]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
ofproto: Format entire rule when dumping all flows.
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "byte-order.h"
28 #include "classifier.h"
29 #include "coverage.h"
30 #include "discovery.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hash.h"
35 #include "hmap.h"
36 #include "in-band.h"
37 #include "mac-learning.h"
38 #include "netdev.h"
39 #include "netflow.h"
40 #include "netlink.h"
41 #include "nx-match.h"
42 #include "odp-util.h"
43 #include "ofp-print.h"
44 #include "ofp-util.h"
45 #include "ofproto-sflow.h"
46 #include "ofpbuf.h"
47 #include "openflow/nicira-ext.h"
48 #include "openflow/openflow.h"
49 #include "openvswitch/datapath-protocol.h"
50 #include "packets.h"
51 #include "pinsched.h"
52 #include "pktbuf.h"
53 #include "poll-loop.h"
54 #include "rconn.h"
55 #include "shash.h"
56 #include "status.h"
57 #include "stream-ssl.h"
58 #include "svec.h"
59 #include "tag.h"
60 #include "timeval.h"
61 #include "unixctl.h"
62 #include "vconn.h"
63 #include "vlog.h"
64
65 VLOG_DEFINE_THIS_MODULE(ofproto);
66
67 COVERAGE_DEFINE(facet_changed_rule);
68 COVERAGE_DEFINE(facet_revalidate);
69 COVERAGE_DEFINE(odp_overflow);
70 COVERAGE_DEFINE(ofproto_agg_request);
71 COVERAGE_DEFINE(ofproto_costly_flags);
72 COVERAGE_DEFINE(ofproto_ctlr_action);
73 COVERAGE_DEFINE(ofproto_del_rule);
74 COVERAGE_DEFINE(ofproto_error);
75 COVERAGE_DEFINE(ofproto_expiration);
76 COVERAGE_DEFINE(ofproto_expired);
77 COVERAGE_DEFINE(ofproto_flows_req);
78 COVERAGE_DEFINE(ofproto_flush);
79 COVERAGE_DEFINE(ofproto_invalidated);
80 COVERAGE_DEFINE(ofproto_no_packet_in);
81 COVERAGE_DEFINE(ofproto_ofconn_stuck);
82 COVERAGE_DEFINE(ofproto_ofp2odp);
83 COVERAGE_DEFINE(ofproto_packet_in);
84 COVERAGE_DEFINE(ofproto_packet_out);
85 COVERAGE_DEFINE(ofproto_queue_req);
86 COVERAGE_DEFINE(ofproto_recv_openflow);
87 COVERAGE_DEFINE(ofproto_reinit_ports);
88 COVERAGE_DEFINE(ofproto_unexpected_rule);
89 COVERAGE_DEFINE(ofproto_uninstallable);
90 COVERAGE_DEFINE(ofproto_update_port);
91
92 #include "sflow_api.h"
93
94 struct rule;
95
96 struct ofport {
97 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
98 struct netdev *netdev;
99 struct ofp_phy_port opp; /* In host byte order. */
100 uint16_t odp_port;
101 };
102
103 static void ofport_free(struct ofport *);
104 static void hton_ofp_phy_port(struct ofp_phy_port *);
105
106 struct action_xlate_ctx {
107 /* action_xlate_ctx_init() initializes these members. */
108
109 /* The ofproto. */
110 struct ofproto *ofproto;
111
112 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
113 * this flow when actions change header fields. */
114 struct flow flow;
115
116 /* The packet corresponding to 'flow', or a null pointer if we are
117 * revalidating without a packet to refer to. */
118 const struct ofpbuf *packet;
119
120 /* If nonnull, called just before executing a resubmit action.
121 *
122 * This is normally null so the client has to set it manually after
123 * calling action_xlate_ctx_init(). */
124 void (*resubmit_hook)(struct action_xlate_ctx *, const struct rule *);
125
126 /* xlate_actions() initializes and uses these members. The client might want
127 * to look at them after it returns. */
128
129 struct ofpbuf *odp_actions; /* Datapath actions. */
130 tag_type tags; /* Tags associated with OFPP_NORMAL actions. */
131 bool may_set_up_flow; /* True ordinarily; false if the actions must
132 * be reassessed for every packet. */
133 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
134
135 /* xlate_actions() initializes and uses these members, but the client has no
136 * reason to look at them. */
137
138 int recurse; /* Recursion level, via xlate_table_action. */
139 int last_pop_priority; /* Offset in 'odp_actions' just past most
140 * recently added ODPAT_SET_PRIORITY. */
141 };
142
143 static void action_xlate_ctx_init(struct action_xlate_ctx *,
144 struct ofproto *, const struct flow *,
145 const struct ofpbuf *);
146 static struct ofpbuf *xlate_actions(struct action_xlate_ctx *,
147 const union ofp_action *in, size_t n_in);
148
149 /* An OpenFlow flow. */
150 struct rule {
151 long long int used; /* Time last used; time created if not used. */
152 long long int created; /* Creation time. */
153
154 /* These statistics:
155 *
156 * - Do include packets and bytes from facets that have been deleted or
157 * whose own statistics have been folded into the rule.
158 *
159 * - Do include packets and bytes sent "by hand" that were accounted to
160 * the rule without any facet being involved (this is a rare corner
161 * case in rule_execute()).
162 *
163 * - Do not include packet or bytes that can be obtained from any facet's
164 * packet_count or byte_count member or that can be obtained from the
165 * datapath by, e.g., dpif_flow_get() for any facet.
166 */
167 uint64_t packet_count; /* Number of packets received. */
168 uint64_t byte_count; /* Number of bytes received. */
169
170 ovs_be64 flow_cookie; /* Controller-issued identifier. */
171
172 struct cls_rule cr; /* In owning ofproto's classifier. */
173 uint16_t idle_timeout; /* In seconds from time of last use. */
174 uint16_t hard_timeout; /* In seconds from time of creation. */
175 bool send_flow_removed; /* Send a flow removed message? */
176 int n_actions; /* Number of elements in actions[]. */
177 union ofp_action *actions; /* OpenFlow actions. */
178 struct list facets; /* List of "struct facet"s. */
179 };
180
181 static struct rule *rule_from_cls_rule(const struct cls_rule *);
182 static bool rule_is_hidden(const struct rule *);
183
184 static struct rule *rule_create(const struct cls_rule *,
185 const union ofp_action *, size_t n_actions,
186 uint16_t idle_timeout, uint16_t hard_timeout,
187 ovs_be64 flow_cookie, bool send_flow_removed);
188 static void rule_destroy(struct ofproto *, struct rule *);
189 static void rule_free(struct rule *);
190
191 static struct rule *rule_lookup(struct ofproto *, const struct flow *);
192 static void rule_insert(struct ofproto *, struct rule *);
193 static void rule_remove(struct ofproto *, struct rule *);
194
195 static void rule_send_removed(struct ofproto *, struct rule *, uint8_t reason);
196
197 /* An exact-match instantiation of an OpenFlow flow. */
198 struct facet {
199 long long int used; /* Time last used; time created if not used. */
200
201 /* These statistics:
202 *
203 * - Do include packets and bytes sent "by hand", e.g. with
204 * dpif_execute().
205 *
206 * - Do include packets and bytes that were obtained from the datapath
207 * when a flow was deleted (e.g. dpif_flow_del()) or when its
208 * statistics were reset (e.g. dpif_flow_put() with ODPPF_ZERO_STATS).
209 *
210 * - Do not include any packets or bytes that can currently be obtained
211 * from the datapath by, e.g., dpif_flow_get().
212 */
213 uint64_t packet_count; /* Number of packets received. */
214 uint64_t byte_count; /* Number of bytes received. */
215
216 /* Number of bytes passed to account_cb. This may include bytes that can
217 * currently obtained from the datapath (thus, it can be greater than
218 * byte_count). */
219 uint64_t accounted_bytes;
220
221 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
222 struct list list_node; /* In owning rule's 'facets' list. */
223 struct rule *rule; /* Owning rule. */
224 struct flow flow; /* Exact-match flow. */
225 bool installed; /* Installed in datapath? */
226 bool may_install; /* True ordinarily; false if actions must
227 * be reassessed for every packet. */
228 unsigned int actions_len; /* Number of bytes in actions[]. */
229 struct nlattr *actions; /* Datapath actions. */
230 tag_type tags; /* Tags (set only by hooks). */
231 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
232 };
233
234 static struct facet *facet_create(struct ofproto *, struct rule *,
235 const struct flow *,
236 const struct ofpbuf *packet);
237 static void facet_remove(struct ofproto *, struct facet *);
238 static void facet_free(struct facet *);
239
240 static struct facet *facet_lookup_valid(struct ofproto *, const struct flow *);
241 static bool facet_revalidate(struct ofproto *, struct facet *);
242
243 static void facet_install(struct ofproto *, struct facet *, bool zero_stats);
244 static void facet_uninstall(struct ofproto *, struct facet *);
245 static void facet_flush_stats(struct ofproto *, struct facet *);
246
247 static void facet_make_actions(struct ofproto *, struct facet *,
248 const struct ofpbuf *packet);
249 static void facet_update_stats(struct ofproto *, struct facet *,
250 const struct odp_flow_stats *);
251
252 /* ofproto supports two kinds of OpenFlow connections:
253 *
254 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
255 * maintains persistent connections to these controllers and by default
256 * sends them asynchronous messages such as packet-ins.
257 *
258 * - "Service" connections, e.g. from ovs-ofctl. When these connections
259 * drop, it is the other side's responsibility to reconnect them if
260 * necessary. ofproto does not send them asynchronous messages by default.
261 *
262 * Currently, active (tcp, ssl, unix) connections are always "primary"
263 * connections and passive (ptcp, pssl, punix) connections are always "service"
264 * connections. There is no inherent reason for this, but it reflects the
265 * common case.
266 */
267 enum ofconn_type {
268 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
269 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
270 };
271
272 /* A listener for incoming OpenFlow "service" connections. */
273 struct ofservice {
274 struct hmap_node node; /* In struct ofproto's "services" hmap. */
275 struct pvconn *pvconn; /* OpenFlow connection listener. */
276
277 /* These are not used by ofservice directly. They are settings for
278 * accepted "struct ofconn"s from the pvconn. */
279 int probe_interval; /* Max idle time before probing, in seconds. */
280 int rate_limit; /* Max packet-in rate in packets per second. */
281 int burst_limit; /* Limit on accumulating packet credits. */
282 };
283
284 static struct ofservice *ofservice_lookup(struct ofproto *,
285 const char *target);
286 static int ofservice_create(struct ofproto *,
287 const struct ofproto_controller *);
288 static void ofservice_reconfigure(struct ofservice *,
289 const struct ofproto_controller *);
290 static void ofservice_destroy(struct ofproto *, struct ofservice *);
291
292 /* An OpenFlow connection. */
293 struct ofconn {
294 struct ofproto *ofproto; /* The ofproto that owns this connection. */
295 struct list node; /* In struct ofproto's "all_conns" list. */
296 struct rconn *rconn; /* OpenFlow connection. */
297 enum ofconn_type type; /* Type. */
298 enum nx_flow_format flow_format; /* Currently selected flow format. */
299
300 /* OFPT_PACKET_IN related data. */
301 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
302 struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */
303 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
304 int miss_send_len; /* Bytes to send of buffered packets. */
305
306 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
307 * requests, and the maximum number before we stop reading OpenFlow
308 * requests. */
309 #define OFCONN_REPLY_MAX 100
310 struct rconn_packet_counter *reply_counter;
311
312 /* type == OFCONN_PRIMARY only. */
313 enum nx_role role; /* Role. */
314 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
315 struct discovery *discovery; /* Controller discovery object, if enabled. */
316 struct status_category *ss; /* Switch status category. */
317 enum ofproto_band band; /* In-band or out-of-band? */
318 };
319
320 /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's
321 * "schedulers" array. Their values are 0 and 1, and their meanings and values
322 * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In
323 * case anything ever changes, check their values here. */
324 #define N_SCHEDULERS 2
325 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0);
326 BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR);
327 BUILD_ASSERT_DECL(OFPR_ACTION == 1);
328 BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR);
329
330 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
331 enum ofconn_type);
332 static void ofconn_destroy(struct ofconn *);
333 static void ofconn_run(struct ofconn *);
334 static void ofconn_wait(struct ofconn *);
335 static bool ofconn_receives_async_msgs(const struct ofconn *);
336 static char *ofconn_make_name(const struct ofproto *, const char *target);
337 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
338
339 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
340 struct rconn_packet_counter *counter);
341
342 static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg);
343 static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn);
344
345 struct ofproto {
346 /* Settings. */
347 uint64_t datapath_id; /* Datapath ID. */
348 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
349 char *mfr_desc; /* Manufacturer. */
350 char *hw_desc; /* Hardware. */
351 char *sw_desc; /* Software version. */
352 char *serial_desc; /* Serial number. */
353 char *dp_desc; /* Datapath description. */
354
355 /* Datapath. */
356 struct dpif *dpif;
357 struct netdev_monitor *netdev_monitor;
358 struct hmap ports; /* Contains "struct ofport"s. */
359 struct shash port_by_name;
360 uint32_t max_ports;
361
362 /* Configuration. */
363 struct switch_status *switch_status;
364 struct fail_open *fail_open;
365 struct netflow *netflow;
366 struct ofproto_sflow *sflow;
367
368 /* In-band control. */
369 struct in_band *in_band;
370 long long int next_in_band_update;
371 struct sockaddr_in *extra_in_band_remotes;
372 size_t n_extra_remotes;
373 int in_band_queue;
374
375 /* Flow table. */
376 struct classifier cls;
377 long long int next_expiration;
378
379 /* Facets. */
380 struct hmap facets;
381 bool need_revalidate;
382 struct tag_set revalidate_set;
383
384 /* OpenFlow connections. */
385 struct hmap controllers; /* Controller "struct ofconn"s. */
386 struct list all_conns; /* Contains "struct ofconn"s. */
387 enum ofproto_fail_mode fail_mode;
388
389 /* OpenFlow listeners. */
390 struct hmap services; /* Contains "struct ofservice"s. */
391 struct pvconn **snoops;
392 size_t n_snoops;
393
394 /* Hooks for ovs-vswitchd. */
395 const struct ofhooks *ofhooks;
396 void *aux;
397
398 /* Used by default ofhooks. */
399 struct mac_learning *ml;
400 };
401
402 /* Map from dpif name to struct ofproto, for use by unixctl commands. */
403 static struct shash all_ofprotos = SHASH_INITIALIZER(&all_ofprotos);
404
405 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
406
407 static const struct ofhooks default_ofhooks;
408
409 static uint64_t pick_datapath_id(const struct ofproto *);
410 static uint64_t pick_fallback_dpid(void);
411
412 static int ofproto_expire(struct ofproto *);
413
414 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
415
416 static void handle_openflow(struct ofconn *, struct ofpbuf *);
417
418 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
419 static void update_port(struct ofproto *, const char *devname);
420 static int init_ports(struct ofproto *);
421 static void reinit_ports(struct ofproto *);
422
423 static void ofproto_unixctl_init(void);
424
425 int
426 ofproto_create(const char *datapath, const char *datapath_type,
427 const struct ofhooks *ofhooks, void *aux,
428 struct ofproto **ofprotop)
429 {
430 struct odp_stats stats;
431 struct ofproto *p;
432 struct dpif *dpif;
433 int error;
434
435 *ofprotop = NULL;
436
437 ofproto_unixctl_init();
438
439 /* Connect to datapath and start listening for messages. */
440 error = dpif_open(datapath, datapath_type, &dpif);
441 if (error) {
442 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
443 return error;
444 }
445 error = dpif_get_dp_stats(dpif, &stats);
446 if (error) {
447 VLOG_ERR("failed to obtain stats for datapath %s: %s",
448 datapath, strerror(error));
449 dpif_close(dpif);
450 return error;
451 }
452 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW);
453 if (error) {
454 VLOG_ERR("failed to listen on datapath %s: %s",
455 datapath, strerror(error));
456 dpif_close(dpif);
457 return error;
458 }
459 dpif_flow_flush(dpif);
460 dpif_recv_purge(dpif);
461
462 /* Initialize settings. */
463 p = xzalloc(sizeof *p);
464 p->fallback_dpid = pick_fallback_dpid();
465 p->datapath_id = p->fallback_dpid;
466 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
467 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
468 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
469 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
470 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
471
472 /* Initialize datapath. */
473 p->dpif = dpif;
474 p->netdev_monitor = netdev_monitor_create();
475 hmap_init(&p->ports);
476 shash_init(&p->port_by_name);
477 p->max_ports = stats.max_ports;
478
479 /* Initialize submodules. */
480 p->switch_status = switch_status_create(p);
481 p->fail_open = NULL;
482 p->netflow = NULL;
483 p->sflow = NULL;
484
485 /* Initialize in-band control. */
486 p->in_band = NULL;
487 p->in_band_queue = -1;
488
489 /* Initialize flow table. */
490 classifier_init(&p->cls);
491 p->next_expiration = time_msec() + 1000;
492
493 /* Initialize facet table. */
494 hmap_init(&p->facets);
495 p->need_revalidate = false;
496 tag_set_init(&p->revalidate_set);
497
498 /* Initialize OpenFlow connections. */
499 list_init(&p->all_conns);
500 hmap_init(&p->controllers);
501 hmap_init(&p->services);
502 p->snoops = NULL;
503 p->n_snoops = 0;
504
505 /* Initialize hooks. */
506 if (ofhooks) {
507 p->ofhooks = ofhooks;
508 p->aux = aux;
509 p->ml = NULL;
510 } else {
511 p->ofhooks = &default_ofhooks;
512 p->aux = p;
513 p->ml = mac_learning_create();
514 }
515
516 /* Pick final datapath ID. */
517 p->datapath_id = pick_datapath_id(p);
518 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
519
520 shash_add_once(&all_ofprotos, dpif_name(p->dpif), p);
521
522 *ofprotop = p;
523 return 0;
524 }
525
526 void
527 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
528 {
529 uint64_t old_dpid = p->datapath_id;
530 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
531 if (p->datapath_id != old_dpid) {
532 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
533
534 /* Force all active connections to reconnect, since there is no way to
535 * notify a controller that the datapath ID has changed. */
536 ofproto_reconnect_controllers(p);
537 }
538 }
539
540 static bool
541 is_discovery_controller(const struct ofproto_controller *c)
542 {
543 return !strcmp(c->target, "discover");
544 }
545
546 static bool
547 is_in_band_controller(const struct ofproto_controller *c)
548 {
549 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
550 }
551
552 /* Creates a new controller in 'ofproto'. Some of the settings are initially
553 * drawn from 'c', but update_controller() needs to be called later to finish
554 * the new ofconn's configuration. */
555 static void
556 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
557 {
558 struct discovery *discovery;
559 struct ofconn *ofconn;
560
561 if (is_discovery_controller(c)) {
562 int error = discovery_create(c->accept_re, c->update_resolv_conf,
563 ofproto->dpif, ofproto->switch_status,
564 &discovery);
565 if (error) {
566 return;
567 }
568 } else {
569 discovery = NULL;
570 }
571
572 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
573 ofconn->pktbuf = pktbuf_create();
574 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
575 if (discovery) {
576 ofconn->discovery = discovery;
577 } else {
578 char *name = ofconn_make_name(ofproto, c->target);
579 rconn_connect(ofconn->rconn, c->target, name);
580 free(name);
581 }
582 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
583 hash_string(c->target, 0));
584 }
585
586 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
587 * target or turn discovery on or off (these are done by creating new ofconns
588 * and deleting old ones), but it can update the rest of an ofconn's
589 * settings. */
590 static void
591 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
592 {
593 int probe_interval;
594
595 ofconn->band = (is_in_band_controller(c)
596 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
597
598 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
599
600 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
601 rconn_set_probe_interval(ofconn->rconn, probe_interval);
602
603 if (ofconn->discovery) {
604 discovery_set_update_resolv_conf(ofconn->discovery,
605 c->update_resolv_conf);
606 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
607 }
608
609 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
610 }
611
612 static const char *
613 ofconn_get_target(const struct ofconn *ofconn)
614 {
615 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
616 }
617
618 static struct ofconn *
619 find_controller_by_target(struct ofproto *ofproto, const char *target)
620 {
621 struct ofconn *ofconn;
622
623 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
624 hash_string(target, 0), &ofproto->controllers) {
625 if (!strcmp(ofconn_get_target(ofconn), target)) {
626 return ofconn;
627 }
628 }
629 return NULL;
630 }
631
632 static void
633 update_in_band_remotes(struct ofproto *ofproto)
634 {
635 const struct ofconn *ofconn;
636 struct sockaddr_in *addrs;
637 size_t max_addrs, n_addrs;
638 bool discovery;
639 size_t i;
640
641 /* Allocate enough memory for as many remotes as we could possibly have. */
642 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
643 addrs = xmalloc(max_addrs * sizeof *addrs);
644 n_addrs = 0;
645
646 /* Add all the remotes. */
647 discovery = false;
648 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
649 struct sockaddr_in *sin = &addrs[n_addrs];
650
651 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
652 continue;
653 }
654
655 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
656 if (sin->sin_addr.s_addr) {
657 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
658 n_addrs++;
659 }
660 if (ofconn->discovery) {
661 discovery = true;
662 }
663 }
664 for (i = 0; i < ofproto->n_extra_remotes; i++) {
665 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
666 }
667
668 /* Create or update or destroy in-band.
669 *
670 * Ordinarily we only enable in-band if there's at least one remote
671 * address, but discovery needs the in-band rules for DHCP to be installed
672 * even before we know any remote addresses. */
673 if (n_addrs || discovery) {
674 if (!ofproto->in_band) {
675 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
676 &ofproto->in_band);
677 }
678 if (ofproto->in_band) {
679 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
680 }
681 in_band_set_queue(ofproto->in_band, ofproto->in_band_queue);
682 ofproto->next_in_band_update = time_msec() + 1000;
683 } else {
684 in_band_destroy(ofproto->in_band);
685 ofproto->in_band = NULL;
686 }
687
688 /* Clean up. */
689 free(addrs);
690 }
691
692 static void
693 update_fail_open(struct ofproto *p)
694 {
695 struct ofconn *ofconn;
696
697 if (!hmap_is_empty(&p->controllers)
698 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
699 struct rconn **rconns;
700 size_t n;
701
702 if (!p->fail_open) {
703 p->fail_open = fail_open_create(p, p->switch_status);
704 }
705
706 n = 0;
707 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
708 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
709 rconns[n++] = ofconn->rconn;
710 }
711
712 fail_open_set_controllers(p->fail_open, rconns, n);
713 /* p->fail_open takes ownership of 'rconns'. */
714 } else {
715 fail_open_destroy(p->fail_open);
716 p->fail_open = NULL;
717 }
718 }
719
720 void
721 ofproto_set_controllers(struct ofproto *p,
722 const struct ofproto_controller *controllers,
723 size_t n_controllers)
724 {
725 struct shash new_controllers;
726 struct ofconn *ofconn, *next_ofconn;
727 struct ofservice *ofservice, *next_ofservice;
728 bool ss_exists;
729 size_t i;
730
731 /* Create newly configured controllers and services.
732 * Create a name to ofproto_controller mapping in 'new_controllers'. */
733 shash_init(&new_controllers);
734 for (i = 0; i < n_controllers; i++) {
735 const struct ofproto_controller *c = &controllers[i];
736
737 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
738 if (!find_controller_by_target(p, c->target)) {
739 add_controller(p, c);
740 }
741 } else if (!pvconn_verify_name(c->target)) {
742 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
743 continue;
744 }
745 } else {
746 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
747 dpif_name(p->dpif), c->target);
748 continue;
749 }
750
751 shash_add_once(&new_controllers, c->target, &controllers[i]);
752 }
753
754 /* Delete controllers that are no longer configured.
755 * Update configuration of all now-existing controllers. */
756 ss_exists = false;
757 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
758 struct ofproto_controller *c;
759
760 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
761 if (!c) {
762 ofconn_destroy(ofconn);
763 } else {
764 update_controller(ofconn, c);
765 if (ofconn->ss) {
766 ss_exists = true;
767 }
768 }
769 }
770
771 /* Delete services that are no longer configured.
772 * Update configuration of all now-existing services. */
773 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
774 struct ofproto_controller *c;
775
776 c = shash_find_data(&new_controllers,
777 pvconn_get_name(ofservice->pvconn));
778 if (!c) {
779 ofservice_destroy(p, ofservice);
780 } else {
781 ofservice_reconfigure(ofservice, c);
782 }
783 }
784
785 shash_destroy(&new_controllers);
786
787 update_in_band_remotes(p);
788 update_fail_open(p);
789
790 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
791 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
792 struct ofconn, hmap_node);
793 ofconn->ss = switch_status_register(p->switch_status, "remote",
794 rconn_status_cb, ofconn->rconn);
795 }
796 }
797
798 void
799 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
800 {
801 p->fail_mode = fail_mode;
802 update_fail_open(p);
803 }
804
805 /* Drops the connections between 'ofproto' and all of its controllers, forcing
806 * them to reconnect. */
807 void
808 ofproto_reconnect_controllers(struct ofproto *ofproto)
809 {
810 struct ofconn *ofconn;
811
812 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
813 rconn_reconnect(ofconn->rconn);
814 }
815 }
816
817 static bool
818 any_extras_changed(const struct ofproto *ofproto,
819 const struct sockaddr_in *extras, size_t n)
820 {
821 size_t i;
822
823 if (n != ofproto->n_extra_remotes) {
824 return true;
825 }
826
827 for (i = 0; i < n; i++) {
828 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
829 const struct sockaddr_in *new = &extras[i];
830
831 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
832 old->sin_port != new->sin_port) {
833 return true;
834 }
835 }
836
837 return false;
838 }
839
840 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
841 * in-band control should guarantee access, in the same way that in-band
842 * control guarantees access to OpenFlow controllers. */
843 void
844 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
845 const struct sockaddr_in *extras, size_t n)
846 {
847 if (!any_extras_changed(ofproto, extras, n)) {
848 return;
849 }
850
851 free(ofproto->extra_in_band_remotes);
852 ofproto->n_extra_remotes = n;
853 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
854
855 update_in_band_remotes(ofproto);
856 }
857
858 /* Sets the OpenFlow queue used by flows set up by in-band control on
859 * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control
860 * flows will use the default queue. */
861 void
862 ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id)
863 {
864 if (queue_id != ofproto->in_band_queue) {
865 ofproto->in_band_queue = queue_id;
866 update_in_band_remotes(ofproto);
867 }
868 }
869
870 void
871 ofproto_set_desc(struct ofproto *p,
872 const char *mfr_desc, const char *hw_desc,
873 const char *sw_desc, const char *serial_desc,
874 const char *dp_desc)
875 {
876 struct ofp_desc_stats *ods;
877
878 if (mfr_desc) {
879 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
880 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
881 sizeof ods->mfr_desc);
882 }
883 free(p->mfr_desc);
884 p->mfr_desc = xstrdup(mfr_desc);
885 }
886 if (hw_desc) {
887 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
888 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
889 sizeof ods->hw_desc);
890 }
891 free(p->hw_desc);
892 p->hw_desc = xstrdup(hw_desc);
893 }
894 if (sw_desc) {
895 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
896 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
897 sizeof ods->sw_desc);
898 }
899 free(p->sw_desc);
900 p->sw_desc = xstrdup(sw_desc);
901 }
902 if (serial_desc) {
903 if (strlen(serial_desc) >= sizeof ods->serial_num) {
904 VLOG_WARN("truncating serial_desc, must be less than %zu "
905 "characters",
906 sizeof ods->serial_num);
907 }
908 free(p->serial_desc);
909 p->serial_desc = xstrdup(serial_desc);
910 }
911 if (dp_desc) {
912 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
913 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
914 sizeof ods->dp_desc);
915 }
916 free(p->dp_desc);
917 p->dp_desc = xstrdup(dp_desc);
918 }
919 }
920
921 static int
922 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
923 const struct svec *svec)
924 {
925 struct pvconn **pvconns = *pvconnsp;
926 size_t n_pvconns = *n_pvconnsp;
927 int retval = 0;
928 size_t i;
929
930 for (i = 0; i < n_pvconns; i++) {
931 pvconn_close(pvconns[i]);
932 }
933 free(pvconns);
934
935 pvconns = xmalloc(svec->n * sizeof *pvconns);
936 n_pvconns = 0;
937 for (i = 0; i < svec->n; i++) {
938 const char *name = svec->names[i];
939 struct pvconn *pvconn;
940 int error;
941
942 error = pvconn_open(name, &pvconn);
943 if (!error) {
944 pvconns[n_pvconns++] = pvconn;
945 } else {
946 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
947 if (!retval) {
948 retval = error;
949 }
950 }
951 }
952
953 *pvconnsp = pvconns;
954 *n_pvconnsp = n_pvconns;
955
956 return retval;
957 }
958
959 int
960 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
961 {
962 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
963 }
964
965 int
966 ofproto_set_netflow(struct ofproto *ofproto,
967 const struct netflow_options *nf_options)
968 {
969 if (nf_options && nf_options->collectors.n) {
970 if (!ofproto->netflow) {
971 ofproto->netflow = netflow_create();
972 }
973 return netflow_set_options(ofproto->netflow, nf_options);
974 } else {
975 netflow_destroy(ofproto->netflow);
976 ofproto->netflow = NULL;
977 return 0;
978 }
979 }
980
981 void
982 ofproto_set_sflow(struct ofproto *ofproto,
983 const struct ofproto_sflow_options *oso)
984 {
985 struct ofproto_sflow *os = ofproto->sflow;
986 if (oso) {
987 if (!os) {
988 struct ofport *ofport;
989
990 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
991 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
992 ofproto_sflow_add_port(os, ofport->odp_port,
993 netdev_get_name(ofport->netdev));
994 }
995 }
996 ofproto_sflow_set_options(os, oso);
997 } else {
998 ofproto_sflow_destroy(os);
999 ofproto->sflow = NULL;
1000 }
1001 }
1002
1003 uint64_t
1004 ofproto_get_datapath_id(const struct ofproto *ofproto)
1005 {
1006 return ofproto->datapath_id;
1007 }
1008
1009 bool
1010 ofproto_has_primary_controller(const struct ofproto *ofproto)
1011 {
1012 return !hmap_is_empty(&ofproto->controllers);
1013 }
1014
1015 enum ofproto_fail_mode
1016 ofproto_get_fail_mode(const struct ofproto *p)
1017 {
1018 return p->fail_mode;
1019 }
1020
1021 void
1022 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
1023 {
1024 size_t i;
1025
1026 for (i = 0; i < ofproto->n_snoops; i++) {
1027 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
1028 }
1029 }
1030
1031 void
1032 ofproto_destroy(struct ofproto *p)
1033 {
1034 struct ofservice *ofservice, *next_ofservice;
1035 struct ofconn *ofconn, *next_ofconn;
1036 struct ofport *ofport, *next_ofport;
1037 size_t i;
1038
1039 if (!p) {
1040 return;
1041 }
1042
1043 shash_find_and_delete(&all_ofprotos, dpif_name(p->dpif));
1044
1045 /* Destroy fail-open and in-band early, since they touch the classifier. */
1046 fail_open_destroy(p->fail_open);
1047 p->fail_open = NULL;
1048
1049 in_band_destroy(p->in_band);
1050 p->in_band = NULL;
1051 free(p->extra_in_band_remotes);
1052
1053 ofproto_flush_flows(p);
1054 classifier_destroy(&p->cls);
1055 hmap_destroy(&p->facets);
1056
1057 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1058 ofconn_destroy(ofconn);
1059 }
1060 hmap_destroy(&p->controllers);
1061
1062 dpif_close(p->dpif);
1063 netdev_monitor_destroy(p->netdev_monitor);
1064 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
1065 hmap_remove(&p->ports, &ofport->hmap_node);
1066 ofport_free(ofport);
1067 }
1068 shash_destroy(&p->port_by_name);
1069
1070 switch_status_destroy(p->switch_status);
1071 netflow_destroy(p->netflow);
1072 ofproto_sflow_destroy(p->sflow);
1073
1074 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
1075 ofservice_destroy(p, ofservice);
1076 }
1077 hmap_destroy(&p->services);
1078
1079 for (i = 0; i < p->n_snoops; i++) {
1080 pvconn_close(p->snoops[i]);
1081 }
1082 free(p->snoops);
1083
1084 mac_learning_destroy(p->ml);
1085
1086 free(p->mfr_desc);
1087 free(p->hw_desc);
1088 free(p->sw_desc);
1089 free(p->serial_desc);
1090 free(p->dp_desc);
1091
1092 hmap_destroy(&p->ports);
1093
1094 free(p);
1095 }
1096
1097 int
1098 ofproto_run(struct ofproto *p)
1099 {
1100 int error = ofproto_run1(p);
1101 if (!error) {
1102 error = ofproto_run2(p, false);
1103 }
1104 return error;
1105 }
1106
1107 static void
1108 process_port_change(struct ofproto *ofproto, int error, char *devname)
1109 {
1110 if (error == ENOBUFS) {
1111 reinit_ports(ofproto);
1112 } else if (!error) {
1113 update_port(ofproto, devname);
1114 free(devname);
1115 }
1116 }
1117
1118 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1119 * means that 'ofconn' is more interesting for monitoring than a lower return
1120 * value. */
1121 static int
1122 snoop_preference(const struct ofconn *ofconn)
1123 {
1124 switch (ofconn->role) {
1125 case NX_ROLE_MASTER:
1126 return 3;
1127 case NX_ROLE_OTHER:
1128 return 2;
1129 case NX_ROLE_SLAVE:
1130 return 1;
1131 default:
1132 /* Shouldn't happen. */
1133 return 0;
1134 }
1135 }
1136
1137 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1138 * Connects this vconn to a controller. */
1139 static void
1140 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1141 {
1142 struct ofconn *ofconn, *best;
1143
1144 /* Pick a controller for monitoring. */
1145 best = NULL;
1146 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1147 if (ofconn->type == OFCONN_PRIMARY
1148 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1149 best = ofconn;
1150 }
1151 }
1152
1153 if (best) {
1154 rconn_add_monitor(best->rconn, vconn);
1155 } else {
1156 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1157 vconn_close(vconn);
1158 }
1159 }
1160
1161 int
1162 ofproto_run1(struct ofproto *p)
1163 {
1164 struct ofconn *ofconn, *next_ofconn;
1165 struct ofservice *ofservice;
1166 char *devname;
1167 int error;
1168 int i;
1169
1170 if (shash_is_empty(&p->port_by_name)) {
1171 init_ports(p);
1172 }
1173
1174 for (i = 0; i < 50; i++) {
1175 struct ofpbuf *buf;
1176
1177 error = dpif_recv(p->dpif, &buf);
1178 if (error) {
1179 if (error == ENODEV) {
1180 /* Someone destroyed the datapath behind our back. The caller
1181 * better destroy us and give up, because we're just going to
1182 * spin from here on out. */
1183 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1184 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1185 dpif_name(p->dpif));
1186 return ENODEV;
1187 }
1188 break;
1189 }
1190
1191 handle_odp_msg(p, buf);
1192 }
1193
1194 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1195 process_port_change(p, error, devname);
1196 }
1197 while ((error = netdev_monitor_poll(p->netdev_monitor,
1198 &devname)) != EAGAIN) {
1199 process_port_change(p, error, devname);
1200 }
1201
1202 if (p->in_band) {
1203 if (time_msec() >= p->next_in_band_update) {
1204 update_in_band_remotes(p);
1205 }
1206 in_band_run(p->in_band);
1207 }
1208
1209 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1210 ofconn_run(ofconn);
1211 }
1212
1213 /* Fail-open maintenance. Do this after processing the ofconns since
1214 * fail-open checks the status of the controller rconn. */
1215 if (p->fail_open) {
1216 fail_open_run(p->fail_open);
1217 }
1218
1219 HMAP_FOR_EACH (ofservice, node, &p->services) {
1220 struct vconn *vconn;
1221 int retval;
1222
1223 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1224 if (!retval) {
1225 struct rconn *rconn;
1226 char *name;
1227
1228 rconn = rconn_create(ofservice->probe_interval, 0);
1229 name = ofconn_make_name(p, vconn_get_name(vconn));
1230 rconn_connect_unreliably(rconn, vconn, name);
1231 free(name);
1232
1233 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1234 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1235 ofservice->burst_limit);
1236 } else if (retval != EAGAIN) {
1237 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1238 }
1239 }
1240
1241 for (i = 0; i < p->n_snoops; i++) {
1242 struct vconn *vconn;
1243 int retval;
1244
1245 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1246 if (!retval) {
1247 add_snooper(p, vconn);
1248 } else if (retval != EAGAIN) {
1249 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1250 }
1251 }
1252
1253 if (time_msec() >= p->next_expiration) {
1254 int delay = ofproto_expire(p);
1255 p->next_expiration = time_msec() + delay;
1256 COVERAGE_INC(ofproto_expiration);
1257 }
1258
1259 if (p->netflow) {
1260 netflow_run(p->netflow);
1261 }
1262 if (p->sflow) {
1263 ofproto_sflow_run(p->sflow);
1264 }
1265
1266 return 0;
1267 }
1268
1269 int
1270 ofproto_run2(struct ofproto *p, bool revalidate_all)
1271 {
1272 /* Figure out what we need to revalidate now, if anything. */
1273 struct tag_set revalidate_set = p->revalidate_set;
1274 if (p->need_revalidate) {
1275 revalidate_all = true;
1276 }
1277
1278 /* Clear the revalidation flags. */
1279 tag_set_init(&p->revalidate_set);
1280 p->need_revalidate = false;
1281
1282 /* Now revalidate if there's anything to do. */
1283 if (revalidate_all || !tag_set_is_empty(&revalidate_set)) {
1284 struct facet *facet, *next;
1285
1286 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &p->facets) {
1287 if (revalidate_all
1288 || tag_set_intersects(&revalidate_set, facet->tags)) {
1289 facet_revalidate(p, facet);
1290 }
1291 }
1292 }
1293
1294 return 0;
1295 }
1296
1297 void
1298 ofproto_wait(struct ofproto *p)
1299 {
1300 struct ofservice *ofservice;
1301 struct ofconn *ofconn;
1302 size_t i;
1303
1304 dpif_recv_wait(p->dpif);
1305 dpif_port_poll_wait(p->dpif);
1306 netdev_monitor_poll_wait(p->netdev_monitor);
1307 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1308 ofconn_wait(ofconn);
1309 }
1310 if (p->in_band) {
1311 poll_timer_wait_until(p->next_in_band_update);
1312 in_band_wait(p->in_band);
1313 }
1314 if (p->fail_open) {
1315 fail_open_wait(p->fail_open);
1316 }
1317 if (p->sflow) {
1318 ofproto_sflow_wait(p->sflow);
1319 }
1320 if (!tag_set_is_empty(&p->revalidate_set)) {
1321 poll_immediate_wake();
1322 }
1323 if (p->need_revalidate) {
1324 /* Shouldn't happen, but if it does just go around again. */
1325 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1326 poll_immediate_wake();
1327 } else if (p->next_expiration != LLONG_MAX) {
1328 poll_timer_wait_until(p->next_expiration);
1329 }
1330 HMAP_FOR_EACH (ofservice, node, &p->services) {
1331 pvconn_wait(ofservice->pvconn);
1332 }
1333 for (i = 0; i < p->n_snoops; i++) {
1334 pvconn_wait(p->snoops[i]);
1335 }
1336 }
1337
1338 void
1339 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1340 {
1341 tag_set_add(&ofproto->revalidate_set, tag);
1342 }
1343
1344 struct tag_set *
1345 ofproto_get_revalidate_set(struct ofproto *ofproto)
1346 {
1347 return &ofproto->revalidate_set;
1348 }
1349
1350 bool
1351 ofproto_is_alive(const struct ofproto *p)
1352 {
1353 return !hmap_is_empty(&p->controllers);
1354 }
1355
1356 /* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1357 *
1358 * This is almost the same as calling dpif_port_del() directly on the
1359 * datapath, but it also makes 'ofproto' close its open netdev for the port
1360 * (if any). This makes it possible to create a new netdev of a different
1361 * type under the same name, which otherwise the netdev library would refuse
1362 * to do because of the conflict. (The netdev would eventually get closed on
1363 * the next trip through ofproto_run(), but this interface is more direct.)
1364 *
1365 * Returns 0 if successful, otherwise a positive errno. */
1366 int
1367 ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1368 {
1369 struct ofport *ofport = get_port(ofproto, odp_port);
1370 const char *name = ofport ? ofport->opp.name : "<unknown>";
1371 int error;
1372
1373 error = dpif_port_del(ofproto->dpif, odp_port);
1374 if (error) {
1375 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1376 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1377 } else if (ofport) {
1378 /* 'name' is ofport->opp.name and update_port() is going to destroy
1379 * 'ofport'. Just in case update_port() refers to 'name' after it
1380 * destroys 'ofport', make a copy of it around the update_port()
1381 * call. */
1382 char *devname = xstrdup(name);
1383 update_port(ofproto, devname);
1384 free(devname);
1385 }
1386 return error;
1387 }
1388
1389 /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1390 * true if 'odp_port' exists and should be included, false otherwise. */
1391 bool
1392 ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1393 {
1394 struct ofport *ofport = get_port(ofproto, odp_port);
1395 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1396 }
1397
1398 int
1399 ofproto_send_packet(struct ofproto *p, const struct flow *flow,
1400 const union ofp_action *actions, size_t n_actions,
1401 const struct ofpbuf *packet)
1402 {
1403 struct action_xlate_ctx ctx;
1404 struct ofpbuf *odp_actions;
1405
1406 action_xlate_ctx_init(&ctx, p, flow, packet);
1407 odp_actions = xlate_actions(&ctx, actions, n_actions);
1408
1409 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1410 * error code? */
1411 dpif_execute(p->dpif, odp_actions->data, odp_actions->size, packet);
1412
1413 ofpbuf_delete(odp_actions);
1414
1415 return 0;
1416 }
1417
1418 /* Adds a flow to the OpenFlow flow table in 'p' that matches 'cls_rule' and
1419 * performs the 'n_actions' actions in 'actions'. The new flow will not
1420 * timeout.
1421 *
1422 * If cls_rule->priority is in the range of priorities supported by OpenFlow
1423 * (0...65535, inclusive) then the flow will be visible to OpenFlow
1424 * controllers; otherwise, it will be hidden.
1425 *
1426 * The caller retains ownership of 'cls_rule' and 'actions'. */
1427 void
1428 ofproto_add_flow(struct ofproto *p, const struct cls_rule *cls_rule,
1429 const union ofp_action *actions, size_t n_actions)
1430 {
1431 struct rule *rule;
1432 rule = rule_create(cls_rule, actions, n_actions, 0, 0, 0, false);
1433 rule_insert(p, rule);
1434 }
1435
1436 void
1437 ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target)
1438 {
1439 struct rule *rule;
1440
1441 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1442 target));
1443 if (rule) {
1444 rule_remove(ofproto, rule);
1445 }
1446 }
1447
1448 void
1449 ofproto_flush_flows(struct ofproto *ofproto)
1450 {
1451 struct facet *facet, *next_facet;
1452 struct rule *rule, *next_rule;
1453 struct cls_cursor cursor;
1454
1455 COVERAGE_INC(ofproto_flush);
1456
1457 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
1458 /* Mark the facet as not installed so that facet_remove() doesn't
1459 * bother trying to uninstall it. There is no point in uninstalling it
1460 * individually since we are about to blow away all the facets with
1461 * dpif_flow_flush(). */
1462 facet->installed = false;
1463 facet_remove(ofproto, facet);
1464 }
1465
1466 cls_cursor_init(&cursor, &ofproto->cls, NULL);
1467 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
1468 rule_remove(ofproto, rule);
1469 }
1470
1471 dpif_flow_flush(ofproto->dpif);
1472 if (ofproto->in_band) {
1473 in_band_flushed(ofproto->in_band);
1474 }
1475 if (ofproto->fail_open) {
1476 fail_open_flushed(ofproto->fail_open);
1477 }
1478 }
1479 \f
1480 static void
1481 reinit_ports(struct ofproto *p)
1482 {
1483 struct svec devnames;
1484 struct ofport *ofport;
1485 struct odp_port *odp_ports;
1486 size_t n_odp_ports;
1487 size_t i;
1488
1489 COVERAGE_INC(ofproto_reinit_ports);
1490
1491 svec_init(&devnames);
1492 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1493 svec_add (&devnames, ofport->opp.name);
1494 }
1495 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1496 for (i = 0; i < n_odp_ports; i++) {
1497 svec_add (&devnames, odp_ports[i].devname);
1498 }
1499 free(odp_ports);
1500
1501 svec_sort_unique(&devnames);
1502 for (i = 0; i < devnames.n; i++) {
1503 update_port(p, devnames.names[i]);
1504 }
1505 svec_destroy(&devnames);
1506 }
1507
1508 static struct ofport *
1509 make_ofport(const struct odp_port *odp_port)
1510 {
1511 struct netdev_options netdev_options;
1512 enum netdev_flags flags;
1513 struct ofport *ofport;
1514 struct netdev *netdev;
1515 int error;
1516
1517 memset(&netdev_options, 0, sizeof netdev_options);
1518 netdev_options.name = odp_port->devname;
1519 netdev_options.type = odp_port->type;
1520 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1521
1522 error = netdev_open(&netdev_options, &netdev);
1523 if (error) {
1524 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1525 "cannot be opened (%s)",
1526 odp_port->devname, odp_port->port,
1527 odp_port->devname, strerror(error));
1528 return NULL;
1529 }
1530
1531 ofport = xmalloc(sizeof *ofport);
1532 ofport->netdev = netdev;
1533 ofport->odp_port = odp_port->port;
1534 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1535 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1536 memcpy(ofport->opp.name, odp_port->devname,
1537 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1538 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1539
1540 netdev_get_flags(netdev, &flags);
1541 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1542
1543 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1544
1545 netdev_get_features(netdev,
1546 &ofport->opp.curr, &ofport->opp.advertised,
1547 &ofport->opp.supported, &ofport->opp.peer);
1548 return ofport;
1549 }
1550
1551 static bool
1552 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1553 {
1554 if (get_port(p, odp_port->port)) {
1555 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1556 odp_port->port);
1557 return true;
1558 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1559 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1560 odp_port->devname);
1561 return true;
1562 } else {
1563 return false;
1564 }
1565 }
1566
1567 static int
1568 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1569 {
1570 const struct ofp_phy_port *a = &a_->opp;
1571 const struct ofp_phy_port *b = &b_->opp;
1572
1573 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1574 return (a->port_no == b->port_no
1575 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1576 && !strcmp(a->name, b->name)
1577 && a->state == b->state
1578 && a->config == b->config
1579 && a->curr == b->curr
1580 && a->advertised == b->advertised
1581 && a->supported == b->supported
1582 && a->peer == b->peer);
1583 }
1584
1585 static void
1586 send_port_status(struct ofproto *p, const struct ofport *ofport,
1587 uint8_t reason)
1588 {
1589 /* XXX Should limit the number of queued port status change messages. */
1590 struct ofconn *ofconn;
1591 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1592 struct ofp_port_status *ops;
1593 struct ofpbuf *b;
1594
1595 /* Primary controllers, even slaves, should always get port status
1596 updates. Otherwise obey ofconn_receives_async_msgs(). */
1597 if (ofconn->type != OFCONN_PRIMARY
1598 && !ofconn_receives_async_msgs(ofconn)) {
1599 continue;
1600 }
1601
1602 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1603 ops->reason = reason;
1604 ops->desc = ofport->opp;
1605 hton_ofp_phy_port(&ops->desc);
1606 queue_tx(b, ofconn, NULL);
1607 }
1608 }
1609
1610 static void
1611 ofport_install(struct ofproto *p, struct ofport *ofport)
1612 {
1613 const char *netdev_name = ofport->opp.name;
1614
1615 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1616 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1617 shash_add(&p->port_by_name, netdev_name, ofport);
1618 if (p->sflow) {
1619 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1620 }
1621 }
1622
1623 static void
1624 ofport_remove(struct ofproto *p, struct ofport *ofport)
1625 {
1626 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1627 hmap_remove(&p->ports, &ofport->hmap_node);
1628 shash_delete(&p->port_by_name,
1629 shash_find(&p->port_by_name, ofport->opp.name));
1630 if (p->sflow) {
1631 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1632 }
1633 }
1634
1635 static void
1636 ofport_free(struct ofport *ofport)
1637 {
1638 if (ofport) {
1639 netdev_close(ofport->netdev);
1640 free(ofport);
1641 }
1642 }
1643
1644 static struct ofport *
1645 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1646 {
1647 struct ofport *port;
1648
1649 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1650 hash_int(odp_port, 0), &ofproto->ports) {
1651 if (port->odp_port == odp_port) {
1652 return port;
1653 }
1654 }
1655 return NULL;
1656 }
1657
1658 static void
1659 update_port(struct ofproto *p, const char *devname)
1660 {
1661 struct odp_port odp_port;
1662 struct ofport *old_ofport;
1663 struct ofport *new_ofport;
1664 int error;
1665
1666 COVERAGE_INC(ofproto_update_port);
1667
1668 /* Query the datapath for port information. */
1669 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1670
1671 /* Find the old ofport. */
1672 old_ofport = shash_find_data(&p->port_by_name, devname);
1673 if (!error) {
1674 if (!old_ofport) {
1675 /* There's no port named 'devname' but there might be a port with
1676 * the same port number. This could happen if a port is deleted
1677 * and then a new one added in its place very quickly, or if a port
1678 * is renamed. In the former case we want to send an OFPPR_DELETE
1679 * and an OFPPR_ADD, and in the latter case we want to send a
1680 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1681 * the old port's ifindex against the new port, or perhaps less
1682 * reliably but more portably by comparing the old port's MAC
1683 * against the new port's MAC. However, this code isn't that smart
1684 * and always sends an OFPPR_MODIFY (XXX). */
1685 old_ofport = get_port(p, odp_port.port);
1686 }
1687 } else if (error != ENOENT && error != ENODEV) {
1688 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1689 "%s", strerror(error));
1690 return;
1691 }
1692
1693 /* Create a new ofport. */
1694 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1695
1696 /* Eliminate a few pathological cases. */
1697 if (!old_ofport && !new_ofport) {
1698 return;
1699 } else if (old_ofport && new_ofport) {
1700 /* Most of the 'config' bits are OpenFlow soft state, but
1701 * OFPPC_PORT_DOWN is maintained by the kernel. So transfer the
1702 * OpenFlow bits from old_ofport. (make_ofport() only sets
1703 * OFPPC_PORT_DOWN and leaves the other bits 0.) */
1704 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1705
1706 if (ofport_equal(old_ofport, new_ofport)) {
1707 /* False alarm--no change. */
1708 ofport_free(new_ofport);
1709 return;
1710 }
1711 }
1712
1713 /* Now deal with the normal cases. */
1714 if (old_ofport) {
1715 ofport_remove(p, old_ofport);
1716 }
1717 if (new_ofport) {
1718 ofport_install(p, new_ofport);
1719 }
1720 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1721 (!old_ofport ? OFPPR_ADD
1722 : !new_ofport ? OFPPR_DELETE
1723 : OFPPR_MODIFY));
1724 ofport_free(old_ofport);
1725 }
1726
1727 static int
1728 init_ports(struct ofproto *p)
1729 {
1730 struct odp_port *ports;
1731 size_t n_ports;
1732 size_t i;
1733 int error;
1734
1735 error = dpif_port_list(p->dpif, &ports, &n_ports);
1736 if (error) {
1737 return error;
1738 }
1739
1740 for (i = 0; i < n_ports; i++) {
1741 const struct odp_port *odp_port = &ports[i];
1742 if (!ofport_conflicts(p, odp_port)) {
1743 struct ofport *ofport = make_ofport(odp_port);
1744 if (ofport) {
1745 ofport_install(p, ofport);
1746 }
1747 }
1748 }
1749 free(ports);
1750 return 0;
1751 }
1752 \f
1753 static struct ofconn *
1754 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1755 {
1756 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1757 ofconn->ofproto = p;
1758 list_push_back(&p->all_conns, &ofconn->node);
1759 ofconn->rconn = rconn;
1760 ofconn->type = type;
1761 ofconn->flow_format = NXFF_OPENFLOW10;
1762 ofconn->role = NX_ROLE_OTHER;
1763 ofconn->packet_in_counter = rconn_packet_counter_create ();
1764 ofconn->pktbuf = NULL;
1765 ofconn->miss_send_len = 0;
1766 ofconn->reply_counter = rconn_packet_counter_create ();
1767 return ofconn;
1768 }
1769
1770 static void
1771 ofconn_destroy(struct ofconn *ofconn)
1772 {
1773 if (ofconn->type == OFCONN_PRIMARY) {
1774 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1775 }
1776 discovery_destroy(ofconn->discovery);
1777
1778 list_remove(&ofconn->node);
1779 switch_status_unregister(ofconn->ss);
1780 rconn_destroy(ofconn->rconn);
1781 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1782 rconn_packet_counter_destroy(ofconn->reply_counter);
1783 pktbuf_destroy(ofconn->pktbuf);
1784 free(ofconn);
1785 }
1786
1787 static void
1788 ofconn_run(struct ofconn *ofconn)
1789 {
1790 struct ofproto *p = ofconn->ofproto;
1791 int iteration;
1792 size_t i;
1793
1794 if (ofconn->discovery) {
1795 char *controller_name;
1796 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1797 discovery_question_connectivity(ofconn->discovery);
1798 }
1799 if (discovery_run(ofconn->discovery, &controller_name)) {
1800 if (controller_name) {
1801 char *ofconn_name = ofconn_make_name(p, controller_name);
1802 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1803 free(ofconn_name);
1804 } else {
1805 rconn_disconnect(ofconn->rconn);
1806 }
1807 }
1808 }
1809
1810 for (i = 0; i < N_SCHEDULERS; i++) {
1811 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1812 }
1813
1814 rconn_run(ofconn->rconn);
1815
1816 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1817 /* Limit the number of iterations to prevent other tasks from
1818 * starving. */
1819 for (iteration = 0; iteration < 50; iteration++) {
1820 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1821 if (!of_msg) {
1822 break;
1823 }
1824 if (p->fail_open) {
1825 fail_open_maybe_recover(p->fail_open);
1826 }
1827 handle_openflow(ofconn, of_msg);
1828 ofpbuf_delete(of_msg);
1829 }
1830 }
1831
1832 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1833 ofconn_destroy(ofconn);
1834 }
1835 }
1836
1837 static void
1838 ofconn_wait(struct ofconn *ofconn)
1839 {
1840 int i;
1841
1842 if (ofconn->discovery) {
1843 discovery_wait(ofconn->discovery);
1844 }
1845 for (i = 0; i < N_SCHEDULERS; i++) {
1846 pinsched_wait(ofconn->schedulers[i]);
1847 }
1848 rconn_run_wait(ofconn->rconn);
1849 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1850 rconn_recv_wait(ofconn->rconn);
1851 } else {
1852 COVERAGE_INC(ofproto_ofconn_stuck);
1853 }
1854 }
1855
1856 /* Returns true if 'ofconn' should receive asynchronous messages. */
1857 static bool
1858 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1859 {
1860 if (ofconn->type == OFCONN_PRIMARY) {
1861 /* Primary controllers always get asynchronous messages unless they
1862 * have configured themselves as "slaves". */
1863 return ofconn->role != NX_ROLE_SLAVE;
1864 } else {
1865 /* Service connections don't get asynchronous messages unless they have
1866 * explicitly asked for them by setting a nonzero miss send length. */
1867 return ofconn->miss_send_len > 0;
1868 }
1869 }
1870
1871 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1872 * and 'target', suitable for use in log messages for identifying the
1873 * connection.
1874 *
1875 * The name is dynamically allocated. The caller should free it (with free())
1876 * when it is no longer needed. */
1877 static char *
1878 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1879 {
1880 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1881 }
1882
1883 static void
1884 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1885 {
1886 int i;
1887
1888 for (i = 0; i < N_SCHEDULERS; i++) {
1889 struct pinsched **s = &ofconn->schedulers[i];
1890
1891 if (rate > 0) {
1892 if (!*s) {
1893 *s = pinsched_create(rate, burst,
1894 ofconn->ofproto->switch_status);
1895 } else {
1896 pinsched_set_limits(*s, rate, burst);
1897 }
1898 } else {
1899 pinsched_destroy(*s);
1900 *s = NULL;
1901 }
1902 }
1903 }
1904 \f
1905 static void
1906 ofservice_reconfigure(struct ofservice *ofservice,
1907 const struct ofproto_controller *c)
1908 {
1909 ofservice->probe_interval = c->probe_interval;
1910 ofservice->rate_limit = c->rate_limit;
1911 ofservice->burst_limit = c->burst_limit;
1912 }
1913
1914 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1915 * positive errno value. */
1916 static int
1917 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1918 {
1919 struct ofservice *ofservice;
1920 struct pvconn *pvconn;
1921 int error;
1922
1923 error = pvconn_open(c->target, &pvconn);
1924 if (error) {
1925 return error;
1926 }
1927
1928 ofservice = xzalloc(sizeof *ofservice);
1929 hmap_insert(&ofproto->services, &ofservice->node,
1930 hash_string(c->target, 0));
1931 ofservice->pvconn = pvconn;
1932
1933 ofservice_reconfigure(ofservice, c);
1934
1935 return 0;
1936 }
1937
1938 static void
1939 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1940 {
1941 hmap_remove(&ofproto->services, &ofservice->node);
1942 pvconn_close(ofservice->pvconn);
1943 free(ofservice);
1944 }
1945
1946 /* Finds and returns the ofservice within 'ofproto' that has the given
1947 * 'target', or a null pointer if none exists. */
1948 static struct ofservice *
1949 ofservice_lookup(struct ofproto *ofproto, const char *target)
1950 {
1951 struct ofservice *ofservice;
1952
1953 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
1954 &ofproto->services) {
1955 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
1956 return ofservice;
1957 }
1958 }
1959 return NULL;
1960 }
1961 \f
1962 /* Returns true if 'rule' should be hidden from the controller.
1963 *
1964 * Rules with priority higher than UINT16_MAX are set up by ofproto itself
1965 * (e.g. by in-band control) and are intentionally hidden from the
1966 * controller. */
1967 static bool
1968 rule_is_hidden(const struct rule *rule)
1969 {
1970 return rule->cr.priority > UINT16_MAX;
1971 }
1972
1973 /* Creates and returns a new rule initialized as specified.
1974 *
1975 * The caller is responsible for inserting the rule into the classifier (with
1976 * rule_insert()). */
1977 static struct rule *
1978 rule_create(const struct cls_rule *cls_rule,
1979 const union ofp_action *actions, size_t n_actions,
1980 uint16_t idle_timeout, uint16_t hard_timeout,
1981 ovs_be64 flow_cookie, bool send_flow_removed)
1982 {
1983 struct rule *rule = xzalloc(sizeof *rule);
1984 rule->cr = *cls_rule;
1985 rule->idle_timeout = idle_timeout;
1986 rule->hard_timeout = hard_timeout;
1987 rule->flow_cookie = flow_cookie;
1988 rule->used = rule->created = time_msec();
1989 rule->send_flow_removed = send_flow_removed;
1990 list_init(&rule->facets);
1991 if (n_actions > 0) {
1992 rule->n_actions = n_actions;
1993 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1994 }
1995
1996 return rule;
1997 }
1998
1999 static struct rule *
2000 rule_from_cls_rule(const struct cls_rule *cls_rule)
2001 {
2002 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
2003 }
2004
2005 static void
2006 rule_free(struct rule *rule)
2007 {
2008 free(rule->actions);
2009 free(rule);
2010 }
2011
2012 /* Destroys 'rule' and iterates through all of its facets and revalidates them,
2013 * destroying any that no longer has a rule (which is probably all of them).
2014 *
2015 * The caller must have already removed 'rule' from the classifier. */
2016 static void
2017 rule_destroy(struct ofproto *ofproto, struct rule *rule)
2018 {
2019 struct facet *facet, *next_facet;
2020 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
2021 facet_revalidate(ofproto, facet);
2022 }
2023 rule_free(rule);
2024 }
2025
2026 /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action
2027 * that outputs to 'out_port' (output to OFPP_FLOOD and OFPP_ALL doesn't
2028 * count). */
2029 static bool
2030 rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
2031 {
2032 const union ofp_action *oa;
2033 struct actions_iterator i;
2034
2035 if (out_port == htons(OFPP_NONE)) {
2036 return true;
2037 }
2038 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
2039 oa = actions_next(&i)) {
2040 if (action_outputs_to_port(oa, out_port)) {
2041 return true;
2042 }
2043 }
2044 return false;
2045 }
2046
2047 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
2048 * 'packet', which arrived on 'in_port'.
2049 *
2050 * Takes ownership of 'packet'. */
2051 static bool
2052 execute_odp_actions(struct ofproto *ofproto, uint16_t in_port,
2053 const struct nlattr *odp_actions, unsigned int actions_len,
2054 struct ofpbuf *packet)
2055 {
2056 if (actions_len == NLA_ALIGN(NLA_HDRLEN + sizeof(uint32_t))
2057 && odp_actions->nla_type == ODPAT_CONTROLLER) {
2058 /* As an optimization, avoid a round-trip from userspace to kernel to
2059 * userspace. This also avoids possibly filling up kernel packet
2060 * buffers along the way. */
2061 struct odp_msg *msg;
2062
2063 msg = ofpbuf_push_uninit(packet, sizeof *msg);
2064 msg->type = _ODPL_ACTION_NR;
2065 msg->length = sizeof(struct odp_msg) + packet->size;
2066 msg->port = in_port;
2067 msg->reserved = 0;
2068 msg->arg = nl_attr_get_u32(odp_actions);
2069
2070 send_packet_in(ofproto, packet);
2071
2072 return true;
2073 } else {
2074 int error;
2075
2076 error = dpif_execute(ofproto->dpif, odp_actions, actions_len, packet);
2077 ofpbuf_delete(packet);
2078 return !error;
2079 }
2080 }
2081
2082 /* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s
2083 * statistics appropriately. 'packet' must have at least sizeof(struct
2084 * ofp_packet_in) bytes of headroom.
2085 *
2086 * For correct results, 'packet' must actually be in 'facet''s flow; that is,
2087 * applying flow_extract() to 'packet' would yield the same flow as
2088 * 'facet->flow'.
2089 *
2090 * 'facet' must have accurately composed ODP actions; that is, it must not be
2091 * in need of revalidation.
2092 *
2093 * Takes ownership of 'packet'. */
2094 static void
2095 facet_execute(struct ofproto *ofproto, struct facet *facet,
2096 struct ofpbuf *packet)
2097 {
2098 struct odp_flow_stats stats;
2099
2100 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2101
2102 flow_extract_stats(&facet->flow, packet, &stats);
2103 if (execute_odp_actions(ofproto, facet->flow.in_port,
2104 facet->actions, facet->actions_len, packet)) {
2105 facet_update_stats(ofproto, facet, &stats);
2106 facet->used = time_msec();
2107 netflow_flow_update_time(ofproto->netflow,
2108 &facet->nf_flow, facet->used);
2109 }
2110 }
2111
2112 /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s
2113 * statistics (or the statistics for one of its facets) appropriately.
2114 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of headroom.
2115 *
2116 * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited
2117 * with statistics for 'packet' either way.
2118 *
2119 * Takes ownership of 'packet'. */
2120 static void
2121 rule_execute(struct ofproto *ofproto, struct rule *rule, uint16_t in_port,
2122 struct ofpbuf *packet)
2123 {
2124 struct action_xlate_ctx ctx;
2125 struct ofpbuf *odp_actions;
2126 struct facet *facet;
2127 struct flow flow;
2128 size_t size;
2129
2130 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2131
2132 flow_extract(packet, 0, in_port, &flow);
2133
2134 /* First look for a related facet. If we find one, account it to that. */
2135 facet = facet_lookup_valid(ofproto, &flow);
2136 if (facet && facet->rule == rule) {
2137 facet_execute(ofproto, facet, packet);
2138 return;
2139 }
2140
2141 /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then
2142 * create a new facet for it and use that. */
2143 if (rule_lookup(ofproto, &flow) == rule) {
2144 facet = facet_create(ofproto, rule, &flow, packet);
2145 facet_execute(ofproto, facet, packet);
2146 facet_install(ofproto, facet, true);
2147 return;
2148 }
2149
2150 /* We can't account anything to a facet. If we were to try, then that
2151 * facet would have a non-matching rule, busting our invariants. */
2152 action_xlate_ctx_init(&ctx, ofproto, &flow, packet);
2153 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2154 size = packet->size;
2155 if (execute_odp_actions(ofproto, in_port, odp_actions->data,
2156 odp_actions->size, packet)) {
2157 rule->used = time_msec();
2158 rule->packet_count++;
2159 rule->byte_count += size;
2160 }
2161 ofpbuf_delete(odp_actions);
2162 }
2163
2164 /* Inserts 'rule' into 'p''s flow table. */
2165 static void
2166 rule_insert(struct ofproto *p, struct rule *rule)
2167 {
2168 struct rule *displaced_rule;
2169
2170 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2171 if (displaced_rule) {
2172 rule_destroy(p, displaced_rule);
2173 }
2174 p->need_revalidate = true;
2175 }
2176
2177 /* Creates and returns a new facet within 'ofproto' owned by 'rule', given a
2178 * 'flow' and an example 'packet' within that flow.
2179 *
2180 * The caller must already have determined that no facet with an identical
2181 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
2182 * 'ofproto''s classifier table. */
2183 static struct facet *
2184 facet_create(struct ofproto *ofproto, struct rule *rule,
2185 const struct flow *flow, const struct ofpbuf *packet)
2186 {
2187 struct facet *facet;
2188
2189 facet = xzalloc(sizeof *facet);
2190 facet->used = time_msec();
2191 hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0));
2192 list_push_back(&rule->facets, &facet->list_node);
2193 facet->rule = rule;
2194 facet->flow = *flow;
2195 netflow_flow_init(&facet->nf_flow);
2196 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
2197
2198 facet_make_actions(ofproto, facet, packet);
2199
2200 return facet;
2201 }
2202
2203 static void
2204 facet_free(struct facet *facet)
2205 {
2206 free(facet->actions);
2207 free(facet);
2208 }
2209
2210 /* Remove 'rule' from 'ofproto' and free up the associated memory:
2211 *
2212 * - Removes 'rule' from the classifier.
2213 *
2214 * - If 'rule' has facets, revalidates them (and possibly uninstalls and
2215 * destroys them), via rule_destroy().
2216 */
2217 static void
2218 rule_remove(struct ofproto *ofproto, struct rule *rule)
2219 {
2220 COVERAGE_INC(ofproto_del_rule);
2221 ofproto->need_revalidate = true;
2222 classifier_remove(&ofproto->cls, &rule->cr);
2223 rule_destroy(ofproto, rule);
2224 }
2225
2226 /* Remove 'facet' from 'ofproto' and free up the associated memory:
2227 *
2228 * - If 'facet' was installed in the datapath, uninstalls it and updates its
2229 * rule's statistics, via facet_uninstall().
2230 *
2231 * - Removes 'facet' from its rule and from ofproto->facets.
2232 */
2233 static void
2234 facet_remove(struct ofproto *ofproto, struct facet *facet)
2235 {
2236 facet_uninstall(ofproto, facet);
2237 facet_flush_stats(ofproto, facet);
2238 hmap_remove(&ofproto->facets, &facet->hmap_node);
2239 list_remove(&facet->list_node);
2240 facet_free(facet);
2241 }
2242
2243 /* Composes the ODP actions for 'facet' based on its rule's actions. */
2244 static void
2245 facet_make_actions(struct ofproto *p, struct facet *facet,
2246 const struct ofpbuf *packet)
2247 {
2248 const struct rule *rule = facet->rule;
2249 struct ofpbuf *odp_actions;
2250 struct action_xlate_ctx ctx;
2251
2252 action_xlate_ctx_init(&ctx, p, &facet->flow, packet);
2253 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2254
2255 if (facet->actions_len != odp_actions->size
2256 || memcmp(facet->actions, odp_actions->data, odp_actions->size)) {
2257 free(facet->actions);
2258 facet->actions_len = odp_actions->size;
2259 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2260 }
2261
2262 ofpbuf_delete(odp_actions);
2263 }
2264
2265 static int
2266 facet_put__(struct ofproto *ofproto, struct facet *facet, int flags,
2267 struct odp_flow_put *put)
2268 {
2269 memset(&put->flow.stats, 0, sizeof put->flow.stats);
2270 odp_flow_key_from_flow(&put->flow.key, &facet->flow);
2271 put->flow.actions = facet->actions;
2272 put->flow.actions_len = facet->actions_len;
2273 put->flow.flags = 0;
2274 put->flags = flags;
2275 return dpif_flow_put(ofproto->dpif, put);
2276 }
2277
2278 /* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If
2279 * 'zero_stats' is true, clears any existing statistics from the datapath for
2280 * 'facet'. */
2281 static void
2282 facet_install(struct ofproto *p, struct facet *facet, bool zero_stats)
2283 {
2284 if (facet->may_install) {
2285 struct odp_flow_put put;
2286 int flags;
2287
2288 flags = ODPPF_CREATE | ODPPF_MODIFY;
2289 if (zero_stats) {
2290 flags |= ODPPF_ZERO_STATS;
2291 }
2292 if (!facet_put__(p, facet, flags, &put)) {
2293 facet->installed = true;
2294 }
2295 }
2296 }
2297
2298 /* Ensures that the bytes in 'facet', plus 'extra_bytes', have been passed up
2299 * to the accounting hook function in the ofhooks structure. */
2300 static void
2301 facet_account(struct ofproto *ofproto,
2302 struct facet *facet, uint64_t extra_bytes)
2303 {
2304 uint64_t total_bytes = facet->byte_count + extra_bytes;
2305
2306 if (ofproto->ofhooks->account_flow_cb
2307 && total_bytes > facet->accounted_bytes)
2308 {
2309 ofproto->ofhooks->account_flow_cb(
2310 &facet->flow, facet->tags, facet->actions, facet->actions_len,
2311 total_bytes - facet->accounted_bytes, ofproto->aux);
2312 facet->accounted_bytes = total_bytes;
2313 }
2314 }
2315
2316 /* If 'rule' is installed in the datapath, uninstalls it. */
2317 static void
2318 facet_uninstall(struct ofproto *p, struct facet *facet)
2319 {
2320 if (facet->installed) {
2321 struct odp_flow odp_flow;
2322
2323 odp_flow_key_from_flow(&odp_flow.key, &facet->flow);
2324 odp_flow.actions = NULL;
2325 odp_flow.actions_len = 0;
2326 odp_flow.flags = 0;
2327 if (!dpif_flow_del(p->dpif, &odp_flow)) {
2328 facet_update_stats(p, facet, &odp_flow.stats);
2329 }
2330 facet->installed = false;
2331 }
2332 }
2333
2334 /* Returns true if the only action for 'facet' is to send to the controller.
2335 * (We don't report NetFlow expiration messages for such facets because they
2336 * are just part of the control logic for the network, not real traffic). */
2337 static bool
2338 facet_is_controller_flow(struct facet *facet)
2339 {
2340 return (facet
2341 && facet->rule->n_actions == 1
2342 && action_outputs_to_port(&facet->rule->actions[0],
2343 htons(OFPP_CONTROLLER)));
2344 }
2345
2346 /* Folds all of 'facet''s statistics into its rule. Also updates the
2347 * accounting ofhook and emits a NetFlow expiration if appropriate. */
2348 static void
2349 facet_flush_stats(struct ofproto *ofproto, struct facet *facet)
2350 {
2351 facet_account(ofproto, facet, 0);
2352
2353 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
2354 struct ofexpired expired;
2355 expired.flow = facet->flow;
2356 expired.packet_count = facet->packet_count;
2357 expired.byte_count = facet->byte_count;
2358 expired.used = facet->used;
2359 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
2360 }
2361
2362 facet->rule->packet_count += facet->packet_count;
2363 facet->rule->byte_count += facet->byte_count;
2364
2365 /* Reset counters to prevent double counting if 'facet' ever gets
2366 * reinstalled. */
2367 facet->packet_count = 0;
2368 facet->byte_count = 0;
2369 facet->accounted_bytes = 0;
2370
2371 netflow_flow_clear(&facet->nf_flow);
2372 }
2373
2374 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2375 * Returns it if found, otherwise a null pointer.
2376 *
2377 * The returned facet might need revalidation; use facet_lookup_valid()
2378 * instead if that is important. */
2379 static struct facet *
2380 facet_find(struct ofproto *ofproto, const struct flow *flow)
2381 {
2382 struct facet *facet;
2383
2384 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0),
2385 &ofproto->facets) {
2386 if (flow_equal(flow, &facet->flow)) {
2387 return facet;
2388 }
2389 }
2390
2391 return NULL;
2392 }
2393
2394 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2395 * Returns it if found, otherwise a null pointer.
2396 *
2397 * The returned facet is guaranteed to be valid. */
2398 static struct facet *
2399 facet_lookup_valid(struct ofproto *ofproto, const struct flow *flow)
2400 {
2401 struct facet *facet = facet_find(ofproto, flow);
2402
2403 /* The facet we found might not be valid, since we could be in need of
2404 * revalidation. If it is not valid, don't return it. */
2405 if (facet
2406 && ofproto->need_revalidate
2407 && !facet_revalidate(ofproto, facet)) {
2408 COVERAGE_INC(ofproto_invalidated);
2409 return NULL;
2410 }
2411
2412 return facet;
2413 }
2414
2415 /* Re-searches 'ofproto''s classifier for a rule matching 'facet':
2416 *
2417 * - If the rule found is different from 'facet''s current rule, moves
2418 * 'facet' to the new rule and recompiles its actions.
2419 *
2420 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
2421 * where it is and recompiles its actions anyway.
2422 *
2423 * - If there is none, destroys 'facet'.
2424 *
2425 * Returns true if 'facet' still exists, false if it has been destroyed. */
2426 static bool
2427 facet_revalidate(struct ofproto *ofproto, struct facet *facet)
2428 {
2429 struct action_xlate_ctx ctx;
2430 struct ofpbuf *odp_actions;
2431 struct rule *new_rule;
2432 bool actions_changed;
2433
2434 COVERAGE_INC(facet_revalidate);
2435
2436 /* Determine the new rule. */
2437 new_rule = rule_lookup(ofproto, &facet->flow);
2438 if (!new_rule) {
2439 /* No new rule, so delete the facet. */
2440 facet_remove(ofproto, facet);
2441 return false;
2442 }
2443
2444 /* Calculate new ODP actions.
2445 *
2446 * We do not modify any 'facet' state yet, because we might need to, e.g.,
2447 * emit a NetFlow expiration and, if so, we need to have the old state
2448 * around to properly compose it. */
2449 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, NULL);
2450 odp_actions = xlate_actions(&ctx, new_rule->actions, new_rule->n_actions);
2451 actions_changed = (facet->actions_len != odp_actions->size
2452 || memcmp(facet->actions, odp_actions->data,
2453 facet->actions_len));
2454
2455 /* If the ODP actions changed or the installability changed, then we need
2456 * to talk to the datapath. */
2457 if (actions_changed || facet->may_install != facet->installed) {
2458 if (facet->may_install) {
2459 struct odp_flow_put put;
2460
2461 memset(&put.flow.stats, 0, sizeof put.flow.stats);
2462 odp_flow_key_from_flow(&put.flow.key, &facet->flow);
2463 put.flow.actions = odp_actions->data;
2464 put.flow.actions_len = odp_actions->size;
2465 put.flow.flags = 0;
2466 put.flags = ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS;
2467 dpif_flow_put(ofproto->dpif, &put);
2468
2469 facet_update_stats(ofproto, facet, &put.flow.stats);
2470 } else {
2471 facet_uninstall(ofproto, facet);
2472 }
2473
2474 /* The datapath flow is gone or has zeroed stats, so push stats out of
2475 * 'facet' into 'rule'. */
2476 facet_flush_stats(ofproto, facet);
2477 }
2478
2479 ofpbuf_delete(odp_actions);
2480
2481 /* Update 'facet' now that we've taken care of all the old state. */
2482 facet->tags = ctx.tags;
2483 facet->nf_flow.output_iface = ctx.nf_output_iface;
2484 facet->may_install = ctx.may_set_up_flow;
2485 if (actions_changed) {
2486 free(facet->actions);
2487 facet->actions_len = odp_actions->size;
2488 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2489 }
2490 if (facet->rule != new_rule) {
2491 COVERAGE_INC(facet_changed_rule);
2492 list_remove(&facet->list_node);
2493 list_push_back(&new_rule->facets, &facet->list_node);
2494 facet->rule = new_rule;
2495 facet->used = new_rule->created;
2496 }
2497
2498 return true;
2499 }
2500 \f
2501 static void
2502 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2503 struct rconn_packet_counter *counter)
2504 {
2505 update_openflow_length(msg);
2506 if (rconn_send(ofconn->rconn, msg, counter)) {
2507 ofpbuf_delete(msg);
2508 }
2509 }
2510
2511 static void
2512 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2513 int error)
2514 {
2515 struct ofpbuf *buf = make_ofp_error_msg(error, oh);
2516 if (buf) {
2517 COVERAGE_INC(ofproto_error);
2518 queue_tx(buf, ofconn, ofconn->reply_counter);
2519 }
2520 }
2521
2522 static void
2523 hton_ofp_phy_port(struct ofp_phy_port *opp)
2524 {
2525 opp->port_no = htons(opp->port_no);
2526 opp->config = htonl(opp->config);
2527 opp->state = htonl(opp->state);
2528 opp->curr = htonl(opp->curr);
2529 opp->advertised = htonl(opp->advertised);
2530 opp->supported = htonl(opp->supported);
2531 opp->peer = htonl(opp->peer);
2532 }
2533
2534 static int
2535 handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh)
2536 {
2537 queue_tx(make_echo_reply(oh), ofconn, ofconn->reply_counter);
2538 return 0;
2539 }
2540
2541 static int
2542 handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh)
2543 {
2544 struct ofp_switch_features *osf;
2545 struct ofpbuf *buf;
2546 struct ofport *port;
2547
2548 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2549 osf->datapath_id = htonll(ofconn->ofproto->datapath_id);
2550 osf->n_buffers = htonl(pktbuf_capacity());
2551 osf->n_tables = 2;
2552 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2553 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2554 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2555 (1u << OFPAT_SET_VLAN_VID) |
2556 (1u << OFPAT_SET_VLAN_PCP) |
2557 (1u << OFPAT_STRIP_VLAN) |
2558 (1u << OFPAT_SET_DL_SRC) |
2559 (1u << OFPAT_SET_DL_DST) |
2560 (1u << OFPAT_SET_NW_SRC) |
2561 (1u << OFPAT_SET_NW_DST) |
2562 (1u << OFPAT_SET_NW_TOS) |
2563 (1u << OFPAT_SET_TP_SRC) |
2564 (1u << OFPAT_SET_TP_DST) |
2565 (1u << OFPAT_ENQUEUE));
2566
2567 HMAP_FOR_EACH (port, hmap_node, &ofconn->ofproto->ports) {
2568 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2569 }
2570
2571 queue_tx(buf, ofconn, ofconn->reply_counter);
2572 return 0;
2573 }
2574
2575 static int
2576 handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh)
2577 {
2578 struct ofpbuf *buf;
2579 struct ofp_switch_config *osc;
2580 uint16_t flags;
2581 bool drop_frags;
2582
2583 /* Figure out flags. */
2584 dpif_get_drop_frags(ofconn->ofproto->dpif, &drop_frags);
2585 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2586
2587 /* Send reply. */
2588 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2589 osc->flags = htons(flags);
2590 osc->miss_send_len = htons(ofconn->miss_send_len);
2591 queue_tx(buf, ofconn, ofconn->reply_counter);
2592
2593 return 0;
2594 }
2595
2596 static int
2597 handle_set_config(struct ofconn *ofconn, const struct ofp_switch_config *osc)
2598 {
2599 uint16_t flags = ntohs(osc->flags);
2600
2601 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2602 switch (flags & OFPC_FRAG_MASK) {
2603 case OFPC_FRAG_NORMAL:
2604 dpif_set_drop_frags(ofconn->ofproto->dpif, false);
2605 break;
2606 case OFPC_FRAG_DROP:
2607 dpif_set_drop_frags(ofconn->ofproto->dpif, true);
2608 break;
2609 default:
2610 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2611 osc->flags);
2612 break;
2613 }
2614 }
2615
2616 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2617
2618 return 0;
2619 }
2620
2621 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
2622 * flow translation. */
2623 #define MAX_RESUBMIT_RECURSION 8
2624
2625 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2626 struct action_xlate_ctx *ctx);
2627
2628 static void
2629 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2630 {
2631 const struct ofport *ofport = get_port(ctx->ofproto, port);
2632
2633 if (ofport) {
2634 if (ofport->opp.config & OFPPC_NO_FWD) {
2635 /* Forwarding disabled on port. */
2636 return;
2637 }
2638 } else {
2639 /*
2640 * We don't have an ofport record for this port, but it doesn't hurt to
2641 * allow forwarding to it anyhow. Maybe such a port will appear later
2642 * and we're pre-populating the flow table.
2643 */
2644 }
2645
2646 nl_msg_put_u32(ctx->odp_actions, ODPAT_OUTPUT, port);
2647 ctx->nf_output_iface = port;
2648 }
2649
2650 static struct rule *
2651 rule_lookup(struct ofproto *ofproto, const struct flow *flow)
2652 {
2653 return rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2654 }
2655
2656 static void
2657 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2658 {
2659 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2660 uint16_t old_in_port;
2661 struct rule *rule;
2662
2663 /* Look up a flow with 'in_port' as the input port. Then restore the
2664 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2665 * have surprising behavior). */
2666 old_in_port = ctx->flow.in_port;
2667 ctx->flow.in_port = in_port;
2668 rule = rule_lookup(ctx->ofproto, &ctx->flow);
2669 ctx->flow.in_port = old_in_port;
2670
2671 if (ctx->resubmit_hook) {
2672 ctx->resubmit_hook(ctx, rule);
2673 }
2674
2675 if (rule) {
2676 ctx->recurse++;
2677 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2678 ctx->recurse--;
2679 }
2680 } else {
2681 struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2682
2683 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2684 MAX_RESUBMIT_RECURSION);
2685 }
2686 }
2687
2688 static void
2689 flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2690 uint16_t *nf_output_iface, struct ofpbuf *odp_actions)
2691 {
2692 struct ofport *ofport;
2693
2694 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2695 uint16_t odp_port = ofport->odp_port;
2696 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2697 nl_msg_put_u32(odp_actions, ODPAT_OUTPUT, odp_port);
2698 }
2699 }
2700 *nf_output_iface = NF_OUT_FLOOD;
2701 }
2702
2703 static void
2704 xlate_output_action__(struct action_xlate_ctx *ctx,
2705 uint16_t port, uint16_t max_len)
2706 {
2707 uint16_t odp_port;
2708 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2709
2710 ctx->nf_output_iface = NF_OUT_DROP;
2711
2712 switch (port) {
2713 case OFPP_IN_PORT:
2714 add_output_action(ctx, ctx->flow.in_port);
2715 break;
2716 case OFPP_TABLE:
2717 xlate_table_action(ctx, ctx->flow.in_port);
2718 break;
2719 case OFPP_NORMAL:
2720 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2721 ctx->odp_actions, &ctx->tags,
2722 &ctx->nf_output_iface,
2723 ctx->ofproto->aux)) {
2724 COVERAGE_INC(ofproto_uninstallable);
2725 ctx->may_set_up_flow = false;
2726 }
2727 break;
2728 case OFPP_FLOOD:
2729 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2730 &ctx->nf_output_iface, ctx->odp_actions);
2731 break;
2732 case OFPP_ALL:
2733 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2734 &ctx->nf_output_iface, ctx->odp_actions);
2735 break;
2736 case OFPP_CONTROLLER:
2737 nl_msg_put_u32(ctx->odp_actions, ODPAT_CONTROLLER, max_len);
2738 break;
2739 case OFPP_LOCAL:
2740 add_output_action(ctx, ODPP_LOCAL);
2741 break;
2742 default:
2743 odp_port = ofp_port_to_odp_port(port);
2744 if (odp_port != ctx->flow.in_port) {
2745 add_output_action(ctx, odp_port);
2746 }
2747 break;
2748 }
2749
2750 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2751 ctx->nf_output_iface = NF_OUT_FLOOD;
2752 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2753 ctx->nf_output_iface = prev_nf_output_iface;
2754 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2755 ctx->nf_output_iface != NF_OUT_FLOOD) {
2756 ctx->nf_output_iface = NF_OUT_MULTI;
2757 }
2758 }
2759
2760 static void
2761 xlate_output_action(struct action_xlate_ctx *ctx,
2762 const struct ofp_action_output *oao)
2763 {
2764 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2765 }
2766
2767 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2768 * optimization, because we're going to add another action that sets the
2769 * priority immediately after, or because there are no actions following the
2770 * pop. */
2771 static void
2772 remove_pop_action(struct action_xlate_ctx *ctx)
2773 {
2774 if (ctx->odp_actions->size == ctx->last_pop_priority) {
2775 ctx->odp_actions->size -= NLA_ALIGN(NLA_HDRLEN);
2776 ctx->last_pop_priority = -1;
2777 }
2778 }
2779
2780 static void
2781 add_pop_action(struct action_xlate_ctx *ctx)
2782 {
2783 if (ctx->odp_actions->size != ctx->last_pop_priority) {
2784 nl_msg_put_flag(ctx->odp_actions, ODPAT_POP_PRIORITY);
2785 ctx->last_pop_priority = ctx->odp_actions->size;
2786 }
2787 }
2788
2789 static void
2790 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2791 const struct ofp_action_enqueue *oae)
2792 {
2793 uint16_t ofp_port, odp_port;
2794 uint32_t priority;
2795 int error;
2796
2797 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2798 &priority);
2799 if (error) {
2800 /* Fall back to ordinary output action. */
2801 xlate_output_action__(ctx, ntohs(oae->port), 0);
2802 return;
2803 }
2804
2805 /* Figure out ODP output port. */
2806 ofp_port = ntohs(oae->port);
2807 if (ofp_port != OFPP_IN_PORT) {
2808 odp_port = ofp_port_to_odp_port(ofp_port);
2809 } else {
2810 odp_port = ctx->flow.in_port;
2811 }
2812
2813 /* Add ODP actions. */
2814 remove_pop_action(ctx);
2815 nl_msg_put_u32(ctx->odp_actions, ODPAT_SET_PRIORITY, priority);
2816 add_output_action(ctx, odp_port);
2817 add_pop_action(ctx);
2818
2819 /* Update NetFlow output port. */
2820 if (ctx->nf_output_iface == NF_OUT_DROP) {
2821 ctx->nf_output_iface = odp_port;
2822 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2823 ctx->nf_output_iface = NF_OUT_MULTI;
2824 }
2825 }
2826
2827 static void
2828 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2829 const struct nx_action_set_queue *nasq)
2830 {
2831 uint32_t priority;
2832 int error;
2833
2834 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2835 &priority);
2836 if (error) {
2837 /* Couldn't translate queue to a priority, so ignore. A warning
2838 * has already been logged. */
2839 return;
2840 }
2841
2842 remove_pop_action(ctx);
2843 nl_msg_put_u32(ctx->odp_actions, ODPAT_SET_PRIORITY, priority);
2844 }
2845
2846 static void
2847 xlate_set_dl_tci(struct action_xlate_ctx *ctx)
2848 {
2849 ovs_be16 tci = ctx->flow.vlan_tci;
2850 if (!(tci & htons(VLAN_CFI))) {
2851 nl_msg_put_flag(ctx->odp_actions, ODPAT_STRIP_VLAN);
2852 } else {
2853 nl_msg_put_be16(ctx->odp_actions, ODPAT_SET_DL_TCI,
2854 tci & ~htons(VLAN_CFI));
2855 }
2856 }
2857
2858 static void
2859 xlate_reg_move_action(struct action_xlate_ctx *ctx,
2860 const struct nx_action_reg_move *narm)
2861 {
2862 ovs_be16 old_tci = ctx->flow.vlan_tci;
2863
2864 nxm_execute_reg_move(narm, &ctx->flow);
2865
2866 if (ctx->flow.vlan_tci != old_tci) {
2867 xlate_set_dl_tci(ctx);
2868 }
2869 }
2870
2871 static void
2872 xlate_nicira_action(struct action_xlate_ctx *ctx,
2873 const struct nx_action_header *nah)
2874 {
2875 const struct nx_action_resubmit *nar;
2876 const struct nx_action_set_tunnel *nast;
2877 const struct nx_action_set_queue *nasq;
2878 enum nx_action_subtype subtype = ntohs(nah->subtype);
2879
2880 assert(nah->vendor == htonl(NX_VENDOR_ID));
2881 switch (subtype) {
2882 case NXAST_RESUBMIT:
2883 nar = (const struct nx_action_resubmit *) nah;
2884 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2885 break;
2886
2887 case NXAST_SET_TUNNEL:
2888 nast = (const struct nx_action_set_tunnel *) nah;
2889 nl_msg_put_be32(ctx->odp_actions, ODPAT_SET_TUNNEL, nast->tun_id);
2890 ctx->flow.tun_id = nast->tun_id;
2891 break;
2892
2893 case NXAST_DROP_SPOOFED_ARP:
2894 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2895 nl_msg_put_flag(ctx->odp_actions, ODPAT_DROP_SPOOFED_ARP);
2896 }
2897 break;
2898
2899 case NXAST_SET_QUEUE:
2900 nasq = (const struct nx_action_set_queue *) nah;
2901 xlate_set_queue_action(ctx, nasq);
2902 break;
2903
2904 case NXAST_POP_QUEUE:
2905 add_pop_action(ctx);
2906 break;
2907
2908 case NXAST_REG_MOVE:
2909 xlate_reg_move_action(ctx, (const struct nx_action_reg_move *) nah);
2910 break;
2911
2912 case NXAST_REG_LOAD:
2913 nxm_execute_reg_load((const struct nx_action_reg_load *) nah,
2914 &ctx->flow);
2915
2916 case NXAST_NOTE:
2917 /* Nothing to do. */
2918 break;
2919
2920 /* If you add a new action here that modifies flow data, don't forget to
2921 * update the flow key in ctx->flow at the same time. */
2922
2923 case NXAST_SNAT__OBSOLETE:
2924 default:
2925 VLOG_DBG_RL(&rl, "unknown Nicira action type %d", (int) subtype);
2926 break;
2927 }
2928 }
2929
2930 static void
2931 do_xlate_actions(const union ofp_action *in, size_t n_in,
2932 struct action_xlate_ctx *ctx)
2933 {
2934 struct actions_iterator iter;
2935 const union ofp_action *ia;
2936 const struct ofport *port;
2937
2938 port = get_port(ctx->ofproto, ctx->flow.in_port);
2939 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2940 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
2941 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2942 /* Drop this flow. */
2943 return;
2944 }
2945
2946 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2947 enum ofp_action_type type = ntohs(ia->type);
2948 const struct ofp_action_dl_addr *oada;
2949
2950 switch (type) {
2951 case OFPAT_OUTPUT:
2952 xlate_output_action(ctx, &ia->output);
2953 break;
2954
2955 case OFPAT_SET_VLAN_VID:
2956 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
2957 ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI);
2958 xlate_set_dl_tci(ctx);
2959 break;
2960
2961 case OFPAT_SET_VLAN_PCP:
2962 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
2963 ctx->flow.vlan_tci |= htons(
2964 (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
2965 xlate_set_dl_tci(ctx);
2966 break;
2967
2968 case OFPAT_STRIP_VLAN:
2969 ctx->flow.vlan_tci = htons(0);
2970 xlate_set_dl_tci(ctx);
2971 break;
2972
2973 case OFPAT_SET_DL_SRC:
2974 oada = ((struct ofp_action_dl_addr *) ia);
2975 nl_msg_put_unspec(ctx->odp_actions, ODPAT_SET_DL_SRC,
2976 oada->dl_addr, ETH_ADDR_LEN);
2977 memcpy(ctx->flow.dl_src, oada->dl_addr, ETH_ADDR_LEN);
2978 break;
2979
2980 case OFPAT_SET_DL_DST:
2981 oada = ((struct ofp_action_dl_addr *) ia);
2982 nl_msg_put_unspec(ctx->odp_actions, ODPAT_SET_DL_DST,
2983 oada->dl_addr, ETH_ADDR_LEN);
2984 memcpy(ctx->flow.dl_dst, oada->dl_addr, ETH_ADDR_LEN);
2985 break;
2986
2987 case OFPAT_SET_NW_SRC:
2988 nl_msg_put_be32(ctx->odp_actions, ODPAT_SET_NW_SRC,
2989 ia->nw_addr.nw_addr);
2990 ctx->flow.nw_src = ia->nw_addr.nw_addr;
2991 break;
2992
2993 case OFPAT_SET_NW_DST:
2994 nl_msg_put_be32(ctx->odp_actions, ODPAT_SET_NW_DST,
2995 ia->nw_addr.nw_addr);
2996 ctx->flow.nw_dst = ia->nw_addr.nw_addr;
2997 break;
2998
2999 case OFPAT_SET_NW_TOS:
3000 nl_msg_put_u8(ctx->odp_actions, ODPAT_SET_NW_TOS,
3001 ia->nw_tos.nw_tos);
3002 ctx->flow.nw_tos = ia->nw_tos.nw_tos;
3003 break;
3004
3005 case OFPAT_SET_TP_SRC:
3006 nl_msg_put_be16(ctx->odp_actions, ODPAT_SET_TP_SRC,
3007 ia->tp_port.tp_port);
3008 ctx->flow.tp_src = ia->tp_port.tp_port;
3009 break;
3010
3011 case OFPAT_SET_TP_DST:
3012 nl_msg_put_be16(ctx->odp_actions, ODPAT_SET_TP_DST,
3013 ia->tp_port.tp_port);
3014 ctx->flow.tp_dst = ia->tp_port.tp_port;
3015 break;
3016
3017 case OFPAT_VENDOR:
3018 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
3019 break;
3020
3021 case OFPAT_ENQUEUE:
3022 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
3023 break;
3024
3025 default:
3026 VLOG_DBG_RL(&rl, "unknown action type %d", (int) type);
3027 break;
3028 }
3029 }
3030 }
3031
3032 static void
3033 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
3034 struct ofproto *ofproto, const struct flow *flow,
3035 const struct ofpbuf *packet)
3036 {
3037 ctx->ofproto = ofproto;
3038 ctx->flow = *flow;
3039 ctx->packet = packet;
3040 ctx->resubmit_hook = NULL;
3041 }
3042
3043 static struct ofpbuf *
3044 xlate_actions(struct action_xlate_ctx *ctx,
3045 const union ofp_action *in, size_t n_in)
3046 {
3047 COVERAGE_INC(ofproto_ofp2odp);
3048
3049 ctx->odp_actions = ofpbuf_new(512);
3050 ctx->tags = 0;
3051 ctx->may_set_up_flow = true;
3052 ctx->nf_output_iface = NF_OUT_DROP;
3053 ctx->recurse = 0;
3054 ctx->last_pop_priority = -1;
3055 do_xlate_actions(in, n_in, ctx);
3056 remove_pop_action(ctx);
3057
3058 /* Check with in-band control to see if we're allowed to set up this
3059 * flow. */
3060 if (!in_band_rule_check(ctx->ofproto->in_band, &ctx->flow,
3061 ctx->odp_actions->data, ctx->odp_actions->size)) {
3062 ctx->may_set_up_flow = false;
3063 }
3064
3065 return ctx->odp_actions;
3066 }
3067
3068 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
3069 * error message code (composed with ofp_mkerr()) for the caller to propagate
3070 * upward. Otherwise, returns 0.
3071 *
3072 * The log message mentions 'msg_type'. */
3073 static int
3074 reject_slave_controller(struct ofconn *ofconn, const const char *msg_type)
3075 {
3076 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
3077 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
3078 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
3079 msg_type);
3080
3081 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3082 } else {
3083 return 0;
3084 }
3085 }
3086
3087 static int
3088 handle_packet_out(struct ofconn *ofconn, const struct ofp_header *oh)
3089 {
3090 struct ofproto *p = ofconn->ofproto;
3091 struct ofp_packet_out *opo;
3092 struct ofpbuf payload, *buffer;
3093 union ofp_action *ofp_actions;
3094 struct action_xlate_ctx ctx;
3095 struct ofpbuf *odp_actions;
3096 struct ofpbuf request;
3097 struct flow flow;
3098 size_t n_ofp_actions;
3099 uint16_t in_port;
3100 int error;
3101
3102 COVERAGE_INC(ofproto_packet_out);
3103
3104 error = reject_slave_controller(ofconn, "OFPT_PACKET_OUT");
3105 if (error) {
3106 return error;
3107 }
3108
3109 /* Get ofp_packet_out. */
3110 ofpbuf_use_const(&request, oh, ntohs(oh->length));
3111 opo = ofpbuf_pull(&request, offsetof(struct ofp_packet_out, actions));
3112
3113 /* Get actions. */
3114 error = ofputil_pull_actions(&request, ntohs(opo->actions_len),
3115 &ofp_actions, &n_ofp_actions);
3116 if (error) {
3117 return error;
3118 }
3119
3120 /* Get payload. */
3121 if (opo->buffer_id != htonl(UINT32_MAX)) {
3122 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
3123 &buffer, &in_port);
3124 if (error || !buffer) {
3125 return error;
3126 }
3127 payload = *buffer;
3128 } else {
3129 payload = request;
3130 buffer = NULL;
3131 }
3132
3133 /* Extract flow, check actions. */
3134 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)),
3135 &flow);
3136 error = validate_actions(ofp_actions, n_ofp_actions, &flow, p->max_ports);
3137 if (error) {
3138 goto exit;
3139 }
3140
3141 /* Send. */
3142 action_xlate_ctx_init(&ctx, p, &flow, &payload);
3143 odp_actions = xlate_actions(&ctx, ofp_actions, n_ofp_actions);
3144 dpif_execute(p->dpif, odp_actions->data, odp_actions->size, &payload);
3145 ofpbuf_delete(odp_actions);
3146
3147 exit:
3148 ofpbuf_delete(buffer);
3149 return 0;
3150 }
3151
3152 static void
3153 update_port_config(struct ofproto *p, struct ofport *port,
3154 uint32_t config, uint32_t mask)
3155 {
3156 mask &= config ^ port->opp.config;
3157 if (mask & OFPPC_PORT_DOWN) {
3158 if (config & OFPPC_PORT_DOWN) {
3159 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
3160 } else {
3161 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
3162 }
3163 }
3164 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
3165 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
3166 if (mask & REVALIDATE_BITS) {
3167 COVERAGE_INC(ofproto_costly_flags);
3168 port->opp.config ^= mask & REVALIDATE_BITS;
3169 p->need_revalidate = true;
3170 }
3171 #undef REVALIDATE_BITS
3172 if (mask & OFPPC_NO_PACKET_IN) {
3173 port->opp.config ^= OFPPC_NO_PACKET_IN;
3174 }
3175 }
3176
3177 static int
3178 handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh)
3179 {
3180 struct ofproto *p = ofconn->ofproto;
3181 const struct ofp_port_mod *opm = (const struct ofp_port_mod *) oh;
3182 struct ofport *port;
3183 int error;
3184
3185 error = reject_slave_controller(ofconn, "OFPT_PORT_MOD");
3186 if (error) {
3187 return error;
3188 }
3189
3190 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
3191 if (!port) {
3192 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
3193 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
3194 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
3195 } else {
3196 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
3197 if (opm->advertise) {
3198 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
3199 }
3200 }
3201 return 0;
3202 }
3203
3204 static struct ofpbuf *
3205 make_ofp_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
3206 {
3207 struct ofp_stats_reply *osr;
3208 struct ofpbuf *msg;
3209
3210 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3211 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3212 osr->type = type;
3213 osr->flags = htons(0);
3214 return msg;
3215 }
3216
3217 static struct ofpbuf *
3218 start_ofp_stats_reply(const struct ofp_header *request, size_t body_len)
3219 {
3220 const struct ofp_stats_request *osr
3221 = (const struct ofp_stats_request *) request;
3222 return make_ofp_stats_reply(osr->header.xid, osr->type, body_len);
3223 }
3224
3225 static void *
3226 append_ofp_stats_reply(size_t nbytes, struct ofconn *ofconn,
3227 struct ofpbuf **msgp)
3228 {
3229 struct ofpbuf *msg = *msgp;
3230 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3231 if (nbytes + msg->size > UINT16_MAX) {
3232 struct ofp_stats_reply *reply = msg->data;
3233 reply->flags = htons(OFPSF_REPLY_MORE);
3234 *msgp = make_ofp_stats_reply(reply->header.xid, reply->type, nbytes);
3235 queue_tx(msg, ofconn, ofconn->reply_counter);
3236 }
3237 return ofpbuf_put_uninit(*msgp, nbytes);
3238 }
3239
3240 static struct ofpbuf *
3241 make_nxstats_reply(ovs_be32 xid, ovs_be32 subtype, size_t body_len)
3242 {
3243 struct nicira_stats_msg *nsm;
3244 struct ofpbuf *msg;
3245
3246 msg = ofpbuf_new(MIN(sizeof *nsm + body_len, UINT16_MAX));
3247 nsm = put_openflow_xid(sizeof *nsm, OFPT_STATS_REPLY, xid, msg);
3248 nsm->type = htons(OFPST_VENDOR);
3249 nsm->flags = htons(0);
3250 nsm->vendor = htonl(NX_VENDOR_ID);
3251 nsm->subtype = htonl(subtype);
3252 return msg;
3253 }
3254
3255 static struct ofpbuf *
3256 start_nxstats_reply(const struct nicira_stats_msg *request, size_t body_len)
3257 {
3258 return make_nxstats_reply(request->header.xid, request->subtype, body_len);
3259 }
3260
3261 static void
3262 append_nxstats_reply(size_t nbytes, struct ofconn *ofconn,
3263 struct ofpbuf **msgp)
3264 {
3265 struct ofpbuf *msg = *msgp;
3266 assert(nbytes <= UINT16_MAX - sizeof(struct nicira_stats_msg));
3267 if (nbytes + msg->size > UINT16_MAX) {
3268 struct nicira_stats_msg *reply = msg->data;
3269 reply->flags = htons(OFPSF_REPLY_MORE);
3270 *msgp = make_nxstats_reply(reply->header.xid, reply->subtype, nbytes);
3271 queue_tx(msg, ofconn, ofconn->reply_counter);
3272 }
3273 ofpbuf_prealloc_tailroom(*msgp, nbytes);
3274 }
3275
3276 static int
3277 handle_desc_stats_request(struct ofconn *ofconn,
3278 const struct ofp_header *request)
3279 {
3280 struct ofproto *p = ofconn->ofproto;
3281 struct ofp_desc_stats *ods;
3282 struct ofpbuf *msg;
3283
3284 msg = start_ofp_stats_reply(request, sizeof *ods);
3285 ods = append_ofp_stats_reply(sizeof *ods, ofconn, &msg);
3286 memset(ods, 0, sizeof *ods);
3287 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3288 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3289 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3290 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3291 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3292 queue_tx(msg, ofconn, ofconn->reply_counter);
3293
3294 return 0;
3295 }
3296
3297 static int
3298 handle_table_stats_request(struct ofconn *ofconn,
3299 const struct ofp_header *request)
3300 {
3301 struct ofproto *p = ofconn->ofproto;
3302 struct ofp_table_stats *ots;
3303 struct ofpbuf *msg;
3304
3305 msg = start_ofp_stats_reply(request, sizeof *ots * 2);
3306
3307 /* Classifier table. */
3308 ots = append_ofp_stats_reply(sizeof *ots, ofconn, &msg);
3309 memset(ots, 0, sizeof *ots);
3310 strcpy(ots->name, "classifier");
3311 ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10
3312 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3313 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3314 ots->active_count = htonl(classifier_count(&p->cls));
3315 ots->lookup_count = htonll(0); /* XXX */
3316 ots->matched_count = htonll(0); /* XXX */
3317
3318 queue_tx(msg, ofconn, ofconn->reply_counter);
3319 return 0;
3320 }
3321
3322 static void
3323 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3324 struct ofpbuf **msgp)
3325 {
3326 struct netdev_stats stats;
3327 struct ofp_port_stats *ops;
3328
3329 /* Intentionally ignore return value, since errors will set
3330 * 'stats' to all-1s, which is correct for OpenFlow, and
3331 * netdev_get_stats() will log errors. */
3332 netdev_get_stats(port->netdev, &stats);
3333
3334 ops = append_ofp_stats_reply(sizeof *ops, ofconn, msgp);
3335 ops->port_no = htons(port->opp.port_no);
3336 memset(ops->pad, 0, sizeof ops->pad);
3337 ops->rx_packets = htonll(stats.rx_packets);
3338 ops->tx_packets = htonll(stats.tx_packets);
3339 ops->rx_bytes = htonll(stats.rx_bytes);
3340 ops->tx_bytes = htonll(stats.tx_bytes);
3341 ops->rx_dropped = htonll(stats.rx_dropped);
3342 ops->tx_dropped = htonll(stats.tx_dropped);
3343 ops->rx_errors = htonll(stats.rx_errors);
3344 ops->tx_errors = htonll(stats.tx_errors);
3345 ops->rx_frame_err = htonll(stats.rx_frame_errors);
3346 ops->rx_over_err = htonll(stats.rx_over_errors);
3347 ops->rx_crc_err = htonll(stats.rx_crc_errors);
3348 ops->collisions = htonll(stats.collisions);
3349 }
3350
3351 static int
3352 handle_port_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3353 {
3354 struct ofproto *p = ofconn->ofproto;
3355 const struct ofp_port_stats_request *psr = ofputil_stats_body(oh);
3356 struct ofp_port_stats *ops;
3357 struct ofpbuf *msg;
3358 struct ofport *port;
3359
3360 msg = start_ofp_stats_reply(oh, sizeof *ops * 16);
3361 if (psr->port_no != htons(OFPP_NONE)) {
3362 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3363 if (port) {
3364 append_port_stat(port, ofconn, &msg);
3365 }
3366 } else {
3367 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3368 append_port_stat(port, ofconn, &msg);
3369 }
3370 }
3371
3372 queue_tx(msg, ofconn, ofconn->reply_counter);
3373 return 0;
3374 }
3375
3376 /* Obtains statistic counters for 'rule' within 'p' and stores them into
3377 * '*packet_countp' and '*byte_countp'. The returned statistics include
3378 * statistics for all of 'rule''s facets. */
3379 static void
3380 query_stats(struct ofproto *p, struct rule *rule,
3381 uint64_t *packet_countp, uint64_t *byte_countp)
3382 {
3383 uint64_t packet_count, byte_count;
3384 struct facet *facet;
3385 struct odp_flow *odp_flows;
3386 size_t n_odp_flows;
3387
3388 /* Start from historical data for 'rule' itself that are no longer tracked
3389 * by the datapath. This counts, for example, facets that have expired. */
3390 packet_count = rule->packet_count;
3391 byte_count = rule->byte_count;
3392
3393 /* Prepare to ask the datapath for statistics on all of the rule's facets.
3394 *
3395 * Also, add any statistics that are not tracked by the datapath for each
3396 * facet. This includes, for example, statistics for packets that were
3397 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3398 * to a rule. */
3399 odp_flows = xzalloc(list_size(&rule->facets) * sizeof *odp_flows);
3400 n_odp_flows = 0;
3401 LIST_FOR_EACH (facet, list_node, &rule->facets) {
3402 struct odp_flow *odp_flow = &odp_flows[n_odp_flows++];
3403 odp_flow_key_from_flow(&odp_flow->key, &facet->flow);
3404 packet_count += facet->packet_count;
3405 byte_count += facet->byte_count;
3406 }
3407
3408 /* Fetch up-to-date statistics from the datapath and add them in. */
3409 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
3410 size_t i;
3411
3412 for (i = 0; i < n_odp_flows; i++) {
3413 struct odp_flow *odp_flow = &odp_flows[i];
3414 packet_count += odp_flow->stats.n_packets;
3415 byte_count += odp_flow->stats.n_bytes;
3416 }
3417 }
3418 free(odp_flows);
3419
3420 /* Return the stats to the caller. */
3421 *packet_countp = packet_count;
3422 *byte_countp = byte_count;
3423 }
3424
3425 static void
3426 calc_flow_duration(long long int start, ovs_be32 *sec, ovs_be32 *nsec)
3427 {
3428 long long int msecs = time_msec() - start;
3429 *sec = htonl(msecs / 1000);
3430 *nsec = htonl((msecs % 1000) * (1000 * 1000));
3431 }
3432
3433 static void
3434 put_ofp_flow_stats(struct ofconn *ofconn, struct rule *rule,
3435 ovs_be16 out_port, struct ofpbuf **replyp)
3436 {
3437 struct ofp_flow_stats *ofs;
3438 uint64_t packet_count, byte_count;
3439 size_t act_len, len;
3440
3441 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3442 return;
3443 }
3444
3445 act_len = sizeof *rule->actions * rule->n_actions;
3446 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3447
3448 query_stats(ofconn->ofproto, rule, &packet_count, &byte_count);
3449
3450 ofs = append_ofp_stats_reply(len, ofconn, replyp);
3451 ofs->length = htons(len);
3452 ofs->table_id = 0;
3453 ofs->pad = 0;
3454 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofs->match);
3455 calc_flow_duration(rule->created, &ofs->duration_sec, &ofs->duration_nsec);
3456 ofs->cookie = rule->flow_cookie;
3457 ofs->priority = htons(rule->cr.priority);
3458 ofs->idle_timeout = htons(rule->idle_timeout);
3459 ofs->hard_timeout = htons(rule->hard_timeout);
3460 memset(ofs->pad2, 0, sizeof ofs->pad2);
3461 ofs->packet_count = htonll(packet_count);
3462 ofs->byte_count = htonll(byte_count);
3463 if (rule->n_actions > 0) {
3464 memcpy(ofs->actions, rule->actions, act_len);
3465 }
3466 }
3467
3468 static bool
3469 is_valid_table(uint8_t table_id)
3470 {
3471 return table_id == 0 || table_id == 0xff;
3472 }
3473
3474 static int
3475 handle_flow_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3476 {
3477 const struct ofp_flow_stats_request *fsr = ofputil_stats_body(oh);
3478 struct ofpbuf *reply;
3479
3480 COVERAGE_INC(ofproto_flows_req);
3481 reply = start_ofp_stats_reply(oh, 1024);
3482 if (is_valid_table(fsr->table_id)) {
3483 struct cls_cursor cursor;
3484 struct cls_rule target;
3485 struct rule *rule;
3486
3487 ofputil_cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0,
3488 &target);
3489 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3490 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3491 put_ofp_flow_stats(ofconn, rule, fsr->out_port, &reply);
3492 }
3493 }
3494 queue_tx(reply, ofconn, ofconn->reply_counter);
3495
3496 return 0;
3497 }
3498
3499 static void
3500 put_nx_flow_stats(struct ofconn *ofconn, struct rule *rule,
3501 ovs_be16 out_port, struct ofpbuf **replyp)
3502 {
3503 struct nx_flow_stats *nfs;
3504 uint64_t packet_count, byte_count;
3505 size_t act_len, start_len;
3506 struct ofpbuf *reply;
3507
3508 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3509 return;
3510 }
3511
3512 query_stats(ofconn->ofproto, rule, &packet_count, &byte_count);
3513
3514 act_len = sizeof *rule->actions * rule->n_actions;
3515
3516 start_len = (*replyp)->size;
3517 append_nxstats_reply(sizeof *nfs + NXM_MAX_LEN + act_len, ofconn, replyp);
3518 reply = *replyp;
3519
3520 nfs = ofpbuf_put_uninit(reply, sizeof *nfs);
3521 nfs->table_id = 0;
3522 nfs->pad = 0;
3523 calc_flow_duration(rule->created, &nfs->duration_sec, &nfs->duration_nsec);
3524 nfs->cookie = rule->flow_cookie;
3525 nfs->priority = htons(rule->cr.priority);
3526 nfs->idle_timeout = htons(rule->idle_timeout);
3527 nfs->hard_timeout = htons(rule->hard_timeout);
3528 nfs->match_len = htons(nx_put_match(reply, &rule->cr));
3529 memset(nfs->pad2, 0, sizeof nfs->pad2);
3530 nfs->packet_count = htonll(packet_count);
3531 nfs->byte_count = htonll(byte_count);
3532 if (rule->n_actions > 0) {
3533 ofpbuf_put(reply, rule->actions, act_len);
3534 }
3535 nfs->length = htons(reply->size - start_len);
3536 }
3537
3538 static int
3539 handle_nxst_flow(struct ofconn *ofconn, const struct ofp_header *oh)
3540 {
3541 struct nx_flow_stats_request *nfsr;
3542 struct cls_rule target;
3543 struct ofpbuf *reply;
3544 struct ofpbuf b;
3545 int error;
3546
3547 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3548
3549 /* Dissect the message. */
3550 nfsr = ofpbuf_pull(&b, sizeof *nfsr);
3551 error = nx_pull_match(&b, ntohs(nfsr->match_len), 0, &target);
3552 if (error) {
3553 return error;
3554 }
3555 if (b.size) {
3556 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3557 }
3558
3559 COVERAGE_INC(ofproto_flows_req);
3560 reply = start_nxstats_reply(&nfsr->nsm, 1024);
3561 if (is_valid_table(nfsr->table_id)) {
3562 struct cls_cursor cursor;
3563 struct rule *rule;
3564
3565 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3566 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3567 put_nx_flow_stats(ofconn, rule, nfsr->out_port, &reply);
3568 }
3569 }
3570 queue_tx(reply, ofconn, ofconn->reply_counter);
3571
3572 return 0;
3573 }
3574
3575 static void
3576 flow_stats_ds(struct ofproto *ofproto, struct rule *rule, struct ds *results)
3577 {
3578 uint64_t packet_count, byte_count;
3579 size_t act_len = sizeof *rule->actions * rule->n_actions;
3580
3581 query_stats(ofproto, rule, &packet_count, &byte_count);
3582
3583 ds_put_format(results, "duration=%llds, ",
3584 (time_msec() - rule->created) / 1000);
3585 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3586 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3587 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3588 cls_rule_format(&rule->cr, results);
3589 if (act_len > 0) {
3590 ofp_print_actions(results, &rule->actions->header, act_len);
3591 } else {
3592 ds_put_cstr(results, "drop");
3593 }
3594 ds_put_cstr(results, "\n");
3595 }
3596
3597 /* Adds a pretty-printed description of all flows to 'results', including
3598 * those marked hidden by secchan (e.g., by in-band control). */
3599 void
3600 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3601 {
3602 struct cls_cursor cursor;
3603 struct rule *rule;
3604
3605 cls_cursor_init(&cursor, &p->cls, NULL);
3606 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3607 flow_stats_ds(p, rule, results);
3608 }
3609 }
3610
3611 static void
3612 query_aggregate_stats(struct ofproto *ofproto, struct cls_rule *target,
3613 ovs_be16 out_port, uint8_t table_id,
3614 struct ofp_aggregate_stats_reply *oasr)
3615 {
3616 uint64_t total_packets = 0;
3617 uint64_t total_bytes = 0;
3618 int n_flows = 0;
3619
3620 COVERAGE_INC(ofproto_agg_request);
3621
3622 if (is_valid_table(table_id)) {
3623 struct cls_cursor cursor;
3624 struct rule *rule;
3625
3626 cls_cursor_init(&cursor, &ofproto->cls, target);
3627 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3628 if (!rule_is_hidden(rule) && rule_has_out_port(rule, out_port)) {
3629 uint64_t packet_count;
3630 uint64_t byte_count;
3631
3632 query_stats(ofproto, rule, &packet_count, &byte_count);
3633
3634 total_packets += packet_count;
3635 total_bytes += byte_count;
3636 n_flows++;
3637 }
3638 }
3639 }
3640
3641 oasr->flow_count = htonl(n_flows);
3642 oasr->packet_count = htonll(total_packets);
3643 oasr->byte_count = htonll(total_bytes);
3644 memset(oasr->pad, 0, sizeof oasr->pad);
3645 }
3646
3647 static int
3648 handle_aggregate_stats_request(struct ofconn *ofconn,
3649 const struct ofp_header *oh)
3650 {
3651 const struct ofp_aggregate_stats_request *request = ofputil_stats_body(oh);
3652 struct ofp_aggregate_stats_reply *reply;
3653 struct cls_rule target;
3654 struct ofpbuf *msg;
3655
3656 ofputil_cls_rule_from_match(&request->match, 0, NXFF_OPENFLOW10, 0,
3657 &target);
3658
3659 msg = start_ofp_stats_reply(oh, sizeof *reply);
3660 reply = append_ofp_stats_reply(sizeof *reply, ofconn, &msg);
3661 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3662 request->table_id, reply);
3663 queue_tx(msg, ofconn, ofconn->reply_counter);
3664 return 0;
3665 }
3666
3667 static int
3668 handle_nxst_aggregate(struct ofconn *ofconn, const struct ofp_header *oh)
3669 {
3670 struct nx_aggregate_stats_request *request;
3671 struct ofp_aggregate_stats_reply *reply;
3672 struct cls_rule target;
3673 struct ofpbuf b;
3674 struct ofpbuf *buf;
3675 int error;
3676
3677 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3678
3679 /* Dissect the message. */
3680 request = ofpbuf_pull(&b, sizeof *request);
3681 error = nx_pull_match(&b, ntohs(request->match_len), 0, &target);
3682 if (error) {
3683 return error;
3684 }
3685 if (b.size) {
3686 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3687 }
3688
3689 /* Reply. */
3690 COVERAGE_INC(ofproto_flows_req);
3691 buf = start_nxstats_reply(&request->nsm, sizeof *reply);
3692 reply = ofpbuf_put_uninit(buf, sizeof *reply);
3693 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3694 request->table_id, reply);
3695 queue_tx(buf, ofconn, ofconn->reply_counter);
3696
3697 return 0;
3698 }
3699
3700 struct queue_stats_cbdata {
3701 struct ofconn *ofconn;
3702 struct ofport *ofport;
3703 struct ofpbuf *msg;
3704 };
3705
3706 static void
3707 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3708 const struct netdev_queue_stats *stats)
3709 {
3710 struct ofp_queue_stats *reply;
3711
3712 reply = append_ofp_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3713 reply->port_no = htons(cbdata->ofport->opp.port_no);
3714 memset(reply->pad, 0, sizeof reply->pad);
3715 reply->queue_id = htonl(queue_id);
3716 reply->tx_bytes = htonll(stats->tx_bytes);
3717 reply->tx_packets = htonll(stats->tx_packets);
3718 reply->tx_errors = htonll(stats->tx_errors);
3719 }
3720
3721 static void
3722 handle_queue_stats_dump_cb(uint32_t queue_id,
3723 struct netdev_queue_stats *stats,
3724 void *cbdata_)
3725 {
3726 struct queue_stats_cbdata *cbdata = cbdata_;
3727
3728 put_queue_stats(cbdata, queue_id, stats);
3729 }
3730
3731 static void
3732 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3733 struct queue_stats_cbdata *cbdata)
3734 {
3735 cbdata->ofport = port;
3736 if (queue_id == OFPQ_ALL) {
3737 netdev_dump_queue_stats(port->netdev,
3738 handle_queue_stats_dump_cb, cbdata);
3739 } else {
3740 struct netdev_queue_stats stats;
3741
3742 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3743 put_queue_stats(cbdata, queue_id, &stats);
3744 }
3745 }
3746 }
3747
3748 static int
3749 handle_queue_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3750 {
3751 struct ofproto *ofproto = ofconn->ofproto;
3752 const struct ofp_queue_stats_request *qsr;
3753 struct queue_stats_cbdata cbdata;
3754 struct ofport *port;
3755 unsigned int port_no;
3756 uint32_t queue_id;
3757
3758 qsr = ofputil_stats_body(oh);
3759 if (!qsr) {
3760 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3761 }
3762
3763 COVERAGE_INC(ofproto_queue_req);
3764
3765 cbdata.ofconn = ofconn;
3766 cbdata.msg = start_ofp_stats_reply(oh, 128);
3767
3768 port_no = ntohs(qsr->port_no);
3769 queue_id = ntohl(qsr->queue_id);
3770 if (port_no == OFPP_ALL) {
3771 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3772 handle_queue_stats_for_port(port, queue_id, &cbdata);
3773 }
3774 } else if (port_no < ofproto->max_ports) {
3775 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3776 if (port) {
3777 handle_queue_stats_for_port(port, queue_id, &cbdata);
3778 }
3779 } else {
3780 ofpbuf_delete(cbdata.msg);
3781 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3782 }
3783 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3784
3785 return 0;
3786 }
3787
3788 static long long int
3789 msec_from_nsec(uint64_t sec, uint32_t nsec)
3790 {
3791 return !sec ? 0 : sec * 1000 + nsec / 1000000;
3792 }
3793
3794 static void
3795 facet_update_time(struct ofproto *ofproto, struct facet *facet,
3796 const struct odp_flow_stats *stats)
3797 {
3798 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
3799 if (used > facet->used) {
3800 facet->used = used;
3801 if (used > facet->rule->used) {
3802 facet->rule->used = used;
3803 }
3804 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
3805 }
3806 }
3807
3808 /* Folds the statistics from 'stats' into the counters in 'facet'.
3809 *
3810 * Because of the meaning of a facet's counters, it only makes sense to do this
3811 * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a
3812 * packet that was sent by hand or if it represents statistics that have been
3813 * cleared out of the datapath. */
3814 static void
3815 facet_update_stats(struct ofproto *ofproto, struct facet *facet,
3816 const struct odp_flow_stats *stats)
3817 {
3818 if (stats->n_packets) {
3819 facet_update_time(ofproto, facet, stats);
3820 facet->packet_count += stats->n_packets;
3821 facet->byte_count += stats->n_bytes;
3822 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
3823 }
3824 }
3825
3826 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3827 * in which no matching flow already exists in the flow table.
3828 *
3829 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3830 * ofp_actions, to ofconn->ofproto's flow table. Returns 0 on success or an
3831 * OpenFlow error code as encoded by ofp_mkerr() on failure.
3832 *
3833 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3834 * if any. */
3835 static int
3836 add_flow(struct ofconn *ofconn, struct flow_mod *fm)
3837 {
3838 struct ofproto *p = ofconn->ofproto;
3839 struct ofpbuf *packet;
3840 struct rule *rule;
3841 uint16_t in_port;
3842 int error;
3843
3844 if (fm->flags & OFPFF_CHECK_OVERLAP
3845 && classifier_rule_overlaps(&p->cls, &fm->cr)) {
3846 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3847 }
3848
3849 error = 0;
3850 if (fm->buffer_id != UINT32_MAX) {
3851 error = pktbuf_retrieve(ofconn->pktbuf, fm->buffer_id,
3852 &packet, &in_port);
3853 } else {
3854 packet = NULL;
3855 in_port = UINT16_MAX;
3856 }
3857
3858 rule = rule_create(&fm->cr, fm->actions, fm->n_actions,
3859 fm->idle_timeout, fm->hard_timeout, fm->cookie,
3860 fm->flags & OFPFF_SEND_FLOW_REM);
3861 rule_insert(p, rule);
3862 if (packet) {
3863 rule_execute(p, rule, in_port, packet);
3864 }
3865 return error;
3866 }
3867
3868 static struct rule *
3869 find_flow_strict(struct ofproto *p, const struct flow_mod *fm)
3870 {
3871 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &fm->cr));
3872 }
3873
3874 static int
3875 send_buffered_packet(struct ofconn *ofconn,
3876 struct rule *rule, uint32_t buffer_id)
3877 {
3878 struct ofpbuf *packet;
3879 uint16_t in_port;
3880 int error;
3881
3882 if (buffer_id == UINT32_MAX) {
3883 return 0;
3884 }
3885
3886 error = pktbuf_retrieve(ofconn->pktbuf, buffer_id, &packet, &in_port);
3887 if (error) {
3888 return error;
3889 }
3890
3891 rule_execute(ofconn->ofproto, rule, in_port, packet);
3892
3893 return 0;
3894 }
3895 \f
3896 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3897
3898 struct modify_flows_cbdata {
3899 struct ofproto *ofproto;
3900 const struct flow_mod *fm;
3901 struct rule *match;
3902 };
3903
3904 static int modify_flow(struct ofproto *, const struct flow_mod *,
3905 struct rule *);
3906
3907 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3908 * encoded by ofp_mkerr() on failure.
3909 *
3910 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3911 * if any. */
3912 static int
3913 modify_flows_loose(struct ofconn *ofconn, struct flow_mod *fm)
3914 {
3915 struct ofproto *p = ofconn->ofproto;
3916 struct rule *match = NULL;
3917 struct cls_cursor cursor;
3918 struct rule *rule;
3919
3920 cls_cursor_init(&cursor, &p->cls, &fm->cr);
3921 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3922 if (!rule_is_hidden(rule)) {
3923 match = rule;
3924 modify_flow(p, fm, rule);
3925 }
3926 }
3927
3928 if (match) {
3929 /* This credits the packet to whichever flow happened to match last.
3930 * That's weird. Maybe we should do a lookup for the flow that
3931 * actually matches the packet? Who knows. */
3932 send_buffered_packet(ofconn, match, fm->buffer_id);
3933 return 0;
3934 } else {
3935 return add_flow(ofconn, fm);
3936 }
3937 }
3938
3939 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
3940 * code as encoded by ofp_mkerr() on failure.
3941 *
3942 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3943 * if any. */
3944 static int
3945 modify_flow_strict(struct ofconn *ofconn, struct flow_mod *fm)
3946 {
3947 struct ofproto *p = ofconn->ofproto;
3948 struct rule *rule = find_flow_strict(p, fm);
3949 if (rule && !rule_is_hidden(rule)) {
3950 modify_flow(p, fm, rule);
3951 return send_buffered_packet(ofconn, rule, fm->buffer_id);
3952 } else {
3953 return add_flow(ofconn, fm);
3954 }
3955 }
3956
3957 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
3958 * been identified as a flow in 'p''s flow table to be modified, by changing
3959 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
3960 * ofp_action[] structures). */
3961 static int
3962 modify_flow(struct ofproto *p, const struct flow_mod *fm, struct rule *rule)
3963 {
3964 size_t actions_len = fm->n_actions * sizeof *rule->actions;
3965
3966 rule->flow_cookie = fm->cookie;
3967
3968 /* If the actions are the same, do nothing. */
3969 if (fm->n_actions == rule->n_actions
3970 && (!fm->n_actions
3971 || !memcmp(fm->actions, rule->actions, actions_len))) {
3972 return 0;
3973 }
3974
3975 /* Replace actions. */
3976 free(rule->actions);
3977 rule->actions = fm->n_actions ? xmemdup(fm->actions, actions_len) : NULL;
3978 rule->n_actions = fm->n_actions;
3979
3980 p->need_revalidate = true;
3981
3982 return 0;
3983 }
3984 \f
3985 /* OFPFC_DELETE implementation. */
3986
3987 static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
3988
3989 /* Implements OFPFC_DELETE. */
3990 static void
3991 delete_flows_loose(struct ofproto *p, const struct flow_mod *fm)
3992 {
3993 struct rule *rule, *next_rule;
3994 struct cls_cursor cursor;
3995
3996 cls_cursor_init(&cursor, &p->cls, &fm->cr);
3997 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
3998 delete_flow(p, rule, htons(fm->out_port));
3999 }
4000 }
4001
4002 /* Implements OFPFC_DELETE_STRICT. */
4003 static void
4004 delete_flow_strict(struct ofproto *p, struct flow_mod *fm)
4005 {
4006 struct rule *rule = find_flow_strict(p, fm);
4007 if (rule) {
4008 delete_flow(p, rule, htons(fm->out_port));
4009 }
4010 }
4011
4012 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
4013 * been identified as a flow to delete from 'p''s flow table, by deleting the
4014 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
4015 * controller.
4016 *
4017 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
4018 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
4019 * specified 'out_port'. */
4020 static void
4021 delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
4022 {
4023 if (rule_is_hidden(rule)) {
4024 return;
4025 }
4026
4027 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
4028 return;
4029 }
4030
4031 rule_send_removed(p, rule, OFPRR_DELETE);
4032 rule_remove(p, rule);
4033 }
4034 \f
4035 static int
4036 handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh)
4037 {
4038 struct ofproto *p = ofconn->ofproto;
4039 struct flow_mod fm;
4040 int error;
4041
4042 error = reject_slave_controller(ofconn, "flow_mod");
4043 if (error) {
4044 return error;
4045 }
4046
4047 error = ofputil_decode_flow_mod(&fm, oh, ofconn->flow_format);
4048 if (error) {
4049 return error;
4050 }
4051
4052 /* We do not support the emergency flow cache. It will hopefully get
4053 * dropped from OpenFlow in the near future. */
4054 if (fm.flags & OFPFF_EMERG) {
4055 /* There isn't a good fit for an error code, so just state that the
4056 * flow table is full. */
4057 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
4058 }
4059
4060 error = validate_actions(fm.actions, fm.n_actions,
4061 &fm.cr.flow, p->max_ports);
4062 if (error) {
4063 return error;
4064 }
4065
4066 switch (fm.command) {
4067 case OFPFC_ADD:
4068 return add_flow(ofconn, &fm);
4069
4070 case OFPFC_MODIFY:
4071 return modify_flows_loose(ofconn, &fm);
4072
4073 case OFPFC_MODIFY_STRICT:
4074 return modify_flow_strict(ofconn, &fm);
4075
4076 case OFPFC_DELETE:
4077 delete_flows_loose(p, &fm);
4078 return 0;
4079
4080 case OFPFC_DELETE_STRICT:
4081 delete_flow_strict(p, &fm);
4082 return 0;
4083
4084 default:
4085 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
4086 }
4087 }
4088
4089 static int
4090 handle_tun_id_from_cookie(struct ofconn *ofconn, const struct ofp_header *oh)
4091 {
4092 const struct nxt_tun_id_cookie *msg
4093 = (const struct nxt_tun_id_cookie *) oh;
4094
4095 ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
4096 return 0;
4097 }
4098
4099 static int
4100 handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh)
4101 {
4102 struct nx_role_request *nrr = (struct nx_role_request *) oh;
4103 struct nx_role_request *reply;
4104 struct ofpbuf *buf;
4105 uint32_t role;
4106
4107 if (ofconn->type != OFCONN_PRIMARY) {
4108 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
4109 "connection");
4110 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4111 }
4112
4113 role = ntohl(nrr->role);
4114 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
4115 && role != NX_ROLE_SLAVE) {
4116 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
4117
4118 /* There's no good error code for this. */
4119 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
4120 }
4121
4122 if (role == NX_ROLE_MASTER) {
4123 struct ofconn *other;
4124
4125 HMAP_FOR_EACH (other, hmap_node, &ofconn->ofproto->controllers) {
4126 if (other->role == NX_ROLE_MASTER) {
4127 other->role = NX_ROLE_SLAVE;
4128 }
4129 }
4130 }
4131 ofconn->role = role;
4132
4133 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, oh->xid, &buf);
4134 reply->role = htonl(role);
4135 queue_tx(buf, ofconn, ofconn->reply_counter);
4136
4137 return 0;
4138 }
4139
4140 static int
4141 handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh)
4142 {
4143 const struct nxt_set_flow_format *msg
4144 = (const struct nxt_set_flow_format *) oh;
4145 uint32_t format;
4146
4147 format = ntohl(msg->format);
4148 if (format == NXFF_OPENFLOW10
4149 || format == NXFF_TUN_ID_FROM_COOKIE
4150 || format == NXFF_NXM) {
4151 ofconn->flow_format = format;
4152 return 0;
4153 } else {
4154 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4155 }
4156 }
4157
4158 static int
4159 handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh)
4160 {
4161 struct ofp_header *ob;
4162 struct ofpbuf *buf;
4163
4164 /* Currently, everything executes synchronously, so we can just
4165 * immediately send the barrier reply. */
4166 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4167 queue_tx(buf, ofconn, ofconn->reply_counter);
4168 return 0;
4169 }
4170
4171 static int
4172 handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg)
4173 {
4174 const struct ofp_header *oh = msg->data;
4175 const struct ofputil_msg_type *type;
4176 int error;
4177
4178 error = ofputil_decode_msg_type(oh, &type);
4179 if (error) {
4180 return error;
4181 }
4182
4183 switch (ofputil_msg_type_code(type)) {
4184 /* OpenFlow requests. */
4185 case OFPUTIL_OFPT_ECHO_REQUEST:
4186 return handle_echo_request(ofconn, oh);
4187
4188 case OFPUTIL_OFPT_FEATURES_REQUEST:
4189 return handle_features_request(ofconn, oh);
4190
4191 case OFPUTIL_OFPT_GET_CONFIG_REQUEST:
4192 return handle_get_config_request(ofconn, oh);
4193
4194 case OFPUTIL_OFPT_SET_CONFIG:
4195 return handle_set_config(ofconn, msg->data);
4196
4197 case OFPUTIL_OFPT_PACKET_OUT:
4198 return handle_packet_out(ofconn, oh);
4199
4200 case OFPUTIL_OFPT_PORT_MOD:
4201 return handle_port_mod(ofconn, oh);
4202
4203 case OFPUTIL_OFPT_FLOW_MOD:
4204 return handle_flow_mod(ofconn, oh);
4205
4206 case OFPUTIL_OFPT_BARRIER_REQUEST:
4207 return handle_barrier_request(ofconn, oh);
4208
4209 /* OpenFlow replies. */
4210 case OFPUTIL_OFPT_ECHO_REPLY:
4211 return 0;
4212
4213 /* Nicira extension requests. */
4214 case OFPUTIL_NXT_STATUS_REQUEST:
4215 return switch_status_handle_request(
4216 ofconn->ofproto->switch_status, ofconn->rconn, oh);
4217
4218 case OFPUTIL_NXT_TUN_ID_FROM_COOKIE:
4219 return handle_tun_id_from_cookie(ofconn, oh);
4220
4221 case OFPUTIL_NXT_ROLE_REQUEST:
4222 return handle_role_request(ofconn, oh);
4223
4224 case OFPUTIL_NXT_SET_FLOW_FORMAT:
4225 return handle_nxt_set_flow_format(ofconn, oh);
4226
4227 case OFPUTIL_NXT_FLOW_MOD:
4228 return handle_flow_mod(ofconn, oh);
4229
4230 /* OpenFlow statistics requests. */
4231 case OFPUTIL_OFPST_DESC_REQUEST:
4232 return handle_desc_stats_request(ofconn, oh);
4233
4234 case OFPUTIL_OFPST_FLOW_REQUEST:
4235 return handle_flow_stats_request(ofconn, oh);
4236
4237 case OFPUTIL_OFPST_AGGREGATE_REQUEST:
4238 return handle_aggregate_stats_request(ofconn, oh);
4239
4240 case OFPUTIL_OFPST_TABLE_REQUEST:
4241 return handle_table_stats_request(ofconn, oh);
4242
4243 case OFPUTIL_OFPST_PORT_REQUEST:
4244 return handle_port_stats_request(ofconn, oh);
4245
4246 case OFPUTIL_OFPST_QUEUE_REQUEST:
4247 return handle_queue_stats_request(ofconn, oh);
4248
4249 /* Nicira extension statistics requests. */
4250 case OFPUTIL_NXST_FLOW_REQUEST:
4251 return handle_nxst_flow(ofconn, oh);
4252
4253 case OFPUTIL_NXST_AGGREGATE_REQUEST:
4254 return handle_nxst_aggregate(ofconn, oh);
4255
4256 case OFPUTIL_INVALID:
4257 case OFPUTIL_OFPT_HELLO:
4258 case OFPUTIL_OFPT_ERROR:
4259 case OFPUTIL_OFPT_FEATURES_REPLY:
4260 case OFPUTIL_OFPT_GET_CONFIG_REPLY:
4261 case OFPUTIL_OFPT_PACKET_IN:
4262 case OFPUTIL_OFPT_FLOW_REMOVED:
4263 case OFPUTIL_OFPT_PORT_STATUS:
4264 case OFPUTIL_OFPT_BARRIER_REPLY:
4265 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REQUEST:
4266 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REPLY:
4267 case OFPUTIL_OFPST_DESC_REPLY:
4268 case OFPUTIL_OFPST_FLOW_REPLY:
4269 case OFPUTIL_OFPST_QUEUE_REPLY:
4270 case OFPUTIL_OFPST_PORT_REPLY:
4271 case OFPUTIL_OFPST_TABLE_REPLY:
4272 case OFPUTIL_OFPST_AGGREGATE_REPLY:
4273 case OFPUTIL_NXT_STATUS_REPLY:
4274 case OFPUTIL_NXT_ROLE_REPLY:
4275 case OFPUTIL_NXT_FLOW_REMOVED:
4276 case OFPUTIL_NXST_FLOW_REPLY:
4277 case OFPUTIL_NXST_AGGREGATE_REPLY:
4278 default:
4279 if (VLOG_IS_WARN_ENABLED()) {
4280 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4281 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4282 free(s);
4283 }
4284 if (oh->type == OFPT_STATS_REQUEST || oh->type == OFPT_STATS_REPLY) {
4285 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
4286 } else {
4287 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4288 }
4289 }
4290 }
4291
4292 static void
4293 handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
4294 {
4295 int error = handle_openflow__(ofconn, ofp_msg);
4296 if (error) {
4297 send_error_oh(ofconn, ofp_msg->data, error);
4298 }
4299 COVERAGE_INC(ofproto_recv_openflow);
4300 }
4301 \f
4302 static void
4303 handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet)
4304 {
4305 struct odp_msg *msg = packet->data;
4306 struct ofpbuf payload;
4307 struct facet *facet;
4308 struct flow flow;
4309
4310 ofpbuf_use_const(&payload, msg + 1, msg->length - sizeof *msg);
4311 flow_extract(&payload, msg->arg, msg->port, &flow);
4312
4313 packet->l2 = payload.l2;
4314 packet->l3 = payload.l3;
4315 packet->l4 = payload.l4;
4316 packet->l7 = payload.l7;
4317
4318 /* Check with in-band control to see if this packet should be sent
4319 * to the local port regardless of the flow table. */
4320 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
4321 struct ofpbuf odp_actions;
4322
4323 ofpbuf_init(&odp_actions, 32);
4324 nl_msg_put_u32(&odp_actions, ODPAT_OUTPUT, ODPP_LOCAL);
4325 dpif_execute(p->dpif, odp_actions.data, odp_actions.size, &payload);
4326 ofpbuf_uninit(&odp_actions);
4327 }
4328
4329 facet = facet_lookup_valid(p, &flow);
4330 if (!facet) {
4331 struct rule *rule = rule_lookup(p, &flow);
4332 if (!rule) {
4333 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4334 struct ofport *port = get_port(p, msg->port);
4335 if (port) {
4336 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4337 COVERAGE_INC(ofproto_no_packet_in);
4338 /* XXX install 'drop' flow entry */
4339 ofpbuf_delete(packet);
4340 return;
4341 }
4342 } else {
4343 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16,
4344 msg->port);
4345 }
4346
4347 COVERAGE_INC(ofproto_packet_in);
4348 send_packet_in(p, packet);
4349 return;
4350 }
4351
4352 facet = facet_create(p, rule, &flow, packet);
4353 } else if (!facet->may_install) {
4354 /* The facet is not installable, that is, we need to process every
4355 * packet, so process the current packet's actions into 'facet'. */
4356 facet_make_actions(p, facet, packet);
4357 }
4358
4359 if (facet->rule->cr.priority == FAIL_OPEN_PRIORITY) {
4360 /*
4361 * Extra-special case for fail-open mode.
4362 *
4363 * We are in fail-open mode and the packet matched the fail-open rule,
4364 * but we are connected to a controller too. We should send the packet
4365 * up to the controller in the hope that it will try to set up a flow
4366 * and thereby allow us to exit fail-open.
4367 *
4368 * See the top-level comment in fail-open.c for more information.
4369 */
4370 send_packet_in(p, ofpbuf_clone_with_headroom(packet,
4371 DPIF_RECV_MSG_PADDING));
4372 }
4373
4374 ofpbuf_pull(packet, sizeof *msg);
4375 facet_execute(p, facet, packet);
4376 facet_install(p, facet, false);
4377 }
4378
4379 static void
4380 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
4381 {
4382 struct odp_msg *msg = packet->data;
4383
4384 switch (msg->type) {
4385 case _ODPL_ACTION_NR:
4386 COVERAGE_INC(ofproto_ctlr_action);
4387 send_packet_in(p, packet);
4388 break;
4389
4390 case _ODPL_SFLOW_NR:
4391 if (p->sflow) {
4392 ofproto_sflow_received(p->sflow, msg);
4393 }
4394 ofpbuf_delete(packet);
4395 break;
4396
4397 case _ODPL_MISS_NR:
4398 handle_odp_miss_msg(p, packet);
4399 break;
4400
4401 default:
4402 VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32,
4403 msg->type);
4404 break;
4405 }
4406 }
4407 \f
4408 /* Flow expiration. */
4409
4410 static int ofproto_dp_max_idle(const struct ofproto *);
4411 static void ofproto_update_used(struct ofproto *);
4412 static void rule_expire(struct ofproto *, struct rule *);
4413 static void ofproto_expire_facets(struct ofproto *, int dp_max_idle);
4414
4415 /* This function is called periodically by ofproto_run(). Its job is to
4416 * collect updates for the flows that have been installed into the datapath,
4417 * most importantly when they last were used, and then use that information to
4418 * expire flows that have not been used recently.
4419 *
4420 * Returns the number of milliseconds after which it should be called again. */
4421 static int
4422 ofproto_expire(struct ofproto *ofproto)
4423 {
4424 struct rule *rule, *next_rule;
4425 struct cls_cursor cursor;
4426 int dp_max_idle;
4427
4428 /* Update 'used' for each flow in the datapath. */
4429 ofproto_update_used(ofproto);
4430
4431 /* Expire facets that have been idle too long. */
4432 dp_max_idle = ofproto_dp_max_idle(ofproto);
4433 ofproto_expire_facets(ofproto, dp_max_idle);
4434
4435 /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */
4436 cls_cursor_init(&cursor, &ofproto->cls, NULL);
4437 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4438 rule_expire(ofproto, rule);
4439 }
4440
4441 /* Let the hook know that we're at a stable point: all outstanding data
4442 * in existing flows has been accounted to the account_cb. Thus, the
4443 * hook can now reasonably do operations that depend on having accurate
4444 * flow volume accounting (currently, that's just bond rebalancing). */
4445 if (ofproto->ofhooks->account_checkpoint_cb) {
4446 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4447 }
4448
4449 return MIN(dp_max_idle, 1000);
4450 }
4451
4452 /* Update 'used' member of installed facets. */
4453 static void
4454 ofproto_update_used(struct ofproto *p)
4455 {
4456 struct odp_flow *flows;
4457 size_t n_flows;
4458 size_t i;
4459 int error;
4460
4461 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
4462 if (error) {
4463 return;
4464 }
4465
4466 for (i = 0; i < n_flows; i++) {
4467 struct odp_flow *f = &flows[i];
4468 struct facet *facet;
4469 struct flow flow;
4470
4471 odp_flow_key_to_flow(&f->key, &flow);
4472 facet = facet_find(p, &flow);
4473
4474 if (facet && facet->installed) {
4475 facet_update_time(p, facet, &f->stats);
4476 facet_account(p, facet, f->stats.n_bytes);
4477 } else {
4478 /* There's a flow in the datapath that we know nothing about.
4479 * Delete it. */
4480 COVERAGE_INC(ofproto_unexpected_rule);
4481 dpif_flow_del(p->dpif, f);
4482 }
4483
4484 }
4485 free(flows);
4486 }
4487
4488 /* Calculates and returns the number of milliseconds of idle time after which
4489 * facets should expire from the datapath and we should fold their statistics
4490 * into their parent rules in userspace. */
4491 static int
4492 ofproto_dp_max_idle(const struct ofproto *ofproto)
4493 {
4494 /*
4495 * Idle time histogram.
4496 *
4497 * Most of the time a switch has a relatively small number of facets. When
4498 * this is the case we might as well keep statistics for all of them in
4499 * userspace and to cache them in the kernel datapath for performance as
4500 * well.
4501 *
4502 * As the number of facets increases, the memory required to maintain
4503 * statistics about them in userspace and in the kernel becomes
4504 * significant. However, with a large number of facets it is likely that
4505 * only a few of them are "heavy hitters" that consume a large amount of
4506 * bandwidth. At this point, only heavy hitters are worth caching in the
4507 * kernel and maintaining in userspaces; other facets we can discard.
4508 *
4509 * The technique used to compute the idle time is to build a histogram with
4510 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet
4511 * that is installed in the kernel gets dropped in the appropriate bucket.
4512 * After the histogram has been built, we compute the cutoff so that only
4513 * the most-recently-used 1% of facets (but at least 1000 flows) are kept
4514 * cached. At least the most-recently-used bucket of facets is kept, so
4515 * actually an arbitrary number of facets can be kept in any given
4516 * expiration run (though the next run will delete most of those unless
4517 * they receive additional data).
4518 *
4519 * This requires a second pass through the facets, in addition to the pass
4520 * made by ofproto_update_used(), because the former function never looks
4521 * at uninstallable facets.
4522 */
4523 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4524 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4525 int buckets[N_BUCKETS] = { 0 };
4526 struct facet *facet;
4527 int total, bucket;
4528 long long int now;
4529 int i;
4530
4531 total = hmap_count(&ofproto->facets);
4532 if (total <= 1000) {
4533 return N_BUCKETS * BUCKET_WIDTH;
4534 }
4535
4536 /* Build histogram. */
4537 now = time_msec();
4538 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
4539 long long int idle = now - facet->used;
4540 int bucket = (idle <= 0 ? 0
4541 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4542 : (unsigned int) idle / BUCKET_WIDTH);
4543 buckets[bucket]++;
4544 }
4545
4546 /* Find the first bucket whose flows should be expired. */
4547 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4548 if (buckets[bucket]) {
4549 int subtotal = 0;
4550 do {
4551 subtotal += buckets[bucket++];
4552 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4553 break;
4554 }
4555 }
4556
4557 if (VLOG_IS_DBG_ENABLED()) {
4558 struct ds s;
4559
4560 ds_init(&s);
4561 ds_put_cstr(&s, "keep");
4562 for (i = 0; i < N_BUCKETS; i++) {
4563 if (i == bucket) {
4564 ds_put_cstr(&s, ", drop");
4565 }
4566 if (buckets[i]) {
4567 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4568 }
4569 }
4570 VLOG_INFO("%s: %s (msec:count)",
4571 dpif_name(ofproto->dpif), ds_cstr(&s));
4572 ds_destroy(&s);
4573 }
4574
4575 return bucket * BUCKET_WIDTH;
4576 }
4577
4578 static void
4579 facet_active_timeout(struct ofproto *ofproto, struct facet *facet)
4580 {
4581 if (ofproto->netflow && !facet_is_controller_flow(facet) &&
4582 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
4583 struct ofexpired expired;
4584 struct odp_flow odp_flow;
4585
4586 /* Get updated flow stats.
4587 *
4588 * XXX We could avoid this call entirely if (1) ofproto_update_used()
4589 * updated TCP flags and (2) the dpif_flow_list_all() in
4590 * ofproto_update_used() zeroed TCP flags. */
4591 memset(&odp_flow, 0, sizeof odp_flow);
4592 if (facet->installed) {
4593 odp_flow_key_from_flow(&odp_flow.key, &facet->flow);
4594 odp_flow.flags = ODPFF_ZERO_TCP_FLAGS;
4595 dpif_flow_get(ofproto->dpif, &odp_flow);
4596
4597 if (odp_flow.stats.n_packets) {
4598 facet_update_time(ofproto, facet, &odp_flow.stats);
4599 netflow_flow_update_flags(&facet->nf_flow,
4600 odp_flow.stats.tcp_flags);
4601 }
4602 }
4603
4604 expired.flow = facet->flow;
4605 expired.packet_count = facet->packet_count +
4606 odp_flow.stats.n_packets;
4607 expired.byte_count = facet->byte_count + odp_flow.stats.n_bytes;
4608 expired.used = facet->used;
4609
4610 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4611 }
4612 }
4613
4614 static void
4615 ofproto_expire_facets(struct ofproto *ofproto, int dp_max_idle)
4616 {
4617 long long int cutoff = time_msec() - dp_max_idle;
4618 struct facet *facet, *next_facet;
4619
4620 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
4621 facet_active_timeout(ofproto, facet);
4622 if (facet->used < cutoff) {
4623 facet_remove(ofproto, facet);
4624 }
4625 }
4626 }
4627
4628 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4629 * then delete it entirely. */
4630 static void
4631 rule_expire(struct ofproto *ofproto, struct rule *rule)
4632 {
4633 struct facet *facet, *next_facet;
4634 long long int now;
4635 uint8_t reason;
4636
4637 /* Has 'rule' expired? */
4638 now = time_msec();
4639 if (rule->hard_timeout
4640 && now > rule->created + rule->hard_timeout * 1000) {
4641 reason = OFPRR_HARD_TIMEOUT;
4642 } else if (rule->idle_timeout && list_is_empty(&rule->facets)
4643 && now >rule->used + rule->idle_timeout * 1000) {
4644 reason = OFPRR_IDLE_TIMEOUT;
4645 } else {
4646 return;
4647 }
4648
4649 COVERAGE_INC(ofproto_expired);
4650
4651 /* Update stats. (This is a no-op if the rule expired due to an idle
4652 * timeout, because that only happens when the rule has no facets left.) */
4653 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4654 facet_remove(ofproto, facet);
4655 }
4656
4657 /* Get rid of the rule. */
4658 if (!rule_is_hidden(rule)) {
4659 rule_send_removed(ofproto, rule, reason);
4660 }
4661 rule_remove(ofproto, rule);
4662 }
4663 \f
4664 static struct ofpbuf *
4665 compose_ofp_flow_removed(struct ofconn *ofconn, const struct rule *rule,
4666 uint8_t reason)
4667 {
4668 struct ofp_flow_removed *ofr;
4669 struct ofpbuf *buf;
4670
4671 ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf);
4672 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofr->match);
4673 ofr->cookie = rule->flow_cookie;
4674 ofr->priority = htons(rule->cr.priority);
4675 ofr->reason = reason;
4676 calc_flow_duration(rule->created, &ofr->duration_sec, &ofr->duration_nsec);
4677 ofr->idle_timeout = htons(rule->idle_timeout);
4678 ofr->packet_count = htonll(rule->packet_count);
4679 ofr->byte_count = htonll(rule->byte_count);
4680
4681 return buf;
4682 }
4683
4684 static struct ofpbuf *
4685 compose_nx_flow_removed(const struct rule *rule, uint8_t reason)
4686 {
4687 struct nx_flow_removed *nfr;
4688 struct ofpbuf *buf;
4689 int match_len;
4690
4691 nfr = make_nxmsg(sizeof *nfr, NXT_FLOW_REMOVED, &buf);
4692
4693 match_len = nx_put_match(buf, &rule->cr);
4694
4695 nfr->cookie = rule->flow_cookie;
4696 nfr->priority = htons(rule->cr.priority);
4697 nfr->reason = reason;
4698 calc_flow_duration(rule->created, &nfr->duration_sec, &nfr->duration_nsec);
4699 nfr->idle_timeout = htons(rule->idle_timeout);
4700 nfr->match_len = htons(match_len);
4701 nfr->packet_count = htonll(rule->packet_count);
4702 nfr->byte_count = htonll(rule->byte_count);
4703
4704 return buf;
4705 }
4706
4707 static void
4708 rule_send_removed(struct ofproto *p, struct rule *rule, uint8_t reason)
4709 {
4710 struct ofconn *ofconn;
4711
4712 if (!rule->send_flow_removed) {
4713 return;
4714 }
4715
4716 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4717 struct ofpbuf *msg;
4718
4719 if (!rconn_is_connected(ofconn->rconn)
4720 || !ofconn_receives_async_msgs(ofconn)) {
4721 continue;
4722 }
4723
4724 msg = (ofconn->flow_format == NXFF_NXM
4725 ? compose_nx_flow_removed(rule, reason)
4726 : compose_ofp_flow_removed(ofconn, rule, reason));
4727
4728 /* Account flow expirations under ofconn->reply_counter, the counter
4729 * for replies to OpenFlow requests. That works because preventing
4730 * OpenFlow requests from being processed also prevents new flows from
4731 * being added (and expiring). (It also prevents processing OpenFlow
4732 * requests that would not add new flows, so it is imperfect.) */
4733 queue_tx(msg, ofconn, ofconn->reply_counter);
4734 }
4735 }
4736
4737 /* pinsched callback for sending 'packet' on 'ofconn'. */
4738 static void
4739 do_send_packet_in(struct ofpbuf *packet, void *ofconn_)
4740 {
4741 struct ofconn *ofconn = ofconn_;
4742
4743 rconn_send_with_limit(ofconn->rconn, packet,
4744 ofconn->packet_in_counter, 100);
4745 }
4746
4747 /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and
4748 * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s
4749 * packet scheduler for sending.
4750 *
4751 * 'max_len' specifies the maximum number of bytes of the packet to send on
4752 * 'ofconn' (INT_MAX specifies no limit).
4753 *
4754 * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise,
4755 * ownership is transferred to this function. */
4756 static void
4757 schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len,
4758 bool clone)
4759 {
4760 struct ofproto *ofproto = ofconn->ofproto;
4761 struct ofp_packet_in *opi = packet->data;
4762 uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port));
4763 int send_len, trim_size;
4764 uint32_t buffer_id;
4765
4766 /* Get buffer. */
4767 if (opi->reason == OFPR_ACTION) {
4768 buffer_id = UINT32_MAX;
4769 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4770 buffer_id = pktbuf_get_null();
4771 } else if (!ofconn->pktbuf) {
4772 buffer_id = UINT32_MAX;
4773 } else {
4774 struct ofpbuf payload;
4775
4776 ofpbuf_use_const(&payload, opi->data,
4777 packet->size - offsetof(struct ofp_packet_in, data));
4778 buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port);
4779 }
4780
4781 /* Figure out how much of the packet to send. */
4782 send_len = ntohs(opi->total_len);
4783 if (buffer_id != UINT32_MAX) {
4784 send_len = MIN(send_len, ofconn->miss_send_len);
4785 }
4786 send_len = MIN(send_len, max_len);
4787
4788 /* Adjust packet length and clone if necessary. */
4789 trim_size = offsetof(struct ofp_packet_in, data) + send_len;
4790 if (clone) {
4791 packet = ofpbuf_clone_data(packet->data, trim_size);
4792 opi = packet->data;
4793 } else {
4794 packet->size = trim_size;
4795 }
4796
4797 /* Update packet headers. */
4798 opi->buffer_id = htonl(buffer_id);
4799 update_openflow_length(packet);
4800
4801 /* Hand over to packet scheduler. It might immediately call into
4802 * do_send_packet_in() or it might buffer it for a while (until a later
4803 * call to pinsched_run()). */
4804 pinsched_send(ofconn->schedulers[opi->reason], in_port,
4805 packet, do_send_packet_in, ofconn);
4806 }
4807
4808 /* Replace struct odp_msg header in 'packet' by equivalent struct
4809 * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as
4810 * returned by dpif_recv()).
4811 *
4812 * The conversion is not complete: the caller still needs to trim any unneeded
4813 * payload off the end of the buffer, set the length in the OpenFlow header,
4814 * and set buffer_id. Those require us to know the controller settings and so
4815 * must be done on a per-controller basis.
4816 *
4817 * Returns the maximum number of bytes of the packet that should be sent to
4818 * the controller (INT_MAX if no limit). */
4819 static int
4820 do_convert_to_packet_in(struct ofpbuf *packet)
4821 {
4822 struct odp_msg *msg = packet->data;
4823 struct ofp_packet_in *opi;
4824 uint8_t reason;
4825 uint16_t total_len;
4826 uint16_t in_port;
4827 int max_len;
4828
4829 /* Extract relevant header fields */
4830 if (msg->type == _ODPL_ACTION_NR) {
4831 reason = OFPR_ACTION;
4832 max_len = msg->arg;
4833 } else {
4834 reason = OFPR_NO_MATCH;
4835 max_len = INT_MAX;
4836 }
4837 total_len = msg->length - sizeof *msg;
4838 in_port = odp_port_to_ofp_port(msg->port);
4839
4840 /* Repurpose packet buffer by overwriting header. */
4841 ofpbuf_pull(packet, sizeof(struct odp_msg));
4842 opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data));
4843 opi->header.version = OFP_VERSION;
4844 opi->header.type = OFPT_PACKET_IN;
4845 opi->total_len = htons(total_len);
4846 opi->in_port = htons(in_port);
4847 opi->reason = reason;
4848
4849 return max_len;
4850 }
4851
4852 /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or
4853 * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller
4854 * as necessary according to their individual configurations.
4855 *
4856 * 'packet' must have sufficient headroom to convert it into a struct
4857 * ofp_packet_in (e.g. as returned by dpif_recv()).
4858 *
4859 * Takes ownership of 'packet'. */
4860 static void
4861 send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet)
4862 {
4863 struct ofconn *ofconn, *prev;
4864 int max_len;
4865
4866 max_len = do_convert_to_packet_in(packet);
4867
4868 prev = NULL;
4869 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
4870 if (ofconn_receives_async_msgs(ofconn)) {
4871 if (prev) {
4872 schedule_packet_in(prev, packet, max_len, true);
4873 }
4874 prev = ofconn;
4875 }
4876 }
4877 if (prev) {
4878 schedule_packet_in(prev, packet, max_len, false);
4879 } else {
4880 ofpbuf_delete(packet);
4881 }
4882 }
4883
4884 static uint64_t
4885 pick_datapath_id(const struct ofproto *ofproto)
4886 {
4887 const struct ofport *port;
4888
4889 port = get_port(ofproto, ODPP_LOCAL);
4890 if (port) {
4891 uint8_t ea[ETH_ADDR_LEN];
4892 int error;
4893
4894 error = netdev_get_etheraddr(port->netdev, ea);
4895 if (!error) {
4896 return eth_addr_to_uint64(ea);
4897 }
4898 VLOG_WARN("could not get MAC address for %s (%s)",
4899 netdev_get_name(port->netdev), strerror(error));
4900 }
4901 return ofproto->fallback_dpid;
4902 }
4903
4904 static uint64_t
4905 pick_fallback_dpid(void)
4906 {
4907 uint8_t ea[ETH_ADDR_LEN];
4908 eth_addr_nicira_random(ea);
4909 return eth_addr_to_uint64(ea);
4910 }
4911 \f
4912 static void
4913 ofproto_unixctl_list(struct unixctl_conn *conn, const char *arg OVS_UNUSED,
4914 void *aux OVS_UNUSED)
4915 {
4916 const struct shash_node *node;
4917 struct ds results;
4918
4919 ds_init(&results);
4920 SHASH_FOR_EACH (node, &all_ofprotos) {
4921 ds_put_format(&results, "%s\n", node->name);
4922 }
4923 unixctl_command_reply(conn, 200, ds_cstr(&results));
4924 ds_destroy(&results);
4925 }
4926
4927 struct ofproto_trace {
4928 struct action_xlate_ctx ctx;
4929 struct flow flow;
4930 struct ds *result;
4931 };
4932
4933 static void
4934 trace_format_rule(struct ds *result, int level, const struct rule *rule)
4935 {
4936 ds_put_char_multiple(result, '\t', level);
4937 if (!rule) {
4938 ds_put_cstr(result, "No match\n");
4939 return;
4940 }
4941
4942 ds_put_format(result, "Rule: cookie=%#"PRIx64" ",
4943 ntohll(rule->flow_cookie));
4944 cls_rule_format(&rule->cr, result);
4945 ds_put_char(result, '\n');
4946
4947 ds_put_char_multiple(result, '\t', level);
4948 ds_put_cstr(result, "OpenFlow ");
4949 ofp_print_actions(result, (const struct ofp_action_header *) rule->actions,
4950 rule->n_actions * sizeof *rule->actions);
4951 ds_put_char(result, '\n');
4952 }
4953
4954 static void
4955 trace_format_flow(struct ds *result, int level, const char *title,
4956 struct ofproto_trace *trace)
4957 {
4958 ds_put_char_multiple(result, '\t', level);
4959 ds_put_format(result, "%s: ", title);
4960 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
4961 ds_put_cstr(result, "unchanged");
4962 } else {
4963 flow_format(result, &trace->ctx.flow);
4964 trace->flow = trace->ctx.flow;
4965 }
4966 ds_put_char(result, '\n');
4967 }
4968
4969 static void
4970 trace_resubmit(struct action_xlate_ctx *ctx, const struct rule *rule)
4971 {
4972 struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx);
4973 struct ds *result = trace->result;
4974
4975 ds_put_char(result, '\n');
4976 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
4977 trace_format_rule(result, ctx->recurse + 1, rule);
4978 }
4979
4980 static void
4981 ofproto_unixctl_trace(struct unixctl_conn *conn, const char *args_,
4982 void *aux OVS_UNUSED)
4983 {
4984 char *dpname, *in_port_s, *tun_id_s, *packet_s;
4985 char *args = xstrdup(args_);
4986 char *save_ptr = NULL;
4987 struct ofproto *ofproto;
4988 struct ofpbuf packet;
4989 struct rule *rule;
4990 struct ds result;
4991 struct flow flow;
4992 uint16_t in_port;
4993 ovs_be32 tun_id;
4994 char *s;
4995
4996 ofpbuf_init(&packet, strlen(args) / 2);
4997 ds_init(&result);
4998
4999 dpname = strtok_r(args, " ", &save_ptr);
5000 tun_id_s = strtok_r(NULL, " ", &save_ptr);
5001 in_port_s = strtok_r(NULL, " ", &save_ptr);
5002 packet_s = strtok_r(NULL, "", &save_ptr); /* Get entire rest of line. */
5003 if (!dpname || !in_port_s || !packet_s) {
5004 unixctl_command_reply(conn, 501, "Bad command syntax");
5005 goto exit;
5006 }
5007
5008 ofproto = shash_find_data(&all_ofprotos, dpname);
5009 if (!ofproto) {
5010 unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list "
5011 "for help)");
5012 goto exit;
5013 }
5014
5015 tun_id = ntohl(strtoul(tun_id_s, NULL, 10));
5016 in_port = ofp_port_to_odp_port(atoi(in_port_s));
5017
5018 packet_s = ofpbuf_put_hex(&packet, packet_s, NULL);
5019 packet_s += strspn(packet_s, " ");
5020 if (*packet_s != '\0') {
5021 unixctl_command_reply(conn, 501, "Trailing garbage in command");
5022 goto exit;
5023 }
5024 if (packet.size < ETH_HEADER_LEN) {
5025 unixctl_command_reply(conn, 501, "Packet data too short for Ethernet");
5026 goto exit;
5027 }
5028
5029 ds_put_cstr(&result, "Packet: ");
5030 s = ofp_packet_to_string(packet.data, packet.size, packet.size);
5031 ds_put_cstr(&result, s);
5032 free(s);
5033
5034 flow_extract(&packet, tun_id, in_port, &flow);
5035 ds_put_cstr(&result, "Flow: ");
5036 flow_format(&result, &flow);
5037 ds_put_char(&result, '\n');
5038
5039 rule = rule_lookup(ofproto, &flow);
5040 trace_format_rule(&result, 0, rule);
5041 if (rule) {
5042 struct ofproto_trace trace;
5043 struct ofpbuf *odp_actions;
5044
5045 trace.result = &result;
5046 trace.flow = flow;
5047 action_xlate_ctx_init(&trace.ctx, ofproto, &flow, &packet);
5048 trace.ctx.resubmit_hook = trace_resubmit;
5049 odp_actions = xlate_actions(&trace.ctx,
5050 rule->actions, rule->n_actions);
5051
5052 ds_put_char(&result, '\n');
5053 trace_format_flow(&result, 0, "Final flow", &trace);
5054 ds_put_cstr(&result, "Datapath actions: ");
5055 format_odp_actions(&result, odp_actions->data, odp_actions->size);
5056 ofpbuf_delete(odp_actions);
5057 }
5058
5059 unixctl_command_reply(conn, 200, ds_cstr(&result));
5060
5061 exit:
5062 ds_destroy(&result);
5063 ofpbuf_uninit(&packet);
5064 free(args);
5065 }
5066
5067 static void
5068 ofproto_unixctl_init(void)
5069 {
5070 static bool registered;
5071 if (registered) {
5072 return;
5073 }
5074 registered = true;
5075
5076 unixctl_command_register("ofproto/list", ofproto_unixctl_list, NULL);
5077 unixctl_command_register("ofproto/trace", ofproto_unixctl_trace, NULL);
5078 }
5079 \f
5080 static bool
5081 default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
5082 struct ofpbuf *odp_actions, tag_type *tags,
5083 uint16_t *nf_output_iface, void *ofproto_)
5084 {
5085 struct ofproto *ofproto = ofproto_;
5086 int out_port;
5087
5088 /* Drop frames for reserved multicast addresses. */
5089 if (eth_addr_is_reserved(flow->dl_dst)) {
5090 return true;
5091 }
5092
5093 /* Learn source MAC (but don't try to learn from revalidation). */
5094 if (packet != NULL) {
5095 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
5096 0, flow->in_port,
5097 GRAT_ARP_LOCK_NONE);
5098 if (rev_tag) {
5099 /* The log messages here could actually be useful in debugging,
5100 * so keep the rate limit relatively high. */
5101 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
5102 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
5103 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
5104 ofproto_revalidate(ofproto, rev_tag);
5105 }
5106 }
5107
5108 /* Determine output port. */
5109 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
5110 NULL);
5111 if (out_port < 0) {
5112 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
5113 nf_output_iface, odp_actions);
5114 } else if (out_port != flow->in_port) {
5115 nl_msg_put_u32(odp_actions, ODPAT_OUTPUT, out_port);
5116 *nf_output_iface = out_port;
5117 } else {
5118 /* Drop. */
5119 }
5120
5121 return true;
5122 }
5123
5124 static const struct ofhooks default_ofhooks = {
5125 default_normal_ofhook_cb,
5126 NULL,
5127 NULL
5128 };