]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
ofproto: Make flow format specific to an OpenFlow connection.
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "byte-order.h"
28 #include "classifier.h"
29 #include "coverage.h"
30 #include "discovery.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hash.h"
35 #include "hmap.h"
36 #include "in-band.h"
37 #include "mac-learning.h"
38 #include "netdev.h"
39 #include "netflow.h"
40 #include "odp-util.h"
41 #include "ofp-print.h"
42 #include "ofp-util.h"
43 #include "ofproto-sflow.h"
44 #include "ofpbuf.h"
45 #include "openflow/nicira-ext.h"
46 #include "openflow/openflow.h"
47 #include "openvswitch/datapath-protocol.h"
48 #include "packets.h"
49 #include "pinsched.h"
50 #include "pktbuf.h"
51 #include "poll-loop.h"
52 #include "rconn.h"
53 #include "shash.h"
54 #include "status.h"
55 #include "stream-ssl.h"
56 #include "svec.h"
57 #include "tag.h"
58 #include "timeval.h"
59 #include "unixctl.h"
60 #include "vconn.h"
61 #include "vlog.h"
62
63 VLOG_DEFINE_THIS_MODULE(ofproto);
64
65 #include "sflow_api.h"
66
67 struct ofport {
68 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
69 struct netdev *netdev;
70 struct ofp_phy_port opp; /* In host byte order. */
71 uint16_t odp_port;
72 };
73
74 static void ofport_free(struct ofport *);
75 static void hton_ofp_phy_port(struct ofp_phy_port *);
76
77 static int xlate_actions(const union ofp_action *in, size_t n_in,
78 const struct flow *, struct ofproto *,
79 const struct ofpbuf *packet,
80 struct odp_actions *out, tag_type *tags,
81 bool *may_set_up_flow, uint16_t *nf_output_iface);
82
83 struct rule {
84 struct cls_rule cr;
85
86 ovs_be64 flow_cookie; /* Controller-issued identifier. */
87 uint16_t idle_timeout; /* In seconds from time of last use. */
88 uint16_t hard_timeout; /* In seconds from time of creation. */
89 bool send_flow_removed; /* Send a flow removed message? */
90 long long int used; /* Last-used time (0 if never used). */
91 long long int created; /* Creation time. */
92 uint64_t packet_count; /* Number of packets received. */
93 uint64_t byte_count; /* Number of bytes received. */
94 uint64_t accounted_bytes; /* Number of bytes passed to account_cb. */
95 tag_type tags; /* Tags (set only by hooks). */
96 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
97
98 /* If 'super' is non-NULL, this rule is a subrule, that is, it is an
99 * exact-match rule (having cr.wc.wildcards of 0) generated from the
100 * wildcard rule 'super'. In this case, 'list' is an element of the
101 * super-rule's list.
102 *
103 * If 'super' is NULL, this rule is a super-rule, and 'list' is the head of
104 * a list of subrules. A super-rule with no wildcards (where
105 * cr.wc.wildcards is 0) will never have any subrules. */
106 struct rule *super;
107 struct list list;
108
109 /* OpenFlow actions.
110 *
111 * 'n_actions' is the number of elements in the 'actions' array. A single
112 * action may take up more more than one element's worth of space.
113 *
114 * A subrule has no actions (it uses the super-rule's actions). */
115 int n_actions;
116 union ofp_action *actions;
117
118 /* Datapath actions.
119 *
120 * A super-rule with wildcard fields never has ODP actions (since the
121 * datapath only supports exact-match flows). */
122 bool installed; /* Installed in datapath? */
123 bool may_install; /* True ordinarily; false if actions must
124 * be reassessed for every packet. */
125 int n_odp_actions;
126 union odp_action *odp_actions;
127 };
128
129 static inline bool
130 rule_is_hidden(const struct rule *rule)
131 {
132 /* Subrules are merely an implementation detail, so hide them from the
133 * controller. */
134 if (rule->super != NULL) {
135 return true;
136 }
137
138 /* Rules with priority higher than UINT16_MAX are set up by ofproto itself
139 * (e.g. by in-band control) and are intentionally hidden from the
140 * controller. */
141 if (rule->cr.priority > UINT16_MAX) {
142 return true;
143 }
144
145 return false;
146 }
147
148 static struct rule *rule_create(struct ofproto *, struct rule *super,
149 const union ofp_action *, size_t n_actions,
150 uint16_t idle_timeout, uint16_t hard_timeout,
151 ovs_be64 flow_cookie, bool send_flow_removed);
152 static void rule_free(struct rule *);
153 static void rule_destroy(struct ofproto *, struct rule *);
154 static struct rule *rule_from_cls_rule(const struct cls_rule *);
155 static void rule_insert(struct ofproto *, struct rule *,
156 struct ofpbuf *packet, uint16_t in_port);
157 static void rule_remove(struct ofproto *, struct rule *);
158 static bool rule_make_actions(struct ofproto *, struct rule *,
159 const struct ofpbuf *packet);
160 static void rule_install(struct ofproto *, struct rule *,
161 struct rule *displaced_rule);
162 static void rule_uninstall(struct ofproto *, struct rule *);
163 static void rule_post_uninstall(struct ofproto *, struct rule *);
164 static void send_flow_removed(struct ofproto *p, struct rule *rule,
165 long long int now, uint8_t reason);
166
167 /* ofproto supports two kinds of OpenFlow connections:
168 *
169 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
170 * maintains persistent connections to these controllers and by default
171 * sends them asynchronous messages such as packet-ins.
172 *
173 * - "Service" connections, e.g. from ovs-ofctl. When these connections
174 * drop, it is the other side's responsibility to reconnect them if
175 * necessary. ofproto does not send them asynchronous messages by default.
176 *
177 * Currently, active (tcp, ssl, unix) connections are always "primary"
178 * connections and passive (ptcp, pssl, punix) connections are always "service"
179 * connections. There is no inherent reason for this, but it reflects the
180 * common case.
181 */
182 enum ofconn_type {
183 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
184 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
185 };
186
187 /* A listener for incoming OpenFlow "service" connections. */
188 struct ofservice {
189 struct hmap_node node; /* In struct ofproto's "services" hmap. */
190 struct pvconn *pvconn; /* OpenFlow connection listener. */
191
192 /* These are not used by ofservice directly. They are settings for
193 * accepted "struct ofconn"s from the pvconn. */
194 int probe_interval; /* Max idle time before probing, in seconds. */
195 int rate_limit; /* Max packet-in rate in packets per second. */
196 int burst_limit; /* Limit on accumulating packet credits. */
197 };
198
199 static struct ofservice *ofservice_lookup(struct ofproto *,
200 const char *target);
201 static int ofservice_create(struct ofproto *,
202 const struct ofproto_controller *);
203 static void ofservice_reconfigure(struct ofservice *,
204 const struct ofproto_controller *);
205 static void ofservice_destroy(struct ofproto *, struct ofservice *);
206
207 /* An OpenFlow connection. */
208 struct ofconn {
209 struct ofproto *ofproto; /* The ofproto that owns this connection. */
210 struct list node; /* In struct ofproto's "all_conns" list. */
211 struct rconn *rconn; /* OpenFlow connection. */
212 enum ofconn_type type; /* Type. */
213 int flow_format; /* One of NXFF_*. */
214
215 /* OFPT_PACKET_IN related data. */
216 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
217 struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */
218 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
219 int miss_send_len; /* Bytes to send of buffered packets. */
220
221 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
222 * requests, and the maximum number before we stop reading OpenFlow
223 * requests. */
224 #define OFCONN_REPLY_MAX 100
225 struct rconn_packet_counter *reply_counter;
226
227 /* type == OFCONN_PRIMARY only. */
228 enum nx_role role; /* Role. */
229 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
230 struct discovery *discovery; /* Controller discovery object, if enabled. */
231 struct status_category *ss; /* Switch status category. */
232 enum ofproto_band band; /* In-band or out-of-band? */
233 };
234
235 /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's
236 * "schedulers" array. Their values are 0 and 1, and their meanings and values
237 * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In
238 * case anything ever changes, check their values here. */
239 #define N_SCHEDULERS 2
240 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0);
241 BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR);
242 BUILD_ASSERT_DECL(OFPR_ACTION == 1);
243 BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR);
244
245 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
246 enum ofconn_type);
247 static void ofconn_destroy(struct ofconn *);
248 static void ofconn_run(struct ofconn *, struct ofproto *);
249 static void ofconn_wait(struct ofconn *);
250 static bool ofconn_receives_async_msgs(const struct ofconn *);
251 static char *ofconn_make_name(const struct ofproto *, const char *target);
252 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
253
254 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
255 struct rconn_packet_counter *counter);
256
257 static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg);
258 static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn);
259
260 struct ofproto {
261 /* Settings. */
262 uint64_t datapath_id; /* Datapath ID. */
263 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
264 char *mfr_desc; /* Manufacturer. */
265 char *hw_desc; /* Hardware. */
266 char *sw_desc; /* Software version. */
267 char *serial_desc; /* Serial number. */
268 char *dp_desc; /* Datapath description. */
269
270 /* Datapath. */
271 struct dpif *dpif;
272 struct netdev_monitor *netdev_monitor;
273 struct hmap ports; /* Contains "struct ofport"s. */
274 struct shash port_by_name;
275 uint32_t max_ports;
276
277 /* Configuration. */
278 struct switch_status *switch_status;
279 struct fail_open *fail_open;
280 struct netflow *netflow;
281 struct ofproto_sflow *sflow;
282
283 /* In-band control. */
284 struct in_band *in_band;
285 long long int next_in_band_update;
286 struct sockaddr_in *extra_in_band_remotes;
287 size_t n_extra_remotes;
288
289 /* Flow table. */
290 struct classifier cls;
291 bool need_revalidate;
292 long long int next_expiration;
293 struct tag_set revalidate_set;
294
295 /* OpenFlow connections. */
296 struct hmap controllers; /* Controller "struct ofconn"s. */
297 struct list all_conns; /* Contains "struct ofconn"s. */
298 enum ofproto_fail_mode fail_mode;
299
300 /* OpenFlow listeners. */
301 struct hmap services; /* Contains "struct ofservice"s. */
302 struct pvconn **snoops;
303 size_t n_snoops;
304
305 /* Hooks for ovs-vswitchd. */
306 const struct ofhooks *ofhooks;
307 void *aux;
308
309 /* Used by default ofhooks. */
310 struct mac_learning *ml;
311 };
312
313 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
314
315 static const struct ofhooks default_ofhooks;
316
317 static uint64_t pick_datapath_id(const struct ofproto *);
318 static uint64_t pick_fallback_dpid(void);
319
320 static int ofproto_expire(struct ofproto *);
321
322 static void update_stats(struct ofproto *, struct rule *,
323 const struct odp_flow_stats *);
324 static bool revalidate_rule(struct ofproto *p, struct rule *rule);
325 static void revalidate_cb(struct cls_rule *rule_, void *p_);
326
327 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
328
329 static void handle_openflow(struct ofconn *, struct ofproto *,
330 struct ofpbuf *);
331
332 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
333 static void update_port(struct ofproto *, const char *devname);
334 static int init_ports(struct ofproto *);
335 static void reinit_ports(struct ofproto *);
336
337 int
338 ofproto_create(const char *datapath, const char *datapath_type,
339 const struct ofhooks *ofhooks, void *aux,
340 struct ofproto **ofprotop)
341 {
342 struct odp_stats stats;
343 struct ofproto *p;
344 struct dpif *dpif;
345 int error;
346
347 *ofprotop = NULL;
348
349 /* Connect to datapath and start listening for messages. */
350 error = dpif_open(datapath, datapath_type, &dpif);
351 if (error) {
352 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
353 return error;
354 }
355 error = dpif_get_dp_stats(dpif, &stats);
356 if (error) {
357 VLOG_ERR("failed to obtain stats for datapath %s: %s",
358 datapath, strerror(error));
359 dpif_close(dpif);
360 return error;
361 }
362 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW);
363 if (error) {
364 VLOG_ERR("failed to listen on datapath %s: %s",
365 datapath, strerror(error));
366 dpif_close(dpif);
367 return error;
368 }
369 dpif_flow_flush(dpif);
370 dpif_recv_purge(dpif);
371
372 /* Initialize settings. */
373 p = xzalloc(sizeof *p);
374 p->fallback_dpid = pick_fallback_dpid();
375 p->datapath_id = p->fallback_dpid;
376 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
377 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
378 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
379 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
380 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
381
382 /* Initialize datapath. */
383 p->dpif = dpif;
384 p->netdev_monitor = netdev_monitor_create();
385 hmap_init(&p->ports);
386 shash_init(&p->port_by_name);
387 p->max_ports = stats.max_ports;
388
389 /* Initialize submodules. */
390 p->switch_status = switch_status_create(p);
391 p->in_band = NULL;
392 p->fail_open = NULL;
393 p->netflow = NULL;
394 p->sflow = NULL;
395
396 /* Initialize flow table. */
397 classifier_init(&p->cls);
398 p->need_revalidate = false;
399 p->next_expiration = time_msec() + 1000;
400 tag_set_init(&p->revalidate_set);
401
402 /* Initialize OpenFlow connections. */
403 list_init(&p->all_conns);
404 hmap_init(&p->controllers);
405 hmap_init(&p->services);
406 p->snoops = NULL;
407 p->n_snoops = 0;
408
409 /* Initialize hooks. */
410 if (ofhooks) {
411 p->ofhooks = ofhooks;
412 p->aux = aux;
413 p->ml = NULL;
414 } else {
415 p->ofhooks = &default_ofhooks;
416 p->aux = p;
417 p->ml = mac_learning_create();
418 }
419
420 /* Pick final datapath ID. */
421 p->datapath_id = pick_datapath_id(p);
422 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
423
424 *ofprotop = p;
425 return 0;
426 }
427
428 void
429 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
430 {
431 uint64_t old_dpid = p->datapath_id;
432 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
433 if (p->datapath_id != old_dpid) {
434 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
435
436 /* Force all active connections to reconnect, since there is no way to
437 * notify a controller that the datapath ID has changed. */
438 ofproto_reconnect_controllers(p);
439 }
440 }
441
442 static bool
443 is_discovery_controller(const struct ofproto_controller *c)
444 {
445 return !strcmp(c->target, "discover");
446 }
447
448 static bool
449 is_in_band_controller(const struct ofproto_controller *c)
450 {
451 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
452 }
453
454 /* Creates a new controller in 'ofproto'. Some of the settings are initially
455 * drawn from 'c', but update_controller() needs to be called later to finish
456 * the new ofconn's configuration. */
457 static void
458 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
459 {
460 struct discovery *discovery;
461 struct ofconn *ofconn;
462
463 if (is_discovery_controller(c)) {
464 int error = discovery_create(c->accept_re, c->update_resolv_conf,
465 ofproto->dpif, ofproto->switch_status,
466 &discovery);
467 if (error) {
468 return;
469 }
470 } else {
471 discovery = NULL;
472 }
473
474 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
475 ofconn->pktbuf = pktbuf_create();
476 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
477 if (discovery) {
478 ofconn->discovery = discovery;
479 } else {
480 char *name = ofconn_make_name(ofproto, c->target);
481 rconn_connect(ofconn->rconn, c->target, name);
482 free(name);
483 }
484 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
485 hash_string(c->target, 0));
486 }
487
488 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
489 * target or turn discovery on or off (these are done by creating new ofconns
490 * and deleting old ones), but it can update the rest of an ofconn's
491 * settings. */
492 static void
493 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
494 {
495 int probe_interval;
496
497 ofconn->band = (is_in_band_controller(c)
498 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
499
500 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
501
502 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
503 rconn_set_probe_interval(ofconn->rconn, probe_interval);
504
505 if (ofconn->discovery) {
506 discovery_set_update_resolv_conf(ofconn->discovery,
507 c->update_resolv_conf);
508 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
509 }
510
511 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
512 }
513
514 static const char *
515 ofconn_get_target(const struct ofconn *ofconn)
516 {
517 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
518 }
519
520 static struct ofconn *
521 find_controller_by_target(struct ofproto *ofproto, const char *target)
522 {
523 struct ofconn *ofconn;
524
525 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
526 hash_string(target, 0), &ofproto->controllers) {
527 if (!strcmp(ofconn_get_target(ofconn), target)) {
528 return ofconn;
529 }
530 }
531 return NULL;
532 }
533
534 static void
535 update_in_band_remotes(struct ofproto *ofproto)
536 {
537 const struct ofconn *ofconn;
538 struct sockaddr_in *addrs;
539 size_t max_addrs, n_addrs;
540 bool discovery;
541 size_t i;
542
543 /* Allocate enough memory for as many remotes as we could possibly have. */
544 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
545 addrs = xmalloc(max_addrs * sizeof *addrs);
546 n_addrs = 0;
547
548 /* Add all the remotes. */
549 discovery = false;
550 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
551 struct sockaddr_in *sin = &addrs[n_addrs];
552
553 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
554 continue;
555 }
556
557 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
558 if (sin->sin_addr.s_addr) {
559 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
560 n_addrs++;
561 }
562 if (ofconn->discovery) {
563 discovery = true;
564 }
565 }
566 for (i = 0; i < ofproto->n_extra_remotes; i++) {
567 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
568 }
569
570 /* Create or update or destroy in-band.
571 *
572 * Ordinarily we only enable in-band if there's at least one remote
573 * address, but discovery needs the in-band rules for DHCP to be installed
574 * even before we know any remote addresses. */
575 if (n_addrs || discovery) {
576 if (!ofproto->in_band) {
577 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
578 &ofproto->in_band);
579 }
580 if (ofproto->in_band) {
581 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
582 }
583 ofproto->next_in_band_update = time_msec() + 1000;
584 } else {
585 in_band_destroy(ofproto->in_band);
586 ofproto->in_band = NULL;
587 }
588
589 /* Clean up. */
590 free(addrs);
591 }
592
593 static void
594 update_fail_open(struct ofproto *p)
595 {
596 struct ofconn *ofconn;
597
598 if (!hmap_is_empty(&p->controllers)
599 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
600 struct rconn **rconns;
601 size_t n;
602
603 if (!p->fail_open) {
604 p->fail_open = fail_open_create(p, p->switch_status);
605 }
606
607 n = 0;
608 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
609 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
610 rconns[n++] = ofconn->rconn;
611 }
612
613 fail_open_set_controllers(p->fail_open, rconns, n);
614 /* p->fail_open takes ownership of 'rconns'. */
615 } else {
616 fail_open_destroy(p->fail_open);
617 p->fail_open = NULL;
618 }
619 }
620
621 void
622 ofproto_set_controllers(struct ofproto *p,
623 const struct ofproto_controller *controllers,
624 size_t n_controllers)
625 {
626 struct shash new_controllers;
627 struct ofconn *ofconn, *next_ofconn;
628 struct ofservice *ofservice, *next_ofservice;
629 bool ss_exists;
630 size_t i;
631
632 /* Create newly configured controllers and services.
633 * Create a name to ofproto_controller mapping in 'new_controllers'. */
634 shash_init(&new_controllers);
635 for (i = 0; i < n_controllers; i++) {
636 const struct ofproto_controller *c = &controllers[i];
637
638 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
639 if (!find_controller_by_target(p, c->target)) {
640 add_controller(p, c);
641 }
642 } else if (!pvconn_verify_name(c->target)) {
643 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
644 continue;
645 }
646 } else {
647 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
648 dpif_name(p->dpif), c->target);
649 continue;
650 }
651
652 shash_add_once(&new_controllers, c->target, &controllers[i]);
653 }
654
655 /* Delete controllers that are no longer configured.
656 * Update configuration of all now-existing controllers. */
657 ss_exists = false;
658 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
659 struct ofproto_controller *c;
660
661 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
662 if (!c) {
663 ofconn_destroy(ofconn);
664 } else {
665 update_controller(ofconn, c);
666 if (ofconn->ss) {
667 ss_exists = true;
668 }
669 }
670 }
671
672 /* Delete services that are no longer configured.
673 * Update configuration of all now-existing services. */
674 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
675 struct ofproto_controller *c;
676
677 c = shash_find_data(&new_controllers,
678 pvconn_get_name(ofservice->pvconn));
679 if (!c) {
680 ofservice_destroy(p, ofservice);
681 } else {
682 ofservice_reconfigure(ofservice, c);
683 }
684 }
685
686 shash_destroy(&new_controllers);
687
688 update_in_band_remotes(p);
689 update_fail_open(p);
690
691 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
692 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
693 struct ofconn, hmap_node);
694 ofconn->ss = switch_status_register(p->switch_status, "remote",
695 rconn_status_cb, ofconn->rconn);
696 }
697 }
698
699 void
700 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
701 {
702 p->fail_mode = fail_mode;
703 update_fail_open(p);
704 }
705
706 /* Drops the connections between 'ofproto' and all of its controllers, forcing
707 * them to reconnect. */
708 void
709 ofproto_reconnect_controllers(struct ofproto *ofproto)
710 {
711 struct ofconn *ofconn;
712
713 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
714 rconn_reconnect(ofconn->rconn);
715 }
716 }
717
718 static bool
719 any_extras_changed(const struct ofproto *ofproto,
720 const struct sockaddr_in *extras, size_t n)
721 {
722 size_t i;
723
724 if (n != ofproto->n_extra_remotes) {
725 return true;
726 }
727
728 for (i = 0; i < n; i++) {
729 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
730 const struct sockaddr_in *new = &extras[i];
731
732 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
733 old->sin_port != new->sin_port) {
734 return true;
735 }
736 }
737
738 return false;
739 }
740
741 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
742 * in-band control should guarantee access, in the same way that in-band
743 * control guarantees access to OpenFlow controllers. */
744 void
745 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
746 const struct sockaddr_in *extras, size_t n)
747 {
748 if (!any_extras_changed(ofproto, extras, n)) {
749 return;
750 }
751
752 free(ofproto->extra_in_band_remotes);
753 ofproto->n_extra_remotes = n;
754 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
755
756 update_in_band_remotes(ofproto);
757 }
758
759 void
760 ofproto_set_desc(struct ofproto *p,
761 const char *mfr_desc, const char *hw_desc,
762 const char *sw_desc, const char *serial_desc,
763 const char *dp_desc)
764 {
765 struct ofp_desc_stats *ods;
766
767 if (mfr_desc) {
768 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
769 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
770 sizeof ods->mfr_desc);
771 }
772 free(p->mfr_desc);
773 p->mfr_desc = xstrdup(mfr_desc);
774 }
775 if (hw_desc) {
776 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
777 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
778 sizeof ods->hw_desc);
779 }
780 free(p->hw_desc);
781 p->hw_desc = xstrdup(hw_desc);
782 }
783 if (sw_desc) {
784 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
785 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
786 sizeof ods->sw_desc);
787 }
788 free(p->sw_desc);
789 p->sw_desc = xstrdup(sw_desc);
790 }
791 if (serial_desc) {
792 if (strlen(serial_desc) >= sizeof ods->serial_num) {
793 VLOG_WARN("truncating serial_desc, must be less than %zu "
794 "characters",
795 sizeof ods->serial_num);
796 }
797 free(p->serial_desc);
798 p->serial_desc = xstrdup(serial_desc);
799 }
800 if (dp_desc) {
801 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
802 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
803 sizeof ods->dp_desc);
804 }
805 free(p->dp_desc);
806 p->dp_desc = xstrdup(dp_desc);
807 }
808 }
809
810 static int
811 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
812 const struct svec *svec)
813 {
814 struct pvconn **pvconns = *pvconnsp;
815 size_t n_pvconns = *n_pvconnsp;
816 int retval = 0;
817 size_t i;
818
819 for (i = 0; i < n_pvconns; i++) {
820 pvconn_close(pvconns[i]);
821 }
822 free(pvconns);
823
824 pvconns = xmalloc(svec->n * sizeof *pvconns);
825 n_pvconns = 0;
826 for (i = 0; i < svec->n; i++) {
827 const char *name = svec->names[i];
828 struct pvconn *pvconn;
829 int error;
830
831 error = pvconn_open(name, &pvconn);
832 if (!error) {
833 pvconns[n_pvconns++] = pvconn;
834 } else {
835 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
836 if (!retval) {
837 retval = error;
838 }
839 }
840 }
841
842 *pvconnsp = pvconns;
843 *n_pvconnsp = n_pvconns;
844
845 return retval;
846 }
847
848 int
849 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
850 {
851 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
852 }
853
854 int
855 ofproto_set_netflow(struct ofproto *ofproto,
856 const struct netflow_options *nf_options)
857 {
858 if (nf_options && nf_options->collectors.n) {
859 if (!ofproto->netflow) {
860 ofproto->netflow = netflow_create();
861 }
862 return netflow_set_options(ofproto->netflow, nf_options);
863 } else {
864 netflow_destroy(ofproto->netflow);
865 ofproto->netflow = NULL;
866 return 0;
867 }
868 }
869
870 void
871 ofproto_set_sflow(struct ofproto *ofproto,
872 const struct ofproto_sflow_options *oso)
873 {
874 struct ofproto_sflow *os = ofproto->sflow;
875 if (oso) {
876 if (!os) {
877 struct ofport *ofport;
878
879 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
880 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
881 ofproto_sflow_add_port(os, ofport->odp_port,
882 netdev_get_name(ofport->netdev));
883 }
884 }
885 ofproto_sflow_set_options(os, oso);
886 } else {
887 ofproto_sflow_destroy(os);
888 ofproto->sflow = NULL;
889 }
890 }
891
892 uint64_t
893 ofproto_get_datapath_id(const struct ofproto *ofproto)
894 {
895 return ofproto->datapath_id;
896 }
897
898 bool
899 ofproto_has_primary_controller(const struct ofproto *ofproto)
900 {
901 return !hmap_is_empty(&ofproto->controllers);
902 }
903
904 enum ofproto_fail_mode
905 ofproto_get_fail_mode(const struct ofproto *p)
906 {
907 return p->fail_mode;
908 }
909
910 void
911 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
912 {
913 size_t i;
914
915 for (i = 0; i < ofproto->n_snoops; i++) {
916 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
917 }
918 }
919
920 void
921 ofproto_destroy(struct ofproto *p)
922 {
923 struct ofservice *ofservice, *next_ofservice;
924 struct ofconn *ofconn, *next_ofconn;
925 struct ofport *ofport, *next_ofport;
926 size_t i;
927
928 if (!p) {
929 return;
930 }
931
932 /* Destroy fail-open and in-band early, since they touch the classifier. */
933 fail_open_destroy(p->fail_open);
934 p->fail_open = NULL;
935
936 in_band_destroy(p->in_band);
937 p->in_band = NULL;
938 free(p->extra_in_band_remotes);
939
940 ofproto_flush_flows(p);
941 classifier_destroy(&p->cls);
942
943 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
944 ofconn_destroy(ofconn);
945 }
946 hmap_destroy(&p->controllers);
947
948 dpif_close(p->dpif);
949 netdev_monitor_destroy(p->netdev_monitor);
950 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
951 hmap_remove(&p->ports, &ofport->hmap_node);
952 ofport_free(ofport);
953 }
954 shash_destroy(&p->port_by_name);
955
956 switch_status_destroy(p->switch_status);
957 netflow_destroy(p->netflow);
958 ofproto_sflow_destroy(p->sflow);
959
960 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
961 ofservice_destroy(p, ofservice);
962 }
963 hmap_destroy(&p->services);
964
965 for (i = 0; i < p->n_snoops; i++) {
966 pvconn_close(p->snoops[i]);
967 }
968 free(p->snoops);
969
970 mac_learning_destroy(p->ml);
971
972 free(p->mfr_desc);
973 free(p->hw_desc);
974 free(p->sw_desc);
975 free(p->serial_desc);
976 free(p->dp_desc);
977
978 hmap_destroy(&p->ports);
979
980 free(p);
981 }
982
983 int
984 ofproto_run(struct ofproto *p)
985 {
986 int error = ofproto_run1(p);
987 if (!error) {
988 error = ofproto_run2(p, false);
989 }
990 return error;
991 }
992
993 static void
994 process_port_change(struct ofproto *ofproto, int error, char *devname)
995 {
996 if (error == ENOBUFS) {
997 reinit_ports(ofproto);
998 } else if (!error) {
999 update_port(ofproto, devname);
1000 free(devname);
1001 }
1002 }
1003
1004 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1005 * means that 'ofconn' is more interesting for monitoring than a lower return
1006 * value. */
1007 static int
1008 snoop_preference(const struct ofconn *ofconn)
1009 {
1010 switch (ofconn->role) {
1011 case NX_ROLE_MASTER:
1012 return 3;
1013 case NX_ROLE_OTHER:
1014 return 2;
1015 case NX_ROLE_SLAVE:
1016 return 1;
1017 default:
1018 /* Shouldn't happen. */
1019 return 0;
1020 }
1021 }
1022
1023 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1024 * Connects this vconn to a controller. */
1025 static void
1026 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1027 {
1028 struct ofconn *ofconn, *best;
1029
1030 /* Pick a controller for monitoring. */
1031 best = NULL;
1032 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1033 if (ofconn->type == OFCONN_PRIMARY
1034 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1035 best = ofconn;
1036 }
1037 }
1038
1039 if (best) {
1040 rconn_add_monitor(best->rconn, vconn);
1041 } else {
1042 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1043 vconn_close(vconn);
1044 }
1045 }
1046
1047 int
1048 ofproto_run1(struct ofproto *p)
1049 {
1050 struct ofconn *ofconn, *next_ofconn;
1051 struct ofservice *ofservice;
1052 char *devname;
1053 int error;
1054 int i;
1055
1056 if (shash_is_empty(&p->port_by_name)) {
1057 init_ports(p);
1058 }
1059
1060 for (i = 0; i < 50; i++) {
1061 struct ofpbuf *buf;
1062
1063 error = dpif_recv(p->dpif, &buf);
1064 if (error) {
1065 if (error == ENODEV) {
1066 /* Someone destroyed the datapath behind our back. The caller
1067 * better destroy us and give up, because we're just going to
1068 * spin from here on out. */
1069 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1070 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1071 dpif_name(p->dpif));
1072 return ENODEV;
1073 }
1074 break;
1075 }
1076
1077 handle_odp_msg(p, buf);
1078 }
1079
1080 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1081 process_port_change(p, error, devname);
1082 }
1083 while ((error = netdev_monitor_poll(p->netdev_monitor,
1084 &devname)) != EAGAIN) {
1085 process_port_change(p, error, devname);
1086 }
1087
1088 if (p->in_band) {
1089 if (time_msec() >= p->next_in_band_update) {
1090 update_in_band_remotes(p);
1091 }
1092 in_band_run(p->in_band);
1093 }
1094
1095 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1096 ofconn_run(ofconn, p);
1097 }
1098
1099 /* Fail-open maintenance. Do this after processing the ofconns since
1100 * fail-open checks the status of the controller rconn. */
1101 if (p->fail_open) {
1102 fail_open_run(p->fail_open);
1103 }
1104
1105 HMAP_FOR_EACH (ofservice, node, &p->services) {
1106 struct vconn *vconn;
1107 int retval;
1108
1109 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1110 if (!retval) {
1111 struct rconn *rconn;
1112 char *name;
1113
1114 rconn = rconn_create(ofservice->probe_interval, 0);
1115 name = ofconn_make_name(p, vconn_get_name(vconn));
1116 rconn_connect_unreliably(rconn, vconn, name);
1117 free(name);
1118
1119 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1120 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1121 ofservice->burst_limit);
1122 } else if (retval != EAGAIN) {
1123 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1124 }
1125 }
1126
1127 for (i = 0; i < p->n_snoops; i++) {
1128 struct vconn *vconn;
1129 int retval;
1130
1131 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1132 if (!retval) {
1133 add_snooper(p, vconn);
1134 } else if (retval != EAGAIN) {
1135 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1136 }
1137 }
1138
1139 if (time_msec() >= p->next_expiration) {
1140 int delay = ofproto_expire(p);
1141 p->next_expiration = time_msec() + delay;
1142 COVERAGE_INC(ofproto_expiration);
1143 }
1144
1145 if (p->netflow) {
1146 netflow_run(p->netflow);
1147 }
1148 if (p->sflow) {
1149 ofproto_sflow_run(p->sflow);
1150 }
1151
1152 return 0;
1153 }
1154
1155 struct revalidate_cbdata {
1156 struct ofproto *ofproto;
1157 bool revalidate_all; /* Revalidate all exact-match rules? */
1158 bool revalidate_subrules; /* Revalidate all exact-match subrules? */
1159 struct tag_set revalidate_set; /* Set of tags to revalidate. */
1160 };
1161
1162 int
1163 ofproto_run2(struct ofproto *p, bool revalidate_all)
1164 {
1165 if (p->need_revalidate || revalidate_all
1166 || !tag_set_is_empty(&p->revalidate_set)) {
1167 struct revalidate_cbdata cbdata;
1168 cbdata.ofproto = p;
1169 cbdata.revalidate_all = revalidate_all;
1170 cbdata.revalidate_subrules = p->need_revalidate;
1171 cbdata.revalidate_set = p->revalidate_set;
1172 tag_set_init(&p->revalidate_set);
1173 COVERAGE_INC(ofproto_revalidate);
1174 classifier_for_each(&p->cls, CLS_INC_EXACT, revalidate_cb, &cbdata);
1175 p->need_revalidate = false;
1176 }
1177
1178 return 0;
1179 }
1180
1181 void
1182 ofproto_wait(struct ofproto *p)
1183 {
1184 struct ofservice *ofservice;
1185 struct ofconn *ofconn;
1186 size_t i;
1187
1188 dpif_recv_wait(p->dpif);
1189 dpif_port_poll_wait(p->dpif);
1190 netdev_monitor_poll_wait(p->netdev_monitor);
1191 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1192 ofconn_wait(ofconn);
1193 }
1194 if (p->in_band) {
1195 poll_timer_wait_until(p->next_in_band_update);
1196 in_band_wait(p->in_band);
1197 }
1198 if (p->fail_open) {
1199 fail_open_wait(p->fail_open);
1200 }
1201 if (p->sflow) {
1202 ofproto_sflow_wait(p->sflow);
1203 }
1204 if (!tag_set_is_empty(&p->revalidate_set)) {
1205 poll_immediate_wake();
1206 }
1207 if (p->need_revalidate) {
1208 /* Shouldn't happen, but if it does just go around again. */
1209 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1210 poll_immediate_wake();
1211 } else if (p->next_expiration != LLONG_MAX) {
1212 poll_timer_wait_until(p->next_expiration);
1213 }
1214 HMAP_FOR_EACH (ofservice, node, &p->services) {
1215 pvconn_wait(ofservice->pvconn);
1216 }
1217 for (i = 0; i < p->n_snoops; i++) {
1218 pvconn_wait(p->snoops[i]);
1219 }
1220 }
1221
1222 void
1223 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1224 {
1225 tag_set_add(&ofproto->revalidate_set, tag);
1226 }
1227
1228 struct tag_set *
1229 ofproto_get_revalidate_set(struct ofproto *ofproto)
1230 {
1231 return &ofproto->revalidate_set;
1232 }
1233
1234 bool
1235 ofproto_is_alive(const struct ofproto *p)
1236 {
1237 return !hmap_is_empty(&p->controllers);
1238 }
1239
1240 /* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1241 *
1242 * This is almost the same as calling dpif_port_del() directly on the
1243 * datapath, but it also makes 'ofproto' close its open netdev for the port
1244 * (if any). This makes it possible to create a new netdev of a different
1245 * type under the same name, which otherwise the netdev library would refuse
1246 * to do because of the conflict. (The netdev would eventually get closed on
1247 * the next trip through ofproto_run(), but this interface is more direct.)
1248 *
1249 * Returns 0 if successful, otherwise a positive errno. */
1250 int
1251 ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1252 {
1253 struct ofport *ofport = get_port(ofproto, odp_port);
1254 const char *name = ofport ? (char *) ofport->opp.name : "<unknown>";
1255 int error;
1256
1257 error = dpif_port_del(ofproto->dpif, odp_port);
1258 if (error) {
1259 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1260 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1261 } else if (ofport) {
1262 /* 'name' is ofport->opp.name and update_port() is going to destroy
1263 * 'ofport'. Just in case update_port() refers to 'name' after it
1264 * destroys 'ofport', make a copy of it around the update_port()
1265 * call. */
1266 char *devname = xstrdup(name);
1267 update_port(ofproto, devname);
1268 free(devname);
1269 }
1270 return error;
1271 }
1272
1273 /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1274 * true if 'odp_port' exists and should be included, false otherwise. */
1275 bool
1276 ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1277 {
1278 struct ofport *ofport = get_port(ofproto, odp_port);
1279 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1280 }
1281
1282 int
1283 ofproto_send_packet(struct ofproto *p, const struct flow *flow,
1284 const union ofp_action *actions, size_t n_actions,
1285 const struct ofpbuf *packet)
1286 {
1287 struct odp_actions odp_actions;
1288 int error;
1289
1290 error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions,
1291 NULL, NULL, NULL);
1292 if (error) {
1293 return error;
1294 }
1295
1296 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1297 * error code? */
1298 dpif_execute(p->dpif, odp_actions.actions, odp_actions.n_actions, packet);
1299 return 0;
1300 }
1301
1302 void
1303 ofproto_add_flow(struct ofproto *p, const struct flow *flow,
1304 uint32_t wildcards, unsigned int priority,
1305 const union ofp_action *actions, size_t n_actions,
1306 int idle_timeout)
1307 {
1308 struct rule *rule;
1309 rule = rule_create(p, NULL, actions, n_actions,
1310 idle_timeout >= 0 ? idle_timeout : 5 /* XXX */,
1311 0, 0, false);
1312 cls_rule_from_flow(flow, wildcards, priority, &rule->cr);
1313 rule_insert(p, rule, NULL, 0);
1314 }
1315
1316 void
1317 ofproto_delete_flow(struct ofproto *ofproto, const struct flow *flow,
1318 uint32_t wildcards, unsigned int priority)
1319 {
1320 struct cls_rule target;
1321 struct rule *rule;
1322
1323 cls_rule_from_flow(flow, wildcards, priority, &target);
1324 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1325 &target));
1326 if (rule) {
1327 rule_remove(ofproto, rule);
1328 }
1329 }
1330
1331 static void
1332 destroy_rule(struct cls_rule *rule_, void *ofproto_)
1333 {
1334 struct rule *rule = rule_from_cls_rule(rule_);
1335 struct ofproto *ofproto = ofproto_;
1336
1337 /* Mark the flow as not installed, even though it might really be
1338 * installed, so that rule_remove() doesn't bother trying to uninstall it.
1339 * There is no point in uninstalling it individually since we are about to
1340 * blow away all the flows with dpif_flow_flush(). */
1341 rule->installed = false;
1342
1343 rule_remove(ofproto, rule);
1344 }
1345
1346 void
1347 ofproto_flush_flows(struct ofproto *ofproto)
1348 {
1349 COVERAGE_INC(ofproto_flush);
1350 classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto);
1351 dpif_flow_flush(ofproto->dpif);
1352 if (ofproto->in_band) {
1353 in_band_flushed(ofproto->in_band);
1354 }
1355 if (ofproto->fail_open) {
1356 fail_open_flushed(ofproto->fail_open);
1357 }
1358 }
1359 \f
1360 static void
1361 reinit_ports(struct ofproto *p)
1362 {
1363 struct svec devnames;
1364 struct ofport *ofport;
1365 struct odp_port *odp_ports;
1366 size_t n_odp_ports;
1367 size_t i;
1368
1369 COVERAGE_INC(ofproto_reinit_ports);
1370
1371 svec_init(&devnames);
1372 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1373 svec_add (&devnames, (char *) ofport->opp.name);
1374 }
1375 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1376 for (i = 0; i < n_odp_ports; i++) {
1377 svec_add (&devnames, odp_ports[i].devname);
1378 }
1379 free(odp_ports);
1380
1381 svec_sort_unique(&devnames);
1382 for (i = 0; i < devnames.n; i++) {
1383 update_port(p, devnames.names[i]);
1384 }
1385 svec_destroy(&devnames);
1386 }
1387
1388 static struct ofport *
1389 make_ofport(const struct odp_port *odp_port)
1390 {
1391 struct netdev_options netdev_options;
1392 enum netdev_flags flags;
1393 struct ofport *ofport;
1394 struct netdev *netdev;
1395 int error;
1396
1397 memset(&netdev_options, 0, sizeof netdev_options);
1398 netdev_options.name = odp_port->devname;
1399 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1400
1401 error = netdev_open(&netdev_options, &netdev);
1402 if (error) {
1403 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1404 "cannot be opened (%s)",
1405 odp_port->devname, odp_port->port,
1406 odp_port->devname, strerror(error));
1407 return NULL;
1408 }
1409
1410 ofport = xmalloc(sizeof *ofport);
1411 ofport->netdev = netdev;
1412 ofport->odp_port = odp_port->port;
1413 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1414 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1415 memcpy(ofport->opp.name, odp_port->devname,
1416 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1417 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1418
1419 netdev_get_flags(netdev, &flags);
1420 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1421
1422 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1423
1424 netdev_get_features(netdev,
1425 &ofport->opp.curr, &ofport->opp.advertised,
1426 &ofport->opp.supported, &ofport->opp.peer);
1427 return ofport;
1428 }
1429
1430 static bool
1431 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1432 {
1433 if (get_port(p, odp_port->port)) {
1434 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1435 odp_port->port);
1436 return true;
1437 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1438 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1439 odp_port->devname);
1440 return true;
1441 } else {
1442 return false;
1443 }
1444 }
1445
1446 static int
1447 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1448 {
1449 const struct ofp_phy_port *a = &a_->opp;
1450 const struct ofp_phy_port *b = &b_->opp;
1451
1452 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1453 return (a->port_no == b->port_no
1454 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1455 && !strcmp((char *) a->name, (char *) b->name)
1456 && a->state == b->state
1457 && a->config == b->config
1458 && a->curr == b->curr
1459 && a->advertised == b->advertised
1460 && a->supported == b->supported
1461 && a->peer == b->peer);
1462 }
1463
1464 static void
1465 send_port_status(struct ofproto *p, const struct ofport *ofport,
1466 uint8_t reason)
1467 {
1468 /* XXX Should limit the number of queued port status change messages. */
1469 struct ofconn *ofconn;
1470 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1471 struct ofp_port_status *ops;
1472 struct ofpbuf *b;
1473
1474 if (!ofconn_receives_async_msgs(ofconn)) {
1475 continue;
1476 }
1477
1478 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1479 ops->reason = reason;
1480 ops->desc = ofport->opp;
1481 hton_ofp_phy_port(&ops->desc);
1482 queue_tx(b, ofconn, NULL);
1483 }
1484 }
1485
1486 static void
1487 ofport_install(struct ofproto *p, struct ofport *ofport)
1488 {
1489 const char *netdev_name = (const char *) ofport->opp.name;
1490
1491 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1492 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1493 shash_add(&p->port_by_name, netdev_name, ofport);
1494 if (p->sflow) {
1495 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1496 }
1497 }
1498
1499 static void
1500 ofport_remove(struct ofproto *p, struct ofport *ofport)
1501 {
1502 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1503 hmap_remove(&p->ports, &ofport->hmap_node);
1504 shash_delete(&p->port_by_name,
1505 shash_find(&p->port_by_name, (char *) ofport->opp.name));
1506 if (p->sflow) {
1507 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1508 }
1509 }
1510
1511 static void
1512 ofport_free(struct ofport *ofport)
1513 {
1514 if (ofport) {
1515 netdev_close(ofport->netdev);
1516 free(ofport);
1517 }
1518 }
1519
1520 static struct ofport *
1521 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1522 {
1523 struct ofport *port;
1524
1525 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1526 hash_int(odp_port, 0), &ofproto->ports) {
1527 if (port->odp_port == odp_port) {
1528 return port;
1529 }
1530 }
1531 return NULL;
1532 }
1533
1534 static void
1535 update_port(struct ofproto *p, const char *devname)
1536 {
1537 struct odp_port odp_port;
1538 struct ofport *old_ofport;
1539 struct ofport *new_ofport;
1540 int error;
1541
1542 COVERAGE_INC(ofproto_update_port);
1543
1544 /* Query the datapath for port information. */
1545 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1546
1547 /* Find the old ofport. */
1548 old_ofport = shash_find_data(&p->port_by_name, devname);
1549 if (!error) {
1550 if (!old_ofport) {
1551 /* There's no port named 'devname' but there might be a port with
1552 * the same port number. This could happen if a port is deleted
1553 * and then a new one added in its place very quickly, or if a port
1554 * is renamed. In the former case we want to send an OFPPR_DELETE
1555 * and an OFPPR_ADD, and in the latter case we want to send a
1556 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1557 * the old port's ifindex against the new port, or perhaps less
1558 * reliably but more portably by comparing the old port's MAC
1559 * against the new port's MAC. However, this code isn't that smart
1560 * and always sends an OFPPR_MODIFY (XXX). */
1561 old_ofport = get_port(p, odp_port.port);
1562 }
1563 } else if (error != ENOENT && error != ENODEV) {
1564 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1565 "%s", strerror(error));
1566 return;
1567 }
1568
1569 /* Create a new ofport. */
1570 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1571
1572 /* Eliminate a few pathological cases. */
1573 if (!old_ofport && !new_ofport) {
1574 return;
1575 } else if (old_ofport && new_ofport) {
1576 /* Most of the 'config' bits are OpenFlow soft state, but
1577 * OFPPC_PORT_DOWN is maintained the kernel. So transfer the OpenFlow
1578 * bits from old_ofport. (make_ofport() only sets OFPPC_PORT_DOWN and
1579 * leaves the other bits 0.) */
1580 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1581
1582 if (ofport_equal(old_ofport, new_ofport)) {
1583 /* False alarm--no change. */
1584 ofport_free(new_ofport);
1585 return;
1586 }
1587 }
1588
1589 /* Now deal with the normal cases. */
1590 if (old_ofport) {
1591 ofport_remove(p, old_ofport);
1592 }
1593 if (new_ofport) {
1594 ofport_install(p, new_ofport);
1595 }
1596 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1597 (!old_ofport ? OFPPR_ADD
1598 : !new_ofport ? OFPPR_DELETE
1599 : OFPPR_MODIFY));
1600 ofport_free(old_ofport);
1601 }
1602
1603 static int
1604 init_ports(struct ofproto *p)
1605 {
1606 struct odp_port *ports;
1607 size_t n_ports;
1608 size_t i;
1609 int error;
1610
1611 error = dpif_port_list(p->dpif, &ports, &n_ports);
1612 if (error) {
1613 return error;
1614 }
1615
1616 for (i = 0; i < n_ports; i++) {
1617 const struct odp_port *odp_port = &ports[i];
1618 if (!ofport_conflicts(p, odp_port)) {
1619 struct ofport *ofport = make_ofport(odp_port);
1620 if (ofport) {
1621 ofport_install(p, ofport);
1622 }
1623 }
1624 }
1625 free(ports);
1626 return 0;
1627 }
1628 \f
1629 static struct ofconn *
1630 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1631 {
1632 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1633 ofconn->ofproto = p;
1634 list_push_back(&p->all_conns, &ofconn->node);
1635 ofconn->rconn = rconn;
1636 ofconn->type = type;
1637 ofconn->flow_format = NXFF_OPENFLOW10;
1638 ofconn->role = NX_ROLE_OTHER;
1639 ofconn->packet_in_counter = rconn_packet_counter_create ();
1640 ofconn->pktbuf = NULL;
1641 ofconn->miss_send_len = 0;
1642 ofconn->reply_counter = rconn_packet_counter_create ();
1643 return ofconn;
1644 }
1645
1646 static void
1647 ofconn_destroy(struct ofconn *ofconn)
1648 {
1649 if (ofconn->type == OFCONN_PRIMARY) {
1650 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1651 }
1652 discovery_destroy(ofconn->discovery);
1653
1654 list_remove(&ofconn->node);
1655 switch_status_unregister(ofconn->ss);
1656 rconn_destroy(ofconn->rconn);
1657 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1658 rconn_packet_counter_destroy(ofconn->reply_counter);
1659 pktbuf_destroy(ofconn->pktbuf);
1660 free(ofconn);
1661 }
1662
1663 static void
1664 ofconn_run(struct ofconn *ofconn, struct ofproto *p)
1665 {
1666 int iteration;
1667 size_t i;
1668
1669 if (ofconn->discovery) {
1670 char *controller_name;
1671 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1672 discovery_question_connectivity(ofconn->discovery);
1673 }
1674 if (discovery_run(ofconn->discovery, &controller_name)) {
1675 if (controller_name) {
1676 char *ofconn_name = ofconn_make_name(p, controller_name);
1677 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1678 free(ofconn_name);
1679 } else {
1680 rconn_disconnect(ofconn->rconn);
1681 }
1682 }
1683 }
1684
1685 for (i = 0; i < N_SCHEDULERS; i++) {
1686 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1687 }
1688
1689 rconn_run(ofconn->rconn);
1690
1691 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1692 /* Limit the number of iterations to prevent other tasks from
1693 * starving. */
1694 for (iteration = 0; iteration < 50; iteration++) {
1695 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1696 if (!of_msg) {
1697 break;
1698 }
1699 if (p->fail_open) {
1700 fail_open_maybe_recover(p->fail_open);
1701 }
1702 handle_openflow(ofconn, p, of_msg);
1703 ofpbuf_delete(of_msg);
1704 }
1705 }
1706
1707 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1708 ofconn_destroy(ofconn);
1709 }
1710 }
1711
1712 static void
1713 ofconn_wait(struct ofconn *ofconn)
1714 {
1715 int i;
1716
1717 if (ofconn->discovery) {
1718 discovery_wait(ofconn->discovery);
1719 }
1720 for (i = 0; i < N_SCHEDULERS; i++) {
1721 pinsched_wait(ofconn->schedulers[i]);
1722 }
1723 rconn_run_wait(ofconn->rconn);
1724 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1725 rconn_recv_wait(ofconn->rconn);
1726 } else {
1727 COVERAGE_INC(ofproto_ofconn_stuck);
1728 }
1729 }
1730
1731 /* Returns true if 'ofconn' should receive asynchronous messages. */
1732 static bool
1733 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1734 {
1735 if (ofconn->type == OFCONN_PRIMARY) {
1736 /* Primary controllers always get asynchronous messages unless they
1737 * have configured themselves as "slaves". */
1738 return ofconn->role != NX_ROLE_SLAVE;
1739 } else {
1740 /* Service connections don't get asynchronous messages unless they have
1741 * explicitly asked for them by setting a nonzero miss send length. */
1742 return ofconn->miss_send_len > 0;
1743 }
1744 }
1745
1746 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1747 * and 'target', suitable for use in log messages for identifying the
1748 * connection.
1749 *
1750 * The name is dynamically allocated. The caller should free it (with free())
1751 * when it is no longer needed. */
1752 static char *
1753 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1754 {
1755 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1756 }
1757
1758 static void
1759 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1760 {
1761 int i;
1762
1763 for (i = 0; i < N_SCHEDULERS; i++) {
1764 struct pinsched **s = &ofconn->schedulers[i];
1765
1766 if (rate > 0) {
1767 if (!*s) {
1768 *s = pinsched_create(rate, burst,
1769 ofconn->ofproto->switch_status);
1770 } else {
1771 pinsched_set_limits(*s, rate, burst);
1772 }
1773 } else {
1774 pinsched_destroy(*s);
1775 *s = NULL;
1776 }
1777 }
1778 }
1779 \f
1780 static void
1781 ofservice_reconfigure(struct ofservice *ofservice,
1782 const struct ofproto_controller *c)
1783 {
1784 ofservice->probe_interval = c->probe_interval;
1785 ofservice->rate_limit = c->rate_limit;
1786 ofservice->burst_limit = c->burst_limit;
1787 }
1788
1789 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1790 * positive errno value. */
1791 static int
1792 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1793 {
1794 struct ofservice *ofservice;
1795 struct pvconn *pvconn;
1796 int error;
1797
1798 error = pvconn_open(c->target, &pvconn);
1799 if (error) {
1800 return error;
1801 }
1802
1803 ofservice = xzalloc(sizeof *ofservice);
1804 hmap_insert(&ofproto->services, &ofservice->node,
1805 hash_string(c->target, 0));
1806 ofservice->pvconn = pvconn;
1807
1808 ofservice_reconfigure(ofservice, c);
1809
1810 return 0;
1811 }
1812
1813 static void
1814 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1815 {
1816 hmap_remove(&ofproto->services, &ofservice->node);
1817 pvconn_close(ofservice->pvconn);
1818 free(ofservice);
1819 }
1820
1821 /* Finds and returns the ofservice within 'ofproto' that has the given
1822 * 'target', or a null pointer if none exists. */
1823 static struct ofservice *
1824 ofservice_lookup(struct ofproto *ofproto, const char *target)
1825 {
1826 struct ofservice *ofservice;
1827
1828 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
1829 &ofproto->services) {
1830 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
1831 return ofservice;
1832 }
1833 }
1834 return NULL;
1835 }
1836 \f
1837 /* Caller is responsible for initializing the 'cr' member of the returned
1838 * rule. */
1839 static struct rule *
1840 rule_create(struct ofproto *ofproto, struct rule *super,
1841 const union ofp_action *actions, size_t n_actions,
1842 uint16_t idle_timeout, uint16_t hard_timeout,
1843 ovs_be64 flow_cookie, bool send_flow_removed)
1844 {
1845 struct rule *rule = xzalloc(sizeof *rule);
1846 rule->idle_timeout = idle_timeout;
1847 rule->hard_timeout = hard_timeout;
1848 rule->flow_cookie = flow_cookie;
1849 rule->used = rule->created = time_msec();
1850 rule->send_flow_removed = send_flow_removed;
1851 rule->super = super;
1852 if (super) {
1853 list_push_back(&super->list, &rule->list);
1854 } else {
1855 list_init(&rule->list);
1856 }
1857 if (n_actions > 0) {
1858 rule->n_actions = n_actions;
1859 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1860 }
1861 netflow_flow_clear(&rule->nf_flow);
1862 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->created);
1863
1864 return rule;
1865 }
1866
1867 static struct rule *
1868 rule_from_cls_rule(const struct cls_rule *cls_rule)
1869 {
1870 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
1871 }
1872
1873 static void
1874 rule_free(struct rule *rule)
1875 {
1876 free(rule->actions);
1877 free(rule->odp_actions);
1878 free(rule);
1879 }
1880
1881 /* Destroys 'rule'. If 'rule' is a subrule, also removes it from its
1882 * super-rule's list of subrules. If 'rule' is a super-rule, also iterates
1883 * through all of its subrules and revalidates them, destroying any that no
1884 * longer has a super-rule (which is probably all of them).
1885 *
1886 * Before calling this function, the caller must make have removed 'rule' from
1887 * the classifier. If 'rule' is an exact-match rule, the caller is also
1888 * responsible for ensuring that it has been uninstalled from the datapath. */
1889 static void
1890 rule_destroy(struct ofproto *ofproto, struct rule *rule)
1891 {
1892 if (!rule->super) {
1893 struct rule *subrule, *next;
1894 LIST_FOR_EACH_SAFE (subrule, next, list, &rule->list) {
1895 revalidate_rule(ofproto, subrule);
1896 }
1897 } else {
1898 list_remove(&rule->list);
1899 }
1900 rule_free(rule);
1901 }
1902
1903 static bool
1904 rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
1905 {
1906 const union ofp_action *oa;
1907 struct actions_iterator i;
1908
1909 if (out_port == htons(OFPP_NONE)) {
1910 return true;
1911 }
1912 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
1913 oa = actions_next(&i)) {
1914 if (action_outputs_to_port(oa, out_port)) {
1915 return true;
1916 }
1917 }
1918 return false;
1919 }
1920
1921 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
1922 * 'packet', which arrived on 'in_port'.
1923 *
1924 * Takes ownership of 'packet'. */
1925 static bool
1926 execute_odp_actions(struct ofproto *ofproto, uint16_t in_port,
1927 const union odp_action *actions, size_t n_actions,
1928 struct ofpbuf *packet)
1929 {
1930 if (n_actions == 1 && actions[0].type == ODPAT_CONTROLLER) {
1931 /* As an optimization, avoid a round-trip from userspace to kernel to
1932 * userspace. This also avoids possibly filling up kernel packet
1933 * buffers along the way. */
1934 struct odp_msg *msg;
1935
1936 msg = ofpbuf_push_uninit(packet, sizeof *msg);
1937 msg->type = _ODPL_ACTION_NR;
1938 msg->length = sizeof(struct odp_msg) + packet->size;
1939 msg->port = in_port;
1940 msg->reserved = 0;
1941 msg->arg = actions[0].controller.arg;
1942
1943 send_packet_in(ofproto, packet);
1944
1945 return true;
1946 } else {
1947 int error;
1948
1949 error = dpif_execute(ofproto->dpif, actions, n_actions, packet);
1950 ofpbuf_delete(packet);
1951 return !error;
1952 }
1953 }
1954
1955 /* Executes the actions indicated by 'rule' on 'packet', which is in flow
1956 * 'flow' and is considered to have arrived on ODP port 'in_port'. 'packet'
1957 * must have at least sizeof(struct ofp_packet_in) bytes of headroom.
1958 *
1959 * The flow that 'packet' actually contains does not need to actually match
1960 * 'rule'; the actions in 'rule' will be applied to it either way. Likewise,
1961 * the packet and byte counters for 'rule' will be credited for the packet sent
1962 * out whether or not the packet actually matches 'rule'.
1963 *
1964 * If 'rule' is an exact-match rule and 'flow' actually equals the rule's flow,
1965 * the caller must already have accurately composed ODP actions for it given
1966 * 'packet' using rule_make_actions(). If 'rule' is a wildcard rule, or if
1967 * 'rule' is an exact-match rule but 'flow' is not the rule's flow, then this
1968 * function will compose a set of ODP actions based on 'rule''s OpenFlow
1969 * actions and apply them to 'packet'.
1970 *
1971 * Takes ownership of 'packet'. */
1972 static void
1973 rule_execute(struct ofproto *ofproto, struct rule *rule,
1974 struct ofpbuf *packet, const struct flow *flow)
1975 {
1976 const union odp_action *actions;
1977 struct odp_flow_stats stats;
1978 size_t n_actions;
1979 struct odp_actions a;
1980
1981 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
1982
1983 /* Grab or compose the ODP actions.
1984 *
1985 * The special case for an exact-match 'rule' where 'flow' is not the
1986 * rule's flow is important to avoid, e.g., sending a packet out its input
1987 * port simply because the ODP actions were composed for the wrong
1988 * scenario. */
1989 if (rule->cr.wc.wildcards || !flow_equal(flow, &rule->cr.flow)) {
1990 struct rule *super = rule->super ? rule->super : rule;
1991 if (xlate_actions(super->actions, super->n_actions, flow, ofproto,
1992 packet, &a, NULL, 0, NULL)) {
1993 ofpbuf_delete(packet);
1994 return;
1995 }
1996 actions = a.actions;
1997 n_actions = a.n_actions;
1998 } else {
1999 actions = rule->odp_actions;
2000 n_actions = rule->n_odp_actions;
2001 }
2002
2003 /* Execute the ODP actions. */
2004 flow_extract_stats(flow, packet, &stats);
2005 if (execute_odp_actions(ofproto, flow->in_port,
2006 actions, n_actions, packet)) {
2007 update_stats(ofproto, rule, &stats);
2008 rule->used = time_msec();
2009 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->used);
2010 }
2011 }
2012
2013 /* Inserts 'rule' into 'p''s flow table.
2014 *
2015 * If 'packet' is nonnull, takes ownership of 'packet', executes 'rule''s
2016 * actions on it and credits the statistics for sending the packet to 'rule'.
2017 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of
2018 * headroom. */
2019 static void
2020 rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet,
2021 uint16_t in_port)
2022 {
2023 struct rule *displaced_rule;
2024
2025 /* Insert the rule in the classifier. */
2026 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2027 if (!rule->cr.wc.wildcards) {
2028 rule_make_actions(p, rule, packet);
2029 }
2030
2031 /* Send the packet and credit it to the rule. */
2032 if (packet) {
2033 struct flow flow;
2034 flow_extract(packet, 0, in_port, &flow);
2035 rule_execute(p, rule, packet, &flow);
2036 }
2037
2038 /* Install the rule in the datapath only after sending the packet, to
2039 * avoid packet reordering. */
2040 if (rule->cr.wc.wildcards) {
2041 COVERAGE_INC(ofproto_add_wc_flow);
2042 p->need_revalidate = true;
2043 } else {
2044 rule_install(p, rule, displaced_rule);
2045 }
2046
2047 /* Free the rule that was displaced, if any. */
2048 if (displaced_rule) {
2049 rule_destroy(p, displaced_rule);
2050 }
2051 }
2052
2053 static struct rule *
2054 rule_create_subrule(struct ofproto *ofproto, struct rule *rule,
2055 const struct flow *flow)
2056 {
2057 struct rule *subrule = rule_create(ofproto, rule, NULL, 0,
2058 rule->idle_timeout, rule->hard_timeout,
2059 0, false);
2060 COVERAGE_INC(ofproto_subrule_create);
2061 cls_rule_from_flow(flow, 0, (rule->cr.priority <= UINT16_MAX ? UINT16_MAX
2062 : rule->cr.priority), &subrule->cr);
2063
2064 if (classifier_insert(&ofproto->cls, &subrule->cr)) {
2065 /* Can't happen, */
2066 NOT_REACHED();
2067 }
2068
2069 return subrule;
2070 }
2071
2072 /* Remove 'rule' from 'ofproto' and free up the associated memory:
2073 *
2074 * - If 'rule' was installed in the datapath, uninstalls it and updates
2075 * 'rule''s statistics (or its super-rule's statistics, if it is a
2076 * subrule), via rule_uninstall().
2077 *
2078 * - Removes 'rule' from the classifier.
2079 *
2080 * - If 'rule' is a super-rule that has subrules, revalidates (and possibly
2081 * uninstalls and destroys) its subrules, via rule_destroy().
2082 */
2083 static void
2084 rule_remove(struct ofproto *ofproto, struct rule *rule)
2085 {
2086 if (rule->cr.wc.wildcards) {
2087 COVERAGE_INC(ofproto_del_wc_flow);
2088 ofproto->need_revalidate = true;
2089 } else {
2090 rule_uninstall(ofproto, rule);
2091 }
2092 classifier_remove(&ofproto->cls, &rule->cr);
2093 rule_destroy(ofproto, rule);
2094 }
2095
2096 /* Returns true if the actions changed, false otherwise. */
2097 static bool
2098 rule_make_actions(struct ofproto *p, struct rule *rule,
2099 const struct ofpbuf *packet)
2100 {
2101 const struct rule *super;
2102 struct odp_actions a;
2103 size_t actions_len;
2104
2105 assert(!rule->cr.wc.wildcards);
2106
2107 super = rule->super ? rule->super : rule;
2108 rule->tags = 0;
2109 xlate_actions(super->actions, super->n_actions, &rule->cr.flow, p,
2110 packet, &a, &rule->tags, &rule->may_install,
2111 &rule->nf_flow.output_iface);
2112
2113 actions_len = a.n_actions * sizeof *a.actions;
2114 if (rule->n_odp_actions != a.n_actions
2115 || memcmp(rule->odp_actions, a.actions, actions_len)) {
2116 COVERAGE_INC(ofproto_odp_unchanged);
2117 free(rule->odp_actions);
2118 rule->n_odp_actions = a.n_actions;
2119 rule->odp_actions = xmemdup(a.actions, actions_len);
2120 return true;
2121 } else {
2122 return false;
2123 }
2124 }
2125
2126 static int
2127 do_put_flow(struct ofproto *ofproto, struct rule *rule, int flags,
2128 struct odp_flow_put *put)
2129 {
2130 memset(&put->flow.stats, 0, sizeof put->flow.stats);
2131 odp_flow_key_from_flow(&put->flow.key, &rule->cr.flow);
2132 put->flow.actions = rule->odp_actions;
2133 put->flow.n_actions = rule->n_odp_actions;
2134 put->flow.flags = 0;
2135 put->flags = flags;
2136 return dpif_flow_put(ofproto->dpif, put);
2137 }
2138
2139 static void
2140 rule_install(struct ofproto *p, struct rule *rule, struct rule *displaced_rule)
2141 {
2142 assert(!rule->cr.wc.wildcards);
2143
2144 if (rule->may_install) {
2145 struct odp_flow_put put;
2146 if (!do_put_flow(p, rule,
2147 ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS,
2148 &put)) {
2149 rule->installed = true;
2150 if (displaced_rule) {
2151 update_stats(p, displaced_rule, &put.flow.stats);
2152 rule_post_uninstall(p, displaced_rule);
2153 }
2154 }
2155 } else if (displaced_rule) {
2156 rule_uninstall(p, displaced_rule);
2157 }
2158 }
2159
2160 static void
2161 rule_reinstall(struct ofproto *ofproto, struct rule *rule)
2162 {
2163 if (rule->installed) {
2164 struct odp_flow_put put;
2165 COVERAGE_INC(ofproto_dp_missed);
2166 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put);
2167 } else {
2168 rule_install(ofproto, rule, NULL);
2169 }
2170 }
2171
2172 static void
2173 rule_update_actions(struct ofproto *ofproto, struct rule *rule)
2174 {
2175 bool actions_changed;
2176 uint16_t new_out_iface, old_out_iface;
2177
2178 old_out_iface = rule->nf_flow.output_iface;
2179 actions_changed = rule_make_actions(ofproto, rule, NULL);
2180
2181 if (rule->may_install) {
2182 if (rule->installed) {
2183 if (actions_changed) {
2184 struct odp_flow_put put;
2185 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY
2186 | ODPPF_ZERO_STATS, &put);
2187 update_stats(ofproto, rule, &put.flow.stats);
2188
2189 /* Temporarily set the old output iface so that NetFlow
2190 * messages have the correct output interface for the old
2191 * stats. */
2192 new_out_iface = rule->nf_flow.output_iface;
2193 rule->nf_flow.output_iface = old_out_iface;
2194 rule_post_uninstall(ofproto, rule);
2195 rule->nf_flow.output_iface = new_out_iface;
2196 }
2197 } else {
2198 rule_install(ofproto, rule, NULL);
2199 }
2200 } else {
2201 rule_uninstall(ofproto, rule);
2202 }
2203 }
2204
2205 static void
2206 rule_account(struct ofproto *ofproto, struct rule *rule, uint64_t extra_bytes)
2207 {
2208 uint64_t total_bytes = rule->byte_count + extra_bytes;
2209
2210 if (ofproto->ofhooks->account_flow_cb
2211 && total_bytes > rule->accounted_bytes)
2212 {
2213 ofproto->ofhooks->account_flow_cb(
2214 &rule->cr.flow, rule->tags, rule->odp_actions, rule->n_odp_actions,
2215 total_bytes - rule->accounted_bytes, ofproto->aux);
2216 rule->accounted_bytes = total_bytes;
2217 }
2218 }
2219
2220 /* 'rule' must be an exact-match rule in 'p'.
2221 *
2222 * If 'rule' is installed in the datapath, uninstalls it and updates's
2223 * statistics. If 'rule' is a subrule, the statistics that are updated are
2224 * actually its super-rule's statistics; otherwise 'rule''s own statistics are
2225 * updated.
2226 *
2227 * If 'rule' is not installed, this function has no effect. */
2228 static void
2229 rule_uninstall(struct ofproto *p, struct rule *rule)
2230 {
2231 assert(!rule->cr.wc.wildcards);
2232 if (rule->installed) {
2233 struct odp_flow odp_flow;
2234
2235 odp_flow_key_from_flow(&odp_flow.key, &rule->cr.flow);
2236 odp_flow.actions = NULL;
2237 odp_flow.n_actions = 0;
2238 odp_flow.flags = 0;
2239 if (!dpif_flow_del(p->dpif, &odp_flow)) {
2240 update_stats(p, rule, &odp_flow.stats);
2241 }
2242 rule->installed = false;
2243
2244 rule_post_uninstall(p, rule);
2245 }
2246 }
2247
2248 static bool
2249 is_controller_rule(struct rule *rule)
2250 {
2251 /* If the only action is send to the controller then don't report
2252 * NetFlow expiration messages since it is just part of the control
2253 * logic for the network and not real traffic. */
2254
2255 return (rule
2256 && rule->super
2257 && rule->super->n_actions == 1
2258 && action_outputs_to_port(&rule->super->actions[0],
2259 htons(OFPP_CONTROLLER)));
2260 }
2261
2262 static void
2263 rule_post_uninstall(struct ofproto *ofproto, struct rule *rule)
2264 {
2265 struct rule *super = rule->super;
2266
2267 rule_account(ofproto, rule, 0);
2268
2269 if (ofproto->netflow && !is_controller_rule(rule)) {
2270 struct ofexpired expired;
2271 expired.flow = rule->cr.flow;
2272 expired.packet_count = rule->packet_count;
2273 expired.byte_count = rule->byte_count;
2274 expired.used = rule->used;
2275 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
2276 }
2277 if (super) {
2278 super->packet_count += rule->packet_count;
2279 super->byte_count += rule->byte_count;
2280
2281 /* Reset counters to prevent double counting if the rule ever gets
2282 * reinstalled. */
2283 rule->packet_count = 0;
2284 rule->byte_count = 0;
2285 rule->accounted_bytes = 0;
2286
2287 netflow_flow_clear(&rule->nf_flow);
2288 }
2289 }
2290 \f
2291 static void
2292 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2293 struct rconn_packet_counter *counter)
2294 {
2295 update_openflow_length(msg);
2296 if (rconn_send(ofconn->rconn, msg, counter)) {
2297 ofpbuf_delete(msg);
2298 }
2299 }
2300
2301 static void
2302 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2303 int error)
2304 {
2305 struct ofpbuf *buf = make_ofp_error_msg(error, oh);
2306 if (buf) {
2307 COVERAGE_INC(ofproto_error);
2308 queue_tx(buf, ofconn, ofconn->reply_counter);
2309 }
2310 }
2311
2312 static void
2313 hton_ofp_phy_port(struct ofp_phy_port *opp)
2314 {
2315 opp->port_no = htons(opp->port_no);
2316 opp->config = htonl(opp->config);
2317 opp->state = htonl(opp->state);
2318 opp->curr = htonl(opp->curr);
2319 opp->advertised = htonl(opp->advertised);
2320 opp->supported = htonl(opp->supported);
2321 opp->peer = htonl(opp->peer);
2322 }
2323
2324 static int
2325 handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh)
2326 {
2327 struct ofp_header *rq = oh;
2328 queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter);
2329 return 0;
2330 }
2331
2332 static int
2333 handle_features_request(struct ofproto *p, struct ofconn *ofconn,
2334 struct ofp_header *oh)
2335 {
2336 struct ofp_switch_features *osf;
2337 struct ofpbuf *buf;
2338 struct ofport *port;
2339
2340 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2341 osf->datapath_id = htonll(p->datapath_id);
2342 osf->n_buffers = htonl(pktbuf_capacity());
2343 osf->n_tables = 2;
2344 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2345 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2346 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2347 (1u << OFPAT_SET_VLAN_VID) |
2348 (1u << OFPAT_SET_VLAN_PCP) |
2349 (1u << OFPAT_STRIP_VLAN) |
2350 (1u << OFPAT_SET_DL_SRC) |
2351 (1u << OFPAT_SET_DL_DST) |
2352 (1u << OFPAT_SET_NW_SRC) |
2353 (1u << OFPAT_SET_NW_DST) |
2354 (1u << OFPAT_SET_NW_TOS) |
2355 (1u << OFPAT_SET_TP_SRC) |
2356 (1u << OFPAT_SET_TP_DST) |
2357 (1u << OFPAT_ENQUEUE));
2358
2359 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
2360 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2361 }
2362
2363 queue_tx(buf, ofconn, ofconn->reply_counter);
2364 return 0;
2365 }
2366
2367 static int
2368 handle_get_config_request(struct ofproto *p, struct ofconn *ofconn,
2369 struct ofp_header *oh)
2370 {
2371 struct ofpbuf *buf;
2372 struct ofp_switch_config *osc;
2373 uint16_t flags;
2374 bool drop_frags;
2375
2376 /* Figure out flags. */
2377 dpif_get_drop_frags(p->dpif, &drop_frags);
2378 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2379
2380 /* Send reply. */
2381 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2382 osc->flags = htons(flags);
2383 osc->miss_send_len = htons(ofconn->miss_send_len);
2384 queue_tx(buf, ofconn, ofconn->reply_counter);
2385
2386 return 0;
2387 }
2388
2389 static int
2390 handle_set_config(struct ofproto *p, struct ofconn *ofconn,
2391 struct ofp_switch_config *osc)
2392 {
2393 uint16_t flags;
2394 int error;
2395
2396 error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc);
2397 if (error) {
2398 return error;
2399 }
2400 flags = ntohs(osc->flags);
2401
2402 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2403 switch (flags & OFPC_FRAG_MASK) {
2404 case OFPC_FRAG_NORMAL:
2405 dpif_set_drop_frags(p->dpif, false);
2406 break;
2407 case OFPC_FRAG_DROP:
2408 dpif_set_drop_frags(p->dpif, true);
2409 break;
2410 default:
2411 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2412 osc->flags);
2413 break;
2414 }
2415 }
2416
2417 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2418
2419 return 0;
2420 }
2421
2422 static void
2423 add_controller_action(struct odp_actions *actions, uint16_t max_len)
2424 {
2425 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
2426 a->controller.arg = max_len;
2427 }
2428
2429 struct action_xlate_ctx {
2430 /* Input. */
2431 struct flow flow; /* Flow to which these actions correspond. */
2432 int recurse; /* Recursion level, via xlate_table_action. */
2433 struct ofproto *ofproto;
2434 const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a
2435 * null pointer if we are revalidating
2436 * without a packet to refer to. */
2437
2438 /* Output. */
2439 struct odp_actions *out; /* Datapath actions. */
2440 tag_type *tags; /* Tags associated with OFPP_NORMAL actions. */
2441 bool may_set_up_flow; /* True ordinarily; false if the actions must
2442 * be reassessed for every packet. */
2443 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
2444 };
2445
2446 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
2447 * flow translation. */
2448 #define MAX_RESUBMIT_RECURSION 8
2449
2450 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2451 struct action_xlate_ctx *ctx);
2452
2453 static void
2454 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2455 {
2456 const struct ofport *ofport = get_port(ctx->ofproto, port);
2457
2458 if (ofport) {
2459 if (ofport->opp.config & OFPPC_NO_FWD) {
2460 /* Forwarding disabled on port. */
2461 return;
2462 }
2463 } else {
2464 /*
2465 * We don't have an ofport record for this port, but it doesn't hurt to
2466 * allow forwarding to it anyhow. Maybe such a port will appear later
2467 * and we're pre-populating the flow table.
2468 */
2469 }
2470
2471 odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port;
2472 ctx->nf_output_iface = port;
2473 }
2474
2475 static struct rule *
2476 lookup_valid_rule(struct ofproto *ofproto, const struct flow *flow)
2477 {
2478 struct rule *rule;
2479 rule = rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow,
2480 CLS_INC_ALL));
2481
2482 /* The rule we found might not be valid, since we could be in need of
2483 * revalidation. If it is not valid, don't return it. */
2484 if (rule
2485 && rule->super
2486 && ofproto->need_revalidate
2487 && !revalidate_rule(ofproto, rule)) {
2488 COVERAGE_INC(ofproto_invalidated);
2489 return NULL;
2490 }
2491
2492 return rule;
2493 }
2494
2495 static void
2496 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2497 {
2498 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2499 uint16_t old_in_port;
2500 struct rule *rule;
2501
2502 /* Look up a flow with 'in_port' as the input port. Then restore the
2503 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2504 * have surprising behavior). */
2505 old_in_port = ctx->flow.in_port;
2506 ctx->flow.in_port = in_port;
2507 rule = lookup_valid_rule(ctx->ofproto, &ctx->flow);
2508 ctx->flow.in_port = old_in_port;
2509
2510 if (rule) {
2511 if (rule->super) {
2512 rule = rule->super;
2513 }
2514
2515 ctx->recurse++;
2516 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2517 ctx->recurse--;
2518 }
2519 } else {
2520 struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2521
2522 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2523 MAX_RESUBMIT_RECURSION);
2524 }
2525 }
2526
2527 static void
2528 flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2529 uint16_t *nf_output_iface, struct odp_actions *actions)
2530 {
2531 struct ofport *ofport;
2532
2533 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2534 uint16_t odp_port = ofport->odp_port;
2535 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2536 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = odp_port;
2537 }
2538 }
2539 *nf_output_iface = NF_OUT_FLOOD;
2540 }
2541
2542 static void
2543 xlate_output_action__(struct action_xlate_ctx *ctx,
2544 uint16_t port, uint16_t max_len)
2545 {
2546 uint16_t odp_port;
2547 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2548
2549 ctx->nf_output_iface = NF_OUT_DROP;
2550
2551 switch (port) {
2552 case OFPP_IN_PORT:
2553 add_output_action(ctx, ctx->flow.in_port);
2554 break;
2555 case OFPP_TABLE:
2556 xlate_table_action(ctx, ctx->flow.in_port);
2557 break;
2558 case OFPP_NORMAL:
2559 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2560 ctx->out, ctx->tags,
2561 &ctx->nf_output_iface,
2562 ctx->ofproto->aux)) {
2563 COVERAGE_INC(ofproto_uninstallable);
2564 ctx->may_set_up_flow = false;
2565 }
2566 break;
2567 case OFPP_FLOOD:
2568 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2569 &ctx->nf_output_iface, ctx->out);
2570 break;
2571 case OFPP_ALL:
2572 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2573 &ctx->nf_output_iface, ctx->out);
2574 break;
2575 case OFPP_CONTROLLER:
2576 add_controller_action(ctx->out, max_len);
2577 break;
2578 case OFPP_LOCAL:
2579 add_output_action(ctx, ODPP_LOCAL);
2580 break;
2581 default:
2582 odp_port = ofp_port_to_odp_port(port);
2583 if (odp_port != ctx->flow.in_port) {
2584 add_output_action(ctx, odp_port);
2585 }
2586 break;
2587 }
2588
2589 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2590 ctx->nf_output_iface = NF_OUT_FLOOD;
2591 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2592 ctx->nf_output_iface = prev_nf_output_iface;
2593 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2594 ctx->nf_output_iface != NF_OUT_FLOOD) {
2595 ctx->nf_output_iface = NF_OUT_MULTI;
2596 }
2597 }
2598
2599 static void
2600 xlate_output_action(struct action_xlate_ctx *ctx,
2601 const struct ofp_action_output *oao)
2602 {
2603 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2604 }
2605
2606 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2607 * optimization, because we're going to add another action that sets the
2608 * priority immediately after, or because there are no actions following the
2609 * pop. */
2610 static void
2611 remove_pop_action(struct action_xlate_ctx *ctx)
2612 {
2613 size_t n = ctx->out->n_actions;
2614 if (n > 0 && ctx->out->actions[n - 1].type == ODPAT_POP_PRIORITY) {
2615 ctx->out->n_actions--;
2616 }
2617 }
2618
2619 static void
2620 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2621 const struct ofp_action_enqueue *oae)
2622 {
2623 uint16_t ofp_port, odp_port;
2624 uint32_t priority;
2625 int error;
2626
2627 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2628 &priority);
2629 if (error) {
2630 /* Fall back to ordinary output action. */
2631 xlate_output_action__(ctx, ntohs(oae->port), 0);
2632 return;
2633 }
2634
2635 /* Figure out ODP output port. */
2636 ofp_port = ntohs(oae->port);
2637 if (ofp_port != OFPP_IN_PORT) {
2638 odp_port = ofp_port_to_odp_port(ofp_port);
2639 } else {
2640 odp_port = ctx->flow.in_port;
2641 }
2642
2643 /* Add ODP actions. */
2644 remove_pop_action(ctx);
2645 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2646 = priority;
2647 add_output_action(ctx, odp_port);
2648 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2649
2650 /* Update NetFlow output port. */
2651 if (ctx->nf_output_iface == NF_OUT_DROP) {
2652 ctx->nf_output_iface = odp_port;
2653 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2654 ctx->nf_output_iface = NF_OUT_MULTI;
2655 }
2656 }
2657
2658 static void
2659 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2660 const struct nx_action_set_queue *nasq)
2661 {
2662 uint32_t priority;
2663 int error;
2664
2665 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2666 &priority);
2667 if (error) {
2668 /* Couldn't translate queue to a priority, so ignore. A warning
2669 * has already been logged. */
2670 return;
2671 }
2672
2673 remove_pop_action(ctx);
2674 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2675 = priority;
2676 }
2677
2678 static void
2679 xlate_nicira_action(struct action_xlate_ctx *ctx,
2680 const struct nx_action_header *nah)
2681 {
2682 const struct nx_action_resubmit *nar;
2683 const struct nx_action_set_tunnel *nast;
2684 const struct nx_action_set_queue *nasq;
2685 union odp_action *oa;
2686 int subtype = ntohs(nah->subtype);
2687
2688 assert(nah->vendor == htonl(NX_VENDOR_ID));
2689 switch (subtype) {
2690 case NXAST_RESUBMIT:
2691 nar = (const struct nx_action_resubmit *) nah;
2692 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2693 break;
2694
2695 case NXAST_SET_TUNNEL:
2696 nast = (const struct nx_action_set_tunnel *) nah;
2697 oa = odp_actions_add(ctx->out, ODPAT_SET_TUNNEL);
2698 ctx->flow.tun_id = oa->tunnel.tun_id = nast->tun_id;
2699 break;
2700
2701 case NXAST_DROP_SPOOFED_ARP:
2702 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2703 odp_actions_add(ctx->out, ODPAT_DROP_SPOOFED_ARP);
2704 }
2705 break;
2706
2707 case NXAST_SET_QUEUE:
2708 nasq = (const struct nx_action_set_queue *) nah;
2709 xlate_set_queue_action(ctx, nasq);
2710 break;
2711
2712 case NXAST_POP_QUEUE:
2713 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2714 break;
2715
2716 /* If you add a new action here that modifies flow data, don't forget to
2717 * update the flow key in ctx->flow at the same time. */
2718
2719 default:
2720 VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype);
2721 break;
2722 }
2723 }
2724
2725 static void
2726 do_xlate_actions(const union ofp_action *in, size_t n_in,
2727 struct action_xlate_ctx *ctx)
2728 {
2729 struct actions_iterator iter;
2730 const union ofp_action *ia;
2731 const struct ofport *port;
2732
2733 port = get_port(ctx->ofproto, ctx->flow.in_port);
2734 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2735 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
2736 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2737 /* Drop this flow. */
2738 return;
2739 }
2740
2741 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2742 uint16_t type = ntohs(ia->type);
2743 union odp_action *oa;
2744
2745 switch (type) {
2746 case OFPAT_OUTPUT:
2747 xlate_output_action(ctx, &ia->output);
2748 break;
2749
2750 case OFPAT_SET_VLAN_VID:
2751 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_TCI);
2752 oa->dl_tci.tci = ia->vlan_vid.vlan_vid;
2753 oa->dl_tci.tci |= htons(ctx->flow.dl_vlan_pcp << VLAN_PCP_SHIFT);
2754 ctx->flow.dl_vlan = ia->vlan_vid.vlan_vid;
2755 break;
2756
2757 case OFPAT_SET_VLAN_PCP:
2758 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_TCI);
2759 oa->dl_tci.tci = htons(ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT);
2760 oa->dl_tci.tci |= ctx->flow.dl_vlan;
2761 ctx->flow.dl_vlan_pcp = ia->vlan_pcp.vlan_pcp;
2762 break;
2763
2764 case OFPAT_STRIP_VLAN:
2765 odp_actions_add(ctx->out, ODPAT_STRIP_VLAN);
2766 ctx->flow.dl_vlan = htons(OFP_VLAN_NONE);
2767 ctx->flow.dl_vlan_pcp = 0;
2768 break;
2769
2770 case OFPAT_SET_DL_SRC:
2771 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC);
2772 memcpy(oa->dl_addr.dl_addr,
2773 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2774 memcpy(ctx->flow.dl_src,
2775 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2776 break;
2777
2778 case OFPAT_SET_DL_DST:
2779 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST);
2780 memcpy(oa->dl_addr.dl_addr,
2781 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2782 memcpy(ctx->flow.dl_dst,
2783 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2784 break;
2785
2786 case OFPAT_SET_NW_SRC:
2787 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC);
2788 ctx->flow.nw_src = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2789 break;
2790
2791 case OFPAT_SET_NW_DST:
2792 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_DST);
2793 ctx->flow.nw_dst = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2794 break;
2795
2796 case OFPAT_SET_NW_TOS:
2797 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_TOS);
2798 ctx->flow.nw_tos = oa->nw_tos.nw_tos = ia->nw_tos.nw_tos;
2799 break;
2800
2801 case OFPAT_SET_TP_SRC:
2802 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC);
2803 ctx->flow.tp_src = oa->tp_port.tp_port = ia->tp_port.tp_port;
2804 break;
2805
2806 case OFPAT_SET_TP_DST:
2807 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_DST);
2808 ctx->flow.tp_dst = oa->tp_port.tp_port = ia->tp_port.tp_port;
2809 break;
2810
2811 case OFPAT_VENDOR:
2812 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
2813 break;
2814
2815 case OFPAT_ENQUEUE:
2816 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
2817 break;
2818
2819 default:
2820 VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type);
2821 break;
2822 }
2823 }
2824 }
2825
2826 static int
2827 xlate_actions(const union ofp_action *in, size_t n_in,
2828 const struct flow *flow, struct ofproto *ofproto,
2829 const struct ofpbuf *packet,
2830 struct odp_actions *out, tag_type *tags, bool *may_set_up_flow,
2831 uint16_t *nf_output_iface)
2832 {
2833 tag_type no_tags = 0;
2834 struct action_xlate_ctx ctx;
2835 COVERAGE_INC(ofproto_ofp2odp);
2836 odp_actions_init(out);
2837 ctx.flow = *flow;
2838 ctx.recurse = 0;
2839 ctx.ofproto = ofproto;
2840 ctx.packet = packet;
2841 ctx.out = out;
2842 ctx.tags = tags ? tags : &no_tags;
2843 ctx.may_set_up_flow = true;
2844 ctx.nf_output_iface = NF_OUT_DROP;
2845 do_xlate_actions(in, n_in, &ctx);
2846 remove_pop_action(&ctx);
2847
2848 /* Check with in-band control to see if we're allowed to set up this
2849 * flow. */
2850 if (!in_band_rule_check(ofproto->in_band, flow, out)) {
2851 ctx.may_set_up_flow = false;
2852 }
2853
2854 if (may_set_up_flow) {
2855 *may_set_up_flow = ctx.may_set_up_flow;
2856 }
2857 if (nf_output_iface) {
2858 *nf_output_iface = ctx.nf_output_iface;
2859 }
2860 if (odp_actions_overflow(out)) {
2861 COVERAGE_INC(odp_overflow);
2862 odp_actions_init(out);
2863 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
2864 }
2865 return 0;
2866 }
2867
2868 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
2869 * error message code (composed with ofp_mkerr()) for the caller to propagate
2870 * upward. Otherwise, returns 0.
2871 *
2872 * 'oh' is used to make log messages more informative. */
2873 static int
2874 reject_slave_controller(struct ofconn *ofconn, const struct ofp_header *oh)
2875 {
2876 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
2877 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
2878 char *type_name;
2879
2880 type_name = ofp_message_type_to_string(oh->type);
2881 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
2882 type_name);
2883 free(type_name);
2884
2885 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
2886 } else {
2887 return 0;
2888 }
2889 }
2890
2891 static int
2892 handle_packet_out(struct ofproto *p, struct ofconn *ofconn,
2893 struct ofp_header *oh)
2894 {
2895 struct ofp_packet_out *opo;
2896 struct ofpbuf payload, *buffer;
2897 struct odp_actions actions;
2898 struct flow flow;
2899 int n_actions;
2900 uint16_t in_port;
2901 int error;
2902
2903 error = reject_slave_controller(ofconn, oh);
2904 if (error) {
2905 return error;
2906 }
2907
2908 error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports);
2909 if (error) {
2910 return error;
2911 }
2912 opo = (struct ofp_packet_out *) oh;
2913
2914 COVERAGE_INC(ofproto_packet_out);
2915 if (opo->buffer_id != htonl(UINT32_MAX)) {
2916 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
2917 &buffer, &in_port);
2918 if (error || !buffer) {
2919 return error;
2920 }
2921 payload = *buffer;
2922 } else {
2923 buffer = NULL;
2924 }
2925
2926 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow);
2927 error = xlate_actions((const union ofp_action *) opo->actions, n_actions,
2928 &flow, p, &payload, &actions, NULL, NULL, NULL);
2929 if (!error) {
2930 dpif_execute(p->dpif, actions.actions, actions.n_actions, &payload);
2931 }
2932 ofpbuf_delete(buffer);
2933
2934 return error;
2935 }
2936
2937 static void
2938 update_port_config(struct ofproto *p, struct ofport *port,
2939 uint32_t config, uint32_t mask)
2940 {
2941 mask &= config ^ port->opp.config;
2942 if (mask & OFPPC_PORT_DOWN) {
2943 if (config & OFPPC_PORT_DOWN) {
2944 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
2945 } else {
2946 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
2947 }
2948 }
2949 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
2950 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
2951 if (mask & REVALIDATE_BITS) {
2952 COVERAGE_INC(ofproto_costly_flags);
2953 port->opp.config ^= mask & REVALIDATE_BITS;
2954 p->need_revalidate = true;
2955 }
2956 #undef REVALIDATE_BITS
2957 if (mask & OFPPC_NO_PACKET_IN) {
2958 port->opp.config ^= OFPPC_NO_PACKET_IN;
2959 }
2960 }
2961
2962 static int
2963 handle_port_mod(struct ofproto *p, struct ofconn *ofconn,
2964 struct ofp_header *oh)
2965 {
2966 const struct ofp_port_mod *opm;
2967 struct ofport *port;
2968 int error;
2969
2970 error = reject_slave_controller(ofconn, oh);
2971 if (error) {
2972 return error;
2973 }
2974 error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm);
2975 if (error) {
2976 return error;
2977 }
2978 opm = (struct ofp_port_mod *) oh;
2979
2980 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
2981 if (!port) {
2982 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
2983 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
2984 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
2985 } else {
2986 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
2987 if (opm->advertise) {
2988 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
2989 }
2990 }
2991 return 0;
2992 }
2993
2994 static struct ofpbuf *
2995 make_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
2996 {
2997 struct ofp_stats_reply *osr;
2998 struct ofpbuf *msg;
2999
3000 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3001 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3002 osr->type = type;
3003 osr->flags = htons(0);
3004 return msg;
3005 }
3006
3007 static struct ofpbuf *
3008 start_stats_reply(const struct ofp_stats_request *request, size_t body_len)
3009 {
3010 return make_stats_reply(request->header.xid, request->type, body_len);
3011 }
3012
3013 static void *
3014 append_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp)
3015 {
3016 struct ofpbuf *msg = *msgp;
3017 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3018 if (nbytes + msg->size > UINT16_MAX) {
3019 struct ofp_stats_reply *reply = msg->data;
3020 reply->flags = htons(OFPSF_REPLY_MORE);
3021 *msgp = make_stats_reply(reply->header.xid, reply->type, nbytes);
3022 queue_tx(msg, ofconn, ofconn->reply_counter);
3023 }
3024 return ofpbuf_put_uninit(*msgp, nbytes);
3025 }
3026
3027 static int
3028 handle_desc_stats_request(struct ofproto *p, struct ofconn *ofconn,
3029 struct ofp_stats_request *request)
3030 {
3031 struct ofp_desc_stats *ods;
3032 struct ofpbuf *msg;
3033
3034 msg = start_stats_reply(request, sizeof *ods);
3035 ods = append_stats_reply(sizeof *ods, ofconn, &msg);
3036 memset(ods, 0, sizeof *ods);
3037 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3038 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3039 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3040 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3041 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3042 queue_tx(msg, ofconn, ofconn->reply_counter);
3043
3044 return 0;
3045 }
3046
3047 static int
3048 handle_table_stats_request(struct ofproto *p, struct ofconn *ofconn,
3049 struct ofp_stats_request *request)
3050 {
3051 struct ofp_table_stats *ots;
3052 struct ofpbuf *msg;
3053 struct rule *rule;
3054 int n_rules;
3055
3056 msg = start_stats_reply(request, sizeof *ots * 2);
3057
3058 /* Count rules other than subrules. */
3059 n_rules = classifier_count(&p->cls);
3060 CLASSIFIER_FOR_EACH_EXACT_RULE (rule, cr, &p->cls) {
3061 if (rule->super) {
3062 n_rules--;
3063 }
3064 }
3065
3066 /* Classifier table. */
3067 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
3068 memset(ots, 0, sizeof *ots);
3069 strcpy(ots->name, "classifier");
3070 ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10
3071 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3072 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3073 ots->active_count = htonl(n_rules);
3074 ots->lookup_count = htonll(0); /* XXX */
3075 ots->matched_count = htonll(0); /* XXX */
3076
3077 queue_tx(msg, ofconn, ofconn->reply_counter);
3078 return 0;
3079 }
3080
3081 static void
3082 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3083 struct ofpbuf **msgp)
3084 {
3085 struct netdev_stats stats;
3086 struct ofp_port_stats *ops;
3087
3088 /* Intentionally ignore return value, since errors will set
3089 * 'stats' to all-1s, which is correct for OpenFlow, and
3090 * netdev_get_stats() will log errors. */
3091 netdev_get_stats(port->netdev, &stats);
3092
3093 ops = append_stats_reply(sizeof *ops, ofconn, msgp);
3094 ops->port_no = htons(port->opp.port_no);
3095 memset(ops->pad, 0, sizeof ops->pad);
3096 ops->rx_packets = htonll(stats.rx_packets);
3097 ops->tx_packets = htonll(stats.tx_packets);
3098 ops->rx_bytes = htonll(stats.rx_bytes);
3099 ops->tx_bytes = htonll(stats.tx_bytes);
3100 ops->rx_dropped = htonll(stats.rx_dropped);
3101 ops->tx_dropped = htonll(stats.tx_dropped);
3102 ops->rx_errors = htonll(stats.rx_errors);
3103 ops->tx_errors = htonll(stats.tx_errors);
3104 ops->rx_frame_err = htonll(stats.rx_frame_errors);
3105 ops->rx_over_err = htonll(stats.rx_over_errors);
3106 ops->rx_crc_err = htonll(stats.rx_crc_errors);
3107 ops->collisions = htonll(stats.collisions);
3108 }
3109
3110 static int
3111 handle_port_stats_request(struct ofproto *p, struct ofconn *ofconn,
3112 struct ofp_stats_request *osr,
3113 size_t arg_size)
3114 {
3115 struct ofp_port_stats_request *psr;
3116 struct ofp_port_stats *ops;
3117 struct ofpbuf *msg;
3118 struct ofport *port;
3119
3120 if (arg_size != sizeof *psr) {
3121 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3122 }
3123 psr = (struct ofp_port_stats_request *) osr->body;
3124
3125 msg = start_stats_reply(osr, sizeof *ops * 16);
3126 if (psr->port_no != htons(OFPP_NONE)) {
3127 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3128 if (port) {
3129 append_port_stat(port, ofconn, &msg);
3130 }
3131 } else {
3132 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3133 append_port_stat(port, ofconn, &msg);
3134 }
3135 }
3136
3137 queue_tx(msg, ofconn, ofconn->reply_counter);
3138 return 0;
3139 }
3140
3141 struct flow_stats_cbdata {
3142 struct ofproto *ofproto;
3143 struct ofconn *ofconn;
3144 ovs_be16 out_port;
3145 struct ofpbuf *msg;
3146 };
3147
3148 /* Obtains statistic counters for 'rule' within 'p' and stores them into
3149 * '*packet_countp' and '*byte_countp'. If 'rule' is a wildcarded rule, the
3150 * returned statistic include statistics for all of 'rule''s subrules. */
3151 static void
3152 query_stats(struct ofproto *p, struct rule *rule,
3153 uint64_t *packet_countp, uint64_t *byte_countp)
3154 {
3155 uint64_t packet_count, byte_count;
3156 struct rule *subrule;
3157 struct odp_flow *odp_flows;
3158 size_t n_odp_flows;
3159
3160 /* Start from historical data for 'rule' itself that are no longer tracked
3161 * by the datapath. This counts, for example, subrules that have
3162 * expired. */
3163 packet_count = rule->packet_count;
3164 byte_count = rule->byte_count;
3165
3166 /* Prepare to ask the datapath for statistics on 'rule', or if it is
3167 * wildcarded then on all of its subrules.
3168 *
3169 * Also, add any statistics that are not tracked by the datapath for each
3170 * subrule. This includes, for example, statistics for packets that were
3171 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3172 * to a flow. */
3173 n_odp_flows = rule->cr.wc.wildcards ? list_size(&rule->list) : 1;
3174 odp_flows = xzalloc(n_odp_flows * sizeof *odp_flows);
3175 if (rule->cr.wc.wildcards) {
3176 size_t i = 0;
3177 LIST_FOR_EACH (subrule, list, &rule->list) {
3178 odp_flow_key_from_flow(&odp_flows[i++].key, &subrule->cr.flow);
3179 packet_count += subrule->packet_count;
3180 byte_count += subrule->byte_count;
3181 }
3182 } else {
3183 odp_flow_key_from_flow(&odp_flows[0].key, &rule->cr.flow);
3184 }
3185
3186 /* Fetch up-to-date statistics from the datapath and add them in. */
3187 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
3188 size_t i;
3189 for (i = 0; i < n_odp_flows; i++) {
3190 struct odp_flow *odp_flow = &odp_flows[i];
3191 packet_count += odp_flow->stats.n_packets;
3192 byte_count += odp_flow->stats.n_bytes;
3193 }
3194 }
3195 free(odp_flows);
3196
3197 /* Return the stats to the caller. */
3198 *packet_countp = packet_count;
3199 *byte_countp = byte_count;
3200 }
3201
3202 static void
3203 flow_stats_cb(struct cls_rule *rule_, void *cbdata_)
3204 {
3205 struct rule *rule = rule_from_cls_rule(rule_);
3206 struct flow_stats_cbdata *cbdata = cbdata_;
3207 struct ofp_flow_stats *ofs;
3208 uint64_t packet_count, byte_count;
3209 size_t act_len, len;
3210 long long int tdiff = time_msec() - rule->created;
3211 uint32_t sec = tdiff / 1000;
3212 uint32_t msec = tdiff - (sec * 1000);
3213
3214 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3215 return;
3216 }
3217
3218 act_len = sizeof *rule->actions * rule->n_actions;
3219 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3220
3221 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3222
3223 ofs = append_stats_reply(len, cbdata->ofconn, &cbdata->msg);
3224 ofs->length = htons(len);
3225 ofs->table_id = 0;
3226 ofs->pad = 0;
3227 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3228 cbdata->ofconn->flow_format, &ofs->match);
3229 ofs->duration_sec = htonl(sec);
3230 ofs->duration_nsec = htonl(msec * 1000000);
3231 ofs->cookie = rule->flow_cookie;
3232 ofs->priority = htons(rule->cr.priority);
3233 ofs->idle_timeout = htons(rule->idle_timeout);
3234 ofs->hard_timeout = htons(rule->hard_timeout);
3235 memset(ofs->pad2, 0, sizeof ofs->pad2);
3236 ofs->packet_count = htonll(packet_count);
3237 ofs->byte_count = htonll(byte_count);
3238 if (rule->n_actions > 0) {
3239 memcpy(ofs->actions, rule->actions, act_len);
3240 }
3241 }
3242
3243 static int
3244 table_id_to_include(uint8_t table_id)
3245 {
3246 return table_id == 0 || table_id == 0xff ? CLS_INC_ALL : 0;
3247 }
3248
3249 static int
3250 handle_flow_stats_request(struct ofproto *p, struct ofconn *ofconn,
3251 const struct ofp_stats_request *osr,
3252 size_t arg_size)
3253 {
3254 struct ofp_flow_stats_request *fsr;
3255 struct flow_stats_cbdata cbdata;
3256 struct cls_rule target;
3257
3258 if (arg_size != sizeof *fsr) {
3259 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3260 }
3261 fsr = (struct ofp_flow_stats_request *) osr->body;
3262
3263 COVERAGE_INC(ofproto_flows_req);
3264 cbdata.ofproto = p;
3265 cbdata.ofconn = ofconn;
3266 cbdata.out_port = fsr->out_port;
3267 cbdata.msg = start_stats_reply(osr, 1024);
3268 cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0, &target);
3269 classifier_for_each_match(&p->cls, &target,
3270 table_id_to_include(fsr->table_id),
3271 flow_stats_cb, &cbdata);
3272 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3273 return 0;
3274 }
3275
3276 struct flow_stats_ds_cbdata {
3277 struct ofproto *ofproto;
3278 struct ds *results;
3279 };
3280
3281 static void
3282 flow_stats_ds_cb(struct cls_rule *rule_, void *cbdata_)
3283 {
3284 struct rule *rule = rule_from_cls_rule(rule_);
3285 struct flow_stats_ds_cbdata *cbdata = cbdata_;
3286 struct ds *results = cbdata->results;
3287 struct ofp_match match;
3288 uint64_t packet_count, byte_count;
3289 size_t act_len = sizeof *rule->actions * rule->n_actions;
3290
3291 /* Don't report on subrules. */
3292 if (rule->super != NULL) {
3293 return;
3294 }
3295
3296 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3297 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3298 NXFF_OPENFLOW10, &match);
3299
3300 ds_put_format(results, "duration=%llds, ",
3301 (time_msec() - rule->created) / 1000);
3302 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3303 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3304 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3305 ofp_print_match(results, &match, true);
3306 if (act_len > 0) {
3307 ofp_print_actions(results, &rule->actions->header, act_len);
3308 } else {
3309 ds_put_cstr(results, "drop");
3310 }
3311 ds_put_cstr(results, "\n");
3312 }
3313
3314 /* Adds a pretty-printed description of all flows to 'results', including
3315 * those marked hidden by secchan (e.g., by in-band control). */
3316 void
3317 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3318 {
3319 struct ofp_match match;
3320 struct cls_rule target;
3321 struct flow_stats_ds_cbdata cbdata;
3322
3323 memset(&match, 0, sizeof match);
3324 match.wildcards = htonl(OVSFW_ALL);
3325
3326 cbdata.ofproto = p;
3327 cbdata.results = results;
3328
3329 cls_rule_from_match(&match, 0, NXFF_OPENFLOW10, 0, &target);
3330 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3331 flow_stats_ds_cb, &cbdata);
3332 }
3333
3334 struct aggregate_stats_cbdata {
3335 struct ofproto *ofproto;
3336 ovs_be16 out_port;
3337 uint64_t packet_count;
3338 uint64_t byte_count;
3339 uint32_t n_flows;
3340 };
3341
3342 static void
3343 aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_)
3344 {
3345 struct rule *rule = rule_from_cls_rule(rule_);
3346 struct aggregate_stats_cbdata *cbdata = cbdata_;
3347 uint64_t packet_count, byte_count;
3348
3349 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3350 return;
3351 }
3352
3353 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3354
3355 cbdata->packet_count += packet_count;
3356 cbdata->byte_count += byte_count;
3357 cbdata->n_flows++;
3358 }
3359
3360 static int
3361 handle_aggregate_stats_request(struct ofproto *p, struct ofconn *ofconn,
3362 const struct ofp_stats_request *osr,
3363 size_t arg_size)
3364 {
3365 struct ofp_aggregate_stats_request *asr;
3366 struct ofp_aggregate_stats_reply *reply;
3367 struct aggregate_stats_cbdata cbdata;
3368 struct cls_rule target;
3369 struct ofpbuf *msg;
3370
3371 if (arg_size != sizeof *asr) {
3372 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3373 }
3374 asr = (struct ofp_aggregate_stats_request *) osr->body;
3375
3376 COVERAGE_INC(ofproto_agg_request);
3377 cbdata.ofproto = p;
3378 cbdata.out_port = asr->out_port;
3379 cbdata.packet_count = 0;
3380 cbdata.byte_count = 0;
3381 cbdata.n_flows = 0;
3382 cls_rule_from_match(&asr->match, 0, NXFF_OPENFLOW10, 0, &target);
3383 classifier_for_each_match(&p->cls, &target,
3384 table_id_to_include(asr->table_id),
3385 aggregate_stats_cb, &cbdata);
3386
3387 msg = start_stats_reply(osr, sizeof *reply);
3388 reply = append_stats_reply(sizeof *reply, ofconn, &msg);
3389 reply->flow_count = htonl(cbdata.n_flows);
3390 reply->packet_count = htonll(cbdata.packet_count);
3391 reply->byte_count = htonll(cbdata.byte_count);
3392 queue_tx(msg, ofconn, ofconn->reply_counter);
3393 return 0;
3394 }
3395
3396 struct queue_stats_cbdata {
3397 struct ofconn *ofconn;
3398 struct ofport *ofport;
3399 struct ofpbuf *msg;
3400 };
3401
3402 static void
3403 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3404 const struct netdev_queue_stats *stats)
3405 {
3406 struct ofp_queue_stats *reply;
3407
3408 reply = append_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3409 reply->port_no = htons(cbdata->ofport->opp.port_no);
3410 memset(reply->pad, 0, sizeof reply->pad);
3411 reply->queue_id = htonl(queue_id);
3412 reply->tx_bytes = htonll(stats->tx_bytes);
3413 reply->tx_packets = htonll(stats->tx_packets);
3414 reply->tx_errors = htonll(stats->tx_errors);
3415 }
3416
3417 static void
3418 handle_queue_stats_dump_cb(uint32_t queue_id,
3419 struct netdev_queue_stats *stats,
3420 void *cbdata_)
3421 {
3422 struct queue_stats_cbdata *cbdata = cbdata_;
3423
3424 put_queue_stats(cbdata, queue_id, stats);
3425 }
3426
3427 static void
3428 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3429 struct queue_stats_cbdata *cbdata)
3430 {
3431 cbdata->ofport = port;
3432 if (queue_id == OFPQ_ALL) {
3433 netdev_dump_queue_stats(port->netdev,
3434 handle_queue_stats_dump_cb, cbdata);
3435 } else {
3436 struct netdev_queue_stats stats;
3437
3438 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3439 put_queue_stats(cbdata, queue_id, &stats);
3440 }
3441 }
3442 }
3443
3444 static int
3445 handle_queue_stats_request(struct ofproto *ofproto, struct ofconn *ofconn,
3446 const struct ofp_stats_request *osr,
3447 size_t arg_size)
3448 {
3449 struct ofp_queue_stats_request *qsr;
3450 struct queue_stats_cbdata cbdata;
3451 struct ofport *port;
3452 unsigned int port_no;
3453 uint32_t queue_id;
3454
3455 if (arg_size != sizeof *qsr) {
3456 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3457 }
3458 qsr = (struct ofp_queue_stats_request *) osr->body;
3459
3460 COVERAGE_INC(ofproto_queue_req);
3461
3462 cbdata.ofconn = ofconn;
3463 cbdata.msg = start_stats_reply(osr, 128);
3464
3465 port_no = ntohs(qsr->port_no);
3466 queue_id = ntohl(qsr->queue_id);
3467 if (port_no == OFPP_ALL) {
3468 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3469 handle_queue_stats_for_port(port, queue_id, &cbdata);
3470 }
3471 } else if (port_no < ofproto->max_ports) {
3472 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3473 if (port) {
3474 handle_queue_stats_for_port(port, queue_id, &cbdata);
3475 }
3476 } else {
3477 ofpbuf_delete(cbdata.msg);
3478 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3479 }
3480 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3481
3482 return 0;
3483 }
3484
3485 static int
3486 handle_stats_request(struct ofproto *p, struct ofconn *ofconn,
3487 struct ofp_header *oh)
3488 {
3489 struct ofp_stats_request *osr;
3490 size_t arg_size;
3491 int error;
3492
3493 error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr,
3494 1, &arg_size);
3495 if (error) {
3496 return error;
3497 }
3498 osr = (struct ofp_stats_request *) oh;
3499
3500 switch (ntohs(osr->type)) {
3501 case OFPST_DESC:
3502 return handle_desc_stats_request(p, ofconn, osr);
3503
3504 case OFPST_FLOW:
3505 return handle_flow_stats_request(p, ofconn, osr, arg_size);
3506
3507 case OFPST_AGGREGATE:
3508 return handle_aggregate_stats_request(p, ofconn, osr, arg_size);
3509
3510 case OFPST_TABLE:
3511 return handle_table_stats_request(p, ofconn, osr);
3512
3513 case OFPST_PORT:
3514 return handle_port_stats_request(p, ofconn, osr, arg_size);
3515
3516 case OFPST_QUEUE:
3517 return handle_queue_stats_request(p, ofconn, osr, arg_size);
3518
3519 case OFPST_VENDOR:
3520 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3521
3522 default:
3523 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
3524 }
3525 }
3526
3527 static long long int
3528 msec_from_nsec(uint64_t sec, uint32_t nsec)
3529 {
3530 return !sec ? 0 : sec * 1000 + nsec / 1000000;
3531 }
3532
3533 static void
3534 update_time(struct ofproto *ofproto, struct rule *rule,
3535 const struct odp_flow_stats *stats)
3536 {
3537 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
3538 if (used > rule->used) {
3539 rule->used = used;
3540 if (rule->super && used > rule->super->used) {
3541 rule->super->used = used;
3542 }
3543 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, used);
3544 }
3545 }
3546
3547 static void
3548 update_stats(struct ofproto *ofproto, struct rule *rule,
3549 const struct odp_flow_stats *stats)
3550 {
3551 if (stats->n_packets) {
3552 update_time(ofproto, rule, stats);
3553 rule->packet_count += stats->n_packets;
3554 rule->byte_count += stats->n_bytes;
3555 netflow_flow_update_flags(&rule->nf_flow, stats->tcp_flags);
3556 }
3557 }
3558
3559 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3560 * in which no matching flow already exists in the flow table.
3561 *
3562 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3563 * ofp_actions, to 'p''s flow table. Returns 0 on success or an OpenFlow error
3564 * code as encoded by ofp_mkerr() on failure.
3565 *
3566 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3567 * if any. */
3568 static int
3569 add_flow(struct ofproto *p, struct ofconn *ofconn,
3570 const struct ofp_flow_mod *ofm, size_t n_actions)
3571 {
3572 struct ofpbuf *packet;
3573 struct rule *rule;
3574 uint16_t in_port;
3575 int error;
3576
3577 if (ofm->flags & htons(OFPFF_CHECK_OVERLAP)) {
3578 struct cls_rule cr;
3579
3580 cls_rule_from_match(&ofm->match, ntohs(ofm->priority),
3581 ofconn->flow_format, ofm->cookie, &cr);
3582 if (classifier_rule_overlaps(&p->cls, &cr)) {
3583 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3584 }
3585 }
3586
3587 rule = rule_create(p, NULL, (const union ofp_action *) ofm->actions,
3588 n_actions, ntohs(ofm->idle_timeout),
3589 ntohs(ofm->hard_timeout), ofm->cookie,
3590 ofm->flags & htons(OFPFF_SEND_FLOW_REM));
3591 cls_rule_from_match(&ofm->match, ntohs(ofm->priority),
3592 ofconn->flow_format, ofm->cookie, &rule->cr);
3593
3594 error = 0;
3595 if (ofm->buffer_id != htonl(UINT32_MAX)) {
3596 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
3597 &packet, &in_port);
3598 } else {
3599 packet = NULL;
3600 in_port = UINT16_MAX;
3601 }
3602
3603 rule_insert(p, rule, packet, in_port);
3604 return error;
3605 }
3606
3607 static struct rule *
3608 find_flow_strict(struct ofproto *p, struct ofconn *ofconn,
3609 const struct ofp_flow_mod *ofm)
3610 {
3611 struct cls_rule target;
3612
3613 cls_rule_from_match(&ofm->match, ntohs(ofm->priority),
3614 ofconn->flow_format, ofm->cookie, &target);
3615 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &target));
3616 }
3617
3618 static int
3619 send_buffered_packet(struct ofproto *ofproto, struct ofconn *ofconn,
3620 struct rule *rule, const struct ofp_flow_mod *ofm)
3621 {
3622 struct ofpbuf *packet;
3623 uint16_t in_port;
3624 struct flow flow;
3625 int error;
3626
3627 if (ofm->buffer_id == htonl(UINT32_MAX)) {
3628 return 0;
3629 }
3630
3631 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
3632 &packet, &in_port);
3633 if (error) {
3634 return error;
3635 }
3636
3637 flow_extract(packet, 0, in_port, &flow);
3638 rule_execute(ofproto, rule, packet, &flow);
3639
3640 return 0;
3641 }
3642 \f
3643 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3644
3645 struct modify_flows_cbdata {
3646 struct ofproto *ofproto;
3647 const struct ofp_flow_mod *ofm;
3648 size_t n_actions;
3649 struct rule *match;
3650 };
3651
3652 static int modify_flow(struct ofproto *, const struct ofp_flow_mod *,
3653 size_t n_actions, struct rule *);
3654 static void modify_flows_cb(struct cls_rule *, void *cbdata_);
3655
3656 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3657 * encoded by ofp_mkerr() on failure.
3658 *
3659 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3660 * if any. */
3661 static int
3662 modify_flows_loose(struct ofproto *p, struct ofconn *ofconn,
3663 const struct ofp_flow_mod *ofm, size_t n_actions)
3664 {
3665 struct modify_flows_cbdata cbdata;
3666 struct cls_rule target;
3667
3668 cbdata.ofproto = p;
3669 cbdata.ofm = ofm;
3670 cbdata.n_actions = n_actions;
3671 cbdata.match = NULL;
3672
3673 cls_rule_from_match(&ofm->match, 0, ofconn->flow_format,
3674 ofm->cookie, &target);
3675
3676 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3677 modify_flows_cb, &cbdata);
3678 if (cbdata.match) {
3679 /* This credits the packet to whichever flow happened to happened to
3680 * match last. That's weird. Maybe we should do a lookup for the
3681 * flow that actually matches the packet? Who knows. */
3682 send_buffered_packet(p, ofconn, cbdata.match, ofm);
3683 return 0;
3684 } else {
3685 return add_flow(p, ofconn, ofm, n_actions);
3686 }
3687 }
3688
3689 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
3690 * code as encoded by ofp_mkerr() on failure.
3691 *
3692 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3693 * if any. */
3694 static int
3695 modify_flow_strict(struct ofproto *p, struct ofconn *ofconn,
3696 struct ofp_flow_mod *ofm, size_t n_actions)
3697 {
3698 struct rule *rule = find_flow_strict(p, ofconn, ofm);
3699 if (rule && !rule_is_hidden(rule)) {
3700 modify_flow(p, ofm, n_actions, rule);
3701 return send_buffered_packet(p, ofconn, rule, ofm);
3702 } else {
3703 return add_flow(p, ofconn, ofm, n_actions);
3704 }
3705 }
3706
3707 /* Callback for modify_flows_loose(). */
3708 static void
3709 modify_flows_cb(struct cls_rule *rule_, void *cbdata_)
3710 {
3711 struct rule *rule = rule_from_cls_rule(rule_);
3712 struct modify_flows_cbdata *cbdata = cbdata_;
3713
3714 if (!rule_is_hidden(rule)) {
3715 cbdata->match = rule;
3716 modify_flow(cbdata->ofproto, cbdata->ofm, cbdata->n_actions, rule);
3717 }
3718 }
3719
3720 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
3721 * been identified as a flow in 'p''s flow table to be modified, by changing
3722 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
3723 * ofp_action[] structures). */
3724 static int
3725 modify_flow(struct ofproto *p, const struct ofp_flow_mod *ofm,
3726 size_t n_actions, struct rule *rule)
3727 {
3728 size_t actions_len = n_actions * sizeof *rule->actions;
3729
3730 rule->flow_cookie = ofm->cookie;
3731
3732 /* If the actions are the same, do nothing. */
3733 if (n_actions == rule->n_actions
3734 && (!n_actions || !memcmp(ofm->actions, rule->actions, actions_len)))
3735 {
3736 return 0;
3737 }
3738
3739 /* Replace actions. */
3740 free(rule->actions);
3741 rule->actions = n_actions ? xmemdup(ofm->actions, actions_len) : NULL;
3742 rule->n_actions = n_actions;
3743
3744 /* Make sure that the datapath gets updated properly. */
3745 if (rule->cr.wc.wildcards) {
3746 COVERAGE_INC(ofproto_mod_wc_flow);
3747 p->need_revalidate = true;
3748 } else {
3749 rule_update_actions(p, rule);
3750 }
3751
3752 return 0;
3753 }
3754 \f
3755 /* OFPFC_DELETE implementation. */
3756
3757 struct delete_flows_cbdata {
3758 struct ofproto *ofproto;
3759 ovs_be16 out_port;
3760 };
3761
3762 static void delete_flows_cb(struct cls_rule *, void *cbdata_);
3763 static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
3764
3765 /* Implements OFPFC_DELETE. */
3766 static void
3767 delete_flows_loose(struct ofproto *p, struct ofconn *ofconn,
3768 const struct ofp_flow_mod *ofm)
3769 {
3770 struct delete_flows_cbdata cbdata;
3771 struct cls_rule target;
3772
3773 cbdata.ofproto = p;
3774 cbdata.out_port = ofm->out_port;
3775
3776 cls_rule_from_match(&ofm->match, 0, ofconn->flow_format,
3777 ofm->cookie, &target);
3778
3779 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3780 delete_flows_cb, &cbdata);
3781 }
3782
3783 /* Implements OFPFC_DELETE_STRICT. */
3784 static void
3785 delete_flow_strict(struct ofproto *p, struct ofconn *ofconn,
3786 struct ofp_flow_mod *ofm)
3787 {
3788 struct rule *rule = find_flow_strict(p, ofconn, ofm);
3789 if (rule) {
3790 delete_flow(p, rule, ofm->out_port);
3791 }
3792 }
3793
3794 /* Callback for delete_flows_loose(). */
3795 static void
3796 delete_flows_cb(struct cls_rule *rule_, void *cbdata_)
3797 {
3798 struct rule *rule = rule_from_cls_rule(rule_);
3799 struct delete_flows_cbdata *cbdata = cbdata_;
3800
3801 delete_flow(cbdata->ofproto, rule, cbdata->out_port);
3802 }
3803
3804 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
3805 * been identified as a flow to delete from 'p''s flow table, by deleting the
3806 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
3807 * controller.
3808 *
3809 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
3810 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
3811 * specified 'out_port'. */
3812 static void
3813 delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
3814 {
3815 if (rule_is_hidden(rule)) {
3816 return;
3817 }
3818
3819 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
3820 return;
3821 }
3822
3823 send_flow_removed(p, rule, time_msec(), OFPRR_DELETE);
3824 rule_remove(p, rule);
3825 }
3826 \f
3827 static int
3828 handle_flow_mod(struct ofproto *p, struct ofconn *ofconn,
3829 struct ofp_flow_mod *ofm)
3830 {
3831 struct ofp_match orig_match;
3832 size_t n_actions;
3833 int error;
3834
3835 error = reject_slave_controller(ofconn, &ofm->header);
3836 if (error) {
3837 return error;
3838 }
3839 error = check_ofp_message_array(&ofm->header, OFPT_FLOW_MOD, sizeof *ofm,
3840 sizeof *ofm->actions, &n_actions);
3841 if (error) {
3842 return error;
3843 }
3844
3845 /* We do not support the emergency flow cache. It will hopefully
3846 * get dropped from OpenFlow in the near future. */
3847 if (ofm->flags & htons(OFPFF_EMERG)) {
3848 /* There isn't a good fit for an error code, so just state that the
3849 * flow table is full. */
3850 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
3851 }
3852
3853 /* Normalize ofp->match. If normalization actually changes anything, then
3854 * log the differences. */
3855 ofm->match.pad1[0] = ofm->match.pad2[0] = 0;
3856 orig_match = ofm->match;
3857 normalize_match(&ofm->match);
3858 if (memcmp(&ofm->match, &orig_match, sizeof orig_match)) {
3859 static struct vlog_rate_limit normal_rl = VLOG_RATE_LIMIT_INIT(1, 1);
3860 if (!VLOG_DROP_INFO(&normal_rl)) {
3861 char *old = ofp_match_to_literal_string(&orig_match);
3862 char *new = ofp_match_to_literal_string(&ofm->match);
3863 VLOG_INFO("%s: normalization changed ofp_match, details:",
3864 rconn_get_name(ofconn->rconn));
3865 VLOG_INFO(" pre: %s", old);
3866 VLOG_INFO("post: %s", new);
3867 free(old);
3868 free(new);
3869 }
3870 }
3871
3872 if (!ofm->match.wildcards) {
3873 ofm->priority = htons(UINT16_MAX);
3874 }
3875
3876 error = validate_actions((const union ofp_action *) ofm->actions,
3877 n_actions, p->max_ports);
3878 if (error) {
3879 return error;
3880 }
3881
3882 switch (ntohs(ofm->command)) {
3883 case OFPFC_ADD:
3884 return add_flow(p, ofconn, ofm, n_actions);
3885
3886 case OFPFC_MODIFY:
3887 return modify_flows_loose(p, ofconn, ofm, n_actions);
3888
3889 case OFPFC_MODIFY_STRICT:
3890 return modify_flow_strict(p, ofconn, ofm, n_actions);
3891
3892 case OFPFC_DELETE:
3893 delete_flows_loose(p, ofconn, ofm);
3894 return 0;
3895
3896 case OFPFC_DELETE_STRICT:
3897 delete_flow_strict(p, ofconn, ofm);
3898 return 0;
3899
3900 default:
3901 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
3902 }
3903 }
3904
3905 static int
3906 handle_tun_id_from_cookie(struct ofconn *ofconn, struct nxt_tun_id_cookie *msg)
3907 {
3908 int error;
3909
3910 error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg);
3911 if (error) {
3912 return error;
3913 }
3914
3915 ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
3916 return 0;
3917 }
3918
3919 static int
3920 handle_role_request(struct ofproto *ofproto,
3921 struct ofconn *ofconn, struct nicira_header *msg)
3922 {
3923 struct nx_role_request *nrr;
3924 struct nx_role_request *reply;
3925 struct ofpbuf *buf;
3926 uint32_t role;
3927
3928 if (ntohs(msg->header.length) != sizeof *nrr) {
3929 VLOG_WARN_RL(&rl, "received role request of length %u (expected %zu)",
3930 ntohs(msg->header.length), sizeof *nrr);
3931 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3932 }
3933 nrr = (struct nx_role_request *) msg;
3934
3935 if (ofconn->type != OFCONN_PRIMARY) {
3936 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
3937 "connection");
3938 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3939 }
3940
3941 role = ntohl(nrr->role);
3942 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
3943 && role != NX_ROLE_SLAVE) {
3944 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
3945
3946 /* There's no good error code for this. */
3947 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
3948 }
3949
3950 if (role == NX_ROLE_MASTER) {
3951 struct ofconn *other;
3952
3953 HMAP_FOR_EACH (other, hmap_node, &ofproto->controllers) {
3954 if (other->role == NX_ROLE_MASTER) {
3955 other->role = NX_ROLE_SLAVE;
3956 }
3957 }
3958 }
3959 ofconn->role = role;
3960
3961 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, msg->header.xid,
3962 &buf);
3963 reply->role = htonl(role);
3964 queue_tx(buf, ofconn, ofconn->reply_counter);
3965
3966 return 0;
3967 }
3968
3969 static int
3970 handle_vendor(struct ofproto *p, struct ofconn *ofconn, void *msg)
3971 {
3972 struct ofp_vendor_header *ovh = msg;
3973 struct nicira_header *nh;
3974
3975 if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) {
3976 VLOG_WARN_RL(&rl, "received vendor message of length %u "
3977 "(expected at least %zu)",
3978 ntohs(ovh->header.length), sizeof(struct ofp_vendor_header));
3979 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3980 }
3981 if (ovh->vendor != htonl(NX_VENDOR_ID)) {
3982 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3983 }
3984 if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) {
3985 VLOG_WARN_RL(&rl, "received Nicira vendor message of length %u "
3986 "(expected at least %zu)",
3987 ntohs(ovh->header.length), sizeof(struct nicira_header));
3988 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3989 }
3990
3991 nh = msg;
3992 switch (ntohl(nh->subtype)) {
3993 case NXT_STATUS_REQUEST:
3994 return switch_status_handle_request(p->switch_status, ofconn->rconn,
3995 msg);
3996
3997 case NXT_TUN_ID_FROM_COOKIE:
3998 return handle_tun_id_from_cookie(ofconn, msg);
3999
4000 case NXT_ROLE_REQUEST:
4001 return handle_role_request(p, ofconn, msg);
4002 }
4003
4004 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
4005 }
4006
4007 static int
4008 handle_barrier_request(struct ofconn *ofconn, struct ofp_header *oh)
4009 {
4010 struct ofp_header *ob;
4011 struct ofpbuf *buf;
4012
4013 /* Currently, everything executes synchronously, so we can just
4014 * immediately send the barrier reply. */
4015 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4016 queue_tx(buf, ofconn, ofconn->reply_counter);
4017 return 0;
4018 }
4019
4020 static void
4021 handle_openflow(struct ofconn *ofconn, struct ofproto *p,
4022 struct ofpbuf *ofp_msg)
4023 {
4024 struct ofp_header *oh = ofp_msg->data;
4025 int error;
4026
4027 COVERAGE_INC(ofproto_recv_openflow);
4028 switch (oh->type) {
4029 case OFPT_ECHO_REQUEST:
4030 error = handle_echo_request(ofconn, oh);
4031 break;
4032
4033 case OFPT_ECHO_REPLY:
4034 error = 0;
4035 break;
4036
4037 case OFPT_FEATURES_REQUEST:
4038 error = handle_features_request(p, ofconn, oh);
4039 break;
4040
4041 case OFPT_GET_CONFIG_REQUEST:
4042 error = handle_get_config_request(p, ofconn, oh);
4043 break;
4044
4045 case OFPT_SET_CONFIG:
4046 error = handle_set_config(p, ofconn, ofp_msg->data);
4047 break;
4048
4049 case OFPT_PACKET_OUT:
4050 error = handle_packet_out(p, ofconn, ofp_msg->data);
4051 break;
4052
4053 case OFPT_PORT_MOD:
4054 error = handle_port_mod(p, ofconn, oh);
4055 break;
4056
4057 case OFPT_FLOW_MOD:
4058 error = handle_flow_mod(p, ofconn, ofp_msg->data);
4059 break;
4060
4061 case OFPT_STATS_REQUEST:
4062 error = handle_stats_request(p, ofconn, oh);
4063 break;
4064
4065 case OFPT_VENDOR:
4066 error = handle_vendor(p, ofconn, ofp_msg->data);
4067 break;
4068
4069 case OFPT_BARRIER_REQUEST:
4070 error = handle_barrier_request(ofconn, oh);
4071 break;
4072
4073 default:
4074 if (VLOG_IS_WARN_ENABLED()) {
4075 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4076 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4077 free(s);
4078 }
4079 error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4080 break;
4081 }
4082
4083 if (error) {
4084 send_error_oh(ofconn, ofp_msg->data, error);
4085 }
4086 }
4087 \f
4088 static void
4089 handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet)
4090 {
4091 struct odp_msg *msg = packet->data;
4092 struct rule *rule;
4093 struct ofpbuf payload;
4094 struct flow flow;
4095
4096 payload.data = msg + 1;
4097 payload.size = msg->length - sizeof *msg;
4098 flow_extract(&payload, msg->arg, msg->port, &flow);
4099
4100 /* Check with in-band control to see if this packet should be sent
4101 * to the local port regardless of the flow table. */
4102 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
4103 union odp_action action;
4104
4105 memset(&action, 0, sizeof(action));
4106 action.output.type = ODPAT_OUTPUT;
4107 action.output.port = ODPP_LOCAL;
4108 dpif_execute(p->dpif, &action, 1, &payload);
4109 }
4110
4111 rule = lookup_valid_rule(p, &flow);
4112 if (!rule) {
4113 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4114 struct ofport *port = get_port(p, msg->port);
4115 if (port) {
4116 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4117 COVERAGE_INC(ofproto_no_packet_in);
4118 /* XXX install 'drop' flow entry */
4119 ofpbuf_delete(packet);
4120 return;
4121 }
4122 } else {
4123 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port);
4124 }
4125
4126 COVERAGE_INC(ofproto_packet_in);
4127 send_packet_in(p, packet);
4128 return;
4129 }
4130
4131 if (rule->cr.wc.wildcards) {
4132 rule = rule_create_subrule(p, rule, &flow);
4133 rule_make_actions(p, rule, packet);
4134 } else {
4135 if (!rule->may_install) {
4136 /* The rule is not installable, that is, we need to process every
4137 * packet, so process the current packet and set its actions into
4138 * 'subrule'. */
4139 rule_make_actions(p, rule, packet);
4140 } else {
4141 /* XXX revalidate rule if it needs it */
4142 }
4143 }
4144
4145 if (rule->super && rule->super->cr.priority == FAIL_OPEN_PRIORITY) {
4146 /*
4147 * Extra-special case for fail-open mode.
4148 *
4149 * We are in fail-open mode and the packet matched the fail-open rule,
4150 * but we are connected to a controller too. We should send the packet
4151 * up to the controller in the hope that it will try to set up a flow
4152 * and thereby allow us to exit fail-open.
4153 *
4154 * See the top-level comment in fail-open.c for more information.
4155 */
4156 send_packet_in(p, ofpbuf_clone_with_headroom(packet,
4157 DPIF_RECV_MSG_PADDING));
4158 }
4159
4160 ofpbuf_pull(packet, sizeof *msg);
4161 rule_execute(p, rule, packet, &flow);
4162 rule_reinstall(p, rule);
4163 }
4164
4165 static void
4166 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
4167 {
4168 struct odp_msg *msg = packet->data;
4169
4170 switch (msg->type) {
4171 case _ODPL_ACTION_NR:
4172 COVERAGE_INC(ofproto_ctlr_action);
4173 send_packet_in(p, packet);
4174 break;
4175
4176 case _ODPL_SFLOW_NR:
4177 if (p->sflow) {
4178 ofproto_sflow_received(p->sflow, msg);
4179 }
4180 ofpbuf_delete(packet);
4181 break;
4182
4183 case _ODPL_MISS_NR:
4184 handle_odp_miss_msg(p, packet);
4185 break;
4186
4187 default:
4188 VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32,
4189 msg->type);
4190 break;
4191 }
4192 }
4193 \f
4194 /* Flow expiration. */
4195
4196 struct expire_cbdata {
4197 struct ofproto *ofproto;
4198 int dp_max_idle;
4199 };
4200
4201 static int ofproto_dp_max_idle(const struct ofproto *);
4202 static void ofproto_update_used(struct ofproto *);
4203 static void rule_expire(struct cls_rule *, void *cbdata);
4204
4205 /* This function is called periodically by ofproto_run(). Its job is to
4206 * collect updates for the flows that have been installed into the datapath,
4207 * most importantly when they last were used, and then use that information to
4208 * expire flows that have not been used recently.
4209 *
4210 * Returns the number of milliseconds after which it should be called again. */
4211 static int
4212 ofproto_expire(struct ofproto *ofproto)
4213 {
4214 struct expire_cbdata cbdata;
4215
4216 /* Update 'used' for each flow in the datapath. */
4217 ofproto_update_used(ofproto);
4218
4219 /* Expire idle flows.
4220 *
4221 * A wildcarded flow is idle only when all of its subrules have expired due
4222 * to becoming idle, so iterate through the exact-match flows first. */
4223 cbdata.ofproto = ofproto;
4224 cbdata.dp_max_idle = ofproto_dp_max_idle(ofproto);
4225 classifier_for_each(&ofproto->cls, CLS_INC_EXACT, rule_expire, &cbdata);
4226 classifier_for_each(&ofproto->cls, CLS_INC_WILD, rule_expire, &cbdata);
4227
4228 /* Let the hook know that we're at a stable point: all outstanding data
4229 * in existing flows has been accounted to the account_cb. Thus, the
4230 * hook can now reasonably do operations that depend on having accurate
4231 * flow volume accounting (currently, that's just bond rebalancing). */
4232 if (ofproto->ofhooks->account_checkpoint_cb) {
4233 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4234 }
4235
4236 return MIN(cbdata.dp_max_idle, 1000);
4237 }
4238
4239 /* Update 'used' member of each flow currently installed into the datapath. */
4240 static void
4241 ofproto_update_used(struct ofproto *p)
4242 {
4243 struct odp_flow *flows;
4244 size_t n_flows;
4245 size_t i;
4246 int error;
4247
4248 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
4249 if (error) {
4250 return;
4251 }
4252
4253 for (i = 0; i < n_flows; i++) {
4254 struct odp_flow *f = &flows[i];
4255 struct cls_rule target;
4256 struct rule *rule;
4257 struct flow flow;
4258
4259 odp_flow_key_to_flow(&f->key, &flow);
4260 cls_rule_from_flow(&flow, 0, UINT16_MAX, &target);
4261
4262 rule = rule_from_cls_rule(classifier_find_rule_exactly(&p->cls,
4263 &target));
4264
4265 if (rule && rule->installed) {
4266 update_time(p, rule, &f->stats);
4267 rule_account(p, rule, f->stats.n_bytes);
4268 } else {
4269 /* There's a flow in the datapath that we know nothing about.
4270 * Delete it. */
4271 COVERAGE_INC(ofproto_unexpected_rule);
4272 dpif_flow_del(p->dpif, f);
4273 }
4274
4275 }
4276 free(flows);
4277 }
4278
4279 /* Calculates and returns the number of milliseconds of idle time after which
4280 * flows should expire from the datapath and we should fold their statistics
4281 * into their parent rules in userspace. */
4282 static int
4283 ofproto_dp_max_idle(const struct ofproto *ofproto)
4284 {
4285 /*
4286 * Idle time histogram.
4287 *
4288 * Most of the time a switch has a relatively small number of flows. When
4289 * this is the case we might as well keep statistics for all of them in
4290 * userspace and to cache them in the kernel datapath for performance as
4291 * well.
4292 *
4293 * As the number of flows increases, the memory required to maintain
4294 * statistics about them in userspace and in the kernel becomes
4295 * significant. However, with a large number of flows it is likely that
4296 * only a few of them are "heavy hitters" that consume a large amount of
4297 * bandwidth. At this point, only heavy hitters are worth caching in the
4298 * kernel and maintaining in userspaces; other flows we can discard.
4299 *
4300 * The technique used to compute the idle time is to build a histogram with
4301 * N_BUCKETS bucket whose width is BUCKET_WIDTH msecs each. Each flow that
4302 * is installed in the kernel gets dropped in the appropriate bucket.
4303 * After the histogram has been built, we compute the cutoff so that only
4304 * the most-recently-used 1% of flows (but at least 1000 flows) are kept
4305 * cached. At least the most-recently-used bucket of flows is kept, so
4306 * actually an arbitrary number of flows can be kept in any given
4307 * expiration run (though the next run will delete most of those unless
4308 * they receive additional data).
4309 *
4310 * This requires a second pass through the exact-match flows, in addition
4311 * to the pass made by ofproto_update_used(), because the former function
4312 * never looks at uninstallable flows.
4313 */
4314 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4315 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4316 int buckets[N_BUCKETS] = { 0 };
4317 int total, bucket;
4318 struct rule *rule;
4319 long long int now;
4320 int i;
4321
4322 total = classifier_count_exact(&ofproto->cls);
4323 if (total <= 1000) {
4324 return N_BUCKETS * BUCKET_WIDTH;
4325 }
4326
4327 /* Build histogram. */
4328 now = time_msec();
4329 CLASSIFIER_FOR_EACH_EXACT_RULE (rule, cr, &ofproto->cls) {
4330 long long int idle = now - rule->used;
4331 int bucket = (idle <= 0 ? 0
4332 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4333 : (unsigned int) idle / BUCKET_WIDTH);
4334 buckets[bucket]++;
4335 }
4336
4337 /* Find the first bucket whose flows should be expired. */
4338 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4339 if (buckets[bucket]) {
4340 int subtotal = 0;
4341 do {
4342 subtotal += buckets[bucket++];
4343 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4344 break;
4345 }
4346 }
4347
4348 if (VLOG_IS_DBG_ENABLED()) {
4349 struct ds s;
4350
4351 ds_init(&s);
4352 ds_put_cstr(&s, "keep");
4353 for (i = 0; i < N_BUCKETS; i++) {
4354 if (i == bucket) {
4355 ds_put_cstr(&s, ", drop");
4356 }
4357 if (buckets[i]) {
4358 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4359 }
4360 }
4361 VLOG_INFO("%s: %s (msec:count)",
4362 dpif_name(ofproto->dpif), ds_cstr(&s));
4363 ds_destroy(&s);
4364 }
4365
4366 return bucket * BUCKET_WIDTH;
4367 }
4368
4369 static void
4370 rule_active_timeout(struct ofproto *ofproto, struct rule *rule)
4371 {
4372 if (ofproto->netflow && !is_controller_rule(rule) &&
4373 netflow_active_timeout_expired(ofproto->netflow, &rule->nf_flow)) {
4374 struct ofexpired expired;
4375 struct odp_flow odp_flow;
4376
4377 /* Get updated flow stats.
4378 *
4379 * XXX We could avoid this call entirely if (1) ofproto_update_used()
4380 * updated TCP flags and (2) the dpif_flow_list_all() in
4381 * ofproto_update_used() zeroed TCP flags. */
4382 memset(&odp_flow, 0, sizeof odp_flow);
4383 if (rule->installed) {
4384 odp_flow_key_from_flow(&odp_flow.key, &rule->cr.flow);
4385 odp_flow.flags = ODPFF_ZERO_TCP_FLAGS;
4386 dpif_flow_get(ofproto->dpif, &odp_flow);
4387
4388 if (odp_flow.stats.n_packets) {
4389 update_time(ofproto, rule, &odp_flow.stats);
4390 netflow_flow_update_flags(&rule->nf_flow,
4391 odp_flow.stats.tcp_flags);
4392 }
4393 }
4394
4395 expired.flow = rule->cr.flow;
4396 expired.packet_count = rule->packet_count +
4397 odp_flow.stats.n_packets;
4398 expired.byte_count = rule->byte_count + odp_flow.stats.n_bytes;
4399 expired.used = rule->used;
4400
4401 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
4402 }
4403 }
4404
4405 /* If 'cls_rule' is an OpenFlow rule, that has expired according to OpenFlow
4406 * rules, then delete it entirely.
4407 *
4408 * If 'cls_rule' is a subrule, that has not been used recently, remove it from
4409 * the datapath and fold its statistics back into its super-rule.
4410 *
4411 * (This is a callback function for classifier_for_each().) */
4412 static void
4413 rule_expire(struct cls_rule *cls_rule, void *cbdata_)
4414 {
4415 struct expire_cbdata *cbdata = cbdata_;
4416 struct ofproto *ofproto = cbdata->ofproto;
4417 struct rule *rule = rule_from_cls_rule(cls_rule);
4418 long long int hard_expire, idle_expire, expire, now;
4419
4420 /* Calculate OpenFlow expiration times for 'rule'. */
4421 hard_expire = (rule->hard_timeout
4422 ? rule->created + rule->hard_timeout * 1000
4423 : LLONG_MAX);
4424 idle_expire = (rule->idle_timeout
4425 && (rule->super || list_is_empty(&rule->list))
4426 ? rule->used + rule->idle_timeout * 1000
4427 : LLONG_MAX);
4428 expire = MIN(hard_expire, idle_expire);
4429
4430 now = time_msec();
4431 if (now < expire) {
4432 /* 'rule' has not expired according to OpenFlow rules. */
4433 if (!rule->cr.wc.wildcards) {
4434 if (now >= rule->used + cbdata->dp_max_idle) {
4435 /* This rule is idle, so drop it to free up resources. */
4436 if (rule->super) {
4437 /* It's not part of the OpenFlow flow table, so we can
4438 * delete it entirely and fold its statistics into its
4439 * super-rule. */
4440 rule_remove(ofproto, rule);
4441 } else {
4442 /* It is part of the OpenFlow flow table, so we have to
4443 * keep the rule but we can at least uninstall it from the
4444 * datapath. */
4445 rule_uninstall(ofproto, rule);
4446 }
4447 } else {
4448 /* Send NetFlow active timeout if appropriate. */
4449 rule_active_timeout(cbdata->ofproto, rule);
4450 }
4451 }
4452 } else {
4453 /* 'rule' has expired according to OpenFlow rules. */
4454 COVERAGE_INC(ofproto_expired);
4455
4456 /* Update stats. (This is a no-op if the rule expired due to an idle
4457 * timeout, because that only happens when the rule has no subrules
4458 * left.) */
4459 if (rule->cr.wc.wildcards) {
4460 struct rule *subrule, *next;
4461 LIST_FOR_EACH_SAFE (subrule, next, list, &rule->list) {
4462 rule_remove(cbdata->ofproto, subrule);
4463 }
4464 } else {
4465 rule_uninstall(cbdata->ofproto, rule);
4466 }
4467
4468 /* Get rid of the rule. */
4469 if (!rule_is_hidden(rule)) {
4470 send_flow_removed(cbdata->ofproto, rule, now,
4471 (now >= hard_expire
4472 ? OFPRR_HARD_TIMEOUT : OFPRR_IDLE_TIMEOUT));
4473 }
4474 rule_remove(cbdata->ofproto, rule);
4475 }
4476 }
4477 \f
4478 static void
4479 revalidate_cb(struct cls_rule *sub_, void *cbdata_)
4480 {
4481 struct rule *sub = rule_from_cls_rule(sub_);
4482 struct revalidate_cbdata *cbdata = cbdata_;
4483
4484 if (cbdata->revalidate_all
4485 || (cbdata->revalidate_subrules && sub->super)
4486 || (tag_set_intersects(&cbdata->revalidate_set, sub->tags))) {
4487 revalidate_rule(cbdata->ofproto, sub);
4488 }
4489 }
4490
4491 static bool
4492 revalidate_rule(struct ofproto *p, struct rule *rule)
4493 {
4494 const struct flow *flow = &rule->cr.flow;
4495
4496 COVERAGE_INC(ofproto_revalidate_rule);
4497 if (rule->super) {
4498 struct rule *super;
4499 super = rule_from_cls_rule(classifier_lookup(&p->cls, flow,
4500 CLS_INC_WILD));
4501 if (!super) {
4502 rule_remove(p, rule);
4503 return false;
4504 } else if (super != rule->super) {
4505 COVERAGE_INC(ofproto_revalidate_moved);
4506 list_remove(&rule->list);
4507 list_push_back(&super->list, &rule->list);
4508 rule->super = super;
4509 rule->hard_timeout = super->hard_timeout;
4510 rule->idle_timeout = super->idle_timeout;
4511 rule->created = super->created;
4512 rule->used = 0;
4513 }
4514 }
4515
4516 rule_update_actions(p, rule);
4517 return true;
4518 }
4519
4520 static struct ofpbuf *
4521 compose_flow_removed(struct ofconn *ofconn, const struct rule *rule,
4522 long long int now, uint8_t reason)
4523 {
4524 struct ofp_flow_removed *ofr;
4525 struct ofpbuf *buf;
4526 long long int tdiff = now - rule->created;
4527 uint32_t sec = tdiff / 1000;
4528 uint32_t msec = tdiff - (sec * 1000);
4529
4530 ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf);
4531 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, ofconn->flow_format,
4532 &ofr->match);
4533 ofr->cookie = rule->flow_cookie;
4534 ofr->priority = htons(rule->cr.priority);
4535 ofr->reason = reason;
4536 ofr->duration_sec = htonl(sec);
4537 ofr->duration_nsec = htonl(msec * 1000000);
4538 ofr->idle_timeout = htons(rule->idle_timeout);
4539 ofr->packet_count = htonll(rule->packet_count);
4540 ofr->byte_count = htonll(rule->byte_count);
4541
4542 return buf;
4543 }
4544
4545 static void
4546 send_flow_removed(struct ofproto *p, struct rule *rule,
4547 long long int now, uint8_t reason)
4548 {
4549 struct ofconn *ofconn;
4550
4551 if (!rule->send_flow_removed) {
4552 return;
4553 }
4554
4555 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4556 struct ofpbuf *msg;
4557
4558 if (!rconn_is_connected(ofconn->rconn)
4559 || !ofconn_receives_async_msgs(ofconn)) {
4560 continue;
4561 }
4562
4563 msg = compose_flow_removed(ofconn, rule, now, reason);
4564
4565 /* Account flow expirations under ofconn->reply_counter, the counter
4566 * for replies to OpenFlow requests. That works because preventing
4567 * OpenFlow requests from being processed also prevents new flows from
4568 * being added (and expiring). (It also prevents processing OpenFlow
4569 * requests that would not add new flows, so it is imperfect.) */
4570 queue_tx(msg, ofconn, ofconn->reply_counter);
4571 }
4572 }
4573
4574 /* pinsched callback for sending 'packet' on 'ofconn'. */
4575 static void
4576 do_send_packet_in(struct ofpbuf *packet, void *ofconn_)
4577 {
4578 struct ofconn *ofconn = ofconn_;
4579
4580 rconn_send_with_limit(ofconn->rconn, packet,
4581 ofconn->packet_in_counter, 100);
4582 }
4583
4584 /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and
4585 * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s
4586 * packet scheduler for sending.
4587 *
4588 * 'max_len' specifies the maximum number of bytes of the packet to send on
4589 * 'ofconn' (INT_MAX specifies no limit).
4590 *
4591 * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise,
4592 * ownership is transferred to this function. */
4593 static void
4594 schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len,
4595 bool clone)
4596 {
4597 struct ofproto *ofproto = ofconn->ofproto;
4598 struct ofp_packet_in *opi = packet->data;
4599 uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port));
4600 int send_len, trim_size;
4601 uint32_t buffer_id;
4602
4603 /* Get buffer. */
4604 if (opi->reason == OFPR_ACTION) {
4605 buffer_id = UINT32_MAX;
4606 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4607 buffer_id = pktbuf_get_null();
4608 } else if (!ofconn->pktbuf) {
4609 buffer_id = UINT32_MAX;
4610 } else {
4611 struct ofpbuf payload;
4612 payload.data = opi->data;
4613 payload.size = packet->size - offsetof(struct ofp_packet_in, data);
4614 buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port);
4615 }
4616
4617 /* Figure out how much of the packet to send. */
4618 send_len = ntohs(opi->total_len);
4619 if (buffer_id != UINT32_MAX) {
4620 send_len = MIN(send_len, ofconn->miss_send_len);
4621 }
4622 send_len = MIN(send_len, max_len);
4623
4624 /* Adjust packet length and clone if necessary. */
4625 trim_size = offsetof(struct ofp_packet_in, data) + send_len;
4626 if (clone) {
4627 packet = ofpbuf_clone_data(packet->data, trim_size);
4628 opi = packet->data;
4629 } else {
4630 packet->size = trim_size;
4631 }
4632
4633 /* Update packet headers. */
4634 opi->buffer_id = htonl(buffer_id);
4635 update_openflow_length(packet);
4636
4637 /* Hand over to packet scheduler. It might immediately call into
4638 * do_send_packet_in() or it might buffer it for a while (until a later
4639 * call to pinsched_run()). */
4640 pinsched_send(ofconn->schedulers[opi->reason], in_port,
4641 packet, do_send_packet_in, ofconn);
4642 }
4643
4644 /* Replace struct odp_msg header in 'packet' by equivalent struct
4645 * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as
4646 * returned by dpif_recv()).
4647 *
4648 * The conversion is not complete: the caller still needs to trim any unneeded
4649 * payload off the end of the buffer, set the length in the OpenFlow header,
4650 * and set buffer_id. Those require us to know the controller settings and so
4651 * must be done on a per-controller basis.
4652 *
4653 * Returns the maximum number of bytes of the packet that should be sent to
4654 * the controller (INT_MAX if no limit). */
4655 static int
4656 do_convert_to_packet_in(struct ofpbuf *packet)
4657 {
4658 struct odp_msg *msg = packet->data;
4659 struct ofp_packet_in *opi;
4660 uint8_t reason;
4661 uint16_t total_len;
4662 uint16_t in_port;
4663 int max_len;
4664
4665 /* Extract relevant header fields */
4666 if (msg->type == _ODPL_ACTION_NR) {
4667 reason = OFPR_ACTION;
4668 max_len = msg->arg;
4669 } else {
4670 reason = OFPR_NO_MATCH;
4671 max_len = INT_MAX;
4672 }
4673 total_len = msg->length - sizeof *msg;
4674 in_port = odp_port_to_ofp_port(msg->port);
4675
4676 /* Repurpose packet buffer by overwriting header. */
4677 ofpbuf_pull(packet, sizeof(struct odp_msg));
4678 opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data));
4679 opi->header.version = OFP_VERSION;
4680 opi->header.type = OFPT_PACKET_IN;
4681 opi->total_len = htons(total_len);
4682 opi->in_port = htons(in_port);
4683 opi->reason = reason;
4684
4685 return max_len;
4686 }
4687
4688 /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or
4689 * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller
4690 * as necessary according to their individual configurations.
4691 *
4692 * 'packet' must have sufficient headroom to convert it into a struct
4693 * ofp_packet_in (e.g. as returned by dpif_recv()).
4694 *
4695 * Takes ownership of 'packet'. */
4696 static void
4697 send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet)
4698 {
4699 struct ofconn *ofconn, *prev;
4700 int max_len;
4701
4702 max_len = do_convert_to_packet_in(packet);
4703
4704 prev = NULL;
4705 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
4706 if (ofconn_receives_async_msgs(ofconn)) {
4707 if (prev) {
4708 schedule_packet_in(prev, packet, max_len, true);
4709 }
4710 prev = ofconn;
4711 }
4712 }
4713 if (prev) {
4714 schedule_packet_in(prev, packet, max_len, false);
4715 } else {
4716 ofpbuf_delete(packet);
4717 }
4718 }
4719
4720 static uint64_t
4721 pick_datapath_id(const struct ofproto *ofproto)
4722 {
4723 const struct ofport *port;
4724
4725 port = get_port(ofproto, ODPP_LOCAL);
4726 if (port) {
4727 uint8_t ea[ETH_ADDR_LEN];
4728 int error;
4729
4730 error = netdev_get_etheraddr(port->netdev, ea);
4731 if (!error) {
4732 return eth_addr_to_uint64(ea);
4733 }
4734 VLOG_WARN("could not get MAC address for %s (%s)",
4735 netdev_get_name(port->netdev), strerror(error));
4736 }
4737 return ofproto->fallback_dpid;
4738 }
4739
4740 static uint64_t
4741 pick_fallback_dpid(void)
4742 {
4743 uint8_t ea[ETH_ADDR_LEN];
4744 eth_addr_nicira_random(ea);
4745 return eth_addr_to_uint64(ea);
4746 }
4747 \f
4748 static bool
4749 default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
4750 struct odp_actions *actions, tag_type *tags,
4751 uint16_t *nf_output_iface, void *ofproto_)
4752 {
4753 struct ofproto *ofproto = ofproto_;
4754 int out_port;
4755
4756 /* Drop frames for reserved multicast addresses. */
4757 if (eth_addr_is_reserved(flow->dl_dst)) {
4758 return true;
4759 }
4760
4761 /* Learn source MAC (but don't try to learn from revalidation). */
4762 if (packet != NULL) {
4763 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
4764 0, flow->in_port,
4765 GRAT_ARP_LOCK_NONE);
4766 if (rev_tag) {
4767 /* The log messages here could actually be useful in debugging,
4768 * so keep the rate limit relatively high. */
4769 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
4770 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
4771 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
4772 ofproto_revalidate(ofproto, rev_tag);
4773 }
4774 }
4775
4776 /* Determine output port. */
4777 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
4778 NULL);
4779 if (out_port < 0) {
4780 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
4781 nf_output_iface, actions);
4782 } else if (out_port != flow->in_port) {
4783 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
4784 *nf_output_iface = out_port;
4785 } else {
4786 /* Drop. */
4787 }
4788
4789 return true;
4790 }
4791
4792 static const struct ofhooks default_ofhooks = {
4793 default_normal_ofhook_cb,
4794 NULL,
4795 NULL
4796 };