
953
954 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node,
955 &p->all_conns) {
956 ofconn_destroy(ofconn);
957 }
958 hmap_destroy(&p->controllers);
959
960 dpif_close(p->dpif);
961 netdev_monitor_destroy(p->netdev_monitor);
962 PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) {
963 ofport_free(ofport);
964 }
965 shash_destroy(&p->port_by_name);
966
967 switch_status_destroy(p->switch_status);
968 netflow_destroy(p->netflow);
969 ofproto_sflow_destroy(p->sflow);
970
971 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, struct ofservice, node,
972 &p->services) {
973 ofservice_destroy(p, ofservice);
974 }
975 hmap_destroy(&p->services);
976
977 for (i = 0; i < p->n_snoops; i++) {
978 pvconn_close(p->snoops[i]);
979 }
980 free(p->snoops);
981
982 mac_learning_destroy(p->ml);
983
984 free(p->mfr_desc);
985 free(p->hw_desc);
986 free(p->sw_desc);
987 free(p->serial_desc);
988 free(p->dp_desc);
989
990 port_array_destroy(&p->ports);
991
992 free(p);
993 }
994
995 int
996 ofproto_run(struct ofproto *p)
997 {
998 int error = ofproto_run1(p);
999 if (!error) {
1000 error = ofproto_run2(p, false);
1001 }
1002 return error;
1003 }
1004
1005 static void
1006 process_port_change(struct ofproto *ofproto, int error, char *devname)
1007 {
1008 if (error == ENOBUFS) {
1009 reinit_ports(ofproto);
1010 } else if (!error) {
1011 update_port(ofproto, devname);
1012 free(devname);
1013 }
1014 }
1015
1016 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1017 * means that 'ofconn' is more interesting for monitoring than a lower return
1018 * value. */
1019 static int
1020 snoop_preference(const struct ofconn *ofconn)
1021 {
1022 switch (ofconn->role) {
1023 case NX_ROLE_MASTER:
1024 return 3;
1025 case NX_ROLE_OTHER:
1026 return 2;
1027 case NX_ROLE_SLAVE:
1028 return 1;
1029 default:
1030 /* Shouldn't happen. */
1031 return 0;
1032 }
1033 }
1034
1035 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1036 * Connects this vconn to a controller. */
1037 static void
1038 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1039 {
1040 struct ofconn *ofconn, *best;
1041
1042 /* Pick a controller for monitoring. */
1043 best = NULL;
1044 LIST_FOR_EACH (ofconn, struct ofconn, node, &ofproto->all_conns) {
1045 if (ofconn->type == OFCONN_PRIMARY
1046 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1047 best = ofconn;
1048 }
1049 }
1050
1051 if (best) {
1052 rconn_add_monitor(best->rconn, vconn);
1053 } else {
1054 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1055 vconn_close(vconn);
1056 }
1057 }
1058
1059 int
1060 ofproto_run1(struct ofproto *p)
1061 {
1062 struct ofconn *ofconn, *next_ofconn;
1063 struct ofservice *ofservice;
1064 char *devname;
1065 int error;
1066 int i;
1067
1068 if (shash_is_empty(&p->port_by_name)) {
1069 init_ports(p);
1070 }
1071
1072 for (i = 0; i < 50; i++) {
1073 struct ofpbuf *buf;
1074 int error;
1075
1076 error = dpif_recv(p->dpif, &buf);
1077 if (error) {
1078 if (error == ENODEV) {
1079 /* Someone destroyed the datapath behind our back. The caller
1080 * better destroy us and give up, because we're just going to
1081 * spin from here on out. */
1082 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1083 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1084 dpif_name(p->dpif));
1085 return ENODEV;
1086 }
1087 break;
1088 }
1089
1090 handle_odp_msg(p, buf);
1091 }
1092
1093 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1094 process_port_change(p, error, devname);
1095 }
1096 while ((error = netdev_monitor_poll(p->netdev_monitor,
1097 &devname)) != EAGAIN) {
1098 process_port_change(p, error, devname);
1099 }
1100
1101 if (p->in_band) {
1102 if (time_msec() >= p->next_in_band_update) {
1103 update_in_band_remotes(p);
1104 }
1105 in_band_run(p->in_band);
1106 }
1107
1108 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node,
1109 &p->all_conns) {
1110 ofconn_run(ofconn, p);
1111 }
1112
1113 /* Fail-open maintenance. Do this after processing the ofconns since
1114 * fail-open checks the status of the controller rconn. */
1115 if (p->fail_open) {
1116 fail_open_run(p->fail_open);
1117 }
1118
1119 HMAP_FOR_EACH (ofservice, struct ofservice, node, &p->services) {
1120 struct vconn *vconn;
1121 int retval;
1122
1123 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1124 if (!retval) {
1125 struct ofconn *ofconn;
1126 struct rconn *rconn;
1127 char *name;
1128
1129 rconn = rconn_create(ofservice->probe_interval, 0);
1130 name = ofconn_make_name(p, vconn_get_name(vconn));
1131 rconn_connect_unreliably(rconn, vconn, name);
1132 free(name);
1133
1134 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1135 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1136 ofservice->burst_limit);
1137 } else if (retval != EAGAIN) {
1138 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1139 }
1140 }
1141
1142 for (i = 0; i < p->n_snoops; i++) {
1143 struct vconn *vconn;
1144 int retval;
1145
1146 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1147 if (!retval) {
1148 add_snooper(p, vconn);
1149 } else if (retval != EAGAIN) {
1150 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1151 }
1152 }
1153
1154 if (time_msec() >= p->next_expiration) {
1155 COVERAGE_INC(ofproto_expiration);
1156 p->next_expiration = time_msec() + 1000;
1157 update_used(p);
1158
1159 classifier_for_each(&p->cls, CLS_INC_ALL, expire_rule, p);
1160
1161 /* Let the hook know that we're at a stable point: all outstanding data
1162 * in existing flows has been accounted to the account_cb. Thus, the
1163 * hook can now reasonably do operations that depend on having accurate
1164 * flow volume accounting (currently, that's just bond rebalancing). */
1165 if (p->ofhooks->account_checkpoint_cb) {
1166 p->ofhooks->account_checkpoint_cb(p->aux);
1167 }
1168 }
1169
1170 if (p->netflow) {
1171 netflow_run(p->netflow);
1172 }
1173 if (p->sflow) {
1174 ofproto_sflow_run(p->sflow);
1175 }
1176
1177 return 0;
1178 }
1179
1180 struct revalidate_cbdata {
1181 struct ofproto *ofproto;
1182 bool revalidate_all; /* Revalidate all exact-match rules? */
1183 bool revalidate_subrules; /* Revalidate all exact-match subrules? */
1184 struct tag_set revalidate_set; /* Set of tags to revalidate. */
1185 };
1186
1187 int
1188 ofproto_run2(struct ofproto *p, bool revalidate_all)
1189 {
1190 if (p->need_revalidate || revalidate_all
1191 || !tag_set_is_empty(&p->revalidate_set)) {
1192 struct revalidate_cbdata cbdata;
1193 cbdata.ofproto = p;
1194 cbdata.revalidate_all = revalidate_all;
1195 cbdata.revalidate_subrules = p->need_revalidate;
1196 cbdata.revalidate_set = p->revalidate_set;
1197 tag_set_init(&p->revalidate_set);
1198 COVERAGE_INC(ofproto_revalidate);
1199 classifier_for_each(&p->cls, CLS_INC_EXACT, revalidate_cb, &cbdata);
1200 p->need_revalidate = false;
1201 }
1202
1203 return 0;
1204 }
1205
1206 void
1207 ofproto_wait(struct ofproto *p)
1208 {
1209 struct ofservice *ofservice;
1210 struct ofconn *ofconn;
1211 size_t i;
1212
1213 dpif_recv_wait(p->dpif);
1214 dpif_port_poll_wait(p->dpif);
1215 netdev_monitor_poll_wait(p->netdev_monitor);
1216 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
1217 ofconn_wait(ofconn);
1218 }
1219 if (p->in_band) {
1220 poll_timer_wait_until(p->next_in_band_update);
1221 in_band_wait(p->in_band);
1222 }
1223 if (p->fail_open) {
1224 fail_open_wait(p->fail_open);
1225 }
1226 if (p->sflow) {
1227 ofproto_sflow_wait(p->sflow);
1228 }
1229 if (!tag_set_is_empty(&p->revalidate_set)) {
1230 poll_immediate_wake();
1231 }
1232 if (p->need_revalidate) {
1233 /* Shouldn't happen, but if it does just go around again. */
1234 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1235 poll_immediate_wake();
1236 } else if (p->next_expiration != LLONG_MAX) {
1237 poll_timer_wait_until(p->next_expiration);
1238 }
1239 HMAP_FOR_EACH (ofservice, struct ofservice, node, &p->services) {
1240 pvconn_wait(ofservice->pvconn);
1241 }
1242 for (i = 0; i < p->n_snoops; i++) {
1243 pvconn_wait(p->snoops[i]);
1244 }
1245 }
1246
1247 void
1248 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1249 {
1250 tag_set_add(&ofproto->revalidate_set, tag);
1251 }
1252
1253 struct tag_set *
1254 ofproto_get_revalidate_set(struct ofproto *ofproto)
1255 {
1256 return &ofproto->revalidate_set;
1257 }
1258
1259 bool
1260 ofproto_is_alive(const struct ofproto *p)
1261 {
1262 return !hmap_is_empty(&p->controllers);
1263 }
1264
1265 int
1266 ofproto_send_packet(struct ofproto *p, const flow_t *flow,
1267 const union ofp_action *actions, size_t n_actions,
1268 const struct ofpbuf *packet)
1269 {
1270 struct odp_actions odp_actions;
1271 int error;
1272
1273 error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions,
1274 NULL, NULL, NULL);
1275 if (error) {
1276 return error;
1277 }
1278
1279 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1280 * error code? */
1281 dpif_execute(p->dpif, flow->in_port, odp_actions.actions,
1282 odp_actions.n_actions, packet);
1283 return 0;
1284 }
1285
1286 void
1287 ofproto_add_flow(struct ofproto *p,
1288 const flow_t *flow, uint32_t wildcards, unsigned int priority,
1289 const union ofp_action *actions, size_t n_actions,
1290 int idle_timeout)
1291 {
1292 struct rule *rule;
1293 rule = rule_create(p, NULL, actions, n_actions,
1294 idle_timeout >= 0 ? idle_timeout : 5 /* XXX */,
1295 0, 0, false);
1296 cls_rule_from_flow(flow, wildcards, priority, &rule->cr);
1297 rule_insert(p, rule, NULL, 0);
1298 }
1299
1300 void
1301 ofproto_delete_flow(struct ofproto *ofproto, const flow_t *flow,
1302 uint32_t wildcards, unsigned int priority)
1303 {
1304 struct rule *rule;
1305
1306 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1307 flow, wildcards,
1308 priority));
1309 if (rule) {
1310 rule_remove(ofproto, rule);
1311 }
1312 }
1313
1314 static void
1315 destroy_rule(struct cls_rule *rule_, void *ofproto_)
1316 {
1317 struct rule *rule = rule_from_cls_rule(rule_);
1318 struct ofproto *ofproto = ofproto_;
1319
1320 /* Mark the flow as not installed, even though it might really be
1321 * installed, so that rule_remove() doesn't bother trying to uninstall it.
1322 * There is no point in uninstalling it individually since we are about to
1323 * blow away all the flows with dpif_flow_flush(). */
1324 rule->installed = false;
1325
1326 rule_remove(ofproto, rule);
1327 }
1328
1329 void
1330 ofproto_flush_flows(struct ofproto *ofproto)
1331 {
1332 COVERAGE_INC(ofproto_flush);
1333 classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto);
1334 dpif_flow_flush(ofproto->dpif);
1335 if (ofproto->in_band) {
1336 in_band_flushed(ofproto->in_band);
1337 }
1338 if (ofproto->fail_open) {
1339 fail_open_flushed(ofproto->fail_open);
1340 }
1341 }
1342 \f
1343 static void
1344 reinit_ports(struct ofproto *p)
1345 {
1346 struct svec devnames;
1347 struct ofport *ofport;
1348 unsigned int port_no;
1349 struct odp_port *odp_ports;
1350 size_t n_odp_ports;
1351 size_t i;
1352
1353 svec_init(&devnames);
1354 PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) {
1355 svec_add (&devnames, (char *) ofport->opp.name);
1356 }
1357 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1358 for (i = 0; i < n_odp_ports; i++) {
1359 svec_add (&devnames, odp_ports[i].devname);
1360 }
1361 free(odp_ports);
1362
1363 svec_sort_unique(&devnames);
1364 for (i = 0; i < devnames.n; i++) {
1365 update_port(p, devnames.names[i]);
1366 }
1367 svec_destroy(&devnames);
1368 }
1369
1370 static size_t
1371 refresh_port_group(struct ofproto *p, unsigned int group)
1372 {
1373 uint16_t *ports;
1374 size_t n_ports;
1375 struct ofport *port;
1376 unsigned int port_no;
1377
1378 assert(group == DP_GROUP_ALL || group == DP_GROUP_FLOOD);
1379
1380 ports = xmalloc(port_array_count(&p->ports) * sizeof *ports);
1381 n_ports = 0;
1382 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
1383 if (group == DP_GROUP_ALL || !(port->opp.config & OFPPC_NO_FLOOD)) {
1384 ports[n_ports++] = port_no;
1385 }
1386 }
1387 dpif_port_group_set(p->dpif, group, ports, n_ports);
1388 free(ports);
1389
1390 return n_ports;
1391 }
1392
1393 static void
1394 refresh_port_groups(struct ofproto *p)
1395 {
1396 size_t n_flood = refresh_port_group(p, DP_GROUP_FLOOD);
1397 size_t n_all = refresh_port_group(p, DP_GROUP_ALL);
1398 if (p->sflow) {
1399 ofproto_sflow_set_group_sizes(p->sflow, n_flood, n_all);
1400 }
1401 }
1402
1403 static struct ofport *
1404 make_ofport(const struct odp_port *odp_port)
1405 {
1406 struct netdev_options netdev_options;
1407 enum netdev_flags flags;
1408 struct ofport *ofport;
1409 struct netdev *netdev;
1410 bool carrier;
1411 int error;
1412
1413 memset(&netdev_options, 0, sizeof netdev_options);
1414 netdev_options.name = odp_port->devname;
1415 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1416
1417 error = netdev_open(&netdev_options, &netdev);
1418 if (error) {
1419 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1420 "cannot be opened (%s)",
1421 odp_port->devname, odp_port->port,
1422 odp_port->devname, strerror(error));
1423 return NULL;
1424 }
1425
1426 ofport = xmalloc(sizeof *ofport);
1427 ofport->netdev = netdev;
1428 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1429 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1430 memcpy(ofport->opp.name, odp_port->devname,
1431 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1432 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1433
1434 netdev_get_flags(netdev, &flags);
1435 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1436
1437 netdev_get_carrier(netdev, &carrier);
1438 ofport->opp.state = carrier ? 0 : OFPPS_LINK_DOWN;
1439
1440 netdev_get_features(netdev,
1441 &ofport->opp.curr, &ofport->opp.advertised,
1442 &ofport->opp.supported, &ofport->opp.peer);
1443 return ofport;
1444 }
1445
1446 static bool
1447 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1448 {
1449 if (port_array_get(&p->ports, odp_port->port)) {
1450 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1451 odp_port->port);
1452 return true;
1453 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1454 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1455 odp_port->devname);
1456 return true;
1457 } else {
1458 return false;
1459 }
1460 }
1461
1462 static int
1463 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1464 {
1465 const struct ofp_phy_port *a = &a_->opp;
1466 const struct ofp_phy_port *b = &b_->opp;
1467
1468 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1469 return (a->port_no == b->port_no
1470 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1471 && !strcmp((char *) a->name, (char *) b->name)
1472 && a->state == b->state
1473 && a->config == b->config
1474 && a->curr == b->curr
1475 && a->advertised == b->advertised
1476 && a->supported == b->supported
1477 && a->peer == b->peer);
1478 }
1479
1480 static void
1481 send_port_status(struct ofproto *p, const struct ofport *ofport,
1482 uint8_t reason)
1483 {
1484 /* XXX Should limit the number of queued port status change messages. */
1485 struct ofconn *ofconn;
1486 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
1487 struct ofp_port_status *ops;
1488 struct ofpbuf *b;
1489
1490 if (!ofconn_receives_async_msgs(ofconn)) {
1491 continue;
1492 }
1493
1494 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1495 ops->reason = reason;
1496 ops->desc = ofport->opp;
1497 hton_ofp_phy_port(&ops->desc);
1498 queue_tx(b, ofconn, NULL);
1499 }
1500 if (p->ofhooks->port_changed_cb) {
1501 p->ofhooks->port_changed_cb(reason, &ofport->opp, p->aux);
1502 }
1503 }
1504
1505 static void
1506 ofport_install(struct ofproto *p, struct ofport *ofport)
1507 {
1508 uint16_t odp_port = ofp_port_to_odp_port(ofport->opp.port_no);
1509 const char *netdev_name = (const char *) ofport->opp.name;
1510
1511 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1512 port_array_set(&p->ports, odp_port, ofport);
1513 shash_add(&p->port_by_name, netdev_name, ofport);
1514 if (p->sflow) {
1515 ofproto_sflow_add_port(p->sflow, odp_port, netdev_name);
1516 }
1517 }
1518
1519 static void
1520 ofport_remove(struct ofproto *p, struct ofport *ofport)
1521 {
1522 uint16_t odp_port = ofp_port_to_odp_port(ofport->opp.port_no);
1523
1524 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1525 port_array_delete(&p->ports, odp_port);
1526 shash_delete(&p->port_by_name,
1527 shash_find(&p->port_by_name, (char *) ofport->opp.name));
1528 if (p->sflow) {
1529 ofproto_sflow_del_port(p->sflow, odp_port);
1530 }
1531 }
1532
1533 static void
1534 ofport_free(struct ofport *ofport)
1535 {
1536 if (ofport) {
1537 netdev_close(ofport->netdev);
1538 free(ofport);
1539 }
1540 }
1541
1542 static void
1543 update_port(struct ofproto *p, const char *devname)
1544 {
1545 struct odp_port odp_port;
1546 struct ofport *old_ofport;
1547 struct ofport *new_ofport;
1548 int error;
1549
1550 COVERAGE_INC(ofproto_update_port);
1551
1552 /* Query the datapath for port information. */
1553 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1554
1555 /* Find the old ofport. */
1556 old_ofport = shash_find_data(&p->port_by_name, devname);
1557 if (!error) {
1558 if (!old_ofport) {
1559 /* There's no port named 'devname' but there might be a port with
1560 * the same port number. This could happen if a port is deleted
1561 * and then a new one added in its place very quickly, or if a port
1562 * is renamed. In the former case we want to send an OFPPR_DELETE
1563 * and an OFPPR_ADD, and in the latter case we want to send a
1564 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1565 * the old port's ifindex against the new port, or perhaps less
1566 * reliably but more portably by comparing the old port's MAC
1567 * against the new port's MAC. However, this code isn't that smart
1568 * and always sends an OFPPR_MODIFY (XXX). */
1569 old_ofport = port_array_get(&p->ports, odp_port.port);
1570 }
1571 } else if (error != ENOENT && error != ENODEV) {
1572 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1573 "%s", strerror(error));
1574 return;
1575 }
1576
1577 /* Create a new ofport. */
1578 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1579
1580 /* Eliminate a few pathological cases. */
1581 if (!old_ofport && !new_ofport) {
1582 return;
1583 } else if (old_ofport && new_ofport) {
1584 /* Most of the 'config' bits are OpenFlow soft state, but
1585 * OFPPC_PORT_DOWN is maintained the kernel. So transfer the OpenFlow
1586 * bits from old_ofport. (make_ofport() only sets OFPPC_PORT_DOWN and
1587 * leaves the other bits 0.) */
1588 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1589
1590 if (ofport_equal(old_ofport, new_ofport)) {
1591 /* False alarm--no change. */
1592 ofport_free(new_ofport);
1593 return;
1594 }
1595 }
1596
1597 /* Now deal with the normal cases. */
1598 if (old_ofport) {
1599 ofport_remove(p, old_ofport);
1600 }
1601 if (new_ofport) {
1602 ofport_install(p, new_ofport);
1603 }
1604 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1605 (!old_ofport ? OFPPR_ADD
1606 : !new_ofport ? OFPPR_DELETE
1607 : OFPPR_MODIFY));
1608 ofport_free(old_ofport);
1609
1610 /* Update port groups. */
1611 refresh_port_groups(p);
1612 }
1613
1614 static int
1615 init_ports(struct ofproto *p)
1616 {
1617 struct odp_port *ports;
1618 size_t n_ports;
1619 size_t i;
1620 int error;
1621
1622 error = dpif_port_list(p->dpif, &ports, &n_ports);
1623 if (error) {
1624 return error;
1625 }
1626
1627 for (i = 0; i < n_ports; i++) {
1628 const struct odp_port *odp_port = &ports[i];
1629 if (!ofport_conflicts(p, odp_port)) {
1630 struct ofport *ofport = make_ofport(odp_port);
1631 if (ofport) {
1632 ofport_install(p, ofport);
1633 }
1634 }
1635 }
1636 free(ports);
1637 refresh_port_groups(p);
1638 return 0;
1639 }
1640 \f
1641 static struct ofconn *
1642 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1643 {
1644 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1645 ofconn->ofproto = p;
1646 list_push_back(&p->all_conns, &ofconn->node);
1647 ofconn->rconn = rconn;
1648 ofconn->type = type;
1649 ofconn->role = NX_ROLE_OTHER;
1650 ofconn->packet_in_counter = rconn_packet_counter_create ();
1651 ofconn->pktbuf = NULL;
1652 ofconn->miss_send_len = 0;
1653 ofconn->reply_counter = rconn_packet_counter_create ();
1654 return ofconn;
1655 }
1656
1657 static void
1658 ofconn_destroy(struct ofconn *ofconn)
1659 {
1660 if (ofconn->type == OFCONN_PRIMARY) {
1661 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1662 }
1663 discovery_destroy(ofconn->discovery);
1664
1665 list_remove(&ofconn->node);
1666 switch_status_unregister(ofconn->ss);
1667 rconn_destroy(ofconn->rconn);
1668 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1669 rconn_packet_counter_destroy(ofconn->reply_counter);
1670 pktbuf_destroy(ofconn->pktbuf);
1671 free(ofconn);
1672 }
1673
1674 static void
1675 ofconn_run(struct ofconn *ofconn, struct ofproto *p)
1676 {
1677 int iteration;
1678 size_t i;
1679
1680 if (ofconn->discovery) {
1681 char *controller_name;
1682 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1683 discovery_question_connectivity(ofconn->discovery);
1684 }
1685 if (discovery_run(ofconn->discovery, &controller_name)) {
1686 if (controller_name) {
1687 char *ofconn_name = ofconn_make_name(p, controller_name);
1688 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1689 free(ofconn_name);
1690 } else {
1691 rconn_disconnect(ofconn->rconn);
1692 }
1693 }
1694 }
1695
1696 for (i = 0; i < N_SCHEDULERS; i++) {
1697 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1698 }
1699
1700 rconn_run(ofconn->rconn);
1701
1702 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1703 /* Limit the number of iterations to prevent other tasks from
1704 * starving. */
1705 for (iteration = 0; iteration < 50; iteration++) {
1706 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1707 if (!of_msg) {
1708 break;
1709 }
1710 if (p->fail_open) {
1711 fail_open_maybe_recover(p->fail_open);
1712 }
1713 handle_openflow(ofconn, p, of_msg);
1714 ofpbuf_delete(of_msg);
1715 }
1716 }
1717
1718 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1719 ofconn_destroy(ofconn);
1720 }
1721 }
1722
1723 static void
1724 ofconn_wait(struct ofconn *ofconn)
1725 {
1726 int i;
1727
1728 if (ofconn->discovery) {
1729 discovery_wait(ofconn->discovery);
1730 }
1731 for (i = 0; i < N_SCHEDULERS; i++) {
1732 pinsched_wait(ofconn->schedulers[i]);
1733 }
1734 rconn_run_wait(ofconn->rconn);
1735 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1736 rconn_recv_wait(ofconn->rconn);
1737 } else {
1738 COVERAGE_INC(ofproto_ofconn_stuck);
1739 }
1740 }
1741
1742 /* Returns true if 'ofconn' should receive asynchronous messages. */
1743 static bool
1744 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1745 {
1746 if (ofconn->type == OFCONN_PRIMARY) {
1747 /* Primary controllers always get asynchronous messages unless they
1748 * have configured themselves as "slaves". */
1749 return ofconn->role != NX_ROLE_SLAVE;
1750 } else {
1751 /* Service connections don't get asynchronous messages unless they have
1752 * explicitly asked for them by setting a nonzero miss send length. */
1753 return ofconn->miss_send_len > 0;
1754 }
1755 }
1756
1757 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1758 * and 'target', suitable for use in log messages for identifying the
1759 * connection.
1760 *
1761 * The name is dynamically allocated. The caller should free it (with free())
1762 * when it is no longer needed. */
1763 static char *
1764 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1765 {
1766 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1767 }
1768
1769 static void
1770 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1771 {
1772 int i;
1773
1774 for (i = 0; i < N_SCHEDULERS; i++) {
1775 struct pinsched **s = &ofconn->schedulers[i];
1776
1777 if (rate > 0) {
1778 if (!*s) {
1779 *s = pinsched_create(rate, burst,
1780 ofconn->ofproto->switch_status);
1781 } else {
1782 pinsched_set_limits(*s, rate, burst);
1783 }
1784 } else {
1785 pinsched_destroy(*s);
1786 *s = NULL;
1787 }
1788 }
1789 }
1790 \f
1791 static void
1792 ofservice_reconfigure(struct ofservice *ofservice,
1793 const struct ofproto_controller *c)
1794 {
1795 ofservice->probe_interval = c->probe_interval;
1796 ofservice->rate_limit = c->rate_limit;
1797 ofservice->burst_limit = c->burst_limit;
1798 }
1799
1800 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1801 * positive errno value. */
1802 static int
1803 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1804 {
1805 struct ofservice *ofservice;
1806 struct pvconn *pvconn;
1807 int error;
1808
1809 error = pvconn_open(c->target, &pvconn);
1810 if (error) {
1811 return error;
1812 }
1813
1814 ofservice = xzalloc(sizeof *ofservice);
1815 hmap_insert(&ofproto->services, &ofservice->node,
1816 hash_string(c->target, 0));
1817 ofservice->pvconn = pvconn;
1818
1819 ofservice_reconfigure(ofservice, c);
1820
1821 return 0;
1822 }
1823
1824 static void
1825 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1826 {
1827 hmap_remove(&ofproto->services, &ofservice->node);
1828 pvconn_close(ofservice->pvconn);
1829 free(ofservice);
1830 }
1831
1832 /* Finds and returns the ofservice within 'ofproto' that has the given
1833 * 'target', or a null pointer if none exists. */
1834 static struct ofservice *
1835 ofservice_lookup(struct ofproto *ofproto, const char *target)
1836 {
1837 struct ofservice *ofservice;
1838
1839 HMAP_FOR_EACH_WITH_HASH (ofservice, struct ofservice, node,
1840 hash_string(target, 0), &ofproto->services) {
1841 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
1842 return ofservice;
1843 }
1844 }
1845 return NULL;
1846 }
1847 \f
1848 /* Caller is responsible for initializing the 'cr' member of the returned
1849 * rule. */
1850 static struct rule *
1851 rule_create(struct ofproto *ofproto, struct rule *super,
1852 const union ofp_action *actions, size_t n_actions,
1853 uint16_t idle_timeout, uint16_t hard_timeout,
1854 uint64_t flow_cookie, bool send_flow_removed)
1855 {
1856 struct rule *rule = xzalloc(sizeof *rule);
1857 rule->idle_timeout = idle_timeout;
1858 rule->hard_timeout = hard_timeout;
1859 rule->flow_cookie = flow_cookie;
1860 rule->used = rule->created = time_msec();
1861 rule->send_flow_removed = send_flow_removed;
1862 rule->super = super;
1863 if (super) {
1864 list_push_back(&super->list, &rule->list);
1865 } else {
1866 list_init(&rule->list);
1867 }
1868 rule->n_actions = n_actions;
1869 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1870 netflow_flow_clear(&rule->nf_flow);
1871 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->created);
1872
1873 return rule;
1874 }
1875
1876 static struct rule *
1877 rule_from_cls_rule(const struct cls_rule *cls_rule)
1878 {
1879 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
1880 }
1881
1882 static void
1883 rule_free(struct rule *rule)
1884 {
1885 free(rule->actions);
1886 free(rule->odp_actions);
1887 free(rule);
1888 }
1889
1890 /* Destroys 'rule'. If 'rule' is a subrule, also removes it from its
1891 * super-rule's list of subrules. If 'rule' is a super-rule, also iterates
1892 * through all of its subrules and revalidates them, destroying any that no
1893 * longer has a super-rule (which is probably all of them).
1894 *
1895 * Before calling this function, the caller must make have removed 'rule' from
1896 * the classifier. If 'rule' is an exact-match rule, the caller is also
1897 * responsible for ensuring that it has been uninstalled from the datapath. */
1898 static void
1899 rule_destroy(struct ofproto *ofproto, struct rule *rule)
1900 {
1901 if (!rule->super) {
1902 struct rule *subrule, *next;
1903 LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) {
1904 revalidate_rule(ofproto, subrule);
1905 }
1906 } else {
1907 list_remove(&rule->list);
1908 }
1909 rule_free(rule);
1910 }
1911
1912 static bool
1913 rule_has_out_port(const struct rule *rule, uint16_t out_port)
1914 {
1915 const union ofp_action *oa;
1916 struct actions_iterator i;
1917
1918 if (out_port == htons(OFPP_NONE)) {
1919 return true;
1920 }
1921 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
1922 oa = actions_next(&i)) {
1923 if (action_outputs_to_port(oa, out_port)) {
1924 return true;
1925 }
1926 }
1927 return false;
1928 }
1929
1930 /* Executes the actions indicated by 'rule' on 'packet', which is in flow
1931 * 'flow' and is considered to have arrived on ODP port 'in_port'.
1932 *
1933 * The flow that 'packet' actually contains does not need to actually match
1934 * 'rule'; the actions in 'rule' will be applied to it either way. Likewise,
1935 * the packet and byte counters for 'rule' will be credited for the packet sent
1936 * out whether or not the packet actually matches 'rule'.
1937 *
1938 * If 'rule' is an exact-match rule and 'flow' actually equals the rule's flow,
1939 * the caller must already have accurately composed ODP actions for it given
1940 * 'packet' using rule_make_actions(). If 'rule' is a wildcard rule, or if
1941 * 'rule' is an exact-match rule but 'flow' is not the rule's flow, then this
1942 * function will compose a set of ODP actions based on 'rule''s OpenFlow
1943 * actions and apply them to 'packet'. */
1944 static void
1945 rule_execute(struct ofproto *ofproto, struct rule *rule,
1946 struct ofpbuf *packet, const flow_t *flow)
1947 {
1948 const union odp_action *actions;
1949 size_t n_actions;
1950 struct odp_actions a;
1951
1952 /* Grab or compose the ODP actions.
1953 *
1954 * The special case for an exact-match 'rule' where 'flow' is not the
1955 * rule's flow is important to avoid, e.g., sending a packet out its input
1956 * port simply because the ODP actions were composed for the wrong
1957 * scenario. */
1958 if (rule->cr.wc.wildcards || !flow_equal(flow, &rule->cr.flow)) {
1959 struct rule *super = rule->super ? rule->super : rule;
1960 if (xlate_actions(super->actions, super->n_actions, flow, ofproto,
1961 packet, &a, NULL, 0, NULL)) {
1962 return;
1963 }
1964 actions = a.actions;
1965 n_actions = a.n_actions;
1966 } else {
1967 actions = rule->odp_actions;
1968 n_actions = rule->n_odp_actions;
1969 }
1970
1971 /* Execute the ODP actions. */
1972 if (!dpif_execute(ofproto->dpif, flow->in_port,
1973 actions, n_actions, packet)) {
1974 struct odp_flow_stats stats;
1975 flow_extract_stats(flow, packet, &stats);
1976 update_stats(ofproto, rule, &stats);
1977 rule->used = time_msec();
1978 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->used);
1979 }
1980 }
1981
1982 static void
1983 rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet,
1984 uint16_t in_port)
1985 {
1986 struct rule *displaced_rule;
1987
1988 /* Insert the rule in the classifier. */
1989 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
1990 if (!rule->cr.wc.wildcards) {
1991 rule_make_actions(p, rule, packet);
1992 }
1993
1994 /* Send the packet and credit it to the rule. */
1995 if (packet) {
1996 flow_t flow;
1997 flow_extract(packet, 0, in_port, &flow);
1998 rule_execute(p, rule, packet, &flow);
1999 }
2000
2001 /* Install the rule in the datapath only after sending the packet, to
2002 * avoid packet reordering. */
2003 if (rule->cr.wc.wildcards) {
2004 COVERAGE_INC(ofproto_add_wc_flow);
2005 p->need_revalidate = true;
2006 } else {
2007 rule_install(p, rule, displaced_rule);
2008 }
2009
2010 /* Free the rule that was displaced, if any. */
2011 if (displaced_rule) {
2012 rule_destroy(p, displaced_rule);
2013 }
2014 }
2015
2016 static struct rule *
2017 rule_create_subrule(struct ofproto *ofproto, struct rule *rule,
2018 const flow_t *flow)
2019 {
2020 struct rule *subrule = rule_create(ofproto, rule, NULL, 0,
2021 rule->idle_timeout, rule->hard_timeout,
2022 0, false);
2023 COVERAGE_INC(ofproto_subrule_create);
2024 cls_rule_from_flow(flow, 0, (rule->cr.priority <= UINT16_MAX ? UINT16_MAX
2025 : rule->cr.priority), &subrule->cr);
2026 classifier_insert_exact(&ofproto->cls, &subrule->cr);
2027
2028 return subrule;
2029 }
2030
2031 static void
2032 rule_remove(struct ofproto *ofproto, struct rule *rule)
2033 {
2034 if (rule->cr.wc.wildcards) {
2035 COVERAGE_INC(ofproto_del_wc_flow);
2036 ofproto->need_revalidate = true;
2037 } else {
2038 rule_uninstall(ofproto, rule);
2039 }
2040 classifier_remove(&ofproto->cls, &rule->cr);
2041 rule_destroy(ofproto, rule);
2042 }
2043
2044 /* Returns true if the actions changed, false otherwise. */
2045 static bool
2046 rule_make_actions(struct ofproto *p, struct rule *rule,
2047 const struct ofpbuf *packet)
2048 {
2049 const struct rule *super;
2050 struct odp_actions a;
2051 size_t actions_len;
2052
2053 assert(!rule->cr.wc.wildcards);
2054
2055 super = rule->super ? rule->super : rule;
2056 rule->tags = 0;
2057 xlate_actions(super->actions, super->n_actions, &rule->cr.flow, p,
2058 packet, &a, &rule->tags, &rule->may_install,
2059 &rule->nf_flow.output_iface);
2060
2061 actions_len = a.n_actions * sizeof *a.actions;
2062 if (rule->n_odp_actions != a.n_actions
2063 || memcmp(rule->odp_actions, a.actions, actions_len)) {
2064 COVERAGE_INC(ofproto_odp_unchanged);
2065 free(rule->odp_actions);
2066 rule->n_odp_actions = a.n_actions;
2067 rule->odp_actions = xmemdup(a.actions, actions_len);
2068 return true;
2069 } else {
2070 return false;
2071 }
2072 }
2073
2074 static int
2075 do_put_flow(struct ofproto *ofproto, struct rule *rule, int flags,
2076 struct odp_flow_put *put)
2077 {
2078 memset(&put->flow.stats, 0, sizeof put->flow.stats);
2079 put->flow.key = rule->cr.flow;
2080 put->flow.actions = rule->odp_actions;
2081 put->flow.n_actions = rule->n_odp_actions;
2082 put->flow.flags = 0;
2083 put->flags = flags;
2084 return dpif_flow_put(ofproto->dpif, put);
2085 }
2086
2087 static void
2088 rule_install(struct ofproto *p, struct rule *rule, struct rule *displaced_rule)
2089 {
2090 assert(!rule->cr.wc.wildcards);
2091
2092 if (rule->may_install) {
2093 struct odp_flow_put put;
2094 if (!do_put_flow(p, rule,
2095 ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS,
2096 &put)) {
2097 rule->installed = true;
2098 if (displaced_rule) {
2099 update_stats(p, displaced_rule, &put.flow.stats);
2100 rule_post_uninstall(p, displaced_rule);
2101 }
2102 }
2103 } else if (displaced_rule) {
2104 rule_uninstall(p, displaced_rule);
2105 }
2106 }
2107
2108 static void
2109 rule_reinstall(struct ofproto *ofproto, struct rule *rule)
2110 {
2111 if (rule->installed) {
2112 struct odp_flow_put put;
2113 COVERAGE_INC(ofproto_dp_missed);
2114 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put);
2115 } else {
2116 rule_install(ofproto, rule, NULL);
2117 }
2118 }
2119
2120 static void
2121 rule_update_actions(struct ofproto *ofproto, struct rule *rule)
2122 {
2123 bool actions_changed;
2124 uint16_t new_out_iface, old_out_iface;
2125
2126 old_out_iface = rule->nf_flow.output_iface;
2127 actions_changed = rule_make_actions(ofproto, rule, NULL);
2128
2129 if (rule->may_install) {
2130 if (rule->installed) {
2131 if (actions_changed) {
2132 struct odp_flow_put put;
2133 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY
2134 | ODPPF_ZERO_STATS, &put);
2135 update_stats(ofproto, rule, &put.flow.stats);
2136
2137 /* Temporarily set the old output iface so that NetFlow
2138 * messages have the correct output interface for the old
2139 * stats. */
2140 new_out_iface = rule->nf_flow.output_iface;
2141 rule->nf_flow.output_iface = old_out_iface;
2142 rule_post_uninstall(ofproto, rule);
2143 rule->nf_flow.output_iface = new_out_iface;
2144 }
2145 } else {
2146 rule_install(ofproto, rule, NULL);
2147 }
2148 } else {
2149 rule_uninstall(ofproto, rule);
2150 }
2151 }
2152
2153 static void
2154 rule_account(struct ofproto *ofproto, struct rule *rule, uint64_t extra_bytes)
2155 {
2156 uint64_t total_bytes = rule->byte_count + extra_bytes;
2157
2158 if (ofproto->ofhooks->account_flow_cb
2159 && total_bytes > rule->accounted_bytes)
2160 {
2161 ofproto->ofhooks->account_flow_cb(
2162 &rule->cr.flow, rule->tags, rule->odp_actions, rule->n_odp_actions,
2163 total_bytes - rule->accounted_bytes, ofproto->aux);
2164 rule->accounted_bytes = total_bytes;
2165 }
2166 }
2167
2168 static void
2169 rule_uninstall(struct ofproto *p, struct rule *rule)
2170 {
2171 assert(!rule->cr.wc.wildcards);
2172 if (rule->installed) {
2173 struct odp_flow odp_flow;
2174
2175 odp_flow.key = rule->cr.flow;
2176 odp_flow.actions = NULL;
2177 odp_flow.n_actions = 0;
2178 odp_flow.flags = 0;
2179 if (!dpif_flow_del(p->dpif, &odp_flow)) {
2180 update_stats(p, rule, &odp_flow.stats);
2181 }
2182 rule->installed = false;
2183
2184 rule_post_uninstall(p, rule);
2185 }
2186 }
2187
2188 static bool
2189 is_controller_rule(struct rule *rule)
2190 {
2191 /* If the only action is send to the controller then don't report
2192 * NetFlow expiration messages since it is just part of the control
2193 * logic for the network and not real traffic. */
2194
2195 return (rule
2196 && rule->super
2197 && rule->super->n_actions == 1
2198 && action_outputs_to_port(&rule->super->actions[0],
2199 htons(OFPP_CONTROLLER)));
2200 }
2201
2202 static void
2203 rule_post_uninstall(struct ofproto *ofproto, struct rule *rule)
2204 {
2205 struct rule *super = rule->super;
2206
2207 rule_account(ofproto, rule, 0);
2208
2209 if (ofproto->netflow && !is_controller_rule(rule)) {
2210 struct ofexpired expired;
2211 expired.flow = rule->cr.flow;
2212 expired.packet_count = rule->packet_count;
2213 expired.byte_count = rule->byte_count;
2214 expired.used = rule->used;
2215 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
2216 }
2217 if (super) {
2218 super->packet_count += rule->packet_count;
2219 super->byte_count += rule->byte_count;
2220
2221 /* Reset counters to prevent double counting if the rule ever gets
2222 * reinstalled. */
2223 rule->packet_count = 0;
2224 rule->byte_count = 0;
2225 rule->accounted_bytes = 0;
2226
2227 netflow_flow_clear(&rule->nf_flow);
2228 }
2229 }
2230 \f
2231 static void
2232 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2233 struct rconn_packet_counter *counter)
2234 {
2235 update_openflow_length(msg);
2236 if (rconn_send(ofconn->rconn, msg, counter)) {
2237 ofpbuf_delete(msg);
2238 }
2239 }
2240
2241 static void
2242 send_error(const struct ofconn *ofconn, const struct ofp_header *oh,
2243 int error, const void *data, size_t len)
2244 {
2245 struct ofpbuf *buf;
2246 struct ofp_error_msg *oem;
2247
2248 if (!(error >> 16)) {
2249 VLOG_WARN_RL(&rl, "not sending bad error code %d to controller",
2250 error);
2251 return;
2252 }
2253
2254 COVERAGE_INC(ofproto_error);
2255 oem = make_openflow_xid(len + sizeof *oem, OFPT_ERROR,
2256 oh ? oh->xid : 0, &buf);
2257 oem->type = htons((unsigned int) error >> 16);
2258 oem->code = htons(error & 0xffff);
2259 memcpy(oem->data, data, len);
2260 queue_tx(buf, ofconn, ofconn->reply_counter);
2261 }
2262
2263 static void
2264 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2265 int error)
2266 {
2267 size_t oh_length = ntohs(oh->length);
2268 send_error(ofconn, oh, error, oh, MIN(oh_length, 64));
2269 }
2270
2271 static void
2272 hton_ofp_phy_port(struct ofp_phy_port *opp)
2273 {
2274 opp->port_no = htons(opp->port_no);
2275 opp->config = htonl(opp->config);
2276 opp->state = htonl(opp->state);
2277 opp->curr = htonl(opp->curr);
2278 opp->advertised = htonl(opp->advertised);
2279 opp->supported = htonl(opp->supported);
2280 opp->peer = htonl(opp->peer);
2281 }
2282
2283 static int
2284 handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh)
2285 {
2286 struct ofp_header *rq = oh;
2287 queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter);
2288 return 0;
2289 }
2290
2291 static int
2292 handle_features_request(struct ofproto *p, struct ofconn *ofconn,
2293 struct ofp_header *oh)
2294 {
2295 struct ofp_switch_features *osf;
2296 struct ofpbuf *buf;
2297 unsigned int port_no;
2298 struct ofport *port;
2299
2300 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2301 osf->datapath_id = htonll(p->datapath_id);
2302 osf->n_buffers = htonl(pktbuf_capacity());
2303 osf->n_tables = 2;
2304 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2305 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2306 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2307 (1u << OFPAT_SET_VLAN_VID) |
2308 (1u << OFPAT_SET_VLAN_PCP) |
2309 (1u << OFPAT_STRIP_VLAN) |
2310 (1u << OFPAT_SET_DL_SRC) |
2311 (1u << OFPAT_SET_DL_DST) |
2312 (1u << OFPAT_SET_NW_SRC) |
2313 (1u << OFPAT_SET_NW_DST) |
2314 (1u << OFPAT_SET_NW_TOS) |
2315 (1u << OFPAT_SET_TP_SRC) |
2316 (1u << OFPAT_SET_TP_DST) |
2317 (1u << OFPAT_ENQUEUE));
2318
2319 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
2320 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2321 }
2322
2323 queue_tx(buf, ofconn, ofconn->reply_counter);
2324 return 0;
2325 }
2326
2327 static int
2328 handle_get_config_request(struct ofproto *p, struct ofconn *ofconn,
2329 struct ofp_header *oh)
2330 {
2331 struct ofpbuf *buf;
2332 struct ofp_switch_config *osc;
2333 uint16_t flags;
2334 bool drop_frags;
2335
2336 /* Figure out flags. */
2337 dpif_get_drop_frags(p->dpif, &drop_frags);
2338 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2339
2340 /* Send reply. */
2341 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2342 osc->flags = htons(flags);
2343 osc->miss_send_len = htons(ofconn->miss_send_len);
2344 queue_tx(buf, ofconn, ofconn->reply_counter);
2345
2346 return 0;
2347 }
2348
2349 static int
2350 handle_set_config(struct ofproto *p, struct ofconn *ofconn,
2351 struct ofp_switch_config *osc)
2352 {
2353 uint16_t flags;
2354 int error;
2355
2356 error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc);
2357 if (error) {
2358 return error;
2359 }
2360 flags = ntohs(osc->flags);
2361
2362 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2363 switch (flags & OFPC_FRAG_MASK) {
2364 case OFPC_FRAG_NORMAL:
2365 dpif_set_drop_frags(p->dpif, false);
2366 break;
2367 case OFPC_FRAG_DROP:
2368 dpif_set_drop_frags(p->dpif, true);
2369 break;
2370 default:
2371 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2372 osc->flags);
2373 break;
2374 }
2375 }
2376
2377 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2378
2379 return 0;
2380 }
2381
2382 static void
2383 add_output_group_action(struct odp_actions *actions, uint16_t group,
2384 uint16_t *nf_output_iface)
2385 {
2386 odp_actions_add(actions, ODPAT_OUTPUT_GROUP)->output_group.group = group;
2387
2388 if (group == DP_GROUP_ALL || group == DP_GROUP_FLOOD) {
2389 *nf_output_iface = NF_OUT_FLOOD;
2390 }
2391 }
2392
2393 static void
2394 add_controller_action(struct odp_actions *actions, uint16_t max_len)
2395 {
2396 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
2397 a->controller.arg = max_len;
2398 }
2399
2400 struct action_xlate_ctx {
2401 /* Input. */
2402 flow_t flow; /* Flow to which these actions correspond. */
2403 int recurse; /* Recursion level, via xlate_table_action. */
2404 struct ofproto *ofproto;
2405 const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a
2406 * null pointer if we are revalidating
2407 * without a packet to refer to. */
2408
2409 /* Output. */
2410 struct odp_actions *out; /* Datapath actions. */
2411 tag_type *tags; /* Tags associated with OFPP_NORMAL actions. */
2412 bool may_set_up_flow; /* True ordinarily; false if the actions must
2413 * be reassessed for every packet. */
2414 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
2415 };
2416
2417 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
2418 * flow translation. */
2419 #define MAX_RESUBMIT_RECURSION 8
2420
2421 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2422 struct action_xlate_ctx *ctx);
2423
2424 static void
2425 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2426 {
2427 const struct ofport *ofport = port_array_get(&ctx->ofproto->ports, port);
2428
2429 if (ofport) {
2430 if (ofport->opp.config & OFPPC_NO_FWD) {
2431 /* Forwarding disabled on port. */
2432 return;
2433 }
2434 } else {
2435 /*
2436 * We don't have an ofport record for this port, but it doesn't hurt to
2437 * allow forwarding to it anyhow. Maybe such a port will appear later
2438 * and we're pre-populating the flow table.
2439 */
2440 }
2441
2442 odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port;
2443 ctx->nf_output_iface = port;
2444 }
2445
2446 static struct rule *
2447 lookup_valid_rule(struct ofproto *ofproto, const flow_t *flow)
2448 {
2449 struct rule *rule;
2450 rule = rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2451
2452 /* The rule we found might not be valid, since we could be in need of
2453 * revalidation. If it is not valid, don't return it. */
2454 if (rule
2455 && rule->super
2456 && ofproto->need_revalidate
2457 && !revalidate_rule(ofproto, rule)) {
2458 COVERAGE_INC(ofproto_invalidated);
2459 return NULL;
2460 }
2461
2462 return rule;
2463 }
2464
2465 static void
2466 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2467 {
2468 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2469 uint16_t old_in_port;
2470 struct rule *rule;
2471
2472 /* Look up a flow with 'in_port' as the input port. Then restore the
2473 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2474 * have surprising behavior). */
2475 old_in_port = ctx->flow.in_port;
2476 ctx->flow.in_port = in_port;
2477 rule = lookup_valid_rule(ctx->ofproto, &ctx->flow);
2478 ctx->flow.in_port = old_in_port;
2479
2480 if (rule) {
2481 if (rule->super) {
2482 rule = rule->super;
2483 }
2484
2485 ctx->recurse++;
2486 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2487 ctx->recurse--;
2488 }
2489 } else {
2490 struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2491
2492 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2493 MAX_RESUBMIT_RECURSION);
2494 }
2495 }
2496
2497 static void
2498 xlate_output_action__(struct action_xlate_ctx *ctx,
2499 uint16_t port, uint16_t max_len)
2500 {
2501 uint16_t odp_port;
2502 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2503
2504 ctx->nf_output_iface = NF_OUT_DROP;
2505
2506 switch (port) {
2507 case OFPP_IN_PORT:
2508 add_output_action(ctx, ctx->flow.in_port);
2509 break;
2510 case OFPP_TABLE:
2511 xlate_table_action(ctx, ctx->flow.in_port);
2512 break;
2513 case OFPP_NORMAL:
2514 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2515 ctx->out, ctx->tags,
2516 &ctx->nf_output_iface,
2517 ctx->ofproto->aux)) {
2518 COVERAGE_INC(ofproto_uninstallable);
2519 ctx->may_set_up_flow = false;
2520 }
2521 break;
2522 case OFPP_FLOOD:
2523 add_output_group_action(ctx->out, DP_GROUP_FLOOD,
2524 &ctx->nf_output_iface);
2525 break;
2526 case OFPP_ALL:
2527 add_output_group_action(ctx->out, DP_GROUP_ALL, &ctx->nf_output_iface);
2528 break;
2529 case OFPP_CONTROLLER:
2530 add_controller_action(ctx->out, max_len);
2531 break;
2532 case OFPP_LOCAL:
2533 add_output_action(ctx, ODPP_LOCAL);
2534 break;
2535 default:
2536 odp_port = ofp_port_to_odp_port(port);
2537 if (odp_port != ctx->flow.in_port) {
2538 add_output_action(ctx, odp_port);
2539 }
2540 break;
2541 }
2542
2543 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2544 ctx->nf_output_iface = NF_OUT_FLOOD;
2545 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2546 ctx->nf_output_iface = prev_nf_output_iface;
2547 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2548 ctx->nf_output_iface != NF_OUT_FLOOD) {
2549 ctx->nf_output_iface = NF_OUT_MULTI;
2550 }
2551 }
2552
2553 static void
2554 xlate_output_action(struct action_xlate_ctx *ctx,
2555 const struct ofp_action_output *oao)
2556 {
2557 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2558 }
2559
2560 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2561 * optimization, because we're going to add another action that sets the
2562 * priority immediately after, or because there are no actions following the
2563 * pop. */
2564 static void
2565 remove_pop_action(struct action_xlate_ctx *ctx)
2566 {
2567 size_t n = ctx->out->n_actions;
2568 if (n > 0 && ctx->out->actions[n - 1].type == ODPAT_POP_PRIORITY) {
2569 ctx->out->n_actions--;
2570 }
2571 }
2572
2573 static void
2574 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2575 const struct ofp_action_enqueue *oae)
2576 {
2577 uint16_t ofp_port, odp_port;
2578 uint32_t priority;
2579 int error;
2580
2581 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2582 &priority);
2583 if (error) {
2584 /* Fall back to ordinary output action. */
2585 xlate_output_action__(ctx, ntohs(oae->port), 0);
2586 return;
2587 }
2588
2589 /* Figure out ODP output port. */
2590 ofp_port = ntohs(oae->port);
2591 if (ofp_port != OFPP_IN_PORT) {
2592 odp_port = ofp_port_to_odp_port(ofp_port);
2593 } else {
2594 odp_port = ctx->flow.in_port;
2595 }
2596
2597 /* Add ODP actions. */
2598 remove_pop_action(ctx);
2599 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2600 = priority;
2601 add_output_action(ctx, odp_port);
2602 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2603
2604 /* Update NetFlow output port. */
2605 if (ctx->nf_output_iface == NF_OUT_DROP) {
2606 ctx->nf_output_iface = odp_port;
2607 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2608 ctx->nf_output_iface = NF_OUT_MULTI;
2609 }
2610 }
2611
2612 static void
2613 xlate_nicira_action(struct action_xlate_ctx *ctx,
2614 const struct nx_action_header *nah)
2615 {
2616 const struct nx_action_resubmit *nar;
2617 const struct nx_action_set_tunnel *nast;
2618 union odp_action *oa;
2619 int subtype = ntohs(nah->subtype);
2620
2621 assert(nah->vendor == htonl(NX_VENDOR_ID));
2622 switch (subtype) {
2623 case NXAST_RESUBMIT:
2624 nar = (const struct nx_action_resubmit *) nah;
2625 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2626 break;
2627
2628 case NXAST_SET_TUNNEL:
2629 nast = (const struct nx_action_set_tunnel *) nah;
2630 oa = odp_actions_add(ctx->out, ODPAT_SET_TUNNEL);
2631 ctx->flow.tun_id = oa->tunnel.tun_id = nast->tun_id;
2632 break;
2633
2634 /* If you add a new action here that modifies flow data, don't forget to
2635 * update the flow key in ctx->flow at the same time. */
2636
2637 default:
2638 VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype);
2639 break;
2640 }
2641 }
2642
2643 static void
2644 do_xlate_actions(const union ofp_action *in, size_t n_in,
2645 struct action_xlate_ctx *ctx)
2646 {
2647 struct actions_iterator iter;
2648 const union ofp_action *ia;
2649 const struct ofport *port;
2650
2651 port = port_array_get(&ctx->ofproto->ports, ctx->flow.in_port);
2652 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2653 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
2654 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2655 /* Drop this flow. */
2656 return;
2657 }
2658
2659 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2660 uint16_t type = ntohs(ia->type);
2661 union odp_action *oa;
2662
2663 switch (type) {
2664 case OFPAT_OUTPUT:
2665 xlate_output_action(ctx, &ia->output);
2666 break;
2667
2668 case OFPAT_SET_VLAN_VID:
2669 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_VID);
2670 ctx->flow.dl_vlan = oa->vlan_vid.vlan_vid = ia->vlan_vid.vlan_vid;
2671 break;
2672
2673 case OFPAT_SET_VLAN_PCP:
2674 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_PCP);
2675 ctx->flow.dl_vlan_pcp = oa->vlan_pcp.vlan_pcp = ia->vlan_pcp.vlan_pcp;
2676 break;
2677
2678 case OFPAT_STRIP_VLAN:
2679 odp_actions_add(ctx->out, ODPAT_STRIP_VLAN);
2680 ctx->flow.dl_vlan = htons(OFP_VLAN_NONE);
2681 ctx->flow.dl_vlan_pcp = 0;
2682 break;
2683
2684 case OFPAT_SET_DL_SRC:
2685 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC);
2686 memcpy(oa->dl_addr.dl_addr,
2687 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2688 memcpy(ctx->flow.dl_src,
2689 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2690 break;
2691
2692 case OFPAT_SET_DL_DST:
2693 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST);
2694 memcpy(oa->dl_addr.dl_addr,
2695 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2696 memcpy(ctx->flow.dl_dst,
2697 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2698 break;
2699
2700 case OFPAT_SET_NW_SRC:
2701 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC);
2702 ctx->flow.nw_src = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2703 break;
2704
2705 case OFPAT_SET_NW_DST:
2706 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_DST);
2707 ctx->flow.nw_dst = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2708 break;
2709
2710 case OFPAT_SET_NW_TOS:
2711 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_TOS);
2712 ctx->flow.nw_tos = oa->nw_tos.nw_tos = ia->nw_tos.nw_tos;
2713 break;
2714
2715 case OFPAT_SET_TP_SRC:
2716 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC);
2717 ctx->flow.tp_src = oa->tp_port.tp_port = ia->tp_port.tp_port;
2718 break;
2719
2720 case OFPAT_SET_TP_DST:
2721 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_DST);
2722 ctx->flow.tp_dst = oa->tp_port.tp_port = ia->tp_port.tp_port;
2723 break;
2724
2725 case OFPAT_VENDOR:
2726 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
2727 break;
2728
2729 case OFPAT_ENQUEUE:
2730 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
2731 break;
2732
2733 default:
2734 VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type);
2735 break;
2736 }
2737 }
2738 }
2739
2740 static int
2741 xlate_actions(const union ofp_action *in, size_t n_in,
2742 const flow_t *flow, struct ofproto *ofproto,
2743 const struct ofpbuf *packet,
2744 struct odp_actions *out, tag_type *tags, bool *may_set_up_flow,
2745 uint16_t *nf_output_iface)
2746 {
2747 tag_type no_tags = 0;
2748 struct action_xlate_ctx ctx;
2749 COVERAGE_INC(ofproto_ofp2odp);
2750 odp_actions_init(out);
2751 ctx.flow = *flow;
2752 ctx.recurse = 0;
2753 ctx.ofproto = ofproto;
2754 ctx.packet = packet;
2755 ctx.out = out;
2756 ctx.tags = tags ? tags : &no_tags;
2757 ctx.may_set_up_flow = true;
2758 ctx.nf_output_iface = NF_OUT_DROP;
2759 do_xlate_actions(in, n_in, &ctx);
2760 remove_pop_action(&ctx);
2761
2762 /* Check with in-band control to see if we're allowed to set up this
2763 * flow. */
2764 if (!in_band_rule_check(ofproto->in_band, flow, out)) {
2765 ctx.may_set_up_flow = false;
2766 }
2767
2768 if (may_set_up_flow) {
2769 *may_set_up_flow = ctx.may_set_up_flow;
2770 }
2771 if (nf_output_iface) {
2772 *nf_output_iface = ctx.nf_output_iface;
2773 }
2774 if (odp_actions_overflow(out)) {
2775 odp_actions_init(out);
2776 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
2777 }
2778 return 0;
2779 }
2780
2781 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
2782 * error message code (composed with ofp_mkerr()) for the caller to propagate
2783 * upward. Otherwise, returns 0.
2784 *
2785 * 'oh' is used to make log messages more informative. */
2786 static int
2787 reject_slave_controller(struct ofconn *ofconn, const struct ofp_header *oh)
2788 {
2789 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
2790 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
2791 char *type_name;
2792
2793 type_name = ofp_message_type_to_string(oh->type);
2794 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
2795 type_name);
2796 free(type_name);
2797
2798 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
2799 } else {
2800 return 0;
2801 }
2802 }
2803
2804 static int
2805 handle_packet_out(struct ofproto *p, struct ofconn *ofconn,
2806 struct ofp_header *oh)
2807 {
2808 struct ofp_packet_out *opo;
2809 struct ofpbuf payload, *buffer;
2810 struct odp_actions actions;
2811 int n_actions;
2812 uint16_t in_port;
2813 flow_t flow;
2814 int error;
2815
2816 error = reject_slave_controller(ofconn, oh);
2817 if (error) {
2818 return error;
2819 }
2820
2821 error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports);
2822 if (error) {
2823 return error;
2824 }
2825 opo = (struct ofp_packet_out *) oh;
2826
2827 COVERAGE_INC(ofproto_packet_out);
2828 if (opo->buffer_id != htonl(UINT32_MAX)) {
2829 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
2830 &buffer, &in_port);
2831 if (error || !buffer) {
2832 return error;
2833 }
2834 payload = *buffer;
2835 } else {
2836 buffer = NULL;
2837 }
2838
2839 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow);
2840 error = xlate_actions((const union ofp_action *) opo->actions, n_actions,
2841 &flow, p, &payload, &actions, NULL, NULL, NULL);
2842 if (error) {
2843 return error;
2844 }
2845
2846 dpif_execute(p->dpif, flow.in_port, actions.actions, actions.n_actions,
2847 &payload);
2848 ofpbuf_delete(buffer);
2849
2850 return 0;
2851 }
2852
2853 static void
2854 update_port_config(struct ofproto *p, struct ofport *port,
2855 uint32_t config, uint32_t mask)
2856 {
2857 mask &= config ^ port->opp.config;
2858 if (mask & OFPPC_PORT_DOWN) {
2859 if (config & OFPPC_PORT_DOWN) {
2860 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
2861 } else {
2862 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
2863 }
2864 }
2865 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | OFPPC_NO_FWD)
2866 if (mask & REVALIDATE_BITS) {
2867 COVERAGE_INC(ofproto_costly_flags);
2868 port->opp.config ^= mask & REVALIDATE_BITS;
2869 p->need_revalidate = true;
2870 }
2871 #undef REVALIDATE_BITS
2872 if (mask & OFPPC_NO_FLOOD) {
2873 port->opp.config ^= OFPPC_NO_FLOOD;
2874 refresh_port_groups(p);
2875 }
2876 if (mask & OFPPC_NO_PACKET_IN) {
2877 port->opp.config ^= OFPPC_NO_PACKET_IN;
2878 }
2879 }
2880
2881 static int
2882 handle_port_mod(struct ofproto *p, struct ofconn *ofconn,
2883 struct ofp_header *oh)
2884 {
2885 const struct ofp_port_mod *opm;
2886 struct ofport *port;
2887 int error;
2888
2889 error = reject_slave_controller(ofconn, oh);
2890 if (error) {
2891 return error;
2892 }
2893 error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm);
2894 if (error) {
2895 return error;
2896 }
2897 opm = (struct ofp_port_mod *) oh;
2898
2899 port = port_array_get(&p->ports,
2900 ofp_port_to_odp_port(ntohs(opm->port_no)));
2901 if (!port) {
2902 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
2903 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
2904 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
2905 } else {
2906 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
2907 if (opm->advertise) {
2908 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
2909 }
2910 }
2911 return 0;
2912 }
2913
2914 static struct ofpbuf *
2915 make_stats_reply(uint32_t xid, uint16_t type, size_t body_len)
2916 {
2917 struct ofp_stats_reply *osr;
2918 struct ofpbuf *msg;
2919
2920 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
2921 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
2922 osr->type = type;
2923 osr->flags = htons(0);
2924 return msg;
2925 }
2926
2927 static struct ofpbuf *
2928 start_stats_reply(const struct ofp_stats_request *request, size_t body_len)
2929 {
2930 return make_stats_reply(request->header.xid, request->type, body_len);
2931 }
2932
2933 static void *
2934 append_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp)
2935 {
2936 struct ofpbuf *msg = *msgp;
2937 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
2938 if (nbytes + msg->size > UINT16_MAX) {
2939 struct ofp_stats_reply *reply = msg->data;
2940 reply->flags = htons(OFPSF_REPLY_MORE);
2941 *msgp = make_stats_reply(reply->header.xid, reply->type, nbytes);
2942 queue_tx(msg, ofconn, ofconn->reply_counter);
2943 }
2944 return ofpbuf_put_uninit(*msgp, nbytes);
2945 }
2946
2947 static int
2948 handle_desc_stats_request(struct ofproto *p, struct ofconn *ofconn,
2949 struct ofp_stats_request *request)
2950 {
2951 struct ofp_desc_stats *ods;
2952 struct ofpbuf *msg;
2953
2954 msg = start_stats_reply(request, sizeof *ods);
2955 ods = append_stats_reply(sizeof *ods, ofconn, &msg);
2956 memset(ods, 0, sizeof *ods);
2957 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
2958 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
2959 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
2960 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
2961 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
2962 queue_tx(msg, ofconn, ofconn->reply_counter);
2963
2964 return 0;
2965 }
2966
2967 static void
2968 count_subrules(struct cls_rule *cls_rule, void *n_subrules_)
2969 {
2970 struct rule *rule = rule_from_cls_rule(cls_rule);
2971 int *n_subrules = n_subrules_;
2972
2973 if (rule->super) {
2974 (*n_subrules)++;
2975 }
2976 }
2977
2978 static int
2979 handle_table_stats_request(struct ofproto *p, struct ofconn *ofconn,
2980 struct ofp_stats_request *request)
2981 {
2982 struct ofp_table_stats *ots;
2983 struct ofpbuf *msg;
2984 struct odp_stats dpstats;
2985 int n_exact, n_subrules, n_wild;
2986
2987 msg = start_stats_reply(request, sizeof *ots * 2);
2988
2989 /* Count rules of various kinds. */
2990 n_subrules = 0;
2991 classifier_for_each(&p->cls, CLS_INC_EXACT, count_subrules, &n_subrules);
2992 n_exact = classifier_count_exact(&p->cls) - n_subrules;
2993 n_wild = classifier_count(&p->cls) - classifier_count_exact(&p->cls);
2994
2995 /* Hash table. */
2996 dpif_get_dp_stats(p->dpif, &dpstats);
2997 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
2998 memset(ots, 0, sizeof *ots);
2999 ots->table_id = TABLEID_HASH;
3000 strcpy(ots->name, "hash");
3001 ots->wildcards = htonl(0);
3002 ots->max_entries = htonl(dpstats.max_capacity);
3003 ots->active_count = htonl(n_exact);
3004 ots->lookup_count = htonll(dpstats.n_frags + dpstats.n_hit +
3005 dpstats.n_missed);
3006 ots->matched_count = htonll(dpstats.n_hit); /* XXX */
3007
3008 /* Classifier table. */
3009 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
3010 memset(ots, 0, sizeof *ots);
3011 ots->table_id = TABLEID_CLASSIFIER;
3012 strcpy(ots->name, "classifier");
3013 ots->wildcards = p->tun_id_from_cookie ? htonl(OVSFW_ALL)
3014 : htonl(OFPFW_ALL);
3015 ots->max_entries = htonl(65536);
3016 ots->active_count = htonl(n_wild);
3017 ots->lookup_count = htonll(0); /* XXX */
3018 ots->matched_count = htonll(0); /* XXX */
3019
3020 queue_tx(msg, ofconn, ofconn->reply_counter);
3021 return 0;
3022 }
3023
3024 static void
3025 append_port_stat(struct ofport *port, uint16_t port_no, struct ofconn *ofconn,
3026 struct ofpbuf **msgp)
3027 {
3028 struct netdev_stats stats;
3029 struct ofp_port_stats *ops;
3030
3031 /* Intentionally ignore return value, since errors will set
3032 * 'stats' to all-1s, which is correct for OpenFlow, and
3033 * netdev_get_stats() will log errors. */
3034 netdev_get_stats(port->netdev, &stats);
3035
3036 ops = append_stats_reply(sizeof *ops, ofconn, msgp);
3037 ops->port_no = htons(odp_port_to_ofp_port(port_no));
3038 memset(ops->pad, 0, sizeof ops->pad);
3039 ops->rx_packets = htonll(stats.rx_packets);
3040 ops->tx_packets = htonll(stats.tx_packets);
3041 ops->rx_bytes = htonll(stats.rx_bytes);
3042 ops->tx_bytes = htonll(stats.tx_bytes);
3043 ops->rx_dropped = htonll(stats.rx_dropped);
3044 ops->tx_dropped = htonll(stats.tx_dropped);
3045 ops->rx_errors = htonll(stats.rx_errors);
3046 ops->tx_errors = htonll(stats.tx_errors);
3047 ops->rx_frame_err = htonll(stats.rx_frame_errors);
3048 ops->rx_over_err = htonll(stats.rx_over_errors);
3049 ops->rx_crc_err = htonll(stats.rx_crc_errors);
3050 ops->collisions = htonll(stats.collisions);
3051 }
3052
3053 static int
3054 handle_port_stats_request(struct ofproto *p, struct ofconn *ofconn,
3055 struct ofp_stats_request *osr,
3056 size_t arg_size)
3057 {
3058 struct ofp_port_stats_request *psr;
3059 struct ofp_port_stats *ops;
3060 struct ofpbuf *msg;
3061 struct ofport *port;
3062 unsigned int port_no;
3063
3064 if (arg_size != sizeof *psr) {
3065 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3066 }
3067 psr = (struct ofp_port_stats_request *) osr->body;
3068
3069 msg = start_stats_reply(osr, sizeof *ops * 16);
3070 if (psr->port_no != htons(OFPP_NONE)) {
3071 port = port_array_get(&p->ports,
3072 ofp_port_to_odp_port(ntohs(psr->port_no)));
3073 if (port) {
3074 append_port_stat(port, ntohs(psr->port_no), ofconn, &msg);
3075 }
3076 } else {
3077 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
3078 append_port_stat(port, port_no, ofconn, &msg);
3079 }
3080 }
3081
3082 queue_tx(msg, ofconn, ofconn->reply_counter);
3083 return 0;
3084 }
3085
3086 struct flow_stats_cbdata {
3087 struct ofproto *ofproto;
3088 struct ofconn *ofconn;
3089 uint16_t out_port;
3090 struct ofpbuf *msg;
3091 };
3092
3093 /* Obtains statistic counters for 'rule' within 'p' and stores them into
3094 * '*packet_countp' and '*byte_countp'. If 'rule' is a wildcarded rule, the
3095 * returned statistic include statistics for all of 'rule''s subrules. */
3096 static void
3097 query_stats(struct ofproto *p, struct rule *rule,
3098 uint64_t *packet_countp, uint64_t *byte_countp)
3099 {
3100 uint64_t packet_count, byte_count;
3101 struct rule *subrule;
3102 struct odp_flow *odp_flows;
3103 size_t n_odp_flows;
3104
3105 /* Start from historical data for 'rule' itself that are no longer tracked
3106 * by the datapath. This counts, for example, subrules that have
3107 * expired. */
3108 packet_count = rule->packet_count;
3109 byte_count = rule->byte_count;
3110
3111 /* Prepare to ask the datapath for statistics on 'rule', or if it is
3112 * wildcarded then on all of its subrules.
3113 *
3114 * Also, add any statistics that are not tracked by the datapath for each
3115 * subrule. This includes, for example, statistics for packets that were
3116 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3117 * to a flow. */
3118 n_odp_flows = rule->cr.wc.wildcards ? list_size(&rule->list) : 1;
3119 odp_flows = xzalloc(n_odp_flows * sizeof *odp_flows);
3120 if (rule->cr.wc.wildcards) {
3121 size_t i = 0;
3122 LIST_FOR_EACH (subrule, struct rule, list, &rule->list) {
3123 odp_flows[i++].key = subrule->cr.flow;
3124 packet_count += subrule->packet_count;
3125 byte_count += subrule->byte_count;
3126 }
3127 } else {
3128 odp_flows[0].key = rule->cr.flow;
3129 }
3130
3131 /* Fetch up-to-date statistics from the datapath and add them in. */
3132 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
3133 size_t i;
3134 for (i = 0; i < n_odp_flows; i++) {
3135 struct odp_flow *odp_flow = &odp_flows[i];
3136 packet_count += odp_flow->stats.n_packets;
3137 byte_count += odp_flow->stats.n_bytes;
3138 }
3139 }
3140 free(odp_flows);
3141
3142 /* Return the stats to the caller. */
3143 *packet_countp = packet_count;
3144 *byte_countp = byte_count;
3145 }
3146
3147 static void
3148 flow_stats_cb(struct cls_rule *rule_, void *cbdata_)
3149 {
3150 struct rule *rule = rule_from_cls_rule(rule_);
3151 struct flow_stats_cbdata *cbdata = cbdata_;
3152 struct ofp_flow_stats *ofs;
3153 uint64_t packet_count, byte_count;
3154 size_t act_len, len;
3155 long long int tdiff = time_msec() - rule->created;
3156 uint32_t sec = tdiff / 1000;
3157 uint32_t msec = tdiff - (sec * 1000);
3158
3159 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3160 return;
3161 }
3162
3163 act_len = sizeof *rule->actions * rule->n_actions;
3164 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3165
3166 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3167
3168 ofs = append_stats_reply(len, cbdata->ofconn, &cbdata->msg);
3169 ofs->length = htons(len);
3170 ofs->table_id = rule->cr.wc.wildcards ? TABLEID_CLASSIFIER : TABLEID_HASH;
3171 ofs->pad = 0;
3172 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3173 cbdata->ofproto->tun_id_from_cookie, &ofs->match);
3174 ofs->duration_sec = htonl(sec);
3175 ofs->duration_nsec = htonl(msec * 1000000);
3176 ofs->cookie = rule->flow_cookie;
3177 ofs->priority = htons(rule->cr.priority);
3178 ofs->idle_timeout = htons(rule->idle_timeout);
3179 ofs->hard_timeout = htons(rule->hard_timeout);
3180 memset(ofs->pad2, 0, sizeof ofs->pad2);
3181 ofs->packet_count = htonll(packet_count);
3182 ofs->byte_count = htonll(byte_count);
3183 memcpy(ofs->actions, rule->actions, act_len);
3184 }
3185
3186 static int
3187 table_id_to_include(uint8_t table_id)
3188 {
3189 return (table_id == TABLEID_HASH ? CLS_INC_EXACT
3190 : table_id == TABLEID_CLASSIFIER ? CLS_INC_WILD
3191 : table_id == 0xff ? CLS_INC_ALL
3192 : 0);
3193 }
3194
3195 static int
3196 handle_flow_stats_request(struct ofproto *p, struct ofconn *ofconn,
3197 const struct ofp_stats_request *osr,
3198 size_t arg_size)
3199 {
3200 struct ofp_flow_stats_request *fsr;
3201 struct flow_stats_cbdata cbdata;
3202 struct cls_rule target;
3203
3204 if (arg_size != sizeof *fsr) {
3205 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3206 }
3207 fsr = (struct ofp_flow_stats_request *) osr->body;
3208
3209 COVERAGE_INC(ofproto_flows_req);
3210 cbdata.ofproto = p;
3211 cbdata.ofconn = ofconn;
3212 cbdata.out_port = fsr->out_port;
3213 cbdata.msg = start_stats_reply(osr, 1024);
3214 cls_rule_from_match(&fsr->match, 0, false, 0, &target);
3215 classifier_for_each_match(&p->cls, &target,
3216 table_id_to_include(fsr->table_id),
3217 flow_stats_cb, &cbdata);
3218 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3219 return 0;
3220 }
3221
3222 struct flow_stats_ds_cbdata {
3223 struct ofproto *ofproto;
3224 struct ds *results;
3225 };
3226
3227 static void
3228 flow_stats_ds_cb(struct cls_rule *rule_, void *cbdata_)
3229 {
3230 struct rule *rule = rule_from_cls_rule(rule_);
3231 struct flow_stats_ds_cbdata *cbdata = cbdata_;
3232 struct ds *results = cbdata->results;
3233 struct ofp_match match;
3234 uint64_t packet_count, byte_count;
3235 size_t act_len = sizeof *rule->actions * rule->n_actions;
3236
3237 /* Don't report on subrules. */
3238 if (rule->super != NULL) {
3239 return;
3240 }
3241
3242 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3243 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3244 cbdata->ofproto->tun_id_from_cookie, &match);
3245
3246 ds_put_format(results, "duration=%llds, ",
3247 (time_msec() - rule->created) / 1000);
3248 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3249 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3250 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3251 ofp_print_match(results, &match, true);
3252 ofp_print_actions(results, &rule->actions->header, act_len);
3253 ds_put_cstr(results, "\n");
3254 }
3255
3256 /* Adds a pretty-printed description of all flows to 'results', including
3257 * those marked hidden by secchan (e.g., by in-band control). */
3258 void
3259 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3260 {
3261 struct ofp_match match;
3262 struct cls_rule target;
3263 struct flow_stats_ds_cbdata cbdata;
3264
3265 memset(&match, 0, sizeof match);
3266 match.wildcards = htonl(OVSFW_ALL);
3267
3268 cbdata.ofproto = p;
3269 cbdata.results = results;
3270
3271 cls_rule_from_match(&match, 0, false, 0, &target);
3272 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3273 flow_stats_ds_cb, &cbdata);
3274 }
3275
3276 struct aggregate_stats_cbdata {
3277 struct ofproto *ofproto;
3278 uint16_t out_port;
3279 uint64_t packet_count;
3280 uint64_t byte_count;
3281 uint32_t n_flows;
3282 };
3283
3284 static void
3285 aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_)
3286 {
3287 struct rule *rule = rule_from_cls_rule(rule_);
3288 struct aggregate_stats_cbdata *cbdata = cbdata_;
3289 uint64_t packet_count, byte_count;
3290
3291 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3292 return;
3293 }
3294
3295 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3296
3297 cbdata->packet_count += packet_count;
3298 cbdata->byte_count += byte_count;
3299 cbdata->n_flows++;
3300 }
3301
3302 static int
3303 handle_aggregate_stats_request(struct ofproto *p, struct ofconn *ofconn,
3304 const struct ofp_stats_request *osr,
3305 size_t arg_size)
3306 {
3307 struct ofp_aggregate_stats_request *asr;
3308 struct ofp_aggregate_stats_reply *reply;
3309 struct aggregate_stats_cbdata cbdata;
3310 struct cls_rule target;
3311 struct ofpbuf *msg;
3312
3313 if (arg_size != sizeof *asr) {
3314 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3315 }
3316 asr = (struct ofp_aggregate_stats_request *) osr->body;
3317
3318 COVERAGE_INC(ofproto_agg_request);
3319 cbdata.ofproto = p;
3320 cbdata.out_port = asr->out_port;
3321 cbdata.packet_count = 0;
3322 cbdata.byte_count = 0;
3323 cbdata.n_flows = 0;
3324 cls_rule_from_match(&asr->match, 0, false, 0, &target);
3325 classifier_for_each_match(&p->cls, &target,
3326 table_id_to_include(asr->table_id),
3327 aggregate_stats_cb, &cbdata);
3328
3329 msg = start_stats_reply(osr, sizeof *reply);
3330 reply = append_stats_reply(sizeof *reply, ofconn, &msg);
3331 reply->flow_count = htonl(cbdata.n_flows);
3332 reply->packet_count = htonll(cbdata.packet_count);
3333 reply->byte_count = htonll(cbdata.byte_count);
3334 queue_tx(msg, ofconn, ofconn->reply_counter);
3335 return 0;
3336 }
3337
3338 struct queue_stats_cbdata {
3339 struct ofconn *ofconn;
3340 struct ofpbuf *msg;
3341 uint16_t port_no;
3342 };
3343
3344 static void
3345 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3346 const struct netdev_queue_stats *stats)
3347 {
3348 struct ofp_queue_stats *reply;
3349
3350 reply = append_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3351 reply->port_no = htons(cbdata->port_no);
3352 memset(reply->pad, 0, sizeof reply->pad);
3353 reply->queue_id = htonl(queue_id);
3354 reply->tx_bytes = htonll(stats->tx_bytes);
3355 reply->tx_packets = htonll(stats->tx_packets);
3356 reply->tx_errors = htonll(stats->tx_errors);
3357 }
3358
3359 static void
3360 handle_queue_stats_dump_cb(uint32_t queue_id,
3361 struct netdev_queue_stats *stats,
3362 void *cbdata_)
3363 {
3364 struct queue_stats_cbdata *cbdata = cbdata_;
3365
3366 put_queue_stats(cbdata, queue_id, stats);
3367 }
3368
3369 static void
3370 handle_queue_stats_for_port(struct ofport *port, uint16_t port_no,
3371 uint32_t queue_id,
3372 struct queue_stats_cbdata *cbdata)
3373 {
3374 cbdata->port_no = port_no;
3375 if (queue_id == OFPQ_ALL) {
3376 netdev_dump_queue_stats(port->netdev,
3377 handle_queue_stats_dump_cb, cbdata);
3378 } else {
3379 struct netdev_queue_stats stats;
3380
3381 netdev_get_queue_stats(port->netdev, queue_id, &stats);
3382 put_queue_stats(cbdata, queue_id, &stats);
3383 }
3384 }
3385
3386 static int
3387 handle_queue_stats_request(struct ofproto *ofproto, struct ofconn *ofconn,
3388 const struct ofp_stats_request *osr,
3389 size_t arg_size)
3390 {
3391 struct ofp_queue_stats_request *qsr;
3392 struct queue_stats_cbdata cbdata;
3393 struct ofport *port;
3394 unsigned int port_no;
3395 uint32_t queue_id;
3396
3397 if (arg_size != sizeof *qsr) {
3398 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3399 }
3400 qsr = (struct ofp_queue_stats_request *) osr->body;
3401
3402 COVERAGE_INC(ofproto_queue_req);
3403
3404 cbdata.ofconn = ofconn;
3405 cbdata.msg = start_stats_reply(osr, 128);
3406
3407 port_no = ntohs(qsr->port_no);
3408 queue_id = ntohl(qsr->queue_id);
3409 if (port_no == OFPP_ALL) {
3410 PORT_ARRAY_FOR_EACH (port, &ofproto->ports, port_no) {
3411 handle_queue_stats_for_port(port, port_no, queue_id, &cbdata);
3412 }
3413 } else if (port_no < ofproto->max_ports) {
3414 port = port_array_get(&ofproto->ports, port_no);
3415 if (port) {
3416 handle_queue_stats_for_port(port, port_no, queue_id, &cbdata);
3417 }
3418 } else {
3419 ofpbuf_delete(cbdata.msg);
3420 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3421 }
3422 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3423
3424 return 0;
3425 }
3426
3427 static int
3428 handle_stats_request(struct ofproto *p, struct ofconn *ofconn,
3429 struct ofp_header *oh)
3430 {
3431 struct ofp_stats_request *osr;
3432 size_t arg_size;
3433 int error;
3434
3435 error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr,
3436 1, &arg_size);
3437 if (error) {
3438 return error;
3439 }
3440 osr = (struct ofp_stats_request *) oh;
3441
3442 switch (ntohs(osr->type)) {
3443 case OFPST_DESC:
3444 return handle_desc_stats_request(p, ofconn, osr);
3445
3446 case OFPST_FLOW:
3447 return handle_flow_stats_request(p, ofconn, osr, arg_size);
3448
3449 case OFPST_AGGREGATE:
3450 return handle_aggregate_stats_request(p, ofconn, osr, arg_size);
3451
3452 case OFPST_TABLE:
3453 return handle_table_stats_request(p, ofconn, osr);
3454
3455 case OFPST_PORT:
3456 return handle_port_stats_request(p, ofconn, osr, arg_size);
3457
3458 case OFPST_QUEUE:
3459 return handle_queue_stats_request(p, ofconn, osr, arg_size);
3460
3461 case OFPST_VENDOR:
3462 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3463
3464 default:
3465 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
3466 }
3467 }
3468
3469 static long long int
3470 msec_from_nsec(uint64_t sec, uint32_t nsec)
3471 {
3472 return !sec ? 0 : sec * 1000 + nsec / 1000000;
3473 }
3474
3475 static void
3476 update_time(struct ofproto *ofproto, struct rule *rule,
3477 const struct odp_flow_stats *stats)
3478 {
3479 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
3480 if (used > rule->used) {
3481 rule->used = used;
3482 if (rule->super && used > rule->super->used) {
3483 rule->super->used = used;
3484 }
3485 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, used);
3486 }
3487 }
3488
3489 static void
3490 update_stats(struct ofproto *ofproto, struct rule *rule,
3491 const struct odp_flow_stats *stats)
3492 {
3493 if (stats->n_packets) {
3494 update_time(ofproto, rule, stats);
3495 rule->packet_count += stats->n_packets;
3496 rule->byte_count += stats->n_bytes;
3497 netflow_flow_update_flags(&rule->nf_flow, stats->tcp_flags);
3498 }
3499 }
3500
3501 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3502 * in which no matching flow already exists in the flow table.
3503 *
3504 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3505 * ofp_actions, to 'p''s flow table. Returns 0 on success or an OpenFlow error
3506 * code as encoded by ofp_mkerr() on failure.
3507 *
3508 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3509 * if any. */
3510 static int
3511 add_flow(struct ofproto *p, struct ofconn *ofconn,
3512 const struct ofp_flow_mod *ofm, size_t n_actions)
3513 {
3514 struct ofpbuf *packet;
3515 struct rule *rule;
3516 uint16_t in_port;
3517 int error;
3518
3519 if (ofm->flags & htons(OFPFF_CHECK_OVERLAP)) {
3520 flow_t flow;
3521 uint32_t wildcards;
3522
3523 flow_from_match(&ofm->match, p->tun_id_from_cookie, ofm->cookie,
3524 &flow, &wildcards);
3525 if (classifier_rule_overlaps(&p->cls, &flow, wildcards,
3526 ntohs(ofm->priority))) {
3527 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3528 }
3529 }
3530
3531 rule = rule_create(p, NULL, (const union ofp_action *) ofm->actions,
3532 n_actions, ntohs(ofm->idle_timeout),
3533 ntohs(ofm->hard_timeout), ofm->cookie,
3534 ofm->flags & htons(OFPFF_SEND_FLOW_REM));
3535 cls_rule_from_match(&ofm->match, ntohs(ofm->priority),
3536 p->tun_id_from_cookie, ofm->cookie, &rule->cr);
3537
3538 error = 0;
3539 if (ofm->buffer_id != htonl(UINT32_MAX)) {
3540 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
3541 &packet, &in_port);
3542 } else {
3543 packet = NULL;
3544 in_port = UINT16_MAX;
3545 }
3546
3547 rule_insert(p, rule, packet, in_port);
3548 ofpbuf_delete(packet);
3549 return error;
3550 }
3551
3552 static struct rule *
3553 find_flow_strict(struct ofproto *p, const struct ofp_flow_mod *ofm)
3554 {
3555 uint32_t wildcards;
3556 flow_t flow;
3557
3558 flow_from_match(&ofm->match, p->tun_id_from_cookie, ofm->cookie,
3559 &flow, &wildcards);
3560 return rule_from_cls_rule(classifier_find_rule_exactly(
3561 &p->cls, &flow, wildcards,
3562 ntohs(ofm->priority)));
3563 }
3564
3565 static int
3566 send_buffered_packet(struct ofproto *ofproto, struct ofconn *ofconn,
3567 struct rule *rule, const struct ofp_flow_mod *ofm)
3568 {
3569 struct ofpbuf *packet;
3570 uint16_t in_port;
3571 flow_t flow;
3572 int error;
3573
3574 if (ofm->buffer_id == htonl(UINT32_MAX)) {
3575 return 0;
3576 }
3577
3578 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
3579 &packet, &in_port);
3580 if (error) {
3581 return error;
3582 }
3583
3584 flow_extract(packet, 0, in_port, &flow);
3585 rule_execute(ofproto, rule, packet, &flow);
3586 ofpbuf_delete(packet);
3587
3588 return 0;
3589 }
3590 \f
3591 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3592
3593 struct modify_flows_cbdata {
3594 struct ofproto *ofproto;
3595 const struct ofp_flow_mod *ofm;
3596 size_t n_actions;
3597 struct rule *match;
3598 };
3599
3600 static int modify_flow(struct ofproto *, const struct ofp_flow_mod *,
3601 size_t n_actions, struct rule *);
3602 static void modify_flows_cb(struct cls_rule *, void *cbdata_);
3603
3604 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3605 * encoded by ofp_mkerr() on failure.
3606 *
3607 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3608 * if any. */
3609 static int
3610 modify_flows_loose(struct ofproto *p, struct ofconn *ofconn,
3611 const struct ofp_flow_mod *ofm, size_t n_actions)
3612 {
3613 struct modify_flows_cbdata cbdata;
3614 struct cls_rule target;
3615
3616 cbdata.ofproto = p;
3617 cbdata.ofm = ofm;
3618 cbdata.n_actions = n_actions;
3619 cbdata.match = NULL;
3620
3621 cls_rule_from_match(&ofm->match, 0, p->tun_id_from_cookie, ofm->cookie,
3622 &target);
3623
3624 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3625 modify_flows_cb, &cbdata);
3626 if (cbdata.match) {
3627 /* This credits the packet to whichever flow happened to happened to
3628 * match last. That's weird. Maybe we should do a lookup for the
3629 * flow that actually matches the packet? Who knows. */
3630 send_buffered_packet(p, ofconn, cbdata.match, ofm);
3631 return 0;
3632 } else {
3633 return add_flow(p, ofconn, ofm, n_actions);
3634 }
3635 }
3636
3637 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
3638 * code as encoded by ofp_mkerr() on failure.
3639 *
3640 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3641 * if any. */
3642 static int
3643 modify_flow_strict(struct ofproto *p, struct ofconn *ofconn,
3644 struct ofp_flow_mod *ofm, size_t n_actions)
3645 {
3646 struct rule *rule = find_flow_strict(p, ofm);
3647 if (rule && !rule_is_hidden(rule)) {
3648 modify_flow(p, ofm, n_actions, rule);
3649 return send_buffered_packet(p, ofconn, rule, ofm);
3650 } else {
3651 return add_flow(p, ofconn, ofm, n_actions);
3652 }
3653 }
3654
3655 /* Callback for modify_flows_loose(). */
3656 static void
3657 modify_flows_cb(struct cls_rule *rule_, void *cbdata_)
3658 {
3659 struct rule *rule = rule_from_cls_rule(rule_);
3660 struct modify_flows_cbdata *cbdata = cbdata_;
3661
3662 if (!rule_is_hidden(rule)) {
3663 cbdata->match = rule;
3664 modify_flow(cbdata->ofproto, cbdata->ofm, cbdata->n_actions, rule);
3665 }
3666 }
3667
3668 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
3669 * been identified as a flow in 'p''s flow table to be modified, by changing
3670 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
3671 * ofp_action[] structures). */
3672 static int
3673 modify_flow(struct ofproto *p, const struct ofp_flow_mod *ofm,
3674 size_t n_actions, struct rule *rule)
3675 {
3676 size_t actions_len = n_actions * sizeof *rule->actions;
3677
3678 rule->flow_cookie = ofm->cookie;
3679
3680 /* If the actions are the same, do nothing. */
3681 if (n_actions == rule->n_actions
3682 && !memcmp(ofm->actions, rule->actions, actions_len))
3683 {
3684 return 0;
3685 }
3686
3687 /* Replace actions. */
3688 free(rule->actions);
3689 rule->actions = xmemdup(ofm->actions, actions_len);
3690 rule->n_actions = n_actions;
3691
3692 /* Make sure that the datapath gets updated properly. */
3693 if (rule->cr.wc.wildcards) {
3694 COVERAGE_INC(ofproto_mod_wc_flow);
3695 p->need_revalidate = true;
3696 } else {
3697 rule_update_actions(p, rule);
3698 }
3699
3700 return 0;
3701 }
3702 \f
3703 /* OFPFC_DELETE implementation. */
3704
3705 struct delete_flows_cbdata {
3706 struct ofproto *ofproto;
3707 uint16_t out_port;
3708 };
3709
3710 static void delete_flows_cb(struct cls_rule *, void *cbdata_);
3711 static void delete_flow(struct ofproto *, struct rule *, uint16_t out_port);
3712
3713 /* Implements OFPFC_DELETE. */
3714 static void
3715 delete_flows_loose(struct ofproto *p, const struct ofp_flow_mod *ofm)
3716 {
3717 struct delete_flows_cbdata cbdata;
3718 struct cls_rule target;
3719
3720 cbdata.ofproto = p;
3721 cbdata.out_port = ofm->out_port;
3722
3723 cls_rule_from_match(&ofm->match, 0, p->tun_id_from_cookie, ofm->cookie,
3724 &target);
3725
3726 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3727 delete_flows_cb, &cbdata);
3728 }
3729
3730 /* Implements OFPFC_DELETE_STRICT. */
3731 static void
3732 delete_flow_strict(struct ofproto *p, struct ofp_flow_mod *ofm)
3733 {
3734 struct rule *rule = find_flow_strict(p, ofm);
3735 if (rule) {
3736 delete_flow(p, rule, ofm->out_port);
3737 }
3738 }
3739
3740 /* Callback for delete_flows_loose(). */
3741 static void
3742 delete_flows_cb(struct cls_rule *rule_, void *cbdata_)
3743 {
3744 struct rule *rule = rule_from_cls_rule(rule_);
3745 struct delete_flows_cbdata *cbdata = cbdata_;
3746
3747 delete_flow(cbdata->ofproto, rule, cbdata->out_port);
3748 }
3749
3750 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
3751 * been identified as a flow to delete from 'p''s flow table, by deleting the
3752 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
3753 * controller.
3754 *
3755 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
3756 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
3757 * specified 'out_port'. */
3758 static void
3759 delete_flow(struct ofproto *p, struct rule *rule, uint16_t out_port)
3760 {
3761 if (rule_is_hidden(rule)) {
3762 return;
3763 }
3764
3765 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
3766 return;
3767 }
3768
3769 send_flow_removed(p, rule, time_msec(), OFPRR_DELETE);
3770 rule_remove(p, rule);
3771 }
3772 \f
3773 static int
3774 handle_flow_mod(struct ofproto *p, struct ofconn *ofconn,
3775 struct ofp_flow_mod *ofm)
3776 {
3777 struct ofp_match orig_match;
3778 size_t n_actions;
3779 int error;
3780
3781 error = reject_slave_controller(ofconn, &ofm->header);
3782 if (error) {
3783 return error;
3784 }
3785 error = check_ofp_message_array(&ofm->header, OFPT_FLOW_MOD, sizeof *ofm,
3786 sizeof *ofm->actions, &n_actions);
3787 if (error) {
3788 return error;
3789 }
3790
3791 /* We do not support the emergency flow cache. It will hopefully
3792 * get dropped from OpenFlow in the near future. */
3793 if (ofm->flags & htons(OFPFF_EMERG)) {
3794 /* There isn't a good fit for an error code, so just state that the
3795 * flow table is full. */
3796 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
3797 }
3798
3799 /* Normalize ofp->match. If normalization actually changes anything, then
3800 * log the differences. */
3801 ofm->match.pad1[0] = ofm->match.pad2[0] = 0;
3802 orig_match = ofm->match;
3803 normalize_match(&ofm->match);
3804 if (memcmp(&ofm->match, &orig_match, sizeof orig_match)) {
3805 static struct vlog_rate_limit normal_rl = VLOG_RATE_LIMIT_INIT(1, 1);
3806 if (!VLOG_DROP_INFO(&normal_rl)) {
3807 char *old = ofp_match_to_literal_string(&orig_match);
3808 char *new = ofp_match_to_literal_string(&ofm->match);
3809 VLOG_INFO("%s: normalization changed ofp_match, details:",
3810 rconn_get_name(ofconn->rconn));
3811 VLOG_INFO(" pre: %s", old);
3812 VLOG_INFO("post: %s", new);
3813 free(old);
3814 free(new);
3815 }
3816 }
3817
3818 if (!ofm->match.wildcards) {
3819 ofm->priority = htons(UINT16_MAX);
3820 }
3821
3822 error = validate_actions((const union ofp_action *) ofm->actions,
3823 n_actions, p->max_ports);
3824 if (error) {
3825 return error;
3826 }
3827
3828 switch (ntohs(ofm->command)) {
3829 case OFPFC_ADD:
3830 return add_flow(p, ofconn, ofm, n_actions);
3831
3832 case OFPFC_MODIFY:
3833 return modify_flows_loose(p, ofconn, ofm, n_actions);
3834
3835 case OFPFC_MODIFY_STRICT:
3836 return modify_flow_strict(p, ofconn, ofm, n_actions);
3837
3838 case OFPFC_DELETE:
3839 delete_flows_loose(p, ofm);
3840 return 0;
3841
3842 case OFPFC_DELETE_STRICT:
3843 delete_flow_strict(p, ofm);
3844 return 0;
3845
3846 default:
3847 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
3848 }
3849 }
3850
3851 static int
3852 handle_tun_id_from_cookie(struct ofproto *p, struct nxt_tun_id_cookie *msg)
3853 {
3854 int error;
3855
3856 error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg);
3857 if (error) {
3858 return error;
3859 }
3860
3861 p->tun_id_from_cookie = !!msg->set;
3862 return 0;
3863 }
3864
3865 static int
3866 handle_role_request(struct ofproto *ofproto,
3867 struct ofconn *ofconn, struct nicira_header *msg)
3868 {
3869 struct nx_role_request *nrr;
3870 struct nx_role_request *reply;
3871 struct ofpbuf *buf;
3872 uint32_t role;
3873
3874 if (ntohs(msg->header.length) != sizeof *nrr) {
3875 VLOG_WARN_RL(&rl, "received role request of length %u (expected %zu)",
3876 ntohs(msg->header.length), sizeof *nrr);
3877 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3878 }
3879 nrr = (struct nx_role_request *) msg;
3880
3881 if (ofconn->type != OFCONN_PRIMARY) {
3882 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
3883 "connection");
3884 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3885 }
3886
3887 role = ntohl(nrr->role);
3888 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
3889 && role != NX_ROLE_SLAVE) {
3890 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
3891
3892 /* There's no good error code for this. */
3893 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
3894 }
3895
3896 if (role == NX_ROLE_MASTER) {
3897 struct ofconn *other;
3898
3899 HMAP_FOR_EACH (other, struct ofconn, hmap_node,
3900 &ofproto->controllers) {
3901 if (other->role == NX_ROLE_MASTER) {
3902 other->role = NX_ROLE_SLAVE;
3903 }
3904 }
3905 }
3906 ofconn->role = role;
3907
3908 reply = make_openflow_xid(sizeof *reply, OFPT_VENDOR, msg->header.xid,
3909 &buf);
3910 reply->nxh.vendor = htonl(NX_VENDOR_ID);
3911 reply->nxh.subtype = htonl(NXT_ROLE_REPLY);
3912 reply->role = htonl(role);
3913 queue_tx(buf, ofconn, ofconn->reply_counter);
3914
3915 return 0;
3916 }
3917
3918 static int
3919 handle_vendor(struct ofproto *p, struct ofconn *ofconn, void *msg)
3920 {
3921 struct ofp_vendor_header *ovh = msg;
3922 struct nicira_header *nh;
3923
3924 if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) {
3925 VLOG_WARN_RL(&rl, "received vendor message of length %u "
3926 "(expected at least %zu)",
3927 ntohs(ovh->header.length), sizeof(struct ofp_vendor_header));
3928 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3929 }
3930 if (ovh->vendor != htonl(NX_VENDOR_ID)) {
3931 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3932 }
3933 if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) {
3934 VLOG_WARN_RL(&rl, "received Nicira vendor message of length %u "
3935 "(expected at least %zu)",
3936 ntohs(ovh->header.length), sizeof(struct nicira_header));
3937 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3938 }
3939
3940 nh = msg;
3941 switch (ntohl(nh->subtype)) {
3942 case NXT_STATUS_REQUEST:
3943 return switch_status_handle_request(p->switch_status, ofconn->rconn,
3944 msg);
3945
3946 case NXT_TUN_ID_FROM_COOKIE:
3947 return handle_tun_id_from_cookie(p, msg);
3948
3949 case NXT_ROLE_REQUEST:
3950 return handle_role_request(p, ofconn, msg);
3951 }
3952
3953 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
3954 }
3955
3956 static int
3957 handle_barrier_request(struct ofconn *ofconn, struct ofp_header *oh)
3958 {
3959 struct ofp_header *ob;
3960 struct ofpbuf *buf;
3961
3962 /* Currently, everything executes synchronously, so we can just
3963 * immediately send the barrier reply. */
3964 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
3965 queue_tx(buf, ofconn, ofconn->reply_counter);
3966 return 0;
3967 }
3968
3969 static void
3970 handle_openflow(struct ofconn *ofconn, struct ofproto *p,
3971 struct ofpbuf *ofp_msg)
3972 {
3973 struct ofp_header *oh = ofp_msg->data;
3974 int error;
3975
3976 COVERAGE_INC(ofproto_recv_openflow);
3977 switch (oh->type) {
3978 case OFPT_ECHO_REQUEST:
3979 error = handle_echo_request(ofconn, oh);
3980 break;
3981
3982 case OFPT_ECHO_REPLY:
3983 error = 0;
3984 break;
3985
3986 case OFPT_FEATURES_REQUEST:
3987 error = handle_features_request(p, ofconn, oh);
3988 break;
3989
3990 case OFPT_GET_CONFIG_REQUEST:
3991 error = handle_get_config_request(p, ofconn, oh);
3992 break;
3993
3994 case OFPT_SET_CONFIG:
3995 error = handle_set_config(p, ofconn, ofp_msg->data);
3996 break;
3997
3998 case OFPT_PACKET_OUT:
3999 error = handle_packet_out(p, ofconn, ofp_msg->data);
4000 break;
4001
4002 case OFPT_PORT_MOD:
4003 error = handle_port_mod(p, ofconn, oh);
4004 break;
4005
4006 case OFPT_FLOW_MOD:
4007 error = handle_flow_mod(p, ofconn, ofp_msg->data);
4008 break;
4009
4010 case OFPT_STATS_REQUEST:
4011 error = handle_stats_request(p, ofconn, oh);
4012 break;
4013
4014 case OFPT_VENDOR:
4015 error = handle_vendor(p, ofconn, ofp_msg->data);
4016 break;
4017
4018 case OFPT_BARRIER_REQUEST:
4019 error = handle_barrier_request(ofconn, oh);
4020 break;
4021
4022 default:
4023 if (VLOG_IS_WARN_ENABLED()) {
4024 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4025 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4026 free(s);
4027 }
4028 error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4029 break;
4030 }
4031
4032 if (error) {
4033 send_error_oh(ofconn, ofp_msg->data, error);
4034 }
4035 }
4036 \f
4037 static void
4038 handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet)
4039 {
4040 struct odp_msg *msg = packet->data;
4041 struct rule *rule;
4042 struct ofpbuf payload;
4043 flow_t flow;
4044
4045 payload.data = msg + 1;
4046 payload.size = msg->length - sizeof *msg;
4047 flow_extract(&payload, msg->arg, msg->port, &flow);
4048
4049 /* Check with in-band control to see if this packet should be sent
4050 * to the local port regardless of the flow table. */
4051 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
4052 union odp_action action;
4053
4054 memset(&action, 0, sizeof(action));
4055 action.output.type = ODPAT_OUTPUT;
4056 action.output.port = ODPP_LOCAL;
4057 dpif_execute(p->dpif, flow.in_port, &action, 1, &payload);
4058 }
4059
4060 rule = lookup_valid_rule(p, &flow);
4061 if (!rule) {
4062 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4063 struct ofport *port = port_array_get(&p->ports, msg->port);
4064 if (port) {
4065 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4066 COVERAGE_INC(ofproto_no_packet_in);
4067 /* XXX install 'drop' flow entry */
4068 ofpbuf_delete(packet);
4069 return;
4070 }
4071 } else {
4072 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port);
4073 }
4074
4075 COVERAGE_INC(ofproto_packet_in);
4076 send_packet_in(p, packet);
4077 return;
4078 }
4079
4080 if (rule->cr.wc.wildcards) {
4081 rule = rule_create_subrule(p, rule, &flow);
4082 rule_make_actions(p, rule, packet);
4083 } else {
4084 if (!rule->may_install) {
4085 /* The rule is not installable, that is, we need to process every
4086 * packet, so process the current packet and set its actions into
4087 * 'subrule'. */
4088 rule_make_actions(p, rule, packet);
4089 } else {
4090 /* XXX revalidate rule if it needs it */
4091 }
4092 }
4093
4094 rule_execute(p, rule, &payload, &flow);
4095 rule_reinstall(p, rule);
4096
4097 if (rule->super && rule->super->cr.priority == FAIL_OPEN_PRIORITY) {
4098 /*
4099 * Extra-special case for fail-open mode.
4100 *
4101 * We are in fail-open mode and the packet matched the fail-open rule,
4102 * but we are connected to a controller too. We should send the packet
4103 * up to the controller in the hope that it will try to set up a flow
4104 * and thereby allow us to exit fail-open.
4105 *
4106 * See the top-level comment in fail-open.c for more information.
4107 */
4108 send_packet_in(p, packet);
4109 } else {
4110 ofpbuf_delete(packet);
4111 }
4112 }
4113
4114 static void
4115 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
4116 {
4117 struct odp_msg *msg = packet->data;
4118
4119 switch (msg->type) {
4120 case _ODPL_ACTION_NR:
4121 COVERAGE_INC(ofproto_ctlr_action);
4122 send_packet_in(p, packet);
4123 break;
4124
4125 case _ODPL_SFLOW_NR:
4126 if (p->sflow) {
4127 ofproto_sflow_received(p->sflow, msg);
4128 }
4129 ofpbuf_delete(packet);
4130 break;
4131
4132 case _ODPL_MISS_NR:
4133 handle_odp_miss_msg(p, packet);
4134 break;
4135
4136 default:
4137 VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32,
4138 msg->type);
4139 break;
4140 }
4141 }
4142 \f
4143 static void
4144 revalidate_cb(struct cls_rule *sub_, void *cbdata_)
4145 {
4146 struct rule *sub = rule_from_cls_rule(sub_);
4147 struct revalidate_cbdata *cbdata = cbdata_;
4148
4149 if (cbdata->revalidate_all
4150 || (cbdata->revalidate_subrules && sub->super)
4151 || (tag_set_intersects(&cbdata->revalidate_set, sub->tags))) {
4152 revalidate_rule(cbdata->ofproto, sub);
4153 }
4154 }
4155
4156 static bool
4157 revalidate_rule(struct ofproto *p, struct rule *rule)
4158 {
4159 const flow_t *flow = &rule->cr.flow;
4160
4161 COVERAGE_INC(ofproto_revalidate_rule);
4162 if (rule->super) {
4163 struct rule *super;
4164 super = rule_from_cls_rule(classifier_lookup_wild(&p->cls, flow));
4165 if (!super) {
4166 rule_remove(p, rule);
4167 return false;
4168 } else if (super != rule->super) {
4169 COVERAGE_INC(ofproto_revalidate_moved);
4170 list_remove(&rule->list);
4171 list_push_back(&super->list, &rule->list);
4172 rule->super = super;
4173 rule->hard_timeout = super->hard_timeout;
4174 rule->idle_timeout = super->idle_timeout;
4175 rule->created = super->created;
4176 rule->used = 0;
4177 }
4178 }
4179
4180 rule_update_actions(p, rule);
4181 return true;
4182 }
4183
4184 static struct ofpbuf *
4185 compose_flow_removed(struct ofproto *p, const struct rule *rule,
4186 long long int now, uint8_t reason)
4187 {
4188 struct ofp_flow_removed *ofr;
4189 struct ofpbuf *buf;
4190 long long int tdiff = now - rule->created;
4191 uint32_t sec = tdiff / 1000;
4192 uint32_t msec = tdiff - (sec * 1000);
4193
4194 ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf);
4195 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, p->tun_id_from_cookie,
4196 &ofr->match);
4197 ofr->cookie = rule->flow_cookie;
4198 ofr->priority = htons(rule->cr.priority);
4199 ofr->reason = reason;
4200 ofr->duration_sec = htonl(sec);
4201 ofr->duration_nsec = htonl(msec * 1000000);
4202 ofr->idle_timeout = htons(rule->idle_timeout);
4203 ofr->packet_count = htonll(rule->packet_count);
4204 ofr->byte_count = htonll(rule->byte_count);
4205
4206 return buf;
4207 }
4208
4209 static void
4210 uninstall_idle_flow(struct ofproto *ofproto, struct rule *rule)
4211 {
4212 assert(rule->installed);
4213 assert(!rule->cr.wc.wildcards);
4214
4215 if (rule->super) {
4216 rule_remove(ofproto, rule);
4217 } else {
4218 rule_uninstall(ofproto, rule);
4219 }
4220 }
4221
4222 static void
4223 send_flow_removed(struct ofproto *p, struct rule *rule,
4224 long long int now, uint8_t reason)
4225 {
4226 struct ofconn *ofconn;
4227 struct ofconn *prev;
4228 struct ofpbuf *buf = NULL;
4229
4230 /* We limit the maximum number of queued flow expirations it by accounting
4231 * them under the counter for replies. That works because preventing
4232 * OpenFlow requests from being processed also prevents new flows from
4233 * being added (and expiring). (It also prevents processing OpenFlow
4234 * requests that would not add new flows, so it is imperfect.) */
4235
4236 prev = NULL;
4237 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
4238 if (rule->send_flow_removed && rconn_is_connected(ofconn->rconn)
4239 && ofconn_receives_async_msgs(ofconn)) {
4240 if (prev) {
4241 queue_tx(ofpbuf_clone(buf), prev, prev->reply_counter);
4242 } else {
4243 buf = compose_flow_removed(p, rule, now, reason);
4244 }
4245 prev = ofconn;
4246 }
4247 }
4248 if (prev) {
4249 queue_tx(buf, prev, prev->reply_counter);
4250 }
4251 }
4252
4253
4254 static void
4255 expire_rule(struct cls_rule *cls_rule, void *p_)
4256 {
4257 struct ofproto *p = p_;
4258 struct rule *rule = rule_from_cls_rule(cls_rule);
4259 long long int hard_expire, idle_expire, expire, now;
4260
4261 hard_expire = (rule->hard_timeout
4262 ? rule->created + rule->hard_timeout * 1000
4263 : LLONG_MAX);
4264 idle_expire = (rule->idle_timeout
4265 && (rule->super || list_is_empty(&rule->list))
4266 ? rule->used + rule->idle_timeout * 1000
4267 : LLONG_MAX);
4268 expire = MIN(hard_expire, idle_expire);
4269
4270 now = time_msec();
4271 if (now < expire) {
4272 if (rule->installed && now >= rule->used + 5000) {
4273 uninstall_idle_flow(p, rule);
4274 } else if (!rule->cr.wc.wildcards) {
4275 active_timeout(p, rule);
4276 }
4277
4278 return;
4279 }
4280
4281 COVERAGE_INC(ofproto_expired);
4282
4283 /* Update stats. This code will be a no-op if the rule expired
4284 * due to an idle timeout. */
4285 if (rule->cr.wc.wildcards) {
4286 struct rule *subrule, *next;
4287 LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) {
4288 rule_remove(p, subrule);
4289 }
4290 } else {
4291 rule_uninstall(p, rule);
4292 }
4293
4294 if (!rule_is_hidden(rule)) {
4295 send_flow_removed(p, rule, now,
4296 (now >= hard_expire
4297 ? OFPRR_HARD_TIMEOUT : OFPRR_IDLE_TIMEOUT));
4298 }
4299 rule_remove(p, rule);
4300 }
4301
4302 static void
4303 active_timeout(struct ofproto *ofproto, struct rule *rule)
4304 {
4305 if (ofproto->netflow && !is_controller_rule(rule) &&
4306 netflow_active_timeout_expired(ofproto->netflow, &rule->nf_flow)) {
4307 struct ofexpired expired;
4308 struct odp_flow odp_flow;
4309
4310 /* Get updated flow stats. */
4311 memset(&odp_flow, 0, sizeof odp_flow);
4312 if (rule->installed) {
4313 odp_flow.key = rule->cr.flow;
4314 odp_flow.flags = ODPFF_ZERO_TCP_FLAGS;
4315 dpif_flow_get(ofproto->dpif, &odp_flow);
4316
4317 if (odp_flow.stats.n_packets) {
4318 update_time(ofproto, rule, &odp_flow.stats);
4319 netflow_flow_update_flags(&rule->nf_flow,
4320 odp_flow.stats.tcp_flags);
4321 }
4322 }
4323
4324 expired.flow = rule->cr.flow;
4325 expired.packet_count = rule->packet_count +
4326 odp_flow.stats.n_packets;
4327 expired.byte_count = rule->byte_count + odp_flow.stats.n_bytes;
4328 expired.used = rule->used;
4329
4330 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
4331
4332 /* Schedule us to send the accumulated records once we have
4333 * collected all of them. */
4334 poll_immediate_wake();
4335 }
4336 }
4337
4338 static void
4339 update_used(struct ofproto *p)
4340 {
4341 struct odp_flow *flows;
4342 size_t n_flows;
4343 size_t i;
4344 int error;
4345
4346 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
4347 if (error) {
4348 return;
4349 }
4350
4351 for (i = 0; i < n_flows; i++) {
4352 struct odp_flow *f = &flows[i];
4353 struct rule *rule;
4354
4355 rule = rule_from_cls_rule(
4356 classifier_find_rule_exactly(&p->cls, &f->key, 0, UINT16_MAX));
4357 if (!rule || !rule->installed) {
4358 COVERAGE_INC(ofproto_unexpected_rule);
4359 dpif_flow_del(p->dpif, f);
4360 continue;
4361 }
4362
4363 update_time(p, rule, &f->stats);
4364 rule_account(p, rule, f->stats.n_bytes);
4365 }
4366 free(flows);
4367 }
4368
4369 /* pinsched callback for sending 'packet' on 'ofconn'. */
4370 static void
4371 do_send_packet_in(struct ofpbuf *packet, void *ofconn_)
4372 {
4373 struct ofconn *ofconn = ofconn_;
4374
4375 rconn_send_with_limit(ofconn->rconn, packet,
4376 ofconn->packet_in_counter, 100);
4377 }
4378
4379 /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and
4380 * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s
4381 * packet scheduler for sending.
4382 *
4383 * 'max_len' specifies the maximum number of bytes of the packet to send on
4384 * 'ofconn' (INT_MAX specifies no limit).
4385 *
4386 * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise,
4387 * ownership is transferred to this function. */
4388 static void
4389 schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len,
4390 bool clone)
4391 {
4392 struct ofproto *ofproto = ofconn->ofproto;
4393 struct ofp_packet_in *opi = packet->data;
4394 uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port));
4395 int send_len, trim_size;
4396 uint32_t buffer_id;
4397
4398 /* Get buffer. */
4399 if (opi->reason == OFPR_ACTION) {
4400 buffer_id = UINT32_MAX;
4401 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4402 buffer_id = pktbuf_get_null();
4403 } else if (!ofconn->pktbuf) {
4404 buffer_id = UINT32_MAX;
4405 } else {
4406 struct ofpbuf payload;
4407 payload.data = opi->data;
4408 payload.size = packet->size - offsetof(struct ofp_packet_in, data);
4409 buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port);
4410 }
4411
4412 /* Figure out how much of the packet to send. */
4413 send_len = ntohs(opi->total_len);
4414 if (buffer_id != UINT32_MAX) {
4415 send_len = MIN(send_len, ofconn->miss_send_len);
4416 }
4417 send_len = MIN(send_len, max_len);
4418
4419 /* Adjust packet length and clone if necessary. */
4420 trim_size = offsetof(struct ofp_packet_in, data) + send_len;
4421 if (clone) {
4422 packet = ofpbuf_clone_data(packet->data, trim_size);
4423 opi = packet->data;
4424 } else {
4425 packet->size = trim_size;
4426 }
4427
4428 /* Update packet headers. */
4429 opi->buffer_id = htonl(buffer_id);
4430 update_openflow_length(packet);
4431
4432 /* Hand over to packet scheduler. It might immediately call into
4433 * do_send_packet_in() or it might buffer it for a while (until a later
4434 * call to pinsched_run()). */
4435 pinsched_send(ofconn->schedulers[opi->reason], in_port,
4436 packet, do_send_packet_in, ofconn);
4437 }
4438
4439 /* Replace struct odp_msg header in 'packet' by equivalent struct
4440 * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as
4441 * returned by dpif_recv()).
4442 *
4443 * The conversion is not complete: the caller still needs to trim any unneeded
4444 * payload off the end of the buffer, set the length in the OpenFlow header,
4445 * and set buffer_id. Those require us to know the controller settings and so
4446 * must be done on a per-controller basis.
4447 *
4448 * Returns the maximum number of bytes of the packet that should be sent to
4449 * the controller (INT_MAX if no limit). */
4450 static int
4451 do_convert_to_packet_in(struct ofpbuf *packet)
4452 {
4453 struct odp_msg *msg = packet->data;
4454 struct ofp_packet_in *opi;
4455 uint8_t reason;
4456 uint16_t total_len;
4457 uint16_t in_port;
4458 int max_len;
4459
4460 /* Extract relevant header fields */
4461 if (msg->type == _ODPL_ACTION_NR) {
4462 reason = OFPR_ACTION;
4463 max_len = msg->arg;
4464 } else {
4465 reason = OFPR_NO_MATCH;
4466 max_len = INT_MAX;
4467 }
4468 total_len = msg->length - sizeof *msg;
4469 in_port = odp_port_to_ofp_port(msg->port);
4470
4471 /* Repurpose packet buffer by overwriting header. */
4472 ofpbuf_pull(packet, sizeof(struct odp_msg));
4473 opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data));
4474 opi->header.version = OFP_VERSION;
4475 opi->header.type = OFPT_PACKET_IN;
4476 opi->total_len = htons(total_len);
4477 opi->in_port = htons(in_port);
4478 opi->reason = reason;
4479
4480 return max_len;
4481 }
4482
4483 /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or
4484 * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller
4485 * as necessary according to their individual configurations.
4486 *
4487 * 'packet' must have sufficient headroom to convert it into a struct
4488 * ofp_packet_in (e.g. as returned by dpif_recv()).
4489 *
4490 * Takes ownership of 'packet'. */
4491 static void
4492 send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet)
4493 {
4494 struct ofconn *ofconn, *prev;
4495 int max_len;
4496
4497 max_len = do_convert_to_packet_in(packet);
4498
4499 prev = NULL;
4500 LIST_FOR_EACH (ofconn, struct ofconn, node, &ofproto->all_conns) {
4501 if (ofconn_receives_async_msgs(ofconn)) {
4502 if (prev) {
4503 schedule_packet_in(prev, packet, max_len, true);
4504 }
4505 prev = ofconn;
4506 }
4507 }
4508 if (prev) {
4509 schedule_packet_in(prev, packet, max_len, false);
4510 } else {
4511 ofpbuf_delete(packet);
4512 }
4513 }
4514
4515 static uint64_t
4516 pick_datapath_id(const struct ofproto *ofproto)
4517 {
4518 const struct ofport *port;
4519
4520 port = port_array_get(&ofproto->ports, ODPP_LOCAL);
4521 if (port) {
4522 uint8_t ea[ETH_ADDR_LEN];
4523 int error;
4524
4525 error = netdev_get_etheraddr(port->netdev, ea);
4526 if (!error) {
4527 return eth_addr_to_uint64(ea);
4528 }
4529 VLOG_WARN("could not get MAC address for %s (%s)",
4530 netdev_get_name(port->netdev), strerror(error));
4531 }
4532 return ofproto->fallback_dpid;
4533 }
4534
4535 static uint64_t
4536 pick_fallback_dpid(void)
4537 {
4538 uint8_t ea[ETH_ADDR_LEN];
4539 eth_addr_nicira_random(ea);
4540 return eth_addr_to_uint64(ea);
4541 }
4542 \f
4543 static bool
4544 default_normal_ofhook_cb(const flow_t *flow, const struct ofpbuf *packet,
4545 struct odp_actions *actions, tag_type *tags,
4546 uint16_t *nf_output_iface, void *ofproto_)
4547 {
4548 struct ofproto *ofproto = ofproto_;
4549 int out_port;
4550
4551 /* Drop frames for reserved multicast addresses. */
4552 if (eth_addr_is_reserved(flow->dl_dst)) {
4553 return true;
4554 }
4555
4556 /* Learn source MAC (but don't try to learn from revalidation). */
4557 if (packet != NULL) {
4558 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
4559 0, flow->in_port,
4560 GRAT_ARP_LOCK_NONE);
4561 if (rev_tag) {
4562 /* The log messages here could actually be useful in debugging,
4563 * so keep the rate limit relatively high. */
4564 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
4565 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
4566 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
4567 ofproto_revalidate(ofproto, rev_tag);
4568 }
4569 }
4570
4571 /* Determine output port. */
4572 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
4573 NULL);
4574 if (out_port < 0) {
4575 add_output_group_action(actions, DP_GROUP_FLOOD, nf_output_iface);
4576 } else if (out_port != flow->in_port) {
4577 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
4578 *nf_output_iface = out_port;
4579 } else {
4580 /* Drop. */
4581 }
4582
4583 return true;
4584 }
4585
4586 static const struct ofhooks default_ofhooks = {
4587 NULL,
4588 default_normal_ofhook_cb,
4589 NULL,
4590 NULL
4591 };