]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
ofproto: Add "ofproto/trace" command to help debugging flow tables.
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "byte-order.h"
28 #include "classifier.h"
29 #include "coverage.h"
30 #include "discovery.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hash.h"
35 #include "hmap.h"
36 #include "in-band.h"
37 #include "mac-learning.h"
38 #include "netdev.h"
39 #include "netflow.h"
40 #include "nx-match.h"
41 #include "odp-util.h"
42 #include "ofp-print.h"
43 #include "ofp-util.h"
44 #include "ofproto-sflow.h"
45 #include "ofpbuf.h"
46 #include "openflow/nicira-ext.h"
47 #include "openflow/openflow.h"
48 #include "openvswitch/datapath-protocol.h"
49 #include "packets.h"
50 #include "pinsched.h"
51 #include "pktbuf.h"
52 #include "poll-loop.h"
53 #include "rconn.h"
54 #include "shash.h"
55 #include "status.h"
56 #include "stream-ssl.h"
57 #include "svec.h"
58 #include "tag.h"
59 #include "timeval.h"
60 #include "unixctl.h"
61 #include "vconn.h"
62 #include "vlog.h"
63
64 VLOG_DEFINE_THIS_MODULE(ofproto);
65
66 COVERAGE_DEFINE(facet_changed_rule);
67 COVERAGE_DEFINE(facet_revalidate);
68 COVERAGE_DEFINE(odp_overflow);
69 COVERAGE_DEFINE(ofproto_agg_request);
70 COVERAGE_DEFINE(ofproto_costly_flags);
71 COVERAGE_DEFINE(ofproto_ctlr_action);
72 COVERAGE_DEFINE(ofproto_del_rule);
73 COVERAGE_DEFINE(ofproto_error);
74 COVERAGE_DEFINE(ofproto_expiration);
75 COVERAGE_DEFINE(ofproto_expired);
76 COVERAGE_DEFINE(ofproto_flows_req);
77 COVERAGE_DEFINE(ofproto_flush);
78 COVERAGE_DEFINE(ofproto_invalidated);
79 COVERAGE_DEFINE(ofproto_no_packet_in);
80 COVERAGE_DEFINE(ofproto_ofconn_stuck);
81 COVERAGE_DEFINE(ofproto_ofp2odp);
82 COVERAGE_DEFINE(ofproto_packet_in);
83 COVERAGE_DEFINE(ofproto_packet_out);
84 COVERAGE_DEFINE(ofproto_queue_req);
85 COVERAGE_DEFINE(ofproto_recv_openflow);
86 COVERAGE_DEFINE(ofproto_reinit_ports);
87 COVERAGE_DEFINE(ofproto_unexpected_rule);
88 COVERAGE_DEFINE(ofproto_uninstallable);
89 COVERAGE_DEFINE(ofproto_update_port);
90
91 #include "sflow_api.h"
92
93 struct rule;
94
95 struct ofport {
96 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
97 struct netdev *netdev;
98 struct ofp_phy_port opp; /* In host byte order. */
99 uint16_t odp_port;
100 };
101
102 static void ofport_free(struct ofport *);
103 static void hton_ofp_phy_port(struct ofp_phy_port *);
104
105 struct action_xlate_ctx {
106 /* action_xlate_ctx_init() initializes these members. */
107
108 /* The ofproto. */
109 struct ofproto *ofproto;
110
111 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
112 * this flow when actions change header fields. */
113 struct flow flow;
114
115 /* The packet corresponding to 'flow', or a null pointer if we are
116 * revalidating without a packet to refer to. */
117 const struct ofpbuf *packet;
118
119 /* If nonnull, called just before executing a resubmit action.
120 *
121 * This is normally null so the client has to set it manually after
122 * calling action_xlate_ctx_init(). */
123 void (*resubmit_hook)(struct action_xlate_ctx *, const struct rule *);
124
125 /* xlate_actions() initializes and uses these members. The client might want
126 * to look at them after it returns. */
127
128 /* Datapath action set. This is xlate_actions()'s primary output. */
129 struct odp_actions out;
130
131 tag_type tags; /* Tags associated with OFPP_NORMAL actions. */
132 bool may_set_up_flow; /* True ordinarily; false if the actions must
133 * be reassessed for every packet. */
134 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
135
136 /* xlate_actions() initializes and uses these members, but the client has no
137 * reason to look at them. */
138
139 int recurse; /* Recursion level, via xlate_table_action. */
140 };
141
142 static void action_xlate_ctx_init(struct action_xlate_ctx *,
143 struct ofproto *, const struct flow *,
144 const struct ofpbuf *);
145 static int xlate_actions(struct action_xlate_ctx *ctx,
146 const union ofp_action *in, size_t n_in);
147
148 /* An OpenFlow flow. */
149 struct rule {
150 long long int used; /* Time last used; time created if not used. */
151 long long int created; /* Creation time. */
152
153 /* These statistics:
154 *
155 * - Do include packets and bytes from facets that have been deleted or
156 * whose own statistics have been folded into the rule.
157 *
158 * - Do include packets and bytes sent "by hand" that were accounted to
159 * the rule without any facet being involved (this is a rare corner
160 * case in rule_execute()).
161 *
162 * - Do not include packet or bytes that can be obtained from any facet's
163 * packet_count or byte_count member or that can be obtained from the
164 * datapath by, e.g., dpif_flow_get() for any facet.
165 */
166 uint64_t packet_count; /* Number of packets received. */
167 uint64_t byte_count; /* Number of bytes received. */
168
169 ovs_be64 flow_cookie; /* Controller-issued identifier. */
170
171 struct cls_rule cr; /* In owning ofproto's classifier. */
172 uint16_t idle_timeout; /* In seconds from time of last use. */
173 uint16_t hard_timeout; /* In seconds from time of creation. */
174 bool send_flow_removed; /* Send a flow removed message? */
175 int n_actions; /* Number of elements in actions[]. */
176 union ofp_action *actions; /* OpenFlow actions. */
177 struct list facets; /* List of "struct facet"s. */
178 };
179
180 static struct rule *rule_from_cls_rule(const struct cls_rule *);
181 static bool rule_is_hidden(const struct rule *);
182
183 static struct rule *rule_create(const struct cls_rule *,
184 const union ofp_action *, size_t n_actions,
185 uint16_t idle_timeout, uint16_t hard_timeout,
186 ovs_be64 flow_cookie, bool send_flow_removed);
187 static void rule_destroy(struct ofproto *, struct rule *);
188 static void rule_free(struct rule *);
189
190 static struct rule *rule_lookup(struct ofproto *, const struct flow *);
191 static void rule_insert(struct ofproto *, struct rule *);
192 static void rule_remove(struct ofproto *, struct rule *);
193
194 static void rule_send_removed(struct ofproto *, struct rule *, uint8_t reason);
195
196 /* An exact-match instantiation of an OpenFlow flow. */
197 struct facet {
198 long long int used; /* Time last used; time created if not used. */
199
200 /* These statistics:
201 *
202 * - Do include packets and bytes sent "by hand", e.g. with
203 * dpif_execute().
204 *
205 * - Do include packets and bytes that were obtained from the datapath
206 * when a flow was deleted (e.g. dpif_flow_del()) or when its
207 * statistics were reset (e.g. dpif_flow_put() with ODPPF_ZERO_STATS).
208 *
209 * - Do not include any packets or bytes that can currently be obtained
210 * from the datapath by, e.g., dpif_flow_get().
211 */
212 uint64_t packet_count; /* Number of packets received. */
213 uint64_t byte_count; /* Number of bytes received. */
214
215 /* Number of bytes passed to account_cb. This may include bytes that can
216 * currently obtained from the datapath (thus, it can be greater than
217 * byte_count). */
218 uint64_t accounted_bytes;
219
220 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
221 struct list list_node; /* In owning rule's 'facets' list. */
222 struct rule *rule; /* Owning rule. */
223 struct flow flow; /* Exact-match flow. */
224 bool installed; /* Installed in datapath? */
225 bool may_install; /* True ordinarily; false if actions must
226 * be reassessed for every packet. */
227 int n_actions; /* Number of elements in actions[]. */
228 union odp_action *actions; /* Datapath actions. */
229 tag_type tags; /* Tags (set only by hooks). */
230 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
231 };
232
233 static struct facet *facet_create(struct ofproto *, struct rule *,
234 const struct flow *,
235 const struct ofpbuf *packet);
236 static void facet_remove(struct ofproto *, struct facet *);
237 static void facet_free(struct facet *);
238
239 static struct facet *facet_lookup_valid(struct ofproto *, const struct flow *);
240 static bool facet_revalidate(struct ofproto *, struct facet *);
241
242 static void facet_install(struct ofproto *, struct facet *, bool zero_stats);
243 static void facet_uninstall(struct ofproto *, struct facet *);
244 static void facet_flush_stats(struct ofproto *, struct facet *);
245
246 static void facet_make_actions(struct ofproto *, struct facet *,
247 const struct ofpbuf *packet);
248 static void facet_update_stats(struct ofproto *, struct facet *,
249 const struct odp_flow_stats *);
250
251 /* ofproto supports two kinds of OpenFlow connections:
252 *
253 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
254 * maintains persistent connections to these controllers and by default
255 * sends them asynchronous messages such as packet-ins.
256 *
257 * - "Service" connections, e.g. from ovs-ofctl. When these connections
258 * drop, it is the other side's responsibility to reconnect them if
259 * necessary. ofproto does not send them asynchronous messages by default.
260 *
261 * Currently, active (tcp, ssl, unix) connections are always "primary"
262 * connections and passive (ptcp, pssl, punix) connections are always "service"
263 * connections. There is no inherent reason for this, but it reflects the
264 * common case.
265 */
266 enum ofconn_type {
267 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
268 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
269 };
270
271 /* A listener for incoming OpenFlow "service" connections. */
272 struct ofservice {
273 struct hmap_node node; /* In struct ofproto's "services" hmap. */
274 struct pvconn *pvconn; /* OpenFlow connection listener. */
275
276 /* These are not used by ofservice directly. They are settings for
277 * accepted "struct ofconn"s from the pvconn. */
278 int probe_interval; /* Max idle time before probing, in seconds. */
279 int rate_limit; /* Max packet-in rate in packets per second. */
280 int burst_limit; /* Limit on accumulating packet credits. */
281 };
282
283 static struct ofservice *ofservice_lookup(struct ofproto *,
284 const char *target);
285 static int ofservice_create(struct ofproto *,
286 const struct ofproto_controller *);
287 static void ofservice_reconfigure(struct ofservice *,
288 const struct ofproto_controller *);
289 static void ofservice_destroy(struct ofproto *, struct ofservice *);
290
291 /* An OpenFlow connection. */
292 struct ofconn {
293 struct ofproto *ofproto; /* The ofproto that owns this connection. */
294 struct list node; /* In struct ofproto's "all_conns" list. */
295 struct rconn *rconn; /* OpenFlow connection. */
296 enum ofconn_type type; /* Type. */
297 enum nx_flow_format flow_format; /* Currently selected flow format. */
298
299 /* OFPT_PACKET_IN related data. */
300 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
301 struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */
302 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
303 int miss_send_len; /* Bytes to send of buffered packets. */
304
305 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
306 * requests, and the maximum number before we stop reading OpenFlow
307 * requests. */
308 #define OFCONN_REPLY_MAX 100
309 struct rconn_packet_counter *reply_counter;
310
311 /* type == OFCONN_PRIMARY only. */
312 enum nx_role role; /* Role. */
313 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
314 struct discovery *discovery; /* Controller discovery object, if enabled. */
315 struct status_category *ss; /* Switch status category. */
316 enum ofproto_band band; /* In-band or out-of-band? */
317 };
318
319 /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's
320 * "schedulers" array. Their values are 0 and 1, and their meanings and values
321 * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In
322 * case anything ever changes, check their values here. */
323 #define N_SCHEDULERS 2
324 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0);
325 BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR);
326 BUILD_ASSERT_DECL(OFPR_ACTION == 1);
327 BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR);
328
329 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
330 enum ofconn_type);
331 static void ofconn_destroy(struct ofconn *);
332 static void ofconn_run(struct ofconn *);
333 static void ofconn_wait(struct ofconn *);
334 static bool ofconn_receives_async_msgs(const struct ofconn *);
335 static char *ofconn_make_name(const struct ofproto *, const char *target);
336 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
337
338 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
339 struct rconn_packet_counter *counter);
340
341 static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg);
342 static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn);
343
344 struct ofproto {
345 /* Settings. */
346 uint64_t datapath_id; /* Datapath ID. */
347 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
348 char *mfr_desc; /* Manufacturer. */
349 char *hw_desc; /* Hardware. */
350 char *sw_desc; /* Software version. */
351 char *serial_desc; /* Serial number. */
352 char *dp_desc; /* Datapath description. */
353
354 /* Datapath. */
355 struct dpif *dpif;
356 struct netdev_monitor *netdev_monitor;
357 struct hmap ports; /* Contains "struct ofport"s. */
358 struct shash port_by_name;
359 uint32_t max_ports;
360
361 /* Configuration. */
362 struct switch_status *switch_status;
363 struct fail_open *fail_open;
364 struct netflow *netflow;
365 struct ofproto_sflow *sflow;
366
367 /* In-band control. */
368 struct in_band *in_band;
369 long long int next_in_band_update;
370 struct sockaddr_in *extra_in_band_remotes;
371 size_t n_extra_remotes;
372 int in_band_queue;
373
374 /* Flow table. */
375 struct classifier cls;
376 long long int next_expiration;
377
378 /* Facets. */
379 struct hmap facets;
380 bool need_revalidate;
381 struct tag_set revalidate_set;
382
383 /* OpenFlow connections. */
384 struct hmap controllers; /* Controller "struct ofconn"s. */
385 struct list all_conns; /* Contains "struct ofconn"s. */
386 enum ofproto_fail_mode fail_mode;
387
388 /* OpenFlow listeners. */
389 struct hmap services; /* Contains "struct ofservice"s. */
390 struct pvconn **snoops;
391 size_t n_snoops;
392
393 /* Hooks for ovs-vswitchd. */
394 const struct ofhooks *ofhooks;
395 void *aux;
396
397 /* Used by default ofhooks. */
398 struct mac_learning *ml;
399 };
400
401 /* Map from dpif name to struct ofproto, for use by unixctl commands. */
402 static struct shash all_ofprotos = SHASH_INITIALIZER(&all_ofprotos);
403
404 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
405
406 static const struct ofhooks default_ofhooks;
407
408 static uint64_t pick_datapath_id(const struct ofproto *);
409 static uint64_t pick_fallback_dpid(void);
410
411 static int ofproto_expire(struct ofproto *);
412
413 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
414
415 static void handle_openflow(struct ofconn *, struct ofpbuf *);
416
417 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
418 static void update_port(struct ofproto *, const char *devname);
419 static int init_ports(struct ofproto *);
420 static void reinit_ports(struct ofproto *);
421
422 static void ofproto_unixctl_init(void);
423
424 int
425 ofproto_create(const char *datapath, const char *datapath_type,
426 const struct ofhooks *ofhooks, void *aux,
427 struct ofproto **ofprotop)
428 {
429 struct odp_stats stats;
430 struct ofproto *p;
431 struct dpif *dpif;
432 int error;
433
434 *ofprotop = NULL;
435
436 ofproto_unixctl_init();
437
438 /* Connect to datapath and start listening for messages. */
439 error = dpif_open(datapath, datapath_type, &dpif);
440 if (error) {
441 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
442 return error;
443 }
444 error = dpif_get_dp_stats(dpif, &stats);
445 if (error) {
446 VLOG_ERR("failed to obtain stats for datapath %s: %s",
447 datapath, strerror(error));
448 dpif_close(dpif);
449 return error;
450 }
451 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW);
452 if (error) {
453 VLOG_ERR("failed to listen on datapath %s: %s",
454 datapath, strerror(error));
455 dpif_close(dpif);
456 return error;
457 }
458 dpif_flow_flush(dpif);
459 dpif_recv_purge(dpif);
460
461 /* Initialize settings. */
462 p = xzalloc(sizeof *p);
463 p->fallback_dpid = pick_fallback_dpid();
464 p->datapath_id = p->fallback_dpid;
465 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
466 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
467 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
468 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
469 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
470
471 /* Initialize datapath. */
472 p->dpif = dpif;
473 p->netdev_monitor = netdev_monitor_create();
474 hmap_init(&p->ports);
475 shash_init(&p->port_by_name);
476 p->max_ports = stats.max_ports;
477
478 /* Initialize submodules. */
479 p->switch_status = switch_status_create(p);
480 p->fail_open = NULL;
481 p->netflow = NULL;
482 p->sflow = NULL;
483
484 /* Initialize in-band control. */
485 p->in_band = NULL;
486 p->in_band_queue = -1;
487
488 /* Initialize flow table. */
489 classifier_init(&p->cls);
490 p->next_expiration = time_msec() + 1000;
491
492 /* Initialize facet table. */
493 hmap_init(&p->facets);
494 p->need_revalidate = false;
495 tag_set_init(&p->revalidate_set);
496
497 /* Initialize OpenFlow connections. */
498 list_init(&p->all_conns);
499 hmap_init(&p->controllers);
500 hmap_init(&p->services);
501 p->snoops = NULL;
502 p->n_snoops = 0;
503
504 /* Initialize hooks. */
505 if (ofhooks) {
506 p->ofhooks = ofhooks;
507 p->aux = aux;
508 p->ml = NULL;
509 } else {
510 p->ofhooks = &default_ofhooks;
511 p->aux = p;
512 p->ml = mac_learning_create();
513 }
514
515 /* Pick final datapath ID. */
516 p->datapath_id = pick_datapath_id(p);
517 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
518
519 shash_add_once(&all_ofprotos, dpif_name(p->dpif), p);
520
521 *ofprotop = p;
522 return 0;
523 }
524
525 void
526 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
527 {
528 uint64_t old_dpid = p->datapath_id;
529 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
530 if (p->datapath_id != old_dpid) {
531 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
532
533 /* Force all active connections to reconnect, since there is no way to
534 * notify a controller that the datapath ID has changed. */
535 ofproto_reconnect_controllers(p);
536 }
537 }
538
539 static bool
540 is_discovery_controller(const struct ofproto_controller *c)
541 {
542 return !strcmp(c->target, "discover");
543 }
544
545 static bool
546 is_in_band_controller(const struct ofproto_controller *c)
547 {
548 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
549 }
550
551 /* Creates a new controller in 'ofproto'. Some of the settings are initially
552 * drawn from 'c', but update_controller() needs to be called later to finish
553 * the new ofconn's configuration. */
554 static void
555 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
556 {
557 struct discovery *discovery;
558 struct ofconn *ofconn;
559
560 if (is_discovery_controller(c)) {
561 int error = discovery_create(c->accept_re, c->update_resolv_conf,
562 ofproto->dpif, ofproto->switch_status,
563 &discovery);
564 if (error) {
565 return;
566 }
567 } else {
568 discovery = NULL;
569 }
570
571 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
572 ofconn->pktbuf = pktbuf_create();
573 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
574 if (discovery) {
575 ofconn->discovery = discovery;
576 } else {
577 char *name = ofconn_make_name(ofproto, c->target);
578 rconn_connect(ofconn->rconn, c->target, name);
579 free(name);
580 }
581 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
582 hash_string(c->target, 0));
583 }
584
585 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
586 * target or turn discovery on or off (these are done by creating new ofconns
587 * and deleting old ones), but it can update the rest of an ofconn's
588 * settings. */
589 static void
590 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
591 {
592 int probe_interval;
593
594 ofconn->band = (is_in_band_controller(c)
595 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
596
597 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
598
599 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
600 rconn_set_probe_interval(ofconn->rconn, probe_interval);
601
602 if (ofconn->discovery) {
603 discovery_set_update_resolv_conf(ofconn->discovery,
604 c->update_resolv_conf);
605 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
606 }
607
608 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
609 }
610
611 static const char *
612 ofconn_get_target(const struct ofconn *ofconn)
613 {
614 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
615 }
616
617 static struct ofconn *
618 find_controller_by_target(struct ofproto *ofproto, const char *target)
619 {
620 struct ofconn *ofconn;
621
622 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
623 hash_string(target, 0), &ofproto->controllers) {
624 if (!strcmp(ofconn_get_target(ofconn), target)) {
625 return ofconn;
626 }
627 }
628 return NULL;
629 }
630
631 static void
632 update_in_band_remotes(struct ofproto *ofproto)
633 {
634 const struct ofconn *ofconn;
635 struct sockaddr_in *addrs;
636 size_t max_addrs, n_addrs;
637 bool discovery;
638 size_t i;
639
640 /* Allocate enough memory for as many remotes as we could possibly have. */
641 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
642 addrs = xmalloc(max_addrs * sizeof *addrs);
643 n_addrs = 0;
644
645 /* Add all the remotes. */
646 discovery = false;
647 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
648 struct sockaddr_in *sin = &addrs[n_addrs];
649
650 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
651 continue;
652 }
653
654 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
655 if (sin->sin_addr.s_addr) {
656 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
657 n_addrs++;
658 }
659 if (ofconn->discovery) {
660 discovery = true;
661 }
662 }
663 for (i = 0; i < ofproto->n_extra_remotes; i++) {
664 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
665 }
666
667 /* Create or update or destroy in-band.
668 *
669 * Ordinarily we only enable in-band if there's at least one remote
670 * address, but discovery needs the in-band rules for DHCP to be installed
671 * even before we know any remote addresses. */
672 if (n_addrs || discovery) {
673 if (!ofproto->in_band) {
674 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
675 &ofproto->in_band);
676 }
677 if (ofproto->in_band) {
678 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
679 }
680 in_band_set_queue(ofproto->in_band, ofproto->in_band_queue);
681 ofproto->next_in_band_update = time_msec() + 1000;
682 } else {
683 in_band_destroy(ofproto->in_band);
684 ofproto->in_band = NULL;
685 }
686
687 /* Clean up. */
688 free(addrs);
689 }
690
691 static void
692 update_fail_open(struct ofproto *p)
693 {
694 struct ofconn *ofconn;
695
696 if (!hmap_is_empty(&p->controllers)
697 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
698 struct rconn **rconns;
699 size_t n;
700
701 if (!p->fail_open) {
702 p->fail_open = fail_open_create(p, p->switch_status);
703 }
704
705 n = 0;
706 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
707 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
708 rconns[n++] = ofconn->rconn;
709 }
710
711 fail_open_set_controllers(p->fail_open, rconns, n);
712 /* p->fail_open takes ownership of 'rconns'. */
713 } else {
714 fail_open_destroy(p->fail_open);
715 p->fail_open = NULL;
716 }
717 }
718
719 void
720 ofproto_set_controllers(struct ofproto *p,
721 const struct ofproto_controller *controllers,
722 size_t n_controllers)
723 {
724 struct shash new_controllers;
725 struct ofconn *ofconn, *next_ofconn;
726 struct ofservice *ofservice, *next_ofservice;
727 bool ss_exists;
728 size_t i;
729
730 /* Create newly configured controllers and services.
731 * Create a name to ofproto_controller mapping in 'new_controllers'. */
732 shash_init(&new_controllers);
733 for (i = 0; i < n_controllers; i++) {
734 const struct ofproto_controller *c = &controllers[i];
735
736 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
737 if (!find_controller_by_target(p, c->target)) {
738 add_controller(p, c);
739 }
740 } else if (!pvconn_verify_name(c->target)) {
741 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
742 continue;
743 }
744 } else {
745 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
746 dpif_name(p->dpif), c->target);
747 continue;
748 }
749
750 shash_add_once(&new_controllers, c->target, &controllers[i]);
751 }
752
753 /* Delete controllers that are no longer configured.
754 * Update configuration of all now-existing controllers. */
755 ss_exists = false;
756 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
757 struct ofproto_controller *c;
758
759 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
760 if (!c) {
761 ofconn_destroy(ofconn);
762 } else {
763 update_controller(ofconn, c);
764 if (ofconn->ss) {
765 ss_exists = true;
766 }
767 }
768 }
769
770 /* Delete services that are no longer configured.
771 * Update configuration of all now-existing services. */
772 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
773 struct ofproto_controller *c;
774
775 c = shash_find_data(&new_controllers,
776 pvconn_get_name(ofservice->pvconn));
777 if (!c) {
778 ofservice_destroy(p, ofservice);
779 } else {
780 ofservice_reconfigure(ofservice, c);
781 }
782 }
783
784 shash_destroy(&new_controllers);
785
786 update_in_band_remotes(p);
787 update_fail_open(p);
788
789 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
790 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
791 struct ofconn, hmap_node);
792 ofconn->ss = switch_status_register(p->switch_status, "remote",
793 rconn_status_cb, ofconn->rconn);
794 }
795 }
796
797 void
798 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
799 {
800 p->fail_mode = fail_mode;
801 update_fail_open(p);
802 }
803
804 /* Drops the connections between 'ofproto' and all of its controllers, forcing
805 * them to reconnect. */
806 void
807 ofproto_reconnect_controllers(struct ofproto *ofproto)
808 {
809 struct ofconn *ofconn;
810
811 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
812 rconn_reconnect(ofconn->rconn);
813 }
814 }
815
816 static bool
817 any_extras_changed(const struct ofproto *ofproto,
818 const struct sockaddr_in *extras, size_t n)
819 {
820 size_t i;
821
822 if (n != ofproto->n_extra_remotes) {
823 return true;
824 }
825
826 for (i = 0; i < n; i++) {
827 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
828 const struct sockaddr_in *new = &extras[i];
829
830 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
831 old->sin_port != new->sin_port) {
832 return true;
833 }
834 }
835
836 return false;
837 }
838
839 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
840 * in-band control should guarantee access, in the same way that in-band
841 * control guarantees access to OpenFlow controllers. */
842 void
843 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
844 const struct sockaddr_in *extras, size_t n)
845 {
846 if (!any_extras_changed(ofproto, extras, n)) {
847 return;
848 }
849
850 free(ofproto->extra_in_band_remotes);
851 ofproto->n_extra_remotes = n;
852 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
853
854 update_in_band_remotes(ofproto);
855 }
856
857 /* Sets the OpenFlow queue used by flows set up by in-band control on
858 * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control
859 * flows will use the default queue. */
860 void
861 ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id)
862 {
863 if (queue_id != ofproto->in_band_queue) {
864 ofproto->in_band_queue = queue_id;
865 update_in_band_remotes(ofproto);
866 }
867 }
868
869 void
870 ofproto_set_desc(struct ofproto *p,
871 const char *mfr_desc, const char *hw_desc,
872 const char *sw_desc, const char *serial_desc,
873 const char *dp_desc)
874 {
875 struct ofp_desc_stats *ods;
876
877 if (mfr_desc) {
878 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
879 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
880 sizeof ods->mfr_desc);
881 }
882 free(p->mfr_desc);
883 p->mfr_desc = xstrdup(mfr_desc);
884 }
885 if (hw_desc) {
886 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
887 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
888 sizeof ods->hw_desc);
889 }
890 free(p->hw_desc);
891 p->hw_desc = xstrdup(hw_desc);
892 }
893 if (sw_desc) {
894 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
895 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
896 sizeof ods->sw_desc);
897 }
898 free(p->sw_desc);
899 p->sw_desc = xstrdup(sw_desc);
900 }
901 if (serial_desc) {
902 if (strlen(serial_desc) >= sizeof ods->serial_num) {
903 VLOG_WARN("truncating serial_desc, must be less than %zu "
904 "characters",
905 sizeof ods->serial_num);
906 }
907 free(p->serial_desc);
908 p->serial_desc = xstrdup(serial_desc);
909 }
910 if (dp_desc) {
911 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
912 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
913 sizeof ods->dp_desc);
914 }
915 free(p->dp_desc);
916 p->dp_desc = xstrdup(dp_desc);
917 }
918 }
919
920 static int
921 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
922 const struct svec *svec)
923 {
924 struct pvconn **pvconns = *pvconnsp;
925 size_t n_pvconns = *n_pvconnsp;
926 int retval = 0;
927 size_t i;
928
929 for (i = 0; i < n_pvconns; i++) {
930 pvconn_close(pvconns[i]);
931 }
932 free(pvconns);
933
934 pvconns = xmalloc(svec->n * sizeof *pvconns);
935 n_pvconns = 0;
936 for (i = 0; i < svec->n; i++) {
937 const char *name = svec->names[i];
938 struct pvconn *pvconn;
939 int error;
940
941 error = pvconn_open(name, &pvconn);
942 if (!error) {
943 pvconns[n_pvconns++] = pvconn;
944 } else {
945 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
946 if (!retval) {
947 retval = error;
948 }
949 }
950 }
951
952 *pvconnsp = pvconns;
953 *n_pvconnsp = n_pvconns;
954
955 return retval;
956 }
957
958 int
959 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
960 {
961 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
962 }
963
964 int
965 ofproto_set_netflow(struct ofproto *ofproto,
966 const struct netflow_options *nf_options)
967 {
968 if (nf_options && nf_options->collectors.n) {
969 if (!ofproto->netflow) {
970 ofproto->netflow = netflow_create();
971 }
972 return netflow_set_options(ofproto->netflow, nf_options);
973 } else {
974 netflow_destroy(ofproto->netflow);
975 ofproto->netflow = NULL;
976 return 0;
977 }
978 }
979
980 void
981 ofproto_set_sflow(struct ofproto *ofproto,
982 const struct ofproto_sflow_options *oso)
983 {
984 struct ofproto_sflow *os = ofproto->sflow;
985 if (oso) {
986 if (!os) {
987 struct ofport *ofport;
988
989 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
990 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
991 ofproto_sflow_add_port(os, ofport->odp_port,
992 netdev_get_name(ofport->netdev));
993 }
994 }
995 ofproto_sflow_set_options(os, oso);
996 } else {
997 ofproto_sflow_destroy(os);
998 ofproto->sflow = NULL;
999 }
1000 }
1001
1002 uint64_t
1003 ofproto_get_datapath_id(const struct ofproto *ofproto)
1004 {
1005 return ofproto->datapath_id;
1006 }
1007
1008 bool
1009 ofproto_has_primary_controller(const struct ofproto *ofproto)
1010 {
1011 return !hmap_is_empty(&ofproto->controllers);
1012 }
1013
1014 enum ofproto_fail_mode
1015 ofproto_get_fail_mode(const struct ofproto *p)
1016 {
1017 return p->fail_mode;
1018 }
1019
1020 void
1021 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
1022 {
1023 size_t i;
1024
1025 for (i = 0; i < ofproto->n_snoops; i++) {
1026 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
1027 }
1028 }
1029
1030 void
1031 ofproto_destroy(struct ofproto *p)
1032 {
1033 struct ofservice *ofservice, *next_ofservice;
1034 struct ofconn *ofconn, *next_ofconn;
1035 struct ofport *ofport, *next_ofport;
1036 size_t i;
1037
1038 if (!p) {
1039 return;
1040 }
1041
1042 shash_find_and_delete(&all_ofprotos, dpif_name(p->dpif));
1043
1044 /* Destroy fail-open and in-band early, since they touch the classifier. */
1045 fail_open_destroy(p->fail_open);
1046 p->fail_open = NULL;
1047
1048 in_band_destroy(p->in_band);
1049 p->in_band = NULL;
1050 free(p->extra_in_band_remotes);
1051
1052 ofproto_flush_flows(p);
1053 classifier_destroy(&p->cls);
1054 hmap_destroy(&p->facets);
1055
1056 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1057 ofconn_destroy(ofconn);
1058 }
1059 hmap_destroy(&p->controllers);
1060
1061 dpif_close(p->dpif);
1062 netdev_monitor_destroy(p->netdev_monitor);
1063 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
1064 hmap_remove(&p->ports, &ofport->hmap_node);
1065 ofport_free(ofport);
1066 }
1067 shash_destroy(&p->port_by_name);
1068
1069 switch_status_destroy(p->switch_status);
1070 netflow_destroy(p->netflow);
1071 ofproto_sflow_destroy(p->sflow);
1072
1073 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
1074 ofservice_destroy(p, ofservice);
1075 }
1076 hmap_destroy(&p->services);
1077
1078 for (i = 0; i < p->n_snoops; i++) {
1079 pvconn_close(p->snoops[i]);
1080 }
1081 free(p->snoops);
1082
1083 mac_learning_destroy(p->ml);
1084
1085 free(p->mfr_desc);
1086 free(p->hw_desc);
1087 free(p->sw_desc);
1088 free(p->serial_desc);
1089 free(p->dp_desc);
1090
1091 hmap_destroy(&p->ports);
1092
1093 free(p);
1094 }
1095
1096 int
1097 ofproto_run(struct ofproto *p)
1098 {
1099 int error = ofproto_run1(p);
1100 if (!error) {
1101 error = ofproto_run2(p, false);
1102 }
1103 return error;
1104 }
1105
1106 static void
1107 process_port_change(struct ofproto *ofproto, int error, char *devname)
1108 {
1109 if (error == ENOBUFS) {
1110 reinit_ports(ofproto);
1111 } else if (!error) {
1112 update_port(ofproto, devname);
1113 free(devname);
1114 }
1115 }
1116
1117 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1118 * means that 'ofconn' is more interesting for monitoring than a lower return
1119 * value. */
1120 static int
1121 snoop_preference(const struct ofconn *ofconn)
1122 {
1123 switch (ofconn->role) {
1124 case NX_ROLE_MASTER:
1125 return 3;
1126 case NX_ROLE_OTHER:
1127 return 2;
1128 case NX_ROLE_SLAVE:
1129 return 1;
1130 default:
1131 /* Shouldn't happen. */
1132 return 0;
1133 }
1134 }
1135
1136 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1137 * Connects this vconn to a controller. */
1138 static void
1139 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1140 {
1141 struct ofconn *ofconn, *best;
1142
1143 /* Pick a controller for monitoring. */
1144 best = NULL;
1145 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1146 if (ofconn->type == OFCONN_PRIMARY
1147 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1148 best = ofconn;
1149 }
1150 }
1151
1152 if (best) {
1153 rconn_add_monitor(best->rconn, vconn);
1154 } else {
1155 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1156 vconn_close(vconn);
1157 }
1158 }
1159
1160 int
1161 ofproto_run1(struct ofproto *p)
1162 {
1163 struct ofconn *ofconn, *next_ofconn;
1164 struct ofservice *ofservice;
1165 char *devname;
1166 int error;
1167 int i;
1168
1169 if (shash_is_empty(&p->port_by_name)) {
1170 init_ports(p);
1171 }
1172
1173 for (i = 0; i < 50; i++) {
1174 struct ofpbuf *buf;
1175
1176 error = dpif_recv(p->dpif, &buf);
1177 if (error) {
1178 if (error == ENODEV) {
1179 /* Someone destroyed the datapath behind our back. The caller
1180 * better destroy us and give up, because we're just going to
1181 * spin from here on out. */
1182 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1183 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1184 dpif_name(p->dpif));
1185 return ENODEV;
1186 }
1187 break;
1188 }
1189
1190 handle_odp_msg(p, buf);
1191 }
1192
1193 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1194 process_port_change(p, error, devname);
1195 }
1196 while ((error = netdev_monitor_poll(p->netdev_monitor,
1197 &devname)) != EAGAIN) {
1198 process_port_change(p, error, devname);
1199 }
1200
1201 if (p->in_band) {
1202 if (time_msec() >= p->next_in_band_update) {
1203 update_in_band_remotes(p);
1204 }
1205 in_band_run(p->in_band);
1206 }
1207
1208 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1209 ofconn_run(ofconn);
1210 }
1211
1212 /* Fail-open maintenance. Do this after processing the ofconns since
1213 * fail-open checks the status of the controller rconn. */
1214 if (p->fail_open) {
1215 fail_open_run(p->fail_open);
1216 }
1217
1218 HMAP_FOR_EACH (ofservice, node, &p->services) {
1219 struct vconn *vconn;
1220 int retval;
1221
1222 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1223 if (!retval) {
1224 struct rconn *rconn;
1225 char *name;
1226
1227 rconn = rconn_create(ofservice->probe_interval, 0);
1228 name = ofconn_make_name(p, vconn_get_name(vconn));
1229 rconn_connect_unreliably(rconn, vconn, name);
1230 free(name);
1231
1232 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1233 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1234 ofservice->burst_limit);
1235 } else if (retval != EAGAIN) {
1236 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1237 }
1238 }
1239
1240 for (i = 0; i < p->n_snoops; i++) {
1241 struct vconn *vconn;
1242 int retval;
1243
1244 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1245 if (!retval) {
1246 add_snooper(p, vconn);
1247 } else if (retval != EAGAIN) {
1248 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1249 }
1250 }
1251
1252 if (time_msec() >= p->next_expiration) {
1253 int delay = ofproto_expire(p);
1254 p->next_expiration = time_msec() + delay;
1255 COVERAGE_INC(ofproto_expiration);
1256 }
1257
1258 if (p->netflow) {
1259 netflow_run(p->netflow);
1260 }
1261 if (p->sflow) {
1262 ofproto_sflow_run(p->sflow);
1263 }
1264
1265 return 0;
1266 }
1267
1268 int
1269 ofproto_run2(struct ofproto *p, bool revalidate_all)
1270 {
1271 /* Figure out what we need to revalidate now, if anything. */
1272 struct tag_set revalidate_set = p->revalidate_set;
1273 if (p->need_revalidate) {
1274 revalidate_all = true;
1275 }
1276
1277 /* Clear the revalidation flags. */
1278 tag_set_init(&p->revalidate_set);
1279 p->need_revalidate = false;
1280
1281 /* Now revalidate if there's anything to do. */
1282 if (revalidate_all || !tag_set_is_empty(&revalidate_set)) {
1283 struct facet *facet, *next;
1284
1285 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &p->facets) {
1286 if (revalidate_all
1287 || tag_set_intersects(&revalidate_set, facet->tags)) {
1288 facet_revalidate(p, facet);
1289 }
1290 }
1291 }
1292
1293 return 0;
1294 }
1295
1296 void
1297 ofproto_wait(struct ofproto *p)
1298 {
1299 struct ofservice *ofservice;
1300 struct ofconn *ofconn;
1301 size_t i;
1302
1303 dpif_recv_wait(p->dpif);
1304 dpif_port_poll_wait(p->dpif);
1305 netdev_monitor_poll_wait(p->netdev_monitor);
1306 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1307 ofconn_wait(ofconn);
1308 }
1309 if (p->in_band) {
1310 poll_timer_wait_until(p->next_in_band_update);
1311 in_band_wait(p->in_band);
1312 }
1313 if (p->fail_open) {
1314 fail_open_wait(p->fail_open);
1315 }
1316 if (p->sflow) {
1317 ofproto_sflow_wait(p->sflow);
1318 }
1319 if (!tag_set_is_empty(&p->revalidate_set)) {
1320 poll_immediate_wake();
1321 }
1322 if (p->need_revalidate) {
1323 /* Shouldn't happen, but if it does just go around again. */
1324 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1325 poll_immediate_wake();
1326 } else if (p->next_expiration != LLONG_MAX) {
1327 poll_timer_wait_until(p->next_expiration);
1328 }
1329 HMAP_FOR_EACH (ofservice, node, &p->services) {
1330 pvconn_wait(ofservice->pvconn);
1331 }
1332 for (i = 0; i < p->n_snoops; i++) {
1333 pvconn_wait(p->snoops[i]);
1334 }
1335 }
1336
1337 void
1338 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1339 {
1340 tag_set_add(&ofproto->revalidate_set, tag);
1341 }
1342
1343 struct tag_set *
1344 ofproto_get_revalidate_set(struct ofproto *ofproto)
1345 {
1346 return &ofproto->revalidate_set;
1347 }
1348
1349 bool
1350 ofproto_is_alive(const struct ofproto *p)
1351 {
1352 return !hmap_is_empty(&p->controllers);
1353 }
1354
1355 /* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1356 *
1357 * This is almost the same as calling dpif_port_del() directly on the
1358 * datapath, but it also makes 'ofproto' close its open netdev for the port
1359 * (if any). This makes it possible to create a new netdev of a different
1360 * type under the same name, which otherwise the netdev library would refuse
1361 * to do because of the conflict. (The netdev would eventually get closed on
1362 * the next trip through ofproto_run(), but this interface is more direct.)
1363 *
1364 * Returns 0 if successful, otherwise a positive errno. */
1365 int
1366 ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1367 {
1368 struct ofport *ofport = get_port(ofproto, odp_port);
1369 const char *name = ofport ? ofport->opp.name : "<unknown>";
1370 int error;
1371
1372 error = dpif_port_del(ofproto->dpif, odp_port);
1373 if (error) {
1374 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1375 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1376 } else if (ofport) {
1377 /* 'name' is ofport->opp.name and update_port() is going to destroy
1378 * 'ofport'. Just in case update_port() refers to 'name' after it
1379 * destroys 'ofport', make a copy of it around the update_port()
1380 * call. */
1381 char *devname = xstrdup(name);
1382 update_port(ofproto, devname);
1383 free(devname);
1384 }
1385 return error;
1386 }
1387
1388 /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1389 * true if 'odp_port' exists and should be included, false otherwise. */
1390 bool
1391 ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1392 {
1393 struct ofport *ofport = get_port(ofproto, odp_port);
1394 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1395 }
1396
1397 int
1398 ofproto_send_packet(struct ofproto *p, const struct flow *flow,
1399 const union ofp_action *actions, size_t n_actions,
1400 const struct ofpbuf *packet)
1401 {
1402 struct action_xlate_ctx ctx;
1403 int error;
1404
1405 action_xlate_ctx_init(&ctx, p, flow, packet);
1406 error = xlate_actions(&ctx, actions, n_actions);
1407 if (error) {
1408 return error;
1409 }
1410
1411 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1412 * error code? */
1413 dpif_execute(p->dpif, ctx.out.actions, ctx.out.n_actions, packet);
1414 return 0;
1415 }
1416
1417 /* Adds a flow to the OpenFlow flow table in 'p' that matches 'cls_rule' and
1418 * performs the 'n_actions' actions in 'actions'. The new flow will not
1419 * timeout.
1420 *
1421 * If cls_rule->priority is in the range of priorities supported by OpenFlow
1422 * (0...65535, inclusive) then the flow will be visible to OpenFlow
1423 * controllers; otherwise, it will be hidden.
1424 *
1425 * The caller retains ownership of 'cls_rule' and 'actions'. */
1426 void
1427 ofproto_add_flow(struct ofproto *p, const struct cls_rule *cls_rule,
1428 const union ofp_action *actions, size_t n_actions)
1429 {
1430 struct rule *rule;
1431 rule = rule_create(cls_rule, actions, n_actions, 0, 0, 0, false);
1432 rule_insert(p, rule);
1433 }
1434
1435 void
1436 ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target)
1437 {
1438 struct rule *rule;
1439
1440 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1441 target));
1442 if (rule) {
1443 rule_remove(ofproto, rule);
1444 }
1445 }
1446
1447 void
1448 ofproto_flush_flows(struct ofproto *ofproto)
1449 {
1450 struct facet *facet, *next_facet;
1451 struct rule *rule, *next_rule;
1452 struct cls_cursor cursor;
1453
1454 COVERAGE_INC(ofproto_flush);
1455
1456 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
1457 /* Mark the facet as not installed so that facet_remove() doesn't
1458 * bother trying to uninstall it. There is no point in uninstalling it
1459 * individually since we are about to blow away all the facets with
1460 * dpif_flow_flush(). */
1461 facet->installed = false;
1462 facet_remove(ofproto, facet);
1463 }
1464
1465 cls_cursor_init(&cursor, &ofproto->cls, NULL);
1466 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
1467 rule_remove(ofproto, rule);
1468 }
1469
1470 dpif_flow_flush(ofproto->dpif);
1471 if (ofproto->in_band) {
1472 in_band_flushed(ofproto->in_band);
1473 }
1474 if (ofproto->fail_open) {
1475 fail_open_flushed(ofproto->fail_open);
1476 }
1477 }
1478 \f
1479 static void
1480 reinit_ports(struct ofproto *p)
1481 {
1482 struct svec devnames;
1483 struct ofport *ofport;
1484 struct odp_port *odp_ports;
1485 size_t n_odp_ports;
1486 size_t i;
1487
1488 COVERAGE_INC(ofproto_reinit_ports);
1489
1490 svec_init(&devnames);
1491 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1492 svec_add (&devnames, ofport->opp.name);
1493 }
1494 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1495 for (i = 0; i < n_odp_ports; i++) {
1496 svec_add (&devnames, odp_ports[i].devname);
1497 }
1498 free(odp_ports);
1499
1500 svec_sort_unique(&devnames);
1501 for (i = 0; i < devnames.n; i++) {
1502 update_port(p, devnames.names[i]);
1503 }
1504 svec_destroy(&devnames);
1505 }
1506
1507 static struct ofport *
1508 make_ofport(const struct odp_port *odp_port)
1509 {
1510 struct netdev_options netdev_options;
1511 enum netdev_flags flags;
1512 struct ofport *ofport;
1513 struct netdev *netdev;
1514 int error;
1515
1516 memset(&netdev_options, 0, sizeof netdev_options);
1517 netdev_options.name = odp_port->devname;
1518 netdev_options.type = odp_port->type;
1519 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1520
1521 error = netdev_open(&netdev_options, &netdev);
1522 if (error) {
1523 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1524 "cannot be opened (%s)",
1525 odp_port->devname, odp_port->port,
1526 odp_port->devname, strerror(error));
1527 return NULL;
1528 }
1529
1530 ofport = xmalloc(sizeof *ofport);
1531 ofport->netdev = netdev;
1532 ofport->odp_port = odp_port->port;
1533 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1534 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1535 memcpy(ofport->opp.name, odp_port->devname,
1536 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1537 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1538
1539 netdev_get_flags(netdev, &flags);
1540 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1541
1542 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1543
1544 netdev_get_features(netdev,
1545 &ofport->opp.curr, &ofport->opp.advertised,
1546 &ofport->opp.supported, &ofport->opp.peer);
1547 return ofport;
1548 }
1549
1550 static bool
1551 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1552 {
1553 if (get_port(p, odp_port->port)) {
1554 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1555 odp_port->port);
1556 return true;
1557 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1558 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1559 odp_port->devname);
1560 return true;
1561 } else {
1562 return false;
1563 }
1564 }
1565
1566 static int
1567 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1568 {
1569 const struct ofp_phy_port *a = &a_->opp;
1570 const struct ofp_phy_port *b = &b_->opp;
1571
1572 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1573 return (a->port_no == b->port_no
1574 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1575 && !strcmp(a->name, b->name)
1576 && a->state == b->state
1577 && a->config == b->config
1578 && a->curr == b->curr
1579 && a->advertised == b->advertised
1580 && a->supported == b->supported
1581 && a->peer == b->peer);
1582 }
1583
1584 static void
1585 send_port_status(struct ofproto *p, const struct ofport *ofport,
1586 uint8_t reason)
1587 {
1588 /* XXX Should limit the number of queued port status change messages. */
1589 struct ofconn *ofconn;
1590 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1591 struct ofp_port_status *ops;
1592 struct ofpbuf *b;
1593
1594 /* Primary controllers, even slaves, should always get port status
1595 updates. Otherwise obey ofconn_receives_async_msgs(). */
1596 if (ofconn->type != OFCONN_PRIMARY
1597 && !ofconn_receives_async_msgs(ofconn)) {
1598 continue;
1599 }
1600
1601 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1602 ops->reason = reason;
1603 ops->desc = ofport->opp;
1604 hton_ofp_phy_port(&ops->desc);
1605 queue_tx(b, ofconn, NULL);
1606 }
1607 }
1608
1609 static void
1610 ofport_install(struct ofproto *p, struct ofport *ofport)
1611 {
1612 const char *netdev_name = ofport->opp.name;
1613
1614 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1615 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1616 shash_add(&p->port_by_name, netdev_name, ofport);
1617 if (p->sflow) {
1618 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1619 }
1620 }
1621
1622 static void
1623 ofport_remove(struct ofproto *p, struct ofport *ofport)
1624 {
1625 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1626 hmap_remove(&p->ports, &ofport->hmap_node);
1627 shash_delete(&p->port_by_name,
1628 shash_find(&p->port_by_name, ofport->opp.name));
1629 if (p->sflow) {
1630 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1631 }
1632 }
1633
1634 static void
1635 ofport_free(struct ofport *ofport)
1636 {
1637 if (ofport) {
1638 netdev_close(ofport->netdev);
1639 free(ofport);
1640 }
1641 }
1642
1643 static struct ofport *
1644 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1645 {
1646 struct ofport *port;
1647
1648 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1649 hash_int(odp_port, 0), &ofproto->ports) {
1650 if (port->odp_port == odp_port) {
1651 return port;
1652 }
1653 }
1654 return NULL;
1655 }
1656
1657 static void
1658 update_port(struct ofproto *p, const char *devname)
1659 {
1660 struct odp_port odp_port;
1661 struct ofport *old_ofport;
1662 struct ofport *new_ofport;
1663 int error;
1664
1665 COVERAGE_INC(ofproto_update_port);
1666
1667 /* Query the datapath for port information. */
1668 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1669
1670 /* Find the old ofport. */
1671 old_ofport = shash_find_data(&p->port_by_name, devname);
1672 if (!error) {
1673 if (!old_ofport) {
1674 /* There's no port named 'devname' but there might be a port with
1675 * the same port number. This could happen if a port is deleted
1676 * and then a new one added in its place very quickly, or if a port
1677 * is renamed. In the former case we want to send an OFPPR_DELETE
1678 * and an OFPPR_ADD, and in the latter case we want to send a
1679 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1680 * the old port's ifindex against the new port, or perhaps less
1681 * reliably but more portably by comparing the old port's MAC
1682 * against the new port's MAC. However, this code isn't that smart
1683 * and always sends an OFPPR_MODIFY (XXX). */
1684 old_ofport = get_port(p, odp_port.port);
1685 }
1686 } else if (error != ENOENT && error != ENODEV) {
1687 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1688 "%s", strerror(error));
1689 return;
1690 }
1691
1692 /* Create a new ofport. */
1693 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1694
1695 /* Eliminate a few pathological cases. */
1696 if (!old_ofport && !new_ofport) {
1697 return;
1698 } else if (old_ofport && new_ofport) {
1699 /* Most of the 'config' bits are OpenFlow soft state, but
1700 * OFPPC_PORT_DOWN is maintained by the kernel. So transfer the
1701 * OpenFlow bits from old_ofport. (make_ofport() only sets
1702 * OFPPC_PORT_DOWN and leaves the other bits 0.) */
1703 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1704
1705 if (ofport_equal(old_ofport, new_ofport)) {
1706 /* False alarm--no change. */
1707 ofport_free(new_ofport);
1708 return;
1709 }
1710 }
1711
1712 /* Now deal with the normal cases. */
1713 if (old_ofport) {
1714 ofport_remove(p, old_ofport);
1715 }
1716 if (new_ofport) {
1717 ofport_install(p, new_ofport);
1718 }
1719 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1720 (!old_ofport ? OFPPR_ADD
1721 : !new_ofport ? OFPPR_DELETE
1722 : OFPPR_MODIFY));
1723 ofport_free(old_ofport);
1724 }
1725
1726 static int
1727 init_ports(struct ofproto *p)
1728 {
1729 struct odp_port *ports;
1730 size_t n_ports;
1731 size_t i;
1732 int error;
1733
1734 error = dpif_port_list(p->dpif, &ports, &n_ports);
1735 if (error) {
1736 return error;
1737 }
1738
1739 for (i = 0; i < n_ports; i++) {
1740 const struct odp_port *odp_port = &ports[i];
1741 if (!ofport_conflicts(p, odp_port)) {
1742 struct ofport *ofport = make_ofport(odp_port);
1743 if (ofport) {
1744 ofport_install(p, ofport);
1745 }
1746 }
1747 }
1748 free(ports);
1749 return 0;
1750 }
1751 \f
1752 static struct ofconn *
1753 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1754 {
1755 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1756 ofconn->ofproto = p;
1757 list_push_back(&p->all_conns, &ofconn->node);
1758 ofconn->rconn = rconn;
1759 ofconn->type = type;
1760 ofconn->flow_format = NXFF_OPENFLOW10;
1761 ofconn->role = NX_ROLE_OTHER;
1762 ofconn->packet_in_counter = rconn_packet_counter_create ();
1763 ofconn->pktbuf = NULL;
1764 ofconn->miss_send_len = 0;
1765 ofconn->reply_counter = rconn_packet_counter_create ();
1766 return ofconn;
1767 }
1768
1769 static void
1770 ofconn_destroy(struct ofconn *ofconn)
1771 {
1772 if (ofconn->type == OFCONN_PRIMARY) {
1773 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1774 }
1775 discovery_destroy(ofconn->discovery);
1776
1777 list_remove(&ofconn->node);
1778 switch_status_unregister(ofconn->ss);
1779 rconn_destroy(ofconn->rconn);
1780 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1781 rconn_packet_counter_destroy(ofconn->reply_counter);
1782 pktbuf_destroy(ofconn->pktbuf);
1783 free(ofconn);
1784 }
1785
1786 static void
1787 ofconn_run(struct ofconn *ofconn)
1788 {
1789 struct ofproto *p = ofconn->ofproto;
1790 int iteration;
1791 size_t i;
1792
1793 if (ofconn->discovery) {
1794 char *controller_name;
1795 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1796 discovery_question_connectivity(ofconn->discovery);
1797 }
1798 if (discovery_run(ofconn->discovery, &controller_name)) {
1799 if (controller_name) {
1800 char *ofconn_name = ofconn_make_name(p, controller_name);
1801 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1802 free(ofconn_name);
1803 } else {
1804 rconn_disconnect(ofconn->rconn);
1805 }
1806 }
1807 }
1808
1809 for (i = 0; i < N_SCHEDULERS; i++) {
1810 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1811 }
1812
1813 rconn_run(ofconn->rconn);
1814
1815 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1816 /* Limit the number of iterations to prevent other tasks from
1817 * starving. */
1818 for (iteration = 0; iteration < 50; iteration++) {
1819 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1820 if (!of_msg) {
1821 break;
1822 }
1823 if (p->fail_open) {
1824 fail_open_maybe_recover(p->fail_open);
1825 }
1826 handle_openflow(ofconn, of_msg);
1827 ofpbuf_delete(of_msg);
1828 }
1829 }
1830
1831 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1832 ofconn_destroy(ofconn);
1833 }
1834 }
1835
1836 static void
1837 ofconn_wait(struct ofconn *ofconn)
1838 {
1839 int i;
1840
1841 if (ofconn->discovery) {
1842 discovery_wait(ofconn->discovery);
1843 }
1844 for (i = 0; i < N_SCHEDULERS; i++) {
1845 pinsched_wait(ofconn->schedulers[i]);
1846 }
1847 rconn_run_wait(ofconn->rconn);
1848 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1849 rconn_recv_wait(ofconn->rconn);
1850 } else {
1851 COVERAGE_INC(ofproto_ofconn_stuck);
1852 }
1853 }
1854
1855 /* Returns true if 'ofconn' should receive asynchronous messages. */
1856 static bool
1857 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1858 {
1859 if (ofconn->type == OFCONN_PRIMARY) {
1860 /* Primary controllers always get asynchronous messages unless they
1861 * have configured themselves as "slaves". */
1862 return ofconn->role != NX_ROLE_SLAVE;
1863 } else {
1864 /* Service connections don't get asynchronous messages unless they have
1865 * explicitly asked for them by setting a nonzero miss send length. */
1866 return ofconn->miss_send_len > 0;
1867 }
1868 }
1869
1870 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1871 * and 'target', suitable for use in log messages for identifying the
1872 * connection.
1873 *
1874 * The name is dynamically allocated. The caller should free it (with free())
1875 * when it is no longer needed. */
1876 static char *
1877 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1878 {
1879 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1880 }
1881
1882 static void
1883 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1884 {
1885 int i;
1886
1887 for (i = 0; i < N_SCHEDULERS; i++) {
1888 struct pinsched **s = &ofconn->schedulers[i];
1889
1890 if (rate > 0) {
1891 if (!*s) {
1892 *s = pinsched_create(rate, burst,
1893 ofconn->ofproto->switch_status);
1894 } else {
1895 pinsched_set_limits(*s, rate, burst);
1896 }
1897 } else {
1898 pinsched_destroy(*s);
1899 *s = NULL;
1900 }
1901 }
1902 }
1903 \f
1904 static void
1905 ofservice_reconfigure(struct ofservice *ofservice,
1906 const struct ofproto_controller *c)
1907 {
1908 ofservice->probe_interval = c->probe_interval;
1909 ofservice->rate_limit = c->rate_limit;
1910 ofservice->burst_limit = c->burst_limit;
1911 }
1912
1913 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1914 * positive errno value. */
1915 static int
1916 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1917 {
1918 struct ofservice *ofservice;
1919 struct pvconn *pvconn;
1920 int error;
1921
1922 error = pvconn_open(c->target, &pvconn);
1923 if (error) {
1924 return error;
1925 }
1926
1927 ofservice = xzalloc(sizeof *ofservice);
1928 hmap_insert(&ofproto->services, &ofservice->node,
1929 hash_string(c->target, 0));
1930 ofservice->pvconn = pvconn;
1931
1932 ofservice_reconfigure(ofservice, c);
1933
1934 return 0;
1935 }
1936
1937 static void
1938 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1939 {
1940 hmap_remove(&ofproto->services, &ofservice->node);
1941 pvconn_close(ofservice->pvconn);
1942 free(ofservice);
1943 }
1944
1945 /* Finds and returns the ofservice within 'ofproto' that has the given
1946 * 'target', or a null pointer if none exists. */
1947 static struct ofservice *
1948 ofservice_lookup(struct ofproto *ofproto, const char *target)
1949 {
1950 struct ofservice *ofservice;
1951
1952 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
1953 &ofproto->services) {
1954 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
1955 return ofservice;
1956 }
1957 }
1958 return NULL;
1959 }
1960 \f
1961 /* Returns true if 'rule' should be hidden from the controller.
1962 *
1963 * Rules with priority higher than UINT16_MAX are set up by ofproto itself
1964 * (e.g. by in-band control) and are intentionally hidden from the
1965 * controller. */
1966 static bool
1967 rule_is_hidden(const struct rule *rule)
1968 {
1969 return rule->cr.priority > UINT16_MAX;
1970 }
1971
1972 /* Creates and returns a new rule initialized as specified.
1973 *
1974 * The caller is responsible for inserting the rule into the classifier (with
1975 * rule_insert()). */
1976 static struct rule *
1977 rule_create(const struct cls_rule *cls_rule,
1978 const union ofp_action *actions, size_t n_actions,
1979 uint16_t idle_timeout, uint16_t hard_timeout,
1980 ovs_be64 flow_cookie, bool send_flow_removed)
1981 {
1982 struct rule *rule = xzalloc(sizeof *rule);
1983 rule->cr = *cls_rule;
1984 rule->idle_timeout = idle_timeout;
1985 rule->hard_timeout = hard_timeout;
1986 rule->flow_cookie = flow_cookie;
1987 rule->used = rule->created = time_msec();
1988 rule->send_flow_removed = send_flow_removed;
1989 list_init(&rule->facets);
1990 if (n_actions > 0) {
1991 rule->n_actions = n_actions;
1992 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1993 }
1994
1995 return rule;
1996 }
1997
1998 static struct rule *
1999 rule_from_cls_rule(const struct cls_rule *cls_rule)
2000 {
2001 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
2002 }
2003
2004 static void
2005 rule_free(struct rule *rule)
2006 {
2007 free(rule->actions);
2008 free(rule);
2009 }
2010
2011 /* Destroys 'rule' and iterates through all of its facets and revalidates them,
2012 * destroying any that no longer has a rule (which is probably all of them).
2013 *
2014 * The caller must have already removed 'rule' from the classifier. */
2015 static void
2016 rule_destroy(struct ofproto *ofproto, struct rule *rule)
2017 {
2018 struct facet *facet, *next_facet;
2019 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
2020 facet_revalidate(ofproto, facet);
2021 }
2022 rule_free(rule);
2023 }
2024
2025 /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action
2026 * that outputs to 'out_port' (output to OFPP_FLOOD and OFPP_ALL doesn't
2027 * count). */
2028 static bool
2029 rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
2030 {
2031 const union ofp_action *oa;
2032 struct actions_iterator i;
2033
2034 if (out_port == htons(OFPP_NONE)) {
2035 return true;
2036 }
2037 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
2038 oa = actions_next(&i)) {
2039 if (action_outputs_to_port(oa, out_port)) {
2040 return true;
2041 }
2042 }
2043 return false;
2044 }
2045
2046 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
2047 * 'packet', which arrived on 'in_port'.
2048 *
2049 * Takes ownership of 'packet'. */
2050 static bool
2051 execute_odp_actions(struct ofproto *ofproto, uint16_t in_port,
2052 const union odp_action *actions, size_t n_actions,
2053 struct ofpbuf *packet)
2054 {
2055 if (n_actions == 1 && actions[0].type == ODPAT_CONTROLLER) {
2056 /* As an optimization, avoid a round-trip from userspace to kernel to
2057 * userspace. This also avoids possibly filling up kernel packet
2058 * buffers along the way. */
2059 struct odp_msg *msg;
2060
2061 msg = ofpbuf_push_uninit(packet, sizeof *msg);
2062 msg->type = _ODPL_ACTION_NR;
2063 msg->length = sizeof(struct odp_msg) + packet->size;
2064 msg->port = in_port;
2065 msg->reserved = 0;
2066 msg->arg = actions[0].controller.arg;
2067
2068 send_packet_in(ofproto, packet);
2069
2070 return true;
2071 } else {
2072 int error;
2073
2074 error = dpif_execute(ofproto->dpif, actions, n_actions, packet);
2075 ofpbuf_delete(packet);
2076 return !error;
2077 }
2078 }
2079
2080 /* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s
2081 * statistics appropriately. 'packet' must have at least sizeof(struct
2082 * ofp_packet_in) bytes of headroom.
2083 *
2084 * For correct results, 'packet' must actually be in 'facet''s flow; that is,
2085 * applying flow_extract() to 'packet' would yield the same flow as
2086 * 'facet->flow'.
2087 *
2088 * 'facet' must have accurately composed ODP actions; that is, it must not be
2089 * in need of revalidation.
2090 *
2091 * Takes ownership of 'packet'. */
2092 static void
2093 facet_execute(struct ofproto *ofproto, struct facet *facet,
2094 struct ofpbuf *packet)
2095 {
2096 struct odp_flow_stats stats;
2097
2098 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2099
2100 flow_extract_stats(&facet->flow, packet, &stats);
2101 if (execute_odp_actions(ofproto, facet->flow.in_port,
2102 facet->actions, facet->n_actions, packet)) {
2103 facet_update_stats(ofproto, facet, &stats);
2104 facet->used = time_msec();
2105 netflow_flow_update_time(ofproto->netflow,
2106 &facet->nf_flow, facet->used);
2107 }
2108 }
2109
2110 /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s
2111 * statistics (or the statistics for one of its facets) appropriately.
2112 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of headroom.
2113 *
2114 * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited
2115 * with statistics for 'packet' either way.
2116 *
2117 * Takes ownership of 'packet'. */
2118 static void
2119 rule_execute(struct ofproto *ofproto, struct rule *rule, uint16_t in_port,
2120 struct ofpbuf *packet)
2121 {
2122 struct action_xlate_ctx ctx;
2123 struct facet *facet;
2124 struct flow flow;
2125 size_t size;
2126
2127 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2128
2129 flow_extract(packet, 0, in_port, &flow);
2130
2131 /* First look for a related facet. If we find one, account it to that. */
2132 facet = facet_lookup_valid(ofproto, &flow);
2133 if (facet && facet->rule == rule) {
2134 facet_execute(ofproto, facet, packet);
2135 return;
2136 }
2137
2138 /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then
2139 * create a new facet for it and use that. */
2140 if (rule_lookup(ofproto, &flow) == rule) {
2141 facet = facet_create(ofproto, rule, &flow, packet);
2142 facet_execute(ofproto, facet, packet);
2143 facet_install(ofproto, facet, true);
2144 return;
2145 }
2146
2147 /* We can't account anything to a facet. If we were to try, then that
2148 * facet would have a non-matching rule, busting our invariants. */
2149 action_xlate_ctx_init(&ctx, ofproto, &flow, packet);
2150 if (xlate_actions(&ctx, rule->actions, rule->n_actions)) {
2151 ofpbuf_delete(packet);
2152 return;
2153 }
2154
2155 size = packet->size;
2156 if (execute_odp_actions(ofproto, in_port,
2157 ctx.out.actions, ctx.out.n_actions, packet)) {
2158 rule->used = time_msec();
2159 rule->packet_count++;
2160 rule->byte_count += size;
2161 }
2162 }
2163
2164 /* Inserts 'rule' into 'p''s flow table. */
2165 static void
2166 rule_insert(struct ofproto *p, struct rule *rule)
2167 {
2168 struct rule *displaced_rule;
2169
2170 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2171 if (displaced_rule) {
2172 rule_destroy(p, displaced_rule);
2173 }
2174 p->need_revalidate = true;
2175 }
2176
2177 /* Creates and returns a new facet within 'ofproto' owned by 'rule', given a
2178 * 'flow' and an example 'packet' within that flow.
2179 *
2180 * The caller must already have determined that no facet with an identical
2181 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
2182 * 'ofproto''s classifier table. */
2183 static struct facet *
2184 facet_create(struct ofproto *ofproto, struct rule *rule,
2185 const struct flow *flow, const struct ofpbuf *packet)
2186 {
2187 struct facet *facet;
2188
2189 facet = xzalloc(sizeof *facet);
2190 facet->used = time_msec();
2191 hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0));
2192 list_push_back(&rule->facets, &facet->list_node);
2193 facet->rule = rule;
2194 facet->flow = *flow;
2195 netflow_flow_init(&facet->nf_flow);
2196 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
2197
2198 facet_make_actions(ofproto, facet, packet);
2199
2200 return facet;
2201 }
2202
2203 static void
2204 facet_free(struct facet *facet)
2205 {
2206 free(facet->actions);
2207 free(facet);
2208 }
2209
2210 /* Remove 'rule' from 'ofproto' and free up the associated memory:
2211 *
2212 * - Removes 'rule' from the classifier.
2213 *
2214 * - If 'rule' has facets, revalidates them (and possibly uninstalls and
2215 * destroys them), via rule_destroy().
2216 */
2217 static void
2218 rule_remove(struct ofproto *ofproto, struct rule *rule)
2219 {
2220 COVERAGE_INC(ofproto_del_rule);
2221 ofproto->need_revalidate = true;
2222 classifier_remove(&ofproto->cls, &rule->cr);
2223 rule_destroy(ofproto, rule);
2224 }
2225
2226 /* Remove 'facet' from 'ofproto' and free up the associated memory:
2227 *
2228 * - If 'facet' was installed in the datapath, uninstalls it and updates its
2229 * rule's statistics, via facet_uninstall().
2230 *
2231 * - Removes 'facet' from its rule and from ofproto->facets.
2232 */
2233 static void
2234 facet_remove(struct ofproto *ofproto, struct facet *facet)
2235 {
2236 facet_uninstall(ofproto, facet);
2237 facet_flush_stats(ofproto, facet);
2238 hmap_remove(&ofproto->facets, &facet->hmap_node);
2239 list_remove(&facet->list_node);
2240 facet_free(facet);
2241 }
2242
2243 /* Composes the ODP actions for 'facet' based on its rule's actions. */
2244 static void
2245 facet_make_actions(struct ofproto *p, struct facet *facet,
2246 const struct ofpbuf *packet)
2247 {
2248 const struct rule *rule = facet->rule;
2249 struct action_xlate_ctx ctx;
2250 size_t actions_len;
2251
2252 action_xlate_ctx_init(&ctx, p, &facet->flow, packet);
2253 xlate_actions(&ctx, rule->actions, rule->n_actions);
2254 facet->tags = ctx.tags;
2255 facet->may_install = ctx.may_set_up_flow;
2256 facet->nf_flow.output_iface = ctx.nf_output_iface;
2257
2258 actions_len = ctx.out.n_actions * sizeof *ctx.out.actions;
2259 if (facet->n_actions != ctx.out.n_actions
2260 || memcmp(facet->actions, ctx.out.actions, actions_len)) {
2261 free(facet->actions);
2262 facet->n_actions = ctx.out.n_actions;
2263 facet->actions = xmemdup(ctx.out.actions, actions_len);
2264 }
2265 }
2266
2267 static int
2268 facet_put__(struct ofproto *ofproto, struct facet *facet, int flags,
2269 struct odp_flow_put *put)
2270 {
2271 memset(&put->flow.stats, 0, sizeof put->flow.stats);
2272 odp_flow_key_from_flow(&put->flow.key, &facet->flow);
2273 put->flow.actions = facet->actions;
2274 put->flow.n_actions = facet->n_actions;
2275 put->flow.flags = 0;
2276 put->flags = flags;
2277 return dpif_flow_put(ofproto->dpif, put);
2278 }
2279
2280 /* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If
2281 * 'zero_stats' is true, clears any existing statistics from the datapath for
2282 * 'facet'. */
2283 static void
2284 facet_install(struct ofproto *p, struct facet *facet, bool zero_stats)
2285 {
2286 if (facet->may_install) {
2287 struct odp_flow_put put;
2288 int flags;
2289
2290 flags = ODPPF_CREATE | ODPPF_MODIFY;
2291 if (zero_stats) {
2292 flags |= ODPPF_ZERO_STATS;
2293 }
2294 if (!facet_put__(p, facet, flags, &put)) {
2295 facet->installed = true;
2296 }
2297 }
2298 }
2299
2300 /* Ensures that the bytes in 'facet', plus 'extra_bytes', have been passed up
2301 * to the accounting hook function in the ofhooks structure. */
2302 static void
2303 facet_account(struct ofproto *ofproto,
2304 struct facet *facet, uint64_t extra_bytes)
2305 {
2306 uint64_t total_bytes = facet->byte_count + extra_bytes;
2307
2308 if (ofproto->ofhooks->account_flow_cb
2309 && total_bytes > facet->accounted_bytes)
2310 {
2311 ofproto->ofhooks->account_flow_cb(
2312 &facet->flow, facet->tags, facet->actions, facet->n_actions,
2313 total_bytes - facet->accounted_bytes, ofproto->aux);
2314 facet->accounted_bytes = total_bytes;
2315 }
2316 }
2317
2318 /* If 'rule' is installed in the datapath, uninstalls it. */
2319 static void
2320 facet_uninstall(struct ofproto *p, struct facet *facet)
2321 {
2322 if (facet->installed) {
2323 struct odp_flow odp_flow;
2324
2325 odp_flow_key_from_flow(&odp_flow.key, &facet->flow);
2326 odp_flow.actions = NULL;
2327 odp_flow.n_actions = 0;
2328 odp_flow.flags = 0;
2329 if (!dpif_flow_del(p->dpif, &odp_flow)) {
2330 facet_update_stats(p, facet, &odp_flow.stats);
2331 }
2332 facet->installed = false;
2333 }
2334 }
2335
2336 /* Returns true if the only action for 'facet' is to send to the controller.
2337 * (We don't report NetFlow expiration messages for such facets because they
2338 * are just part of the control logic for the network, not real traffic). */
2339 static bool
2340 facet_is_controller_flow(struct facet *facet)
2341 {
2342 return (facet
2343 && facet->rule->n_actions == 1
2344 && action_outputs_to_port(&facet->rule->actions[0],
2345 htons(OFPP_CONTROLLER)));
2346 }
2347
2348 /* Folds all of 'facet''s statistics into its rule. Also updates the
2349 * accounting ofhook and emits a NetFlow expiration if appropriate. */
2350 static void
2351 facet_flush_stats(struct ofproto *ofproto, struct facet *facet)
2352 {
2353 facet_account(ofproto, facet, 0);
2354
2355 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
2356 struct ofexpired expired;
2357 expired.flow = facet->flow;
2358 expired.packet_count = facet->packet_count;
2359 expired.byte_count = facet->byte_count;
2360 expired.used = facet->used;
2361 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
2362 }
2363
2364 facet->rule->packet_count += facet->packet_count;
2365 facet->rule->byte_count += facet->byte_count;
2366
2367 /* Reset counters to prevent double counting if 'facet' ever gets
2368 * reinstalled. */
2369 facet->packet_count = 0;
2370 facet->byte_count = 0;
2371 facet->accounted_bytes = 0;
2372
2373 netflow_flow_clear(&facet->nf_flow);
2374 }
2375
2376 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2377 * Returns it if found, otherwise a null pointer.
2378 *
2379 * The returned facet might need revalidation; use facet_lookup_valid()
2380 * instead if that is important. */
2381 static struct facet *
2382 facet_find(struct ofproto *ofproto, const struct flow *flow)
2383 {
2384 struct facet *facet;
2385
2386 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0),
2387 &ofproto->facets) {
2388 if (flow_equal(flow, &facet->flow)) {
2389 return facet;
2390 }
2391 }
2392
2393 return NULL;
2394 }
2395
2396 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2397 * Returns it if found, otherwise a null pointer.
2398 *
2399 * The returned facet is guaranteed to be valid. */
2400 static struct facet *
2401 facet_lookup_valid(struct ofproto *ofproto, const struct flow *flow)
2402 {
2403 struct facet *facet = facet_find(ofproto, flow);
2404
2405 /* The facet we found might not be valid, since we could be in need of
2406 * revalidation. If it is not valid, don't return it. */
2407 if (facet
2408 && ofproto->need_revalidate
2409 && !facet_revalidate(ofproto, facet)) {
2410 COVERAGE_INC(ofproto_invalidated);
2411 return NULL;
2412 }
2413
2414 return facet;
2415 }
2416
2417 /* Re-searches 'ofproto''s classifier for a rule matching 'facet':
2418 *
2419 * - If the rule found is different from 'facet''s current rule, moves
2420 * 'facet' to the new rule and recompiles its actions.
2421 *
2422 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
2423 * where it is and recompiles its actions anyway.
2424 *
2425 * - If there is none, destroys 'facet'.
2426 *
2427 * Returns true if 'facet' still exists, false if it has been destroyed. */
2428 static bool
2429 facet_revalidate(struct ofproto *ofproto, struct facet *facet)
2430 {
2431 struct action_xlate_ctx ctx;
2432 struct rule *new_rule;
2433 size_t actions_len;
2434 bool actions_changed;
2435
2436 COVERAGE_INC(facet_revalidate);
2437
2438 /* Determine the new rule. */
2439 new_rule = rule_lookup(ofproto, &facet->flow);
2440 if (!new_rule) {
2441 /* No new rule, so delete the facet. */
2442 facet_remove(ofproto, facet);
2443 return false;
2444 }
2445
2446 /* Calculate new ODP actions.
2447 *
2448 * We are very cautious about actually modifying 'facet' state at this
2449 * point, because we might need to, e.g., emit a NetFlow expiration and, if
2450 * so, we need to have the old state around to properly compose it. */
2451 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, NULL);
2452 xlate_actions(&ctx, new_rule->actions, new_rule->n_actions);
2453 actions_len = ctx.out.n_actions * sizeof *ctx.out.actions;
2454 actions_changed = (facet->n_actions != ctx.out.n_actions
2455 || memcmp(facet->actions, ctx.out.actions,
2456 actions_len));
2457
2458 /* If the ODP actions changed or the installability changed, then we need
2459 * to talk to the datapath. */
2460 if (actions_changed || facet->may_install != facet->installed) {
2461 if (facet->may_install) {
2462 struct odp_flow_put put;
2463
2464 memset(&put.flow.stats, 0, sizeof put.flow.stats);
2465 odp_flow_key_from_flow(&put.flow.key, &facet->flow);
2466 put.flow.actions = ctx.out.actions;
2467 put.flow.n_actions = ctx.out.n_actions;
2468 put.flow.flags = 0;
2469 put.flags = ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS;
2470 dpif_flow_put(ofproto->dpif, &put);
2471
2472 facet_update_stats(ofproto, facet, &put.flow.stats);
2473 } else {
2474 facet_uninstall(ofproto, facet);
2475 }
2476
2477 /* The datapath flow is gone or has zeroed stats, so push stats out of
2478 * 'facet' into 'rule'. */
2479 facet_flush_stats(ofproto, facet);
2480 }
2481
2482 /* Update 'facet' now that we've taken care of all the old state. */
2483 facet->tags = ctx.tags;
2484 facet->nf_flow.output_iface = ctx.nf_output_iface;
2485 facet->may_install = ctx.may_set_up_flow;
2486 if (actions_changed) {
2487 free(facet->actions);
2488 facet->n_actions = ctx.out.n_actions;
2489 facet->actions = xmemdup(ctx.out.actions, actions_len);
2490 }
2491 if (facet->rule != new_rule) {
2492 COVERAGE_INC(facet_changed_rule);
2493 list_remove(&facet->list_node);
2494 list_push_back(&new_rule->facets, &facet->list_node);
2495 facet->rule = new_rule;
2496 facet->used = new_rule->created;
2497 }
2498
2499 return true;
2500 }
2501 \f
2502 static void
2503 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2504 struct rconn_packet_counter *counter)
2505 {
2506 update_openflow_length(msg);
2507 if (rconn_send(ofconn->rconn, msg, counter)) {
2508 ofpbuf_delete(msg);
2509 }
2510 }
2511
2512 static void
2513 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2514 int error)
2515 {
2516 struct ofpbuf *buf = make_ofp_error_msg(error, oh);
2517 if (buf) {
2518 COVERAGE_INC(ofproto_error);
2519 queue_tx(buf, ofconn, ofconn->reply_counter);
2520 }
2521 }
2522
2523 static void
2524 hton_ofp_phy_port(struct ofp_phy_port *opp)
2525 {
2526 opp->port_no = htons(opp->port_no);
2527 opp->config = htonl(opp->config);
2528 opp->state = htonl(opp->state);
2529 opp->curr = htonl(opp->curr);
2530 opp->advertised = htonl(opp->advertised);
2531 opp->supported = htonl(opp->supported);
2532 opp->peer = htonl(opp->peer);
2533 }
2534
2535 static int
2536 handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh)
2537 {
2538 queue_tx(make_echo_reply(oh), ofconn, ofconn->reply_counter);
2539 return 0;
2540 }
2541
2542 static int
2543 handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh)
2544 {
2545 struct ofp_switch_features *osf;
2546 struct ofpbuf *buf;
2547 struct ofport *port;
2548
2549 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2550 osf->datapath_id = htonll(ofconn->ofproto->datapath_id);
2551 osf->n_buffers = htonl(pktbuf_capacity());
2552 osf->n_tables = 2;
2553 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2554 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2555 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2556 (1u << OFPAT_SET_VLAN_VID) |
2557 (1u << OFPAT_SET_VLAN_PCP) |
2558 (1u << OFPAT_STRIP_VLAN) |
2559 (1u << OFPAT_SET_DL_SRC) |
2560 (1u << OFPAT_SET_DL_DST) |
2561 (1u << OFPAT_SET_NW_SRC) |
2562 (1u << OFPAT_SET_NW_DST) |
2563 (1u << OFPAT_SET_NW_TOS) |
2564 (1u << OFPAT_SET_TP_SRC) |
2565 (1u << OFPAT_SET_TP_DST) |
2566 (1u << OFPAT_ENQUEUE));
2567
2568 HMAP_FOR_EACH (port, hmap_node, &ofconn->ofproto->ports) {
2569 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2570 }
2571
2572 queue_tx(buf, ofconn, ofconn->reply_counter);
2573 return 0;
2574 }
2575
2576 static int
2577 handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh)
2578 {
2579 struct ofpbuf *buf;
2580 struct ofp_switch_config *osc;
2581 uint16_t flags;
2582 bool drop_frags;
2583
2584 /* Figure out flags. */
2585 dpif_get_drop_frags(ofconn->ofproto->dpif, &drop_frags);
2586 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2587
2588 /* Send reply. */
2589 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2590 osc->flags = htons(flags);
2591 osc->miss_send_len = htons(ofconn->miss_send_len);
2592 queue_tx(buf, ofconn, ofconn->reply_counter);
2593
2594 return 0;
2595 }
2596
2597 static int
2598 handle_set_config(struct ofconn *ofconn, const struct ofp_switch_config *osc)
2599 {
2600 uint16_t flags = ntohs(osc->flags);
2601
2602 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2603 switch (flags & OFPC_FRAG_MASK) {
2604 case OFPC_FRAG_NORMAL:
2605 dpif_set_drop_frags(ofconn->ofproto->dpif, false);
2606 break;
2607 case OFPC_FRAG_DROP:
2608 dpif_set_drop_frags(ofconn->ofproto->dpif, true);
2609 break;
2610 default:
2611 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2612 osc->flags);
2613 break;
2614 }
2615 }
2616
2617 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2618
2619 return 0;
2620 }
2621
2622 static void
2623 add_controller_action(struct odp_actions *actions, uint16_t max_len)
2624 {
2625 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
2626 a->controller.arg = max_len;
2627 }
2628
2629 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
2630 * flow translation. */
2631 #define MAX_RESUBMIT_RECURSION 8
2632
2633 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2634 struct action_xlate_ctx *ctx);
2635
2636 static void
2637 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2638 {
2639 const struct ofport *ofport = get_port(ctx->ofproto, port);
2640
2641 if (ofport) {
2642 if (ofport->opp.config & OFPPC_NO_FWD) {
2643 /* Forwarding disabled on port. */
2644 return;
2645 }
2646 } else {
2647 /*
2648 * We don't have an ofport record for this port, but it doesn't hurt to
2649 * allow forwarding to it anyhow. Maybe such a port will appear later
2650 * and we're pre-populating the flow table.
2651 */
2652 }
2653
2654 odp_actions_add(&ctx->out, ODPAT_OUTPUT)->output.port = port;
2655 ctx->nf_output_iface = port;
2656 }
2657
2658 static struct rule *
2659 rule_lookup(struct ofproto *ofproto, const struct flow *flow)
2660 {
2661 return rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2662 }
2663
2664 static void
2665 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2666 {
2667 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2668 uint16_t old_in_port;
2669 struct rule *rule;
2670
2671 /* Look up a flow with 'in_port' as the input port. Then restore the
2672 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2673 * have surprising behavior). */
2674 old_in_port = ctx->flow.in_port;
2675 ctx->flow.in_port = in_port;
2676 rule = rule_lookup(ctx->ofproto, &ctx->flow);
2677 ctx->flow.in_port = old_in_port;
2678
2679 if (ctx->resubmit_hook) {
2680 ctx->resubmit_hook(ctx, rule);
2681 }
2682
2683 if (rule) {
2684 ctx->recurse++;
2685 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2686 ctx->recurse--;
2687 }
2688 } else {
2689 struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2690
2691 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2692 MAX_RESUBMIT_RECURSION);
2693 }
2694 }
2695
2696 static void
2697 flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2698 uint16_t *nf_output_iface, struct odp_actions *actions)
2699 {
2700 struct ofport *ofport;
2701
2702 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2703 uint16_t odp_port = ofport->odp_port;
2704 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2705 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = odp_port;
2706 }
2707 }
2708 *nf_output_iface = NF_OUT_FLOOD;
2709 }
2710
2711 static void
2712 xlate_output_action__(struct action_xlate_ctx *ctx,
2713 uint16_t port, uint16_t max_len)
2714 {
2715 uint16_t odp_port;
2716 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2717
2718 ctx->nf_output_iface = NF_OUT_DROP;
2719
2720 switch (port) {
2721 case OFPP_IN_PORT:
2722 add_output_action(ctx, ctx->flow.in_port);
2723 break;
2724 case OFPP_TABLE:
2725 xlate_table_action(ctx, ctx->flow.in_port);
2726 break;
2727 case OFPP_NORMAL:
2728 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2729 &ctx->out, &ctx->tags,
2730 &ctx->nf_output_iface,
2731 ctx->ofproto->aux)) {
2732 COVERAGE_INC(ofproto_uninstallable);
2733 ctx->may_set_up_flow = false;
2734 }
2735 break;
2736 case OFPP_FLOOD:
2737 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2738 &ctx->nf_output_iface, &ctx->out);
2739 break;
2740 case OFPP_ALL:
2741 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2742 &ctx->nf_output_iface, &ctx->out);
2743 break;
2744 case OFPP_CONTROLLER:
2745 add_controller_action(&ctx->out, max_len);
2746 break;
2747 case OFPP_LOCAL:
2748 add_output_action(ctx, ODPP_LOCAL);
2749 break;
2750 default:
2751 odp_port = ofp_port_to_odp_port(port);
2752 if (odp_port != ctx->flow.in_port) {
2753 add_output_action(ctx, odp_port);
2754 }
2755 break;
2756 }
2757
2758 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2759 ctx->nf_output_iface = NF_OUT_FLOOD;
2760 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2761 ctx->nf_output_iface = prev_nf_output_iface;
2762 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2763 ctx->nf_output_iface != NF_OUT_FLOOD) {
2764 ctx->nf_output_iface = NF_OUT_MULTI;
2765 }
2766 }
2767
2768 static void
2769 xlate_output_action(struct action_xlate_ctx *ctx,
2770 const struct ofp_action_output *oao)
2771 {
2772 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2773 }
2774
2775 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2776 * optimization, because we're going to add another action that sets the
2777 * priority immediately after, or because there are no actions following the
2778 * pop. */
2779 static void
2780 remove_pop_action(struct action_xlate_ctx *ctx)
2781 {
2782 size_t n = ctx->out.n_actions;
2783 if (n > 0 && ctx->out.actions[n - 1].type == ODPAT_POP_PRIORITY) {
2784 ctx->out.n_actions--;
2785 }
2786 }
2787
2788 static void
2789 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2790 const struct ofp_action_enqueue *oae)
2791 {
2792 uint16_t ofp_port, odp_port;
2793 uint32_t priority;
2794 int error;
2795
2796 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2797 &priority);
2798 if (error) {
2799 /* Fall back to ordinary output action. */
2800 xlate_output_action__(ctx, ntohs(oae->port), 0);
2801 return;
2802 }
2803
2804 /* Figure out ODP output port. */
2805 ofp_port = ntohs(oae->port);
2806 if (ofp_port != OFPP_IN_PORT) {
2807 odp_port = ofp_port_to_odp_port(ofp_port);
2808 } else {
2809 odp_port = ctx->flow.in_port;
2810 }
2811
2812 /* Add ODP actions. */
2813 remove_pop_action(ctx);
2814 odp_actions_add(&ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2815 = priority;
2816 add_output_action(ctx, odp_port);
2817 odp_actions_add(&ctx->out, ODPAT_POP_PRIORITY);
2818
2819 /* Update NetFlow output port. */
2820 if (ctx->nf_output_iface == NF_OUT_DROP) {
2821 ctx->nf_output_iface = odp_port;
2822 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2823 ctx->nf_output_iface = NF_OUT_MULTI;
2824 }
2825 }
2826
2827 static void
2828 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2829 const struct nx_action_set_queue *nasq)
2830 {
2831 uint32_t priority;
2832 int error;
2833
2834 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2835 &priority);
2836 if (error) {
2837 /* Couldn't translate queue to a priority, so ignore. A warning
2838 * has already been logged. */
2839 return;
2840 }
2841
2842 remove_pop_action(ctx);
2843 odp_actions_add(&ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2844 = priority;
2845 }
2846
2847 static void
2848 xlate_set_dl_tci(struct action_xlate_ctx *ctx)
2849 {
2850 ovs_be16 tci = ctx->flow.vlan_tci;
2851 if (!(tci & htons(VLAN_CFI))) {
2852 odp_actions_add(&ctx->out, ODPAT_STRIP_VLAN);
2853 } else {
2854 union odp_action *oa = odp_actions_add(&ctx->out, ODPAT_SET_DL_TCI);
2855 oa->dl_tci.tci = tci & ~htons(VLAN_CFI);
2856 }
2857 }
2858
2859 static void
2860 xlate_reg_move_action(struct action_xlate_ctx *ctx,
2861 const struct nx_action_reg_move *narm)
2862 {
2863 ovs_be16 old_tci = ctx->flow.vlan_tci;
2864
2865 nxm_execute_reg_move(narm, &ctx->flow);
2866
2867 if (ctx->flow.vlan_tci != old_tci) {
2868 xlate_set_dl_tci(ctx);
2869 }
2870 }
2871
2872 static void
2873 xlate_nicira_action(struct action_xlate_ctx *ctx,
2874 const struct nx_action_header *nah)
2875 {
2876 const struct nx_action_resubmit *nar;
2877 const struct nx_action_set_tunnel *nast;
2878 const struct nx_action_set_queue *nasq;
2879 union odp_action *oa;
2880 enum nx_action_subtype subtype = ntohs(nah->subtype);
2881
2882 assert(nah->vendor == htonl(NX_VENDOR_ID));
2883 switch (subtype) {
2884 case NXAST_RESUBMIT:
2885 nar = (const struct nx_action_resubmit *) nah;
2886 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2887 break;
2888
2889 case NXAST_SET_TUNNEL:
2890 nast = (const struct nx_action_set_tunnel *) nah;
2891 oa = odp_actions_add(&ctx->out, ODPAT_SET_TUNNEL);
2892 ctx->flow.tun_id = oa->tunnel.tun_id = nast->tun_id;
2893 break;
2894
2895 case NXAST_DROP_SPOOFED_ARP:
2896 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2897 odp_actions_add(&ctx->out, ODPAT_DROP_SPOOFED_ARP);
2898 }
2899 break;
2900
2901 case NXAST_SET_QUEUE:
2902 nasq = (const struct nx_action_set_queue *) nah;
2903 xlate_set_queue_action(ctx, nasq);
2904 break;
2905
2906 case NXAST_POP_QUEUE:
2907 odp_actions_add(&ctx->out, ODPAT_POP_PRIORITY);
2908 break;
2909
2910 case NXAST_REG_MOVE:
2911 xlate_reg_move_action(ctx, (const struct nx_action_reg_move *) nah);
2912 break;
2913
2914 case NXAST_REG_LOAD:
2915 nxm_execute_reg_load((const struct nx_action_reg_load *) nah,
2916 &ctx->flow);
2917
2918 case NXAST_NOTE:
2919 /* Nothing to do. */
2920 break;
2921
2922 /* If you add a new action here that modifies flow data, don't forget to
2923 * update the flow key in ctx->flow at the same time. */
2924
2925 case NXAST_SNAT__OBSOLETE:
2926 default:
2927 VLOG_DBG_RL(&rl, "unknown Nicira action type %d", (int) subtype);
2928 break;
2929 }
2930 }
2931
2932 static void
2933 do_xlate_actions(const union ofp_action *in, size_t n_in,
2934 struct action_xlate_ctx *ctx)
2935 {
2936 struct actions_iterator iter;
2937 const union ofp_action *ia;
2938 const struct ofport *port;
2939
2940 port = get_port(ctx->ofproto, ctx->flow.in_port);
2941 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2942 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
2943 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2944 /* Drop this flow. */
2945 return;
2946 }
2947
2948 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2949 enum ofp_action_type type = ntohs(ia->type);
2950 union odp_action *oa;
2951
2952 switch (type) {
2953 case OFPAT_OUTPUT:
2954 xlate_output_action(ctx, &ia->output);
2955 break;
2956
2957 case OFPAT_SET_VLAN_VID:
2958 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
2959 ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI);
2960 xlate_set_dl_tci(ctx);
2961 break;
2962
2963 case OFPAT_SET_VLAN_PCP:
2964 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
2965 ctx->flow.vlan_tci |= htons(
2966 (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
2967 xlate_set_dl_tci(ctx);
2968 break;
2969
2970 case OFPAT_STRIP_VLAN:
2971 ctx->flow.vlan_tci = htons(0);
2972 xlate_set_dl_tci(ctx);
2973 break;
2974
2975 case OFPAT_SET_DL_SRC:
2976 oa = odp_actions_add(&ctx->out, ODPAT_SET_DL_SRC);
2977 memcpy(oa->dl_addr.dl_addr,
2978 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2979 memcpy(ctx->flow.dl_src,
2980 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2981 break;
2982
2983 case OFPAT_SET_DL_DST:
2984 oa = odp_actions_add(&ctx->out, ODPAT_SET_DL_DST);
2985 memcpy(oa->dl_addr.dl_addr,
2986 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2987 memcpy(ctx->flow.dl_dst,
2988 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2989 break;
2990
2991 case OFPAT_SET_NW_SRC:
2992 oa = odp_actions_add(&ctx->out, ODPAT_SET_NW_SRC);
2993 ctx->flow.nw_src = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2994 break;
2995
2996 case OFPAT_SET_NW_DST:
2997 oa = odp_actions_add(&ctx->out, ODPAT_SET_NW_DST);
2998 ctx->flow.nw_dst = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2999 break;
3000
3001 case OFPAT_SET_NW_TOS:
3002 oa = odp_actions_add(&ctx->out, ODPAT_SET_NW_TOS);
3003 ctx->flow.nw_tos = oa->nw_tos.nw_tos = ia->nw_tos.nw_tos;
3004 break;
3005
3006 case OFPAT_SET_TP_SRC:
3007 oa = odp_actions_add(&ctx->out, ODPAT_SET_TP_SRC);
3008 ctx->flow.tp_src = oa->tp_port.tp_port = ia->tp_port.tp_port;
3009 break;
3010
3011 case OFPAT_SET_TP_DST:
3012 oa = odp_actions_add(&ctx->out, ODPAT_SET_TP_DST);
3013 ctx->flow.tp_dst = oa->tp_port.tp_port = ia->tp_port.tp_port;
3014 break;
3015
3016 case OFPAT_VENDOR:
3017 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
3018 break;
3019
3020 case OFPAT_ENQUEUE:
3021 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
3022 break;
3023
3024 default:
3025 VLOG_DBG_RL(&rl, "unknown action type %d", (int) type);
3026 break;
3027 }
3028 }
3029 }
3030
3031 static void
3032 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
3033 struct ofproto *ofproto, const struct flow *flow,
3034 const struct ofpbuf *packet)
3035 {
3036 ctx->ofproto = ofproto;
3037 ctx->flow = *flow;
3038 ctx->packet = packet;
3039 ctx->resubmit_hook = NULL;
3040 }
3041
3042 static int
3043 xlate_actions(struct action_xlate_ctx *ctx,
3044 const union ofp_action *in, size_t n_in)
3045 {
3046 COVERAGE_INC(ofproto_ofp2odp);
3047 odp_actions_init(&ctx->out);
3048 ctx->tags = 0;
3049 ctx->may_set_up_flow = true;
3050 ctx->nf_output_iface = NF_OUT_DROP;
3051 ctx->recurse = 0;
3052 do_xlate_actions(in, n_in, ctx);
3053 remove_pop_action(ctx);
3054
3055 /* Check with in-band control to see if we're allowed to set up this
3056 * flow. */
3057 if (!in_band_rule_check(ctx->ofproto->in_band, &ctx->flow, &ctx->out)) {
3058 ctx->may_set_up_flow = false;
3059 }
3060
3061 if (odp_actions_overflow(&ctx->out)) {
3062 COVERAGE_INC(odp_overflow);
3063 odp_actions_init(&ctx->out);
3064 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
3065 }
3066 return 0;
3067 }
3068
3069 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
3070 * error message code (composed with ofp_mkerr()) for the caller to propagate
3071 * upward. Otherwise, returns 0.
3072 *
3073 * The log message mentions 'msg_type'. */
3074 static int
3075 reject_slave_controller(struct ofconn *ofconn, const const char *msg_type)
3076 {
3077 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
3078 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
3079 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
3080 msg_type);
3081
3082 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3083 } else {
3084 return 0;
3085 }
3086 }
3087
3088 static int
3089 handle_packet_out(struct ofconn *ofconn, const struct ofp_header *oh)
3090 {
3091 struct ofproto *p = ofconn->ofproto;
3092 struct ofp_packet_out *opo;
3093 struct ofpbuf payload, *buffer;
3094 union ofp_action *ofp_actions;
3095 struct action_xlate_ctx ctx;
3096 struct ofpbuf request;
3097 struct flow flow;
3098 size_t n_ofp_actions;
3099 uint16_t in_port;
3100 int error;
3101
3102 COVERAGE_INC(ofproto_packet_out);
3103
3104 error = reject_slave_controller(ofconn, "OFPT_PACKET_OUT");
3105 if (error) {
3106 return error;
3107 }
3108
3109 /* Get ofp_packet_out. */
3110 ofpbuf_use_const(&request, oh, ntohs(oh->length));
3111 opo = ofpbuf_pull(&request, offsetof(struct ofp_packet_out, actions));
3112
3113 /* Get actions. */
3114 error = ofputil_pull_actions(&request, ntohs(opo->actions_len),
3115 &ofp_actions, &n_ofp_actions);
3116 if (error) {
3117 return error;
3118 }
3119
3120 /* Get payload. */
3121 if (opo->buffer_id != htonl(UINT32_MAX)) {
3122 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
3123 &buffer, &in_port);
3124 if (error || !buffer) {
3125 return error;
3126 }
3127 payload = *buffer;
3128 } else {
3129 payload = request;
3130 buffer = NULL;
3131 }
3132
3133 /* Extract flow, check actions. */
3134 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)),
3135 &flow);
3136 error = validate_actions(ofp_actions, n_ofp_actions, &flow, p->max_ports);
3137 if (error) {
3138 goto exit;
3139 }
3140
3141 /* Send. */
3142 action_xlate_ctx_init(&ctx, p, &flow, &payload);
3143 error = xlate_actions(&ctx, ofp_actions, n_ofp_actions);
3144 if (!error) {
3145 dpif_execute(p->dpif, ctx.out.actions, ctx.out.n_actions, &payload);
3146 }
3147
3148 exit:
3149 ofpbuf_delete(buffer);
3150 return 0;
3151 }
3152
3153 static void
3154 update_port_config(struct ofproto *p, struct ofport *port,
3155 uint32_t config, uint32_t mask)
3156 {
3157 mask &= config ^ port->opp.config;
3158 if (mask & OFPPC_PORT_DOWN) {
3159 if (config & OFPPC_PORT_DOWN) {
3160 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
3161 } else {
3162 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
3163 }
3164 }
3165 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
3166 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
3167 if (mask & REVALIDATE_BITS) {
3168 COVERAGE_INC(ofproto_costly_flags);
3169 port->opp.config ^= mask & REVALIDATE_BITS;
3170 p->need_revalidate = true;
3171 }
3172 #undef REVALIDATE_BITS
3173 if (mask & OFPPC_NO_PACKET_IN) {
3174 port->opp.config ^= OFPPC_NO_PACKET_IN;
3175 }
3176 }
3177
3178 static int
3179 handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh)
3180 {
3181 struct ofproto *p = ofconn->ofproto;
3182 const struct ofp_port_mod *opm = (const struct ofp_port_mod *) oh;
3183 struct ofport *port;
3184 int error;
3185
3186 error = reject_slave_controller(ofconn, "OFPT_PORT_MOD");
3187 if (error) {
3188 return error;
3189 }
3190
3191 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
3192 if (!port) {
3193 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
3194 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
3195 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
3196 } else {
3197 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
3198 if (opm->advertise) {
3199 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
3200 }
3201 }
3202 return 0;
3203 }
3204
3205 static struct ofpbuf *
3206 make_ofp_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
3207 {
3208 struct ofp_stats_reply *osr;
3209 struct ofpbuf *msg;
3210
3211 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3212 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3213 osr->type = type;
3214 osr->flags = htons(0);
3215 return msg;
3216 }
3217
3218 static struct ofpbuf *
3219 start_ofp_stats_reply(const struct ofp_header *request, size_t body_len)
3220 {
3221 const struct ofp_stats_request *osr
3222 = (const struct ofp_stats_request *) request;
3223 return make_ofp_stats_reply(osr->header.xid, osr->type, body_len);
3224 }
3225
3226 static void *
3227 append_ofp_stats_reply(size_t nbytes, struct ofconn *ofconn,
3228 struct ofpbuf **msgp)
3229 {
3230 struct ofpbuf *msg = *msgp;
3231 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3232 if (nbytes + msg->size > UINT16_MAX) {
3233 struct ofp_stats_reply *reply = msg->data;
3234 reply->flags = htons(OFPSF_REPLY_MORE);
3235 *msgp = make_ofp_stats_reply(reply->header.xid, reply->type, nbytes);
3236 queue_tx(msg, ofconn, ofconn->reply_counter);
3237 }
3238 return ofpbuf_put_uninit(*msgp, nbytes);
3239 }
3240
3241 static struct ofpbuf *
3242 make_nxstats_reply(ovs_be32 xid, ovs_be32 subtype, size_t body_len)
3243 {
3244 struct nicira_stats_msg *nsm;
3245 struct ofpbuf *msg;
3246
3247 msg = ofpbuf_new(MIN(sizeof *nsm + body_len, UINT16_MAX));
3248 nsm = put_openflow_xid(sizeof *nsm, OFPT_STATS_REPLY, xid, msg);
3249 nsm->type = htons(OFPST_VENDOR);
3250 nsm->flags = htons(0);
3251 nsm->vendor = htonl(NX_VENDOR_ID);
3252 nsm->subtype = htonl(subtype);
3253 return msg;
3254 }
3255
3256 static struct ofpbuf *
3257 start_nxstats_reply(const struct nicira_stats_msg *request, size_t body_len)
3258 {
3259 return make_nxstats_reply(request->header.xid, request->subtype, body_len);
3260 }
3261
3262 static void
3263 append_nxstats_reply(size_t nbytes, struct ofconn *ofconn,
3264 struct ofpbuf **msgp)
3265 {
3266 struct ofpbuf *msg = *msgp;
3267 assert(nbytes <= UINT16_MAX - sizeof(struct nicira_stats_msg));
3268 if (nbytes + msg->size > UINT16_MAX) {
3269 struct nicira_stats_msg *reply = msg->data;
3270 reply->flags = htons(OFPSF_REPLY_MORE);
3271 *msgp = make_nxstats_reply(reply->header.xid, reply->subtype, nbytes);
3272 queue_tx(msg, ofconn, ofconn->reply_counter);
3273 }
3274 ofpbuf_prealloc_tailroom(*msgp, nbytes);
3275 }
3276
3277 static int
3278 handle_desc_stats_request(struct ofconn *ofconn,
3279 const struct ofp_header *request)
3280 {
3281 struct ofproto *p = ofconn->ofproto;
3282 struct ofp_desc_stats *ods;
3283 struct ofpbuf *msg;
3284
3285 msg = start_ofp_stats_reply(request, sizeof *ods);
3286 ods = append_ofp_stats_reply(sizeof *ods, ofconn, &msg);
3287 memset(ods, 0, sizeof *ods);
3288 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3289 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3290 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3291 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3292 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3293 queue_tx(msg, ofconn, ofconn->reply_counter);
3294
3295 return 0;
3296 }
3297
3298 static int
3299 handle_table_stats_request(struct ofconn *ofconn,
3300 const struct ofp_header *request)
3301 {
3302 struct ofproto *p = ofconn->ofproto;
3303 struct ofp_table_stats *ots;
3304 struct ofpbuf *msg;
3305
3306 msg = start_ofp_stats_reply(request, sizeof *ots * 2);
3307
3308 /* Classifier table. */
3309 ots = append_ofp_stats_reply(sizeof *ots, ofconn, &msg);
3310 memset(ots, 0, sizeof *ots);
3311 strcpy(ots->name, "classifier");
3312 ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10
3313 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3314 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3315 ots->active_count = htonl(classifier_count(&p->cls));
3316 ots->lookup_count = htonll(0); /* XXX */
3317 ots->matched_count = htonll(0); /* XXX */
3318
3319 queue_tx(msg, ofconn, ofconn->reply_counter);
3320 return 0;
3321 }
3322
3323 static void
3324 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3325 struct ofpbuf **msgp)
3326 {
3327 struct netdev_stats stats;
3328 struct ofp_port_stats *ops;
3329
3330 /* Intentionally ignore return value, since errors will set
3331 * 'stats' to all-1s, which is correct for OpenFlow, and
3332 * netdev_get_stats() will log errors. */
3333 netdev_get_stats(port->netdev, &stats);
3334
3335 ops = append_ofp_stats_reply(sizeof *ops, ofconn, msgp);
3336 ops->port_no = htons(port->opp.port_no);
3337 memset(ops->pad, 0, sizeof ops->pad);
3338 ops->rx_packets = htonll(stats.rx_packets);
3339 ops->tx_packets = htonll(stats.tx_packets);
3340 ops->rx_bytes = htonll(stats.rx_bytes);
3341 ops->tx_bytes = htonll(stats.tx_bytes);
3342 ops->rx_dropped = htonll(stats.rx_dropped);
3343 ops->tx_dropped = htonll(stats.tx_dropped);
3344 ops->rx_errors = htonll(stats.rx_errors);
3345 ops->tx_errors = htonll(stats.tx_errors);
3346 ops->rx_frame_err = htonll(stats.rx_frame_errors);
3347 ops->rx_over_err = htonll(stats.rx_over_errors);
3348 ops->rx_crc_err = htonll(stats.rx_crc_errors);
3349 ops->collisions = htonll(stats.collisions);
3350 }
3351
3352 static int
3353 handle_port_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3354 {
3355 struct ofproto *p = ofconn->ofproto;
3356 const struct ofp_port_stats_request *psr = ofputil_stats_body(oh);
3357 struct ofp_port_stats *ops;
3358 struct ofpbuf *msg;
3359 struct ofport *port;
3360
3361 msg = start_ofp_stats_reply(oh, sizeof *ops * 16);
3362 if (psr->port_no != htons(OFPP_NONE)) {
3363 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3364 if (port) {
3365 append_port_stat(port, ofconn, &msg);
3366 }
3367 } else {
3368 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3369 append_port_stat(port, ofconn, &msg);
3370 }
3371 }
3372
3373 queue_tx(msg, ofconn, ofconn->reply_counter);
3374 return 0;
3375 }
3376
3377 /* Obtains statistic counters for 'rule' within 'p' and stores them into
3378 * '*packet_countp' and '*byte_countp'. The returned statistics include
3379 * statistics for all of 'rule''s facets. */
3380 static void
3381 query_stats(struct ofproto *p, struct rule *rule,
3382 uint64_t *packet_countp, uint64_t *byte_countp)
3383 {
3384 uint64_t packet_count, byte_count;
3385 struct facet *facet;
3386 struct odp_flow *odp_flows;
3387 size_t n_odp_flows;
3388
3389 /* Start from historical data for 'rule' itself that are no longer tracked
3390 * by the datapath. This counts, for example, facets that have expired. */
3391 packet_count = rule->packet_count;
3392 byte_count = rule->byte_count;
3393
3394 /* Prepare to ask the datapath for statistics on all of the rule's facets.
3395 *
3396 * Also, add any statistics that are not tracked by the datapath for each
3397 * facet. This includes, for example, statistics for packets that were
3398 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3399 * to a rule. */
3400 odp_flows = xzalloc(list_size(&rule->facets) * sizeof *odp_flows);
3401 n_odp_flows = 0;
3402 LIST_FOR_EACH (facet, list_node, &rule->facets) {
3403 struct odp_flow *odp_flow = &odp_flows[n_odp_flows++];
3404 odp_flow_key_from_flow(&odp_flow->key, &facet->flow);
3405 packet_count += facet->packet_count;
3406 byte_count += facet->byte_count;
3407 }
3408
3409 /* Fetch up-to-date statistics from the datapath and add them in. */
3410 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
3411 size_t i;
3412
3413 for (i = 0; i < n_odp_flows; i++) {
3414 struct odp_flow *odp_flow = &odp_flows[i];
3415 packet_count += odp_flow->stats.n_packets;
3416 byte_count += odp_flow->stats.n_bytes;
3417 }
3418 }
3419 free(odp_flows);
3420
3421 /* Return the stats to the caller. */
3422 *packet_countp = packet_count;
3423 *byte_countp = byte_count;
3424 }
3425
3426 static void
3427 calc_flow_duration(long long int start, ovs_be32 *sec, ovs_be32 *nsec)
3428 {
3429 long long int msecs = time_msec() - start;
3430 *sec = htonl(msecs / 1000);
3431 *nsec = htonl((msecs % 1000) * (1000 * 1000));
3432 }
3433
3434 static void
3435 put_ofp_flow_stats(struct ofconn *ofconn, struct rule *rule,
3436 ovs_be16 out_port, struct ofpbuf **replyp)
3437 {
3438 struct ofp_flow_stats *ofs;
3439 uint64_t packet_count, byte_count;
3440 size_t act_len, len;
3441
3442 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3443 return;
3444 }
3445
3446 act_len = sizeof *rule->actions * rule->n_actions;
3447 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3448
3449 query_stats(ofconn->ofproto, rule, &packet_count, &byte_count);
3450
3451 ofs = append_ofp_stats_reply(len, ofconn, replyp);
3452 ofs->length = htons(len);
3453 ofs->table_id = 0;
3454 ofs->pad = 0;
3455 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofs->match);
3456 calc_flow_duration(rule->created, &ofs->duration_sec, &ofs->duration_nsec);
3457 ofs->cookie = rule->flow_cookie;
3458 ofs->priority = htons(rule->cr.priority);
3459 ofs->idle_timeout = htons(rule->idle_timeout);
3460 ofs->hard_timeout = htons(rule->hard_timeout);
3461 memset(ofs->pad2, 0, sizeof ofs->pad2);
3462 ofs->packet_count = htonll(packet_count);
3463 ofs->byte_count = htonll(byte_count);
3464 if (rule->n_actions > 0) {
3465 memcpy(ofs->actions, rule->actions, act_len);
3466 }
3467 }
3468
3469 static bool
3470 is_valid_table(uint8_t table_id)
3471 {
3472 return table_id == 0 || table_id == 0xff;
3473 }
3474
3475 static int
3476 handle_flow_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3477 {
3478 const struct ofp_flow_stats_request *fsr = ofputil_stats_body(oh);
3479 struct ofpbuf *reply;
3480
3481 COVERAGE_INC(ofproto_flows_req);
3482 reply = start_ofp_stats_reply(oh, 1024);
3483 if (is_valid_table(fsr->table_id)) {
3484 struct cls_cursor cursor;
3485 struct cls_rule target;
3486 struct rule *rule;
3487
3488 ofputil_cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0,
3489 &target);
3490 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3491 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3492 put_ofp_flow_stats(ofconn, rule, fsr->out_port, &reply);
3493 }
3494 }
3495 queue_tx(reply, ofconn, ofconn->reply_counter);
3496
3497 return 0;
3498 }
3499
3500 static void
3501 put_nx_flow_stats(struct ofconn *ofconn, struct rule *rule,
3502 ovs_be16 out_port, struct ofpbuf **replyp)
3503 {
3504 struct nx_flow_stats *nfs;
3505 uint64_t packet_count, byte_count;
3506 size_t act_len, start_len;
3507 struct ofpbuf *reply;
3508
3509 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3510 return;
3511 }
3512
3513 query_stats(ofconn->ofproto, rule, &packet_count, &byte_count);
3514
3515 act_len = sizeof *rule->actions * rule->n_actions;
3516
3517 start_len = (*replyp)->size;
3518 append_nxstats_reply(sizeof *nfs + NXM_MAX_LEN + act_len, ofconn, replyp);
3519 reply = *replyp;
3520
3521 nfs = ofpbuf_put_uninit(reply, sizeof *nfs);
3522 nfs->table_id = 0;
3523 nfs->pad = 0;
3524 calc_flow_duration(rule->created, &nfs->duration_sec, &nfs->duration_nsec);
3525 nfs->cookie = rule->flow_cookie;
3526 nfs->priority = htons(rule->cr.priority);
3527 nfs->idle_timeout = htons(rule->idle_timeout);
3528 nfs->hard_timeout = htons(rule->hard_timeout);
3529 nfs->match_len = htons(nx_put_match(reply, &rule->cr));
3530 memset(nfs->pad2, 0, sizeof nfs->pad2);
3531 nfs->packet_count = htonll(packet_count);
3532 nfs->byte_count = htonll(byte_count);
3533 if (rule->n_actions > 0) {
3534 ofpbuf_put(reply, rule->actions, act_len);
3535 }
3536 nfs->length = htons(reply->size - start_len);
3537 }
3538
3539 static int
3540 handle_nxst_flow(struct ofconn *ofconn, const struct ofp_header *oh)
3541 {
3542 struct nx_flow_stats_request *nfsr;
3543 struct cls_rule target;
3544 struct ofpbuf *reply;
3545 struct ofpbuf b;
3546 int error;
3547
3548 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3549
3550 /* Dissect the message. */
3551 nfsr = ofpbuf_pull(&b, sizeof *nfsr);
3552 error = nx_pull_match(&b, ntohs(nfsr->match_len), 0, &target);
3553 if (error) {
3554 return error;
3555 }
3556 if (b.size) {
3557 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3558 }
3559
3560 COVERAGE_INC(ofproto_flows_req);
3561 reply = start_nxstats_reply(&nfsr->nsm, 1024);
3562 if (is_valid_table(nfsr->table_id)) {
3563 struct cls_cursor cursor;
3564 struct rule *rule;
3565
3566 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3567 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3568 put_nx_flow_stats(ofconn, rule, nfsr->out_port, &reply);
3569 }
3570 }
3571 queue_tx(reply, ofconn, ofconn->reply_counter);
3572
3573 return 0;
3574 }
3575
3576 static void
3577 flow_stats_ds(struct ofproto *ofproto, struct rule *rule, struct ds *results)
3578 {
3579 struct ofp_match match;
3580 uint64_t packet_count, byte_count;
3581 size_t act_len = sizeof *rule->actions * rule->n_actions;
3582
3583 query_stats(ofproto, rule, &packet_count, &byte_count);
3584 ofputil_cls_rule_to_match(&rule->cr, NXFF_OPENFLOW10, &match);
3585
3586 ds_put_format(results, "duration=%llds, ",
3587 (time_msec() - rule->created) / 1000);
3588 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3589 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3590 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3591 ofp_print_match(results, &match, true);
3592 if (act_len > 0) {
3593 ofp_print_actions(results, &rule->actions->header, act_len);
3594 } else {
3595 ds_put_cstr(results, "drop");
3596 }
3597 ds_put_cstr(results, "\n");
3598 }
3599
3600 /* Adds a pretty-printed description of all flows to 'results', including
3601 * those marked hidden by secchan (e.g., by in-band control). */
3602 void
3603 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3604 {
3605 struct cls_cursor cursor;
3606 struct rule *rule;
3607
3608 cls_cursor_init(&cursor, &p->cls, NULL);
3609 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3610 flow_stats_ds(p, rule, results);
3611 }
3612 }
3613
3614 static void
3615 query_aggregate_stats(struct ofproto *ofproto, struct cls_rule *target,
3616 ovs_be16 out_port, uint8_t table_id,
3617 struct ofp_aggregate_stats_reply *oasr)
3618 {
3619 uint64_t total_packets = 0;
3620 uint64_t total_bytes = 0;
3621 int n_flows = 0;
3622
3623 COVERAGE_INC(ofproto_agg_request);
3624
3625 if (is_valid_table(table_id)) {
3626 struct cls_cursor cursor;
3627 struct rule *rule;
3628
3629 cls_cursor_init(&cursor, &ofproto->cls, target);
3630 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3631 if (!rule_is_hidden(rule) && rule_has_out_port(rule, out_port)) {
3632 uint64_t packet_count;
3633 uint64_t byte_count;
3634
3635 query_stats(ofproto, rule, &packet_count, &byte_count);
3636
3637 total_packets += packet_count;
3638 total_bytes += byte_count;
3639 n_flows++;
3640 }
3641 }
3642 }
3643
3644 oasr->flow_count = htonl(n_flows);
3645 oasr->packet_count = htonll(total_packets);
3646 oasr->byte_count = htonll(total_bytes);
3647 memset(oasr->pad, 0, sizeof oasr->pad);
3648 }
3649
3650 static int
3651 handle_aggregate_stats_request(struct ofconn *ofconn,
3652 const struct ofp_header *oh)
3653 {
3654 const struct ofp_aggregate_stats_request *request = ofputil_stats_body(oh);
3655 struct ofp_aggregate_stats_reply *reply;
3656 struct cls_rule target;
3657 struct ofpbuf *msg;
3658
3659 ofputil_cls_rule_from_match(&request->match, 0, NXFF_OPENFLOW10, 0,
3660 &target);
3661
3662 msg = start_ofp_stats_reply(oh, sizeof *reply);
3663 reply = append_ofp_stats_reply(sizeof *reply, ofconn, &msg);
3664 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3665 request->table_id, reply);
3666 queue_tx(msg, ofconn, ofconn->reply_counter);
3667 return 0;
3668 }
3669
3670 static int
3671 handle_nxst_aggregate(struct ofconn *ofconn, const struct ofp_header *oh)
3672 {
3673 struct nx_aggregate_stats_request *request;
3674 struct ofp_aggregate_stats_reply *reply;
3675 struct cls_rule target;
3676 struct ofpbuf b;
3677 struct ofpbuf *buf;
3678 int error;
3679
3680 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3681
3682 /* Dissect the message. */
3683 request = ofpbuf_pull(&b, sizeof *request);
3684 error = nx_pull_match(&b, ntohs(request->match_len), 0, &target);
3685 if (error) {
3686 return error;
3687 }
3688 if (b.size) {
3689 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3690 }
3691
3692 /* Reply. */
3693 COVERAGE_INC(ofproto_flows_req);
3694 buf = start_nxstats_reply(&request->nsm, sizeof *reply);
3695 reply = ofpbuf_put_uninit(buf, sizeof *reply);
3696 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3697 request->table_id, reply);
3698 queue_tx(buf, ofconn, ofconn->reply_counter);
3699
3700 return 0;
3701 }
3702
3703 struct queue_stats_cbdata {
3704 struct ofconn *ofconn;
3705 struct ofport *ofport;
3706 struct ofpbuf *msg;
3707 };
3708
3709 static void
3710 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3711 const struct netdev_queue_stats *stats)
3712 {
3713 struct ofp_queue_stats *reply;
3714
3715 reply = append_ofp_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3716 reply->port_no = htons(cbdata->ofport->opp.port_no);
3717 memset(reply->pad, 0, sizeof reply->pad);
3718 reply->queue_id = htonl(queue_id);
3719 reply->tx_bytes = htonll(stats->tx_bytes);
3720 reply->tx_packets = htonll(stats->tx_packets);
3721 reply->tx_errors = htonll(stats->tx_errors);
3722 }
3723
3724 static void
3725 handle_queue_stats_dump_cb(uint32_t queue_id,
3726 struct netdev_queue_stats *stats,
3727 void *cbdata_)
3728 {
3729 struct queue_stats_cbdata *cbdata = cbdata_;
3730
3731 put_queue_stats(cbdata, queue_id, stats);
3732 }
3733
3734 static void
3735 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3736 struct queue_stats_cbdata *cbdata)
3737 {
3738 cbdata->ofport = port;
3739 if (queue_id == OFPQ_ALL) {
3740 netdev_dump_queue_stats(port->netdev,
3741 handle_queue_stats_dump_cb, cbdata);
3742 } else {
3743 struct netdev_queue_stats stats;
3744
3745 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3746 put_queue_stats(cbdata, queue_id, &stats);
3747 }
3748 }
3749 }
3750
3751 static int
3752 handle_queue_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3753 {
3754 struct ofproto *ofproto = ofconn->ofproto;
3755 const struct ofp_queue_stats_request *qsr;
3756 struct queue_stats_cbdata cbdata;
3757 struct ofport *port;
3758 unsigned int port_no;
3759 uint32_t queue_id;
3760
3761 qsr = ofputil_stats_body(oh);
3762 if (!qsr) {
3763 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3764 }
3765
3766 COVERAGE_INC(ofproto_queue_req);
3767
3768 cbdata.ofconn = ofconn;
3769 cbdata.msg = start_ofp_stats_reply(oh, 128);
3770
3771 port_no = ntohs(qsr->port_no);
3772 queue_id = ntohl(qsr->queue_id);
3773 if (port_no == OFPP_ALL) {
3774 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3775 handle_queue_stats_for_port(port, queue_id, &cbdata);
3776 }
3777 } else if (port_no < ofproto->max_ports) {
3778 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3779 if (port) {
3780 handle_queue_stats_for_port(port, queue_id, &cbdata);
3781 }
3782 } else {
3783 ofpbuf_delete(cbdata.msg);
3784 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3785 }
3786 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3787
3788 return 0;
3789 }
3790
3791 static long long int
3792 msec_from_nsec(uint64_t sec, uint32_t nsec)
3793 {
3794 return !sec ? 0 : sec * 1000 + nsec / 1000000;
3795 }
3796
3797 static void
3798 facet_update_time(struct ofproto *ofproto, struct facet *facet,
3799 const struct odp_flow_stats *stats)
3800 {
3801 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
3802 if (used > facet->used) {
3803 facet->used = used;
3804 if (used > facet->rule->used) {
3805 facet->rule->used = used;
3806 }
3807 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
3808 }
3809 }
3810
3811 /* Folds the statistics from 'stats' into the counters in 'facet'.
3812 *
3813 * Because of the meaning of a facet's counters, it only makes sense to do this
3814 * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a
3815 * packet that was sent by hand or if it represents statistics that have been
3816 * cleared out of the datapath. */
3817 static void
3818 facet_update_stats(struct ofproto *ofproto, struct facet *facet,
3819 const struct odp_flow_stats *stats)
3820 {
3821 if (stats->n_packets) {
3822 facet_update_time(ofproto, facet, stats);
3823 facet->packet_count += stats->n_packets;
3824 facet->byte_count += stats->n_bytes;
3825 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
3826 }
3827 }
3828
3829 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3830 * in which no matching flow already exists in the flow table.
3831 *
3832 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3833 * ofp_actions, to ofconn->ofproto's flow table. Returns 0 on success or an
3834 * OpenFlow error code as encoded by ofp_mkerr() on failure.
3835 *
3836 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3837 * if any. */
3838 static int
3839 add_flow(struct ofconn *ofconn, struct flow_mod *fm)
3840 {
3841 struct ofproto *p = ofconn->ofproto;
3842 struct ofpbuf *packet;
3843 struct rule *rule;
3844 uint16_t in_port;
3845 int error;
3846
3847 if (fm->flags & OFPFF_CHECK_OVERLAP
3848 && classifier_rule_overlaps(&p->cls, &fm->cr)) {
3849 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3850 }
3851
3852 error = 0;
3853 if (fm->buffer_id != UINT32_MAX) {
3854 error = pktbuf_retrieve(ofconn->pktbuf, fm->buffer_id,
3855 &packet, &in_port);
3856 } else {
3857 packet = NULL;
3858 in_port = UINT16_MAX;
3859 }
3860
3861 rule = rule_create(&fm->cr, fm->actions, fm->n_actions,
3862 fm->idle_timeout, fm->hard_timeout, fm->cookie,
3863 fm->flags & OFPFF_SEND_FLOW_REM);
3864 rule_insert(p, rule);
3865 if (packet) {
3866 rule_execute(p, rule, in_port, packet);
3867 }
3868 return error;
3869 }
3870
3871 static struct rule *
3872 find_flow_strict(struct ofproto *p, const struct flow_mod *fm)
3873 {
3874 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &fm->cr));
3875 }
3876
3877 static int
3878 send_buffered_packet(struct ofconn *ofconn,
3879 struct rule *rule, uint32_t buffer_id)
3880 {
3881 struct ofpbuf *packet;
3882 uint16_t in_port;
3883 int error;
3884
3885 if (buffer_id == UINT32_MAX) {
3886 return 0;
3887 }
3888
3889 error = pktbuf_retrieve(ofconn->pktbuf, buffer_id, &packet, &in_port);
3890 if (error) {
3891 return error;
3892 }
3893
3894 rule_execute(ofconn->ofproto, rule, in_port, packet);
3895
3896 return 0;
3897 }
3898 \f
3899 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3900
3901 struct modify_flows_cbdata {
3902 struct ofproto *ofproto;
3903 const struct flow_mod *fm;
3904 struct rule *match;
3905 };
3906
3907 static int modify_flow(struct ofproto *, const struct flow_mod *,
3908 struct rule *);
3909
3910 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3911 * encoded by ofp_mkerr() on failure.
3912 *
3913 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3914 * if any. */
3915 static int
3916 modify_flows_loose(struct ofconn *ofconn, struct flow_mod *fm)
3917 {
3918 struct ofproto *p = ofconn->ofproto;
3919 struct rule *match = NULL;
3920 struct cls_cursor cursor;
3921 struct rule *rule;
3922
3923 cls_cursor_init(&cursor, &p->cls, &fm->cr);
3924 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3925 if (!rule_is_hidden(rule)) {
3926 match = rule;
3927 modify_flow(p, fm, rule);
3928 }
3929 }
3930
3931 if (match) {
3932 /* This credits the packet to whichever flow happened to match last.
3933 * That's weird. Maybe we should do a lookup for the flow that
3934 * actually matches the packet? Who knows. */
3935 send_buffered_packet(ofconn, match, fm->buffer_id);
3936 return 0;
3937 } else {
3938 return add_flow(ofconn, fm);
3939 }
3940 }
3941
3942 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
3943 * code as encoded by ofp_mkerr() on failure.
3944 *
3945 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3946 * if any. */
3947 static int
3948 modify_flow_strict(struct ofconn *ofconn, struct flow_mod *fm)
3949 {
3950 struct ofproto *p = ofconn->ofproto;
3951 struct rule *rule = find_flow_strict(p, fm);
3952 if (rule && !rule_is_hidden(rule)) {
3953 modify_flow(p, fm, rule);
3954 return send_buffered_packet(ofconn, rule, fm->buffer_id);
3955 } else {
3956 return add_flow(ofconn, fm);
3957 }
3958 }
3959
3960 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
3961 * been identified as a flow in 'p''s flow table to be modified, by changing
3962 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
3963 * ofp_action[] structures). */
3964 static int
3965 modify_flow(struct ofproto *p, const struct flow_mod *fm, struct rule *rule)
3966 {
3967 size_t actions_len = fm->n_actions * sizeof *rule->actions;
3968
3969 rule->flow_cookie = fm->cookie;
3970
3971 /* If the actions are the same, do nothing. */
3972 if (fm->n_actions == rule->n_actions
3973 && (!fm->n_actions
3974 || !memcmp(fm->actions, rule->actions, actions_len))) {
3975 return 0;
3976 }
3977
3978 /* Replace actions. */
3979 free(rule->actions);
3980 rule->actions = fm->n_actions ? xmemdup(fm->actions, actions_len) : NULL;
3981 rule->n_actions = fm->n_actions;
3982
3983 p->need_revalidate = true;
3984
3985 return 0;
3986 }
3987 \f
3988 /* OFPFC_DELETE implementation. */
3989
3990 static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
3991
3992 /* Implements OFPFC_DELETE. */
3993 static void
3994 delete_flows_loose(struct ofproto *p, const struct flow_mod *fm)
3995 {
3996 struct rule *rule, *next_rule;
3997 struct cls_cursor cursor;
3998
3999 cls_cursor_init(&cursor, &p->cls, &fm->cr);
4000 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4001 delete_flow(p, rule, htons(fm->out_port));
4002 }
4003 }
4004
4005 /* Implements OFPFC_DELETE_STRICT. */
4006 static void
4007 delete_flow_strict(struct ofproto *p, struct flow_mod *fm)
4008 {
4009 struct rule *rule = find_flow_strict(p, fm);
4010 if (rule) {
4011 delete_flow(p, rule, htons(fm->out_port));
4012 }
4013 }
4014
4015 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
4016 * been identified as a flow to delete from 'p''s flow table, by deleting the
4017 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
4018 * controller.
4019 *
4020 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
4021 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
4022 * specified 'out_port'. */
4023 static void
4024 delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
4025 {
4026 if (rule_is_hidden(rule)) {
4027 return;
4028 }
4029
4030 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
4031 return;
4032 }
4033
4034 rule_send_removed(p, rule, OFPRR_DELETE);
4035 rule_remove(p, rule);
4036 }
4037 \f
4038 static int
4039 handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh)
4040 {
4041 struct ofproto *p = ofconn->ofproto;
4042 struct flow_mod fm;
4043 int error;
4044
4045 error = reject_slave_controller(ofconn, "flow_mod");
4046 if (error) {
4047 return error;
4048 }
4049
4050 error = ofputil_decode_flow_mod(&fm, oh, ofconn->flow_format);
4051 if (error) {
4052 return error;
4053 }
4054
4055 /* We do not support the emergency flow cache. It will hopefully get
4056 * dropped from OpenFlow in the near future. */
4057 if (fm.flags & OFPFF_EMERG) {
4058 /* There isn't a good fit for an error code, so just state that the
4059 * flow table is full. */
4060 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
4061 }
4062
4063 error = validate_actions(fm.actions, fm.n_actions,
4064 &fm.cr.flow, p->max_ports);
4065 if (error) {
4066 return error;
4067 }
4068
4069 switch (fm.command) {
4070 case OFPFC_ADD:
4071 return add_flow(ofconn, &fm);
4072
4073 case OFPFC_MODIFY:
4074 return modify_flows_loose(ofconn, &fm);
4075
4076 case OFPFC_MODIFY_STRICT:
4077 return modify_flow_strict(ofconn, &fm);
4078
4079 case OFPFC_DELETE:
4080 delete_flows_loose(p, &fm);
4081 return 0;
4082
4083 case OFPFC_DELETE_STRICT:
4084 delete_flow_strict(p, &fm);
4085 return 0;
4086
4087 default:
4088 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
4089 }
4090 }
4091
4092 static int
4093 handle_tun_id_from_cookie(struct ofconn *ofconn, const struct ofp_header *oh)
4094 {
4095 const struct nxt_tun_id_cookie *msg
4096 = (const struct nxt_tun_id_cookie *) oh;
4097
4098 ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
4099 return 0;
4100 }
4101
4102 static int
4103 handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh)
4104 {
4105 struct nx_role_request *nrr = (struct nx_role_request *) oh;
4106 struct nx_role_request *reply;
4107 struct ofpbuf *buf;
4108 uint32_t role;
4109
4110 if (ofconn->type != OFCONN_PRIMARY) {
4111 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
4112 "connection");
4113 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4114 }
4115
4116 role = ntohl(nrr->role);
4117 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
4118 && role != NX_ROLE_SLAVE) {
4119 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
4120
4121 /* There's no good error code for this. */
4122 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
4123 }
4124
4125 if (role == NX_ROLE_MASTER) {
4126 struct ofconn *other;
4127
4128 HMAP_FOR_EACH (other, hmap_node, &ofconn->ofproto->controllers) {
4129 if (other->role == NX_ROLE_MASTER) {
4130 other->role = NX_ROLE_SLAVE;
4131 }
4132 }
4133 }
4134 ofconn->role = role;
4135
4136 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, oh->xid, &buf);
4137 reply->role = htonl(role);
4138 queue_tx(buf, ofconn, ofconn->reply_counter);
4139
4140 return 0;
4141 }
4142
4143 static int
4144 handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh)
4145 {
4146 const struct nxt_set_flow_format *msg
4147 = (const struct nxt_set_flow_format *) oh;
4148 uint32_t format;
4149
4150 format = ntohl(msg->format);
4151 if (format == NXFF_OPENFLOW10
4152 || format == NXFF_TUN_ID_FROM_COOKIE
4153 || format == NXFF_NXM) {
4154 ofconn->flow_format = format;
4155 return 0;
4156 } else {
4157 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4158 }
4159 }
4160
4161 static int
4162 handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh)
4163 {
4164 struct ofp_header *ob;
4165 struct ofpbuf *buf;
4166
4167 /* Currently, everything executes synchronously, so we can just
4168 * immediately send the barrier reply. */
4169 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4170 queue_tx(buf, ofconn, ofconn->reply_counter);
4171 return 0;
4172 }
4173
4174 static int
4175 handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg)
4176 {
4177 const struct ofp_header *oh = msg->data;
4178 const struct ofputil_msg_type *type;
4179 int error;
4180
4181 error = ofputil_decode_msg_type(oh, &type);
4182 if (error) {
4183 return error;
4184 }
4185
4186 switch (ofputil_msg_type_code(type)) {
4187 /* OpenFlow requests. */
4188 case OFPUTIL_OFPT_ECHO_REQUEST:
4189 return handle_echo_request(ofconn, oh);
4190
4191 case OFPUTIL_OFPT_FEATURES_REQUEST:
4192 return handle_features_request(ofconn, oh);
4193
4194 case OFPUTIL_OFPT_GET_CONFIG_REQUEST:
4195 return handle_get_config_request(ofconn, oh);
4196
4197 case OFPUTIL_OFPT_SET_CONFIG:
4198 return handle_set_config(ofconn, msg->data);
4199
4200 case OFPUTIL_OFPT_PACKET_OUT:
4201 return handle_packet_out(ofconn, oh);
4202
4203 case OFPUTIL_OFPT_PORT_MOD:
4204 return handle_port_mod(ofconn, oh);
4205
4206 case OFPUTIL_OFPT_FLOW_MOD:
4207 return handle_flow_mod(ofconn, oh);
4208
4209 case OFPUTIL_OFPT_BARRIER_REQUEST:
4210 return handle_barrier_request(ofconn, oh);
4211
4212 /* OpenFlow replies. */
4213 case OFPUTIL_OFPT_ECHO_REPLY:
4214 return 0;
4215
4216 /* Nicira extension requests. */
4217 case OFPUTIL_NXT_STATUS_REQUEST:
4218 return switch_status_handle_request(
4219 ofconn->ofproto->switch_status, ofconn->rconn, oh);
4220
4221 case OFPUTIL_NXT_TUN_ID_FROM_COOKIE:
4222 return handle_tun_id_from_cookie(ofconn, oh);
4223
4224 case OFPUTIL_NXT_ROLE_REQUEST:
4225 return handle_role_request(ofconn, oh);
4226
4227 case OFPUTIL_NXT_SET_FLOW_FORMAT:
4228 return handle_nxt_set_flow_format(ofconn, oh);
4229
4230 case OFPUTIL_NXT_FLOW_MOD:
4231 return handle_flow_mod(ofconn, oh);
4232
4233 /* OpenFlow statistics requests. */
4234 case OFPUTIL_OFPST_DESC_REQUEST:
4235 return handle_desc_stats_request(ofconn, oh);
4236
4237 case OFPUTIL_OFPST_FLOW_REQUEST:
4238 return handle_flow_stats_request(ofconn, oh);
4239
4240 case OFPUTIL_OFPST_AGGREGATE_REQUEST:
4241 return handle_aggregate_stats_request(ofconn, oh);
4242
4243 case OFPUTIL_OFPST_TABLE_REQUEST:
4244 return handle_table_stats_request(ofconn, oh);
4245
4246 case OFPUTIL_OFPST_PORT_REQUEST:
4247 return handle_port_stats_request(ofconn, oh);
4248
4249 case OFPUTIL_OFPST_QUEUE_REQUEST:
4250 return handle_queue_stats_request(ofconn, oh);
4251
4252 /* Nicira extension statistics requests. */
4253 case OFPUTIL_NXST_FLOW_REQUEST:
4254 return handle_nxst_flow(ofconn, oh);
4255
4256 case OFPUTIL_NXST_AGGREGATE_REQUEST:
4257 return handle_nxst_aggregate(ofconn, oh);
4258
4259 case OFPUTIL_INVALID:
4260 case OFPUTIL_OFPT_HELLO:
4261 case OFPUTIL_OFPT_ERROR:
4262 case OFPUTIL_OFPT_FEATURES_REPLY:
4263 case OFPUTIL_OFPT_GET_CONFIG_REPLY:
4264 case OFPUTIL_OFPT_PACKET_IN:
4265 case OFPUTIL_OFPT_FLOW_REMOVED:
4266 case OFPUTIL_OFPT_PORT_STATUS:
4267 case OFPUTIL_OFPT_BARRIER_REPLY:
4268 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REQUEST:
4269 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REPLY:
4270 case OFPUTIL_OFPST_DESC_REPLY:
4271 case OFPUTIL_OFPST_FLOW_REPLY:
4272 case OFPUTIL_OFPST_QUEUE_REPLY:
4273 case OFPUTIL_OFPST_PORT_REPLY:
4274 case OFPUTIL_OFPST_TABLE_REPLY:
4275 case OFPUTIL_OFPST_AGGREGATE_REPLY:
4276 case OFPUTIL_NXT_STATUS_REPLY:
4277 case OFPUTIL_NXT_ROLE_REPLY:
4278 case OFPUTIL_NXT_FLOW_REMOVED:
4279 case OFPUTIL_NXST_FLOW_REPLY:
4280 case OFPUTIL_NXST_AGGREGATE_REPLY:
4281 default:
4282 if (VLOG_IS_WARN_ENABLED()) {
4283 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4284 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4285 free(s);
4286 }
4287 if (oh->type == OFPT_STATS_REQUEST || oh->type == OFPT_STATS_REPLY) {
4288 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
4289 } else {
4290 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4291 }
4292 }
4293 }
4294
4295 static void
4296 handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
4297 {
4298 int error = handle_openflow__(ofconn, ofp_msg);
4299 if (error) {
4300 send_error_oh(ofconn, ofp_msg->data, error);
4301 }
4302 COVERAGE_INC(ofproto_recv_openflow);
4303 }
4304 \f
4305 static void
4306 handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet)
4307 {
4308 struct odp_msg *msg = packet->data;
4309 struct ofpbuf payload;
4310 struct facet *facet;
4311 struct flow flow;
4312
4313 ofpbuf_use_const(&payload, msg + 1, msg->length - sizeof *msg);
4314 flow_extract(&payload, msg->arg, msg->port, &flow);
4315
4316 packet->l2 = payload.l2;
4317 packet->l3 = payload.l3;
4318 packet->l4 = payload.l4;
4319 packet->l7 = payload.l7;
4320
4321 /* Check with in-band control to see if this packet should be sent
4322 * to the local port regardless of the flow table. */
4323 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
4324 union odp_action action;
4325
4326 memset(&action, 0, sizeof(action));
4327 action.output.type = ODPAT_OUTPUT;
4328 action.output.port = ODPP_LOCAL;
4329 dpif_execute(p->dpif, &action, 1, &payload);
4330 }
4331
4332 facet = facet_lookup_valid(p, &flow);
4333 if (!facet) {
4334 struct rule *rule = rule_lookup(p, &flow);
4335 if (!rule) {
4336 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4337 struct ofport *port = get_port(p, msg->port);
4338 if (port) {
4339 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4340 COVERAGE_INC(ofproto_no_packet_in);
4341 /* XXX install 'drop' flow entry */
4342 ofpbuf_delete(packet);
4343 return;
4344 }
4345 } else {
4346 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16,
4347 msg->port);
4348 }
4349
4350 COVERAGE_INC(ofproto_packet_in);
4351 send_packet_in(p, packet);
4352 return;
4353 }
4354
4355 facet = facet_create(p, rule, &flow, packet);
4356 } else if (!facet->may_install) {
4357 /* The facet is not installable, that is, we need to process every
4358 * packet, so process the current packet's actions into 'facet'. */
4359 facet_make_actions(p, facet, packet);
4360 }
4361
4362 if (facet->rule->cr.priority == FAIL_OPEN_PRIORITY) {
4363 /*
4364 * Extra-special case for fail-open mode.
4365 *
4366 * We are in fail-open mode and the packet matched the fail-open rule,
4367 * but we are connected to a controller too. We should send the packet
4368 * up to the controller in the hope that it will try to set up a flow
4369 * and thereby allow us to exit fail-open.
4370 *
4371 * See the top-level comment in fail-open.c for more information.
4372 */
4373 send_packet_in(p, ofpbuf_clone_with_headroom(packet,
4374 DPIF_RECV_MSG_PADDING));
4375 }
4376
4377 ofpbuf_pull(packet, sizeof *msg);
4378 facet_execute(p, facet, packet);
4379 facet_install(p, facet, false);
4380 }
4381
4382 static void
4383 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
4384 {
4385 struct odp_msg *msg = packet->data;
4386
4387 switch (msg->type) {
4388 case _ODPL_ACTION_NR:
4389 COVERAGE_INC(ofproto_ctlr_action);
4390 send_packet_in(p, packet);
4391 break;
4392
4393 case _ODPL_SFLOW_NR:
4394 if (p->sflow) {
4395 ofproto_sflow_received(p->sflow, msg);
4396 }
4397 ofpbuf_delete(packet);
4398 break;
4399
4400 case _ODPL_MISS_NR:
4401 handle_odp_miss_msg(p, packet);
4402 break;
4403
4404 default:
4405 VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32,
4406 msg->type);
4407 break;
4408 }
4409 }
4410 \f
4411 /* Flow expiration. */
4412
4413 static int ofproto_dp_max_idle(const struct ofproto *);
4414 static void ofproto_update_used(struct ofproto *);
4415 static void rule_expire(struct ofproto *, struct rule *);
4416 static void ofproto_expire_facets(struct ofproto *, int dp_max_idle);
4417
4418 /* This function is called periodically by ofproto_run(). Its job is to
4419 * collect updates for the flows that have been installed into the datapath,
4420 * most importantly when they last were used, and then use that information to
4421 * expire flows that have not been used recently.
4422 *
4423 * Returns the number of milliseconds after which it should be called again. */
4424 static int
4425 ofproto_expire(struct ofproto *ofproto)
4426 {
4427 struct rule *rule, *next_rule;
4428 struct cls_cursor cursor;
4429 int dp_max_idle;
4430
4431 /* Update 'used' for each flow in the datapath. */
4432 ofproto_update_used(ofproto);
4433
4434 /* Expire facets that have been idle too long. */
4435 dp_max_idle = ofproto_dp_max_idle(ofproto);
4436 ofproto_expire_facets(ofproto, dp_max_idle);
4437
4438 /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */
4439 cls_cursor_init(&cursor, &ofproto->cls, NULL);
4440 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4441 rule_expire(ofproto, rule);
4442 }
4443
4444 /* Let the hook know that we're at a stable point: all outstanding data
4445 * in existing flows has been accounted to the account_cb. Thus, the
4446 * hook can now reasonably do operations that depend on having accurate
4447 * flow volume accounting (currently, that's just bond rebalancing). */
4448 if (ofproto->ofhooks->account_checkpoint_cb) {
4449 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4450 }
4451
4452 return MIN(dp_max_idle, 1000);
4453 }
4454
4455 /* Update 'used' member of installed facets. */
4456 static void
4457 ofproto_update_used(struct ofproto *p)
4458 {
4459 struct odp_flow *flows;
4460 size_t n_flows;
4461 size_t i;
4462 int error;
4463
4464 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
4465 if (error) {
4466 return;
4467 }
4468
4469 for (i = 0; i < n_flows; i++) {
4470 struct odp_flow *f = &flows[i];
4471 struct facet *facet;
4472 struct flow flow;
4473
4474 odp_flow_key_to_flow(&f->key, &flow);
4475 facet = facet_find(p, &flow);
4476
4477 if (facet && facet->installed) {
4478 facet_update_time(p, facet, &f->stats);
4479 facet_account(p, facet, f->stats.n_bytes);
4480 } else {
4481 /* There's a flow in the datapath that we know nothing about.
4482 * Delete it. */
4483 COVERAGE_INC(ofproto_unexpected_rule);
4484 dpif_flow_del(p->dpif, f);
4485 }
4486
4487 }
4488 free(flows);
4489 }
4490
4491 /* Calculates and returns the number of milliseconds of idle time after which
4492 * facets should expire from the datapath and we should fold their statistics
4493 * into their parent rules in userspace. */
4494 static int
4495 ofproto_dp_max_idle(const struct ofproto *ofproto)
4496 {
4497 /*
4498 * Idle time histogram.
4499 *
4500 * Most of the time a switch has a relatively small number of facets. When
4501 * this is the case we might as well keep statistics for all of them in
4502 * userspace and to cache them in the kernel datapath for performance as
4503 * well.
4504 *
4505 * As the number of facets increases, the memory required to maintain
4506 * statistics about them in userspace and in the kernel becomes
4507 * significant. However, with a large number of facets it is likely that
4508 * only a few of them are "heavy hitters" that consume a large amount of
4509 * bandwidth. At this point, only heavy hitters are worth caching in the
4510 * kernel and maintaining in userspaces; other facets we can discard.
4511 *
4512 * The technique used to compute the idle time is to build a histogram with
4513 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet
4514 * that is installed in the kernel gets dropped in the appropriate bucket.
4515 * After the histogram has been built, we compute the cutoff so that only
4516 * the most-recently-used 1% of facets (but at least 1000 flows) are kept
4517 * cached. At least the most-recently-used bucket of facets is kept, so
4518 * actually an arbitrary number of facets can be kept in any given
4519 * expiration run (though the next run will delete most of those unless
4520 * they receive additional data).
4521 *
4522 * This requires a second pass through the facets, in addition to the pass
4523 * made by ofproto_update_used(), because the former function never looks
4524 * at uninstallable facets.
4525 */
4526 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4527 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4528 int buckets[N_BUCKETS] = { 0 };
4529 struct facet *facet;
4530 int total, bucket;
4531 long long int now;
4532 int i;
4533
4534 total = hmap_count(&ofproto->facets);
4535 if (total <= 1000) {
4536 return N_BUCKETS * BUCKET_WIDTH;
4537 }
4538
4539 /* Build histogram. */
4540 now = time_msec();
4541 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
4542 long long int idle = now - facet->used;
4543 int bucket = (idle <= 0 ? 0
4544 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4545 : (unsigned int) idle / BUCKET_WIDTH);
4546 buckets[bucket]++;
4547 }
4548
4549 /* Find the first bucket whose flows should be expired. */
4550 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4551 if (buckets[bucket]) {
4552 int subtotal = 0;
4553 do {
4554 subtotal += buckets[bucket++];
4555 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4556 break;
4557 }
4558 }
4559
4560 if (VLOG_IS_DBG_ENABLED()) {
4561 struct ds s;
4562
4563 ds_init(&s);
4564 ds_put_cstr(&s, "keep");
4565 for (i = 0; i < N_BUCKETS; i++) {
4566 if (i == bucket) {
4567 ds_put_cstr(&s, ", drop");
4568 }
4569 if (buckets[i]) {
4570 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4571 }
4572 }
4573 VLOG_INFO("%s: %s (msec:count)",
4574 dpif_name(ofproto->dpif), ds_cstr(&s));
4575 ds_destroy(&s);
4576 }
4577
4578 return bucket * BUCKET_WIDTH;
4579 }
4580
4581 static void
4582 facet_active_timeout(struct ofproto *ofproto, struct facet *facet)
4583 {
4584 if (ofproto->netflow && !facet_is_controller_flow(facet) &&
4585 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
4586 struct ofexpired expired;
4587 struct odp_flow odp_flow;
4588
4589 /* Get updated flow stats.
4590 *
4591 * XXX We could avoid this call entirely if (1) ofproto_update_used()
4592 * updated TCP flags and (2) the dpif_flow_list_all() in
4593 * ofproto_update_used() zeroed TCP flags. */
4594 memset(&odp_flow, 0, sizeof odp_flow);
4595 if (facet->installed) {
4596 odp_flow_key_from_flow(&odp_flow.key, &facet->flow);
4597 odp_flow.flags = ODPFF_ZERO_TCP_FLAGS;
4598 dpif_flow_get(ofproto->dpif, &odp_flow);
4599
4600 if (odp_flow.stats.n_packets) {
4601 facet_update_time(ofproto, facet, &odp_flow.stats);
4602 netflow_flow_update_flags(&facet->nf_flow,
4603 odp_flow.stats.tcp_flags);
4604 }
4605 }
4606
4607 expired.flow = facet->flow;
4608 expired.packet_count = facet->packet_count +
4609 odp_flow.stats.n_packets;
4610 expired.byte_count = facet->byte_count + odp_flow.stats.n_bytes;
4611 expired.used = facet->used;
4612
4613 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4614 }
4615 }
4616
4617 static void
4618 ofproto_expire_facets(struct ofproto *ofproto, int dp_max_idle)
4619 {
4620 long long int cutoff = time_msec() - dp_max_idle;
4621 struct facet *facet, *next_facet;
4622
4623 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
4624 facet_active_timeout(ofproto, facet);
4625 if (facet->used < cutoff) {
4626 facet_remove(ofproto, facet);
4627 }
4628 }
4629 }
4630
4631 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4632 * then delete it entirely. */
4633 static void
4634 rule_expire(struct ofproto *ofproto, struct rule *rule)
4635 {
4636 struct facet *facet, *next_facet;
4637 long long int now;
4638 uint8_t reason;
4639
4640 /* Has 'rule' expired? */
4641 now = time_msec();
4642 if (rule->hard_timeout
4643 && now > rule->created + rule->hard_timeout * 1000) {
4644 reason = OFPRR_HARD_TIMEOUT;
4645 } else if (rule->idle_timeout && list_is_empty(&rule->facets)
4646 && now >rule->used + rule->idle_timeout * 1000) {
4647 reason = OFPRR_IDLE_TIMEOUT;
4648 } else {
4649 return;
4650 }
4651
4652 COVERAGE_INC(ofproto_expired);
4653
4654 /* Update stats. (This is a no-op if the rule expired due to an idle
4655 * timeout, because that only happens when the rule has no facets left.) */
4656 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4657 facet_remove(ofproto, facet);
4658 }
4659
4660 /* Get rid of the rule. */
4661 if (!rule_is_hidden(rule)) {
4662 rule_send_removed(ofproto, rule, reason);
4663 }
4664 rule_remove(ofproto, rule);
4665 }
4666 \f
4667 static struct ofpbuf *
4668 compose_ofp_flow_removed(struct ofconn *ofconn, const struct rule *rule,
4669 uint8_t reason)
4670 {
4671 struct ofp_flow_removed *ofr;
4672 struct ofpbuf *buf;
4673
4674 ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf);
4675 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofr->match);
4676 ofr->cookie = rule->flow_cookie;
4677 ofr->priority = htons(rule->cr.priority);
4678 ofr->reason = reason;
4679 calc_flow_duration(rule->created, &ofr->duration_sec, &ofr->duration_nsec);
4680 ofr->idle_timeout = htons(rule->idle_timeout);
4681 ofr->packet_count = htonll(rule->packet_count);
4682 ofr->byte_count = htonll(rule->byte_count);
4683
4684 return buf;
4685 }
4686
4687 static struct ofpbuf *
4688 compose_nx_flow_removed(const struct rule *rule, uint8_t reason)
4689 {
4690 struct nx_flow_removed *nfr;
4691 struct ofpbuf *buf;
4692 int match_len;
4693
4694 nfr = make_nxmsg(sizeof *nfr, NXT_FLOW_REMOVED, &buf);
4695
4696 match_len = nx_put_match(buf, &rule->cr);
4697
4698 nfr->cookie = rule->flow_cookie;
4699 nfr->priority = htons(rule->cr.priority);
4700 nfr->reason = reason;
4701 calc_flow_duration(rule->created, &nfr->duration_sec, &nfr->duration_nsec);
4702 nfr->idle_timeout = htons(rule->idle_timeout);
4703 nfr->match_len = htons(match_len);
4704 nfr->packet_count = htonll(rule->packet_count);
4705 nfr->byte_count = htonll(rule->byte_count);
4706
4707 return buf;
4708 }
4709
4710 static void
4711 rule_send_removed(struct ofproto *p, struct rule *rule, uint8_t reason)
4712 {
4713 struct ofconn *ofconn;
4714
4715 if (!rule->send_flow_removed) {
4716 return;
4717 }
4718
4719 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4720 struct ofpbuf *msg;
4721
4722 if (!rconn_is_connected(ofconn->rconn)
4723 || !ofconn_receives_async_msgs(ofconn)) {
4724 continue;
4725 }
4726
4727 msg = (ofconn->flow_format == NXFF_NXM
4728 ? compose_nx_flow_removed(rule, reason)
4729 : compose_ofp_flow_removed(ofconn, rule, reason));
4730
4731 /* Account flow expirations under ofconn->reply_counter, the counter
4732 * for replies to OpenFlow requests. That works because preventing
4733 * OpenFlow requests from being processed also prevents new flows from
4734 * being added (and expiring). (It also prevents processing OpenFlow
4735 * requests that would not add new flows, so it is imperfect.) */
4736 queue_tx(msg, ofconn, ofconn->reply_counter);
4737 }
4738 }
4739
4740 /* pinsched callback for sending 'packet' on 'ofconn'. */
4741 static void
4742 do_send_packet_in(struct ofpbuf *packet, void *ofconn_)
4743 {
4744 struct ofconn *ofconn = ofconn_;
4745
4746 rconn_send_with_limit(ofconn->rconn, packet,
4747 ofconn->packet_in_counter, 100);
4748 }
4749
4750 /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and
4751 * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s
4752 * packet scheduler for sending.
4753 *
4754 * 'max_len' specifies the maximum number of bytes of the packet to send on
4755 * 'ofconn' (INT_MAX specifies no limit).
4756 *
4757 * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise,
4758 * ownership is transferred to this function. */
4759 static void
4760 schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len,
4761 bool clone)
4762 {
4763 struct ofproto *ofproto = ofconn->ofproto;
4764 struct ofp_packet_in *opi = packet->data;
4765 uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port));
4766 int send_len, trim_size;
4767 uint32_t buffer_id;
4768
4769 /* Get buffer. */
4770 if (opi->reason == OFPR_ACTION) {
4771 buffer_id = UINT32_MAX;
4772 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4773 buffer_id = pktbuf_get_null();
4774 } else if (!ofconn->pktbuf) {
4775 buffer_id = UINT32_MAX;
4776 } else {
4777 struct ofpbuf payload;
4778
4779 ofpbuf_use_const(&payload, opi->data,
4780 packet->size - offsetof(struct ofp_packet_in, data));
4781 buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port);
4782 }
4783
4784 /* Figure out how much of the packet to send. */
4785 send_len = ntohs(opi->total_len);
4786 if (buffer_id != UINT32_MAX) {
4787 send_len = MIN(send_len, ofconn->miss_send_len);
4788 }
4789 send_len = MIN(send_len, max_len);
4790
4791 /* Adjust packet length and clone if necessary. */
4792 trim_size = offsetof(struct ofp_packet_in, data) + send_len;
4793 if (clone) {
4794 packet = ofpbuf_clone_data(packet->data, trim_size);
4795 opi = packet->data;
4796 } else {
4797 packet->size = trim_size;
4798 }
4799
4800 /* Update packet headers. */
4801 opi->buffer_id = htonl(buffer_id);
4802 update_openflow_length(packet);
4803
4804 /* Hand over to packet scheduler. It might immediately call into
4805 * do_send_packet_in() or it might buffer it for a while (until a later
4806 * call to pinsched_run()). */
4807 pinsched_send(ofconn->schedulers[opi->reason], in_port,
4808 packet, do_send_packet_in, ofconn);
4809 }
4810
4811 /* Replace struct odp_msg header in 'packet' by equivalent struct
4812 * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as
4813 * returned by dpif_recv()).
4814 *
4815 * The conversion is not complete: the caller still needs to trim any unneeded
4816 * payload off the end of the buffer, set the length in the OpenFlow header,
4817 * and set buffer_id. Those require us to know the controller settings and so
4818 * must be done on a per-controller basis.
4819 *
4820 * Returns the maximum number of bytes of the packet that should be sent to
4821 * the controller (INT_MAX if no limit). */
4822 static int
4823 do_convert_to_packet_in(struct ofpbuf *packet)
4824 {
4825 struct odp_msg *msg = packet->data;
4826 struct ofp_packet_in *opi;
4827 uint8_t reason;
4828 uint16_t total_len;
4829 uint16_t in_port;
4830 int max_len;
4831
4832 /* Extract relevant header fields */
4833 if (msg->type == _ODPL_ACTION_NR) {
4834 reason = OFPR_ACTION;
4835 max_len = msg->arg;
4836 } else {
4837 reason = OFPR_NO_MATCH;
4838 max_len = INT_MAX;
4839 }
4840 total_len = msg->length - sizeof *msg;
4841 in_port = odp_port_to_ofp_port(msg->port);
4842
4843 /* Repurpose packet buffer by overwriting header. */
4844 ofpbuf_pull(packet, sizeof(struct odp_msg));
4845 opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data));
4846 opi->header.version = OFP_VERSION;
4847 opi->header.type = OFPT_PACKET_IN;
4848 opi->total_len = htons(total_len);
4849 opi->in_port = htons(in_port);
4850 opi->reason = reason;
4851
4852 return max_len;
4853 }
4854
4855 /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or
4856 * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller
4857 * as necessary according to their individual configurations.
4858 *
4859 * 'packet' must have sufficient headroom to convert it into a struct
4860 * ofp_packet_in (e.g. as returned by dpif_recv()).
4861 *
4862 * Takes ownership of 'packet'. */
4863 static void
4864 send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet)
4865 {
4866 struct ofconn *ofconn, *prev;
4867 int max_len;
4868
4869 max_len = do_convert_to_packet_in(packet);
4870
4871 prev = NULL;
4872 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
4873 if (ofconn_receives_async_msgs(ofconn)) {
4874 if (prev) {
4875 schedule_packet_in(prev, packet, max_len, true);
4876 }
4877 prev = ofconn;
4878 }
4879 }
4880 if (prev) {
4881 schedule_packet_in(prev, packet, max_len, false);
4882 } else {
4883 ofpbuf_delete(packet);
4884 }
4885 }
4886
4887 static uint64_t
4888 pick_datapath_id(const struct ofproto *ofproto)
4889 {
4890 const struct ofport *port;
4891
4892 port = get_port(ofproto, ODPP_LOCAL);
4893 if (port) {
4894 uint8_t ea[ETH_ADDR_LEN];
4895 int error;
4896
4897 error = netdev_get_etheraddr(port->netdev, ea);
4898 if (!error) {
4899 return eth_addr_to_uint64(ea);
4900 }
4901 VLOG_WARN("could not get MAC address for %s (%s)",
4902 netdev_get_name(port->netdev), strerror(error));
4903 }
4904 return ofproto->fallback_dpid;
4905 }
4906
4907 static uint64_t
4908 pick_fallback_dpid(void)
4909 {
4910 uint8_t ea[ETH_ADDR_LEN];
4911 eth_addr_nicira_random(ea);
4912 return eth_addr_to_uint64(ea);
4913 }
4914 \f
4915 static void
4916 ofproto_unixctl_list(struct unixctl_conn *conn, const char *arg OVS_UNUSED,
4917 void *aux OVS_UNUSED)
4918 {
4919 const struct shash_node *node;
4920 struct ds results;
4921
4922 ds_init(&results);
4923 SHASH_FOR_EACH (node, &all_ofprotos) {
4924 ds_put_format(&results, "%s\n", node->name);
4925 }
4926 unixctl_command_reply(conn, 200, ds_cstr(&results));
4927 ds_destroy(&results);
4928 }
4929
4930 struct ofproto_trace {
4931 struct action_xlate_ctx ctx;
4932 struct flow flow;
4933 struct ds *result;
4934 };
4935
4936 static void
4937 trace_format_rule(struct ds *result, int level, const struct rule *rule)
4938 {
4939 ds_put_char_multiple(result, '\t', level);
4940 if (!rule) {
4941 ds_put_cstr(result, "No match\n");
4942 return;
4943 }
4944
4945 ds_put_format(result, "Rule: cookie=%#"PRIx64" ",
4946 ntohll(rule->flow_cookie));
4947 cls_rule_format(&rule->cr, result);
4948 ds_put_char(result, '\n');
4949
4950 ds_put_char_multiple(result, '\t', level);
4951 ds_put_cstr(result, "OpenFlow ");
4952 ofp_print_actions(result, (const struct ofp_action_header *) rule->actions,
4953 rule->n_actions * sizeof *rule->actions);
4954 ds_put_char(result, '\n');
4955 }
4956
4957 static void
4958 trace_format_flow(struct ds *result, int level, const char *title,
4959 struct ofproto_trace *trace)
4960 {
4961 ds_put_char_multiple(result, '\t', level);
4962 ds_put_format(result, "%s: ", title);
4963 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
4964 ds_put_cstr(result, "unchanged");
4965 } else {
4966 flow_format(result, &trace->ctx.flow);
4967 trace->flow = trace->ctx.flow;
4968 }
4969 ds_put_char(result, '\n');
4970 }
4971
4972 static void
4973 trace_resubmit(struct action_xlate_ctx *ctx, const struct rule *rule)
4974 {
4975 struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx);
4976 struct ds *result = trace->result;
4977
4978 ds_put_char(result, '\n');
4979 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
4980 trace_format_rule(result, ctx->recurse + 1, rule);
4981 }
4982
4983 static void
4984 ofproto_unixctl_trace(struct unixctl_conn *conn, const char *args_,
4985 void *aux OVS_UNUSED)
4986 {
4987 char *dpname, *in_port_s, *tun_id_s, *packet_s;
4988 char *args = xstrdup(args_);
4989 char *save_ptr = NULL;
4990 struct ofproto *ofproto;
4991 struct ofpbuf packet;
4992 struct rule *rule;
4993 struct ds result;
4994 struct flow flow;
4995 uint16_t in_port;
4996 ovs_be32 tun_id;
4997 char *s;
4998
4999 ofpbuf_init(&packet, strlen(args) / 2);
5000 ds_init(&result);
5001
5002 dpname = strtok_r(args, " ", &save_ptr);
5003 tun_id_s = strtok_r(NULL, " ", &save_ptr);
5004 in_port_s = strtok_r(NULL, " ", &save_ptr);
5005 packet_s = strtok_r(NULL, "", &save_ptr); /* Get entire rest of line. */
5006 if (!dpname || !in_port_s || !packet_s) {
5007 unixctl_command_reply(conn, 501, "Bad command syntax");
5008 goto exit;
5009 }
5010
5011 ofproto = shash_find_data(&all_ofprotos, dpname);
5012 if (!ofproto) {
5013 unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list "
5014 "for help)");
5015 goto exit;
5016 }
5017
5018 tun_id = ntohl(strtoul(tun_id_s, NULL, 10));
5019 in_port = ofp_port_to_odp_port(atoi(in_port_s));
5020
5021 packet_s = ofpbuf_put_hex(&packet, packet_s, NULL);
5022 packet_s += strspn(packet_s, " ");
5023 if (*packet_s != '\0') {
5024 unixctl_command_reply(conn, 501, "Trailing garbage in command");
5025 goto exit;
5026 }
5027 if (packet.size < ETH_HEADER_LEN) {
5028 unixctl_command_reply(conn, 501, "Packet data too short for Ethernet");
5029 goto exit;
5030 }
5031
5032 ds_put_cstr(&result, "Packet: ");
5033 s = ofp_packet_to_string(packet.data, packet.size, packet.size);
5034 ds_put_cstr(&result, s);
5035 free(s);
5036
5037 flow_extract(&packet, tun_id, in_port, &flow);
5038 ds_put_cstr(&result, "Flow: ");
5039 flow_format(&result, &flow);
5040 ds_put_char(&result, '\n');
5041
5042 rule = rule_lookup(ofproto, &flow);
5043 trace_format_rule(&result, 0, rule);
5044 if (rule) {
5045 struct ofproto_trace trace;
5046
5047 trace.result = &result;
5048 trace.flow = flow;
5049 action_xlate_ctx_init(&trace.ctx, ofproto, &flow, &packet);
5050 trace.ctx.resubmit_hook = trace_resubmit;
5051 xlate_actions(&trace.ctx, rule->actions, rule->n_actions);
5052
5053 ds_put_char(&result, '\n');
5054 trace_format_flow(&result, 0, "Final flow", &trace);
5055 ds_put_cstr(&result, "Datapath actions: ");
5056 format_odp_actions(&result,
5057 trace.ctx.out.actions, trace.ctx.out.n_actions);
5058 }
5059
5060 unixctl_command_reply(conn, 200, ds_cstr(&result));
5061
5062 exit:
5063 ds_destroy(&result);
5064 ofpbuf_uninit(&packet);
5065 free(args);
5066 }
5067
5068 static void
5069 ofproto_unixctl_init(void)
5070 {
5071 static bool registered;
5072 if (registered) {
5073 return;
5074 }
5075 registered = true;
5076
5077 unixctl_command_register("ofproto/list", ofproto_unixctl_list, NULL);
5078 unixctl_command_register("ofproto/trace", ofproto_unixctl_trace, NULL);
5079 }
5080 \f
5081 static bool
5082 default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
5083 struct odp_actions *actions, tag_type *tags,
5084 uint16_t *nf_output_iface, void *ofproto_)
5085 {
5086 struct ofproto *ofproto = ofproto_;
5087 int out_port;
5088
5089 /* Drop frames for reserved multicast addresses. */
5090 if (eth_addr_is_reserved(flow->dl_dst)) {
5091 return true;
5092 }
5093
5094 /* Learn source MAC (but don't try to learn from revalidation). */
5095 if (packet != NULL) {
5096 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
5097 0, flow->in_port,
5098 GRAT_ARP_LOCK_NONE);
5099 if (rev_tag) {
5100 /* The log messages here could actually be useful in debugging,
5101 * so keep the rate limit relatively high. */
5102 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
5103 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
5104 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
5105 ofproto_revalidate(ofproto, rev_tag);
5106 }
5107 }
5108
5109 /* Determine output port. */
5110 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
5111 NULL);
5112 if (out_port < 0) {
5113 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
5114 nf_output_iface, actions);
5115 } else if (out_port != flow->in_port) {
5116 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
5117 *nf_output_iface = out_port;
5118 } else {
5119 /* Drop. */
5120 }
5121
5122 return true;
5123 }
5124
5125 static const struct ofhooks default_ofhooks = {
5126 default_normal_ofhook_cb,
5127 NULL,
5128 NULL
5129 };