]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
util: New ovs_retval_to_string() function.
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010, 2011 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "byte-order.h"
28 #include "classifier.h"
29 #include "coverage.h"
30 #include "discovery.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hash.h"
35 #include "hmap.h"
36 #include "in-band.h"
37 #include "mac-learning.h"
38 #include "multipath.h"
39 #include "netdev.h"
40 #include "netflow.h"
41 #include "netlink.h"
42 #include "nx-match.h"
43 #include "odp-util.h"
44 #include "ofp-print.h"
45 #include "ofp-util.h"
46 #include "ofproto-sflow.h"
47 #include "ofpbuf.h"
48 #include "openflow/nicira-ext.h"
49 #include "openflow/openflow.h"
50 #include "openvswitch/datapath-protocol.h"
51 #include "packets.h"
52 #include "pinsched.h"
53 #include "pktbuf.h"
54 #include "poll-loop.h"
55 #include "rconn.h"
56 #include "shash.h"
57 #include "status.h"
58 #include "stream-ssl.h"
59 #include "svec.h"
60 #include "tag.h"
61 #include "timeval.h"
62 #include "unixctl.h"
63 #include "vconn.h"
64 #include "vlog.h"
65
66 VLOG_DEFINE_THIS_MODULE(ofproto);
67
68 COVERAGE_DEFINE(facet_changed_rule);
69 COVERAGE_DEFINE(facet_revalidate);
70 COVERAGE_DEFINE(odp_overflow);
71 COVERAGE_DEFINE(ofproto_agg_request);
72 COVERAGE_DEFINE(ofproto_costly_flags);
73 COVERAGE_DEFINE(ofproto_ctlr_action);
74 COVERAGE_DEFINE(ofproto_del_rule);
75 COVERAGE_DEFINE(ofproto_error);
76 COVERAGE_DEFINE(ofproto_expiration);
77 COVERAGE_DEFINE(ofproto_expired);
78 COVERAGE_DEFINE(ofproto_flows_req);
79 COVERAGE_DEFINE(ofproto_flush);
80 COVERAGE_DEFINE(ofproto_invalidated);
81 COVERAGE_DEFINE(ofproto_no_packet_in);
82 COVERAGE_DEFINE(ofproto_ofconn_stuck);
83 COVERAGE_DEFINE(ofproto_ofp2odp);
84 COVERAGE_DEFINE(ofproto_packet_in);
85 COVERAGE_DEFINE(ofproto_packet_out);
86 COVERAGE_DEFINE(ofproto_queue_req);
87 COVERAGE_DEFINE(ofproto_recv_openflow);
88 COVERAGE_DEFINE(ofproto_reinit_ports);
89 COVERAGE_DEFINE(ofproto_unexpected_rule);
90 COVERAGE_DEFINE(ofproto_uninstallable);
91 COVERAGE_DEFINE(ofproto_update_port);
92
93 #include "sflow_api.h"
94
95 struct rule;
96
97 struct ofport {
98 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
99 struct netdev *netdev;
100 struct ofp_phy_port opp; /* In host byte order. */
101 uint16_t odp_port;
102 };
103
104 static void ofport_free(struct ofport *);
105 static void hton_ofp_phy_port(struct ofp_phy_port *);
106
107 struct action_xlate_ctx {
108 /* action_xlate_ctx_init() initializes these members. */
109
110 /* The ofproto. */
111 struct ofproto *ofproto;
112
113 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
114 * this flow when actions change header fields. */
115 struct flow flow;
116
117 /* The packet corresponding to 'flow', or a null pointer if we are
118 * revalidating without a packet to refer to. */
119 const struct ofpbuf *packet;
120
121 /* If nonnull, called just before executing a resubmit action.
122 *
123 * This is normally null so the client has to set it manually after
124 * calling action_xlate_ctx_init(). */
125 void (*resubmit_hook)(struct action_xlate_ctx *, const struct rule *);
126
127 /* xlate_actions() initializes and uses these members. The client might want
128 * to look at them after it returns. */
129
130 struct ofpbuf *odp_actions; /* Datapath actions. */
131 tag_type tags; /* Tags associated with OFPP_NORMAL actions. */
132 bool may_set_up_flow; /* True ordinarily; false if the actions must
133 * be reassessed for every packet. */
134 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
135
136 /* xlate_actions() initializes and uses these members, but the client has no
137 * reason to look at them. */
138
139 int recurse; /* Recursion level, via xlate_table_action. */
140 int last_pop_priority; /* Offset in 'odp_actions' just past most
141 * recent ODP_ACTION_ATTR_SET_PRIORITY. */
142 };
143
144 static void action_xlate_ctx_init(struct action_xlate_ctx *,
145 struct ofproto *, const struct flow *,
146 const struct ofpbuf *);
147 static struct ofpbuf *xlate_actions(struct action_xlate_ctx *,
148 const union ofp_action *in, size_t n_in);
149
150 /* An OpenFlow flow. */
151 struct rule {
152 long long int used; /* Time last used; time created if not used. */
153 long long int created; /* Creation time. */
154
155 /* These statistics:
156 *
157 * - Do include packets and bytes from facets that have been deleted or
158 * whose own statistics have been folded into the rule.
159 *
160 * - Do include packets and bytes sent "by hand" that were accounted to
161 * the rule without any facet being involved (this is a rare corner
162 * case in rule_execute()).
163 *
164 * - Do not include packet or bytes that can be obtained from any facet's
165 * packet_count or byte_count member or that can be obtained from the
166 * datapath by, e.g., dpif_flow_get() for any facet.
167 */
168 uint64_t packet_count; /* Number of packets received. */
169 uint64_t byte_count; /* Number of bytes received. */
170
171 ovs_be64 flow_cookie; /* Controller-issued identifier. */
172
173 struct cls_rule cr; /* In owning ofproto's classifier. */
174 uint16_t idle_timeout; /* In seconds from time of last use. */
175 uint16_t hard_timeout; /* In seconds from time of creation. */
176 bool send_flow_removed; /* Send a flow removed message? */
177 int n_actions; /* Number of elements in actions[]. */
178 union ofp_action *actions; /* OpenFlow actions. */
179 struct list facets; /* List of "struct facet"s. */
180 };
181
182 static struct rule *rule_from_cls_rule(const struct cls_rule *);
183 static bool rule_is_hidden(const struct rule *);
184
185 static struct rule *rule_create(const struct cls_rule *,
186 const union ofp_action *, size_t n_actions,
187 uint16_t idle_timeout, uint16_t hard_timeout,
188 ovs_be64 flow_cookie, bool send_flow_removed);
189 static void rule_destroy(struct ofproto *, struct rule *);
190 static void rule_free(struct rule *);
191
192 static struct rule *rule_lookup(struct ofproto *, const struct flow *);
193 static void rule_insert(struct ofproto *, struct rule *);
194 static void rule_remove(struct ofproto *, struct rule *);
195
196 static void rule_send_removed(struct ofproto *, struct rule *, uint8_t reason);
197
198 /* An exact-match instantiation of an OpenFlow flow. */
199 struct facet {
200 long long int used; /* Time last used; time created if not used. */
201
202 /* These statistics:
203 *
204 * - Do include packets and bytes sent "by hand", e.g. with
205 * dpif_execute().
206 *
207 * - Do include packets and bytes that were obtained from the datapath
208 * when a flow was deleted (e.g. dpif_flow_del()) or when its
209 * statistics were reset (e.g. dpif_flow_put() with
210 * DPIF_FP_ZERO_STATS).
211 *
212 * - Do not include any packets or bytes that can currently be obtained
213 * from the datapath by, e.g., dpif_flow_get().
214 */
215 uint64_t packet_count; /* Number of packets received. */
216 uint64_t byte_count; /* Number of bytes received. */
217
218 /* Number of bytes passed to account_cb. This may include bytes that can
219 * currently obtained from the datapath (thus, it can be greater than
220 * byte_count). */
221 uint64_t accounted_bytes;
222
223 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
224 struct list list_node; /* In owning rule's 'facets' list. */
225 struct rule *rule; /* Owning rule. */
226 struct flow flow; /* Exact-match flow. */
227 bool installed; /* Installed in datapath? */
228 bool may_install; /* True ordinarily; false if actions must
229 * be reassessed for every packet. */
230 size_t actions_len; /* Number of bytes in actions[]. */
231 struct nlattr *actions; /* Datapath actions. */
232 tag_type tags; /* Tags (set only by hooks). */
233 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
234 };
235
236 static struct facet *facet_create(struct ofproto *, struct rule *,
237 const struct flow *,
238 const struct ofpbuf *packet);
239 static void facet_remove(struct ofproto *, struct facet *);
240 static void facet_free(struct facet *);
241
242 static struct facet *facet_lookup_valid(struct ofproto *, const struct flow *);
243 static bool facet_revalidate(struct ofproto *, struct facet *);
244
245 static void facet_install(struct ofproto *, struct facet *, bool zero_stats);
246 static void facet_uninstall(struct ofproto *, struct facet *);
247 static void facet_flush_stats(struct ofproto *, struct facet *);
248
249 static void facet_make_actions(struct ofproto *, struct facet *,
250 const struct ofpbuf *packet);
251 static void facet_update_stats(struct ofproto *, struct facet *,
252 const struct dpif_flow_stats *);
253
254 /* ofproto supports two kinds of OpenFlow connections:
255 *
256 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
257 * maintains persistent connections to these controllers and by default
258 * sends them asynchronous messages such as packet-ins.
259 *
260 * - "Service" connections, e.g. from ovs-ofctl. When these connections
261 * drop, it is the other side's responsibility to reconnect them if
262 * necessary. ofproto does not send them asynchronous messages by default.
263 *
264 * Currently, active (tcp, ssl, unix) connections are always "primary"
265 * connections and passive (ptcp, pssl, punix) connections are always "service"
266 * connections. There is no inherent reason for this, but it reflects the
267 * common case.
268 */
269 enum ofconn_type {
270 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
271 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
272 };
273
274 /* A listener for incoming OpenFlow "service" connections. */
275 struct ofservice {
276 struct hmap_node node; /* In struct ofproto's "services" hmap. */
277 struct pvconn *pvconn; /* OpenFlow connection listener. */
278
279 /* These are not used by ofservice directly. They are settings for
280 * accepted "struct ofconn"s from the pvconn. */
281 int probe_interval; /* Max idle time before probing, in seconds. */
282 int rate_limit; /* Max packet-in rate in packets per second. */
283 int burst_limit; /* Limit on accumulating packet credits. */
284 };
285
286 static struct ofservice *ofservice_lookup(struct ofproto *,
287 const char *target);
288 static int ofservice_create(struct ofproto *,
289 const struct ofproto_controller *);
290 static void ofservice_reconfigure(struct ofservice *,
291 const struct ofproto_controller *);
292 static void ofservice_destroy(struct ofproto *, struct ofservice *);
293
294 /* An OpenFlow connection. */
295 struct ofconn {
296 struct ofproto *ofproto; /* The ofproto that owns this connection. */
297 struct list node; /* In struct ofproto's "all_conns" list. */
298 struct rconn *rconn; /* OpenFlow connection. */
299 enum ofconn_type type; /* Type. */
300 enum nx_flow_format flow_format; /* Currently selected flow format. */
301
302 /* OFPT_PACKET_IN related data. */
303 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
304 #define N_SCHEDULERS 2
305 struct pinsched *schedulers[N_SCHEDULERS];
306 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
307 int miss_send_len; /* Bytes to send of buffered packets. */
308
309 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
310 * requests, and the maximum number before we stop reading OpenFlow
311 * requests. */
312 #define OFCONN_REPLY_MAX 100
313 struct rconn_packet_counter *reply_counter;
314
315 /* type == OFCONN_PRIMARY only. */
316 enum nx_role role; /* Role. */
317 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
318 struct discovery *discovery; /* Controller discovery object, if enabled. */
319 struct status_category *ss; /* Switch status category. */
320 enum ofproto_band band; /* In-band or out-of-band? */
321 };
322
323
324 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
325 enum ofconn_type);
326 static void ofconn_destroy(struct ofconn *);
327 static void ofconn_run(struct ofconn *);
328 static void ofconn_wait(struct ofconn *);
329 static bool ofconn_receives_async_msgs(const struct ofconn *);
330 static char *ofconn_make_name(const struct ofproto *, const char *target);
331 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
332
333 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
334 struct rconn_packet_counter *counter);
335
336 static void send_packet_in(struct ofproto *, struct dpif_upcall *,
337 const struct flow *, bool clone);
338 static void do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn);
339
340 struct ofproto {
341 /* Settings. */
342 uint64_t datapath_id; /* Datapath ID. */
343 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
344 char *mfr_desc; /* Manufacturer. */
345 char *hw_desc; /* Hardware. */
346 char *sw_desc; /* Software version. */
347 char *serial_desc; /* Serial number. */
348 char *dp_desc; /* Datapath description. */
349
350 /* Datapath. */
351 struct dpif *dpif;
352 struct netdev_monitor *netdev_monitor;
353 struct hmap ports; /* Contains "struct ofport"s. */
354 struct shash port_by_name;
355 uint32_t max_ports;
356
357 /* Configuration. */
358 struct switch_status *switch_status;
359 struct fail_open *fail_open;
360 struct netflow *netflow;
361 struct ofproto_sflow *sflow;
362
363 /* In-band control. */
364 struct in_band *in_band;
365 long long int next_in_band_update;
366 struct sockaddr_in *extra_in_band_remotes;
367 size_t n_extra_remotes;
368 int in_band_queue;
369
370 /* Flow table. */
371 struct classifier cls;
372 long long int next_expiration;
373
374 /* Facets. */
375 struct hmap facets;
376 bool need_revalidate;
377 struct tag_set revalidate_set;
378
379 /* OpenFlow connections. */
380 struct hmap controllers; /* Controller "struct ofconn"s. */
381 struct list all_conns; /* Contains "struct ofconn"s. */
382 enum ofproto_fail_mode fail_mode;
383
384 /* OpenFlow listeners. */
385 struct hmap services; /* Contains "struct ofservice"s. */
386 struct pvconn **snoops;
387 size_t n_snoops;
388
389 /* Hooks for ovs-vswitchd. */
390 const struct ofhooks *ofhooks;
391 void *aux;
392
393 /* Used by default ofhooks. */
394 struct mac_learning *ml;
395 };
396
397 /* Map from dpif name to struct ofproto, for use by unixctl commands. */
398 static struct shash all_ofprotos = SHASH_INITIALIZER(&all_ofprotos);
399
400 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
401
402 static const struct ofhooks default_ofhooks;
403
404 static uint64_t pick_datapath_id(const struct ofproto *);
405 static uint64_t pick_fallback_dpid(void);
406
407 static int ofproto_expire(struct ofproto *);
408
409 static void handle_upcall(struct ofproto *, struct dpif_upcall *);
410
411 static void handle_openflow(struct ofconn *, struct ofpbuf *);
412
413 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
414 static void update_port(struct ofproto *, const char *devname);
415 static int init_ports(struct ofproto *);
416 static void reinit_ports(struct ofproto *);
417
418 static void ofproto_unixctl_init(void);
419
420 int
421 ofproto_create(const char *datapath, const char *datapath_type,
422 const struct ofhooks *ofhooks, void *aux,
423 struct ofproto **ofprotop)
424 {
425 struct ofproto *p;
426 struct dpif *dpif;
427 int error;
428
429 *ofprotop = NULL;
430
431 ofproto_unixctl_init();
432
433 /* Connect to datapath and start listening for messages. */
434 error = dpif_open(datapath, datapath_type, &dpif);
435 if (error) {
436 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
437 return error;
438 }
439 error = dpif_recv_set_mask(dpif,
440 ((1u << DPIF_UC_MISS) |
441 (1u << DPIF_UC_ACTION) |
442 (1u << DPIF_UC_SAMPLE)));
443 if (error) {
444 VLOG_ERR("failed to listen on datapath %s: %s",
445 datapath, strerror(error));
446 dpif_close(dpif);
447 return error;
448 }
449 dpif_flow_flush(dpif);
450 dpif_recv_purge(dpif);
451
452 /* Initialize settings. */
453 p = xzalloc(sizeof *p);
454 p->fallback_dpid = pick_fallback_dpid();
455 p->datapath_id = p->fallback_dpid;
456 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
457 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
458 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
459 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
460 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
461
462 /* Initialize datapath. */
463 p->dpif = dpif;
464 p->netdev_monitor = netdev_monitor_create();
465 hmap_init(&p->ports);
466 shash_init(&p->port_by_name);
467 p->max_ports = dpif_get_max_ports(dpif);
468
469 /* Initialize submodules. */
470 p->switch_status = switch_status_create(p);
471 p->fail_open = NULL;
472 p->netflow = NULL;
473 p->sflow = NULL;
474
475 /* Initialize in-band control. */
476 p->in_band = NULL;
477 p->in_band_queue = -1;
478
479 /* Initialize flow table. */
480 classifier_init(&p->cls);
481 p->next_expiration = time_msec() + 1000;
482
483 /* Initialize facet table. */
484 hmap_init(&p->facets);
485 p->need_revalidate = false;
486 tag_set_init(&p->revalidate_set);
487
488 /* Initialize OpenFlow connections. */
489 list_init(&p->all_conns);
490 hmap_init(&p->controllers);
491 hmap_init(&p->services);
492 p->snoops = NULL;
493 p->n_snoops = 0;
494
495 /* Initialize hooks. */
496 if (ofhooks) {
497 p->ofhooks = ofhooks;
498 p->aux = aux;
499 p->ml = NULL;
500 } else {
501 p->ofhooks = &default_ofhooks;
502 p->aux = p;
503 p->ml = mac_learning_create();
504 }
505
506 /* Pick final datapath ID. */
507 p->datapath_id = pick_datapath_id(p);
508 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
509
510 shash_add_once(&all_ofprotos, dpif_name(p->dpif), p);
511
512 *ofprotop = p;
513 return 0;
514 }
515
516 void
517 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
518 {
519 uint64_t old_dpid = p->datapath_id;
520 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
521 if (p->datapath_id != old_dpid) {
522 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
523
524 /* Force all active connections to reconnect, since there is no way to
525 * notify a controller that the datapath ID has changed. */
526 ofproto_reconnect_controllers(p);
527 }
528 }
529
530 static bool
531 is_discovery_controller(const struct ofproto_controller *c)
532 {
533 return !strcmp(c->target, "discover");
534 }
535
536 static bool
537 is_in_band_controller(const struct ofproto_controller *c)
538 {
539 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
540 }
541
542 /* Creates a new controller in 'ofproto'. Some of the settings are initially
543 * drawn from 'c', but update_controller() needs to be called later to finish
544 * the new ofconn's configuration. */
545 static void
546 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
547 {
548 struct discovery *discovery;
549 struct ofconn *ofconn;
550
551 if (is_discovery_controller(c)) {
552 int error = discovery_create(c->accept_re, c->update_resolv_conf,
553 ofproto->dpif, ofproto->switch_status,
554 &discovery);
555 if (error) {
556 return;
557 }
558 } else {
559 discovery = NULL;
560 }
561
562 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
563 ofconn->pktbuf = pktbuf_create();
564 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
565 if (discovery) {
566 ofconn->discovery = discovery;
567 } else {
568 char *name = ofconn_make_name(ofproto, c->target);
569 rconn_connect(ofconn->rconn, c->target, name);
570 free(name);
571 }
572 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
573 hash_string(c->target, 0));
574 }
575
576 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
577 * target or turn discovery on or off (these are done by creating new ofconns
578 * and deleting old ones), but it can update the rest of an ofconn's
579 * settings. */
580 static void
581 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
582 {
583 int probe_interval;
584
585 ofconn->band = (is_in_band_controller(c)
586 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
587
588 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
589
590 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
591 rconn_set_probe_interval(ofconn->rconn, probe_interval);
592
593 if (ofconn->discovery) {
594 discovery_set_update_resolv_conf(ofconn->discovery,
595 c->update_resolv_conf);
596 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
597 }
598
599 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
600 }
601
602 static const char *
603 ofconn_get_target(const struct ofconn *ofconn)
604 {
605 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
606 }
607
608 static struct ofconn *
609 find_controller_by_target(struct ofproto *ofproto, const char *target)
610 {
611 struct ofconn *ofconn;
612
613 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
614 hash_string(target, 0), &ofproto->controllers) {
615 if (!strcmp(ofconn_get_target(ofconn), target)) {
616 return ofconn;
617 }
618 }
619 return NULL;
620 }
621
622 static void
623 update_in_band_remotes(struct ofproto *ofproto)
624 {
625 const struct ofconn *ofconn;
626 struct sockaddr_in *addrs;
627 size_t max_addrs, n_addrs;
628 bool discovery;
629 size_t i;
630
631 /* Allocate enough memory for as many remotes as we could possibly have. */
632 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
633 addrs = xmalloc(max_addrs * sizeof *addrs);
634 n_addrs = 0;
635
636 /* Add all the remotes. */
637 discovery = false;
638 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
639 struct sockaddr_in *sin = &addrs[n_addrs];
640
641 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
642 continue;
643 }
644
645 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
646 if (sin->sin_addr.s_addr) {
647 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
648 n_addrs++;
649 }
650 if (ofconn->discovery) {
651 discovery = true;
652 }
653 }
654 for (i = 0; i < ofproto->n_extra_remotes; i++) {
655 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
656 }
657
658 /* Create or update or destroy in-band.
659 *
660 * Ordinarily we only enable in-band if there's at least one remote
661 * address, but discovery needs the in-band rules for DHCP to be installed
662 * even before we know any remote addresses. */
663 if (n_addrs || discovery) {
664 if (!ofproto->in_band) {
665 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
666 &ofproto->in_band);
667 }
668 if (ofproto->in_band) {
669 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
670 }
671 in_band_set_queue(ofproto->in_band, ofproto->in_band_queue);
672 ofproto->next_in_band_update = time_msec() + 1000;
673 } else {
674 in_band_destroy(ofproto->in_band);
675 ofproto->in_band = NULL;
676 }
677
678 /* Clean up. */
679 free(addrs);
680 }
681
682 static void
683 update_fail_open(struct ofproto *p)
684 {
685 struct ofconn *ofconn;
686
687 if (!hmap_is_empty(&p->controllers)
688 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
689 struct rconn **rconns;
690 size_t n;
691
692 if (!p->fail_open) {
693 p->fail_open = fail_open_create(p, p->switch_status);
694 }
695
696 n = 0;
697 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
698 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
699 rconns[n++] = ofconn->rconn;
700 }
701
702 fail_open_set_controllers(p->fail_open, rconns, n);
703 /* p->fail_open takes ownership of 'rconns'. */
704 } else {
705 fail_open_destroy(p->fail_open);
706 p->fail_open = NULL;
707 }
708 }
709
710 void
711 ofproto_set_controllers(struct ofproto *p,
712 const struct ofproto_controller *controllers,
713 size_t n_controllers)
714 {
715 struct shash new_controllers;
716 struct ofconn *ofconn, *next_ofconn;
717 struct ofservice *ofservice, *next_ofservice;
718 bool ss_exists;
719 size_t i;
720
721 /* Create newly configured controllers and services.
722 * Create a name to ofproto_controller mapping in 'new_controllers'. */
723 shash_init(&new_controllers);
724 for (i = 0; i < n_controllers; i++) {
725 const struct ofproto_controller *c = &controllers[i];
726
727 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
728 if (!find_controller_by_target(p, c->target)) {
729 add_controller(p, c);
730 }
731 } else if (!pvconn_verify_name(c->target)) {
732 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
733 continue;
734 }
735 } else {
736 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
737 dpif_name(p->dpif), c->target);
738 continue;
739 }
740
741 shash_add_once(&new_controllers, c->target, &controllers[i]);
742 }
743
744 /* Delete controllers that are no longer configured.
745 * Update configuration of all now-existing controllers. */
746 ss_exists = false;
747 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
748 struct ofproto_controller *c;
749
750 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
751 if (!c) {
752 ofconn_destroy(ofconn);
753 } else {
754 update_controller(ofconn, c);
755 if (ofconn->ss) {
756 ss_exists = true;
757 }
758 }
759 }
760
761 /* Delete services that are no longer configured.
762 * Update configuration of all now-existing services. */
763 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
764 struct ofproto_controller *c;
765
766 c = shash_find_data(&new_controllers,
767 pvconn_get_name(ofservice->pvconn));
768 if (!c) {
769 ofservice_destroy(p, ofservice);
770 } else {
771 ofservice_reconfigure(ofservice, c);
772 }
773 }
774
775 shash_destroy(&new_controllers);
776
777 update_in_band_remotes(p);
778 update_fail_open(p);
779
780 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
781 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
782 struct ofconn, hmap_node);
783 ofconn->ss = switch_status_register(p->switch_status, "remote",
784 rconn_status_cb, ofconn->rconn);
785 }
786 }
787
788 void
789 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
790 {
791 p->fail_mode = fail_mode;
792 update_fail_open(p);
793 }
794
795 /* Drops the connections between 'ofproto' and all of its controllers, forcing
796 * them to reconnect. */
797 void
798 ofproto_reconnect_controllers(struct ofproto *ofproto)
799 {
800 struct ofconn *ofconn;
801
802 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
803 rconn_reconnect(ofconn->rconn);
804 }
805 }
806
807 static bool
808 any_extras_changed(const struct ofproto *ofproto,
809 const struct sockaddr_in *extras, size_t n)
810 {
811 size_t i;
812
813 if (n != ofproto->n_extra_remotes) {
814 return true;
815 }
816
817 for (i = 0; i < n; i++) {
818 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
819 const struct sockaddr_in *new = &extras[i];
820
821 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
822 old->sin_port != new->sin_port) {
823 return true;
824 }
825 }
826
827 return false;
828 }
829
830 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
831 * in-band control should guarantee access, in the same way that in-band
832 * control guarantees access to OpenFlow controllers. */
833 void
834 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
835 const struct sockaddr_in *extras, size_t n)
836 {
837 if (!any_extras_changed(ofproto, extras, n)) {
838 return;
839 }
840
841 free(ofproto->extra_in_band_remotes);
842 ofproto->n_extra_remotes = n;
843 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
844
845 update_in_band_remotes(ofproto);
846 }
847
848 /* Sets the OpenFlow queue used by flows set up by in-band control on
849 * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control
850 * flows will use the default queue. */
851 void
852 ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id)
853 {
854 if (queue_id != ofproto->in_band_queue) {
855 ofproto->in_band_queue = queue_id;
856 update_in_band_remotes(ofproto);
857 }
858 }
859
860 void
861 ofproto_set_desc(struct ofproto *p,
862 const char *mfr_desc, const char *hw_desc,
863 const char *sw_desc, const char *serial_desc,
864 const char *dp_desc)
865 {
866 struct ofp_desc_stats *ods;
867
868 if (mfr_desc) {
869 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
870 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
871 sizeof ods->mfr_desc);
872 }
873 free(p->mfr_desc);
874 p->mfr_desc = xstrdup(mfr_desc);
875 }
876 if (hw_desc) {
877 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
878 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
879 sizeof ods->hw_desc);
880 }
881 free(p->hw_desc);
882 p->hw_desc = xstrdup(hw_desc);
883 }
884 if (sw_desc) {
885 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
886 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
887 sizeof ods->sw_desc);
888 }
889 free(p->sw_desc);
890 p->sw_desc = xstrdup(sw_desc);
891 }
892 if (serial_desc) {
893 if (strlen(serial_desc) >= sizeof ods->serial_num) {
894 VLOG_WARN("truncating serial_desc, must be less than %zu "
895 "characters",
896 sizeof ods->serial_num);
897 }
898 free(p->serial_desc);
899 p->serial_desc = xstrdup(serial_desc);
900 }
901 if (dp_desc) {
902 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
903 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
904 sizeof ods->dp_desc);
905 }
906 free(p->dp_desc);
907 p->dp_desc = xstrdup(dp_desc);
908 }
909 }
910
911 static int
912 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
913 const struct svec *svec)
914 {
915 struct pvconn **pvconns = *pvconnsp;
916 size_t n_pvconns = *n_pvconnsp;
917 int retval = 0;
918 size_t i;
919
920 for (i = 0; i < n_pvconns; i++) {
921 pvconn_close(pvconns[i]);
922 }
923 free(pvconns);
924
925 pvconns = xmalloc(svec->n * sizeof *pvconns);
926 n_pvconns = 0;
927 for (i = 0; i < svec->n; i++) {
928 const char *name = svec->names[i];
929 struct pvconn *pvconn;
930 int error;
931
932 error = pvconn_open(name, &pvconn);
933 if (!error) {
934 pvconns[n_pvconns++] = pvconn;
935 } else {
936 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
937 if (!retval) {
938 retval = error;
939 }
940 }
941 }
942
943 *pvconnsp = pvconns;
944 *n_pvconnsp = n_pvconns;
945
946 return retval;
947 }
948
949 int
950 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
951 {
952 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
953 }
954
955 int
956 ofproto_set_netflow(struct ofproto *ofproto,
957 const struct netflow_options *nf_options)
958 {
959 if (nf_options && nf_options->collectors.n) {
960 if (!ofproto->netflow) {
961 ofproto->netflow = netflow_create();
962 }
963 return netflow_set_options(ofproto->netflow, nf_options);
964 } else {
965 netflow_destroy(ofproto->netflow);
966 ofproto->netflow = NULL;
967 return 0;
968 }
969 }
970
971 void
972 ofproto_set_sflow(struct ofproto *ofproto,
973 const struct ofproto_sflow_options *oso)
974 {
975 struct ofproto_sflow *os = ofproto->sflow;
976 if (oso) {
977 if (!os) {
978 struct ofport *ofport;
979
980 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
981 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
982 ofproto_sflow_add_port(os, ofport->odp_port,
983 netdev_get_name(ofport->netdev));
984 }
985 }
986 ofproto_sflow_set_options(os, oso);
987 } else {
988 ofproto_sflow_destroy(os);
989 ofproto->sflow = NULL;
990 }
991 }
992
993 uint64_t
994 ofproto_get_datapath_id(const struct ofproto *ofproto)
995 {
996 return ofproto->datapath_id;
997 }
998
999 bool
1000 ofproto_has_primary_controller(const struct ofproto *ofproto)
1001 {
1002 return !hmap_is_empty(&ofproto->controllers);
1003 }
1004
1005 enum ofproto_fail_mode
1006 ofproto_get_fail_mode(const struct ofproto *p)
1007 {
1008 return p->fail_mode;
1009 }
1010
1011 void
1012 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
1013 {
1014 size_t i;
1015
1016 for (i = 0; i < ofproto->n_snoops; i++) {
1017 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
1018 }
1019 }
1020
1021 void
1022 ofproto_destroy(struct ofproto *p)
1023 {
1024 struct ofservice *ofservice, *next_ofservice;
1025 struct ofconn *ofconn, *next_ofconn;
1026 struct ofport *ofport, *next_ofport;
1027 size_t i;
1028
1029 if (!p) {
1030 return;
1031 }
1032
1033 shash_find_and_delete(&all_ofprotos, dpif_name(p->dpif));
1034
1035 /* Destroy fail-open and in-band early, since they touch the classifier. */
1036 fail_open_destroy(p->fail_open);
1037 p->fail_open = NULL;
1038
1039 in_band_destroy(p->in_band);
1040 p->in_band = NULL;
1041 free(p->extra_in_band_remotes);
1042
1043 ofproto_flush_flows(p);
1044 classifier_destroy(&p->cls);
1045 hmap_destroy(&p->facets);
1046
1047 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1048 ofconn_destroy(ofconn);
1049 }
1050 hmap_destroy(&p->controllers);
1051
1052 dpif_close(p->dpif);
1053 netdev_monitor_destroy(p->netdev_monitor);
1054 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
1055 hmap_remove(&p->ports, &ofport->hmap_node);
1056 ofport_free(ofport);
1057 }
1058 shash_destroy(&p->port_by_name);
1059
1060 switch_status_destroy(p->switch_status);
1061 netflow_destroy(p->netflow);
1062 ofproto_sflow_destroy(p->sflow);
1063
1064 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
1065 ofservice_destroy(p, ofservice);
1066 }
1067 hmap_destroy(&p->services);
1068
1069 for (i = 0; i < p->n_snoops; i++) {
1070 pvconn_close(p->snoops[i]);
1071 }
1072 free(p->snoops);
1073
1074 mac_learning_destroy(p->ml);
1075
1076 free(p->mfr_desc);
1077 free(p->hw_desc);
1078 free(p->sw_desc);
1079 free(p->serial_desc);
1080 free(p->dp_desc);
1081
1082 hmap_destroy(&p->ports);
1083
1084 free(p);
1085 }
1086
1087 int
1088 ofproto_run(struct ofproto *p)
1089 {
1090 int error = ofproto_run1(p);
1091 if (!error) {
1092 error = ofproto_run2(p, false);
1093 }
1094 return error;
1095 }
1096
1097 static void
1098 process_port_change(struct ofproto *ofproto, int error, char *devname)
1099 {
1100 if (error == ENOBUFS) {
1101 reinit_ports(ofproto);
1102 } else if (!error) {
1103 update_port(ofproto, devname);
1104 free(devname);
1105 }
1106 }
1107
1108 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1109 * means that 'ofconn' is more interesting for monitoring than a lower return
1110 * value. */
1111 static int
1112 snoop_preference(const struct ofconn *ofconn)
1113 {
1114 switch (ofconn->role) {
1115 case NX_ROLE_MASTER:
1116 return 3;
1117 case NX_ROLE_OTHER:
1118 return 2;
1119 case NX_ROLE_SLAVE:
1120 return 1;
1121 default:
1122 /* Shouldn't happen. */
1123 return 0;
1124 }
1125 }
1126
1127 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1128 * Connects this vconn to a controller. */
1129 static void
1130 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1131 {
1132 struct ofconn *ofconn, *best;
1133
1134 /* Pick a controller for monitoring. */
1135 best = NULL;
1136 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1137 if (ofconn->type == OFCONN_PRIMARY
1138 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1139 best = ofconn;
1140 }
1141 }
1142
1143 if (best) {
1144 rconn_add_monitor(best->rconn, vconn);
1145 } else {
1146 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1147 vconn_close(vconn);
1148 }
1149 }
1150
1151 int
1152 ofproto_run1(struct ofproto *p)
1153 {
1154 struct ofconn *ofconn, *next_ofconn;
1155 struct ofservice *ofservice;
1156 char *devname;
1157 int error;
1158 int i;
1159
1160 if (shash_is_empty(&p->port_by_name)) {
1161 init_ports(p);
1162 }
1163
1164 for (i = 0; i < 50; i++) {
1165 struct dpif_upcall packet;
1166
1167 error = dpif_recv(p->dpif, &packet);
1168 if (error) {
1169 if (error == ENODEV) {
1170 /* Someone destroyed the datapath behind our back. The caller
1171 * better destroy us and give up, because we're just going to
1172 * spin from here on out. */
1173 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1174 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1175 dpif_name(p->dpif));
1176 return ENODEV;
1177 }
1178 break;
1179 }
1180
1181 handle_upcall(p, &packet);
1182 }
1183
1184 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1185 process_port_change(p, error, devname);
1186 }
1187 while ((error = netdev_monitor_poll(p->netdev_monitor,
1188 &devname)) != EAGAIN) {
1189 process_port_change(p, error, devname);
1190 }
1191
1192 if (p->in_band) {
1193 if (time_msec() >= p->next_in_band_update) {
1194 update_in_band_remotes(p);
1195 }
1196 in_band_run(p->in_band);
1197 }
1198
1199 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1200 ofconn_run(ofconn);
1201 }
1202
1203 /* Fail-open maintenance. Do this after processing the ofconns since
1204 * fail-open checks the status of the controller rconn. */
1205 if (p->fail_open) {
1206 fail_open_run(p->fail_open);
1207 }
1208
1209 HMAP_FOR_EACH (ofservice, node, &p->services) {
1210 struct vconn *vconn;
1211 int retval;
1212
1213 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1214 if (!retval) {
1215 struct rconn *rconn;
1216 char *name;
1217
1218 rconn = rconn_create(ofservice->probe_interval, 0);
1219 name = ofconn_make_name(p, vconn_get_name(vconn));
1220 rconn_connect_unreliably(rconn, vconn, name);
1221 free(name);
1222
1223 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1224 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1225 ofservice->burst_limit);
1226 } else if (retval != EAGAIN) {
1227 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1228 }
1229 }
1230
1231 for (i = 0; i < p->n_snoops; i++) {
1232 struct vconn *vconn;
1233 int retval;
1234
1235 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1236 if (!retval) {
1237 add_snooper(p, vconn);
1238 } else if (retval != EAGAIN) {
1239 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1240 }
1241 }
1242
1243 if (time_msec() >= p->next_expiration) {
1244 int delay = ofproto_expire(p);
1245 p->next_expiration = time_msec() + delay;
1246 COVERAGE_INC(ofproto_expiration);
1247 }
1248
1249 if (p->netflow) {
1250 netflow_run(p->netflow);
1251 }
1252 if (p->sflow) {
1253 ofproto_sflow_run(p->sflow);
1254 }
1255
1256 return 0;
1257 }
1258
1259 int
1260 ofproto_run2(struct ofproto *p, bool revalidate_all)
1261 {
1262 /* Figure out what we need to revalidate now, if anything. */
1263 struct tag_set revalidate_set = p->revalidate_set;
1264 if (p->need_revalidate) {
1265 revalidate_all = true;
1266 }
1267
1268 /* Clear the revalidation flags. */
1269 tag_set_init(&p->revalidate_set);
1270 p->need_revalidate = false;
1271
1272 /* Now revalidate if there's anything to do. */
1273 if (revalidate_all || !tag_set_is_empty(&revalidate_set)) {
1274 struct facet *facet, *next;
1275
1276 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &p->facets) {
1277 if (revalidate_all
1278 || tag_set_intersects(&revalidate_set, facet->tags)) {
1279 facet_revalidate(p, facet);
1280 }
1281 }
1282 }
1283
1284 return 0;
1285 }
1286
1287 void
1288 ofproto_wait(struct ofproto *p)
1289 {
1290 struct ofservice *ofservice;
1291 struct ofconn *ofconn;
1292 size_t i;
1293
1294 dpif_recv_wait(p->dpif);
1295 dpif_port_poll_wait(p->dpif);
1296 netdev_monitor_poll_wait(p->netdev_monitor);
1297 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1298 ofconn_wait(ofconn);
1299 }
1300 if (p->in_band) {
1301 poll_timer_wait_until(p->next_in_band_update);
1302 in_band_wait(p->in_band);
1303 }
1304 if (p->fail_open) {
1305 fail_open_wait(p->fail_open);
1306 }
1307 if (p->sflow) {
1308 ofproto_sflow_wait(p->sflow);
1309 }
1310 if (!tag_set_is_empty(&p->revalidate_set)) {
1311 poll_immediate_wake();
1312 }
1313 if (p->need_revalidate) {
1314 /* Shouldn't happen, but if it does just go around again. */
1315 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1316 poll_immediate_wake();
1317 } else if (p->next_expiration != LLONG_MAX) {
1318 poll_timer_wait_until(p->next_expiration);
1319 }
1320 HMAP_FOR_EACH (ofservice, node, &p->services) {
1321 pvconn_wait(ofservice->pvconn);
1322 }
1323 for (i = 0; i < p->n_snoops; i++) {
1324 pvconn_wait(p->snoops[i]);
1325 }
1326 }
1327
1328 void
1329 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1330 {
1331 tag_set_add(&ofproto->revalidate_set, tag);
1332 }
1333
1334 struct tag_set *
1335 ofproto_get_revalidate_set(struct ofproto *ofproto)
1336 {
1337 return &ofproto->revalidate_set;
1338 }
1339
1340 bool
1341 ofproto_is_alive(const struct ofproto *p)
1342 {
1343 return !hmap_is_empty(&p->controllers);
1344 }
1345
1346 void
1347 ofproto_get_ofproto_controller_info(const struct ofproto * ofproto,
1348 struct shash *info)
1349 {
1350 const struct ofconn *ofconn;
1351
1352 shash_init(info);
1353
1354 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
1355 const struct rconn *rconn = ofconn->rconn;
1356 const int last_error = rconn_get_last_error(rconn);
1357 struct ofproto_controller_info *cinfo = xmalloc(sizeof *cinfo);
1358
1359 shash_add(info, rconn_get_target(rconn), cinfo);
1360
1361 cinfo->is_connected = rconn_is_connected(rconn);
1362 cinfo->role = ofconn->role;
1363
1364 cinfo->pairs.n = 0;
1365
1366 if (last_error) {
1367 cinfo->pairs.keys[cinfo->pairs.n] = "last_error";
1368 cinfo->pairs.values[cinfo->pairs.n++] =
1369 xstrdup(ovs_retval_to_string(last_error));
1370 }
1371
1372 cinfo->pairs.keys[cinfo->pairs.n] = "state";
1373 cinfo->pairs.values[cinfo->pairs.n++] =
1374 xstrdup(rconn_get_state(rconn));
1375
1376 cinfo->pairs.keys[cinfo->pairs.n] = "time_in_state";
1377 cinfo->pairs.values[cinfo->pairs.n++] =
1378 xasprintf("%u", rconn_get_state_elapsed(rconn));
1379 }
1380 }
1381
1382 void
1383 ofproto_free_ofproto_controller_info(struct shash *info)
1384 {
1385 struct shash_node *node;
1386
1387 SHASH_FOR_EACH (node, info) {
1388 struct ofproto_controller_info *cinfo = node->data;
1389 while (cinfo->pairs.n) {
1390 free((char *) cinfo->pairs.values[--cinfo->pairs.n]);
1391 }
1392 free(cinfo);
1393 }
1394 shash_destroy(info);
1395 }
1396
1397 /* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1398 *
1399 * This is almost the same as calling dpif_port_del() directly on the
1400 * datapath, but it also makes 'ofproto' close its open netdev for the port
1401 * (if any). This makes it possible to create a new netdev of a different
1402 * type under the same name, which otherwise the netdev library would refuse
1403 * to do because of the conflict. (The netdev would eventually get closed on
1404 * the next trip through ofproto_run(), but this interface is more direct.)
1405 *
1406 * Returns 0 if successful, otherwise a positive errno. */
1407 int
1408 ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1409 {
1410 struct ofport *ofport = get_port(ofproto, odp_port);
1411 const char *name = ofport ? ofport->opp.name : "<unknown>";
1412 int error;
1413
1414 error = dpif_port_del(ofproto->dpif, odp_port);
1415 if (error) {
1416 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1417 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1418 } else if (ofport) {
1419 /* 'name' is ofport->opp.name and update_port() is going to destroy
1420 * 'ofport'. Just in case update_port() refers to 'name' after it
1421 * destroys 'ofport', make a copy of it around the update_port()
1422 * call. */
1423 char *devname = xstrdup(name);
1424 update_port(ofproto, devname);
1425 free(devname);
1426 }
1427 return error;
1428 }
1429
1430 /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1431 * true if 'odp_port' exists and should be included, false otherwise. */
1432 bool
1433 ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1434 {
1435 struct ofport *ofport = get_port(ofproto, odp_port);
1436 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1437 }
1438
1439 int
1440 ofproto_send_packet(struct ofproto *p, const struct flow *flow,
1441 const union ofp_action *actions, size_t n_actions,
1442 const struct ofpbuf *packet)
1443 {
1444 struct action_xlate_ctx ctx;
1445 struct ofpbuf *odp_actions;
1446
1447 action_xlate_ctx_init(&ctx, p, flow, packet);
1448 odp_actions = xlate_actions(&ctx, actions, n_actions);
1449
1450 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1451 * error code? */
1452 dpif_execute(p->dpif, odp_actions->data, odp_actions->size, packet);
1453
1454 ofpbuf_delete(odp_actions);
1455
1456 return 0;
1457 }
1458
1459 /* Adds a flow to the OpenFlow flow table in 'p' that matches 'cls_rule' and
1460 * performs the 'n_actions' actions in 'actions'. The new flow will not
1461 * timeout.
1462 *
1463 * If cls_rule->priority is in the range of priorities supported by OpenFlow
1464 * (0...65535, inclusive) then the flow will be visible to OpenFlow
1465 * controllers; otherwise, it will be hidden.
1466 *
1467 * The caller retains ownership of 'cls_rule' and 'actions'. */
1468 void
1469 ofproto_add_flow(struct ofproto *p, const struct cls_rule *cls_rule,
1470 const union ofp_action *actions, size_t n_actions)
1471 {
1472 struct rule *rule;
1473 rule = rule_create(cls_rule, actions, n_actions, 0, 0, 0, false);
1474 rule_insert(p, rule);
1475 }
1476
1477 void
1478 ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target)
1479 {
1480 struct rule *rule;
1481
1482 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1483 target));
1484 if (rule) {
1485 rule_remove(ofproto, rule);
1486 }
1487 }
1488
1489 void
1490 ofproto_flush_flows(struct ofproto *ofproto)
1491 {
1492 struct facet *facet, *next_facet;
1493 struct rule *rule, *next_rule;
1494 struct cls_cursor cursor;
1495
1496 COVERAGE_INC(ofproto_flush);
1497
1498 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
1499 /* Mark the facet as not installed so that facet_remove() doesn't
1500 * bother trying to uninstall it. There is no point in uninstalling it
1501 * individually since we are about to blow away all the facets with
1502 * dpif_flow_flush(). */
1503 facet->installed = false;
1504 facet_remove(ofproto, facet);
1505 }
1506
1507 cls_cursor_init(&cursor, &ofproto->cls, NULL);
1508 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
1509 rule_remove(ofproto, rule);
1510 }
1511
1512 dpif_flow_flush(ofproto->dpif);
1513 if (ofproto->in_band) {
1514 in_band_flushed(ofproto->in_band);
1515 }
1516 if (ofproto->fail_open) {
1517 fail_open_flushed(ofproto->fail_open);
1518 }
1519 }
1520 \f
1521 static void
1522 reinit_ports(struct ofproto *p)
1523 {
1524 struct dpif_port_dump dump;
1525 struct shash_node *node;
1526 struct shash devnames;
1527 struct ofport *ofport;
1528 struct dpif_port dpif_port;
1529
1530 COVERAGE_INC(ofproto_reinit_ports);
1531
1532 shash_init(&devnames);
1533 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1534 shash_add_once (&devnames, ofport->opp.name, NULL);
1535 }
1536 DPIF_PORT_FOR_EACH (&dpif_port, &dump, p->dpif) {
1537 shash_add_once (&devnames, dpif_port.name, NULL);
1538 }
1539
1540 SHASH_FOR_EACH (node, &devnames) {
1541 update_port(p, node->name);
1542 }
1543 shash_destroy(&devnames);
1544 }
1545
1546 static struct ofport *
1547 make_ofport(const struct dpif_port *dpif_port)
1548 {
1549 struct netdev_options netdev_options;
1550 enum netdev_flags flags;
1551 struct ofport *ofport;
1552 struct netdev *netdev;
1553 int error;
1554
1555 memset(&netdev_options, 0, sizeof netdev_options);
1556 netdev_options.name = dpif_port->name;
1557 netdev_options.type = dpif_port->type;
1558 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1559
1560 error = netdev_open(&netdev_options, &netdev);
1561 if (error) {
1562 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1563 "cannot be opened (%s)",
1564 dpif_port->name, dpif_port->port_no,
1565 dpif_port->name, strerror(error));
1566 return NULL;
1567 }
1568
1569 ofport = xmalloc(sizeof *ofport);
1570 ofport->netdev = netdev;
1571 ofport->odp_port = dpif_port->port_no;
1572 ofport->opp.port_no = odp_port_to_ofp_port(dpif_port->port_no);
1573 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1574 ovs_strlcpy(ofport->opp.name, dpif_port->name, sizeof ofport->opp.name);
1575
1576 netdev_get_flags(netdev, &flags);
1577 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1578
1579 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1580
1581 netdev_get_features(netdev,
1582 &ofport->opp.curr, &ofport->opp.advertised,
1583 &ofport->opp.supported, &ofport->opp.peer);
1584 return ofport;
1585 }
1586
1587 static bool
1588 ofport_conflicts(const struct ofproto *p, const struct dpif_port *dpif_port)
1589 {
1590 if (get_port(p, dpif_port->port_no)) {
1591 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1592 dpif_port->port_no);
1593 return true;
1594 } else if (shash_find(&p->port_by_name, dpif_port->name)) {
1595 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1596 dpif_port->name);
1597 return true;
1598 } else {
1599 return false;
1600 }
1601 }
1602
1603 static int
1604 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1605 {
1606 const struct ofp_phy_port *a = &a_->opp;
1607 const struct ofp_phy_port *b = &b_->opp;
1608
1609 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1610 return (a->port_no == b->port_no
1611 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1612 && !strcmp(a->name, b->name)
1613 && a->state == b->state
1614 && a->config == b->config
1615 && a->curr == b->curr
1616 && a->advertised == b->advertised
1617 && a->supported == b->supported
1618 && a->peer == b->peer);
1619 }
1620
1621 static void
1622 send_port_status(struct ofproto *p, const struct ofport *ofport,
1623 uint8_t reason)
1624 {
1625 /* XXX Should limit the number of queued port status change messages. */
1626 struct ofconn *ofconn;
1627 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1628 struct ofp_port_status *ops;
1629 struct ofpbuf *b;
1630
1631 /* Primary controllers, even slaves, should always get port status
1632 updates. Otherwise obey ofconn_receives_async_msgs(). */
1633 if (ofconn->type != OFCONN_PRIMARY
1634 && !ofconn_receives_async_msgs(ofconn)) {
1635 continue;
1636 }
1637
1638 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1639 ops->reason = reason;
1640 ops->desc = ofport->opp;
1641 hton_ofp_phy_port(&ops->desc);
1642 queue_tx(b, ofconn, NULL);
1643 }
1644 }
1645
1646 static void
1647 ofport_install(struct ofproto *p, struct ofport *ofport)
1648 {
1649 const char *netdev_name = ofport->opp.name;
1650
1651 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1652 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1653 shash_add(&p->port_by_name, netdev_name, ofport);
1654 if (p->sflow) {
1655 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1656 }
1657 }
1658
1659 static void
1660 ofport_remove(struct ofproto *p, struct ofport *ofport)
1661 {
1662 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1663 hmap_remove(&p->ports, &ofport->hmap_node);
1664 shash_delete(&p->port_by_name,
1665 shash_find(&p->port_by_name, ofport->opp.name));
1666 if (p->sflow) {
1667 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1668 }
1669 }
1670
1671 static void
1672 ofport_free(struct ofport *ofport)
1673 {
1674 if (ofport) {
1675 netdev_close(ofport->netdev);
1676 free(ofport);
1677 }
1678 }
1679
1680 static struct ofport *
1681 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1682 {
1683 struct ofport *port;
1684
1685 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1686 hash_int(odp_port, 0), &ofproto->ports) {
1687 if (port->odp_port == odp_port) {
1688 return port;
1689 }
1690 }
1691 return NULL;
1692 }
1693
1694 static void
1695 update_port(struct ofproto *p, const char *devname)
1696 {
1697 struct dpif_port dpif_port;
1698 struct ofport *old_ofport;
1699 struct ofport *new_ofport;
1700 int error;
1701
1702 COVERAGE_INC(ofproto_update_port);
1703
1704 /* Query the datapath for port information. */
1705 error = dpif_port_query_by_name(p->dpif, devname, &dpif_port);
1706
1707 /* Find the old ofport. */
1708 old_ofport = shash_find_data(&p->port_by_name, devname);
1709 if (!error) {
1710 if (!old_ofport) {
1711 /* There's no port named 'devname' but there might be a port with
1712 * the same port number. This could happen if a port is deleted
1713 * and then a new one added in its place very quickly, or if a port
1714 * is renamed. In the former case we want to send an OFPPR_DELETE
1715 * and an OFPPR_ADD, and in the latter case we want to send a
1716 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1717 * the old port's ifindex against the new port, or perhaps less
1718 * reliably but more portably by comparing the old port's MAC
1719 * against the new port's MAC. However, this code isn't that smart
1720 * and always sends an OFPPR_MODIFY (XXX). */
1721 old_ofport = get_port(p, dpif_port.port_no);
1722 }
1723 } else if (error != ENOENT && error != ENODEV) {
1724 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1725 "%s", strerror(error));
1726 goto exit;
1727 }
1728
1729 /* Create a new ofport. */
1730 new_ofport = !error ? make_ofport(&dpif_port) : NULL;
1731
1732 /* Eliminate a few pathological cases. */
1733 if (!old_ofport && !new_ofport) {
1734 goto exit;
1735 } else if (old_ofport && new_ofport) {
1736 /* Most of the 'config' bits are OpenFlow soft state, but
1737 * OFPPC_PORT_DOWN is maintained by the kernel. So transfer the
1738 * OpenFlow bits from old_ofport. (make_ofport() only sets
1739 * OFPPC_PORT_DOWN and leaves the other bits 0.) */
1740 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1741
1742 if (ofport_equal(old_ofport, new_ofport)) {
1743 /* False alarm--no change. */
1744 ofport_free(new_ofport);
1745 goto exit;
1746 }
1747 }
1748
1749 /* Now deal with the normal cases. */
1750 if (old_ofport) {
1751 ofport_remove(p, old_ofport);
1752 }
1753 if (new_ofport) {
1754 ofport_install(p, new_ofport);
1755 }
1756 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1757 (!old_ofport ? OFPPR_ADD
1758 : !new_ofport ? OFPPR_DELETE
1759 : OFPPR_MODIFY));
1760 ofport_free(old_ofport);
1761
1762 exit:
1763 dpif_port_destroy(&dpif_port);
1764 }
1765
1766 static int
1767 init_ports(struct ofproto *p)
1768 {
1769 struct dpif_port_dump dump;
1770 struct dpif_port dpif_port;
1771
1772 DPIF_PORT_FOR_EACH (&dpif_port, &dump, p->dpif) {
1773 if (!ofport_conflicts(p, &dpif_port)) {
1774 struct ofport *ofport = make_ofport(&dpif_port);
1775 if (ofport) {
1776 ofport_install(p, ofport);
1777 }
1778 }
1779 }
1780
1781 return 0;
1782 }
1783 \f
1784 static struct ofconn *
1785 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1786 {
1787 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1788 ofconn->ofproto = p;
1789 list_push_back(&p->all_conns, &ofconn->node);
1790 ofconn->rconn = rconn;
1791 ofconn->type = type;
1792 ofconn->flow_format = NXFF_OPENFLOW10;
1793 ofconn->role = NX_ROLE_OTHER;
1794 ofconn->packet_in_counter = rconn_packet_counter_create ();
1795 ofconn->pktbuf = NULL;
1796 ofconn->miss_send_len = 0;
1797 ofconn->reply_counter = rconn_packet_counter_create ();
1798 return ofconn;
1799 }
1800
1801 static void
1802 ofconn_destroy(struct ofconn *ofconn)
1803 {
1804 if (ofconn->type == OFCONN_PRIMARY) {
1805 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1806 }
1807 discovery_destroy(ofconn->discovery);
1808
1809 list_remove(&ofconn->node);
1810 switch_status_unregister(ofconn->ss);
1811 rconn_destroy(ofconn->rconn);
1812 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1813 rconn_packet_counter_destroy(ofconn->reply_counter);
1814 pktbuf_destroy(ofconn->pktbuf);
1815 free(ofconn);
1816 }
1817
1818 static void
1819 ofconn_run(struct ofconn *ofconn)
1820 {
1821 struct ofproto *p = ofconn->ofproto;
1822 int iteration;
1823 size_t i;
1824
1825 if (ofconn->discovery) {
1826 char *controller_name;
1827 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1828 discovery_question_connectivity(ofconn->discovery);
1829 }
1830 if (discovery_run(ofconn->discovery, &controller_name)) {
1831 if (controller_name) {
1832 char *ofconn_name = ofconn_make_name(p, controller_name);
1833 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1834 free(ofconn_name);
1835 } else {
1836 rconn_disconnect(ofconn->rconn);
1837 }
1838 }
1839 }
1840
1841 for (i = 0; i < N_SCHEDULERS; i++) {
1842 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1843 }
1844
1845 rconn_run(ofconn->rconn);
1846
1847 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1848 /* Limit the number of iterations to prevent other tasks from
1849 * starving. */
1850 for (iteration = 0; iteration < 50; iteration++) {
1851 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1852 if (!of_msg) {
1853 break;
1854 }
1855 if (p->fail_open) {
1856 fail_open_maybe_recover(p->fail_open);
1857 }
1858 handle_openflow(ofconn, of_msg);
1859 ofpbuf_delete(of_msg);
1860 }
1861 }
1862
1863 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1864 ofconn_destroy(ofconn);
1865 }
1866 }
1867
1868 static void
1869 ofconn_wait(struct ofconn *ofconn)
1870 {
1871 int i;
1872
1873 if (ofconn->discovery) {
1874 discovery_wait(ofconn->discovery);
1875 }
1876 for (i = 0; i < N_SCHEDULERS; i++) {
1877 pinsched_wait(ofconn->schedulers[i]);
1878 }
1879 rconn_run_wait(ofconn->rconn);
1880 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1881 rconn_recv_wait(ofconn->rconn);
1882 } else {
1883 COVERAGE_INC(ofproto_ofconn_stuck);
1884 }
1885 }
1886
1887 /* Returns true if 'ofconn' should receive asynchronous messages. */
1888 static bool
1889 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1890 {
1891 if (ofconn->type == OFCONN_PRIMARY) {
1892 /* Primary controllers always get asynchronous messages unless they
1893 * have configured themselves as "slaves". */
1894 return ofconn->role != NX_ROLE_SLAVE;
1895 } else {
1896 /* Service connections don't get asynchronous messages unless they have
1897 * explicitly asked for them by setting a nonzero miss send length. */
1898 return ofconn->miss_send_len > 0;
1899 }
1900 }
1901
1902 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1903 * and 'target', suitable for use in log messages for identifying the
1904 * connection.
1905 *
1906 * The name is dynamically allocated. The caller should free it (with free())
1907 * when it is no longer needed. */
1908 static char *
1909 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1910 {
1911 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1912 }
1913
1914 static void
1915 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1916 {
1917 int i;
1918
1919 for (i = 0; i < N_SCHEDULERS; i++) {
1920 struct pinsched **s = &ofconn->schedulers[i];
1921
1922 if (rate > 0) {
1923 if (!*s) {
1924 *s = pinsched_create(rate, burst,
1925 ofconn->ofproto->switch_status);
1926 } else {
1927 pinsched_set_limits(*s, rate, burst);
1928 }
1929 } else {
1930 pinsched_destroy(*s);
1931 *s = NULL;
1932 }
1933 }
1934 }
1935 \f
1936 static void
1937 ofservice_reconfigure(struct ofservice *ofservice,
1938 const struct ofproto_controller *c)
1939 {
1940 ofservice->probe_interval = c->probe_interval;
1941 ofservice->rate_limit = c->rate_limit;
1942 ofservice->burst_limit = c->burst_limit;
1943 }
1944
1945 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1946 * positive errno value. */
1947 static int
1948 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1949 {
1950 struct ofservice *ofservice;
1951 struct pvconn *pvconn;
1952 int error;
1953
1954 error = pvconn_open(c->target, &pvconn);
1955 if (error) {
1956 return error;
1957 }
1958
1959 ofservice = xzalloc(sizeof *ofservice);
1960 hmap_insert(&ofproto->services, &ofservice->node,
1961 hash_string(c->target, 0));
1962 ofservice->pvconn = pvconn;
1963
1964 ofservice_reconfigure(ofservice, c);
1965
1966 return 0;
1967 }
1968
1969 static void
1970 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1971 {
1972 hmap_remove(&ofproto->services, &ofservice->node);
1973 pvconn_close(ofservice->pvconn);
1974 free(ofservice);
1975 }
1976
1977 /* Finds and returns the ofservice within 'ofproto' that has the given
1978 * 'target', or a null pointer if none exists. */
1979 static struct ofservice *
1980 ofservice_lookup(struct ofproto *ofproto, const char *target)
1981 {
1982 struct ofservice *ofservice;
1983
1984 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
1985 &ofproto->services) {
1986 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
1987 return ofservice;
1988 }
1989 }
1990 return NULL;
1991 }
1992 \f
1993 /* Returns true if 'rule' should be hidden from the controller.
1994 *
1995 * Rules with priority higher than UINT16_MAX are set up by ofproto itself
1996 * (e.g. by in-band control) and are intentionally hidden from the
1997 * controller. */
1998 static bool
1999 rule_is_hidden(const struct rule *rule)
2000 {
2001 return rule->cr.priority > UINT16_MAX;
2002 }
2003
2004 /* Creates and returns a new rule initialized as specified.
2005 *
2006 * The caller is responsible for inserting the rule into the classifier (with
2007 * rule_insert()). */
2008 static struct rule *
2009 rule_create(const struct cls_rule *cls_rule,
2010 const union ofp_action *actions, size_t n_actions,
2011 uint16_t idle_timeout, uint16_t hard_timeout,
2012 ovs_be64 flow_cookie, bool send_flow_removed)
2013 {
2014 struct rule *rule = xzalloc(sizeof *rule);
2015 rule->cr = *cls_rule;
2016 rule->idle_timeout = idle_timeout;
2017 rule->hard_timeout = hard_timeout;
2018 rule->flow_cookie = flow_cookie;
2019 rule->used = rule->created = time_msec();
2020 rule->send_flow_removed = send_flow_removed;
2021 list_init(&rule->facets);
2022 if (n_actions > 0) {
2023 rule->n_actions = n_actions;
2024 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
2025 }
2026
2027 return rule;
2028 }
2029
2030 static struct rule *
2031 rule_from_cls_rule(const struct cls_rule *cls_rule)
2032 {
2033 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
2034 }
2035
2036 static void
2037 rule_free(struct rule *rule)
2038 {
2039 free(rule->actions);
2040 free(rule);
2041 }
2042
2043 /* Destroys 'rule' and iterates through all of its facets and revalidates them,
2044 * destroying any that no longer has a rule (which is probably all of them).
2045 *
2046 * The caller must have already removed 'rule' from the classifier. */
2047 static void
2048 rule_destroy(struct ofproto *ofproto, struct rule *rule)
2049 {
2050 struct facet *facet, *next_facet;
2051 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
2052 facet_revalidate(ofproto, facet);
2053 }
2054 rule_free(rule);
2055 }
2056
2057 /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action
2058 * that outputs to 'out_port' (output to OFPP_FLOOD and OFPP_ALL doesn't
2059 * count). */
2060 static bool
2061 rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
2062 {
2063 const union ofp_action *oa;
2064 struct actions_iterator i;
2065
2066 if (out_port == htons(OFPP_NONE)) {
2067 return true;
2068 }
2069 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
2070 oa = actions_next(&i)) {
2071 if (action_outputs_to_port(oa, out_port)) {
2072 return true;
2073 }
2074 }
2075 return false;
2076 }
2077
2078 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
2079 * 'packet', which arrived on 'in_port'.
2080 *
2081 * Takes ownership of 'packet'. */
2082 static bool
2083 execute_odp_actions(struct ofproto *ofproto, const struct flow *flow,
2084 const struct nlattr *odp_actions, size_t actions_len,
2085 struct ofpbuf *packet)
2086 {
2087 if (actions_len == NLA_ALIGN(NLA_HDRLEN + sizeof(uint64_t))
2088 && odp_actions->nla_type == ODP_ACTION_ATTR_CONTROLLER) {
2089 /* As an optimization, avoid a round-trip from userspace to kernel to
2090 * userspace. This also avoids possibly filling up kernel packet
2091 * buffers along the way. */
2092 struct dpif_upcall upcall;
2093
2094 upcall.type = DPIF_UC_ACTION;
2095 upcall.packet = packet;
2096 upcall.key = NULL;
2097 upcall.key_len = 0;
2098 upcall.userdata = nl_attr_get_u64(odp_actions);
2099 upcall.sample_pool = 0;
2100 upcall.actions = NULL;
2101 upcall.actions_len = 0;
2102
2103 send_packet_in(ofproto, &upcall, flow, false);
2104
2105 return true;
2106 } else {
2107 int error;
2108
2109 error = dpif_execute(ofproto->dpif, odp_actions, actions_len, packet);
2110 ofpbuf_delete(packet);
2111 return !error;
2112 }
2113 }
2114
2115 /* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s
2116 * statistics appropriately. 'packet' must have at least sizeof(struct
2117 * ofp_packet_in) bytes of headroom.
2118 *
2119 * For correct results, 'packet' must actually be in 'facet''s flow; that is,
2120 * applying flow_extract() to 'packet' would yield the same flow as
2121 * 'facet->flow'.
2122 *
2123 * 'facet' must have accurately composed ODP actions; that is, it must not be
2124 * in need of revalidation.
2125 *
2126 * Takes ownership of 'packet'. */
2127 static void
2128 facet_execute(struct ofproto *ofproto, struct facet *facet,
2129 struct ofpbuf *packet)
2130 {
2131 struct dpif_flow_stats stats;
2132
2133 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2134
2135 flow_extract_stats(&facet->flow, packet, &stats);
2136 if (execute_odp_actions(ofproto, &facet->flow,
2137 facet->actions, facet->actions_len, packet)) {
2138 facet_update_stats(ofproto, facet, &stats);
2139 facet->used = time_msec();
2140 netflow_flow_update_time(ofproto->netflow,
2141 &facet->nf_flow, facet->used);
2142 }
2143 }
2144
2145 /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s
2146 * statistics (or the statistics for one of its facets) appropriately.
2147 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of headroom.
2148 *
2149 * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited
2150 * with statistics for 'packet' either way.
2151 *
2152 * Takes ownership of 'packet'. */
2153 static void
2154 rule_execute(struct ofproto *ofproto, struct rule *rule, uint16_t in_port,
2155 struct ofpbuf *packet)
2156 {
2157 struct action_xlate_ctx ctx;
2158 struct ofpbuf *odp_actions;
2159 struct facet *facet;
2160 struct flow flow;
2161 size_t size;
2162
2163 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2164
2165 flow_extract(packet, 0, in_port, &flow);
2166
2167 /* First look for a related facet. If we find one, account it to that. */
2168 facet = facet_lookup_valid(ofproto, &flow);
2169 if (facet && facet->rule == rule) {
2170 facet_execute(ofproto, facet, packet);
2171 return;
2172 }
2173
2174 /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then
2175 * create a new facet for it and use that. */
2176 if (rule_lookup(ofproto, &flow) == rule) {
2177 facet = facet_create(ofproto, rule, &flow, packet);
2178 facet_execute(ofproto, facet, packet);
2179 facet_install(ofproto, facet, true);
2180 return;
2181 }
2182
2183 /* We can't account anything to a facet. If we were to try, then that
2184 * facet would have a non-matching rule, busting our invariants. */
2185 action_xlate_ctx_init(&ctx, ofproto, &flow, packet);
2186 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2187 size = packet->size;
2188 if (execute_odp_actions(ofproto, &flow, odp_actions->data,
2189 odp_actions->size, packet)) {
2190 rule->used = time_msec();
2191 rule->packet_count++;
2192 rule->byte_count += size;
2193 }
2194 ofpbuf_delete(odp_actions);
2195 }
2196
2197 /* Inserts 'rule' into 'p''s flow table. */
2198 static void
2199 rule_insert(struct ofproto *p, struct rule *rule)
2200 {
2201 struct rule *displaced_rule;
2202
2203 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2204 if (displaced_rule) {
2205 rule_destroy(p, displaced_rule);
2206 }
2207 p->need_revalidate = true;
2208 }
2209
2210 /* Creates and returns a new facet within 'ofproto' owned by 'rule', given a
2211 * 'flow' and an example 'packet' within that flow.
2212 *
2213 * The caller must already have determined that no facet with an identical
2214 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
2215 * 'ofproto''s classifier table. */
2216 static struct facet *
2217 facet_create(struct ofproto *ofproto, struct rule *rule,
2218 const struct flow *flow, const struct ofpbuf *packet)
2219 {
2220 struct facet *facet;
2221
2222 facet = xzalloc(sizeof *facet);
2223 facet->used = time_msec();
2224 hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0));
2225 list_push_back(&rule->facets, &facet->list_node);
2226 facet->rule = rule;
2227 facet->flow = *flow;
2228 netflow_flow_init(&facet->nf_flow);
2229 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
2230
2231 facet_make_actions(ofproto, facet, packet);
2232
2233 return facet;
2234 }
2235
2236 static void
2237 facet_free(struct facet *facet)
2238 {
2239 free(facet->actions);
2240 free(facet);
2241 }
2242
2243 /* Remove 'rule' from 'ofproto' and free up the associated memory:
2244 *
2245 * - Removes 'rule' from the classifier.
2246 *
2247 * - If 'rule' has facets, revalidates them (and possibly uninstalls and
2248 * destroys them), via rule_destroy().
2249 */
2250 static void
2251 rule_remove(struct ofproto *ofproto, struct rule *rule)
2252 {
2253 COVERAGE_INC(ofproto_del_rule);
2254 ofproto->need_revalidate = true;
2255 classifier_remove(&ofproto->cls, &rule->cr);
2256 rule_destroy(ofproto, rule);
2257 }
2258
2259 /* Remove 'facet' from 'ofproto' and free up the associated memory:
2260 *
2261 * - If 'facet' was installed in the datapath, uninstalls it and updates its
2262 * rule's statistics, via facet_uninstall().
2263 *
2264 * - Removes 'facet' from its rule and from ofproto->facets.
2265 */
2266 static void
2267 facet_remove(struct ofproto *ofproto, struct facet *facet)
2268 {
2269 facet_uninstall(ofproto, facet);
2270 facet_flush_stats(ofproto, facet);
2271 hmap_remove(&ofproto->facets, &facet->hmap_node);
2272 list_remove(&facet->list_node);
2273 facet_free(facet);
2274 }
2275
2276 /* Composes the ODP actions for 'facet' based on its rule's actions. */
2277 static void
2278 facet_make_actions(struct ofproto *p, struct facet *facet,
2279 const struct ofpbuf *packet)
2280 {
2281 const struct rule *rule = facet->rule;
2282 struct ofpbuf *odp_actions;
2283 struct action_xlate_ctx ctx;
2284
2285 action_xlate_ctx_init(&ctx, p, &facet->flow, packet);
2286 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2287 facet->tags = ctx.tags;
2288 facet->may_install = ctx.may_set_up_flow;
2289 facet->nf_flow.output_iface = ctx.nf_output_iface;
2290
2291 if (facet->actions_len != odp_actions->size
2292 || memcmp(facet->actions, odp_actions->data, odp_actions->size)) {
2293 free(facet->actions);
2294 facet->actions_len = odp_actions->size;
2295 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2296 }
2297
2298 ofpbuf_delete(odp_actions);
2299 }
2300
2301 static int
2302 facet_put__(struct ofproto *ofproto, struct facet *facet,
2303 const struct nlattr *actions, size_t actions_len,
2304 struct dpif_flow_stats *stats)
2305 {
2306 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
2307 enum dpif_flow_put_flags flags;
2308 struct ofpbuf key;
2309
2310 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
2311 if (stats) {
2312 flags |= DPIF_FP_ZERO_STATS;
2313 }
2314
2315 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
2316 odp_flow_key_from_flow(&key, &facet->flow);
2317 assert(key.base == keybuf);
2318
2319 return dpif_flow_put(ofproto->dpif, flags, key.data, key.size,
2320 actions, actions_len, stats);
2321 }
2322
2323 /* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If
2324 * 'zero_stats' is true, clears any existing statistics from the datapath for
2325 * 'facet'. */
2326 static void
2327 facet_install(struct ofproto *p, struct facet *facet, bool zero_stats)
2328 {
2329 struct dpif_flow_stats stats;
2330
2331 if (facet->may_install
2332 && !facet_put__(p, facet, facet->actions, facet->actions_len,
2333 zero_stats ? &stats : NULL)) {
2334 facet->installed = true;
2335 }
2336 }
2337
2338 /* Ensures that the bytes in 'facet', plus 'extra_bytes', have been passed up
2339 * to the accounting hook function in the ofhooks structure. */
2340 static void
2341 facet_account(struct ofproto *ofproto,
2342 struct facet *facet, uint64_t extra_bytes)
2343 {
2344 uint64_t total_bytes = facet->byte_count + extra_bytes;
2345
2346 if (ofproto->ofhooks->account_flow_cb
2347 && total_bytes > facet->accounted_bytes)
2348 {
2349 ofproto->ofhooks->account_flow_cb(
2350 &facet->flow, facet->tags, facet->actions, facet->actions_len,
2351 total_bytes - facet->accounted_bytes, ofproto->aux);
2352 facet->accounted_bytes = total_bytes;
2353 }
2354 }
2355
2356 /* If 'rule' is installed in the datapath, uninstalls it. */
2357 static void
2358 facet_uninstall(struct ofproto *p, struct facet *facet)
2359 {
2360 if (facet->installed) {
2361 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
2362 struct dpif_flow_stats stats;
2363 struct ofpbuf key;
2364
2365 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
2366 odp_flow_key_from_flow(&key, &facet->flow);
2367 assert(key.base == keybuf);
2368
2369 if (!dpif_flow_del(p->dpif, key.data, key.size, &stats)) {
2370 facet_update_stats(p, facet, &stats);
2371 }
2372 facet->installed = false;
2373 }
2374 }
2375
2376 /* Returns true if the only action for 'facet' is to send to the controller.
2377 * (We don't report NetFlow expiration messages for such facets because they
2378 * are just part of the control logic for the network, not real traffic). */
2379 static bool
2380 facet_is_controller_flow(struct facet *facet)
2381 {
2382 return (facet
2383 && facet->rule->n_actions == 1
2384 && action_outputs_to_port(&facet->rule->actions[0],
2385 htons(OFPP_CONTROLLER)));
2386 }
2387
2388 /* Folds all of 'facet''s statistics into its rule. Also updates the
2389 * accounting ofhook and emits a NetFlow expiration if appropriate. */
2390 static void
2391 facet_flush_stats(struct ofproto *ofproto, struct facet *facet)
2392 {
2393 facet_account(ofproto, facet, 0);
2394
2395 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
2396 struct ofexpired expired;
2397 expired.flow = facet->flow;
2398 expired.packet_count = facet->packet_count;
2399 expired.byte_count = facet->byte_count;
2400 expired.used = facet->used;
2401 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
2402 }
2403
2404 facet->rule->packet_count += facet->packet_count;
2405 facet->rule->byte_count += facet->byte_count;
2406
2407 /* Reset counters to prevent double counting if 'facet' ever gets
2408 * reinstalled. */
2409 facet->packet_count = 0;
2410 facet->byte_count = 0;
2411 facet->accounted_bytes = 0;
2412
2413 netflow_flow_clear(&facet->nf_flow);
2414 }
2415
2416 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2417 * Returns it if found, otherwise a null pointer.
2418 *
2419 * The returned facet might need revalidation; use facet_lookup_valid()
2420 * instead if that is important. */
2421 static struct facet *
2422 facet_find(struct ofproto *ofproto, const struct flow *flow)
2423 {
2424 struct facet *facet;
2425
2426 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0),
2427 &ofproto->facets) {
2428 if (flow_equal(flow, &facet->flow)) {
2429 return facet;
2430 }
2431 }
2432
2433 return NULL;
2434 }
2435
2436 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2437 * Returns it if found, otherwise a null pointer.
2438 *
2439 * The returned facet is guaranteed to be valid. */
2440 static struct facet *
2441 facet_lookup_valid(struct ofproto *ofproto, const struct flow *flow)
2442 {
2443 struct facet *facet = facet_find(ofproto, flow);
2444
2445 /* The facet we found might not be valid, since we could be in need of
2446 * revalidation. If it is not valid, don't return it. */
2447 if (facet
2448 && ofproto->need_revalidate
2449 && !facet_revalidate(ofproto, facet)) {
2450 COVERAGE_INC(ofproto_invalidated);
2451 return NULL;
2452 }
2453
2454 return facet;
2455 }
2456
2457 /* Re-searches 'ofproto''s classifier for a rule matching 'facet':
2458 *
2459 * - If the rule found is different from 'facet''s current rule, moves
2460 * 'facet' to the new rule and recompiles its actions.
2461 *
2462 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
2463 * where it is and recompiles its actions anyway.
2464 *
2465 * - If there is none, destroys 'facet'.
2466 *
2467 * Returns true if 'facet' still exists, false if it has been destroyed. */
2468 static bool
2469 facet_revalidate(struct ofproto *ofproto, struct facet *facet)
2470 {
2471 struct action_xlate_ctx ctx;
2472 struct ofpbuf *odp_actions;
2473 struct rule *new_rule;
2474 bool actions_changed;
2475
2476 COVERAGE_INC(facet_revalidate);
2477
2478 /* Determine the new rule. */
2479 new_rule = rule_lookup(ofproto, &facet->flow);
2480 if (!new_rule) {
2481 /* No new rule, so delete the facet. */
2482 facet_remove(ofproto, facet);
2483 return false;
2484 }
2485
2486 /* Calculate new ODP actions.
2487 *
2488 * We do not modify any 'facet' state yet, because we might need to, e.g.,
2489 * emit a NetFlow expiration and, if so, we need to have the old state
2490 * around to properly compose it. */
2491 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, NULL);
2492 odp_actions = xlate_actions(&ctx, new_rule->actions, new_rule->n_actions);
2493 actions_changed = (facet->actions_len != odp_actions->size
2494 || memcmp(facet->actions, odp_actions->data,
2495 facet->actions_len));
2496
2497 /* If the ODP actions changed or the installability changed, then we need
2498 * to talk to the datapath. */
2499 if (actions_changed || ctx.may_set_up_flow != facet->installed) {
2500 if (ctx.may_set_up_flow) {
2501 struct dpif_flow_stats stats;
2502
2503 facet_put__(ofproto, facet,
2504 odp_actions->data, odp_actions->size, &stats);
2505 facet_update_stats(ofproto, facet, &stats);
2506 } else {
2507 facet_uninstall(ofproto, facet);
2508 }
2509
2510 /* The datapath flow is gone or has zeroed stats, so push stats out of
2511 * 'facet' into 'rule'. */
2512 facet_flush_stats(ofproto, facet);
2513 }
2514
2515 /* Update 'facet' now that we've taken care of all the old state. */
2516 facet->tags = ctx.tags;
2517 facet->nf_flow.output_iface = ctx.nf_output_iface;
2518 facet->may_install = ctx.may_set_up_flow;
2519 if (actions_changed) {
2520 free(facet->actions);
2521 facet->actions_len = odp_actions->size;
2522 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2523 }
2524 if (facet->rule != new_rule) {
2525 COVERAGE_INC(facet_changed_rule);
2526 list_remove(&facet->list_node);
2527 list_push_back(&new_rule->facets, &facet->list_node);
2528 facet->rule = new_rule;
2529 facet->used = new_rule->created;
2530 }
2531
2532 ofpbuf_delete(odp_actions);
2533
2534 return true;
2535 }
2536 \f
2537 static void
2538 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2539 struct rconn_packet_counter *counter)
2540 {
2541 update_openflow_length(msg);
2542 if (rconn_send(ofconn->rconn, msg, counter)) {
2543 ofpbuf_delete(msg);
2544 }
2545 }
2546
2547 static void
2548 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2549 int error)
2550 {
2551 struct ofpbuf *buf = ofputil_encode_error_msg(error, oh);
2552 if (buf) {
2553 COVERAGE_INC(ofproto_error);
2554 queue_tx(buf, ofconn, ofconn->reply_counter);
2555 }
2556 }
2557
2558 static void
2559 hton_ofp_phy_port(struct ofp_phy_port *opp)
2560 {
2561 opp->port_no = htons(opp->port_no);
2562 opp->config = htonl(opp->config);
2563 opp->state = htonl(opp->state);
2564 opp->curr = htonl(opp->curr);
2565 opp->advertised = htonl(opp->advertised);
2566 opp->supported = htonl(opp->supported);
2567 opp->peer = htonl(opp->peer);
2568 }
2569
2570 static int
2571 handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh)
2572 {
2573 queue_tx(make_echo_reply(oh), ofconn, ofconn->reply_counter);
2574 return 0;
2575 }
2576
2577 static int
2578 handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh)
2579 {
2580 struct ofp_switch_features *osf;
2581 struct ofpbuf *buf;
2582 struct ofport *port;
2583
2584 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2585 osf->datapath_id = htonll(ofconn->ofproto->datapath_id);
2586 osf->n_buffers = htonl(pktbuf_capacity());
2587 osf->n_tables = 2;
2588 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2589 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2590 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2591 (1u << OFPAT_SET_VLAN_VID) |
2592 (1u << OFPAT_SET_VLAN_PCP) |
2593 (1u << OFPAT_STRIP_VLAN) |
2594 (1u << OFPAT_SET_DL_SRC) |
2595 (1u << OFPAT_SET_DL_DST) |
2596 (1u << OFPAT_SET_NW_SRC) |
2597 (1u << OFPAT_SET_NW_DST) |
2598 (1u << OFPAT_SET_NW_TOS) |
2599 (1u << OFPAT_SET_TP_SRC) |
2600 (1u << OFPAT_SET_TP_DST) |
2601 (1u << OFPAT_ENQUEUE));
2602
2603 HMAP_FOR_EACH (port, hmap_node, &ofconn->ofproto->ports) {
2604 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2605 }
2606
2607 queue_tx(buf, ofconn, ofconn->reply_counter);
2608 return 0;
2609 }
2610
2611 static int
2612 handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh)
2613 {
2614 struct ofpbuf *buf;
2615 struct ofp_switch_config *osc;
2616 uint16_t flags;
2617 bool drop_frags;
2618
2619 /* Figure out flags. */
2620 dpif_get_drop_frags(ofconn->ofproto->dpif, &drop_frags);
2621 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2622
2623 /* Send reply. */
2624 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2625 osc->flags = htons(flags);
2626 osc->miss_send_len = htons(ofconn->miss_send_len);
2627 queue_tx(buf, ofconn, ofconn->reply_counter);
2628
2629 return 0;
2630 }
2631
2632 static int
2633 handle_set_config(struct ofconn *ofconn, const struct ofp_switch_config *osc)
2634 {
2635 uint16_t flags = ntohs(osc->flags);
2636
2637 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2638 switch (flags & OFPC_FRAG_MASK) {
2639 case OFPC_FRAG_NORMAL:
2640 dpif_set_drop_frags(ofconn->ofproto->dpif, false);
2641 break;
2642 case OFPC_FRAG_DROP:
2643 dpif_set_drop_frags(ofconn->ofproto->dpif, true);
2644 break;
2645 default:
2646 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2647 osc->flags);
2648 break;
2649 }
2650 }
2651
2652 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2653
2654 return 0;
2655 }
2656
2657 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
2658 * flow translation. */
2659 #define MAX_RESUBMIT_RECURSION 16
2660
2661 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2662 struct action_xlate_ctx *ctx);
2663
2664 static void
2665 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2666 {
2667 const struct ofport *ofport = get_port(ctx->ofproto, port);
2668
2669 if (ofport) {
2670 if (ofport->opp.config & OFPPC_NO_FWD) {
2671 /* Forwarding disabled on port. */
2672 return;
2673 }
2674 } else {
2675 /*
2676 * We don't have an ofport record for this port, but it doesn't hurt to
2677 * allow forwarding to it anyhow. Maybe such a port will appear later
2678 * and we're pre-populating the flow table.
2679 */
2680 }
2681
2682 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_OUTPUT, port);
2683 ctx->nf_output_iface = port;
2684 }
2685
2686 static struct rule *
2687 rule_lookup(struct ofproto *ofproto, const struct flow *flow)
2688 {
2689 return rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2690 }
2691
2692 static void
2693 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2694 {
2695 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2696 uint16_t old_in_port;
2697 struct rule *rule;
2698
2699 /* Look up a flow with 'in_port' as the input port. Then restore the
2700 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2701 * have surprising behavior). */
2702 old_in_port = ctx->flow.in_port;
2703 ctx->flow.in_port = in_port;
2704 rule = rule_lookup(ctx->ofproto, &ctx->flow);
2705 ctx->flow.in_port = old_in_port;
2706
2707 if (ctx->resubmit_hook) {
2708 ctx->resubmit_hook(ctx, rule);
2709 }
2710
2711 if (rule) {
2712 ctx->recurse++;
2713 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2714 ctx->recurse--;
2715 }
2716 } else {
2717 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2718
2719 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2720 MAX_RESUBMIT_RECURSION);
2721 }
2722 }
2723
2724 static void
2725 flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2726 uint16_t *nf_output_iface, struct ofpbuf *odp_actions)
2727 {
2728 struct ofport *ofport;
2729
2730 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2731 uint16_t odp_port = ofport->odp_port;
2732 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2733 nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT, odp_port);
2734 }
2735 }
2736 *nf_output_iface = NF_OUT_FLOOD;
2737 }
2738
2739 static void
2740 xlate_output_action__(struct action_xlate_ctx *ctx,
2741 uint16_t port, uint16_t max_len)
2742 {
2743 uint16_t odp_port;
2744 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2745
2746 ctx->nf_output_iface = NF_OUT_DROP;
2747
2748 switch (port) {
2749 case OFPP_IN_PORT:
2750 add_output_action(ctx, ctx->flow.in_port);
2751 break;
2752 case OFPP_TABLE:
2753 xlate_table_action(ctx, ctx->flow.in_port);
2754 break;
2755 case OFPP_NORMAL:
2756 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2757 ctx->odp_actions, &ctx->tags,
2758 &ctx->nf_output_iface,
2759 ctx->ofproto->aux)) {
2760 COVERAGE_INC(ofproto_uninstallable);
2761 ctx->may_set_up_flow = false;
2762 }
2763 break;
2764 case OFPP_FLOOD:
2765 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2766 &ctx->nf_output_iface, ctx->odp_actions);
2767 break;
2768 case OFPP_ALL:
2769 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2770 &ctx->nf_output_iface, ctx->odp_actions);
2771 break;
2772 case OFPP_CONTROLLER:
2773 nl_msg_put_u64(ctx->odp_actions, ODP_ACTION_ATTR_CONTROLLER, max_len);
2774 break;
2775 case OFPP_LOCAL:
2776 add_output_action(ctx, ODPP_LOCAL);
2777 break;
2778 default:
2779 odp_port = ofp_port_to_odp_port(port);
2780 if (odp_port != ctx->flow.in_port) {
2781 add_output_action(ctx, odp_port);
2782 }
2783 break;
2784 }
2785
2786 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2787 ctx->nf_output_iface = NF_OUT_FLOOD;
2788 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2789 ctx->nf_output_iface = prev_nf_output_iface;
2790 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2791 ctx->nf_output_iface != NF_OUT_FLOOD) {
2792 ctx->nf_output_iface = NF_OUT_MULTI;
2793 }
2794 }
2795
2796 static void
2797 xlate_output_action(struct action_xlate_ctx *ctx,
2798 const struct ofp_action_output *oao)
2799 {
2800 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2801 }
2802
2803 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2804 * optimization, because we're going to add another action that sets the
2805 * priority immediately after, or because there are no actions following the
2806 * pop. */
2807 static void
2808 remove_pop_action(struct action_xlate_ctx *ctx)
2809 {
2810 if (ctx->odp_actions->size == ctx->last_pop_priority) {
2811 ctx->odp_actions->size -= NLA_ALIGN(NLA_HDRLEN);
2812 ctx->last_pop_priority = -1;
2813 }
2814 }
2815
2816 static void
2817 add_pop_action(struct action_xlate_ctx *ctx)
2818 {
2819 if (ctx->odp_actions->size != ctx->last_pop_priority) {
2820 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_POP_PRIORITY);
2821 ctx->last_pop_priority = ctx->odp_actions->size;
2822 }
2823 }
2824
2825 static void
2826 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2827 const struct ofp_action_enqueue *oae)
2828 {
2829 uint16_t ofp_port, odp_port;
2830 uint32_t priority;
2831 int error;
2832
2833 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2834 &priority);
2835 if (error) {
2836 /* Fall back to ordinary output action. */
2837 xlate_output_action__(ctx, ntohs(oae->port), 0);
2838 return;
2839 }
2840
2841 /* Figure out ODP output port. */
2842 ofp_port = ntohs(oae->port);
2843 if (ofp_port != OFPP_IN_PORT) {
2844 odp_port = ofp_port_to_odp_port(ofp_port);
2845 } else {
2846 odp_port = ctx->flow.in_port;
2847 }
2848
2849 /* Add ODP actions. */
2850 remove_pop_action(ctx);
2851 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2852 add_output_action(ctx, odp_port);
2853 add_pop_action(ctx);
2854
2855 /* Update NetFlow output port. */
2856 if (ctx->nf_output_iface == NF_OUT_DROP) {
2857 ctx->nf_output_iface = odp_port;
2858 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2859 ctx->nf_output_iface = NF_OUT_MULTI;
2860 }
2861 }
2862
2863 static void
2864 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2865 const struct nx_action_set_queue *nasq)
2866 {
2867 uint32_t priority;
2868 int error;
2869
2870 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2871 &priority);
2872 if (error) {
2873 /* Couldn't translate queue to a priority, so ignore. A warning
2874 * has already been logged. */
2875 return;
2876 }
2877
2878 remove_pop_action(ctx);
2879 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2880 }
2881
2882 static void
2883 xlate_set_dl_tci(struct action_xlate_ctx *ctx)
2884 {
2885 ovs_be16 tci = ctx->flow.vlan_tci;
2886 if (!(tci & htons(VLAN_CFI))) {
2887 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_STRIP_VLAN);
2888 } else {
2889 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_TCI,
2890 tci & ~htons(VLAN_CFI));
2891 }
2892 }
2893
2894 struct xlate_reg_state {
2895 ovs_be16 vlan_tci;
2896 ovs_be64 tun_id;
2897 };
2898
2899 static void
2900 save_reg_state(const struct action_xlate_ctx *ctx,
2901 struct xlate_reg_state *state)
2902 {
2903 state->vlan_tci = ctx->flow.vlan_tci;
2904 state->tun_id = ctx->flow.tun_id;
2905 }
2906
2907 static void
2908 update_reg_state(struct action_xlate_ctx *ctx,
2909 const struct xlate_reg_state *state)
2910 {
2911 if (ctx->flow.vlan_tci != state->vlan_tci) {
2912 xlate_set_dl_tci(ctx);
2913 }
2914 if (ctx->flow.tun_id != state->tun_id) {
2915 nl_msg_put_be64(ctx->odp_actions,
2916 ODP_ACTION_ATTR_SET_TUNNEL, ctx->flow.tun_id);
2917 }
2918 }
2919
2920 static void
2921 xlate_nicira_action(struct action_xlate_ctx *ctx,
2922 const struct nx_action_header *nah)
2923 {
2924 const struct nx_action_resubmit *nar;
2925 const struct nx_action_set_tunnel *nast;
2926 const struct nx_action_set_queue *nasq;
2927 const struct nx_action_multipath *nam;
2928 enum nx_action_subtype subtype = ntohs(nah->subtype);
2929 struct xlate_reg_state state;
2930 ovs_be64 tun_id;
2931
2932 assert(nah->vendor == htonl(NX_VENDOR_ID));
2933 switch (subtype) {
2934 case NXAST_RESUBMIT:
2935 nar = (const struct nx_action_resubmit *) nah;
2936 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2937 break;
2938
2939 case NXAST_SET_TUNNEL:
2940 nast = (const struct nx_action_set_tunnel *) nah;
2941 tun_id = htonll(ntohl(nast->tun_id));
2942 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
2943 ctx->flow.tun_id = tun_id;
2944 break;
2945
2946 case NXAST_DROP_SPOOFED_ARP:
2947 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2948 nl_msg_put_flag(ctx->odp_actions,
2949 ODP_ACTION_ATTR_DROP_SPOOFED_ARP);
2950 }
2951 break;
2952
2953 case NXAST_SET_QUEUE:
2954 nasq = (const struct nx_action_set_queue *) nah;
2955 xlate_set_queue_action(ctx, nasq);
2956 break;
2957
2958 case NXAST_POP_QUEUE:
2959 add_pop_action(ctx);
2960 break;
2961
2962 case NXAST_REG_MOVE:
2963 save_reg_state(ctx, &state);
2964 nxm_execute_reg_move((const struct nx_action_reg_move *) nah,
2965 &ctx->flow);
2966 update_reg_state(ctx, &state);
2967 break;
2968
2969 case NXAST_REG_LOAD:
2970 save_reg_state(ctx, &state);
2971 nxm_execute_reg_load((const struct nx_action_reg_load *) nah,
2972 &ctx->flow);
2973 update_reg_state(ctx, &state);
2974 break;
2975
2976 case NXAST_NOTE:
2977 /* Nothing to do. */
2978 break;
2979
2980 case NXAST_SET_TUNNEL64:
2981 tun_id = ((const struct nx_action_set_tunnel64 *) nah)->tun_id;
2982 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
2983 ctx->flow.tun_id = tun_id;
2984 break;
2985
2986 case NXAST_MULTIPATH:
2987 nam = (const struct nx_action_multipath *) nah;
2988 multipath_execute(nam, &ctx->flow);
2989 break;
2990
2991 /* If you add a new action here that modifies flow data, don't forget to
2992 * update the flow key in ctx->flow at the same time. */
2993
2994 case NXAST_SNAT__OBSOLETE:
2995 default:
2996 VLOG_DBG_RL(&rl, "unknown Nicira action type %d", (int) subtype);
2997 break;
2998 }
2999 }
3000
3001 static void
3002 do_xlate_actions(const union ofp_action *in, size_t n_in,
3003 struct action_xlate_ctx *ctx)
3004 {
3005 struct actions_iterator iter;
3006 const union ofp_action *ia;
3007 const struct ofport *port;
3008
3009 port = get_port(ctx->ofproto, ctx->flow.in_port);
3010 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
3011 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
3012 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
3013 /* Drop this flow. */
3014 return;
3015 }
3016
3017 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
3018 enum ofp_action_type type = ntohs(ia->type);
3019 const struct ofp_action_dl_addr *oada;
3020
3021 switch (type) {
3022 case OFPAT_OUTPUT:
3023 xlate_output_action(ctx, &ia->output);
3024 break;
3025
3026 case OFPAT_SET_VLAN_VID:
3027 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
3028 ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI);
3029 xlate_set_dl_tci(ctx);
3030 break;
3031
3032 case OFPAT_SET_VLAN_PCP:
3033 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
3034 ctx->flow.vlan_tci |= htons(
3035 (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
3036 xlate_set_dl_tci(ctx);
3037 break;
3038
3039 case OFPAT_STRIP_VLAN:
3040 ctx->flow.vlan_tci = htons(0);
3041 xlate_set_dl_tci(ctx);
3042 break;
3043
3044 case OFPAT_SET_DL_SRC:
3045 oada = ((struct ofp_action_dl_addr *) ia);
3046 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_SRC,
3047 oada->dl_addr, ETH_ADDR_LEN);
3048 memcpy(ctx->flow.dl_src, oada->dl_addr, ETH_ADDR_LEN);
3049 break;
3050
3051 case OFPAT_SET_DL_DST:
3052 oada = ((struct ofp_action_dl_addr *) ia);
3053 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_DST,
3054 oada->dl_addr, ETH_ADDR_LEN);
3055 memcpy(ctx->flow.dl_dst, oada->dl_addr, ETH_ADDR_LEN);
3056 break;
3057
3058 case OFPAT_SET_NW_SRC:
3059 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_SRC,
3060 ia->nw_addr.nw_addr);
3061 ctx->flow.nw_src = ia->nw_addr.nw_addr;
3062 break;
3063
3064 case OFPAT_SET_NW_DST:
3065 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_DST,
3066 ia->nw_addr.nw_addr);
3067 ctx->flow.nw_dst = ia->nw_addr.nw_addr;
3068 break;
3069
3070 case OFPAT_SET_NW_TOS:
3071 nl_msg_put_u8(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_TOS,
3072 ia->nw_tos.nw_tos);
3073 ctx->flow.nw_tos = ia->nw_tos.nw_tos;
3074 break;
3075
3076 case OFPAT_SET_TP_SRC:
3077 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_SRC,
3078 ia->tp_port.tp_port);
3079 ctx->flow.tp_src = ia->tp_port.tp_port;
3080 break;
3081
3082 case OFPAT_SET_TP_DST:
3083 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_DST,
3084 ia->tp_port.tp_port);
3085 ctx->flow.tp_dst = ia->tp_port.tp_port;
3086 break;
3087
3088 case OFPAT_VENDOR:
3089 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
3090 break;
3091
3092 case OFPAT_ENQUEUE:
3093 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
3094 break;
3095
3096 default:
3097 VLOG_DBG_RL(&rl, "unknown action type %d", (int) type);
3098 break;
3099 }
3100 }
3101 }
3102
3103 static void
3104 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
3105 struct ofproto *ofproto, const struct flow *flow,
3106 const struct ofpbuf *packet)
3107 {
3108 ctx->ofproto = ofproto;
3109 ctx->flow = *flow;
3110 ctx->packet = packet;
3111 ctx->resubmit_hook = NULL;
3112 }
3113
3114 static struct ofpbuf *
3115 xlate_actions(struct action_xlate_ctx *ctx,
3116 const union ofp_action *in, size_t n_in)
3117 {
3118 COVERAGE_INC(ofproto_ofp2odp);
3119
3120 ctx->odp_actions = ofpbuf_new(512);
3121 ctx->tags = 0;
3122 ctx->may_set_up_flow = true;
3123 ctx->nf_output_iface = NF_OUT_DROP;
3124 ctx->recurse = 0;
3125 ctx->last_pop_priority = -1;
3126 do_xlate_actions(in, n_in, ctx);
3127 remove_pop_action(ctx);
3128
3129 /* Check with in-band control to see if we're allowed to set up this
3130 * flow. */
3131 if (!in_band_rule_check(ctx->ofproto->in_band, &ctx->flow,
3132 ctx->odp_actions->data, ctx->odp_actions->size)) {
3133 ctx->may_set_up_flow = false;
3134 }
3135
3136 return ctx->odp_actions;
3137 }
3138
3139 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
3140 * error message code (composed with ofp_mkerr()) for the caller to propagate
3141 * upward. Otherwise, returns 0.
3142 *
3143 * The log message mentions 'msg_type'. */
3144 static int
3145 reject_slave_controller(struct ofconn *ofconn, const const char *msg_type)
3146 {
3147 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
3148 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
3149 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
3150 msg_type);
3151
3152 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3153 } else {
3154 return 0;
3155 }
3156 }
3157
3158 static int
3159 handle_packet_out(struct ofconn *ofconn, const struct ofp_header *oh)
3160 {
3161 struct ofproto *p = ofconn->ofproto;
3162 struct ofp_packet_out *opo;
3163 struct ofpbuf payload, *buffer;
3164 union ofp_action *ofp_actions;
3165 struct action_xlate_ctx ctx;
3166 struct ofpbuf *odp_actions;
3167 struct ofpbuf request;
3168 struct flow flow;
3169 size_t n_ofp_actions;
3170 uint16_t in_port;
3171 int error;
3172
3173 COVERAGE_INC(ofproto_packet_out);
3174
3175 error = reject_slave_controller(ofconn, "OFPT_PACKET_OUT");
3176 if (error) {
3177 return error;
3178 }
3179
3180 /* Get ofp_packet_out. */
3181 ofpbuf_use_const(&request, oh, ntohs(oh->length));
3182 opo = ofpbuf_pull(&request, offsetof(struct ofp_packet_out, actions));
3183
3184 /* Get actions. */
3185 error = ofputil_pull_actions(&request, ntohs(opo->actions_len),
3186 &ofp_actions, &n_ofp_actions);
3187 if (error) {
3188 return error;
3189 }
3190
3191 /* Get payload. */
3192 if (opo->buffer_id != htonl(UINT32_MAX)) {
3193 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
3194 &buffer, &in_port);
3195 if (error || !buffer) {
3196 return error;
3197 }
3198 payload = *buffer;
3199 } else {
3200 payload = request;
3201 buffer = NULL;
3202 }
3203
3204 /* Extract flow, check actions. */
3205 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)),
3206 &flow);
3207 error = validate_actions(ofp_actions, n_ofp_actions, &flow, p->max_ports);
3208 if (error) {
3209 goto exit;
3210 }
3211
3212 /* Send. */
3213 action_xlate_ctx_init(&ctx, p, &flow, &payload);
3214 odp_actions = xlate_actions(&ctx, ofp_actions, n_ofp_actions);
3215 dpif_execute(p->dpif, odp_actions->data, odp_actions->size, &payload);
3216 ofpbuf_delete(odp_actions);
3217
3218 exit:
3219 ofpbuf_delete(buffer);
3220 return 0;
3221 }
3222
3223 static void
3224 update_port_config(struct ofproto *p, struct ofport *port,
3225 uint32_t config, uint32_t mask)
3226 {
3227 mask &= config ^ port->opp.config;
3228 if (mask & OFPPC_PORT_DOWN) {
3229 if (config & OFPPC_PORT_DOWN) {
3230 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
3231 } else {
3232 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
3233 }
3234 }
3235 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
3236 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
3237 if (mask & REVALIDATE_BITS) {
3238 COVERAGE_INC(ofproto_costly_flags);
3239 port->opp.config ^= mask & REVALIDATE_BITS;
3240 p->need_revalidate = true;
3241 }
3242 #undef REVALIDATE_BITS
3243 if (mask & OFPPC_NO_PACKET_IN) {
3244 port->opp.config ^= OFPPC_NO_PACKET_IN;
3245 }
3246 }
3247
3248 static int
3249 handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh)
3250 {
3251 struct ofproto *p = ofconn->ofproto;
3252 const struct ofp_port_mod *opm = (const struct ofp_port_mod *) oh;
3253 struct ofport *port;
3254 int error;
3255
3256 error = reject_slave_controller(ofconn, "OFPT_PORT_MOD");
3257 if (error) {
3258 return error;
3259 }
3260
3261 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
3262 if (!port) {
3263 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
3264 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
3265 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
3266 } else {
3267 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
3268 if (opm->advertise) {
3269 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
3270 }
3271 }
3272 return 0;
3273 }
3274
3275 static struct ofpbuf *
3276 make_ofp_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
3277 {
3278 struct ofp_stats_reply *osr;
3279 struct ofpbuf *msg;
3280
3281 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3282 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3283 osr->type = type;
3284 osr->flags = htons(0);
3285 return msg;
3286 }
3287
3288 static struct ofpbuf *
3289 start_ofp_stats_reply(const struct ofp_header *request, size_t body_len)
3290 {
3291 const struct ofp_stats_request *osr
3292 = (const struct ofp_stats_request *) request;
3293 return make_ofp_stats_reply(osr->header.xid, osr->type, body_len);
3294 }
3295
3296 static void *
3297 append_ofp_stats_reply(size_t nbytes, struct ofconn *ofconn,
3298 struct ofpbuf **msgp)
3299 {
3300 struct ofpbuf *msg = *msgp;
3301 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3302 if (nbytes + msg->size > UINT16_MAX) {
3303 struct ofp_stats_reply *reply = msg->data;
3304 reply->flags = htons(OFPSF_REPLY_MORE);
3305 *msgp = make_ofp_stats_reply(reply->header.xid, reply->type, nbytes);
3306 queue_tx(msg, ofconn, ofconn->reply_counter);
3307 }
3308 return ofpbuf_put_uninit(*msgp, nbytes);
3309 }
3310
3311 static struct ofpbuf *
3312 make_nxstats_reply(ovs_be32 xid, ovs_be32 subtype, size_t body_len)
3313 {
3314 struct nicira_stats_msg *nsm;
3315 struct ofpbuf *msg;
3316
3317 msg = ofpbuf_new(MIN(sizeof *nsm + body_len, UINT16_MAX));
3318 nsm = put_openflow_xid(sizeof *nsm, OFPT_STATS_REPLY, xid, msg);
3319 nsm->type = htons(OFPST_VENDOR);
3320 nsm->flags = htons(0);
3321 nsm->vendor = htonl(NX_VENDOR_ID);
3322 nsm->subtype = subtype;
3323 return msg;
3324 }
3325
3326 static struct ofpbuf *
3327 start_nxstats_reply(const struct nicira_stats_msg *request, size_t body_len)
3328 {
3329 return make_nxstats_reply(request->header.xid, request->subtype, body_len);
3330 }
3331
3332 static void
3333 append_nxstats_reply(size_t nbytes, struct ofconn *ofconn,
3334 struct ofpbuf **msgp)
3335 {
3336 struct ofpbuf *msg = *msgp;
3337 assert(nbytes <= UINT16_MAX - sizeof(struct nicira_stats_msg));
3338 if (nbytes + msg->size > UINT16_MAX) {
3339 struct nicira_stats_msg *reply = msg->data;
3340 reply->flags = htons(OFPSF_REPLY_MORE);
3341 *msgp = make_nxstats_reply(reply->header.xid, reply->subtype, nbytes);
3342 queue_tx(msg, ofconn, ofconn->reply_counter);
3343 }
3344 ofpbuf_prealloc_tailroom(*msgp, nbytes);
3345 }
3346
3347 static int
3348 handle_desc_stats_request(struct ofconn *ofconn,
3349 const struct ofp_header *request)
3350 {
3351 struct ofproto *p = ofconn->ofproto;
3352 struct ofp_desc_stats *ods;
3353 struct ofpbuf *msg;
3354
3355 msg = start_ofp_stats_reply(request, sizeof *ods);
3356 ods = append_ofp_stats_reply(sizeof *ods, ofconn, &msg);
3357 memset(ods, 0, sizeof *ods);
3358 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3359 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3360 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3361 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3362 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3363 queue_tx(msg, ofconn, ofconn->reply_counter);
3364
3365 return 0;
3366 }
3367
3368 static int
3369 handle_table_stats_request(struct ofconn *ofconn,
3370 const struct ofp_header *request)
3371 {
3372 struct ofproto *p = ofconn->ofproto;
3373 struct ofp_table_stats *ots;
3374 struct ofpbuf *msg;
3375
3376 msg = start_ofp_stats_reply(request, sizeof *ots * 2);
3377
3378 /* Classifier table. */
3379 ots = append_ofp_stats_reply(sizeof *ots, ofconn, &msg);
3380 memset(ots, 0, sizeof *ots);
3381 strcpy(ots->name, "classifier");
3382 ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10
3383 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3384 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3385 ots->active_count = htonl(classifier_count(&p->cls));
3386 ots->lookup_count = htonll(0); /* XXX */
3387 ots->matched_count = htonll(0); /* XXX */
3388
3389 queue_tx(msg, ofconn, ofconn->reply_counter);
3390 return 0;
3391 }
3392
3393 static void
3394 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3395 struct ofpbuf **msgp)
3396 {
3397 struct netdev_stats stats;
3398 struct ofp_port_stats *ops;
3399
3400 /* Intentionally ignore return value, since errors will set
3401 * 'stats' to all-1s, which is correct for OpenFlow, and
3402 * netdev_get_stats() will log errors. */
3403 netdev_get_stats(port->netdev, &stats);
3404
3405 ops = append_ofp_stats_reply(sizeof *ops, ofconn, msgp);
3406 ops->port_no = htons(port->opp.port_no);
3407 memset(ops->pad, 0, sizeof ops->pad);
3408 ops->rx_packets = htonll(stats.rx_packets);
3409 ops->tx_packets = htonll(stats.tx_packets);
3410 ops->rx_bytes = htonll(stats.rx_bytes);
3411 ops->tx_bytes = htonll(stats.tx_bytes);
3412 ops->rx_dropped = htonll(stats.rx_dropped);
3413 ops->tx_dropped = htonll(stats.tx_dropped);
3414 ops->rx_errors = htonll(stats.rx_errors);
3415 ops->tx_errors = htonll(stats.tx_errors);
3416 ops->rx_frame_err = htonll(stats.rx_frame_errors);
3417 ops->rx_over_err = htonll(stats.rx_over_errors);
3418 ops->rx_crc_err = htonll(stats.rx_crc_errors);
3419 ops->collisions = htonll(stats.collisions);
3420 }
3421
3422 static int
3423 handle_port_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3424 {
3425 struct ofproto *p = ofconn->ofproto;
3426 const struct ofp_port_stats_request *psr = ofputil_stats_body(oh);
3427 struct ofp_port_stats *ops;
3428 struct ofpbuf *msg;
3429 struct ofport *port;
3430
3431 msg = start_ofp_stats_reply(oh, sizeof *ops * 16);
3432 if (psr->port_no != htons(OFPP_NONE)) {
3433 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3434 if (port) {
3435 append_port_stat(port, ofconn, &msg);
3436 }
3437 } else {
3438 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3439 append_port_stat(port, ofconn, &msg);
3440 }
3441 }
3442
3443 queue_tx(msg, ofconn, ofconn->reply_counter);
3444 return 0;
3445 }
3446
3447 /* Obtains statistic counters for 'rule' within 'p' and stores them into
3448 * '*packet_countp' and '*byte_countp'. The returned statistics include
3449 * statistics for all of 'rule''s facets. */
3450 static void
3451 query_stats(struct ofproto *p, struct rule *rule,
3452 uint64_t *packet_countp, uint64_t *byte_countp)
3453 {
3454 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
3455 uint64_t packet_count, byte_count;
3456 struct facet *facet;
3457 struct ofpbuf key;
3458
3459 /* Start from historical data for 'rule' itself that are no longer tracked
3460 * by the datapath. This counts, for example, facets that have expired. */
3461 packet_count = rule->packet_count;
3462 byte_count = rule->byte_count;
3463
3464 /* Ask the datapath for statistics on all of the rule's facets.
3465 *
3466 * Also, add any statistics that are not tracked by the datapath for each
3467 * facet. This includes, for example, statistics for packets that were
3468 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3469 * to a rule. */
3470 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
3471 LIST_FOR_EACH (facet, list_node, &rule->facets) {
3472 struct dpif_flow_stats stats;
3473
3474 ofpbuf_clear(&key);
3475 odp_flow_key_from_flow(&key, &facet->flow);
3476 dpif_flow_get(p->dpif, key.data, key.size, NULL, &stats);
3477
3478 packet_count += stats.n_packets + facet->packet_count;
3479 byte_count += stats.n_bytes + facet->byte_count;
3480 }
3481
3482 /* Return the stats to the caller. */
3483 *packet_countp = packet_count;
3484 *byte_countp = byte_count;
3485 }
3486
3487 static void
3488 calc_flow_duration(long long int start, ovs_be32 *sec, ovs_be32 *nsec)
3489 {
3490 long long int msecs = time_msec() - start;
3491 *sec = htonl(msecs / 1000);
3492 *nsec = htonl((msecs % 1000) * (1000 * 1000));
3493 }
3494
3495 static void
3496 put_ofp_flow_stats(struct ofconn *ofconn, struct rule *rule,
3497 ovs_be16 out_port, struct ofpbuf **replyp)
3498 {
3499 struct ofp_flow_stats *ofs;
3500 uint64_t packet_count, byte_count;
3501 size_t act_len, len;
3502
3503 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3504 return;
3505 }
3506
3507 act_len = sizeof *rule->actions * rule->n_actions;
3508 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3509
3510 query_stats(ofconn->ofproto, rule, &packet_count, &byte_count);
3511
3512 ofs = append_ofp_stats_reply(len, ofconn, replyp);
3513 ofs->length = htons(len);
3514 ofs->table_id = 0;
3515 ofs->pad = 0;
3516 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofs->match,
3517 rule->flow_cookie, &ofs->cookie);
3518 calc_flow_duration(rule->created, &ofs->duration_sec, &ofs->duration_nsec);
3519 ofs->priority = htons(rule->cr.priority);
3520 ofs->idle_timeout = htons(rule->idle_timeout);
3521 ofs->hard_timeout = htons(rule->hard_timeout);
3522 memset(ofs->pad2, 0, sizeof ofs->pad2);
3523 ofs->packet_count = htonll(packet_count);
3524 ofs->byte_count = htonll(byte_count);
3525 if (rule->n_actions > 0) {
3526 memcpy(ofs->actions, rule->actions, act_len);
3527 }
3528 }
3529
3530 static bool
3531 is_valid_table(uint8_t table_id)
3532 {
3533 return table_id == 0 || table_id == 0xff;
3534 }
3535
3536 static int
3537 handle_flow_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3538 {
3539 const struct ofp_flow_stats_request *fsr = ofputil_stats_body(oh);
3540 struct ofpbuf *reply;
3541
3542 COVERAGE_INC(ofproto_flows_req);
3543 reply = start_ofp_stats_reply(oh, 1024);
3544 if (is_valid_table(fsr->table_id)) {
3545 struct cls_cursor cursor;
3546 struct cls_rule target;
3547 struct rule *rule;
3548
3549 ofputil_cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0,
3550 &target);
3551 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3552 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3553 put_ofp_flow_stats(ofconn, rule, fsr->out_port, &reply);
3554 }
3555 }
3556 queue_tx(reply, ofconn, ofconn->reply_counter);
3557
3558 return 0;
3559 }
3560
3561 static void
3562 put_nx_flow_stats(struct ofconn *ofconn, struct rule *rule,
3563 ovs_be16 out_port, struct ofpbuf **replyp)
3564 {
3565 struct nx_flow_stats *nfs;
3566 uint64_t packet_count, byte_count;
3567 size_t act_len, start_len;
3568 struct ofpbuf *reply;
3569
3570 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3571 return;
3572 }
3573
3574 query_stats(ofconn->ofproto, rule, &packet_count, &byte_count);
3575
3576 act_len = sizeof *rule->actions * rule->n_actions;
3577
3578 append_nxstats_reply(sizeof *nfs + NXM_MAX_LEN + act_len, ofconn, replyp);
3579 start_len = (*replyp)->size;
3580 reply = *replyp;
3581
3582 nfs = ofpbuf_put_uninit(reply, sizeof *nfs);
3583 nfs->table_id = 0;
3584 nfs->pad = 0;
3585 calc_flow_duration(rule->created, &nfs->duration_sec, &nfs->duration_nsec);
3586 nfs->cookie = rule->flow_cookie;
3587 nfs->priority = htons(rule->cr.priority);
3588 nfs->idle_timeout = htons(rule->idle_timeout);
3589 nfs->hard_timeout = htons(rule->hard_timeout);
3590 nfs->match_len = htons(nx_put_match(reply, &rule->cr));
3591 memset(nfs->pad2, 0, sizeof nfs->pad2);
3592 nfs->packet_count = htonll(packet_count);
3593 nfs->byte_count = htonll(byte_count);
3594 if (rule->n_actions > 0) {
3595 ofpbuf_put(reply, rule->actions, act_len);
3596 }
3597 nfs->length = htons(reply->size - start_len);
3598 }
3599
3600 static int
3601 handle_nxst_flow(struct ofconn *ofconn, const struct ofp_header *oh)
3602 {
3603 struct nx_flow_stats_request *nfsr;
3604 struct cls_rule target;
3605 struct ofpbuf *reply;
3606 struct ofpbuf b;
3607 int error;
3608
3609 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3610
3611 /* Dissect the message. */
3612 nfsr = ofpbuf_pull(&b, sizeof *nfsr);
3613 error = nx_pull_match(&b, ntohs(nfsr->match_len), 0, &target);
3614 if (error) {
3615 return error;
3616 }
3617 if (b.size) {
3618 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3619 }
3620
3621 COVERAGE_INC(ofproto_flows_req);
3622 reply = start_nxstats_reply(&nfsr->nsm, 1024);
3623 if (is_valid_table(nfsr->table_id)) {
3624 struct cls_cursor cursor;
3625 struct rule *rule;
3626
3627 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3628 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3629 put_nx_flow_stats(ofconn, rule, nfsr->out_port, &reply);
3630 }
3631 }
3632 queue_tx(reply, ofconn, ofconn->reply_counter);
3633
3634 return 0;
3635 }
3636
3637 static void
3638 flow_stats_ds(struct ofproto *ofproto, struct rule *rule, struct ds *results)
3639 {
3640 uint64_t packet_count, byte_count;
3641 size_t act_len = sizeof *rule->actions * rule->n_actions;
3642
3643 query_stats(ofproto, rule, &packet_count, &byte_count);
3644
3645 ds_put_format(results, "duration=%llds, ",
3646 (time_msec() - rule->created) / 1000);
3647 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3648 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3649 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3650 cls_rule_format(&rule->cr, results);
3651 if (act_len > 0) {
3652 ofp_print_actions(results, &rule->actions->header, act_len);
3653 } else {
3654 ds_put_cstr(results, "drop");
3655 }
3656 ds_put_cstr(results, "\n");
3657 }
3658
3659 /* Adds a pretty-printed description of all flows to 'results', including
3660 * those marked hidden by secchan (e.g., by in-band control). */
3661 void
3662 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3663 {
3664 struct cls_cursor cursor;
3665 struct rule *rule;
3666
3667 cls_cursor_init(&cursor, &p->cls, NULL);
3668 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3669 flow_stats_ds(p, rule, results);
3670 }
3671 }
3672
3673 static void
3674 query_aggregate_stats(struct ofproto *ofproto, struct cls_rule *target,
3675 ovs_be16 out_port, uint8_t table_id,
3676 struct ofp_aggregate_stats_reply *oasr)
3677 {
3678 uint64_t total_packets = 0;
3679 uint64_t total_bytes = 0;
3680 int n_flows = 0;
3681
3682 COVERAGE_INC(ofproto_agg_request);
3683
3684 if (is_valid_table(table_id)) {
3685 struct cls_cursor cursor;
3686 struct rule *rule;
3687
3688 cls_cursor_init(&cursor, &ofproto->cls, target);
3689 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3690 if (!rule_is_hidden(rule) && rule_has_out_port(rule, out_port)) {
3691 uint64_t packet_count;
3692 uint64_t byte_count;
3693
3694 query_stats(ofproto, rule, &packet_count, &byte_count);
3695
3696 total_packets += packet_count;
3697 total_bytes += byte_count;
3698 n_flows++;
3699 }
3700 }
3701 }
3702
3703 oasr->flow_count = htonl(n_flows);
3704 oasr->packet_count = htonll(total_packets);
3705 oasr->byte_count = htonll(total_bytes);
3706 memset(oasr->pad, 0, sizeof oasr->pad);
3707 }
3708
3709 static int
3710 handle_aggregate_stats_request(struct ofconn *ofconn,
3711 const struct ofp_header *oh)
3712 {
3713 const struct ofp_aggregate_stats_request *request = ofputil_stats_body(oh);
3714 struct ofp_aggregate_stats_reply *reply;
3715 struct cls_rule target;
3716 struct ofpbuf *msg;
3717
3718 ofputil_cls_rule_from_match(&request->match, 0, NXFF_OPENFLOW10, 0,
3719 &target);
3720
3721 msg = start_ofp_stats_reply(oh, sizeof *reply);
3722 reply = append_ofp_stats_reply(sizeof *reply, ofconn, &msg);
3723 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3724 request->table_id, reply);
3725 queue_tx(msg, ofconn, ofconn->reply_counter);
3726 return 0;
3727 }
3728
3729 static int
3730 handle_nxst_aggregate(struct ofconn *ofconn, const struct ofp_header *oh)
3731 {
3732 struct nx_aggregate_stats_request *request;
3733 struct ofp_aggregate_stats_reply *reply;
3734 struct cls_rule target;
3735 struct ofpbuf b;
3736 struct ofpbuf *buf;
3737 int error;
3738
3739 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3740
3741 /* Dissect the message. */
3742 request = ofpbuf_pull(&b, sizeof *request);
3743 error = nx_pull_match(&b, ntohs(request->match_len), 0, &target);
3744 if (error) {
3745 return error;
3746 }
3747 if (b.size) {
3748 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3749 }
3750
3751 /* Reply. */
3752 COVERAGE_INC(ofproto_flows_req);
3753 buf = start_nxstats_reply(&request->nsm, sizeof *reply);
3754 reply = ofpbuf_put_uninit(buf, sizeof *reply);
3755 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3756 request->table_id, reply);
3757 queue_tx(buf, ofconn, ofconn->reply_counter);
3758
3759 return 0;
3760 }
3761
3762 struct queue_stats_cbdata {
3763 struct ofconn *ofconn;
3764 struct ofport *ofport;
3765 struct ofpbuf *msg;
3766 };
3767
3768 static void
3769 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3770 const struct netdev_queue_stats *stats)
3771 {
3772 struct ofp_queue_stats *reply;
3773
3774 reply = append_ofp_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3775 reply->port_no = htons(cbdata->ofport->opp.port_no);
3776 memset(reply->pad, 0, sizeof reply->pad);
3777 reply->queue_id = htonl(queue_id);
3778 reply->tx_bytes = htonll(stats->tx_bytes);
3779 reply->tx_packets = htonll(stats->tx_packets);
3780 reply->tx_errors = htonll(stats->tx_errors);
3781 }
3782
3783 static void
3784 handle_queue_stats_dump_cb(uint32_t queue_id,
3785 struct netdev_queue_stats *stats,
3786 void *cbdata_)
3787 {
3788 struct queue_stats_cbdata *cbdata = cbdata_;
3789
3790 put_queue_stats(cbdata, queue_id, stats);
3791 }
3792
3793 static void
3794 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3795 struct queue_stats_cbdata *cbdata)
3796 {
3797 cbdata->ofport = port;
3798 if (queue_id == OFPQ_ALL) {
3799 netdev_dump_queue_stats(port->netdev,
3800 handle_queue_stats_dump_cb, cbdata);
3801 } else {
3802 struct netdev_queue_stats stats;
3803
3804 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3805 put_queue_stats(cbdata, queue_id, &stats);
3806 }
3807 }
3808 }
3809
3810 static int
3811 handle_queue_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3812 {
3813 struct ofproto *ofproto = ofconn->ofproto;
3814 const struct ofp_queue_stats_request *qsr;
3815 struct queue_stats_cbdata cbdata;
3816 struct ofport *port;
3817 unsigned int port_no;
3818 uint32_t queue_id;
3819
3820 qsr = ofputil_stats_body(oh);
3821 if (!qsr) {
3822 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3823 }
3824
3825 COVERAGE_INC(ofproto_queue_req);
3826
3827 cbdata.ofconn = ofconn;
3828 cbdata.msg = start_ofp_stats_reply(oh, 128);
3829
3830 port_no = ntohs(qsr->port_no);
3831 queue_id = ntohl(qsr->queue_id);
3832 if (port_no == OFPP_ALL) {
3833 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3834 handle_queue_stats_for_port(port, queue_id, &cbdata);
3835 }
3836 } else if (port_no < ofproto->max_ports) {
3837 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3838 if (port) {
3839 handle_queue_stats_for_port(port, queue_id, &cbdata);
3840 }
3841 } else {
3842 ofpbuf_delete(cbdata.msg);
3843 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3844 }
3845 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3846
3847 return 0;
3848 }
3849
3850 static void
3851 facet_update_time(struct ofproto *ofproto, struct facet *facet,
3852 const struct dpif_flow_stats *stats)
3853 {
3854 long long int used = stats->used;
3855 if (used > facet->used) {
3856 facet->used = used;
3857 if (used > facet->rule->used) {
3858 facet->rule->used = used;
3859 }
3860 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
3861 }
3862 }
3863
3864 /* Folds the statistics from 'stats' into the counters in 'facet'.
3865 *
3866 * Because of the meaning of a facet's counters, it only makes sense to do this
3867 * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a
3868 * packet that was sent by hand or if it represents statistics that have been
3869 * cleared out of the datapath. */
3870 static void
3871 facet_update_stats(struct ofproto *ofproto, struct facet *facet,
3872 const struct dpif_flow_stats *stats)
3873 {
3874 if (stats->n_packets) {
3875 facet_update_time(ofproto, facet, stats);
3876 facet->packet_count += stats->n_packets;
3877 facet->byte_count += stats->n_bytes;
3878 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
3879 }
3880 }
3881
3882 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3883 * in which no matching flow already exists in the flow table.
3884 *
3885 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3886 * ofp_actions, to ofconn->ofproto's flow table. Returns 0 on success or an
3887 * OpenFlow error code as encoded by ofp_mkerr() on failure.
3888 *
3889 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3890 * if any. */
3891 static int
3892 add_flow(struct ofconn *ofconn, struct flow_mod *fm)
3893 {
3894 struct ofproto *p = ofconn->ofproto;
3895 struct ofpbuf *packet;
3896 struct rule *rule;
3897 uint16_t in_port;
3898 int error;
3899
3900 if (fm->flags & OFPFF_CHECK_OVERLAP
3901 && classifier_rule_overlaps(&p->cls, &fm->cr)) {
3902 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3903 }
3904
3905 error = 0;
3906 if (fm->buffer_id != UINT32_MAX) {
3907 error = pktbuf_retrieve(ofconn->pktbuf, fm->buffer_id,
3908 &packet, &in_port);
3909 } else {
3910 packet = NULL;
3911 in_port = UINT16_MAX;
3912 }
3913
3914 rule = rule_create(&fm->cr, fm->actions, fm->n_actions,
3915 fm->idle_timeout, fm->hard_timeout, fm->cookie,
3916 fm->flags & OFPFF_SEND_FLOW_REM);
3917 rule_insert(p, rule);
3918 if (packet) {
3919 rule_execute(p, rule, in_port, packet);
3920 }
3921 return error;
3922 }
3923
3924 static struct rule *
3925 find_flow_strict(struct ofproto *p, const struct flow_mod *fm)
3926 {
3927 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &fm->cr));
3928 }
3929
3930 static int
3931 send_buffered_packet(struct ofconn *ofconn,
3932 struct rule *rule, uint32_t buffer_id)
3933 {
3934 struct ofpbuf *packet;
3935 uint16_t in_port;
3936 int error;
3937
3938 if (buffer_id == UINT32_MAX) {
3939 return 0;
3940 }
3941
3942 error = pktbuf_retrieve(ofconn->pktbuf, buffer_id, &packet, &in_port);
3943 if (error) {
3944 return error;
3945 }
3946
3947 rule_execute(ofconn->ofproto, rule, in_port, packet);
3948
3949 return 0;
3950 }
3951 \f
3952 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3953
3954 struct modify_flows_cbdata {
3955 struct ofproto *ofproto;
3956 const struct flow_mod *fm;
3957 struct rule *match;
3958 };
3959
3960 static int modify_flow(struct ofproto *, const struct flow_mod *,
3961 struct rule *);
3962
3963 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3964 * encoded by ofp_mkerr() on failure.
3965 *
3966 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3967 * if any. */
3968 static int
3969 modify_flows_loose(struct ofconn *ofconn, struct flow_mod *fm)
3970 {
3971 struct ofproto *p = ofconn->ofproto;
3972 struct rule *match = NULL;
3973 struct cls_cursor cursor;
3974 struct rule *rule;
3975
3976 cls_cursor_init(&cursor, &p->cls, &fm->cr);
3977 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3978 if (!rule_is_hidden(rule)) {
3979 match = rule;
3980 modify_flow(p, fm, rule);
3981 }
3982 }
3983
3984 if (match) {
3985 /* This credits the packet to whichever flow happened to match last.
3986 * That's weird. Maybe we should do a lookup for the flow that
3987 * actually matches the packet? Who knows. */
3988 send_buffered_packet(ofconn, match, fm->buffer_id);
3989 return 0;
3990 } else {
3991 return add_flow(ofconn, fm);
3992 }
3993 }
3994
3995 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
3996 * code as encoded by ofp_mkerr() on failure.
3997 *
3998 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3999 * if any. */
4000 static int
4001 modify_flow_strict(struct ofconn *ofconn, struct flow_mod *fm)
4002 {
4003 struct ofproto *p = ofconn->ofproto;
4004 struct rule *rule = find_flow_strict(p, fm);
4005 if (rule && !rule_is_hidden(rule)) {
4006 modify_flow(p, fm, rule);
4007 return send_buffered_packet(ofconn, rule, fm->buffer_id);
4008 } else {
4009 return add_flow(ofconn, fm);
4010 }
4011 }
4012
4013 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
4014 * been identified as a flow in 'p''s flow table to be modified, by changing
4015 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
4016 * ofp_action[] structures). */
4017 static int
4018 modify_flow(struct ofproto *p, const struct flow_mod *fm, struct rule *rule)
4019 {
4020 size_t actions_len = fm->n_actions * sizeof *rule->actions;
4021
4022 rule->flow_cookie = fm->cookie;
4023
4024 /* If the actions are the same, do nothing. */
4025 if (fm->n_actions == rule->n_actions
4026 && (!fm->n_actions
4027 || !memcmp(fm->actions, rule->actions, actions_len))) {
4028 return 0;
4029 }
4030
4031 /* Replace actions. */
4032 free(rule->actions);
4033 rule->actions = fm->n_actions ? xmemdup(fm->actions, actions_len) : NULL;
4034 rule->n_actions = fm->n_actions;
4035
4036 p->need_revalidate = true;
4037
4038 return 0;
4039 }
4040 \f
4041 /* OFPFC_DELETE implementation. */
4042
4043 static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
4044
4045 /* Implements OFPFC_DELETE. */
4046 static void
4047 delete_flows_loose(struct ofproto *p, const struct flow_mod *fm)
4048 {
4049 struct rule *rule, *next_rule;
4050 struct cls_cursor cursor;
4051
4052 cls_cursor_init(&cursor, &p->cls, &fm->cr);
4053 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4054 delete_flow(p, rule, htons(fm->out_port));
4055 }
4056 }
4057
4058 /* Implements OFPFC_DELETE_STRICT. */
4059 static void
4060 delete_flow_strict(struct ofproto *p, struct flow_mod *fm)
4061 {
4062 struct rule *rule = find_flow_strict(p, fm);
4063 if (rule) {
4064 delete_flow(p, rule, htons(fm->out_port));
4065 }
4066 }
4067
4068 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
4069 * been identified as a flow to delete from 'p''s flow table, by deleting the
4070 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
4071 * controller.
4072 *
4073 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
4074 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
4075 * specified 'out_port'. */
4076 static void
4077 delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
4078 {
4079 if (rule_is_hidden(rule)) {
4080 return;
4081 }
4082
4083 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
4084 return;
4085 }
4086
4087 rule_send_removed(p, rule, OFPRR_DELETE);
4088 rule_remove(p, rule);
4089 }
4090 \f
4091 static int
4092 handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh)
4093 {
4094 struct ofproto *p = ofconn->ofproto;
4095 struct flow_mod fm;
4096 int error;
4097
4098 error = reject_slave_controller(ofconn, "flow_mod");
4099 if (error) {
4100 return error;
4101 }
4102
4103 error = ofputil_decode_flow_mod(&fm, oh, ofconn->flow_format);
4104 if (error) {
4105 return error;
4106 }
4107
4108 /* We do not support the emergency flow cache. It will hopefully get
4109 * dropped from OpenFlow in the near future. */
4110 if (fm.flags & OFPFF_EMERG) {
4111 /* There isn't a good fit for an error code, so just state that the
4112 * flow table is full. */
4113 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
4114 }
4115
4116 error = validate_actions(fm.actions, fm.n_actions,
4117 &fm.cr.flow, p->max_ports);
4118 if (error) {
4119 return error;
4120 }
4121
4122 switch (fm.command) {
4123 case OFPFC_ADD:
4124 return add_flow(ofconn, &fm);
4125
4126 case OFPFC_MODIFY:
4127 return modify_flows_loose(ofconn, &fm);
4128
4129 case OFPFC_MODIFY_STRICT:
4130 return modify_flow_strict(ofconn, &fm);
4131
4132 case OFPFC_DELETE:
4133 delete_flows_loose(p, &fm);
4134 return 0;
4135
4136 case OFPFC_DELETE_STRICT:
4137 delete_flow_strict(p, &fm);
4138 return 0;
4139
4140 default:
4141 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
4142 }
4143 }
4144
4145 static int
4146 handle_tun_id_from_cookie(struct ofconn *ofconn, const struct ofp_header *oh)
4147 {
4148 const struct nxt_tun_id_cookie *msg
4149 = (const struct nxt_tun_id_cookie *) oh;
4150
4151 ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
4152 return 0;
4153 }
4154
4155 static int
4156 handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh)
4157 {
4158 struct nx_role_request *nrr = (struct nx_role_request *) oh;
4159 struct nx_role_request *reply;
4160 struct ofpbuf *buf;
4161 uint32_t role;
4162
4163 if (ofconn->type != OFCONN_PRIMARY) {
4164 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
4165 "connection");
4166 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4167 }
4168
4169 role = ntohl(nrr->role);
4170 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
4171 && role != NX_ROLE_SLAVE) {
4172 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
4173
4174 /* There's no good error code for this. */
4175 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
4176 }
4177
4178 if (role == NX_ROLE_MASTER) {
4179 struct ofconn *other;
4180
4181 HMAP_FOR_EACH (other, hmap_node, &ofconn->ofproto->controllers) {
4182 if (other->role == NX_ROLE_MASTER) {
4183 other->role = NX_ROLE_SLAVE;
4184 }
4185 }
4186 }
4187 ofconn->role = role;
4188
4189 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, oh->xid, &buf);
4190 reply->role = htonl(role);
4191 queue_tx(buf, ofconn, ofconn->reply_counter);
4192
4193 return 0;
4194 }
4195
4196 static int
4197 handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh)
4198 {
4199 const struct nxt_set_flow_format *msg
4200 = (const struct nxt_set_flow_format *) oh;
4201 uint32_t format;
4202
4203 format = ntohl(msg->format);
4204 if (format == NXFF_OPENFLOW10
4205 || format == NXFF_TUN_ID_FROM_COOKIE
4206 || format == NXFF_NXM) {
4207 ofconn->flow_format = format;
4208 return 0;
4209 } else {
4210 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4211 }
4212 }
4213
4214 static int
4215 handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh)
4216 {
4217 struct ofp_header *ob;
4218 struct ofpbuf *buf;
4219
4220 /* Currently, everything executes synchronously, so we can just
4221 * immediately send the barrier reply. */
4222 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4223 queue_tx(buf, ofconn, ofconn->reply_counter);
4224 return 0;
4225 }
4226
4227 static int
4228 handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg)
4229 {
4230 const struct ofp_header *oh = msg->data;
4231 const struct ofputil_msg_type *type;
4232 int error;
4233
4234 error = ofputil_decode_msg_type(oh, &type);
4235 if (error) {
4236 return error;
4237 }
4238
4239 switch (ofputil_msg_type_code(type)) {
4240 /* OpenFlow requests. */
4241 case OFPUTIL_OFPT_ECHO_REQUEST:
4242 return handle_echo_request(ofconn, oh);
4243
4244 case OFPUTIL_OFPT_FEATURES_REQUEST:
4245 return handle_features_request(ofconn, oh);
4246
4247 case OFPUTIL_OFPT_GET_CONFIG_REQUEST:
4248 return handle_get_config_request(ofconn, oh);
4249
4250 case OFPUTIL_OFPT_SET_CONFIG:
4251 return handle_set_config(ofconn, msg->data);
4252
4253 case OFPUTIL_OFPT_PACKET_OUT:
4254 return handle_packet_out(ofconn, oh);
4255
4256 case OFPUTIL_OFPT_PORT_MOD:
4257 return handle_port_mod(ofconn, oh);
4258
4259 case OFPUTIL_OFPT_FLOW_MOD:
4260 return handle_flow_mod(ofconn, oh);
4261
4262 case OFPUTIL_OFPT_BARRIER_REQUEST:
4263 return handle_barrier_request(ofconn, oh);
4264
4265 /* OpenFlow replies. */
4266 case OFPUTIL_OFPT_ECHO_REPLY:
4267 return 0;
4268
4269 /* Nicira extension requests. */
4270 case OFPUTIL_NXT_STATUS_REQUEST:
4271 return switch_status_handle_request(
4272 ofconn->ofproto->switch_status, ofconn->rconn, oh);
4273
4274 case OFPUTIL_NXT_TUN_ID_FROM_COOKIE:
4275 return handle_tun_id_from_cookie(ofconn, oh);
4276
4277 case OFPUTIL_NXT_ROLE_REQUEST:
4278 return handle_role_request(ofconn, oh);
4279
4280 case OFPUTIL_NXT_SET_FLOW_FORMAT:
4281 return handle_nxt_set_flow_format(ofconn, oh);
4282
4283 case OFPUTIL_NXT_FLOW_MOD:
4284 return handle_flow_mod(ofconn, oh);
4285
4286 /* OpenFlow statistics requests. */
4287 case OFPUTIL_OFPST_DESC_REQUEST:
4288 return handle_desc_stats_request(ofconn, oh);
4289
4290 case OFPUTIL_OFPST_FLOW_REQUEST:
4291 return handle_flow_stats_request(ofconn, oh);
4292
4293 case OFPUTIL_OFPST_AGGREGATE_REQUEST:
4294 return handle_aggregate_stats_request(ofconn, oh);
4295
4296 case OFPUTIL_OFPST_TABLE_REQUEST:
4297 return handle_table_stats_request(ofconn, oh);
4298
4299 case OFPUTIL_OFPST_PORT_REQUEST:
4300 return handle_port_stats_request(ofconn, oh);
4301
4302 case OFPUTIL_OFPST_QUEUE_REQUEST:
4303 return handle_queue_stats_request(ofconn, oh);
4304
4305 /* Nicira extension statistics requests. */
4306 case OFPUTIL_NXST_FLOW_REQUEST:
4307 return handle_nxst_flow(ofconn, oh);
4308
4309 case OFPUTIL_NXST_AGGREGATE_REQUEST:
4310 return handle_nxst_aggregate(ofconn, oh);
4311
4312 case OFPUTIL_INVALID:
4313 case OFPUTIL_OFPT_HELLO:
4314 case OFPUTIL_OFPT_ERROR:
4315 case OFPUTIL_OFPT_FEATURES_REPLY:
4316 case OFPUTIL_OFPT_GET_CONFIG_REPLY:
4317 case OFPUTIL_OFPT_PACKET_IN:
4318 case OFPUTIL_OFPT_FLOW_REMOVED:
4319 case OFPUTIL_OFPT_PORT_STATUS:
4320 case OFPUTIL_OFPT_BARRIER_REPLY:
4321 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REQUEST:
4322 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REPLY:
4323 case OFPUTIL_OFPST_DESC_REPLY:
4324 case OFPUTIL_OFPST_FLOW_REPLY:
4325 case OFPUTIL_OFPST_QUEUE_REPLY:
4326 case OFPUTIL_OFPST_PORT_REPLY:
4327 case OFPUTIL_OFPST_TABLE_REPLY:
4328 case OFPUTIL_OFPST_AGGREGATE_REPLY:
4329 case OFPUTIL_NXT_STATUS_REPLY:
4330 case OFPUTIL_NXT_ROLE_REPLY:
4331 case OFPUTIL_NXT_FLOW_REMOVED:
4332 case OFPUTIL_NXST_FLOW_REPLY:
4333 case OFPUTIL_NXST_AGGREGATE_REPLY:
4334 default:
4335 if (VLOG_IS_WARN_ENABLED()) {
4336 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4337 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4338 free(s);
4339 }
4340 if (oh->type == OFPT_STATS_REQUEST || oh->type == OFPT_STATS_REPLY) {
4341 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
4342 } else {
4343 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4344 }
4345 }
4346 }
4347
4348 static void
4349 handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
4350 {
4351 int error = handle_openflow__(ofconn, ofp_msg);
4352 if (error) {
4353 send_error_oh(ofconn, ofp_msg->data, error);
4354 }
4355 COVERAGE_INC(ofproto_recv_openflow);
4356 }
4357 \f
4358 static void
4359 handle_miss_upcall(struct ofproto *p, struct dpif_upcall *upcall)
4360 {
4361 struct facet *facet;
4362 struct flow flow;
4363
4364 /* Obtain in_port and tun_id, at least. */
4365 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4366
4367 /* Set header pointers in 'flow'. */
4368 flow_extract(upcall->packet, flow.tun_id, flow.in_port, &flow);
4369
4370 /* Check with in-band control to see if this packet should be sent
4371 * to the local port regardless of the flow table. */
4372 if (in_band_msg_in_hook(p->in_band, &flow, upcall->packet)) {
4373 struct ofpbuf odp_actions;
4374
4375 ofpbuf_init(&odp_actions, 32);
4376 nl_msg_put_u32(&odp_actions, ODP_ACTION_ATTR_OUTPUT, ODPP_LOCAL);
4377 dpif_execute(p->dpif, odp_actions.data, odp_actions.size,
4378 upcall->packet);
4379 ofpbuf_uninit(&odp_actions);
4380 }
4381
4382 facet = facet_lookup_valid(p, &flow);
4383 if (!facet) {
4384 struct rule *rule = rule_lookup(p, &flow);
4385 if (!rule) {
4386 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4387 struct ofport *port = get_port(p, flow.in_port);
4388 if (port) {
4389 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4390 COVERAGE_INC(ofproto_no_packet_in);
4391 /* XXX install 'drop' flow entry */
4392 ofpbuf_delete(upcall->packet);
4393 return;
4394 }
4395 } else {
4396 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16,
4397 flow.in_port);
4398 }
4399
4400 COVERAGE_INC(ofproto_packet_in);
4401 send_packet_in(p, upcall, &flow, false);
4402 return;
4403 }
4404
4405 facet = facet_create(p, rule, &flow, upcall->packet);
4406 } else if (!facet->may_install) {
4407 /* The facet is not installable, that is, we need to process every
4408 * packet, so process the current packet's actions into 'facet'. */
4409 facet_make_actions(p, facet, upcall->packet);
4410 }
4411
4412 if (facet->rule->cr.priority == FAIL_OPEN_PRIORITY) {
4413 /*
4414 * Extra-special case for fail-open mode.
4415 *
4416 * We are in fail-open mode and the packet matched the fail-open rule,
4417 * but we are connected to a controller too. We should send the packet
4418 * up to the controller in the hope that it will try to set up a flow
4419 * and thereby allow us to exit fail-open.
4420 *
4421 * See the top-level comment in fail-open.c for more information.
4422 */
4423 send_packet_in(p, upcall, &flow, true);
4424 }
4425
4426 facet_execute(p, facet, upcall->packet);
4427 facet_install(p, facet, false);
4428 }
4429
4430 static void
4431 handle_upcall(struct ofproto *p, struct dpif_upcall *upcall)
4432 {
4433 struct flow flow;
4434
4435 switch (upcall->type) {
4436 case DPIF_UC_ACTION:
4437 COVERAGE_INC(ofproto_ctlr_action);
4438 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4439 send_packet_in(p, upcall, &flow, false);
4440 break;
4441
4442 case DPIF_UC_SAMPLE:
4443 if (p->sflow) {
4444 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4445 ofproto_sflow_received(p->sflow, upcall, &flow);
4446 }
4447 ofpbuf_delete(upcall->packet);
4448 break;
4449
4450 case DPIF_UC_MISS:
4451 handle_miss_upcall(p, upcall);
4452 break;
4453
4454 case DPIF_N_UC_TYPES:
4455 default:
4456 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
4457 break;
4458 }
4459 }
4460 \f
4461 /* Flow expiration. */
4462
4463 static int ofproto_dp_max_idle(const struct ofproto *);
4464 static void ofproto_update_used(struct ofproto *);
4465 static void rule_expire(struct ofproto *, struct rule *);
4466 static void ofproto_expire_facets(struct ofproto *, int dp_max_idle);
4467
4468 /* This function is called periodically by ofproto_run(). Its job is to
4469 * collect updates for the flows that have been installed into the datapath,
4470 * most importantly when they last were used, and then use that information to
4471 * expire flows that have not been used recently.
4472 *
4473 * Returns the number of milliseconds after which it should be called again. */
4474 static int
4475 ofproto_expire(struct ofproto *ofproto)
4476 {
4477 struct rule *rule, *next_rule;
4478 struct cls_cursor cursor;
4479 int dp_max_idle;
4480
4481 /* Update 'used' for each flow in the datapath. */
4482 ofproto_update_used(ofproto);
4483
4484 /* Expire facets that have been idle too long. */
4485 dp_max_idle = ofproto_dp_max_idle(ofproto);
4486 ofproto_expire_facets(ofproto, dp_max_idle);
4487
4488 /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */
4489 cls_cursor_init(&cursor, &ofproto->cls, NULL);
4490 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4491 rule_expire(ofproto, rule);
4492 }
4493
4494 /* Let the hook know that we're at a stable point: all outstanding data
4495 * in existing flows has been accounted to the account_cb. Thus, the
4496 * hook can now reasonably do operations that depend on having accurate
4497 * flow volume accounting (currently, that's just bond rebalancing). */
4498 if (ofproto->ofhooks->account_checkpoint_cb) {
4499 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4500 }
4501
4502 return MIN(dp_max_idle, 1000);
4503 }
4504
4505 /* Update 'used' member of installed facets. */
4506 static void
4507 ofproto_update_used(struct ofproto *p)
4508 {
4509 const struct dpif_flow_stats *stats;
4510 struct dpif_flow_dump dump;
4511 const struct nlattr *key;
4512 size_t key_len;
4513
4514 dpif_flow_dump_start(&dump, p->dpif);
4515 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
4516 struct facet *facet;
4517 struct flow flow;
4518
4519 if (odp_flow_key_to_flow(key, key_len, &flow)) {
4520 struct ds s;
4521
4522 ds_init(&s);
4523 odp_flow_key_format(key, key_len, &s);
4524 VLOG_WARN_RL(&rl, "failed to convert ODP flow key to flow: %s",
4525 ds_cstr(&s));
4526 ds_destroy(&s);
4527
4528 continue;
4529 }
4530 facet = facet_find(p, &flow);
4531
4532 if (facet && facet->installed) {
4533 facet_update_time(p, facet, stats);
4534 facet_account(p, facet, stats->n_bytes);
4535 } else {
4536 /* There's a flow in the datapath that we know nothing about.
4537 * Delete it. */
4538 COVERAGE_INC(ofproto_unexpected_rule);
4539 dpif_flow_del(p->dpif, key, key_len, NULL);
4540 }
4541 }
4542 dpif_flow_dump_done(&dump);
4543 }
4544
4545 /* Calculates and returns the number of milliseconds of idle time after which
4546 * facets should expire from the datapath and we should fold their statistics
4547 * into their parent rules in userspace. */
4548 static int
4549 ofproto_dp_max_idle(const struct ofproto *ofproto)
4550 {
4551 /*
4552 * Idle time histogram.
4553 *
4554 * Most of the time a switch has a relatively small number of facets. When
4555 * this is the case we might as well keep statistics for all of them in
4556 * userspace and to cache them in the kernel datapath for performance as
4557 * well.
4558 *
4559 * As the number of facets increases, the memory required to maintain
4560 * statistics about them in userspace and in the kernel becomes
4561 * significant. However, with a large number of facets it is likely that
4562 * only a few of them are "heavy hitters" that consume a large amount of
4563 * bandwidth. At this point, only heavy hitters are worth caching in the
4564 * kernel and maintaining in userspaces; other facets we can discard.
4565 *
4566 * The technique used to compute the idle time is to build a histogram with
4567 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet
4568 * that is installed in the kernel gets dropped in the appropriate bucket.
4569 * After the histogram has been built, we compute the cutoff so that only
4570 * the most-recently-used 1% of facets (but at least 1000 flows) are kept
4571 * cached. At least the most-recently-used bucket of facets is kept, so
4572 * actually an arbitrary number of facets can be kept in any given
4573 * expiration run (though the next run will delete most of those unless
4574 * they receive additional data).
4575 *
4576 * This requires a second pass through the facets, in addition to the pass
4577 * made by ofproto_update_used(), because the former function never looks
4578 * at uninstallable facets.
4579 */
4580 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4581 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4582 int buckets[N_BUCKETS] = { 0 };
4583 struct facet *facet;
4584 int total, bucket;
4585 long long int now;
4586 int i;
4587
4588 total = hmap_count(&ofproto->facets);
4589 if (total <= 1000) {
4590 return N_BUCKETS * BUCKET_WIDTH;
4591 }
4592
4593 /* Build histogram. */
4594 now = time_msec();
4595 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
4596 long long int idle = now - facet->used;
4597 int bucket = (idle <= 0 ? 0
4598 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4599 : (unsigned int) idle / BUCKET_WIDTH);
4600 buckets[bucket]++;
4601 }
4602
4603 /* Find the first bucket whose flows should be expired. */
4604 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4605 if (buckets[bucket]) {
4606 int subtotal = 0;
4607 do {
4608 subtotal += buckets[bucket++];
4609 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4610 break;
4611 }
4612 }
4613
4614 if (VLOG_IS_DBG_ENABLED()) {
4615 struct ds s;
4616
4617 ds_init(&s);
4618 ds_put_cstr(&s, "keep");
4619 for (i = 0; i < N_BUCKETS; i++) {
4620 if (i == bucket) {
4621 ds_put_cstr(&s, ", drop");
4622 }
4623 if (buckets[i]) {
4624 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4625 }
4626 }
4627 VLOG_INFO("%s: %s (msec:count)",
4628 dpif_name(ofproto->dpif), ds_cstr(&s));
4629 ds_destroy(&s);
4630 }
4631
4632 return bucket * BUCKET_WIDTH;
4633 }
4634
4635 static void
4636 facet_active_timeout(struct ofproto *ofproto, struct facet *facet)
4637 {
4638 if (ofproto->netflow && !facet_is_controller_flow(facet) &&
4639 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
4640 struct ofexpired expired;
4641
4642 if (facet->installed) {
4643 struct dpif_flow_stats stats;
4644
4645 facet_put__(ofproto, facet, facet->actions, facet->actions_len,
4646 &stats);
4647 facet_update_stats(ofproto, facet, &stats);
4648 }
4649
4650 expired.flow = facet->flow;
4651 expired.packet_count = facet->packet_count;
4652 expired.byte_count = facet->byte_count;
4653 expired.used = facet->used;
4654 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4655 }
4656 }
4657
4658 static void
4659 ofproto_expire_facets(struct ofproto *ofproto, int dp_max_idle)
4660 {
4661 long long int cutoff = time_msec() - dp_max_idle;
4662 struct facet *facet, *next_facet;
4663
4664 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
4665 facet_active_timeout(ofproto, facet);
4666 if (facet->used < cutoff) {
4667 facet_remove(ofproto, facet);
4668 }
4669 }
4670 }
4671
4672 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4673 * then delete it entirely. */
4674 static void
4675 rule_expire(struct ofproto *ofproto, struct rule *rule)
4676 {
4677 struct facet *facet, *next_facet;
4678 long long int now;
4679 uint8_t reason;
4680
4681 /* Has 'rule' expired? */
4682 now = time_msec();
4683 if (rule->hard_timeout
4684 && now > rule->created + rule->hard_timeout * 1000) {
4685 reason = OFPRR_HARD_TIMEOUT;
4686 } else if (rule->idle_timeout && list_is_empty(&rule->facets)
4687 && now >rule->used + rule->idle_timeout * 1000) {
4688 reason = OFPRR_IDLE_TIMEOUT;
4689 } else {
4690 return;
4691 }
4692
4693 COVERAGE_INC(ofproto_expired);
4694
4695 /* Update stats. (This is a no-op if the rule expired due to an idle
4696 * timeout, because that only happens when the rule has no facets left.) */
4697 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4698 facet_remove(ofproto, facet);
4699 }
4700
4701 /* Get rid of the rule. */
4702 if (!rule_is_hidden(rule)) {
4703 rule_send_removed(ofproto, rule, reason);
4704 }
4705 rule_remove(ofproto, rule);
4706 }
4707 \f
4708 static struct ofpbuf *
4709 compose_ofp_flow_removed(struct ofconn *ofconn, const struct rule *rule,
4710 uint8_t reason)
4711 {
4712 struct ofp_flow_removed *ofr;
4713 struct ofpbuf *buf;
4714
4715 ofr = make_openflow_xid(sizeof *ofr, OFPT_FLOW_REMOVED, htonl(0), &buf);
4716 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofr->match,
4717 rule->flow_cookie, &ofr->cookie);
4718 ofr->priority = htons(rule->cr.priority);
4719 ofr->reason = reason;
4720 calc_flow_duration(rule->created, &ofr->duration_sec, &ofr->duration_nsec);
4721 ofr->idle_timeout = htons(rule->idle_timeout);
4722 ofr->packet_count = htonll(rule->packet_count);
4723 ofr->byte_count = htonll(rule->byte_count);
4724
4725 return buf;
4726 }
4727
4728 static struct ofpbuf *
4729 compose_nx_flow_removed(const struct rule *rule, uint8_t reason)
4730 {
4731 struct nx_flow_removed *nfr;
4732 struct ofpbuf *buf;
4733 int match_len;
4734
4735 make_nxmsg_xid(sizeof *nfr, NXT_FLOW_REMOVED, htonl(0), &buf);
4736 match_len = nx_put_match(buf, &rule->cr);
4737
4738 nfr = buf->data;
4739 nfr->cookie = rule->flow_cookie;
4740 nfr->priority = htons(rule->cr.priority);
4741 nfr->reason = reason;
4742 calc_flow_duration(rule->created, &nfr->duration_sec, &nfr->duration_nsec);
4743 nfr->idle_timeout = htons(rule->idle_timeout);
4744 nfr->match_len = htons(match_len);
4745 nfr->packet_count = htonll(rule->packet_count);
4746 nfr->byte_count = htonll(rule->byte_count);
4747
4748 return buf;
4749 }
4750
4751 static void
4752 rule_send_removed(struct ofproto *p, struct rule *rule, uint8_t reason)
4753 {
4754 struct ofconn *ofconn;
4755
4756 if (!rule->send_flow_removed) {
4757 return;
4758 }
4759
4760 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4761 struct ofpbuf *msg;
4762
4763 if (!rconn_is_connected(ofconn->rconn)
4764 || !ofconn_receives_async_msgs(ofconn)) {
4765 continue;
4766 }
4767
4768 msg = (ofconn->flow_format == NXFF_NXM
4769 ? compose_nx_flow_removed(rule, reason)
4770 : compose_ofp_flow_removed(ofconn, rule, reason));
4771
4772 /* Account flow expirations under ofconn->reply_counter, the counter
4773 * for replies to OpenFlow requests. That works because preventing
4774 * OpenFlow requests from being processed also prevents new flows from
4775 * being added (and expiring). (It also prevents processing OpenFlow
4776 * requests that would not add new flows, so it is imperfect.) */
4777 queue_tx(msg, ofconn, ofconn->reply_counter);
4778 }
4779 }
4780
4781 /* pinsched callback for sending 'ofp_packet_in' on 'ofconn'. */
4782 static void
4783 do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn_)
4784 {
4785 struct ofconn *ofconn = ofconn_;
4786
4787 rconn_send_with_limit(ofconn->rconn, ofp_packet_in,
4788 ofconn->packet_in_counter, 100);
4789 }
4790
4791 /* Takes 'upcall', whose packet has the flow specified by 'flow', composes an
4792 * OpenFlow packet-in message from it, and passes it to 'ofconn''s packet
4793 * scheduler for sending.
4794 *
4795 * If 'clone' is true, the caller retains ownership of 'upcall->packet'.
4796 * Otherwise, ownership is transferred to this function. */
4797 static void
4798 schedule_packet_in(struct ofconn *ofconn, struct dpif_upcall *upcall,
4799 const struct flow *flow, bool clone)
4800 {
4801 enum { OPI_SIZE = offsetof(struct ofp_packet_in, data) };
4802 struct ofproto *ofproto = ofconn->ofproto;
4803 struct ofp_packet_in *opi;
4804 int total_len, send_len;
4805 struct ofpbuf *packet;
4806 uint32_t buffer_id;
4807 int idx;
4808
4809 /* Get OpenFlow buffer_id. */
4810 if (upcall->type == DPIF_UC_ACTION) {
4811 buffer_id = UINT32_MAX;
4812 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4813 buffer_id = pktbuf_get_null();
4814 } else if (!ofconn->pktbuf) {
4815 buffer_id = UINT32_MAX;
4816 } else {
4817 buffer_id = pktbuf_save(ofconn->pktbuf, upcall->packet, flow->in_port);
4818 }
4819
4820 /* Figure out how much of the packet to send. */
4821 total_len = send_len = upcall->packet->size;
4822 if (buffer_id != UINT32_MAX) {
4823 send_len = MIN(send_len, ofconn->miss_send_len);
4824 }
4825 if (upcall->type == DPIF_UC_ACTION) {
4826 send_len = MIN(send_len, upcall->userdata);
4827 }
4828
4829 /* Copy or steal buffer for OFPT_PACKET_IN. */
4830 if (clone) {
4831 packet = ofpbuf_clone_data_with_headroom(upcall->packet->data,
4832 send_len, OPI_SIZE);
4833 } else {
4834 packet = upcall->packet;
4835 packet->size = send_len;
4836 }
4837
4838 /* Add OFPT_PACKET_IN. */
4839 opi = ofpbuf_push_zeros(packet, OPI_SIZE);
4840 opi->header.version = OFP_VERSION;
4841 opi->header.type = OFPT_PACKET_IN;
4842 opi->total_len = htons(total_len);
4843 opi->in_port = htons(odp_port_to_ofp_port(flow->in_port));
4844 opi->reason = upcall->type == DPIF_UC_MISS ? OFPR_NO_MATCH : OFPR_ACTION;
4845 opi->buffer_id = htonl(buffer_id);
4846 update_openflow_length(packet);
4847
4848 /* Hand over to packet scheduler. It might immediately call into
4849 * do_send_packet_in() or it might buffer it for a while (until a later
4850 * call to pinsched_run()). */
4851 idx = upcall->type == DPIF_UC_MISS ? 0 : 1;
4852 pinsched_send(ofconn->schedulers[idx], flow->in_port,
4853 packet, do_send_packet_in, ofconn);
4854 }
4855
4856 /* Given 'upcall', of type DPIF_UC_ACTION or DPIF_UC_MISS, sends an
4857 * OFPT_PACKET_IN message to each OpenFlow controller as necessary according to
4858 * their individual configurations.
4859 *
4860 * Takes ownership of 'packet'. */
4861 static void
4862 send_packet_in(struct ofproto *ofproto, struct dpif_upcall *upcall,
4863 const struct flow *flow, bool clone)
4864 {
4865 struct ofconn *ofconn, *prev;
4866
4867 prev = NULL;
4868 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
4869 if (ofconn_receives_async_msgs(ofconn)) {
4870 if (prev) {
4871 schedule_packet_in(prev, upcall, flow, true);
4872 }
4873 prev = ofconn;
4874 }
4875 }
4876 if (prev) {
4877 schedule_packet_in(prev, upcall, flow, clone);
4878 } else if (!clone) {
4879 ofpbuf_delete(upcall->packet);
4880 }
4881 }
4882
4883 static uint64_t
4884 pick_datapath_id(const struct ofproto *ofproto)
4885 {
4886 const struct ofport *port;
4887
4888 port = get_port(ofproto, ODPP_LOCAL);
4889 if (port) {
4890 uint8_t ea[ETH_ADDR_LEN];
4891 int error;
4892
4893 error = netdev_get_etheraddr(port->netdev, ea);
4894 if (!error) {
4895 return eth_addr_to_uint64(ea);
4896 }
4897 VLOG_WARN("could not get MAC address for %s (%s)",
4898 netdev_get_name(port->netdev), strerror(error));
4899 }
4900 return ofproto->fallback_dpid;
4901 }
4902
4903 static uint64_t
4904 pick_fallback_dpid(void)
4905 {
4906 uint8_t ea[ETH_ADDR_LEN];
4907 eth_addr_nicira_random(ea);
4908 return eth_addr_to_uint64(ea);
4909 }
4910 \f
4911 static void
4912 ofproto_unixctl_list(struct unixctl_conn *conn, const char *arg OVS_UNUSED,
4913 void *aux OVS_UNUSED)
4914 {
4915 const struct shash_node *node;
4916 struct ds results;
4917
4918 ds_init(&results);
4919 SHASH_FOR_EACH (node, &all_ofprotos) {
4920 ds_put_format(&results, "%s\n", node->name);
4921 }
4922 unixctl_command_reply(conn, 200, ds_cstr(&results));
4923 ds_destroy(&results);
4924 }
4925
4926 struct ofproto_trace {
4927 struct action_xlate_ctx ctx;
4928 struct flow flow;
4929 struct ds *result;
4930 };
4931
4932 static void
4933 trace_format_rule(struct ds *result, int level, const struct rule *rule)
4934 {
4935 ds_put_char_multiple(result, '\t', level);
4936 if (!rule) {
4937 ds_put_cstr(result, "No match\n");
4938 return;
4939 }
4940
4941 ds_put_format(result, "Rule: cookie=%#"PRIx64" ",
4942 ntohll(rule->flow_cookie));
4943 cls_rule_format(&rule->cr, result);
4944 ds_put_char(result, '\n');
4945
4946 ds_put_char_multiple(result, '\t', level);
4947 ds_put_cstr(result, "OpenFlow ");
4948 ofp_print_actions(result, (const struct ofp_action_header *) rule->actions,
4949 rule->n_actions * sizeof *rule->actions);
4950 ds_put_char(result, '\n');
4951 }
4952
4953 static void
4954 trace_format_flow(struct ds *result, int level, const char *title,
4955 struct ofproto_trace *trace)
4956 {
4957 ds_put_char_multiple(result, '\t', level);
4958 ds_put_format(result, "%s: ", title);
4959 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
4960 ds_put_cstr(result, "unchanged");
4961 } else {
4962 flow_format(result, &trace->ctx.flow);
4963 trace->flow = trace->ctx.flow;
4964 }
4965 ds_put_char(result, '\n');
4966 }
4967
4968 static void
4969 trace_resubmit(struct action_xlate_ctx *ctx, const struct rule *rule)
4970 {
4971 struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx);
4972 struct ds *result = trace->result;
4973
4974 ds_put_char(result, '\n');
4975 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
4976 trace_format_rule(result, ctx->recurse + 1, rule);
4977 }
4978
4979 static void
4980 ofproto_unixctl_trace(struct unixctl_conn *conn, const char *args_,
4981 void *aux OVS_UNUSED)
4982 {
4983 char *dpname, *in_port_s, *tun_id_s, *packet_s;
4984 char *args = xstrdup(args_);
4985 char *save_ptr = NULL;
4986 struct ofproto *ofproto;
4987 struct ofpbuf packet;
4988 struct rule *rule;
4989 struct ds result;
4990 struct flow flow;
4991 uint16_t in_port;
4992 ovs_be64 tun_id;
4993 char *s;
4994
4995 ofpbuf_init(&packet, strlen(args) / 2);
4996 ds_init(&result);
4997
4998 dpname = strtok_r(args, " ", &save_ptr);
4999 tun_id_s = strtok_r(NULL, " ", &save_ptr);
5000 in_port_s = strtok_r(NULL, " ", &save_ptr);
5001 packet_s = strtok_r(NULL, "", &save_ptr); /* Get entire rest of line. */
5002 if (!dpname || !in_port_s || !packet_s) {
5003 unixctl_command_reply(conn, 501, "Bad command syntax");
5004 goto exit;
5005 }
5006
5007 ofproto = shash_find_data(&all_ofprotos, dpname);
5008 if (!ofproto) {
5009 unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list "
5010 "for help)");
5011 goto exit;
5012 }
5013
5014 tun_id = htonll(strtoull(tun_id_s, NULL, 10));
5015 in_port = ofp_port_to_odp_port(atoi(in_port_s));
5016
5017 packet_s = ofpbuf_put_hex(&packet, packet_s, NULL);
5018 packet_s += strspn(packet_s, " ");
5019 if (*packet_s != '\0') {
5020 unixctl_command_reply(conn, 501, "Trailing garbage in command");
5021 goto exit;
5022 }
5023 if (packet.size < ETH_HEADER_LEN) {
5024 unixctl_command_reply(conn, 501, "Packet data too short for Ethernet");
5025 goto exit;
5026 }
5027
5028 ds_put_cstr(&result, "Packet: ");
5029 s = ofp_packet_to_string(packet.data, packet.size, packet.size);
5030 ds_put_cstr(&result, s);
5031 free(s);
5032
5033 flow_extract(&packet, tun_id, in_port, &flow);
5034 ds_put_cstr(&result, "Flow: ");
5035 flow_format(&result, &flow);
5036 ds_put_char(&result, '\n');
5037
5038 rule = rule_lookup(ofproto, &flow);
5039 trace_format_rule(&result, 0, rule);
5040 if (rule) {
5041 struct ofproto_trace trace;
5042 struct ofpbuf *odp_actions;
5043
5044 trace.result = &result;
5045 trace.flow = flow;
5046 action_xlate_ctx_init(&trace.ctx, ofproto, &flow, &packet);
5047 trace.ctx.resubmit_hook = trace_resubmit;
5048 odp_actions = xlate_actions(&trace.ctx,
5049 rule->actions, rule->n_actions);
5050
5051 ds_put_char(&result, '\n');
5052 trace_format_flow(&result, 0, "Final flow", &trace);
5053 ds_put_cstr(&result, "Datapath actions: ");
5054 format_odp_actions(&result, odp_actions->data, odp_actions->size);
5055 ofpbuf_delete(odp_actions);
5056 }
5057
5058 unixctl_command_reply(conn, 200, ds_cstr(&result));
5059
5060 exit:
5061 ds_destroy(&result);
5062 ofpbuf_uninit(&packet);
5063 free(args);
5064 }
5065
5066 static void
5067 ofproto_unixctl_init(void)
5068 {
5069 static bool registered;
5070 if (registered) {
5071 return;
5072 }
5073 registered = true;
5074
5075 unixctl_command_register("ofproto/list", ofproto_unixctl_list, NULL);
5076 unixctl_command_register("ofproto/trace", ofproto_unixctl_trace, NULL);
5077 }
5078 \f
5079 static bool
5080 default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
5081 struct ofpbuf *odp_actions, tag_type *tags,
5082 uint16_t *nf_output_iface, void *ofproto_)
5083 {
5084 struct ofproto *ofproto = ofproto_;
5085 int out_port;
5086
5087 /* Drop frames for reserved multicast addresses. */
5088 if (eth_addr_is_reserved(flow->dl_dst)) {
5089 return true;
5090 }
5091
5092 /* Learn source MAC (but don't try to learn from revalidation). */
5093 if (packet != NULL) {
5094 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
5095 0, flow->in_port,
5096 GRAT_ARP_LOCK_NONE);
5097 if (rev_tag) {
5098 /* The log messages here could actually be useful in debugging,
5099 * so keep the rate limit relatively high. */
5100 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
5101 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
5102 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
5103 ofproto_revalidate(ofproto, rev_tag);
5104 }
5105 }
5106
5107 /* Determine output port. */
5108 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
5109 NULL);
5110 if (out_port < 0) {
5111 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
5112 nf_output_iface, odp_actions);
5113 } else if (out_port != flow->in_port) {
5114 nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT, out_port);
5115 *nf_output_iface = out_port;
5116 } else {
5117 /* Drop. */
5118 }
5119
5120 return true;
5121 }
5122
5123 static const struct ofhooks default_ofhooks = {
5124 default_normal_ofhook_cb,
5125 NULL,
5126 NULL
5127 };