]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
ofproto: Fix type of 'out_port' parameter to query_aggregate_stats().
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "byte-order.h"
28 #include "classifier.h"
29 #include "coverage.h"
30 #include "discovery.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hash.h"
35 #include "hmap.h"
36 #include "in-band.h"
37 #include "mac-learning.h"
38 #include "netdev.h"
39 #include "netflow.h"
40 #include "odp-util.h"
41 #include "ofp-print.h"
42 #include "ofp-util.h"
43 #include "ofproto-sflow.h"
44 #include "ofpbuf.h"
45 #include "openflow/nicira-ext.h"
46 #include "openflow/openflow.h"
47 #include "openvswitch/datapath-protocol.h"
48 #include "packets.h"
49 #include "pinsched.h"
50 #include "pktbuf.h"
51 #include "poll-loop.h"
52 #include "rconn.h"
53 #include "shash.h"
54 #include "status.h"
55 #include "stream-ssl.h"
56 #include "svec.h"
57 #include "tag.h"
58 #include "timeval.h"
59 #include "unixctl.h"
60 #include "vconn.h"
61 #include "vlog.h"
62
63 VLOG_DEFINE_THIS_MODULE(ofproto);
64
65 #include "sflow_api.h"
66
67 struct ofport {
68 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
69 struct netdev *netdev;
70 struct ofp_phy_port opp; /* In host byte order. */
71 uint16_t odp_port;
72 };
73
74 static void ofport_free(struct ofport *);
75 static void hton_ofp_phy_port(struct ofp_phy_port *);
76
77 static int xlate_actions(const union ofp_action *in, size_t n_in,
78 const struct flow *, struct ofproto *,
79 const struct ofpbuf *packet,
80 struct odp_actions *out, tag_type *tags,
81 bool *may_set_up_flow, uint16_t *nf_output_iface);
82
83 struct rule {
84 struct cls_rule cr;
85
86 ovs_be64 flow_cookie; /* Controller-issued identifier. */
87 uint16_t idle_timeout; /* In seconds from time of last use. */
88 uint16_t hard_timeout; /* In seconds from time of creation. */
89 bool send_flow_removed; /* Send a flow removed message? */
90 long long int used; /* Last-used time (0 if never used). */
91 long long int created; /* Creation time. */
92 uint64_t packet_count; /* Number of packets received. */
93 uint64_t byte_count; /* Number of bytes received. */
94 uint64_t accounted_bytes; /* Number of bytes passed to account_cb. */
95 tag_type tags; /* Tags (set only by hooks). */
96 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
97
98 /* If 'super' is non-NULL, this rule is a subrule, that is, it is an
99 * exact-match rule (having cr.wc.wildcards of 0) generated from the
100 * wildcard rule 'super'. In this case, 'list' is an element of the
101 * super-rule's list.
102 *
103 * If 'super' is NULL, this rule is a super-rule, and 'list' is the head of
104 * a list of subrules. A super-rule with no wildcards (where
105 * cr.wc.wildcards is 0) will never have any subrules. */
106 struct rule *super;
107 struct list list;
108
109 /* OpenFlow actions.
110 *
111 * 'n_actions' is the number of elements in the 'actions' array. A single
112 * action may take up more more than one element's worth of space.
113 *
114 * A subrule has no actions (it uses the super-rule's actions). */
115 int n_actions;
116 union ofp_action *actions;
117
118 /* Datapath actions.
119 *
120 * A super-rule with wildcard fields never has ODP actions (since the
121 * datapath only supports exact-match flows). */
122 bool installed; /* Installed in datapath? */
123 bool may_install; /* True ordinarily; false if actions must
124 * be reassessed for every packet. */
125 int n_odp_actions;
126 union odp_action *odp_actions;
127 };
128
129 static inline bool
130 rule_is_hidden(const struct rule *rule)
131 {
132 /* Subrules are merely an implementation detail, so hide them from the
133 * controller. */
134 if (rule->super != NULL) {
135 return true;
136 }
137
138 /* Rules with priority higher than UINT16_MAX are set up by ofproto itself
139 * (e.g. by in-band control) and are intentionally hidden from the
140 * controller. */
141 if (rule->cr.priority > UINT16_MAX) {
142 return true;
143 }
144
145 return false;
146 }
147
148 static struct rule *rule_create(struct ofproto *, struct rule *super,
149 const union ofp_action *, size_t n_actions,
150 uint16_t idle_timeout, uint16_t hard_timeout,
151 ovs_be64 flow_cookie, bool send_flow_removed);
152 static void rule_free(struct rule *);
153 static void rule_destroy(struct ofproto *, struct rule *);
154 static struct rule *rule_from_cls_rule(const struct cls_rule *);
155 static void rule_insert(struct ofproto *, struct rule *,
156 struct ofpbuf *packet, uint16_t in_port);
157 static void rule_remove(struct ofproto *, struct rule *);
158 static bool rule_make_actions(struct ofproto *, struct rule *,
159 const struct ofpbuf *packet);
160 static void rule_install(struct ofproto *, struct rule *,
161 struct rule *displaced_rule);
162 static void rule_uninstall(struct ofproto *, struct rule *);
163 static void rule_post_uninstall(struct ofproto *, struct rule *);
164 static void send_flow_removed(struct ofproto *, struct rule *, uint8_t reason);
165
166 /* ofproto supports two kinds of OpenFlow connections:
167 *
168 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
169 * maintains persistent connections to these controllers and by default
170 * sends them asynchronous messages such as packet-ins.
171 *
172 * - "Service" connections, e.g. from ovs-ofctl. When these connections
173 * drop, it is the other side's responsibility to reconnect them if
174 * necessary. ofproto does not send them asynchronous messages by default.
175 *
176 * Currently, active (tcp, ssl, unix) connections are always "primary"
177 * connections and passive (ptcp, pssl, punix) connections are always "service"
178 * connections. There is no inherent reason for this, but it reflects the
179 * common case.
180 */
181 enum ofconn_type {
182 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
183 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
184 };
185
186 /* A listener for incoming OpenFlow "service" connections. */
187 struct ofservice {
188 struct hmap_node node; /* In struct ofproto's "services" hmap. */
189 struct pvconn *pvconn; /* OpenFlow connection listener. */
190
191 /* These are not used by ofservice directly. They are settings for
192 * accepted "struct ofconn"s from the pvconn. */
193 int probe_interval; /* Max idle time before probing, in seconds. */
194 int rate_limit; /* Max packet-in rate in packets per second. */
195 int burst_limit; /* Limit on accumulating packet credits. */
196 };
197
198 static struct ofservice *ofservice_lookup(struct ofproto *,
199 const char *target);
200 static int ofservice_create(struct ofproto *,
201 const struct ofproto_controller *);
202 static void ofservice_reconfigure(struct ofservice *,
203 const struct ofproto_controller *);
204 static void ofservice_destroy(struct ofproto *, struct ofservice *);
205
206 /* An OpenFlow connection. */
207 struct ofconn {
208 struct ofproto *ofproto; /* The ofproto that owns this connection. */
209 struct list node; /* In struct ofproto's "all_conns" list. */
210 struct rconn *rconn; /* OpenFlow connection. */
211 enum ofconn_type type; /* Type. */
212 int flow_format; /* One of NXFF_*. */
213
214 /* OFPT_PACKET_IN related data. */
215 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
216 struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */
217 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
218 int miss_send_len; /* Bytes to send of buffered packets. */
219
220 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
221 * requests, and the maximum number before we stop reading OpenFlow
222 * requests. */
223 #define OFCONN_REPLY_MAX 100
224 struct rconn_packet_counter *reply_counter;
225
226 /* type == OFCONN_PRIMARY only. */
227 enum nx_role role; /* Role. */
228 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
229 struct discovery *discovery; /* Controller discovery object, if enabled. */
230 struct status_category *ss; /* Switch status category. */
231 enum ofproto_band band; /* In-band or out-of-band? */
232 };
233
234 /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's
235 * "schedulers" array. Their values are 0 and 1, and their meanings and values
236 * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In
237 * case anything ever changes, check their values here. */
238 #define N_SCHEDULERS 2
239 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0);
240 BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR);
241 BUILD_ASSERT_DECL(OFPR_ACTION == 1);
242 BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR);
243
244 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
245 enum ofconn_type);
246 static void ofconn_destroy(struct ofconn *);
247 static void ofconn_run(struct ofconn *);
248 static void ofconn_wait(struct ofconn *);
249 static bool ofconn_receives_async_msgs(const struct ofconn *);
250 static char *ofconn_make_name(const struct ofproto *, const char *target);
251 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
252
253 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
254 struct rconn_packet_counter *counter);
255
256 static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg);
257 static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn);
258
259 struct ofproto {
260 /* Settings. */
261 uint64_t datapath_id; /* Datapath ID. */
262 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
263 char *mfr_desc; /* Manufacturer. */
264 char *hw_desc; /* Hardware. */
265 char *sw_desc; /* Software version. */
266 char *serial_desc; /* Serial number. */
267 char *dp_desc; /* Datapath description. */
268
269 /* Datapath. */
270 struct dpif *dpif;
271 struct netdev_monitor *netdev_monitor;
272 struct hmap ports; /* Contains "struct ofport"s. */
273 struct shash port_by_name;
274 uint32_t max_ports;
275
276 /* Configuration. */
277 struct switch_status *switch_status;
278 struct fail_open *fail_open;
279 struct netflow *netflow;
280 struct ofproto_sflow *sflow;
281
282 /* In-band control. */
283 struct in_band *in_band;
284 long long int next_in_band_update;
285 struct sockaddr_in *extra_in_band_remotes;
286 size_t n_extra_remotes;
287
288 /* Flow table. */
289 struct classifier cls;
290 bool need_revalidate;
291 long long int next_expiration;
292 struct tag_set revalidate_set;
293
294 /* OpenFlow connections. */
295 struct hmap controllers; /* Controller "struct ofconn"s. */
296 struct list all_conns; /* Contains "struct ofconn"s. */
297 enum ofproto_fail_mode fail_mode;
298
299 /* OpenFlow listeners. */
300 struct hmap services; /* Contains "struct ofservice"s. */
301 struct pvconn **snoops;
302 size_t n_snoops;
303
304 /* Hooks for ovs-vswitchd. */
305 const struct ofhooks *ofhooks;
306 void *aux;
307
308 /* Used by default ofhooks. */
309 struct mac_learning *ml;
310 };
311
312 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
313
314 static const struct ofhooks default_ofhooks;
315
316 static uint64_t pick_datapath_id(const struct ofproto *);
317 static uint64_t pick_fallback_dpid(void);
318
319 static int ofproto_expire(struct ofproto *);
320
321 static void update_stats(struct ofproto *, struct rule *,
322 const struct odp_flow_stats *);
323 static bool revalidate_rule(struct ofproto *p, struct rule *rule);
324 static void revalidate_cb(struct cls_rule *rule_, void *p_);
325
326 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
327
328 static void handle_openflow(struct ofconn *, struct ofpbuf *);
329
330 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
331 static void update_port(struct ofproto *, const char *devname);
332 static int init_ports(struct ofproto *);
333 static void reinit_ports(struct ofproto *);
334
335 int
336 ofproto_create(const char *datapath, const char *datapath_type,
337 const struct ofhooks *ofhooks, void *aux,
338 struct ofproto **ofprotop)
339 {
340 struct odp_stats stats;
341 struct ofproto *p;
342 struct dpif *dpif;
343 int error;
344
345 *ofprotop = NULL;
346
347 /* Connect to datapath and start listening for messages. */
348 error = dpif_open(datapath, datapath_type, &dpif);
349 if (error) {
350 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
351 return error;
352 }
353 error = dpif_get_dp_stats(dpif, &stats);
354 if (error) {
355 VLOG_ERR("failed to obtain stats for datapath %s: %s",
356 datapath, strerror(error));
357 dpif_close(dpif);
358 return error;
359 }
360 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW);
361 if (error) {
362 VLOG_ERR("failed to listen on datapath %s: %s",
363 datapath, strerror(error));
364 dpif_close(dpif);
365 return error;
366 }
367 dpif_flow_flush(dpif);
368 dpif_recv_purge(dpif);
369
370 /* Initialize settings. */
371 p = xzalloc(sizeof *p);
372 p->fallback_dpid = pick_fallback_dpid();
373 p->datapath_id = p->fallback_dpid;
374 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
375 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
376 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
377 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
378 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
379
380 /* Initialize datapath. */
381 p->dpif = dpif;
382 p->netdev_monitor = netdev_monitor_create();
383 hmap_init(&p->ports);
384 shash_init(&p->port_by_name);
385 p->max_ports = stats.max_ports;
386
387 /* Initialize submodules. */
388 p->switch_status = switch_status_create(p);
389 p->in_band = NULL;
390 p->fail_open = NULL;
391 p->netflow = NULL;
392 p->sflow = NULL;
393
394 /* Initialize flow table. */
395 classifier_init(&p->cls);
396 p->need_revalidate = false;
397 p->next_expiration = time_msec() + 1000;
398 tag_set_init(&p->revalidate_set);
399
400 /* Initialize OpenFlow connections. */
401 list_init(&p->all_conns);
402 hmap_init(&p->controllers);
403 hmap_init(&p->services);
404 p->snoops = NULL;
405 p->n_snoops = 0;
406
407 /* Initialize hooks. */
408 if (ofhooks) {
409 p->ofhooks = ofhooks;
410 p->aux = aux;
411 p->ml = NULL;
412 } else {
413 p->ofhooks = &default_ofhooks;
414 p->aux = p;
415 p->ml = mac_learning_create();
416 }
417
418 /* Pick final datapath ID. */
419 p->datapath_id = pick_datapath_id(p);
420 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
421
422 *ofprotop = p;
423 return 0;
424 }
425
426 void
427 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
428 {
429 uint64_t old_dpid = p->datapath_id;
430 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
431 if (p->datapath_id != old_dpid) {
432 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
433
434 /* Force all active connections to reconnect, since there is no way to
435 * notify a controller that the datapath ID has changed. */
436 ofproto_reconnect_controllers(p);
437 }
438 }
439
440 static bool
441 is_discovery_controller(const struct ofproto_controller *c)
442 {
443 return !strcmp(c->target, "discover");
444 }
445
446 static bool
447 is_in_band_controller(const struct ofproto_controller *c)
448 {
449 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
450 }
451
452 /* Creates a new controller in 'ofproto'. Some of the settings are initially
453 * drawn from 'c', but update_controller() needs to be called later to finish
454 * the new ofconn's configuration. */
455 static void
456 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
457 {
458 struct discovery *discovery;
459 struct ofconn *ofconn;
460
461 if (is_discovery_controller(c)) {
462 int error = discovery_create(c->accept_re, c->update_resolv_conf,
463 ofproto->dpif, ofproto->switch_status,
464 &discovery);
465 if (error) {
466 return;
467 }
468 } else {
469 discovery = NULL;
470 }
471
472 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
473 ofconn->pktbuf = pktbuf_create();
474 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
475 if (discovery) {
476 ofconn->discovery = discovery;
477 } else {
478 char *name = ofconn_make_name(ofproto, c->target);
479 rconn_connect(ofconn->rconn, c->target, name);
480 free(name);
481 }
482 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
483 hash_string(c->target, 0));
484 }
485
486 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
487 * target or turn discovery on or off (these are done by creating new ofconns
488 * and deleting old ones), but it can update the rest of an ofconn's
489 * settings. */
490 static void
491 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
492 {
493 int probe_interval;
494
495 ofconn->band = (is_in_band_controller(c)
496 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
497
498 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
499
500 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
501 rconn_set_probe_interval(ofconn->rconn, probe_interval);
502
503 if (ofconn->discovery) {
504 discovery_set_update_resolv_conf(ofconn->discovery,
505 c->update_resolv_conf);
506 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
507 }
508
509 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
510 }
511
512 static const char *
513 ofconn_get_target(const struct ofconn *ofconn)
514 {
515 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
516 }
517
518 static struct ofconn *
519 find_controller_by_target(struct ofproto *ofproto, const char *target)
520 {
521 struct ofconn *ofconn;
522
523 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
524 hash_string(target, 0), &ofproto->controllers) {
525 if (!strcmp(ofconn_get_target(ofconn), target)) {
526 return ofconn;
527 }
528 }
529 return NULL;
530 }
531
532 static void
533 update_in_band_remotes(struct ofproto *ofproto)
534 {
535 const struct ofconn *ofconn;
536 struct sockaddr_in *addrs;
537 size_t max_addrs, n_addrs;
538 bool discovery;
539 size_t i;
540
541 /* Allocate enough memory for as many remotes as we could possibly have. */
542 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
543 addrs = xmalloc(max_addrs * sizeof *addrs);
544 n_addrs = 0;
545
546 /* Add all the remotes. */
547 discovery = false;
548 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
549 struct sockaddr_in *sin = &addrs[n_addrs];
550
551 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
552 continue;
553 }
554
555 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
556 if (sin->sin_addr.s_addr) {
557 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
558 n_addrs++;
559 }
560 if (ofconn->discovery) {
561 discovery = true;
562 }
563 }
564 for (i = 0; i < ofproto->n_extra_remotes; i++) {
565 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
566 }
567
568 /* Create or update or destroy in-band.
569 *
570 * Ordinarily we only enable in-band if there's at least one remote
571 * address, but discovery needs the in-band rules for DHCP to be installed
572 * even before we know any remote addresses. */
573 if (n_addrs || discovery) {
574 if (!ofproto->in_band) {
575 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
576 &ofproto->in_band);
577 }
578 if (ofproto->in_band) {
579 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
580 }
581 ofproto->next_in_band_update = time_msec() + 1000;
582 } else {
583 in_band_destroy(ofproto->in_band);
584 ofproto->in_band = NULL;
585 }
586
587 /* Clean up. */
588 free(addrs);
589 }
590
591 static void
592 update_fail_open(struct ofproto *p)
593 {
594 struct ofconn *ofconn;
595
596 if (!hmap_is_empty(&p->controllers)
597 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
598 struct rconn **rconns;
599 size_t n;
600
601 if (!p->fail_open) {
602 p->fail_open = fail_open_create(p, p->switch_status);
603 }
604
605 n = 0;
606 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
607 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
608 rconns[n++] = ofconn->rconn;
609 }
610
611 fail_open_set_controllers(p->fail_open, rconns, n);
612 /* p->fail_open takes ownership of 'rconns'. */
613 } else {
614 fail_open_destroy(p->fail_open);
615 p->fail_open = NULL;
616 }
617 }
618
619 void
620 ofproto_set_controllers(struct ofproto *p,
621 const struct ofproto_controller *controllers,
622 size_t n_controllers)
623 {
624 struct shash new_controllers;
625 struct ofconn *ofconn, *next_ofconn;
626 struct ofservice *ofservice, *next_ofservice;
627 bool ss_exists;
628 size_t i;
629
630 /* Create newly configured controllers and services.
631 * Create a name to ofproto_controller mapping in 'new_controllers'. */
632 shash_init(&new_controllers);
633 for (i = 0; i < n_controllers; i++) {
634 const struct ofproto_controller *c = &controllers[i];
635
636 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
637 if (!find_controller_by_target(p, c->target)) {
638 add_controller(p, c);
639 }
640 } else if (!pvconn_verify_name(c->target)) {
641 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
642 continue;
643 }
644 } else {
645 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
646 dpif_name(p->dpif), c->target);
647 continue;
648 }
649
650 shash_add_once(&new_controllers, c->target, &controllers[i]);
651 }
652
653 /* Delete controllers that are no longer configured.
654 * Update configuration of all now-existing controllers. */
655 ss_exists = false;
656 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
657 struct ofproto_controller *c;
658
659 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
660 if (!c) {
661 ofconn_destroy(ofconn);
662 } else {
663 update_controller(ofconn, c);
664 if (ofconn->ss) {
665 ss_exists = true;
666 }
667 }
668 }
669
670 /* Delete services that are no longer configured.
671 * Update configuration of all now-existing services. */
672 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
673 struct ofproto_controller *c;
674
675 c = shash_find_data(&new_controllers,
676 pvconn_get_name(ofservice->pvconn));
677 if (!c) {
678 ofservice_destroy(p, ofservice);
679 } else {
680 ofservice_reconfigure(ofservice, c);
681 }
682 }
683
684 shash_destroy(&new_controllers);
685
686 update_in_band_remotes(p);
687 update_fail_open(p);
688
689 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
690 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
691 struct ofconn, hmap_node);
692 ofconn->ss = switch_status_register(p->switch_status, "remote",
693 rconn_status_cb, ofconn->rconn);
694 }
695 }
696
697 void
698 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
699 {
700 p->fail_mode = fail_mode;
701 update_fail_open(p);
702 }
703
704 /* Drops the connections between 'ofproto' and all of its controllers, forcing
705 * them to reconnect. */
706 void
707 ofproto_reconnect_controllers(struct ofproto *ofproto)
708 {
709 struct ofconn *ofconn;
710
711 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
712 rconn_reconnect(ofconn->rconn);
713 }
714 }
715
716 static bool
717 any_extras_changed(const struct ofproto *ofproto,
718 const struct sockaddr_in *extras, size_t n)
719 {
720 size_t i;
721
722 if (n != ofproto->n_extra_remotes) {
723 return true;
724 }
725
726 for (i = 0; i < n; i++) {
727 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
728 const struct sockaddr_in *new = &extras[i];
729
730 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
731 old->sin_port != new->sin_port) {
732 return true;
733 }
734 }
735
736 return false;
737 }
738
739 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
740 * in-band control should guarantee access, in the same way that in-band
741 * control guarantees access to OpenFlow controllers. */
742 void
743 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
744 const struct sockaddr_in *extras, size_t n)
745 {
746 if (!any_extras_changed(ofproto, extras, n)) {
747 return;
748 }
749
750 free(ofproto->extra_in_band_remotes);
751 ofproto->n_extra_remotes = n;
752 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
753
754 update_in_band_remotes(ofproto);
755 }
756
757 void
758 ofproto_set_desc(struct ofproto *p,
759 const char *mfr_desc, const char *hw_desc,
760 const char *sw_desc, const char *serial_desc,
761 const char *dp_desc)
762 {
763 struct ofp_desc_stats *ods;
764
765 if (mfr_desc) {
766 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
767 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
768 sizeof ods->mfr_desc);
769 }
770 free(p->mfr_desc);
771 p->mfr_desc = xstrdup(mfr_desc);
772 }
773 if (hw_desc) {
774 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
775 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
776 sizeof ods->hw_desc);
777 }
778 free(p->hw_desc);
779 p->hw_desc = xstrdup(hw_desc);
780 }
781 if (sw_desc) {
782 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
783 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
784 sizeof ods->sw_desc);
785 }
786 free(p->sw_desc);
787 p->sw_desc = xstrdup(sw_desc);
788 }
789 if (serial_desc) {
790 if (strlen(serial_desc) >= sizeof ods->serial_num) {
791 VLOG_WARN("truncating serial_desc, must be less than %zu "
792 "characters",
793 sizeof ods->serial_num);
794 }
795 free(p->serial_desc);
796 p->serial_desc = xstrdup(serial_desc);
797 }
798 if (dp_desc) {
799 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
800 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
801 sizeof ods->dp_desc);
802 }
803 free(p->dp_desc);
804 p->dp_desc = xstrdup(dp_desc);
805 }
806 }
807
808 static int
809 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
810 const struct svec *svec)
811 {
812 struct pvconn **pvconns = *pvconnsp;
813 size_t n_pvconns = *n_pvconnsp;
814 int retval = 0;
815 size_t i;
816
817 for (i = 0; i < n_pvconns; i++) {
818 pvconn_close(pvconns[i]);
819 }
820 free(pvconns);
821
822 pvconns = xmalloc(svec->n * sizeof *pvconns);
823 n_pvconns = 0;
824 for (i = 0; i < svec->n; i++) {
825 const char *name = svec->names[i];
826 struct pvconn *pvconn;
827 int error;
828
829 error = pvconn_open(name, &pvconn);
830 if (!error) {
831 pvconns[n_pvconns++] = pvconn;
832 } else {
833 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
834 if (!retval) {
835 retval = error;
836 }
837 }
838 }
839
840 *pvconnsp = pvconns;
841 *n_pvconnsp = n_pvconns;
842
843 return retval;
844 }
845
846 int
847 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
848 {
849 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
850 }
851
852 int
853 ofproto_set_netflow(struct ofproto *ofproto,
854 const struct netflow_options *nf_options)
855 {
856 if (nf_options && nf_options->collectors.n) {
857 if (!ofproto->netflow) {
858 ofproto->netflow = netflow_create();
859 }
860 return netflow_set_options(ofproto->netflow, nf_options);
861 } else {
862 netflow_destroy(ofproto->netflow);
863 ofproto->netflow = NULL;
864 return 0;
865 }
866 }
867
868 void
869 ofproto_set_sflow(struct ofproto *ofproto,
870 const struct ofproto_sflow_options *oso)
871 {
872 struct ofproto_sflow *os = ofproto->sflow;
873 if (oso) {
874 if (!os) {
875 struct ofport *ofport;
876
877 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
878 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
879 ofproto_sflow_add_port(os, ofport->odp_port,
880 netdev_get_name(ofport->netdev));
881 }
882 }
883 ofproto_sflow_set_options(os, oso);
884 } else {
885 ofproto_sflow_destroy(os);
886 ofproto->sflow = NULL;
887 }
888 }
889
890 uint64_t
891 ofproto_get_datapath_id(const struct ofproto *ofproto)
892 {
893 return ofproto->datapath_id;
894 }
895
896 bool
897 ofproto_has_primary_controller(const struct ofproto *ofproto)
898 {
899 return !hmap_is_empty(&ofproto->controllers);
900 }
901
902 enum ofproto_fail_mode
903 ofproto_get_fail_mode(const struct ofproto *p)
904 {
905 return p->fail_mode;
906 }
907
908 void
909 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
910 {
911 size_t i;
912
913 for (i = 0; i < ofproto->n_snoops; i++) {
914 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
915 }
916 }
917
918 void
919 ofproto_destroy(struct ofproto *p)
920 {
921 struct ofservice *ofservice, *next_ofservice;
922 struct ofconn *ofconn, *next_ofconn;
923 struct ofport *ofport, *next_ofport;
924 size_t i;
925
926 if (!p) {
927 return;
928 }
929
930 /* Destroy fail-open and in-band early, since they touch the classifier. */
931 fail_open_destroy(p->fail_open);
932 p->fail_open = NULL;
933
934 in_band_destroy(p->in_band);
935 p->in_band = NULL;
936 free(p->extra_in_band_remotes);
937
938 ofproto_flush_flows(p);
939 classifier_destroy(&p->cls);
940
941 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
942 ofconn_destroy(ofconn);
943 }
944 hmap_destroy(&p->controllers);
945
946 dpif_close(p->dpif);
947 netdev_monitor_destroy(p->netdev_monitor);
948 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
949 hmap_remove(&p->ports, &ofport->hmap_node);
950 ofport_free(ofport);
951 }
952 shash_destroy(&p->port_by_name);
953
954 switch_status_destroy(p->switch_status);
955 netflow_destroy(p->netflow);
956 ofproto_sflow_destroy(p->sflow);
957
958 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
959 ofservice_destroy(p, ofservice);
960 }
961 hmap_destroy(&p->services);
962
963 for (i = 0; i < p->n_snoops; i++) {
964 pvconn_close(p->snoops[i]);
965 }
966 free(p->snoops);
967
968 mac_learning_destroy(p->ml);
969
970 free(p->mfr_desc);
971 free(p->hw_desc);
972 free(p->sw_desc);
973 free(p->serial_desc);
974 free(p->dp_desc);
975
976 hmap_destroy(&p->ports);
977
978 free(p);
979 }
980
981 int
982 ofproto_run(struct ofproto *p)
983 {
984 int error = ofproto_run1(p);
985 if (!error) {
986 error = ofproto_run2(p, false);
987 }
988 return error;
989 }
990
991 static void
992 process_port_change(struct ofproto *ofproto, int error, char *devname)
993 {
994 if (error == ENOBUFS) {
995 reinit_ports(ofproto);
996 } else if (!error) {
997 update_port(ofproto, devname);
998 free(devname);
999 }
1000 }
1001
1002 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1003 * means that 'ofconn' is more interesting for monitoring than a lower return
1004 * value. */
1005 static int
1006 snoop_preference(const struct ofconn *ofconn)
1007 {
1008 switch (ofconn->role) {
1009 case NX_ROLE_MASTER:
1010 return 3;
1011 case NX_ROLE_OTHER:
1012 return 2;
1013 case NX_ROLE_SLAVE:
1014 return 1;
1015 default:
1016 /* Shouldn't happen. */
1017 return 0;
1018 }
1019 }
1020
1021 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1022 * Connects this vconn to a controller. */
1023 static void
1024 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1025 {
1026 struct ofconn *ofconn, *best;
1027
1028 /* Pick a controller for monitoring. */
1029 best = NULL;
1030 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1031 if (ofconn->type == OFCONN_PRIMARY
1032 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1033 best = ofconn;
1034 }
1035 }
1036
1037 if (best) {
1038 rconn_add_monitor(best->rconn, vconn);
1039 } else {
1040 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1041 vconn_close(vconn);
1042 }
1043 }
1044
1045 int
1046 ofproto_run1(struct ofproto *p)
1047 {
1048 struct ofconn *ofconn, *next_ofconn;
1049 struct ofservice *ofservice;
1050 char *devname;
1051 int error;
1052 int i;
1053
1054 if (shash_is_empty(&p->port_by_name)) {
1055 init_ports(p);
1056 }
1057
1058 for (i = 0; i < 50; i++) {
1059 struct ofpbuf *buf;
1060
1061 error = dpif_recv(p->dpif, &buf);
1062 if (error) {
1063 if (error == ENODEV) {
1064 /* Someone destroyed the datapath behind our back. The caller
1065 * better destroy us and give up, because we're just going to
1066 * spin from here on out. */
1067 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1068 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1069 dpif_name(p->dpif));
1070 return ENODEV;
1071 }
1072 break;
1073 }
1074
1075 handle_odp_msg(p, buf);
1076 }
1077
1078 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1079 process_port_change(p, error, devname);
1080 }
1081 while ((error = netdev_monitor_poll(p->netdev_monitor,
1082 &devname)) != EAGAIN) {
1083 process_port_change(p, error, devname);
1084 }
1085
1086 if (p->in_band) {
1087 if (time_msec() >= p->next_in_band_update) {
1088 update_in_band_remotes(p);
1089 }
1090 in_band_run(p->in_band);
1091 }
1092
1093 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1094 ofconn_run(ofconn);
1095 }
1096
1097 /* Fail-open maintenance. Do this after processing the ofconns since
1098 * fail-open checks the status of the controller rconn. */
1099 if (p->fail_open) {
1100 fail_open_run(p->fail_open);
1101 }
1102
1103 HMAP_FOR_EACH (ofservice, node, &p->services) {
1104 struct vconn *vconn;
1105 int retval;
1106
1107 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1108 if (!retval) {
1109 struct rconn *rconn;
1110 char *name;
1111
1112 rconn = rconn_create(ofservice->probe_interval, 0);
1113 name = ofconn_make_name(p, vconn_get_name(vconn));
1114 rconn_connect_unreliably(rconn, vconn, name);
1115 free(name);
1116
1117 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1118 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1119 ofservice->burst_limit);
1120 } else if (retval != EAGAIN) {
1121 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1122 }
1123 }
1124
1125 for (i = 0; i < p->n_snoops; i++) {
1126 struct vconn *vconn;
1127 int retval;
1128
1129 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1130 if (!retval) {
1131 add_snooper(p, vconn);
1132 } else if (retval != EAGAIN) {
1133 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1134 }
1135 }
1136
1137 if (time_msec() >= p->next_expiration) {
1138 int delay = ofproto_expire(p);
1139 p->next_expiration = time_msec() + delay;
1140 COVERAGE_INC(ofproto_expiration);
1141 }
1142
1143 if (p->netflow) {
1144 netflow_run(p->netflow);
1145 }
1146 if (p->sflow) {
1147 ofproto_sflow_run(p->sflow);
1148 }
1149
1150 return 0;
1151 }
1152
1153 struct revalidate_cbdata {
1154 struct ofproto *ofproto;
1155 bool revalidate_all; /* Revalidate all exact-match rules? */
1156 bool revalidate_subrules; /* Revalidate all exact-match subrules? */
1157 struct tag_set revalidate_set; /* Set of tags to revalidate. */
1158 };
1159
1160 int
1161 ofproto_run2(struct ofproto *p, bool revalidate_all)
1162 {
1163 if (p->need_revalidate || revalidate_all
1164 || !tag_set_is_empty(&p->revalidate_set)) {
1165 struct revalidate_cbdata cbdata;
1166 cbdata.ofproto = p;
1167 cbdata.revalidate_all = revalidate_all;
1168 cbdata.revalidate_subrules = p->need_revalidate;
1169 cbdata.revalidate_set = p->revalidate_set;
1170 tag_set_init(&p->revalidate_set);
1171 COVERAGE_INC(ofproto_revalidate);
1172 classifier_for_each(&p->cls, CLS_INC_EXACT, revalidate_cb, &cbdata);
1173 p->need_revalidate = false;
1174 }
1175
1176 return 0;
1177 }
1178
1179 void
1180 ofproto_wait(struct ofproto *p)
1181 {
1182 struct ofservice *ofservice;
1183 struct ofconn *ofconn;
1184 size_t i;
1185
1186 dpif_recv_wait(p->dpif);
1187 dpif_port_poll_wait(p->dpif);
1188 netdev_monitor_poll_wait(p->netdev_monitor);
1189 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1190 ofconn_wait(ofconn);
1191 }
1192 if (p->in_band) {
1193 poll_timer_wait_until(p->next_in_band_update);
1194 in_band_wait(p->in_band);
1195 }
1196 if (p->fail_open) {
1197 fail_open_wait(p->fail_open);
1198 }
1199 if (p->sflow) {
1200 ofproto_sflow_wait(p->sflow);
1201 }
1202 if (!tag_set_is_empty(&p->revalidate_set)) {
1203 poll_immediate_wake();
1204 }
1205 if (p->need_revalidate) {
1206 /* Shouldn't happen, but if it does just go around again. */
1207 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1208 poll_immediate_wake();
1209 } else if (p->next_expiration != LLONG_MAX) {
1210 poll_timer_wait_until(p->next_expiration);
1211 }
1212 HMAP_FOR_EACH (ofservice, node, &p->services) {
1213 pvconn_wait(ofservice->pvconn);
1214 }
1215 for (i = 0; i < p->n_snoops; i++) {
1216 pvconn_wait(p->snoops[i]);
1217 }
1218 }
1219
1220 void
1221 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1222 {
1223 tag_set_add(&ofproto->revalidate_set, tag);
1224 }
1225
1226 struct tag_set *
1227 ofproto_get_revalidate_set(struct ofproto *ofproto)
1228 {
1229 return &ofproto->revalidate_set;
1230 }
1231
1232 bool
1233 ofproto_is_alive(const struct ofproto *p)
1234 {
1235 return !hmap_is_empty(&p->controllers);
1236 }
1237
1238 /* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1239 *
1240 * This is almost the same as calling dpif_port_del() directly on the
1241 * datapath, but it also makes 'ofproto' close its open netdev for the port
1242 * (if any). This makes it possible to create a new netdev of a different
1243 * type under the same name, which otherwise the netdev library would refuse
1244 * to do because of the conflict. (The netdev would eventually get closed on
1245 * the next trip through ofproto_run(), but this interface is more direct.)
1246 *
1247 * Returns 0 if successful, otherwise a positive errno. */
1248 int
1249 ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1250 {
1251 struct ofport *ofport = get_port(ofproto, odp_port);
1252 const char *name = ofport ? (char *) ofport->opp.name : "<unknown>";
1253 int error;
1254
1255 error = dpif_port_del(ofproto->dpif, odp_port);
1256 if (error) {
1257 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1258 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1259 } else if (ofport) {
1260 /* 'name' is ofport->opp.name and update_port() is going to destroy
1261 * 'ofport'. Just in case update_port() refers to 'name' after it
1262 * destroys 'ofport', make a copy of it around the update_port()
1263 * call. */
1264 char *devname = xstrdup(name);
1265 update_port(ofproto, devname);
1266 free(devname);
1267 }
1268 return error;
1269 }
1270
1271 /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1272 * true if 'odp_port' exists and should be included, false otherwise. */
1273 bool
1274 ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1275 {
1276 struct ofport *ofport = get_port(ofproto, odp_port);
1277 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1278 }
1279
1280 int
1281 ofproto_send_packet(struct ofproto *p, const struct flow *flow,
1282 const union ofp_action *actions, size_t n_actions,
1283 const struct ofpbuf *packet)
1284 {
1285 struct odp_actions odp_actions;
1286 int error;
1287
1288 error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions,
1289 NULL, NULL, NULL);
1290 if (error) {
1291 return error;
1292 }
1293
1294 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1295 * error code? */
1296 dpif_execute(p->dpif, odp_actions.actions, odp_actions.n_actions, packet);
1297 return 0;
1298 }
1299
1300 void
1301 ofproto_add_flow(struct ofproto *p, const struct cls_rule *cls_rule,
1302 const union ofp_action *actions, size_t n_actions,
1303 int idle_timeout)
1304 {
1305 struct rule *rule;
1306 rule = rule_create(p, NULL, actions, n_actions,
1307 idle_timeout >= 0 ? idle_timeout : 5 /* XXX */,
1308 0, 0, false);
1309 rule->cr = *cls_rule;
1310 rule_insert(p, rule, NULL, 0);
1311 }
1312
1313 void
1314 ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target)
1315 {
1316 struct rule *rule;
1317
1318 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1319 target));
1320 if (rule) {
1321 rule_remove(ofproto, rule);
1322 }
1323 }
1324
1325 static void
1326 destroy_rule(struct cls_rule *rule_, void *ofproto_)
1327 {
1328 struct rule *rule = rule_from_cls_rule(rule_);
1329 struct ofproto *ofproto = ofproto_;
1330
1331 /* Mark the flow as not installed, even though it might really be
1332 * installed, so that rule_remove() doesn't bother trying to uninstall it.
1333 * There is no point in uninstalling it individually since we are about to
1334 * blow away all the flows with dpif_flow_flush(). */
1335 rule->installed = false;
1336
1337 rule_remove(ofproto, rule);
1338 }
1339
1340 void
1341 ofproto_flush_flows(struct ofproto *ofproto)
1342 {
1343 COVERAGE_INC(ofproto_flush);
1344 classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto);
1345 dpif_flow_flush(ofproto->dpif);
1346 if (ofproto->in_band) {
1347 in_band_flushed(ofproto->in_band);
1348 }
1349 if (ofproto->fail_open) {
1350 fail_open_flushed(ofproto->fail_open);
1351 }
1352 }
1353 \f
1354 static void
1355 reinit_ports(struct ofproto *p)
1356 {
1357 struct svec devnames;
1358 struct ofport *ofport;
1359 struct odp_port *odp_ports;
1360 size_t n_odp_ports;
1361 size_t i;
1362
1363 COVERAGE_INC(ofproto_reinit_ports);
1364
1365 svec_init(&devnames);
1366 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1367 svec_add (&devnames, (char *) ofport->opp.name);
1368 }
1369 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1370 for (i = 0; i < n_odp_ports; i++) {
1371 svec_add (&devnames, odp_ports[i].devname);
1372 }
1373 free(odp_ports);
1374
1375 svec_sort_unique(&devnames);
1376 for (i = 0; i < devnames.n; i++) {
1377 update_port(p, devnames.names[i]);
1378 }
1379 svec_destroy(&devnames);
1380 }
1381
1382 static struct ofport *
1383 make_ofport(const struct odp_port *odp_port)
1384 {
1385 struct netdev_options netdev_options;
1386 enum netdev_flags flags;
1387 struct ofport *ofport;
1388 struct netdev *netdev;
1389 int error;
1390
1391 memset(&netdev_options, 0, sizeof netdev_options);
1392 netdev_options.name = odp_port->devname;
1393 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1394
1395 error = netdev_open(&netdev_options, &netdev);
1396 if (error) {
1397 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1398 "cannot be opened (%s)",
1399 odp_port->devname, odp_port->port,
1400 odp_port->devname, strerror(error));
1401 return NULL;
1402 }
1403
1404 ofport = xmalloc(sizeof *ofport);
1405 ofport->netdev = netdev;
1406 ofport->odp_port = odp_port->port;
1407 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1408 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1409 memcpy(ofport->opp.name, odp_port->devname,
1410 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1411 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1412
1413 netdev_get_flags(netdev, &flags);
1414 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1415
1416 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1417
1418 netdev_get_features(netdev,
1419 &ofport->opp.curr, &ofport->opp.advertised,
1420 &ofport->opp.supported, &ofport->opp.peer);
1421 return ofport;
1422 }
1423
1424 static bool
1425 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1426 {
1427 if (get_port(p, odp_port->port)) {
1428 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1429 odp_port->port);
1430 return true;
1431 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1432 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1433 odp_port->devname);
1434 return true;
1435 } else {
1436 return false;
1437 }
1438 }
1439
1440 static int
1441 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1442 {
1443 const struct ofp_phy_port *a = &a_->opp;
1444 const struct ofp_phy_port *b = &b_->opp;
1445
1446 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1447 return (a->port_no == b->port_no
1448 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1449 && !strcmp((char *) a->name, (char *) b->name)
1450 && a->state == b->state
1451 && a->config == b->config
1452 && a->curr == b->curr
1453 && a->advertised == b->advertised
1454 && a->supported == b->supported
1455 && a->peer == b->peer);
1456 }
1457
1458 static void
1459 send_port_status(struct ofproto *p, const struct ofport *ofport,
1460 uint8_t reason)
1461 {
1462 /* XXX Should limit the number of queued port status change messages. */
1463 struct ofconn *ofconn;
1464 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1465 struct ofp_port_status *ops;
1466 struct ofpbuf *b;
1467
1468 if (!ofconn_receives_async_msgs(ofconn)) {
1469 continue;
1470 }
1471
1472 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1473 ops->reason = reason;
1474 ops->desc = ofport->opp;
1475 hton_ofp_phy_port(&ops->desc);
1476 queue_tx(b, ofconn, NULL);
1477 }
1478 }
1479
1480 static void
1481 ofport_install(struct ofproto *p, struct ofport *ofport)
1482 {
1483 const char *netdev_name = (const char *) ofport->opp.name;
1484
1485 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1486 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1487 shash_add(&p->port_by_name, netdev_name, ofport);
1488 if (p->sflow) {
1489 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1490 }
1491 }
1492
1493 static void
1494 ofport_remove(struct ofproto *p, struct ofport *ofport)
1495 {
1496 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1497 hmap_remove(&p->ports, &ofport->hmap_node);
1498 shash_delete(&p->port_by_name,
1499 shash_find(&p->port_by_name, (char *) ofport->opp.name));
1500 if (p->sflow) {
1501 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1502 }
1503 }
1504
1505 static void
1506 ofport_free(struct ofport *ofport)
1507 {
1508 if (ofport) {
1509 netdev_close(ofport->netdev);
1510 free(ofport);
1511 }
1512 }
1513
1514 static struct ofport *
1515 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1516 {
1517 struct ofport *port;
1518
1519 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1520 hash_int(odp_port, 0), &ofproto->ports) {
1521 if (port->odp_port == odp_port) {
1522 return port;
1523 }
1524 }
1525 return NULL;
1526 }
1527
1528 static void
1529 update_port(struct ofproto *p, const char *devname)
1530 {
1531 struct odp_port odp_port;
1532 struct ofport *old_ofport;
1533 struct ofport *new_ofport;
1534 int error;
1535
1536 COVERAGE_INC(ofproto_update_port);
1537
1538 /* Query the datapath for port information. */
1539 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1540
1541 /* Find the old ofport. */
1542 old_ofport = shash_find_data(&p->port_by_name, devname);
1543 if (!error) {
1544 if (!old_ofport) {
1545 /* There's no port named 'devname' but there might be a port with
1546 * the same port number. This could happen if a port is deleted
1547 * and then a new one added in its place very quickly, or if a port
1548 * is renamed. In the former case we want to send an OFPPR_DELETE
1549 * and an OFPPR_ADD, and in the latter case we want to send a
1550 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1551 * the old port's ifindex against the new port, or perhaps less
1552 * reliably but more portably by comparing the old port's MAC
1553 * against the new port's MAC. However, this code isn't that smart
1554 * and always sends an OFPPR_MODIFY (XXX). */
1555 old_ofport = get_port(p, odp_port.port);
1556 }
1557 } else if (error != ENOENT && error != ENODEV) {
1558 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1559 "%s", strerror(error));
1560 return;
1561 }
1562
1563 /* Create a new ofport. */
1564 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1565
1566 /* Eliminate a few pathological cases. */
1567 if (!old_ofport && !new_ofport) {
1568 return;
1569 } else if (old_ofport && new_ofport) {
1570 /* Most of the 'config' bits are OpenFlow soft state, but
1571 * OFPPC_PORT_DOWN is maintained the kernel. So transfer the OpenFlow
1572 * bits from old_ofport. (make_ofport() only sets OFPPC_PORT_DOWN and
1573 * leaves the other bits 0.) */
1574 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1575
1576 if (ofport_equal(old_ofport, new_ofport)) {
1577 /* False alarm--no change. */
1578 ofport_free(new_ofport);
1579 return;
1580 }
1581 }
1582
1583 /* Now deal with the normal cases. */
1584 if (old_ofport) {
1585 ofport_remove(p, old_ofport);
1586 }
1587 if (new_ofport) {
1588 ofport_install(p, new_ofport);
1589 }
1590 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1591 (!old_ofport ? OFPPR_ADD
1592 : !new_ofport ? OFPPR_DELETE
1593 : OFPPR_MODIFY));
1594 ofport_free(old_ofport);
1595 }
1596
1597 static int
1598 init_ports(struct ofproto *p)
1599 {
1600 struct odp_port *ports;
1601 size_t n_ports;
1602 size_t i;
1603 int error;
1604
1605 error = dpif_port_list(p->dpif, &ports, &n_ports);
1606 if (error) {
1607 return error;
1608 }
1609
1610 for (i = 0; i < n_ports; i++) {
1611 const struct odp_port *odp_port = &ports[i];
1612 if (!ofport_conflicts(p, odp_port)) {
1613 struct ofport *ofport = make_ofport(odp_port);
1614 if (ofport) {
1615 ofport_install(p, ofport);
1616 }
1617 }
1618 }
1619 free(ports);
1620 return 0;
1621 }
1622 \f
1623 static struct ofconn *
1624 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1625 {
1626 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1627 ofconn->ofproto = p;
1628 list_push_back(&p->all_conns, &ofconn->node);
1629 ofconn->rconn = rconn;
1630 ofconn->type = type;
1631 ofconn->flow_format = NXFF_OPENFLOW10;
1632 ofconn->role = NX_ROLE_OTHER;
1633 ofconn->packet_in_counter = rconn_packet_counter_create ();
1634 ofconn->pktbuf = NULL;
1635 ofconn->miss_send_len = 0;
1636 ofconn->reply_counter = rconn_packet_counter_create ();
1637 return ofconn;
1638 }
1639
1640 static void
1641 ofconn_destroy(struct ofconn *ofconn)
1642 {
1643 if (ofconn->type == OFCONN_PRIMARY) {
1644 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1645 }
1646 discovery_destroy(ofconn->discovery);
1647
1648 list_remove(&ofconn->node);
1649 switch_status_unregister(ofconn->ss);
1650 rconn_destroy(ofconn->rconn);
1651 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1652 rconn_packet_counter_destroy(ofconn->reply_counter);
1653 pktbuf_destroy(ofconn->pktbuf);
1654 free(ofconn);
1655 }
1656
1657 static void
1658 ofconn_run(struct ofconn *ofconn)
1659 {
1660 struct ofproto *p = ofconn->ofproto;
1661 int iteration;
1662 size_t i;
1663
1664 if (ofconn->discovery) {
1665 char *controller_name;
1666 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1667 discovery_question_connectivity(ofconn->discovery);
1668 }
1669 if (discovery_run(ofconn->discovery, &controller_name)) {
1670 if (controller_name) {
1671 char *ofconn_name = ofconn_make_name(p, controller_name);
1672 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1673 free(ofconn_name);
1674 } else {
1675 rconn_disconnect(ofconn->rconn);
1676 }
1677 }
1678 }
1679
1680 for (i = 0; i < N_SCHEDULERS; i++) {
1681 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1682 }
1683
1684 rconn_run(ofconn->rconn);
1685
1686 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1687 /* Limit the number of iterations to prevent other tasks from
1688 * starving. */
1689 for (iteration = 0; iteration < 50; iteration++) {
1690 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1691 if (!of_msg) {
1692 break;
1693 }
1694 if (p->fail_open) {
1695 fail_open_maybe_recover(p->fail_open);
1696 }
1697 handle_openflow(ofconn, of_msg);
1698 ofpbuf_delete(of_msg);
1699 }
1700 }
1701
1702 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1703 ofconn_destroy(ofconn);
1704 }
1705 }
1706
1707 static void
1708 ofconn_wait(struct ofconn *ofconn)
1709 {
1710 int i;
1711
1712 if (ofconn->discovery) {
1713 discovery_wait(ofconn->discovery);
1714 }
1715 for (i = 0; i < N_SCHEDULERS; i++) {
1716 pinsched_wait(ofconn->schedulers[i]);
1717 }
1718 rconn_run_wait(ofconn->rconn);
1719 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1720 rconn_recv_wait(ofconn->rconn);
1721 } else {
1722 COVERAGE_INC(ofproto_ofconn_stuck);
1723 }
1724 }
1725
1726 /* Returns true if 'ofconn' should receive asynchronous messages. */
1727 static bool
1728 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1729 {
1730 if (ofconn->type == OFCONN_PRIMARY) {
1731 /* Primary controllers always get asynchronous messages unless they
1732 * have configured themselves as "slaves". */
1733 return ofconn->role != NX_ROLE_SLAVE;
1734 } else {
1735 /* Service connections don't get asynchronous messages unless they have
1736 * explicitly asked for them by setting a nonzero miss send length. */
1737 return ofconn->miss_send_len > 0;
1738 }
1739 }
1740
1741 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1742 * and 'target', suitable for use in log messages for identifying the
1743 * connection.
1744 *
1745 * The name is dynamically allocated. The caller should free it (with free())
1746 * when it is no longer needed. */
1747 static char *
1748 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1749 {
1750 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1751 }
1752
1753 static void
1754 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1755 {
1756 int i;
1757
1758 for (i = 0; i < N_SCHEDULERS; i++) {
1759 struct pinsched **s = &ofconn->schedulers[i];
1760
1761 if (rate > 0) {
1762 if (!*s) {
1763 *s = pinsched_create(rate, burst,
1764 ofconn->ofproto->switch_status);
1765 } else {
1766 pinsched_set_limits(*s, rate, burst);
1767 }
1768 } else {
1769 pinsched_destroy(*s);
1770 *s = NULL;
1771 }
1772 }
1773 }
1774 \f
1775 static void
1776 ofservice_reconfigure(struct ofservice *ofservice,
1777 const struct ofproto_controller *c)
1778 {
1779 ofservice->probe_interval = c->probe_interval;
1780 ofservice->rate_limit = c->rate_limit;
1781 ofservice->burst_limit = c->burst_limit;
1782 }
1783
1784 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1785 * positive errno value. */
1786 static int
1787 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1788 {
1789 struct ofservice *ofservice;
1790 struct pvconn *pvconn;
1791 int error;
1792
1793 error = pvconn_open(c->target, &pvconn);
1794 if (error) {
1795 return error;
1796 }
1797
1798 ofservice = xzalloc(sizeof *ofservice);
1799 hmap_insert(&ofproto->services, &ofservice->node,
1800 hash_string(c->target, 0));
1801 ofservice->pvconn = pvconn;
1802
1803 ofservice_reconfigure(ofservice, c);
1804
1805 return 0;
1806 }
1807
1808 static void
1809 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1810 {
1811 hmap_remove(&ofproto->services, &ofservice->node);
1812 pvconn_close(ofservice->pvconn);
1813 free(ofservice);
1814 }
1815
1816 /* Finds and returns the ofservice within 'ofproto' that has the given
1817 * 'target', or a null pointer if none exists. */
1818 static struct ofservice *
1819 ofservice_lookup(struct ofproto *ofproto, const char *target)
1820 {
1821 struct ofservice *ofservice;
1822
1823 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
1824 &ofproto->services) {
1825 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
1826 return ofservice;
1827 }
1828 }
1829 return NULL;
1830 }
1831 \f
1832 /* Caller is responsible for initializing the 'cr' member of the returned
1833 * rule. */
1834 static struct rule *
1835 rule_create(struct ofproto *ofproto, struct rule *super,
1836 const union ofp_action *actions, size_t n_actions,
1837 uint16_t idle_timeout, uint16_t hard_timeout,
1838 ovs_be64 flow_cookie, bool send_flow_removed)
1839 {
1840 struct rule *rule = xzalloc(sizeof *rule);
1841 rule->idle_timeout = idle_timeout;
1842 rule->hard_timeout = hard_timeout;
1843 rule->flow_cookie = flow_cookie;
1844 rule->used = rule->created = time_msec();
1845 rule->send_flow_removed = send_flow_removed;
1846 rule->super = super;
1847 if (super) {
1848 list_push_back(&super->list, &rule->list);
1849 } else {
1850 list_init(&rule->list);
1851 }
1852 if (n_actions > 0) {
1853 rule->n_actions = n_actions;
1854 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1855 }
1856 netflow_flow_clear(&rule->nf_flow);
1857 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->created);
1858
1859 return rule;
1860 }
1861
1862 static struct rule *
1863 rule_from_cls_rule(const struct cls_rule *cls_rule)
1864 {
1865 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
1866 }
1867
1868 static void
1869 rule_free(struct rule *rule)
1870 {
1871 free(rule->actions);
1872 free(rule->odp_actions);
1873 free(rule);
1874 }
1875
1876 /* Destroys 'rule'. If 'rule' is a subrule, also removes it from its
1877 * super-rule's list of subrules. If 'rule' is a super-rule, also iterates
1878 * through all of its subrules and revalidates them, destroying any that no
1879 * longer has a super-rule (which is probably all of them).
1880 *
1881 * Before calling this function, the caller must make have removed 'rule' from
1882 * the classifier. If 'rule' is an exact-match rule, the caller is also
1883 * responsible for ensuring that it has been uninstalled from the datapath. */
1884 static void
1885 rule_destroy(struct ofproto *ofproto, struct rule *rule)
1886 {
1887 if (!rule->super) {
1888 struct rule *subrule, *next;
1889 LIST_FOR_EACH_SAFE (subrule, next, list, &rule->list) {
1890 revalidate_rule(ofproto, subrule);
1891 }
1892 } else {
1893 list_remove(&rule->list);
1894 }
1895 rule_free(rule);
1896 }
1897
1898 static bool
1899 rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
1900 {
1901 const union ofp_action *oa;
1902 struct actions_iterator i;
1903
1904 if (out_port == htons(OFPP_NONE)) {
1905 return true;
1906 }
1907 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
1908 oa = actions_next(&i)) {
1909 if (action_outputs_to_port(oa, out_port)) {
1910 return true;
1911 }
1912 }
1913 return false;
1914 }
1915
1916 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
1917 * 'packet', which arrived on 'in_port'.
1918 *
1919 * Takes ownership of 'packet'. */
1920 static bool
1921 execute_odp_actions(struct ofproto *ofproto, uint16_t in_port,
1922 const union odp_action *actions, size_t n_actions,
1923 struct ofpbuf *packet)
1924 {
1925 if (n_actions == 1 && actions[0].type == ODPAT_CONTROLLER) {
1926 /* As an optimization, avoid a round-trip from userspace to kernel to
1927 * userspace. This also avoids possibly filling up kernel packet
1928 * buffers along the way. */
1929 struct odp_msg *msg;
1930
1931 msg = ofpbuf_push_uninit(packet, sizeof *msg);
1932 msg->type = _ODPL_ACTION_NR;
1933 msg->length = sizeof(struct odp_msg) + packet->size;
1934 msg->port = in_port;
1935 msg->reserved = 0;
1936 msg->arg = actions[0].controller.arg;
1937
1938 send_packet_in(ofproto, packet);
1939
1940 return true;
1941 } else {
1942 int error;
1943
1944 error = dpif_execute(ofproto->dpif, actions, n_actions, packet);
1945 ofpbuf_delete(packet);
1946 return !error;
1947 }
1948 }
1949
1950 /* Executes the actions indicated by 'rule' on 'packet', which is in flow
1951 * 'flow' and is considered to have arrived on ODP port 'in_port'. 'packet'
1952 * must have at least sizeof(struct ofp_packet_in) bytes of headroom.
1953 *
1954 * The flow that 'packet' actually contains does not need to actually match
1955 * 'rule'; the actions in 'rule' will be applied to it either way. Likewise,
1956 * the packet and byte counters for 'rule' will be credited for the packet sent
1957 * out whether or not the packet actually matches 'rule'.
1958 *
1959 * If 'rule' is an exact-match rule and 'flow' actually equals the rule's flow,
1960 * the caller must already have accurately composed ODP actions for it given
1961 * 'packet' using rule_make_actions(). If 'rule' is a wildcard rule, or if
1962 * 'rule' is an exact-match rule but 'flow' is not the rule's flow, then this
1963 * function will compose a set of ODP actions based on 'rule''s OpenFlow
1964 * actions and apply them to 'packet'.
1965 *
1966 * Takes ownership of 'packet'. */
1967 static void
1968 rule_execute(struct ofproto *ofproto, struct rule *rule,
1969 struct ofpbuf *packet, const struct flow *flow)
1970 {
1971 const union odp_action *actions;
1972 struct odp_flow_stats stats;
1973 size_t n_actions;
1974 struct odp_actions a;
1975
1976 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
1977
1978 /* Grab or compose the ODP actions.
1979 *
1980 * The special case for an exact-match 'rule' where 'flow' is not the
1981 * rule's flow is important to avoid, e.g., sending a packet out its input
1982 * port simply because the ODP actions were composed for the wrong
1983 * scenario. */
1984 if (rule->cr.wc.wildcards || !flow_equal(flow, &rule->cr.flow)) {
1985 struct rule *super = rule->super ? rule->super : rule;
1986 if (xlate_actions(super->actions, super->n_actions, flow, ofproto,
1987 packet, &a, NULL, 0, NULL)) {
1988 ofpbuf_delete(packet);
1989 return;
1990 }
1991 actions = a.actions;
1992 n_actions = a.n_actions;
1993 } else {
1994 actions = rule->odp_actions;
1995 n_actions = rule->n_odp_actions;
1996 }
1997
1998 /* Execute the ODP actions. */
1999 flow_extract_stats(flow, packet, &stats);
2000 if (execute_odp_actions(ofproto, flow->in_port,
2001 actions, n_actions, packet)) {
2002 update_stats(ofproto, rule, &stats);
2003 rule->used = time_msec();
2004 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->used);
2005 }
2006 }
2007
2008 /* Inserts 'rule' into 'p''s flow table.
2009 *
2010 * If 'packet' is nonnull, takes ownership of 'packet', executes 'rule''s
2011 * actions on it and credits the statistics for sending the packet to 'rule'.
2012 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of
2013 * headroom. */
2014 static void
2015 rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet,
2016 uint16_t in_port)
2017 {
2018 struct rule *displaced_rule;
2019
2020 /* Insert the rule in the classifier. */
2021 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2022 if (!rule->cr.wc.wildcards) {
2023 rule_make_actions(p, rule, packet);
2024 }
2025
2026 /* Send the packet and credit it to the rule. */
2027 if (packet) {
2028 struct flow flow;
2029 flow_extract(packet, 0, in_port, &flow);
2030 rule_execute(p, rule, packet, &flow);
2031 }
2032
2033 /* Install the rule in the datapath only after sending the packet, to
2034 * avoid packet reordering. */
2035 if (rule->cr.wc.wildcards) {
2036 COVERAGE_INC(ofproto_add_wc_flow);
2037 p->need_revalidate = true;
2038 } else {
2039 rule_install(p, rule, displaced_rule);
2040 }
2041
2042 /* Free the rule that was displaced, if any. */
2043 if (displaced_rule) {
2044 rule_destroy(p, displaced_rule);
2045 }
2046 }
2047
2048 static struct rule *
2049 rule_create_subrule(struct ofproto *ofproto, struct rule *rule,
2050 const struct flow *flow)
2051 {
2052 struct rule *subrule = rule_create(ofproto, rule, NULL, 0,
2053 rule->idle_timeout, rule->hard_timeout,
2054 0, false);
2055 COVERAGE_INC(ofproto_subrule_create);
2056 cls_rule_init_exact(flow, (rule->cr.priority <= UINT16_MAX ? UINT16_MAX
2057 : rule->cr.priority),
2058 &subrule->cr);
2059
2060 if (classifier_insert(&ofproto->cls, &subrule->cr)) {
2061 /* Can't happen, */
2062 NOT_REACHED();
2063 }
2064
2065 return subrule;
2066 }
2067
2068 /* Remove 'rule' from 'ofproto' and free up the associated memory:
2069 *
2070 * - If 'rule' was installed in the datapath, uninstalls it and updates
2071 * 'rule''s statistics (or its super-rule's statistics, if it is a
2072 * subrule), via rule_uninstall().
2073 *
2074 * - Removes 'rule' from the classifier.
2075 *
2076 * - If 'rule' is a super-rule that has subrules, revalidates (and possibly
2077 * uninstalls and destroys) its subrules, via rule_destroy().
2078 */
2079 static void
2080 rule_remove(struct ofproto *ofproto, struct rule *rule)
2081 {
2082 if (rule->cr.wc.wildcards) {
2083 COVERAGE_INC(ofproto_del_wc_flow);
2084 ofproto->need_revalidate = true;
2085 } else {
2086 rule_uninstall(ofproto, rule);
2087 }
2088 classifier_remove(&ofproto->cls, &rule->cr);
2089 rule_destroy(ofproto, rule);
2090 }
2091
2092 /* Returns true if the actions changed, false otherwise. */
2093 static bool
2094 rule_make_actions(struct ofproto *p, struct rule *rule,
2095 const struct ofpbuf *packet)
2096 {
2097 const struct rule *super;
2098 struct odp_actions a;
2099 size_t actions_len;
2100
2101 assert(!rule->cr.wc.wildcards);
2102
2103 super = rule->super ? rule->super : rule;
2104 rule->tags = 0;
2105 xlate_actions(super->actions, super->n_actions, &rule->cr.flow, p,
2106 packet, &a, &rule->tags, &rule->may_install,
2107 &rule->nf_flow.output_iface);
2108
2109 actions_len = a.n_actions * sizeof *a.actions;
2110 if (rule->n_odp_actions != a.n_actions
2111 || memcmp(rule->odp_actions, a.actions, actions_len)) {
2112 COVERAGE_INC(ofproto_odp_unchanged);
2113 free(rule->odp_actions);
2114 rule->n_odp_actions = a.n_actions;
2115 rule->odp_actions = xmemdup(a.actions, actions_len);
2116 return true;
2117 } else {
2118 return false;
2119 }
2120 }
2121
2122 static int
2123 do_put_flow(struct ofproto *ofproto, struct rule *rule, int flags,
2124 struct odp_flow_put *put)
2125 {
2126 memset(&put->flow.stats, 0, sizeof put->flow.stats);
2127 odp_flow_key_from_flow(&put->flow.key, &rule->cr.flow);
2128 put->flow.actions = rule->odp_actions;
2129 put->flow.n_actions = rule->n_odp_actions;
2130 put->flow.flags = 0;
2131 put->flags = flags;
2132 return dpif_flow_put(ofproto->dpif, put);
2133 }
2134
2135 static void
2136 rule_install(struct ofproto *p, struct rule *rule, struct rule *displaced_rule)
2137 {
2138 assert(!rule->cr.wc.wildcards);
2139
2140 if (rule->may_install) {
2141 struct odp_flow_put put;
2142 if (!do_put_flow(p, rule,
2143 ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS,
2144 &put)) {
2145 rule->installed = true;
2146 if (displaced_rule) {
2147 update_stats(p, displaced_rule, &put.flow.stats);
2148 rule_post_uninstall(p, displaced_rule);
2149 }
2150 }
2151 } else if (displaced_rule) {
2152 rule_uninstall(p, displaced_rule);
2153 }
2154 }
2155
2156 static void
2157 rule_reinstall(struct ofproto *ofproto, struct rule *rule)
2158 {
2159 if (rule->installed) {
2160 struct odp_flow_put put;
2161 COVERAGE_INC(ofproto_dp_missed);
2162 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put);
2163 } else {
2164 rule_install(ofproto, rule, NULL);
2165 }
2166 }
2167
2168 static void
2169 rule_update_actions(struct ofproto *ofproto, struct rule *rule)
2170 {
2171 bool actions_changed;
2172 uint16_t new_out_iface, old_out_iface;
2173
2174 old_out_iface = rule->nf_flow.output_iface;
2175 actions_changed = rule_make_actions(ofproto, rule, NULL);
2176
2177 if (rule->may_install) {
2178 if (rule->installed) {
2179 if (actions_changed) {
2180 struct odp_flow_put put;
2181 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY
2182 | ODPPF_ZERO_STATS, &put);
2183 update_stats(ofproto, rule, &put.flow.stats);
2184
2185 /* Temporarily set the old output iface so that NetFlow
2186 * messages have the correct output interface for the old
2187 * stats. */
2188 new_out_iface = rule->nf_flow.output_iface;
2189 rule->nf_flow.output_iface = old_out_iface;
2190 rule_post_uninstall(ofproto, rule);
2191 rule->nf_flow.output_iface = new_out_iface;
2192 }
2193 } else {
2194 rule_install(ofproto, rule, NULL);
2195 }
2196 } else {
2197 rule_uninstall(ofproto, rule);
2198 }
2199 }
2200
2201 static void
2202 rule_account(struct ofproto *ofproto, struct rule *rule, uint64_t extra_bytes)
2203 {
2204 uint64_t total_bytes = rule->byte_count + extra_bytes;
2205
2206 if (ofproto->ofhooks->account_flow_cb
2207 && total_bytes > rule->accounted_bytes)
2208 {
2209 ofproto->ofhooks->account_flow_cb(
2210 &rule->cr.flow, rule->tags, rule->odp_actions, rule->n_odp_actions,
2211 total_bytes - rule->accounted_bytes, ofproto->aux);
2212 rule->accounted_bytes = total_bytes;
2213 }
2214 }
2215
2216 /* 'rule' must be an exact-match rule in 'p'.
2217 *
2218 * If 'rule' is installed in the datapath, uninstalls it and updates's
2219 * statistics. If 'rule' is a subrule, the statistics that are updated are
2220 * actually its super-rule's statistics; otherwise 'rule''s own statistics are
2221 * updated.
2222 *
2223 * If 'rule' is not installed, this function has no effect. */
2224 static void
2225 rule_uninstall(struct ofproto *p, struct rule *rule)
2226 {
2227 assert(!rule->cr.wc.wildcards);
2228 if (rule->installed) {
2229 struct odp_flow odp_flow;
2230
2231 odp_flow_key_from_flow(&odp_flow.key, &rule->cr.flow);
2232 odp_flow.actions = NULL;
2233 odp_flow.n_actions = 0;
2234 odp_flow.flags = 0;
2235 if (!dpif_flow_del(p->dpif, &odp_flow)) {
2236 update_stats(p, rule, &odp_flow.stats);
2237 }
2238 rule->installed = false;
2239
2240 rule_post_uninstall(p, rule);
2241 }
2242 }
2243
2244 static bool
2245 is_controller_rule(struct rule *rule)
2246 {
2247 /* If the only action is send to the controller then don't report
2248 * NetFlow expiration messages since it is just part of the control
2249 * logic for the network and not real traffic. */
2250
2251 return (rule
2252 && rule->super
2253 && rule->super->n_actions == 1
2254 && action_outputs_to_port(&rule->super->actions[0],
2255 htons(OFPP_CONTROLLER)));
2256 }
2257
2258 static void
2259 rule_post_uninstall(struct ofproto *ofproto, struct rule *rule)
2260 {
2261 struct rule *super = rule->super;
2262
2263 rule_account(ofproto, rule, 0);
2264
2265 if (ofproto->netflow && !is_controller_rule(rule)) {
2266 struct ofexpired expired;
2267 expired.flow = rule->cr.flow;
2268 expired.packet_count = rule->packet_count;
2269 expired.byte_count = rule->byte_count;
2270 expired.used = rule->used;
2271 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
2272 }
2273 if (super) {
2274 super->packet_count += rule->packet_count;
2275 super->byte_count += rule->byte_count;
2276
2277 /* Reset counters to prevent double counting if the rule ever gets
2278 * reinstalled. */
2279 rule->packet_count = 0;
2280 rule->byte_count = 0;
2281 rule->accounted_bytes = 0;
2282
2283 netflow_flow_clear(&rule->nf_flow);
2284 }
2285 }
2286 \f
2287 static void
2288 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2289 struct rconn_packet_counter *counter)
2290 {
2291 update_openflow_length(msg);
2292 if (rconn_send(ofconn->rconn, msg, counter)) {
2293 ofpbuf_delete(msg);
2294 }
2295 }
2296
2297 static void
2298 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2299 int error)
2300 {
2301 struct ofpbuf *buf = make_ofp_error_msg(error, oh);
2302 if (buf) {
2303 COVERAGE_INC(ofproto_error);
2304 queue_tx(buf, ofconn, ofconn->reply_counter);
2305 }
2306 }
2307
2308 static void
2309 hton_ofp_phy_port(struct ofp_phy_port *opp)
2310 {
2311 opp->port_no = htons(opp->port_no);
2312 opp->config = htonl(opp->config);
2313 opp->state = htonl(opp->state);
2314 opp->curr = htonl(opp->curr);
2315 opp->advertised = htonl(opp->advertised);
2316 opp->supported = htonl(opp->supported);
2317 opp->peer = htonl(opp->peer);
2318 }
2319
2320 static int
2321 handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh)
2322 {
2323 struct ofp_header *rq = oh;
2324 queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter);
2325 return 0;
2326 }
2327
2328 static int
2329 handle_features_request(struct ofconn *ofconn, struct ofp_header *oh)
2330 {
2331 struct ofp_switch_features *osf;
2332 struct ofpbuf *buf;
2333 struct ofport *port;
2334
2335 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2336 osf->datapath_id = htonll(ofconn->ofproto->datapath_id);
2337 osf->n_buffers = htonl(pktbuf_capacity());
2338 osf->n_tables = 2;
2339 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2340 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2341 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2342 (1u << OFPAT_SET_VLAN_VID) |
2343 (1u << OFPAT_SET_VLAN_PCP) |
2344 (1u << OFPAT_STRIP_VLAN) |
2345 (1u << OFPAT_SET_DL_SRC) |
2346 (1u << OFPAT_SET_DL_DST) |
2347 (1u << OFPAT_SET_NW_SRC) |
2348 (1u << OFPAT_SET_NW_DST) |
2349 (1u << OFPAT_SET_NW_TOS) |
2350 (1u << OFPAT_SET_TP_SRC) |
2351 (1u << OFPAT_SET_TP_DST) |
2352 (1u << OFPAT_ENQUEUE));
2353
2354 HMAP_FOR_EACH (port, hmap_node, &ofconn->ofproto->ports) {
2355 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2356 }
2357
2358 queue_tx(buf, ofconn, ofconn->reply_counter);
2359 return 0;
2360 }
2361
2362 static int
2363 handle_get_config_request(struct ofconn *ofconn, struct ofp_header *oh)
2364 {
2365 struct ofpbuf *buf;
2366 struct ofp_switch_config *osc;
2367 uint16_t flags;
2368 bool drop_frags;
2369
2370 /* Figure out flags. */
2371 dpif_get_drop_frags(ofconn->ofproto->dpif, &drop_frags);
2372 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2373
2374 /* Send reply. */
2375 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2376 osc->flags = htons(flags);
2377 osc->miss_send_len = htons(ofconn->miss_send_len);
2378 queue_tx(buf, ofconn, ofconn->reply_counter);
2379
2380 return 0;
2381 }
2382
2383 static int
2384 handle_set_config(struct ofconn *ofconn, struct ofp_switch_config *osc)
2385 {
2386 uint16_t flags;
2387 int error;
2388
2389 error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc);
2390 if (error) {
2391 return error;
2392 }
2393 flags = ntohs(osc->flags);
2394
2395 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2396 switch (flags & OFPC_FRAG_MASK) {
2397 case OFPC_FRAG_NORMAL:
2398 dpif_set_drop_frags(ofconn->ofproto->dpif, false);
2399 break;
2400 case OFPC_FRAG_DROP:
2401 dpif_set_drop_frags(ofconn->ofproto->dpif, true);
2402 break;
2403 default:
2404 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2405 osc->flags);
2406 break;
2407 }
2408 }
2409
2410 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2411
2412 return 0;
2413 }
2414
2415 static void
2416 add_controller_action(struct odp_actions *actions, uint16_t max_len)
2417 {
2418 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
2419 a->controller.arg = max_len;
2420 }
2421
2422 struct action_xlate_ctx {
2423 /* Input. */
2424 struct flow flow; /* Flow to which these actions correspond. */
2425 int recurse; /* Recursion level, via xlate_table_action. */
2426 struct ofproto *ofproto;
2427 const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a
2428 * null pointer if we are revalidating
2429 * without a packet to refer to. */
2430
2431 /* Output. */
2432 struct odp_actions *out; /* Datapath actions. */
2433 tag_type *tags; /* Tags associated with OFPP_NORMAL actions. */
2434 bool may_set_up_flow; /* True ordinarily; false if the actions must
2435 * be reassessed for every packet. */
2436 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
2437 };
2438
2439 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
2440 * flow translation. */
2441 #define MAX_RESUBMIT_RECURSION 8
2442
2443 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2444 struct action_xlate_ctx *ctx);
2445
2446 static void
2447 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2448 {
2449 const struct ofport *ofport = get_port(ctx->ofproto, port);
2450
2451 if (ofport) {
2452 if (ofport->opp.config & OFPPC_NO_FWD) {
2453 /* Forwarding disabled on port. */
2454 return;
2455 }
2456 } else {
2457 /*
2458 * We don't have an ofport record for this port, but it doesn't hurt to
2459 * allow forwarding to it anyhow. Maybe such a port will appear later
2460 * and we're pre-populating the flow table.
2461 */
2462 }
2463
2464 odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port;
2465 ctx->nf_output_iface = port;
2466 }
2467
2468 static struct rule *
2469 lookup_valid_rule(struct ofproto *ofproto, const struct flow *flow)
2470 {
2471 struct rule *rule;
2472 rule = rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow,
2473 CLS_INC_ALL));
2474
2475 /* The rule we found might not be valid, since we could be in need of
2476 * revalidation. If it is not valid, don't return it. */
2477 if (rule
2478 && rule->super
2479 && ofproto->need_revalidate
2480 && !revalidate_rule(ofproto, rule)) {
2481 COVERAGE_INC(ofproto_invalidated);
2482 return NULL;
2483 }
2484
2485 return rule;
2486 }
2487
2488 static void
2489 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2490 {
2491 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2492 uint16_t old_in_port;
2493 struct rule *rule;
2494
2495 /* Look up a flow with 'in_port' as the input port. Then restore the
2496 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2497 * have surprising behavior). */
2498 old_in_port = ctx->flow.in_port;
2499 ctx->flow.in_port = in_port;
2500 rule = lookup_valid_rule(ctx->ofproto, &ctx->flow);
2501 ctx->flow.in_port = old_in_port;
2502
2503 if (rule) {
2504 if (rule->super) {
2505 rule = rule->super;
2506 }
2507
2508 ctx->recurse++;
2509 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2510 ctx->recurse--;
2511 }
2512 } else {
2513 struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2514
2515 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2516 MAX_RESUBMIT_RECURSION);
2517 }
2518 }
2519
2520 static void
2521 flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2522 uint16_t *nf_output_iface, struct odp_actions *actions)
2523 {
2524 struct ofport *ofport;
2525
2526 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2527 uint16_t odp_port = ofport->odp_port;
2528 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2529 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = odp_port;
2530 }
2531 }
2532 *nf_output_iface = NF_OUT_FLOOD;
2533 }
2534
2535 static void
2536 xlate_output_action__(struct action_xlate_ctx *ctx,
2537 uint16_t port, uint16_t max_len)
2538 {
2539 uint16_t odp_port;
2540 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2541
2542 ctx->nf_output_iface = NF_OUT_DROP;
2543
2544 switch (port) {
2545 case OFPP_IN_PORT:
2546 add_output_action(ctx, ctx->flow.in_port);
2547 break;
2548 case OFPP_TABLE:
2549 xlate_table_action(ctx, ctx->flow.in_port);
2550 break;
2551 case OFPP_NORMAL:
2552 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2553 ctx->out, ctx->tags,
2554 &ctx->nf_output_iface,
2555 ctx->ofproto->aux)) {
2556 COVERAGE_INC(ofproto_uninstallable);
2557 ctx->may_set_up_flow = false;
2558 }
2559 break;
2560 case OFPP_FLOOD:
2561 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2562 &ctx->nf_output_iface, ctx->out);
2563 break;
2564 case OFPP_ALL:
2565 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2566 &ctx->nf_output_iface, ctx->out);
2567 break;
2568 case OFPP_CONTROLLER:
2569 add_controller_action(ctx->out, max_len);
2570 break;
2571 case OFPP_LOCAL:
2572 add_output_action(ctx, ODPP_LOCAL);
2573 break;
2574 default:
2575 odp_port = ofp_port_to_odp_port(port);
2576 if (odp_port != ctx->flow.in_port) {
2577 add_output_action(ctx, odp_port);
2578 }
2579 break;
2580 }
2581
2582 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2583 ctx->nf_output_iface = NF_OUT_FLOOD;
2584 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2585 ctx->nf_output_iface = prev_nf_output_iface;
2586 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2587 ctx->nf_output_iface != NF_OUT_FLOOD) {
2588 ctx->nf_output_iface = NF_OUT_MULTI;
2589 }
2590 }
2591
2592 static void
2593 xlate_output_action(struct action_xlate_ctx *ctx,
2594 const struct ofp_action_output *oao)
2595 {
2596 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2597 }
2598
2599 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2600 * optimization, because we're going to add another action that sets the
2601 * priority immediately after, or because there are no actions following the
2602 * pop. */
2603 static void
2604 remove_pop_action(struct action_xlate_ctx *ctx)
2605 {
2606 size_t n = ctx->out->n_actions;
2607 if (n > 0 && ctx->out->actions[n - 1].type == ODPAT_POP_PRIORITY) {
2608 ctx->out->n_actions--;
2609 }
2610 }
2611
2612 static void
2613 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2614 const struct ofp_action_enqueue *oae)
2615 {
2616 uint16_t ofp_port, odp_port;
2617 uint32_t priority;
2618 int error;
2619
2620 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2621 &priority);
2622 if (error) {
2623 /* Fall back to ordinary output action. */
2624 xlate_output_action__(ctx, ntohs(oae->port), 0);
2625 return;
2626 }
2627
2628 /* Figure out ODP output port. */
2629 ofp_port = ntohs(oae->port);
2630 if (ofp_port != OFPP_IN_PORT) {
2631 odp_port = ofp_port_to_odp_port(ofp_port);
2632 } else {
2633 odp_port = ctx->flow.in_port;
2634 }
2635
2636 /* Add ODP actions. */
2637 remove_pop_action(ctx);
2638 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2639 = priority;
2640 add_output_action(ctx, odp_port);
2641 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2642
2643 /* Update NetFlow output port. */
2644 if (ctx->nf_output_iface == NF_OUT_DROP) {
2645 ctx->nf_output_iface = odp_port;
2646 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2647 ctx->nf_output_iface = NF_OUT_MULTI;
2648 }
2649 }
2650
2651 static void
2652 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2653 const struct nx_action_set_queue *nasq)
2654 {
2655 uint32_t priority;
2656 int error;
2657
2658 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2659 &priority);
2660 if (error) {
2661 /* Couldn't translate queue to a priority, so ignore. A warning
2662 * has already been logged. */
2663 return;
2664 }
2665
2666 remove_pop_action(ctx);
2667 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2668 = priority;
2669 }
2670
2671 static void
2672 xlate_nicira_action(struct action_xlate_ctx *ctx,
2673 const struct nx_action_header *nah)
2674 {
2675 const struct nx_action_resubmit *nar;
2676 const struct nx_action_set_tunnel *nast;
2677 const struct nx_action_set_queue *nasq;
2678 union odp_action *oa;
2679 int subtype = ntohs(nah->subtype);
2680
2681 assert(nah->vendor == htonl(NX_VENDOR_ID));
2682 switch (subtype) {
2683 case NXAST_RESUBMIT:
2684 nar = (const struct nx_action_resubmit *) nah;
2685 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2686 break;
2687
2688 case NXAST_SET_TUNNEL:
2689 nast = (const struct nx_action_set_tunnel *) nah;
2690 oa = odp_actions_add(ctx->out, ODPAT_SET_TUNNEL);
2691 ctx->flow.tun_id = oa->tunnel.tun_id = nast->tun_id;
2692 break;
2693
2694 case NXAST_DROP_SPOOFED_ARP:
2695 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2696 odp_actions_add(ctx->out, ODPAT_DROP_SPOOFED_ARP);
2697 }
2698 break;
2699
2700 case NXAST_SET_QUEUE:
2701 nasq = (const struct nx_action_set_queue *) nah;
2702 xlate_set_queue_action(ctx, nasq);
2703 break;
2704
2705 case NXAST_POP_QUEUE:
2706 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2707 break;
2708
2709 /* If you add a new action here that modifies flow data, don't forget to
2710 * update the flow key in ctx->flow at the same time. */
2711
2712 default:
2713 VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype);
2714 break;
2715 }
2716 }
2717
2718 static void
2719 do_xlate_actions(const union ofp_action *in, size_t n_in,
2720 struct action_xlate_ctx *ctx)
2721 {
2722 struct actions_iterator iter;
2723 const union ofp_action *ia;
2724 const struct ofport *port;
2725
2726 port = get_port(ctx->ofproto, ctx->flow.in_port);
2727 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2728 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
2729 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2730 /* Drop this flow. */
2731 return;
2732 }
2733
2734 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2735 uint16_t type = ntohs(ia->type);
2736 union odp_action *oa;
2737
2738 switch (type) {
2739 case OFPAT_OUTPUT:
2740 xlate_output_action(ctx, &ia->output);
2741 break;
2742
2743 case OFPAT_SET_VLAN_VID:
2744 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_TCI);
2745 oa->dl_tci.tci = ia->vlan_vid.vlan_vid;
2746 oa->dl_tci.tci |= htons(ctx->flow.dl_vlan_pcp << VLAN_PCP_SHIFT);
2747 ctx->flow.dl_vlan = ia->vlan_vid.vlan_vid;
2748 break;
2749
2750 case OFPAT_SET_VLAN_PCP:
2751 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_TCI);
2752 oa->dl_tci.tci = htons(ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT);
2753 oa->dl_tci.tci |= ctx->flow.dl_vlan;
2754 ctx->flow.dl_vlan_pcp = ia->vlan_pcp.vlan_pcp;
2755 break;
2756
2757 case OFPAT_STRIP_VLAN:
2758 odp_actions_add(ctx->out, ODPAT_STRIP_VLAN);
2759 ctx->flow.dl_vlan = htons(OFP_VLAN_NONE);
2760 ctx->flow.dl_vlan_pcp = 0;
2761 break;
2762
2763 case OFPAT_SET_DL_SRC:
2764 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC);
2765 memcpy(oa->dl_addr.dl_addr,
2766 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2767 memcpy(ctx->flow.dl_src,
2768 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2769 break;
2770
2771 case OFPAT_SET_DL_DST:
2772 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST);
2773 memcpy(oa->dl_addr.dl_addr,
2774 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2775 memcpy(ctx->flow.dl_dst,
2776 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2777 break;
2778
2779 case OFPAT_SET_NW_SRC:
2780 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC);
2781 ctx->flow.nw_src = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2782 break;
2783
2784 case OFPAT_SET_NW_DST:
2785 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_DST);
2786 ctx->flow.nw_dst = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2787 break;
2788
2789 case OFPAT_SET_NW_TOS:
2790 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_TOS);
2791 ctx->flow.nw_tos = oa->nw_tos.nw_tos = ia->nw_tos.nw_tos;
2792 break;
2793
2794 case OFPAT_SET_TP_SRC:
2795 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC);
2796 ctx->flow.tp_src = oa->tp_port.tp_port = ia->tp_port.tp_port;
2797 break;
2798
2799 case OFPAT_SET_TP_DST:
2800 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_DST);
2801 ctx->flow.tp_dst = oa->tp_port.tp_port = ia->tp_port.tp_port;
2802 break;
2803
2804 case OFPAT_VENDOR:
2805 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
2806 break;
2807
2808 case OFPAT_ENQUEUE:
2809 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
2810 break;
2811
2812 default:
2813 VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type);
2814 break;
2815 }
2816 }
2817 }
2818
2819 static int
2820 xlate_actions(const union ofp_action *in, size_t n_in,
2821 const struct flow *flow, struct ofproto *ofproto,
2822 const struct ofpbuf *packet,
2823 struct odp_actions *out, tag_type *tags, bool *may_set_up_flow,
2824 uint16_t *nf_output_iface)
2825 {
2826 tag_type no_tags = 0;
2827 struct action_xlate_ctx ctx;
2828 COVERAGE_INC(ofproto_ofp2odp);
2829 odp_actions_init(out);
2830 ctx.flow = *flow;
2831 ctx.recurse = 0;
2832 ctx.ofproto = ofproto;
2833 ctx.packet = packet;
2834 ctx.out = out;
2835 ctx.tags = tags ? tags : &no_tags;
2836 ctx.may_set_up_flow = true;
2837 ctx.nf_output_iface = NF_OUT_DROP;
2838 do_xlate_actions(in, n_in, &ctx);
2839 remove_pop_action(&ctx);
2840
2841 /* Check with in-band control to see if we're allowed to set up this
2842 * flow. */
2843 if (!in_band_rule_check(ofproto->in_band, flow, out)) {
2844 ctx.may_set_up_flow = false;
2845 }
2846
2847 if (may_set_up_flow) {
2848 *may_set_up_flow = ctx.may_set_up_flow;
2849 }
2850 if (nf_output_iface) {
2851 *nf_output_iface = ctx.nf_output_iface;
2852 }
2853 if (odp_actions_overflow(out)) {
2854 COVERAGE_INC(odp_overflow);
2855 odp_actions_init(out);
2856 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
2857 }
2858 return 0;
2859 }
2860
2861 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
2862 * error message code (composed with ofp_mkerr()) for the caller to propagate
2863 * upward. Otherwise, returns 0.
2864 *
2865 * The log message mentions 'msg_type'. */
2866 static int
2867 reject_slave_controller(struct ofconn *ofconn, const const char *msg_type)
2868 {
2869 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
2870 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
2871 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
2872 msg_type);
2873
2874 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
2875 } else {
2876 return 0;
2877 }
2878 }
2879
2880 static int
2881 handle_packet_out(struct ofconn *ofconn, struct ofp_header *oh)
2882 {
2883 struct ofproto *p = ofconn->ofproto;
2884 struct ofp_packet_out *opo;
2885 struct ofpbuf payload, *buffer;
2886 struct odp_actions actions;
2887 struct flow flow;
2888 int n_actions;
2889 uint16_t in_port;
2890 int error;
2891
2892 error = reject_slave_controller(ofconn, "OFPT_PACKET_OUT");
2893 if (error) {
2894 return error;
2895 }
2896
2897 error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports);
2898 if (error) {
2899 return error;
2900 }
2901 opo = (struct ofp_packet_out *) oh;
2902
2903 COVERAGE_INC(ofproto_packet_out);
2904 if (opo->buffer_id != htonl(UINT32_MAX)) {
2905 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
2906 &buffer, &in_port);
2907 if (error || !buffer) {
2908 return error;
2909 }
2910 payload = *buffer;
2911 } else {
2912 buffer = NULL;
2913 }
2914
2915 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow);
2916 error = xlate_actions((const union ofp_action *) opo->actions, n_actions,
2917 &flow, p, &payload, &actions, NULL, NULL, NULL);
2918 if (!error) {
2919 dpif_execute(p->dpif, actions.actions, actions.n_actions, &payload);
2920 }
2921 ofpbuf_delete(buffer);
2922
2923 return error;
2924 }
2925
2926 static void
2927 update_port_config(struct ofproto *p, struct ofport *port,
2928 uint32_t config, uint32_t mask)
2929 {
2930 mask &= config ^ port->opp.config;
2931 if (mask & OFPPC_PORT_DOWN) {
2932 if (config & OFPPC_PORT_DOWN) {
2933 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
2934 } else {
2935 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
2936 }
2937 }
2938 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
2939 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
2940 if (mask & REVALIDATE_BITS) {
2941 COVERAGE_INC(ofproto_costly_flags);
2942 port->opp.config ^= mask & REVALIDATE_BITS;
2943 p->need_revalidate = true;
2944 }
2945 #undef REVALIDATE_BITS
2946 if (mask & OFPPC_NO_PACKET_IN) {
2947 port->opp.config ^= OFPPC_NO_PACKET_IN;
2948 }
2949 }
2950
2951 static int
2952 handle_port_mod(struct ofconn *ofconn, struct ofp_header *oh)
2953 {
2954 struct ofproto *p = ofconn->ofproto;
2955 const struct ofp_port_mod *opm;
2956 struct ofport *port;
2957 int error;
2958
2959 error = reject_slave_controller(ofconn, "OFPT_PORT_MOD");
2960 if (error) {
2961 return error;
2962 }
2963 error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm);
2964 if (error) {
2965 return error;
2966 }
2967 opm = (struct ofp_port_mod *) oh;
2968
2969 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
2970 if (!port) {
2971 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
2972 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
2973 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
2974 } else {
2975 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
2976 if (opm->advertise) {
2977 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
2978 }
2979 }
2980 return 0;
2981 }
2982
2983 static struct ofpbuf *
2984 make_ofp_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
2985 {
2986 struct ofp_stats_reply *osr;
2987 struct ofpbuf *msg;
2988
2989 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
2990 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
2991 osr->type = type;
2992 osr->flags = htons(0);
2993 return msg;
2994 }
2995
2996 static struct ofpbuf *
2997 start_ofp_stats_reply(const struct ofp_stats_request *request, size_t body_len)
2998 {
2999 return make_ofp_stats_reply(request->header.xid, request->type, body_len);
3000 }
3001
3002 static void *
3003 append_ofp_stats_reply(size_t nbytes, struct ofconn *ofconn,
3004 struct ofpbuf **msgp)
3005 {
3006 struct ofpbuf *msg = *msgp;
3007 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3008 if (nbytes + msg->size > UINT16_MAX) {
3009 struct ofp_stats_reply *reply = msg->data;
3010 reply->flags = htons(OFPSF_REPLY_MORE);
3011 *msgp = make_ofp_stats_reply(reply->header.xid, reply->type, nbytes);
3012 queue_tx(msg, ofconn, ofconn->reply_counter);
3013 }
3014 return ofpbuf_put_uninit(*msgp, nbytes);
3015 }
3016
3017 static int
3018 handle_desc_stats_request(struct ofconn *ofconn,
3019 struct ofp_stats_request *request)
3020 {
3021 struct ofproto *p = ofconn->ofproto;
3022 struct ofp_desc_stats *ods;
3023 struct ofpbuf *msg;
3024
3025 msg = start_ofp_stats_reply(request, sizeof *ods);
3026 ods = append_ofp_stats_reply(sizeof *ods, ofconn, &msg);
3027 memset(ods, 0, sizeof *ods);
3028 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3029 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3030 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3031 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3032 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3033 queue_tx(msg, ofconn, ofconn->reply_counter);
3034
3035 return 0;
3036 }
3037
3038 static int
3039 handle_table_stats_request(struct ofconn *ofconn,
3040 struct ofp_stats_request *request)
3041 {
3042 struct ofproto *p = ofconn->ofproto;
3043 struct ofp_table_stats *ots;
3044 struct ofpbuf *msg;
3045 struct rule *rule;
3046 int n_rules;
3047
3048 msg = start_ofp_stats_reply(request, sizeof *ots * 2);
3049
3050 /* Count rules other than subrules. */
3051 n_rules = classifier_count(&p->cls);
3052 CLASSIFIER_FOR_EACH_EXACT_RULE (rule, cr, &p->cls) {
3053 if (rule->super) {
3054 n_rules--;
3055 }
3056 }
3057
3058 /* Classifier table. */
3059 ots = append_ofp_stats_reply(sizeof *ots, ofconn, &msg);
3060 memset(ots, 0, sizeof *ots);
3061 strcpy(ots->name, "classifier");
3062 ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10
3063 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3064 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3065 ots->active_count = htonl(n_rules);
3066 ots->lookup_count = htonll(0); /* XXX */
3067 ots->matched_count = htonll(0); /* XXX */
3068
3069 queue_tx(msg, ofconn, ofconn->reply_counter);
3070 return 0;
3071 }
3072
3073 static void
3074 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3075 struct ofpbuf **msgp)
3076 {
3077 struct netdev_stats stats;
3078 struct ofp_port_stats *ops;
3079
3080 /* Intentionally ignore return value, since errors will set
3081 * 'stats' to all-1s, which is correct for OpenFlow, and
3082 * netdev_get_stats() will log errors. */
3083 netdev_get_stats(port->netdev, &stats);
3084
3085 ops = append_ofp_stats_reply(sizeof *ops, ofconn, msgp);
3086 ops->port_no = htons(port->opp.port_no);
3087 memset(ops->pad, 0, sizeof ops->pad);
3088 ops->rx_packets = htonll(stats.rx_packets);
3089 ops->tx_packets = htonll(stats.tx_packets);
3090 ops->rx_bytes = htonll(stats.rx_bytes);
3091 ops->tx_bytes = htonll(stats.tx_bytes);
3092 ops->rx_dropped = htonll(stats.rx_dropped);
3093 ops->tx_dropped = htonll(stats.tx_dropped);
3094 ops->rx_errors = htonll(stats.rx_errors);
3095 ops->tx_errors = htonll(stats.tx_errors);
3096 ops->rx_frame_err = htonll(stats.rx_frame_errors);
3097 ops->rx_over_err = htonll(stats.rx_over_errors);
3098 ops->rx_crc_err = htonll(stats.rx_crc_errors);
3099 ops->collisions = htonll(stats.collisions);
3100 }
3101
3102 static int
3103 handle_port_stats_request(struct ofconn *ofconn, struct ofp_stats_request *osr,
3104 size_t arg_size)
3105 {
3106 struct ofproto *p = ofconn->ofproto;
3107 struct ofp_port_stats_request *psr;
3108 struct ofp_port_stats *ops;
3109 struct ofpbuf *msg;
3110 struct ofport *port;
3111
3112 if (arg_size != sizeof *psr) {
3113 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3114 }
3115 psr = (struct ofp_port_stats_request *) osr->body;
3116
3117 msg = start_ofp_stats_reply(osr, sizeof *ops * 16);
3118 if (psr->port_no != htons(OFPP_NONE)) {
3119 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3120 if (port) {
3121 append_port_stat(port, ofconn, &msg);
3122 }
3123 } else {
3124 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3125 append_port_stat(port, ofconn, &msg);
3126 }
3127 }
3128
3129 queue_tx(msg, ofconn, ofconn->reply_counter);
3130 return 0;
3131 }
3132
3133 struct flow_stats_cbdata {
3134 struct ofconn *ofconn;
3135 ovs_be16 out_port;
3136 struct ofpbuf *msg;
3137 };
3138
3139 /* Obtains statistic counters for 'rule' within 'p' and stores them into
3140 * '*packet_countp' and '*byte_countp'. If 'rule' is a wildcarded rule, the
3141 * returned statistic include statistics for all of 'rule''s subrules. */
3142 static void
3143 query_stats(struct ofproto *p, struct rule *rule,
3144 uint64_t *packet_countp, uint64_t *byte_countp)
3145 {
3146 uint64_t packet_count, byte_count;
3147 struct rule *subrule;
3148 struct odp_flow *odp_flows;
3149 size_t n_odp_flows;
3150
3151 /* Start from historical data for 'rule' itself that are no longer tracked
3152 * by the datapath. This counts, for example, subrules that have
3153 * expired. */
3154 packet_count = rule->packet_count;
3155 byte_count = rule->byte_count;
3156
3157 /* Prepare to ask the datapath for statistics on 'rule', or if it is
3158 * wildcarded then on all of its subrules.
3159 *
3160 * Also, add any statistics that are not tracked by the datapath for each
3161 * subrule. This includes, for example, statistics for packets that were
3162 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3163 * to a flow. */
3164 n_odp_flows = rule->cr.wc.wildcards ? list_size(&rule->list) : 1;
3165 odp_flows = xzalloc(n_odp_flows * sizeof *odp_flows);
3166 if (rule->cr.wc.wildcards) {
3167 size_t i = 0;
3168 LIST_FOR_EACH (subrule, list, &rule->list) {
3169 odp_flow_key_from_flow(&odp_flows[i++].key, &subrule->cr.flow);
3170 packet_count += subrule->packet_count;
3171 byte_count += subrule->byte_count;
3172 }
3173 } else {
3174 odp_flow_key_from_flow(&odp_flows[0].key, &rule->cr.flow);
3175 }
3176
3177 /* Fetch up-to-date statistics from the datapath and add them in. */
3178 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
3179 size_t i;
3180 for (i = 0; i < n_odp_flows; i++) {
3181 struct odp_flow *odp_flow = &odp_flows[i];
3182 packet_count += odp_flow->stats.n_packets;
3183 byte_count += odp_flow->stats.n_bytes;
3184 }
3185 }
3186 free(odp_flows);
3187
3188 /* Return the stats to the caller. */
3189 *packet_countp = packet_count;
3190 *byte_countp = byte_count;
3191 }
3192
3193 static void
3194 calc_flow_duration(long long int start, ovs_be32 *sec, ovs_be32 *nsec)
3195 {
3196 long long int msecs = time_msec() - start;
3197 *sec = htonl(msecs / 1000);
3198 *nsec = htonl((msecs % 1000) * (1000 * 1000));
3199 }
3200
3201 static void
3202 flow_stats_cb(struct cls_rule *rule_, void *cbdata_)
3203 {
3204 struct rule *rule = rule_from_cls_rule(rule_);
3205 struct flow_stats_cbdata *cbdata = cbdata_;
3206 struct ofp_flow_stats *ofs;
3207 uint64_t packet_count, byte_count;
3208 size_t act_len, len;
3209
3210 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3211 return;
3212 }
3213
3214 act_len = sizeof *rule->actions * rule->n_actions;
3215 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3216
3217 query_stats(cbdata->ofconn->ofproto, rule, &packet_count, &byte_count);
3218
3219 ofs = append_ofp_stats_reply(len, cbdata->ofconn, &cbdata->msg);
3220 ofs->length = htons(len);
3221 ofs->table_id = 0;
3222 ofs->pad = 0;
3223 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3224 cbdata->ofconn->flow_format, &ofs->match);
3225 calc_flow_duration(rule->created, &ofs->duration_sec, &ofs->duration_nsec);
3226 ofs->cookie = rule->flow_cookie;
3227 ofs->priority = htons(rule->cr.priority);
3228 ofs->idle_timeout = htons(rule->idle_timeout);
3229 ofs->hard_timeout = htons(rule->hard_timeout);
3230 memset(ofs->pad2, 0, sizeof ofs->pad2);
3231 ofs->packet_count = htonll(packet_count);
3232 ofs->byte_count = htonll(byte_count);
3233 if (rule->n_actions > 0) {
3234 memcpy(ofs->actions, rule->actions, act_len);
3235 }
3236 }
3237
3238 static int
3239 table_id_to_include(uint8_t table_id)
3240 {
3241 return table_id == 0 || table_id == 0xff ? CLS_INC_ALL : 0;
3242 }
3243
3244 static int
3245 handle_flow_stats_request(struct ofconn *ofconn,
3246 const struct ofp_stats_request *osr, size_t arg_size)
3247 {
3248 struct ofp_flow_stats_request *fsr;
3249 struct flow_stats_cbdata cbdata;
3250 struct cls_rule target;
3251
3252 if (arg_size != sizeof *fsr) {
3253 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3254 }
3255 fsr = (struct ofp_flow_stats_request *) osr->body;
3256
3257 COVERAGE_INC(ofproto_flows_req);
3258 cbdata.ofconn = ofconn;
3259 cbdata.out_port = fsr->out_port;
3260 cbdata.msg = start_ofp_stats_reply(osr, 1024);
3261 cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0, &target);
3262 classifier_for_each_match(&ofconn->ofproto->cls, &target,
3263 table_id_to_include(fsr->table_id),
3264 flow_stats_cb, &cbdata);
3265 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3266 return 0;
3267 }
3268
3269 struct flow_stats_ds_cbdata {
3270 struct ofproto *ofproto;
3271 struct ds *results;
3272 };
3273
3274 static void
3275 flow_stats_ds_cb(struct cls_rule *rule_, void *cbdata_)
3276 {
3277 struct rule *rule = rule_from_cls_rule(rule_);
3278 struct flow_stats_ds_cbdata *cbdata = cbdata_;
3279 struct ds *results = cbdata->results;
3280 struct ofp_match match;
3281 uint64_t packet_count, byte_count;
3282 size_t act_len = sizeof *rule->actions * rule->n_actions;
3283
3284 /* Don't report on subrules. */
3285 if (rule->super != NULL) {
3286 return;
3287 }
3288
3289 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3290 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3291 NXFF_OPENFLOW10, &match);
3292
3293 ds_put_format(results, "duration=%llds, ",
3294 (time_msec() - rule->created) / 1000);
3295 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3296 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3297 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3298 ofp_print_match(results, &match, true);
3299 if (act_len > 0) {
3300 ofp_print_actions(results, &rule->actions->header, act_len);
3301 } else {
3302 ds_put_cstr(results, "drop");
3303 }
3304 ds_put_cstr(results, "\n");
3305 }
3306
3307 /* Adds a pretty-printed description of all flows to 'results', including
3308 * those marked hidden by secchan (e.g., by in-band control). */
3309 void
3310 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3311 {
3312 struct ofp_match match;
3313 struct cls_rule target;
3314 struct flow_stats_ds_cbdata cbdata;
3315
3316 memset(&match, 0, sizeof match);
3317 match.wildcards = htonl(OVSFW_ALL);
3318
3319 cbdata.ofproto = p;
3320 cbdata.results = results;
3321
3322 cls_rule_from_match(&match, 0, NXFF_OPENFLOW10, 0, &target);
3323 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3324 flow_stats_ds_cb, &cbdata);
3325 }
3326
3327 struct aggregate_stats_cbdata {
3328 struct ofproto *ofproto;
3329 ovs_be16 out_port;
3330 uint64_t packet_count;
3331 uint64_t byte_count;
3332 uint32_t n_flows;
3333 };
3334
3335 static void
3336 aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_)
3337 {
3338 struct rule *rule = rule_from_cls_rule(rule_);
3339 struct aggregate_stats_cbdata *cbdata = cbdata_;
3340 uint64_t packet_count, byte_count;
3341
3342 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3343 return;
3344 }
3345
3346 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3347
3348 cbdata->packet_count += packet_count;
3349 cbdata->byte_count += byte_count;
3350 cbdata->n_flows++;
3351 }
3352
3353 static void
3354 query_aggregate_stats(struct ofproto *ofproto, struct cls_rule *target,
3355 ovs_be16 out_port, uint8_t table_id,
3356 struct ofp_aggregate_stats_reply *oasr)
3357 {
3358 struct aggregate_stats_cbdata cbdata;
3359
3360 COVERAGE_INC(ofproto_agg_request);
3361 cbdata.ofproto = ofproto;
3362 cbdata.out_port = out_port;
3363 cbdata.packet_count = 0;
3364 cbdata.byte_count = 0;
3365 cbdata.n_flows = 0;
3366 classifier_for_each_match(&ofproto->cls, target,
3367 table_id_to_include(table_id),
3368 aggregate_stats_cb, &cbdata);
3369
3370 oasr->flow_count = htonl(cbdata.n_flows);
3371 oasr->packet_count = htonll(cbdata.packet_count);
3372 oasr->byte_count = htonll(cbdata.byte_count);
3373 memset(oasr->pad, 0, sizeof oasr->pad);
3374 }
3375
3376 static int
3377 handle_aggregate_stats_request(struct ofconn *ofconn,
3378 const struct ofp_stats_request *osr,
3379 size_t arg_size)
3380 {
3381 struct ofp_aggregate_stats_request *request;
3382 struct ofp_aggregate_stats_reply *reply;
3383 struct cls_rule target;
3384 struct ofpbuf *msg;
3385
3386 if (arg_size != sizeof *request) {
3387 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3388 }
3389 request = (struct ofp_aggregate_stats_request *) osr->body;
3390
3391 cls_rule_from_match(&request->match, 0, NXFF_OPENFLOW10, 0, &target);
3392
3393 msg = start_ofp_stats_reply(osr, sizeof *reply);
3394 reply = append_ofp_stats_reply(sizeof *reply, ofconn, &msg);
3395 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3396 request->table_id, reply);
3397 queue_tx(msg, ofconn, ofconn->reply_counter);
3398 return 0;
3399 }
3400
3401 struct queue_stats_cbdata {
3402 struct ofconn *ofconn;
3403 struct ofport *ofport;
3404 struct ofpbuf *msg;
3405 };
3406
3407 static void
3408 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3409 const struct netdev_queue_stats *stats)
3410 {
3411 struct ofp_queue_stats *reply;
3412
3413 reply = append_ofp_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3414 reply->port_no = htons(cbdata->ofport->opp.port_no);
3415 memset(reply->pad, 0, sizeof reply->pad);
3416 reply->queue_id = htonl(queue_id);
3417 reply->tx_bytes = htonll(stats->tx_bytes);
3418 reply->tx_packets = htonll(stats->tx_packets);
3419 reply->tx_errors = htonll(stats->tx_errors);
3420 }
3421
3422 static void
3423 handle_queue_stats_dump_cb(uint32_t queue_id,
3424 struct netdev_queue_stats *stats,
3425 void *cbdata_)
3426 {
3427 struct queue_stats_cbdata *cbdata = cbdata_;
3428
3429 put_queue_stats(cbdata, queue_id, stats);
3430 }
3431
3432 static void
3433 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3434 struct queue_stats_cbdata *cbdata)
3435 {
3436 cbdata->ofport = port;
3437 if (queue_id == OFPQ_ALL) {
3438 netdev_dump_queue_stats(port->netdev,
3439 handle_queue_stats_dump_cb, cbdata);
3440 } else {
3441 struct netdev_queue_stats stats;
3442
3443 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3444 put_queue_stats(cbdata, queue_id, &stats);
3445 }
3446 }
3447 }
3448
3449 static int
3450 handle_queue_stats_request(struct ofconn *ofconn,
3451 const struct ofp_stats_request *osr,
3452 size_t arg_size)
3453 {
3454 struct ofproto *ofproto = ofconn->ofproto;
3455 struct ofp_queue_stats_request *qsr;
3456 struct queue_stats_cbdata cbdata;
3457 struct ofport *port;
3458 unsigned int port_no;
3459 uint32_t queue_id;
3460
3461 if (arg_size != sizeof *qsr) {
3462 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3463 }
3464 qsr = (struct ofp_queue_stats_request *) osr->body;
3465
3466 COVERAGE_INC(ofproto_queue_req);
3467
3468 cbdata.ofconn = ofconn;
3469 cbdata.msg = start_ofp_stats_reply(osr, 128);
3470
3471 port_no = ntohs(qsr->port_no);
3472 queue_id = ntohl(qsr->queue_id);
3473 if (port_no == OFPP_ALL) {
3474 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3475 handle_queue_stats_for_port(port, queue_id, &cbdata);
3476 }
3477 } else if (port_no < ofproto->max_ports) {
3478 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3479 if (port) {
3480 handle_queue_stats_for_port(port, queue_id, &cbdata);
3481 }
3482 } else {
3483 ofpbuf_delete(cbdata.msg);
3484 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3485 }
3486 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3487
3488 return 0;
3489 }
3490
3491 static int
3492 handle_stats_request(struct ofconn *ofconn, struct ofp_header *oh)
3493 {
3494 struct ofp_stats_request *osr;
3495 size_t arg_size;
3496 int error;
3497
3498 error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr,
3499 1, &arg_size);
3500 if (error) {
3501 return error;
3502 }
3503 osr = (struct ofp_stats_request *) oh;
3504
3505 switch (ntohs(osr->type)) {
3506 case OFPST_DESC:
3507 return handle_desc_stats_request(ofconn, osr);
3508
3509 case OFPST_FLOW:
3510 return handle_flow_stats_request(ofconn, osr, arg_size);
3511
3512 case OFPST_AGGREGATE:
3513 return handle_aggregate_stats_request(ofconn, osr, arg_size);
3514
3515 case OFPST_TABLE:
3516 return handle_table_stats_request(ofconn, osr);
3517
3518 case OFPST_PORT:
3519 return handle_port_stats_request(ofconn, osr, arg_size);
3520
3521 case OFPST_QUEUE:
3522 return handle_queue_stats_request(ofconn, osr, arg_size);
3523
3524 case OFPST_VENDOR:
3525 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3526
3527 default:
3528 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
3529 }
3530 }
3531
3532 static long long int
3533 msec_from_nsec(uint64_t sec, uint32_t nsec)
3534 {
3535 return !sec ? 0 : sec * 1000 + nsec / 1000000;
3536 }
3537
3538 static void
3539 update_time(struct ofproto *ofproto, struct rule *rule,
3540 const struct odp_flow_stats *stats)
3541 {
3542 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
3543 if (used > rule->used) {
3544 rule->used = used;
3545 if (rule->super && used > rule->super->used) {
3546 rule->super->used = used;
3547 }
3548 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, used);
3549 }
3550 }
3551
3552 static void
3553 update_stats(struct ofproto *ofproto, struct rule *rule,
3554 const struct odp_flow_stats *stats)
3555 {
3556 if (stats->n_packets) {
3557 update_time(ofproto, rule, stats);
3558 rule->packet_count += stats->n_packets;
3559 rule->byte_count += stats->n_bytes;
3560 netflow_flow_update_flags(&rule->nf_flow, stats->tcp_flags);
3561 }
3562 }
3563
3564 struct flow_mod {
3565 struct cls_rule cr;
3566 ovs_be64 cookie;
3567 uint16_t command;
3568 uint16_t idle_timeout;
3569 uint16_t hard_timeout;
3570 uint32_t buffer_id;
3571 uint16_t out_port;
3572 uint16_t flags;
3573 union ofp_action *actions;
3574 size_t n_actions;
3575 };
3576
3577 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3578 * in which no matching flow already exists in the flow table.
3579 *
3580 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3581 * ofp_actions, to ofconn->ofproto's flow table. Returns 0 on success or an
3582 * OpenFlow error code as encoded by ofp_mkerr() on failure.
3583 *
3584 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3585 * if any. */
3586 static int
3587 add_flow(struct ofconn *ofconn, struct flow_mod *fm)
3588 {
3589 struct ofproto *p = ofconn->ofproto;
3590 struct ofpbuf *packet;
3591 struct rule *rule;
3592 uint16_t in_port;
3593 int error;
3594
3595 if (fm->flags & OFPFF_CHECK_OVERLAP
3596 && classifier_rule_overlaps(&p->cls, &fm->cr)) {
3597 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3598 }
3599
3600 rule = rule_create(p, NULL, fm->actions, fm->n_actions,
3601 fm->idle_timeout, fm->hard_timeout, fm->cookie,
3602 fm->flags & OFPFF_SEND_FLOW_REM);
3603 rule->cr = fm->cr;
3604
3605 error = 0;
3606 if (fm->buffer_id != UINT32_MAX) {
3607 error = pktbuf_retrieve(ofconn->pktbuf, fm->buffer_id,
3608 &packet, &in_port);
3609 } else {
3610 packet = NULL;
3611 in_port = UINT16_MAX;
3612 }
3613
3614 rule_insert(p, rule, packet, in_port);
3615 return error;
3616 }
3617
3618 static struct rule *
3619 find_flow_strict(struct ofproto *p, const struct flow_mod *fm)
3620 {
3621 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &fm->cr));
3622 }
3623
3624 static int
3625 send_buffered_packet(struct ofconn *ofconn,
3626 struct rule *rule, uint32_t buffer_id)
3627 {
3628 struct ofpbuf *packet;
3629 uint16_t in_port;
3630 struct flow flow;
3631 int error;
3632
3633 if (buffer_id == UINT32_MAX) {
3634 return 0;
3635 }
3636
3637 error = pktbuf_retrieve(ofconn->pktbuf, buffer_id, &packet, &in_port);
3638 if (error) {
3639 return error;
3640 }
3641
3642 flow_extract(packet, 0, in_port, &flow);
3643 rule_execute(ofconn->ofproto, rule, packet, &flow);
3644
3645 return 0;
3646 }
3647 \f
3648 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3649
3650 struct modify_flows_cbdata {
3651 struct ofproto *ofproto;
3652 const struct flow_mod *fm;
3653 struct rule *match;
3654 };
3655
3656 static int modify_flow(struct ofproto *, const struct flow_mod *,
3657 struct rule *);
3658 static void modify_flows_cb(struct cls_rule *, void *cbdata_);
3659
3660 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3661 * encoded by ofp_mkerr() on failure.
3662 *
3663 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3664 * if any. */
3665 static int
3666 modify_flows_loose(struct ofconn *ofconn, struct flow_mod *fm)
3667 {
3668 struct modify_flows_cbdata cbdata;
3669
3670 cbdata.ofproto = ofconn->ofproto;
3671 cbdata.fm = fm;
3672 cbdata.match = NULL;
3673
3674 classifier_for_each_match(&ofconn->ofproto->cls, &fm->cr, CLS_INC_ALL,
3675 modify_flows_cb, &cbdata);
3676 if (cbdata.match) {
3677 /* This credits the packet to whichever flow happened to happened to
3678 * match last. That's weird. Maybe we should do a lookup for the
3679 * flow that actually matches the packet? Who knows. */
3680 send_buffered_packet(ofconn, cbdata.match, fm->buffer_id);
3681 return 0;
3682 } else {
3683 return add_flow(ofconn, fm);
3684 }
3685 }
3686
3687 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
3688 * code as encoded by ofp_mkerr() on failure.
3689 *
3690 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3691 * if any. */
3692 static int
3693 modify_flow_strict(struct ofconn *ofconn, struct flow_mod *fm)
3694 {
3695 struct ofproto *p = ofconn->ofproto;
3696 struct rule *rule = find_flow_strict(p, fm);
3697 if (rule && !rule_is_hidden(rule)) {
3698 modify_flow(p, fm, rule);
3699 return send_buffered_packet(ofconn, rule, fm->buffer_id);
3700 } else {
3701 return add_flow(ofconn, fm);
3702 }
3703 }
3704
3705 /* Callback for modify_flows_loose(). */
3706 static void
3707 modify_flows_cb(struct cls_rule *rule_, void *cbdata_)
3708 {
3709 struct rule *rule = rule_from_cls_rule(rule_);
3710 struct modify_flows_cbdata *cbdata = cbdata_;
3711
3712 if (!rule_is_hidden(rule)) {
3713 cbdata->match = rule;
3714 modify_flow(cbdata->ofproto, cbdata->fm, rule);
3715 }
3716 }
3717
3718 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
3719 * been identified as a flow in 'p''s flow table to be modified, by changing
3720 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
3721 * ofp_action[] structures). */
3722 static int
3723 modify_flow(struct ofproto *p, const struct flow_mod *fm, struct rule *rule)
3724 {
3725 size_t actions_len = fm->n_actions * sizeof *rule->actions;
3726
3727 rule->flow_cookie = fm->cookie;
3728
3729 /* If the actions are the same, do nothing. */
3730 if (fm->n_actions == rule->n_actions
3731 && (!fm->n_actions
3732 || !memcmp(fm->actions, rule->actions, actions_len))) {
3733 return 0;
3734 }
3735
3736 /* Replace actions. */
3737 free(rule->actions);
3738 rule->actions = fm->n_actions ? xmemdup(fm->actions, actions_len) : NULL;
3739 rule->n_actions = fm->n_actions;
3740
3741 /* Make sure that the datapath gets updated properly. */
3742 if (rule->cr.wc.wildcards) {
3743 COVERAGE_INC(ofproto_mod_wc_flow);
3744 p->need_revalidate = true;
3745 } else {
3746 rule_update_actions(p, rule);
3747 }
3748
3749 return 0;
3750 }
3751 \f
3752 /* OFPFC_DELETE implementation. */
3753
3754 struct delete_flows_cbdata {
3755 struct ofproto *ofproto;
3756 ovs_be16 out_port;
3757 };
3758
3759 static void delete_flows_cb(struct cls_rule *, void *cbdata_);
3760 static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
3761
3762 /* Implements OFPFC_DELETE. */
3763 static void
3764 delete_flows_loose(struct ofproto *p, const struct flow_mod *fm)
3765 {
3766 struct delete_flows_cbdata cbdata;
3767
3768 cbdata.ofproto = p;
3769 cbdata.out_port = htons(fm->out_port);
3770
3771 classifier_for_each_match(&p->cls, &fm->cr, CLS_INC_ALL,
3772 delete_flows_cb, &cbdata);
3773 }
3774
3775 /* Implements OFPFC_DELETE_STRICT. */
3776 static void
3777 delete_flow_strict(struct ofproto *p, struct flow_mod *fm)
3778 {
3779 struct rule *rule = find_flow_strict(p, fm);
3780 if (rule) {
3781 delete_flow(p, rule, htons(fm->out_port));
3782 }
3783 }
3784
3785 /* Callback for delete_flows_loose(). */
3786 static void
3787 delete_flows_cb(struct cls_rule *rule_, void *cbdata_)
3788 {
3789 struct rule *rule = rule_from_cls_rule(rule_);
3790 struct delete_flows_cbdata *cbdata = cbdata_;
3791
3792 delete_flow(cbdata->ofproto, rule, cbdata->out_port);
3793 }
3794
3795 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
3796 * been identified as a flow to delete from 'p''s flow table, by deleting the
3797 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
3798 * controller.
3799 *
3800 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
3801 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
3802 * specified 'out_port'. */
3803 static void
3804 delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
3805 {
3806 if (rule_is_hidden(rule)) {
3807 return;
3808 }
3809
3810 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
3811 return;
3812 }
3813
3814 send_flow_removed(p, rule, OFPRR_DELETE);
3815 rule_remove(p, rule);
3816 }
3817 \f
3818 static int
3819 flow_mod_core(struct ofconn *ofconn, struct flow_mod *fm)
3820 {
3821 struct ofproto *p = ofconn->ofproto;
3822 int error;
3823
3824 error = reject_slave_controller(ofconn, "flow_mod");
3825 if (error) {
3826 return error;
3827 }
3828
3829 error = validate_actions(fm->actions, fm->n_actions, p->max_ports);
3830 if (error) {
3831 return error;
3832 }
3833
3834 /* We do not support the emergency flow cache. It will hopefully
3835 * get dropped from OpenFlow in the near future. */
3836 if (fm->flags & OFPFF_EMERG) {
3837 /* There isn't a good fit for an error code, so just state that the
3838 * flow table is full. */
3839 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
3840 }
3841
3842 switch (fm->command) {
3843 case OFPFC_ADD:
3844 return add_flow(ofconn, fm);
3845
3846 case OFPFC_MODIFY:
3847 return modify_flows_loose(ofconn, fm);
3848
3849 case OFPFC_MODIFY_STRICT:
3850 return modify_flow_strict(ofconn, fm);
3851
3852 case OFPFC_DELETE:
3853 delete_flows_loose(p, fm);
3854 return 0;
3855
3856 case OFPFC_DELETE_STRICT:
3857 delete_flow_strict(p, fm);
3858 return 0;
3859
3860 default:
3861 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
3862 }
3863 }
3864
3865 static int
3866 handle_flow_mod(struct ofconn *ofconn, struct ofp_header *oh)
3867 {
3868 struct ofp_match orig_match;
3869 struct ofp_flow_mod *ofm;
3870 struct flow_mod fm;
3871 struct ofpbuf b;
3872 int error;
3873
3874 b.data = oh;
3875 b.size = ntohs(oh->length);
3876
3877 /* Dissect the message. */
3878 ofm = ofpbuf_try_pull(&b, sizeof *ofm);
3879 if (!ofm) {
3880 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3881 }
3882 error = ofputil_pull_actions(&b, b.size, &fm.actions, &fm.n_actions);
3883 if (error) {
3884 return error;
3885 }
3886
3887 /* Normalize ofm->match. If normalization actually changes anything, then
3888 * log the differences. */
3889 ofm->match.pad1[0] = ofm->match.pad2[0] = 0;
3890 orig_match = ofm->match;
3891 normalize_match(&ofm->match);
3892 if (memcmp(&ofm->match, &orig_match, sizeof orig_match)) {
3893 static struct vlog_rate_limit normal_rl = VLOG_RATE_LIMIT_INIT(1, 1);
3894 if (!VLOG_DROP_INFO(&normal_rl)) {
3895 char *old = ofp_match_to_literal_string(&orig_match);
3896 char *new = ofp_match_to_literal_string(&ofm->match);
3897 VLOG_INFO("%s: normalization changed ofp_match, details:",
3898 rconn_get_name(ofconn->rconn));
3899 VLOG_INFO(" pre: %s", old);
3900 VLOG_INFO("post: %s", new);
3901 free(old);
3902 free(new);
3903 }
3904 }
3905
3906 /* Translate the message. */
3907 cls_rule_from_match(&ofm->match, ntohs(ofm->priority), ofconn->flow_format,
3908 ofm->cookie, &fm.cr);
3909 fm.cookie = ofm->cookie;
3910 fm.command = ntohs(ofm->command);
3911 fm.idle_timeout = ntohs(ofm->idle_timeout);
3912 fm.hard_timeout = ntohs(ofm->hard_timeout);
3913 fm.buffer_id = ntohl(ofm->buffer_id);
3914 fm.out_port = ntohs(ofm->out_port);
3915 fm.flags = ntohs(ofm->flags);
3916
3917 /* Execute the command. */
3918 return flow_mod_core(ofconn, &fm);
3919 }
3920
3921 static int
3922 handle_tun_id_from_cookie(struct ofconn *ofconn, struct nxt_tun_id_cookie *msg)
3923 {
3924 int error;
3925
3926 error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg);
3927 if (error) {
3928 return error;
3929 }
3930
3931 ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
3932 return 0;
3933 }
3934
3935 static int
3936 handle_role_request(struct ofconn *ofconn, struct nicira_header *msg)
3937 {
3938 struct nx_role_request *nrr;
3939 struct nx_role_request *reply;
3940 struct ofpbuf *buf;
3941 uint32_t role;
3942
3943 if (ntohs(msg->header.length) != sizeof *nrr) {
3944 VLOG_WARN_RL(&rl, "received role request of length %u (expected %zu)",
3945 ntohs(msg->header.length), sizeof *nrr);
3946 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3947 }
3948 nrr = (struct nx_role_request *) msg;
3949
3950 if (ofconn->type != OFCONN_PRIMARY) {
3951 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
3952 "connection");
3953 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3954 }
3955
3956 role = ntohl(nrr->role);
3957 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
3958 && role != NX_ROLE_SLAVE) {
3959 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
3960
3961 /* There's no good error code for this. */
3962 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
3963 }
3964
3965 if (role == NX_ROLE_MASTER) {
3966 struct ofconn *other;
3967
3968 HMAP_FOR_EACH (other, hmap_node, &ofconn->ofproto->controllers) {
3969 if (other->role == NX_ROLE_MASTER) {
3970 other->role = NX_ROLE_SLAVE;
3971 }
3972 }
3973 }
3974 ofconn->role = role;
3975
3976 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, msg->header.xid,
3977 &buf);
3978 reply->role = htonl(role);
3979 queue_tx(buf, ofconn, ofconn->reply_counter);
3980
3981 return 0;
3982 }
3983
3984 static int
3985 handle_vendor(struct ofconn *ofconn, void *msg)
3986 {
3987 struct ofproto *p = ofconn->ofproto;
3988 struct ofp_vendor_header *ovh = msg;
3989 struct nicira_header *nh;
3990
3991 if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) {
3992 VLOG_WARN_RL(&rl, "received vendor message of length %u "
3993 "(expected at least %zu)",
3994 ntohs(ovh->header.length), sizeof(struct ofp_vendor_header));
3995 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3996 }
3997 if (ovh->vendor != htonl(NX_VENDOR_ID)) {
3998 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3999 }
4000 if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) {
4001 VLOG_WARN_RL(&rl, "received Nicira vendor message of length %u "
4002 "(expected at least %zu)",
4003 ntohs(ovh->header.length), sizeof(struct nicira_header));
4004 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4005 }
4006
4007 nh = msg;
4008 switch (ntohl(nh->subtype)) {
4009 case NXT_STATUS_REQUEST:
4010 return switch_status_handle_request(p->switch_status, ofconn->rconn,
4011 msg);
4012
4013 case NXT_TUN_ID_FROM_COOKIE:
4014 return handle_tun_id_from_cookie(ofconn, msg);
4015
4016 case NXT_ROLE_REQUEST:
4017 return handle_role_request(ofconn, msg);
4018 }
4019
4020 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
4021 }
4022
4023 static int
4024 handle_barrier_request(struct ofconn *ofconn, struct ofp_header *oh)
4025 {
4026 struct ofp_header *ob;
4027 struct ofpbuf *buf;
4028
4029 /* Currently, everything executes synchronously, so we can just
4030 * immediately send the barrier reply. */
4031 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4032 queue_tx(buf, ofconn, ofconn->reply_counter);
4033 return 0;
4034 }
4035
4036 static void
4037 handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
4038 {
4039 struct ofp_header *oh = ofp_msg->data;
4040 int error;
4041
4042 COVERAGE_INC(ofproto_recv_openflow);
4043 switch (oh->type) {
4044 case OFPT_ECHO_REQUEST:
4045 error = handle_echo_request(ofconn, oh);
4046 break;
4047
4048 case OFPT_ECHO_REPLY:
4049 error = 0;
4050 break;
4051
4052 case OFPT_FEATURES_REQUEST:
4053 error = handle_features_request(ofconn, oh);
4054 break;
4055
4056 case OFPT_GET_CONFIG_REQUEST:
4057 error = handle_get_config_request(ofconn, oh);
4058 break;
4059
4060 case OFPT_SET_CONFIG:
4061 error = handle_set_config(ofconn, ofp_msg->data);
4062 break;
4063
4064 case OFPT_PACKET_OUT:
4065 error = handle_packet_out(ofconn, ofp_msg->data);
4066 break;
4067
4068 case OFPT_PORT_MOD:
4069 error = handle_port_mod(ofconn, oh);
4070 break;
4071
4072 case OFPT_FLOW_MOD:
4073 error = handle_flow_mod(ofconn, ofp_msg->data);
4074 break;
4075
4076 case OFPT_STATS_REQUEST:
4077 error = handle_stats_request(ofconn, oh);
4078 break;
4079
4080 case OFPT_VENDOR:
4081 error = handle_vendor(ofconn, ofp_msg->data);
4082 break;
4083
4084 case OFPT_BARRIER_REQUEST:
4085 error = handle_barrier_request(ofconn, oh);
4086 break;
4087
4088 default:
4089 if (VLOG_IS_WARN_ENABLED()) {
4090 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4091 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4092 free(s);
4093 }
4094 error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4095 break;
4096 }
4097
4098 if (error) {
4099 send_error_oh(ofconn, ofp_msg->data, error);
4100 }
4101 }
4102 \f
4103 static void
4104 handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet)
4105 {
4106 struct odp_msg *msg = packet->data;
4107 struct rule *rule;
4108 struct ofpbuf payload;
4109 struct flow flow;
4110
4111 payload.data = msg + 1;
4112 payload.size = msg->length - sizeof *msg;
4113 flow_extract(&payload, msg->arg, msg->port, &flow);
4114
4115 /* Check with in-band control to see if this packet should be sent
4116 * to the local port regardless of the flow table. */
4117 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
4118 union odp_action action;
4119
4120 memset(&action, 0, sizeof(action));
4121 action.output.type = ODPAT_OUTPUT;
4122 action.output.port = ODPP_LOCAL;
4123 dpif_execute(p->dpif, &action, 1, &payload);
4124 }
4125
4126 rule = lookup_valid_rule(p, &flow);
4127 if (!rule) {
4128 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4129 struct ofport *port = get_port(p, msg->port);
4130 if (port) {
4131 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4132 COVERAGE_INC(ofproto_no_packet_in);
4133 /* XXX install 'drop' flow entry */
4134 ofpbuf_delete(packet);
4135 return;
4136 }
4137 } else {
4138 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port);
4139 }
4140
4141 COVERAGE_INC(ofproto_packet_in);
4142 send_packet_in(p, packet);
4143 return;
4144 }
4145
4146 if (rule->cr.wc.wildcards) {
4147 rule = rule_create_subrule(p, rule, &flow);
4148 rule_make_actions(p, rule, packet);
4149 } else {
4150 if (!rule->may_install) {
4151 /* The rule is not installable, that is, we need to process every
4152 * packet, so process the current packet and set its actions into
4153 * 'subrule'. */
4154 rule_make_actions(p, rule, packet);
4155 } else {
4156 /* XXX revalidate rule if it needs it */
4157 }
4158 }
4159
4160 if (rule->super && rule->super->cr.priority == FAIL_OPEN_PRIORITY) {
4161 /*
4162 * Extra-special case for fail-open mode.
4163 *
4164 * We are in fail-open mode and the packet matched the fail-open rule,
4165 * but we are connected to a controller too. We should send the packet
4166 * up to the controller in the hope that it will try to set up a flow
4167 * and thereby allow us to exit fail-open.
4168 *
4169 * See the top-level comment in fail-open.c for more information.
4170 */
4171 send_packet_in(p, ofpbuf_clone_with_headroom(packet,
4172 DPIF_RECV_MSG_PADDING));
4173 }
4174
4175 ofpbuf_pull(packet, sizeof *msg);
4176 rule_execute(p, rule, packet, &flow);
4177 rule_reinstall(p, rule);
4178 }
4179
4180 static void
4181 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
4182 {
4183 struct odp_msg *msg = packet->data;
4184
4185 switch (msg->type) {
4186 case _ODPL_ACTION_NR:
4187 COVERAGE_INC(ofproto_ctlr_action);
4188 send_packet_in(p, packet);
4189 break;
4190
4191 case _ODPL_SFLOW_NR:
4192 if (p->sflow) {
4193 ofproto_sflow_received(p->sflow, msg);
4194 }
4195 ofpbuf_delete(packet);
4196 break;
4197
4198 case _ODPL_MISS_NR:
4199 handle_odp_miss_msg(p, packet);
4200 break;
4201
4202 default:
4203 VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32,
4204 msg->type);
4205 break;
4206 }
4207 }
4208 \f
4209 /* Flow expiration. */
4210
4211 struct expire_cbdata {
4212 struct ofproto *ofproto;
4213 int dp_max_idle;
4214 };
4215
4216 static int ofproto_dp_max_idle(const struct ofproto *);
4217 static void ofproto_update_used(struct ofproto *);
4218 static void rule_expire(struct cls_rule *, void *cbdata);
4219
4220 /* This function is called periodically by ofproto_run(). Its job is to
4221 * collect updates for the flows that have been installed into the datapath,
4222 * most importantly when they last were used, and then use that information to
4223 * expire flows that have not been used recently.
4224 *
4225 * Returns the number of milliseconds after which it should be called again. */
4226 static int
4227 ofproto_expire(struct ofproto *ofproto)
4228 {
4229 struct expire_cbdata cbdata;
4230
4231 /* Update 'used' for each flow in the datapath. */
4232 ofproto_update_used(ofproto);
4233
4234 /* Expire idle flows.
4235 *
4236 * A wildcarded flow is idle only when all of its subrules have expired due
4237 * to becoming idle, so iterate through the exact-match flows first. */
4238 cbdata.ofproto = ofproto;
4239 cbdata.dp_max_idle = ofproto_dp_max_idle(ofproto);
4240 classifier_for_each(&ofproto->cls, CLS_INC_EXACT, rule_expire, &cbdata);
4241 classifier_for_each(&ofproto->cls, CLS_INC_WILD, rule_expire, &cbdata);
4242
4243 /* Let the hook know that we're at a stable point: all outstanding data
4244 * in existing flows has been accounted to the account_cb. Thus, the
4245 * hook can now reasonably do operations that depend on having accurate
4246 * flow volume accounting (currently, that's just bond rebalancing). */
4247 if (ofproto->ofhooks->account_checkpoint_cb) {
4248 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4249 }
4250
4251 return MIN(cbdata.dp_max_idle, 1000);
4252 }
4253
4254 /* Update 'used' member of each flow currently installed into the datapath. */
4255 static void
4256 ofproto_update_used(struct ofproto *p)
4257 {
4258 struct odp_flow *flows;
4259 size_t n_flows;
4260 size_t i;
4261 int error;
4262
4263 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
4264 if (error) {
4265 return;
4266 }
4267
4268 for (i = 0; i < n_flows; i++) {
4269 struct odp_flow *f = &flows[i];
4270 struct cls_rule target;
4271 struct rule *rule;
4272 struct flow flow;
4273
4274 odp_flow_key_to_flow(&f->key, &flow);
4275 cls_rule_init_exact(&flow, UINT16_MAX, &target);
4276
4277 rule = rule_from_cls_rule(classifier_find_rule_exactly(&p->cls,
4278 &target));
4279
4280 if (rule && rule->installed) {
4281 update_time(p, rule, &f->stats);
4282 rule_account(p, rule, f->stats.n_bytes);
4283 } else {
4284 /* There's a flow in the datapath that we know nothing about.
4285 * Delete it. */
4286 COVERAGE_INC(ofproto_unexpected_rule);
4287 dpif_flow_del(p->dpif, f);
4288 }
4289
4290 }
4291 free(flows);
4292 }
4293
4294 /* Calculates and returns the number of milliseconds of idle time after which
4295 * flows should expire from the datapath and we should fold their statistics
4296 * into their parent rules in userspace. */
4297 static int
4298 ofproto_dp_max_idle(const struct ofproto *ofproto)
4299 {
4300 /*
4301 * Idle time histogram.
4302 *
4303 * Most of the time a switch has a relatively small number of flows. When
4304 * this is the case we might as well keep statistics for all of them in
4305 * userspace and to cache them in the kernel datapath for performance as
4306 * well.
4307 *
4308 * As the number of flows increases, the memory required to maintain
4309 * statistics about them in userspace and in the kernel becomes
4310 * significant. However, with a large number of flows it is likely that
4311 * only a few of them are "heavy hitters" that consume a large amount of
4312 * bandwidth. At this point, only heavy hitters are worth caching in the
4313 * kernel and maintaining in userspaces; other flows we can discard.
4314 *
4315 * The technique used to compute the idle time is to build a histogram with
4316 * N_BUCKETS bucket whose width is BUCKET_WIDTH msecs each. Each flow that
4317 * is installed in the kernel gets dropped in the appropriate bucket.
4318 * After the histogram has been built, we compute the cutoff so that only
4319 * the most-recently-used 1% of flows (but at least 1000 flows) are kept
4320 * cached. At least the most-recently-used bucket of flows is kept, so
4321 * actually an arbitrary number of flows can be kept in any given
4322 * expiration run (though the next run will delete most of those unless
4323 * they receive additional data).
4324 *
4325 * This requires a second pass through the exact-match flows, in addition
4326 * to the pass made by ofproto_update_used(), because the former function
4327 * never looks at uninstallable flows.
4328 */
4329 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4330 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4331 int buckets[N_BUCKETS] = { 0 };
4332 int total, bucket;
4333 struct rule *rule;
4334 long long int now;
4335 int i;
4336
4337 total = classifier_count_exact(&ofproto->cls);
4338 if (total <= 1000) {
4339 return N_BUCKETS * BUCKET_WIDTH;
4340 }
4341
4342 /* Build histogram. */
4343 now = time_msec();
4344 CLASSIFIER_FOR_EACH_EXACT_RULE (rule, cr, &ofproto->cls) {
4345 long long int idle = now - rule->used;
4346 int bucket = (idle <= 0 ? 0
4347 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4348 : (unsigned int) idle / BUCKET_WIDTH);
4349 buckets[bucket]++;
4350 }
4351
4352 /* Find the first bucket whose flows should be expired. */
4353 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4354 if (buckets[bucket]) {
4355 int subtotal = 0;
4356 do {
4357 subtotal += buckets[bucket++];
4358 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4359 break;
4360 }
4361 }
4362
4363 if (VLOG_IS_DBG_ENABLED()) {
4364 struct ds s;
4365
4366 ds_init(&s);
4367 ds_put_cstr(&s, "keep");
4368 for (i = 0; i < N_BUCKETS; i++) {
4369 if (i == bucket) {
4370 ds_put_cstr(&s, ", drop");
4371 }
4372 if (buckets[i]) {
4373 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4374 }
4375 }
4376 VLOG_INFO("%s: %s (msec:count)",
4377 dpif_name(ofproto->dpif), ds_cstr(&s));
4378 ds_destroy(&s);
4379 }
4380
4381 return bucket * BUCKET_WIDTH;
4382 }
4383
4384 static void
4385 rule_active_timeout(struct ofproto *ofproto, struct rule *rule)
4386 {
4387 if (ofproto->netflow && !is_controller_rule(rule) &&
4388 netflow_active_timeout_expired(ofproto->netflow, &rule->nf_flow)) {
4389 struct ofexpired expired;
4390 struct odp_flow odp_flow;
4391
4392 /* Get updated flow stats.
4393 *
4394 * XXX We could avoid this call entirely if (1) ofproto_update_used()
4395 * updated TCP flags and (2) the dpif_flow_list_all() in
4396 * ofproto_update_used() zeroed TCP flags. */
4397 memset(&odp_flow, 0, sizeof odp_flow);
4398 if (rule->installed) {
4399 odp_flow_key_from_flow(&odp_flow.key, &rule->cr.flow);
4400 odp_flow.flags = ODPFF_ZERO_TCP_FLAGS;
4401 dpif_flow_get(ofproto->dpif, &odp_flow);
4402
4403 if (odp_flow.stats.n_packets) {
4404 update_time(ofproto, rule, &odp_flow.stats);
4405 netflow_flow_update_flags(&rule->nf_flow,
4406 odp_flow.stats.tcp_flags);
4407 }
4408 }
4409
4410 expired.flow = rule->cr.flow;
4411 expired.packet_count = rule->packet_count +
4412 odp_flow.stats.n_packets;
4413 expired.byte_count = rule->byte_count + odp_flow.stats.n_bytes;
4414 expired.used = rule->used;
4415
4416 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
4417 }
4418 }
4419
4420 /* If 'cls_rule' is an OpenFlow rule, that has expired according to OpenFlow
4421 * rules, then delete it entirely.
4422 *
4423 * If 'cls_rule' is a subrule, that has not been used recently, remove it from
4424 * the datapath and fold its statistics back into its super-rule.
4425 *
4426 * (This is a callback function for classifier_for_each().) */
4427 static void
4428 rule_expire(struct cls_rule *cls_rule, void *cbdata_)
4429 {
4430 struct expire_cbdata *cbdata = cbdata_;
4431 struct ofproto *ofproto = cbdata->ofproto;
4432 struct rule *rule = rule_from_cls_rule(cls_rule);
4433 long long int hard_expire, idle_expire, expire, now;
4434
4435 /* Calculate OpenFlow expiration times for 'rule'. */
4436 hard_expire = (rule->hard_timeout
4437 ? rule->created + rule->hard_timeout * 1000
4438 : LLONG_MAX);
4439 idle_expire = (rule->idle_timeout
4440 && (rule->super || list_is_empty(&rule->list))
4441 ? rule->used + rule->idle_timeout * 1000
4442 : LLONG_MAX);
4443 expire = MIN(hard_expire, idle_expire);
4444
4445 now = time_msec();
4446 if (now < expire) {
4447 /* 'rule' has not expired according to OpenFlow rules. */
4448 if (!rule->cr.wc.wildcards) {
4449 if (now >= rule->used + cbdata->dp_max_idle) {
4450 /* This rule is idle, so drop it to free up resources. */
4451 if (rule->super) {
4452 /* It's not part of the OpenFlow flow table, so we can
4453 * delete it entirely and fold its statistics into its
4454 * super-rule. */
4455 rule_remove(ofproto, rule);
4456 } else {
4457 /* It is part of the OpenFlow flow table, so we have to
4458 * keep the rule but we can at least uninstall it from the
4459 * datapath. */
4460 rule_uninstall(ofproto, rule);
4461 }
4462 } else {
4463 /* Send NetFlow active timeout if appropriate. */
4464 rule_active_timeout(cbdata->ofproto, rule);
4465 }
4466 }
4467 } else {
4468 /* 'rule' has expired according to OpenFlow rules. */
4469 COVERAGE_INC(ofproto_expired);
4470
4471 /* Update stats. (This is a no-op if the rule expired due to an idle
4472 * timeout, because that only happens when the rule has no subrules
4473 * left.) */
4474 if (rule->cr.wc.wildcards) {
4475 struct rule *subrule, *next;
4476 LIST_FOR_EACH_SAFE (subrule, next, list, &rule->list) {
4477 rule_remove(cbdata->ofproto, subrule);
4478 }
4479 } else {
4480 rule_uninstall(cbdata->ofproto, rule);
4481 }
4482
4483 /* Get rid of the rule. */
4484 if (!rule_is_hidden(rule)) {
4485 send_flow_removed(cbdata->ofproto, rule,
4486 (now >= hard_expire
4487 ? OFPRR_HARD_TIMEOUT : OFPRR_IDLE_TIMEOUT));
4488 }
4489 rule_remove(cbdata->ofproto, rule);
4490 }
4491 }
4492 \f
4493 static void
4494 revalidate_cb(struct cls_rule *sub_, void *cbdata_)
4495 {
4496 struct rule *sub = rule_from_cls_rule(sub_);
4497 struct revalidate_cbdata *cbdata = cbdata_;
4498
4499 if (cbdata->revalidate_all
4500 || (cbdata->revalidate_subrules && sub->super)
4501 || (tag_set_intersects(&cbdata->revalidate_set, sub->tags))) {
4502 revalidate_rule(cbdata->ofproto, sub);
4503 }
4504 }
4505
4506 static bool
4507 revalidate_rule(struct ofproto *p, struct rule *rule)
4508 {
4509 const struct flow *flow = &rule->cr.flow;
4510
4511 COVERAGE_INC(ofproto_revalidate_rule);
4512 if (rule->super) {
4513 struct rule *super;
4514 super = rule_from_cls_rule(classifier_lookup(&p->cls, flow,
4515 CLS_INC_WILD));
4516 if (!super) {
4517 rule_remove(p, rule);
4518 return false;
4519 } else if (super != rule->super) {
4520 COVERAGE_INC(ofproto_revalidate_moved);
4521 list_remove(&rule->list);
4522 list_push_back(&super->list, &rule->list);
4523 rule->super = super;
4524 rule->hard_timeout = super->hard_timeout;
4525 rule->idle_timeout = super->idle_timeout;
4526 rule->created = super->created;
4527 rule->used = 0;
4528 }
4529 }
4530
4531 rule_update_actions(p, rule);
4532 return true;
4533 }
4534
4535 static struct ofpbuf *
4536 compose_flow_removed(struct ofconn *ofconn, const struct rule *rule,
4537 uint8_t reason)
4538 {
4539 struct ofp_flow_removed *ofr;
4540 struct ofpbuf *buf;
4541
4542 ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf);
4543 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, ofconn->flow_format,
4544 &ofr->match);
4545 ofr->cookie = rule->flow_cookie;
4546 ofr->priority = htons(rule->cr.priority);
4547 ofr->reason = reason;
4548 calc_flow_duration(rule->created, &ofr->duration_sec, &ofr->duration_nsec);
4549 ofr->idle_timeout = htons(rule->idle_timeout);
4550 ofr->packet_count = htonll(rule->packet_count);
4551 ofr->byte_count = htonll(rule->byte_count);
4552
4553 return buf;
4554 }
4555
4556 static void
4557 send_flow_removed(struct ofproto *p, struct rule *rule, uint8_t reason)
4558 {
4559 struct ofconn *ofconn;
4560
4561 if (!rule->send_flow_removed) {
4562 return;
4563 }
4564
4565 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4566 struct ofpbuf *msg;
4567
4568 if (!rconn_is_connected(ofconn->rconn)
4569 || !ofconn_receives_async_msgs(ofconn)) {
4570 continue;
4571 }
4572
4573 msg = compose_flow_removed(ofconn, rule, reason);
4574
4575 /* Account flow expirations under ofconn->reply_counter, the counter
4576 * for replies to OpenFlow requests. That works because preventing
4577 * OpenFlow requests from being processed also prevents new flows from
4578 * being added (and expiring). (It also prevents processing OpenFlow
4579 * requests that would not add new flows, so it is imperfect.) */
4580 queue_tx(msg, ofconn, ofconn->reply_counter);
4581 }
4582 }
4583
4584 /* pinsched callback for sending 'packet' on 'ofconn'. */
4585 static void
4586 do_send_packet_in(struct ofpbuf *packet, void *ofconn_)
4587 {
4588 struct ofconn *ofconn = ofconn_;
4589
4590 rconn_send_with_limit(ofconn->rconn, packet,
4591 ofconn->packet_in_counter, 100);
4592 }
4593
4594 /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and
4595 * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s
4596 * packet scheduler for sending.
4597 *
4598 * 'max_len' specifies the maximum number of bytes of the packet to send on
4599 * 'ofconn' (INT_MAX specifies no limit).
4600 *
4601 * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise,
4602 * ownership is transferred to this function. */
4603 static void
4604 schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len,
4605 bool clone)
4606 {
4607 struct ofproto *ofproto = ofconn->ofproto;
4608 struct ofp_packet_in *opi = packet->data;
4609 uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port));
4610 int send_len, trim_size;
4611 uint32_t buffer_id;
4612
4613 /* Get buffer. */
4614 if (opi->reason == OFPR_ACTION) {
4615 buffer_id = UINT32_MAX;
4616 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4617 buffer_id = pktbuf_get_null();
4618 } else if (!ofconn->pktbuf) {
4619 buffer_id = UINT32_MAX;
4620 } else {
4621 struct ofpbuf payload;
4622 payload.data = opi->data;
4623 payload.size = packet->size - offsetof(struct ofp_packet_in, data);
4624 buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port);
4625 }
4626
4627 /* Figure out how much of the packet to send. */
4628 send_len = ntohs(opi->total_len);
4629 if (buffer_id != UINT32_MAX) {
4630 send_len = MIN(send_len, ofconn->miss_send_len);
4631 }
4632 send_len = MIN(send_len, max_len);
4633
4634 /* Adjust packet length and clone if necessary. */
4635 trim_size = offsetof(struct ofp_packet_in, data) + send_len;
4636 if (clone) {
4637 packet = ofpbuf_clone_data(packet->data, trim_size);
4638 opi = packet->data;
4639 } else {
4640 packet->size = trim_size;
4641 }
4642
4643 /* Update packet headers. */
4644 opi->buffer_id = htonl(buffer_id);
4645 update_openflow_length(packet);
4646
4647 /* Hand over to packet scheduler. It might immediately call into
4648 * do_send_packet_in() or it might buffer it for a while (until a later
4649 * call to pinsched_run()). */
4650 pinsched_send(ofconn->schedulers[opi->reason], in_port,
4651 packet, do_send_packet_in, ofconn);
4652 }
4653
4654 /* Replace struct odp_msg header in 'packet' by equivalent struct
4655 * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as
4656 * returned by dpif_recv()).
4657 *
4658 * The conversion is not complete: the caller still needs to trim any unneeded
4659 * payload off the end of the buffer, set the length in the OpenFlow header,
4660 * and set buffer_id. Those require us to know the controller settings and so
4661 * must be done on a per-controller basis.
4662 *
4663 * Returns the maximum number of bytes of the packet that should be sent to
4664 * the controller (INT_MAX if no limit). */
4665 static int
4666 do_convert_to_packet_in(struct ofpbuf *packet)
4667 {
4668 struct odp_msg *msg = packet->data;
4669 struct ofp_packet_in *opi;
4670 uint8_t reason;
4671 uint16_t total_len;
4672 uint16_t in_port;
4673 int max_len;
4674
4675 /* Extract relevant header fields */
4676 if (msg->type == _ODPL_ACTION_NR) {
4677 reason = OFPR_ACTION;
4678 max_len = msg->arg;
4679 } else {
4680 reason = OFPR_NO_MATCH;
4681 max_len = INT_MAX;
4682 }
4683 total_len = msg->length - sizeof *msg;
4684 in_port = odp_port_to_ofp_port(msg->port);
4685
4686 /* Repurpose packet buffer by overwriting header. */
4687 ofpbuf_pull(packet, sizeof(struct odp_msg));
4688 opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data));
4689 opi->header.version = OFP_VERSION;
4690 opi->header.type = OFPT_PACKET_IN;
4691 opi->total_len = htons(total_len);
4692 opi->in_port = htons(in_port);
4693 opi->reason = reason;
4694
4695 return max_len;
4696 }
4697
4698 /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or
4699 * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller
4700 * as necessary according to their individual configurations.
4701 *
4702 * 'packet' must have sufficient headroom to convert it into a struct
4703 * ofp_packet_in (e.g. as returned by dpif_recv()).
4704 *
4705 * Takes ownership of 'packet'. */
4706 static void
4707 send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet)
4708 {
4709 struct ofconn *ofconn, *prev;
4710 int max_len;
4711
4712 max_len = do_convert_to_packet_in(packet);
4713
4714 prev = NULL;
4715 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
4716 if (ofconn_receives_async_msgs(ofconn)) {
4717 if (prev) {
4718 schedule_packet_in(prev, packet, max_len, true);
4719 }
4720 prev = ofconn;
4721 }
4722 }
4723 if (prev) {
4724 schedule_packet_in(prev, packet, max_len, false);
4725 } else {
4726 ofpbuf_delete(packet);
4727 }
4728 }
4729
4730 static uint64_t
4731 pick_datapath_id(const struct ofproto *ofproto)
4732 {
4733 const struct ofport *port;
4734
4735 port = get_port(ofproto, ODPP_LOCAL);
4736 if (port) {
4737 uint8_t ea[ETH_ADDR_LEN];
4738 int error;
4739
4740 error = netdev_get_etheraddr(port->netdev, ea);
4741 if (!error) {
4742 return eth_addr_to_uint64(ea);
4743 }
4744 VLOG_WARN("could not get MAC address for %s (%s)",
4745 netdev_get_name(port->netdev), strerror(error));
4746 }
4747 return ofproto->fallback_dpid;
4748 }
4749
4750 static uint64_t
4751 pick_fallback_dpid(void)
4752 {
4753 uint8_t ea[ETH_ADDR_LEN];
4754 eth_addr_nicira_random(ea);
4755 return eth_addr_to_uint64(ea);
4756 }
4757 \f
4758 static bool
4759 default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
4760 struct odp_actions *actions, tag_type *tags,
4761 uint16_t *nf_output_iface, void *ofproto_)
4762 {
4763 struct ofproto *ofproto = ofproto_;
4764 int out_port;
4765
4766 /* Drop frames for reserved multicast addresses. */
4767 if (eth_addr_is_reserved(flow->dl_dst)) {
4768 return true;
4769 }
4770
4771 /* Learn source MAC (but don't try to learn from revalidation). */
4772 if (packet != NULL) {
4773 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
4774 0, flow->in_port,
4775 GRAT_ARP_LOCK_NONE);
4776 if (rev_tag) {
4777 /* The log messages here could actually be useful in debugging,
4778 * so keep the rate limit relatively high. */
4779 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
4780 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
4781 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
4782 ofproto_revalidate(ofproto, rev_tag);
4783 }
4784 }
4785
4786 /* Determine output port. */
4787 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
4788 NULL);
4789 if (out_port < 0) {
4790 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
4791 nf_output_iface, actions);
4792 } else if (out_port != flow->in_port) {
4793 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
4794 *nf_output_iface = out_port;
4795 } else {
4796 /* Drop. */
4797 }
4798
4799 return true;
4800 }
4801
4802 static const struct ofhooks default_ofhooks = {
4803 default_normal_ofhook_cb,
4804 NULL,
4805 NULL
4806 };