]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
ofproto: Free "controller_name" in ofconn_run().
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010, 2011 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "byte-order.h"
28 #include "classifier.h"
29 #include "coverage.h"
30 #include "discovery.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hash.h"
35 #include "hmap.h"
36 #include "in-band.h"
37 #include "mac-learning.h"
38 #include "multipath.h"
39 #include "netdev.h"
40 #include "netflow.h"
41 #include "netlink.h"
42 #include "nx-match.h"
43 #include "odp-util.h"
44 #include "ofp-print.h"
45 #include "ofp-util.h"
46 #include "ofproto-sflow.h"
47 #include "ofpbuf.h"
48 #include "openflow/nicira-ext.h"
49 #include "openflow/openflow.h"
50 #include "openvswitch/datapath-protocol.h"
51 #include "packets.h"
52 #include "pinsched.h"
53 #include "pktbuf.h"
54 #include "poll-loop.h"
55 #include "rconn.h"
56 #include "shash.h"
57 #include "status.h"
58 #include "stream-ssl.h"
59 #include "svec.h"
60 #include "tag.h"
61 #include "timeval.h"
62 #include "unaligned.h"
63 #include "unixctl.h"
64 #include "vconn.h"
65 #include "vlog.h"
66
67 VLOG_DEFINE_THIS_MODULE(ofproto);
68
69 COVERAGE_DEFINE(facet_changed_rule);
70 COVERAGE_DEFINE(facet_revalidate);
71 COVERAGE_DEFINE(odp_overflow);
72 COVERAGE_DEFINE(ofproto_agg_request);
73 COVERAGE_DEFINE(ofproto_costly_flags);
74 COVERAGE_DEFINE(ofproto_ctlr_action);
75 COVERAGE_DEFINE(ofproto_del_rule);
76 COVERAGE_DEFINE(ofproto_error);
77 COVERAGE_DEFINE(ofproto_expiration);
78 COVERAGE_DEFINE(ofproto_expired);
79 COVERAGE_DEFINE(ofproto_flows_req);
80 COVERAGE_DEFINE(ofproto_flush);
81 COVERAGE_DEFINE(ofproto_invalidated);
82 COVERAGE_DEFINE(ofproto_no_packet_in);
83 COVERAGE_DEFINE(ofproto_ofconn_stuck);
84 COVERAGE_DEFINE(ofproto_ofp2odp);
85 COVERAGE_DEFINE(ofproto_packet_in);
86 COVERAGE_DEFINE(ofproto_packet_out);
87 COVERAGE_DEFINE(ofproto_queue_req);
88 COVERAGE_DEFINE(ofproto_recv_openflow);
89 COVERAGE_DEFINE(ofproto_reinit_ports);
90 COVERAGE_DEFINE(ofproto_unexpected_rule);
91 COVERAGE_DEFINE(ofproto_uninstallable);
92 COVERAGE_DEFINE(ofproto_update_port);
93
94 #include "sflow_api.h"
95
96 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
97 * flow translation. */
98 #define MAX_RESUBMIT_RECURSION 16
99
100 struct rule;
101
102 struct ofport {
103 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
104 struct netdev *netdev;
105 struct ofp_phy_port opp; /* In host byte order. */
106 uint16_t odp_port;
107 };
108
109 static void ofport_free(struct ofport *);
110 static void hton_ofp_phy_port(struct ofp_phy_port *);
111
112 struct action_xlate_ctx {
113 /* action_xlate_ctx_init() initializes these members. */
114
115 /* The ofproto. */
116 struct ofproto *ofproto;
117
118 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
119 * this flow when actions change header fields. */
120 struct flow flow;
121
122 /* The packet corresponding to 'flow', or a null pointer if we are
123 * revalidating without a packet to refer to. */
124 const struct ofpbuf *packet;
125
126 /* If nonnull, called just before executing a resubmit action.
127 *
128 * This is normally null so the client has to set it manually after
129 * calling action_xlate_ctx_init(). */
130 void (*resubmit_hook)(struct action_xlate_ctx *, struct rule *);
131
132 /* If true, the speciality of 'flow' should be checked before executing
133 * its actions. If special_cb returns false on 'flow' rendered
134 * uninstallable and no actions will be executed. */
135 bool check_special;
136
137 /* xlate_actions() initializes and uses these members. The client might want
138 * to look at them after it returns. */
139
140 struct ofpbuf *odp_actions; /* Datapath actions. */
141 tag_type tags; /* Tags associated with OFPP_NORMAL actions. */
142 bool may_set_up_flow; /* True ordinarily; false if the actions must
143 * be reassessed for every packet. */
144 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
145
146 /* xlate_actions() initializes and uses these members, but the client has no
147 * reason to look at them. */
148
149 int recurse; /* Recursion level, via xlate_table_action. */
150 int last_pop_priority; /* Offset in 'odp_actions' just past most
151 * recent ODP_ACTION_ATTR_SET_PRIORITY. */
152 };
153
154 static void action_xlate_ctx_init(struct action_xlate_ctx *,
155 struct ofproto *, const struct flow *,
156 const struct ofpbuf *);
157 static struct ofpbuf *xlate_actions(struct action_xlate_ctx *,
158 const union ofp_action *in, size_t n_in);
159
160 /* An OpenFlow flow. */
161 struct rule {
162 long long int used; /* Time last used; time created if not used. */
163 long long int created; /* Creation time. */
164
165 /* These statistics:
166 *
167 * - Do include packets and bytes from facets that have been deleted or
168 * whose own statistics have been folded into the rule.
169 *
170 * - Do include packets and bytes sent "by hand" that were accounted to
171 * the rule without any facet being involved (this is a rare corner
172 * case in rule_execute()).
173 *
174 * - Do not include packet or bytes that can be obtained from any facet's
175 * packet_count or byte_count member or that can be obtained from the
176 * datapath by, e.g., dpif_flow_get() for any facet.
177 */
178 uint64_t packet_count; /* Number of packets received. */
179 uint64_t byte_count; /* Number of bytes received. */
180
181 ovs_be64 flow_cookie; /* Controller-issued identifier. */
182
183 struct cls_rule cr; /* In owning ofproto's classifier. */
184 uint16_t idle_timeout; /* In seconds from time of last use. */
185 uint16_t hard_timeout; /* In seconds from time of creation. */
186 bool send_flow_removed; /* Send a flow removed message? */
187 int n_actions; /* Number of elements in actions[]. */
188 union ofp_action *actions; /* OpenFlow actions. */
189 struct list facets; /* List of "struct facet"s. */
190 };
191
192 static struct rule *rule_from_cls_rule(const struct cls_rule *);
193 static bool rule_is_hidden(const struct rule *);
194
195 static struct rule *rule_create(const struct cls_rule *,
196 const union ofp_action *, size_t n_actions,
197 uint16_t idle_timeout, uint16_t hard_timeout,
198 ovs_be64 flow_cookie, bool send_flow_removed);
199 static void rule_destroy(struct ofproto *, struct rule *);
200 static void rule_free(struct rule *);
201
202 static struct rule *rule_lookup(struct ofproto *, const struct flow *);
203 static void rule_insert(struct ofproto *, struct rule *);
204 static void rule_remove(struct ofproto *, struct rule *);
205
206 static void rule_send_removed(struct ofproto *, struct rule *, uint8_t reason);
207 static void rule_get_stats(const struct rule *, uint64_t *packets,
208 uint64_t *bytes);
209
210 /* An exact-match instantiation of an OpenFlow flow. */
211 struct facet {
212 long long int used; /* Time last used; time created if not used. */
213
214 /* These statistics:
215 *
216 * - Do include packets and bytes sent "by hand", e.g. with
217 * dpif_execute().
218 *
219 * - Do include packets and bytes that were obtained from the datapath
220 * when a flow was deleted (e.g. dpif_flow_del()) or when its
221 * statistics were reset (e.g. dpif_flow_put() with
222 * DPIF_FP_ZERO_STATS).
223 *
224 * - Do not include any packets or bytes that can currently be obtained
225 * from the datapath by, e.g., dpif_flow_get().
226 */
227 uint64_t packet_count; /* Number of packets received. */
228 uint64_t byte_count; /* Number of bytes received. */
229
230 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
231 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
232
233 uint64_t rs_packet_count; /* Packets pushed to resubmit children. */
234 uint64_t rs_byte_count; /* Bytes pushed to resubmit children. */
235 long long int rs_used; /* Used time pushed to resubmit children. */
236
237 /* Number of bytes passed to account_cb. This may include bytes that can
238 * currently obtained from the datapath (thus, it can be greater than
239 * byte_count). */
240 uint64_t accounted_bytes;
241
242 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
243 struct list list_node; /* In owning rule's 'facets' list. */
244 struct rule *rule; /* Owning rule. */
245 struct flow flow; /* Exact-match flow. */
246 bool installed; /* Installed in datapath? */
247 bool may_install; /* True ordinarily; false if actions must
248 * be reassessed for every packet. */
249 size_t actions_len; /* Number of bytes in actions[]. */
250 struct nlattr *actions; /* Datapath actions. */
251 tag_type tags; /* Tags (set only by hooks). */
252 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
253 };
254
255 static struct facet *facet_create(struct ofproto *, struct rule *,
256 const struct flow *,
257 const struct ofpbuf *packet);
258 static void facet_remove(struct ofproto *, struct facet *);
259 static void facet_free(struct facet *);
260
261 static struct facet *facet_lookup_valid(struct ofproto *, const struct flow *);
262 static bool facet_revalidate(struct ofproto *, struct facet *);
263
264 static void facet_install(struct ofproto *, struct facet *, bool zero_stats);
265 static void facet_uninstall(struct ofproto *, struct facet *);
266 static void facet_flush_stats(struct ofproto *, struct facet *);
267
268 static void facet_make_actions(struct ofproto *, struct facet *,
269 const struct ofpbuf *packet);
270 static void facet_update_stats(struct ofproto *, struct facet *,
271 const struct dpif_flow_stats *);
272 static void facet_push_stats(struct ofproto *, struct facet *);
273
274 /* ofproto supports two kinds of OpenFlow connections:
275 *
276 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
277 * maintains persistent connections to these controllers and by default
278 * sends them asynchronous messages such as packet-ins.
279 *
280 * - "Service" connections, e.g. from ovs-ofctl. When these connections
281 * drop, it is the other side's responsibility to reconnect them if
282 * necessary. ofproto does not send them asynchronous messages by default.
283 *
284 * Currently, active (tcp, ssl, unix) connections are always "primary"
285 * connections and passive (ptcp, pssl, punix) connections are always "service"
286 * connections. There is no inherent reason for this, but it reflects the
287 * common case.
288 */
289 enum ofconn_type {
290 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
291 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
292 };
293
294 /* A listener for incoming OpenFlow "service" connections. */
295 struct ofservice {
296 struct hmap_node node; /* In struct ofproto's "services" hmap. */
297 struct pvconn *pvconn; /* OpenFlow connection listener. */
298
299 /* These are not used by ofservice directly. They are settings for
300 * accepted "struct ofconn"s from the pvconn. */
301 int probe_interval; /* Max idle time before probing, in seconds. */
302 int rate_limit; /* Max packet-in rate in packets per second. */
303 int burst_limit; /* Limit on accumulating packet credits. */
304 };
305
306 static struct ofservice *ofservice_lookup(struct ofproto *,
307 const char *target);
308 static int ofservice_create(struct ofproto *,
309 const struct ofproto_controller *);
310 static void ofservice_reconfigure(struct ofservice *,
311 const struct ofproto_controller *);
312 static void ofservice_destroy(struct ofproto *, struct ofservice *);
313
314 /* An OpenFlow connection. */
315 struct ofconn {
316 struct ofproto *ofproto; /* The ofproto that owns this connection. */
317 struct list node; /* In struct ofproto's "all_conns" list. */
318 struct rconn *rconn; /* OpenFlow connection. */
319 enum ofconn_type type; /* Type. */
320 enum nx_flow_format flow_format; /* Currently selected flow format. */
321
322 /* OFPT_PACKET_IN related data. */
323 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
324 #define N_SCHEDULERS 2
325 struct pinsched *schedulers[N_SCHEDULERS];
326 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
327 int miss_send_len; /* Bytes to send of buffered packets. */
328
329 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
330 * requests, and the maximum number before we stop reading OpenFlow
331 * requests. */
332 #define OFCONN_REPLY_MAX 100
333 struct rconn_packet_counter *reply_counter;
334
335 /* type == OFCONN_PRIMARY only. */
336 enum nx_role role; /* Role. */
337 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
338 struct discovery *discovery; /* Controller discovery object, if enabled. */
339 struct status_category *ss; /* Switch status category. */
340 enum ofproto_band band; /* In-band or out-of-band? */
341 };
342
343
344 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
345 enum ofconn_type);
346 static void ofconn_destroy(struct ofconn *);
347 static void ofconn_run(struct ofconn *);
348 static void ofconn_wait(struct ofconn *);
349 static bool ofconn_receives_async_msgs(const struct ofconn *);
350 static char *ofconn_make_name(const struct ofproto *, const char *target);
351 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
352
353 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
354 struct rconn_packet_counter *counter);
355
356 static void send_packet_in(struct ofproto *, struct dpif_upcall *,
357 const struct flow *, bool clone);
358 static void do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn);
359
360 struct ofproto {
361 /* Settings. */
362 uint64_t datapath_id; /* Datapath ID. */
363 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
364 char *mfr_desc; /* Manufacturer. */
365 char *hw_desc; /* Hardware. */
366 char *sw_desc; /* Software version. */
367 char *serial_desc; /* Serial number. */
368 char *dp_desc; /* Datapath description. */
369
370 /* Datapath. */
371 struct dpif *dpif;
372 struct netdev_monitor *netdev_monitor;
373 struct hmap ports; /* Contains "struct ofport"s. */
374 struct shash port_by_name;
375 uint32_t max_ports;
376
377 /* Configuration. */
378 struct switch_status *switch_status;
379 struct fail_open *fail_open;
380 struct netflow *netflow;
381 struct ofproto_sflow *sflow;
382
383 /* In-band control. */
384 struct in_band *in_band;
385 long long int next_in_band_update;
386 struct sockaddr_in *extra_in_band_remotes;
387 size_t n_extra_remotes;
388 int in_band_queue;
389
390 /* Flow table. */
391 struct classifier cls;
392 long long int next_expiration;
393
394 /* Facets. */
395 struct hmap facets;
396 bool need_revalidate;
397 struct tag_set revalidate_set;
398
399 /* OpenFlow connections. */
400 struct hmap controllers; /* Controller "struct ofconn"s. */
401 struct list all_conns; /* Contains "struct ofconn"s. */
402 enum ofproto_fail_mode fail_mode;
403
404 /* OpenFlow listeners. */
405 struct hmap services; /* Contains "struct ofservice"s. */
406 struct pvconn **snoops;
407 size_t n_snoops;
408
409 /* Hooks for ovs-vswitchd. */
410 const struct ofhooks *ofhooks;
411 void *aux;
412
413 /* Used by default ofhooks. */
414 struct mac_learning *ml;
415 };
416
417 /* Map from dpif name to struct ofproto, for use by unixctl commands. */
418 static struct shash all_ofprotos = SHASH_INITIALIZER(&all_ofprotos);
419
420 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
421
422 static const struct ofhooks default_ofhooks;
423
424 static uint64_t pick_datapath_id(const struct ofproto *);
425 static uint64_t pick_fallback_dpid(void);
426
427 static int ofproto_expire(struct ofproto *);
428 static void flow_push_stats(struct ofproto *, const struct rule *,
429 struct flow *, uint64_t packets, uint64_t bytes,
430 long long int used);
431
432 static void handle_upcall(struct ofproto *, struct dpif_upcall *);
433
434 static void handle_openflow(struct ofconn *, struct ofpbuf *);
435
436 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
437 static void update_port(struct ofproto *, const char *devname);
438 static int init_ports(struct ofproto *);
439 static void reinit_ports(struct ofproto *);
440
441 static void ofproto_unixctl_init(void);
442
443 int
444 ofproto_create(const char *datapath, const char *datapath_type,
445 const struct ofhooks *ofhooks, void *aux,
446 struct ofproto **ofprotop)
447 {
448 struct ofproto *p;
449 struct dpif *dpif;
450 int error;
451
452 *ofprotop = NULL;
453
454 ofproto_unixctl_init();
455
456 /* Connect to datapath and start listening for messages. */
457 error = dpif_open(datapath, datapath_type, &dpif);
458 if (error) {
459 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
460 return error;
461 }
462 error = dpif_recv_set_mask(dpif,
463 ((1u << DPIF_UC_MISS) |
464 (1u << DPIF_UC_ACTION) |
465 (1u << DPIF_UC_SAMPLE)));
466 if (error) {
467 VLOG_ERR("failed to listen on datapath %s: %s",
468 datapath, strerror(error));
469 dpif_close(dpif);
470 return error;
471 }
472 dpif_flow_flush(dpif);
473 dpif_recv_purge(dpif);
474
475 /* Initialize settings. */
476 p = xzalloc(sizeof *p);
477 p->fallback_dpid = pick_fallback_dpid();
478 p->datapath_id = p->fallback_dpid;
479 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
480 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
481 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
482 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
483 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
484
485 /* Initialize datapath. */
486 p->dpif = dpif;
487 p->netdev_monitor = netdev_monitor_create();
488 hmap_init(&p->ports);
489 shash_init(&p->port_by_name);
490 p->max_ports = dpif_get_max_ports(dpif);
491
492 /* Initialize submodules. */
493 p->switch_status = switch_status_create(p);
494 p->fail_open = NULL;
495 p->netflow = NULL;
496 p->sflow = NULL;
497
498 /* Initialize in-band control. */
499 p->in_band = NULL;
500 p->in_band_queue = -1;
501
502 /* Initialize flow table. */
503 classifier_init(&p->cls);
504 p->next_expiration = time_msec() + 1000;
505
506 /* Initialize facet table. */
507 hmap_init(&p->facets);
508 p->need_revalidate = false;
509 tag_set_init(&p->revalidate_set);
510
511 /* Initialize OpenFlow connections. */
512 list_init(&p->all_conns);
513 hmap_init(&p->controllers);
514 hmap_init(&p->services);
515 p->snoops = NULL;
516 p->n_snoops = 0;
517
518 /* Initialize hooks. */
519 if (ofhooks) {
520 p->ofhooks = ofhooks;
521 p->aux = aux;
522 p->ml = NULL;
523 } else {
524 p->ofhooks = &default_ofhooks;
525 p->aux = p;
526 p->ml = mac_learning_create();
527 }
528
529 /* Pick final datapath ID. */
530 p->datapath_id = pick_datapath_id(p);
531 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
532
533 shash_add_once(&all_ofprotos, dpif_name(p->dpif), p);
534
535 *ofprotop = p;
536 return 0;
537 }
538
539 void
540 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
541 {
542 uint64_t old_dpid = p->datapath_id;
543 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
544 if (p->datapath_id != old_dpid) {
545 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
546
547 /* Force all active connections to reconnect, since there is no way to
548 * notify a controller that the datapath ID has changed. */
549 ofproto_reconnect_controllers(p);
550 }
551 }
552
553 static bool
554 is_discovery_controller(const struct ofproto_controller *c)
555 {
556 return !strcmp(c->target, "discover");
557 }
558
559 static bool
560 is_in_band_controller(const struct ofproto_controller *c)
561 {
562 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
563 }
564
565 /* Creates a new controller in 'ofproto'. Some of the settings are initially
566 * drawn from 'c', but update_controller() needs to be called later to finish
567 * the new ofconn's configuration. */
568 static void
569 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
570 {
571 struct discovery *discovery;
572 struct ofconn *ofconn;
573
574 if (is_discovery_controller(c)) {
575 int error = discovery_create(c->accept_re, c->update_resolv_conf,
576 ofproto->dpif, ofproto->switch_status,
577 &discovery);
578 if (error) {
579 return;
580 }
581 } else {
582 discovery = NULL;
583 }
584
585 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
586 ofconn->pktbuf = pktbuf_create();
587 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
588 if (discovery) {
589 ofconn->discovery = discovery;
590 } else {
591 char *name = ofconn_make_name(ofproto, c->target);
592 rconn_connect(ofconn->rconn, c->target, name);
593 free(name);
594 }
595 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
596 hash_string(c->target, 0));
597 }
598
599 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
600 * target or turn discovery on or off (these are done by creating new ofconns
601 * and deleting old ones), but it can update the rest of an ofconn's
602 * settings. */
603 static void
604 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
605 {
606 int probe_interval;
607
608 ofconn->band = (is_in_band_controller(c)
609 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
610
611 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
612
613 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
614 rconn_set_probe_interval(ofconn->rconn, probe_interval);
615
616 if (ofconn->discovery) {
617 discovery_set_update_resolv_conf(ofconn->discovery,
618 c->update_resolv_conf);
619 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
620 }
621
622 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
623 }
624
625 static const char *
626 ofconn_get_target(const struct ofconn *ofconn)
627 {
628 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
629 }
630
631 static struct ofconn *
632 find_controller_by_target(struct ofproto *ofproto, const char *target)
633 {
634 struct ofconn *ofconn;
635
636 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
637 hash_string(target, 0), &ofproto->controllers) {
638 if (!strcmp(ofconn_get_target(ofconn), target)) {
639 return ofconn;
640 }
641 }
642 return NULL;
643 }
644
645 static void
646 update_in_band_remotes(struct ofproto *ofproto)
647 {
648 const struct ofconn *ofconn;
649 struct sockaddr_in *addrs;
650 size_t max_addrs, n_addrs;
651 bool discovery;
652 size_t i;
653
654 /* Allocate enough memory for as many remotes as we could possibly have. */
655 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
656 addrs = xmalloc(max_addrs * sizeof *addrs);
657 n_addrs = 0;
658
659 /* Add all the remotes. */
660 discovery = false;
661 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
662 struct sockaddr_in *sin = &addrs[n_addrs];
663
664 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
665 continue;
666 }
667
668 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
669 if (sin->sin_addr.s_addr) {
670 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
671 n_addrs++;
672 }
673 if (ofconn->discovery) {
674 discovery = true;
675 }
676 }
677 for (i = 0; i < ofproto->n_extra_remotes; i++) {
678 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
679 }
680
681 /* Create or update or destroy in-band.
682 *
683 * Ordinarily we only enable in-band if there's at least one remote
684 * address, but discovery needs the in-band rules for DHCP to be installed
685 * even before we know any remote addresses. */
686 if (n_addrs || discovery) {
687 if (!ofproto->in_band) {
688 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
689 &ofproto->in_band);
690 }
691 if (ofproto->in_band) {
692 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
693 }
694 in_band_set_queue(ofproto->in_band, ofproto->in_band_queue);
695 ofproto->next_in_band_update = time_msec() + 1000;
696 } else {
697 in_band_destroy(ofproto->in_band);
698 ofproto->in_band = NULL;
699 }
700
701 /* Clean up. */
702 free(addrs);
703 }
704
705 static void
706 update_fail_open(struct ofproto *p)
707 {
708 struct ofconn *ofconn;
709
710 if (!hmap_is_empty(&p->controllers)
711 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
712 struct rconn **rconns;
713 size_t n;
714
715 if (!p->fail_open) {
716 p->fail_open = fail_open_create(p, p->switch_status);
717 }
718
719 n = 0;
720 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
721 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
722 rconns[n++] = ofconn->rconn;
723 }
724
725 fail_open_set_controllers(p->fail_open, rconns, n);
726 /* p->fail_open takes ownership of 'rconns'. */
727 } else {
728 fail_open_destroy(p->fail_open);
729 p->fail_open = NULL;
730 }
731 }
732
733 void
734 ofproto_set_controllers(struct ofproto *p,
735 const struct ofproto_controller *controllers,
736 size_t n_controllers)
737 {
738 struct shash new_controllers;
739 struct ofconn *ofconn, *next_ofconn;
740 struct ofservice *ofservice, *next_ofservice;
741 bool ss_exists;
742 size_t i;
743
744 /* Create newly configured controllers and services.
745 * Create a name to ofproto_controller mapping in 'new_controllers'. */
746 shash_init(&new_controllers);
747 for (i = 0; i < n_controllers; i++) {
748 const struct ofproto_controller *c = &controllers[i];
749
750 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
751 if (!find_controller_by_target(p, c->target)) {
752 add_controller(p, c);
753 }
754 } else if (!pvconn_verify_name(c->target)) {
755 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
756 continue;
757 }
758 } else {
759 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
760 dpif_name(p->dpif), c->target);
761 continue;
762 }
763
764 shash_add_once(&new_controllers, c->target, &controllers[i]);
765 }
766
767 /* Delete controllers that are no longer configured.
768 * Update configuration of all now-existing controllers. */
769 ss_exists = false;
770 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
771 struct ofproto_controller *c;
772
773 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
774 if (!c) {
775 ofconn_destroy(ofconn);
776 } else {
777 update_controller(ofconn, c);
778 if (ofconn->ss) {
779 ss_exists = true;
780 }
781 }
782 }
783
784 /* Delete services that are no longer configured.
785 * Update configuration of all now-existing services. */
786 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
787 struct ofproto_controller *c;
788
789 c = shash_find_data(&new_controllers,
790 pvconn_get_name(ofservice->pvconn));
791 if (!c) {
792 ofservice_destroy(p, ofservice);
793 } else {
794 ofservice_reconfigure(ofservice, c);
795 }
796 }
797
798 shash_destroy(&new_controllers);
799
800 update_in_band_remotes(p);
801 update_fail_open(p);
802
803 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
804 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
805 struct ofconn, hmap_node);
806 ofconn->ss = switch_status_register(p->switch_status, "remote",
807 rconn_status_cb, ofconn->rconn);
808 }
809 }
810
811 void
812 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
813 {
814 p->fail_mode = fail_mode;
815 update_fail_open(p);
816 }
817
818 /* Drops the connections between 'ofproto' and all of its controllers, forcing
819 * them to reconnect. */
820 void
821 ofproto_reconnect_controllers(struct ofproto *ofproto)
822 {
823 struct ofconn *ofconn;
824
825 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
826 rconn_reconnect(ofconn->rconn);
827 }
828 }
829
830 static bool
831 any_extras_changed(const struct ofproto *ofproto,
832 const struct sockaddr_in *extras, size_t n)
833 {
834 size_t i;
835
836 if (n != ofproto->n_extra_remotes) {
837 return true;
838 }
839
840 for (i = 0; i < n; i++) {
841 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
842 const struct sockaddr_in *new = &extras[i];
843
844 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
845 old->sin_port != new->sin_port) {
846 return true;
847 }
848 }
849
850 return false;
851 }
852
853 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
854 * in-band control should guarantee access, in the same way that in-band
855 * control guarantees access to OpenFlow controllers. */
856 void
857 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
858 const struct sockaddr_in *extras, size_t n)
859 {
860 if (!any_extras_changed(ofproto, extras, n)) {
861 return;
862 }
863
864 free(ofproto->extra_in_band_remotes);
865 ofproto->n_extra_remotes = n;
866 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
867
868 update_in_band_remotes(ofproto);
869 }
870
871 /* Sets the OpenFlow queue used by flows set up by in-band control on
872 * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control
873 * flows will use the default queue. */
874 void
875 ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id)
876 {
877 if (queue_id != ofproto->in_band_queue) {
878 ofproto->in_band_queue = queue_id;
879 update_in_band_remotes(ofproto);
880 }
881 }
882
883 void
884 ofproto_set_desc(struct ofproto *p,
885 const char *mfr_desc, const char *hw_desc,
886 const char *sw_desc, const char *serial_desc,
887 const char *dp_desc)
888 {
889 struct ofp_desc_stats *ods;
890
891 if (mfr_desc) {
892 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
893 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
894 sizeof ods->mfr_desc);
895 }
896 free(p->mfr_desc);
897 p->mfr_desc = xstrdup(mfr_desc);
898 }
899 if (hw_desc) {
900 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
901 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
902 sizeof ods->hw_desc);
903 }
904 free(p->hw_desc);
905 p->hw_desc = xstrdup(hw_desc);
906 }
907 if (sw_desc) {
908 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
909 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
910 sizeof ods->sw_desc);
911 }
912 free(p->sw_desc);
913 p->sw_desc = xstrdup(sw_desc);
914 }
915 if (serial_desc) {
916 if (strlen(serial_desc) >= sizeof ods->serial_num) {
917 VLOG_WARN("truncating serial_desc, must be less than %zu "
918 "characters",
919 sizeof ods->serial_num);
920 }
921 free(p->serial_desc);
922 p->serial_desc = xstrdup(serial_desc);
923 }
924 if (dp_desc) {
925 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
926 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
927 sizeof ods->dp_desc);
928 }
929 free(p->dp_desc);
930 p->dp_desc = xstrdup(dp_desc);
931 }
932 }
933
934 static int
935 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
936 const struct svec *svec)
937 {
938 struct pvconn **pvconns = *pvconnsp;
939 size_t n_pvconns = *n_pvconnsp;
940 int retval = 0;
941 size_t i;
942
943 for (i = 0; i < n_pvconns; i++) {
944 pvconn_close(pvconns[i]);
945 }
946 free(pvconns);
947
948 pvconns = xmalloc(svec->n * sizeof *pvconns);
949 n_pvconns = 0;
950 for (i = 0; i < svec->n; i++) {
951 const char *name = svec->names[i];
952 struct pvconn *pvconn;
953 int error;
954
955 error = pvconn_open(name, &pvconn);
956 if (!error) {
957 pvconns[n_pvconns++] = pvconn;
958 } else {
959 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
960 if (!retval) {
961 retval = error;
962 }
963 }
964 }
965
966 *pvconnsp = pvconns;
967 *n_pvconnsp = n_pvconns;
968
969 return retval;
970 }
971
972 int
973 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
974 {
975 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
976 }
977
978 int
979 ofproto_set_netflow(struct ofproto *ofproto,
980 const struct netflow_options *nf_options)
981 {
982 if (nf_options && nf_options->collectors.n) {
983 if (!ofproto->netflow) {
984 ofproto->netflow = netflow_create();
985 }
986 return netflow_set_options(ofproto->netflow, nf_options);
987 } else {
988 netflow_destroy(ofproto->netflow);
989 ofproto->netflow = NULL;
990 return 0;
991 }
992 }
993
994 void
995 ofproto_set_sflow(struct ofproto *ofproto,
996 const struct ofproto_sflow_options *oso)
997 {
998 struct ofproto_sflow *os = ofproto->sflow;
999 if (oso) {
1000 if (!os) {
1001 struct ofport *ofport;
1002
1003 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
1004 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
1005 ofproto_sflow_add_port(os, ofport->odp_port,
1006 netdev_get_name(ofport->netdev));
1007 }
1008 }
1009 ofproto_sflow_set_options(os, oso);
1010 } else {
1011 ofproto_sflow_destroy(os);
1012 ofproto->sflow = NULL;
1013 }
1014 }
1015
1016 uint64_t
1017 ofproto_get_datapath_id(const struct ofproto *ofproto)
1018 {
1019 return ofproto->datapath_id;
1020 }
1021
1022 bool
1023 ofproto_has_primary_controller(const struct ofproto *ofproto)
1024 {
1025 return !hmap_is_empty(&ofproto->controllers);
1026 }
1027
1028 enum ofproto_fail_mode
1029 ofproto_get_fail_mode(const struct ofproto *p)
1030 {
1031 return p->fail_mode;
1032 }
1033
1034 void
1035 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
1036 {
1037 size_t i;
1038
1039 for (i = 0; i < ofproto->n_snoops; i++) {
1040 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
1041 }
1042 }
1043
1044 void
1045 ofproto_destroy(struct ofproto *p)
1046 {
1047 struct ofservice *ofservice, *next_ofservice;
1048 struct ofconn *ofconn, *next_ofconn;
1049 struct ofport *ofport, *next_ofport;
1050 size_t i;
1051
1052 if (!p) {
1053 return;
1054 }
1055
1056 shash_find_and_delete(&all_ofprotos, dpif_name(p->dpif));
1057
1058 /* Destroy fail-open and in-band early, since they touch the classifier. */
1059 fail_open_destroy(p->fail_open);
1060 p->fail_open = NULL;
1061
1062 in_band_destroy(p->in_band);
1063 p->in_band = NULL;
1064 free(p->extra_in_band_remotes);
1065
1066 ofproto_flush_flows(p);
1067 classifier_destroy(&p->cls);
1068 hmap_destroy(&p->facets);
1069
1070 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1071 ofconn_destroy(ofconn);
1072 }
1073 hmap_destroy(&p->controllers);
1074
1075 dpif_close(p->dpif);
1076 netdev_monitor_destroy(p->netdev_monitor);
1077 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
1078 hmap_remove(&p->ports, &ofport->hmap_node);
1079 ofport_free(ofport);
1080 }
1081 shash_destroy(&p->port_by_name);
1082
1083 switch_status_destroy(p->switch_status);
1084 netflow_destroy(p->netflow);
1085 ofproto_sflow_destroy(p->sflow);
1086
1087 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
1088 ofservice_destroy(p, ofservice);
1089 }
1090 hmap_destroy(&p->services);
1091
1092 for (i = 0; i < p->n_snoops; i++) {
1093 pvconn_close(p->snoops[i]);
1094 }
1095 free(p->snoops);
1096
1097 mac_learning_destroy(p->ml);
1098
1099 free(p->mfr_desc);
1100 free(p->hw_desc);
1101 free(p->sw_desc);
1102 free(p->serial_desc);
1103 free(p->dp_desc);
1104
1105 hmap_destroy(&p->ports);
1106
1107 free(p);
1108 }
1109
1110 int
1111 ofproto_run(struct ofproto *p)
1112 {
1113 int error = ofproto_run1(p);
1114 if (!error) {
1115 error = ofproto_run2(p, false);
1116 }
1117 return error;
1118 }
1119
1120 static void
1121 process_port_change(struct ofproto *ofproto, int error, char *devname)
1122 {
1123 if (error == ENOBUFS) {
1124 reinit_ports(ofproto);
1125 } else if (!error) {
1126 update_port(ofproto, devname);
1127 free(devname);
1128 }
1129 }
1130
1131 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1132 * means that 'ofconn' is more interesting for monitoring than a lower return
1133 * value. */
1134 static int
1135 snoop_preference(const struct ofconn *ofconn)
1136 {
1137 switch (ofconn->role) {
1138 case NX_ROLE_MASTER:
1139 return 3;
1140 case NX_ROLE_OTHER:
1141 return 2;
1142 case NX_ROLE_SLAVE:
1143 return 1;
1144 default:
1145 /* Shouldn't happen. */
1146 return 0;
1147 }
1148 }
1149
1150 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1151 * Connects this vconn to a controller. */
1152 static void
1153 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1154 {
1155 struct ofconn *ofconn, *best;
1156
1157 /* Pick a controller for monitoring. */
1158 best = NULL;
1159 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1160 if (ofconn->type == OFCONN_PRIMARY
1161 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1162 best = ofconn;
1163 }
1164 }
1165
1166 if (best) {
1167 rconn_add_monitor(best->rconn, vconn);
1168 } else {
1169 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1170 vconn_close(vconn);
1171 }
1172 }
1173
1174 int
1175 ofproto_run1(struct ofproto *p)
1176 {
1177 struct ofconn *ofconn, *next_ofconn;
1178 struct ofservice *ofservice;
1179 char *devname;
1180 int error;
1181 int i;
1182
1183 if (shash_is_empty(&p->port_by_name)) {
1184 init_ports(p);
1185 }
1186
1187 for (i = 0; i < 50; i++) {
1188 struct dpif_upcall packet;
1189
1190 error = dpif_recv(p->dpif, &packet);
1191 if (error) {
1192 if (error == ENODEV) {
1193 /* Someone destroyed the datapath behind our back. The caller
1194 * better destroy us and give up, because we're just going to
1195 * spin from here on out. */
1196 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1197 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1198 dpif_name(p->dpif));
1199 return ENODEV;
1200 }
1201 break;
1202 }
1203
1204 handle_upcall(p, &packet);
1205 }
1206
1207 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1208 process_port_change(p, error, devname);
1209 }
1210 while ((error = netdev_monitor_poll(p->netdev_monitor,
1211 &devname)) != EAGAIN) {
1212 process_port_change(p, error, devname);
1213 }
1214
1215 if (p->in_band) {
1216 if (time_msec() >= p->next_in_band_update) {
1217 update_in_band_remotes(p);
1218 }
1219 in_band_run(p->in_band);
1220 }
1221
1222 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1223 ofconn_run(ofconn);
1224 }
1225
1226 /* Fail-open maintenance. Do this after processing the ofconns since
1227 * fail-open checks the status of the controller rconn. */
1228 if (p->fail_open) {
1229 fail_open_run(p->fail_open);
1230 }
1231
1232 HMAP_FOR_EACH (ofservice, node, &p->services) {
1233 struct vconn *vconn;
1234 int retval;
1235
1236 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1237 if (!retval) {
1238 struct rconn *rconn;
1239 char *name;
1240
1241 rconn = rconn_create(ofservice->probe_interval, 0);
1242 name = ofconn_make_name(p, vconn_get_name(vconn));
1243 rconn_connect_unreliably(rconn, vconn, name);
1244 free(name);
1245
1246 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1247 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1248 ofservice->burst_limit);
1249 } else if (retval != EAGAIN) {
1250 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1251 }
1252 }
1253
1254 for (i = 0; i < p->n_snoops; i++) {
1255 struct vconn *vconn;
1256 int retval;
1257
1258 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1259 if (!retval) {
1260 add_snooper(p, vconn);
1261 } else if (retval != EAGAIN) {
1262 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1263 }
1264 }
1265
1266 if (time_msec() >= p->next_expiration) {
1267 int delay = ofproto_expire(p);
1268 p->next_expiration = time_msec() + delay;
1269 COVERAGE_INC(ofproto_expiration);
1270 }
1271
1272 if (p->netflow) {
1273 netflow_run(p->netflow);
1274 }
1275 if (p->sflow) {
1276 ofproto_sflow_run(p->sflow);
1277 }
1278
1279 return 0;
1280 }
1281
1282 int
1283 ofproto_run2(struct ofproto *p, bool revalidate_all)
1284 {
1285 /* Figure out what we need to revalidate now, if anything. */
1286 struct tag_set revalidate_set = p->revalidate_set;
1287 if (p->need_revalidate) {
1288 revalidate_all = true;
1289 }
1290
1291 /* Clear the revalidation flags. */
1292 tag_set_init(&p->revalidate_set);
1293 p->need_revalidate = false;
1294
1295 /* Now revalidate if there's anything to do. */
1296 if (revalidate_all || !tag_set_is_empty(&revalidate_set)) {
1297 struct facet *facet, *next;
1298
1299 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &p->facets) {
1300 if (revalidate_all
1301 || tag_set_intersects(&revalidate_set, facet->tags)) {
1302 facet_revalidate(p, facet);
1303 }
1304 }
1305 }
1306
1307 return 0;
1308 }
1309
1310 void
1311 ofproto_wait(struct ofproto *p)
1312 {
1313 struct ofservice *ofservice;
1314 struct ofconn *ofconn;
1315 size_t i;
1316
1317 dpif_recv_wait(p->dpif);
1318 dpif_port_poll_wait(p->dpif);
1319 netdev_monitor_poll_wait(p->netdev_monitor);
1320 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1321 ofconn_wait(ofconn);
1322 }
1323 if (p->in_band) {
1324 poll_timer_wait_until(p->next_in_band_update);
1325 in_band_wait(p->in_band);
1326 }
1327 if (p->fail_open) {
1328 fail_open_wait(p->fail_open);
1329 }
1330 if (p->sflow) {
1331 ofproto_sflow_wait(p->sflow);
1332 }
1333 if (!tag_set_is_empty(&p->revalidate_set)) {
1334 poll_immediate_wake();
1335 }
1336 if (p->need_revalidate) {
1337 /* Shouldn't happen, but if it does just go around again. */
1338 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1339 poll_immediate_wake();
1340 } else if (p->next_expiration != LLONG_MAX) {
1341 poll_timer_wait_until(p->next_expiration);
1342 }
1343 HMAP_FOR_EACH (ofservice, node, &p->services) {
1344 pvconn_wait(ofservice->pvconn);
1345 }
1346 for (i = 0; i < p->n_snoops; i++) {
1347 pvconn_wait(p->snoops[i]);
1348 }
1349 }
1350
1351 void
1352 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1353 {
1354 tag_set_add(&ofproto->revalidate_set, tag);
1355 }
1356
1357 struct tag_set *
1358 ofproto_get_revalidate_set(struct ofproto *ofproto)
1359 {
1360 return &ofproto->revalidate_set;
1361 }
1362
1363 bool
1364 ofproto_is_alive(const struct ofproto *p)
1365 {
1366 return !hmap_is_empty(&p->controllers);
1367 }
1368
1369 void
1370 ofproto_get_ofproto_controller_info(const struct ofproto * ofproto,
1371 struct shash *info)
1372 {
1373 const struct ofconn *ofconn;
1374
1375 shash_init(info);
1376
1377 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
1378 const struct rconn *rconn = ofconn->rconn;
1379 const int last_error = rconn_get_last_error(rconn);
1380 struct ofproto_controller_info *cinfo = xmalloc(sizeof *cinfo);
1381
1382 shash_add(info, rconn_get_target(rconn), cinfo);
1383
1384 cinfo->is_connected = rconn_is_connected(rconn);
1385 cinfo->role = ofconn->role;
1386
1387 cinfo->pairs.n = 0;
1388
1389 if (last_error) {
1390 cinfo->pairs.keys[cinfo->pairs.n] = "last_error";
1391 cinfo->pairs.values[cinfo->pairs.n++] =
1392 xstrdup(ovs_retval_to_string(last_error));
1393 }
1394
1395 cinfo->pairs.keys[cinfo->pairs.n] = "state";
1396 cinfo->pairs.values[cinfo->pairs.n++] =
1397 xstrdup(rconn_get_state(rconn));
1398
1399 cinfo->pairs.keys[cinfo->pairs.n] = "time_in_state";
1400 cinfo->pairs.values[cinfo->pairs.n++] =
1401 xasprintf("%u", rconn_get_state_elapsed(rconn));
1402 }
1403 }
1404
1405 void
1406 ofproto_free_ofproto_controller_info(struct shash *info)
1407 {
1408 struct shash_node *node;
1409
1410 SHASH_FOR_EACH (node, info) {
1411 struct ofproto_controller_info *cinfo = node->data;
1412 while (cinfo->pairs.n) {
1413 free((char *) cinfo->pairs.values[--cinfo->pairs.n]);
1414 }
1415 free(cinfo);
1416 }
1417 shash_destroy(info);
1418 }
1419
1420 /* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1421 *
1422 * This is almost the same as calling dpif_port_del() directly on the
1423 * datapath, but it also makes 'ofproto' close its open netdev for the port
1424 * (if any). This makes it possible to create a new netdev of a different
1425 * type under the same name, which otherwise the netdev library would refuse
1426 * to do because of the conflict. (The netdev would eventually get closed on
1427 * the next trip through ofproto_run(), but this interface is more direct.)
1428 *
1429 * Returns 0 if successful, otherwise a positive errno. */
1430 int
1431 ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1432 {
1433 struct ofport *ofport = get_port(ofproto, odp_port);
1434 const char *name = ofport ? ofport->opp.name : "<unknown>";
1435 int error;
1436
1437 error = dpif_port_del(ofproto->dpif, odp_port);
1438 if (error) {
1439 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1440 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1441 } else if (ofport) {
1442 /* 'name' is ofport->opp.name and update_port() is going to destroy
1443 * 'ofport'. Just in case update_port() refers to 'name' after it
1444 * destroys 'ofport', make a copy of it around the update_port()
1445 * call. */
1446 char *devname = xstrdup(name);
1447 update_port(ofproto, devname);
1448 free(devname);
1449 }
1450 return error;
1451 }
1452
1453 /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1454 * true if 'odp_port' exists and should be included, false otherwise. */
1455 bool
1456 ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1457 {
1458 struct ofport *ofport = get_port(ofproto, odp_port);
1459 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1460 }
1461
1462 int
1463 ofproto_send_packet(struct ofproto *p, const struct flow *flow,
1464 const union ofp_action *actions, size_t n_actions,
1465 const struct ofpbuf *packet)
1466 {
1467 struct action_xlate_ctx ctx;
1468 struct ofpbuf *odp_actions;
1469
1470 action_xlate_ctx_init(&ctx, p, flow, packet);
1471 /* Always xlate packets originated in this function. */
1472 ctx.check_special = false;
1473 odp_actions = xlate_actions(&ctx, actions, n_actions);
1474
1475 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1476 * error code? */
1477 dpif_execute(p->dpif, odp_actions->data, odp_actions->size, packet);
1478
1479 ofpbuf_delete(odp_actions);
1480
1481 return 0;
1482 }
1483
1484 /* Adds a flow to the OpenFlow flow table in 'p' that matches 'cls_rule' and
1485 * performs the 'n_actions' actions in 'actions'. The new flow will not
1486 * timeout.
1487 *
1488 * If cls_rule->priority is in the range of priorities supported by OpenFlow
1489 * (0...65535, inclusive) then the flow will be visible to OpenFlow
1490 * controllers; otherwise, it will be hidden.
1491 *
1492 * The caller retains ownership of 'cls_rule' and 'actions'. */
1493 void
1494 ofproto_add_flow(struct ofproto *p, const struct cls_rule *cls_rule,
1495 const union ofp_action *actions, size_t n_actions)
1496 {
1497 struct rule *rule;
1498 rule = rule_create(cls_rule, actions, n_actions, 0, 0, 0, false);
1499 rule_insert(p, rule);
1500 }
1501
1502 void
1503 ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target)
1504 {
1505 struct rule *rule;
1506
1507 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1508 target));
1509 if (rule) {
1510 rule_remove(ofproto, rule);
1511 }
1512 }
1513
1514 void
1515 ofproto_flush_flows(struct ofproto *ofproto)
1516 {
1517 struct facet *facet, *next_facet;
1518 struct rule *rule, *next_rule;
1519 struct cls_cursor cursor;
1520
1521 COVERAGE_INC(ofproto_flush);
1522
1523 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
1524 /* Mark the facet as not installed so that facet_remove() doesn't
1525 * bother trying to uninstall it. There is no point in uninstalling it
1526 * individually since we are about to blow away all the facets with
1527 * dpif_flow_flush(). */
1528 facet->installed = false;
1529 facet_remove(ofproto, facet);
1530 }
1531
1532 cls_cursor_init(&cursor, &ofproto->cls, NULL);
1533 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
1534 rule_remove(ofproto, rule);
1535 }
1536
1537 dpif_flow_flush(ofproto->dpif);
1538 if (ofproto->in_band) {
1539 in_band_flushed(ofproto->in_band);
1540 }
1541 if (ofproto->fail_open) {
1542 fail_open_flushed(ofproto->fail_open);
1543 }
1544 }
1545 \f
1546 static void
1547 reinit_ports(struct ofproto *p)
1548 {
1549 struct dpif_port_dump dump;
1550 struct shash_node *node;
1551 struct shash devnames;
1552 struct ofport *ofport;
1553 struct dpif_port dpif_port;
1554
1555 COVERAGE_INC(ofproto_reinit_ports);
1556
1557 shash_init(&devnames);
1558 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1559 shash_add_once (&devnames, ofport->opp.name, NULL);
1560 }
1561 DPIF_PORT_FOR_EACH (&dpif_port, &dump, p->dpif) {
1562 shash_add_once (&devnames, dpif_port.name, NULL);
1563 }
1564
1565 SHASH_FOR_EACH (node, &devnames) {
1566 update_port(p, node->name);
1567 }
1568 shash_destroy(&devnames);
1569 }
1570
1571 static struct ofport *
1572 make_ofport(const struct dpif_port *dpif_port)
1573 {
1574 struct netdev_options netdev_options;
1575 enum netdev_flags flags;
1576 struct ofport *ofport;
1577 struct netdev *netdev;
1578 int error;
1579
1580 memset(&netdev_options, 0, sizeof netdev_options);
1581 netdev_options.name = dpif_port->name;
1582 netdev_options.type = dpif_port->type;
1583 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1584
1585 error = netdev_open(&netdev_options, &netdev);
1586 if (error) {
1587 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1588 "cannot be opened (%s)",
1589 dpif_port->name, dpif_port->port_no,
1590 dpif_port->name, strerror(error));
1591 return NULL;
1592 }
1593
1594 ofport = xzalloc(sizeof *ofport);
1595 ofport->netdev = netdev;
1596 ofport->odp_port = dpif_port->port_no;
1597 ofport->opp.port_no = odp_port_to_ofp_port(dpif_port->port_no);
1598 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1599 ovs_strlcpy(ofport->opp.name, dpif_port->name, sizeof ofport->opp.name);
1600
1601 netdev_get_flags(netdev, &flags);
1602 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1603
1604 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1605
1606 netdev_get_features(netdev,
1607 &ofport->opp.curr, &ofport->opp.advertised,
1608 &ofport->opp.supported, &ofport->opp.peer);
1609 return ofport;
1610 }
1611
1612 static bool
1613 ofport_conflicts(const struct ofproto *p, const struct dpif_port *dpif_port)
1614 {
1615 if (get_port(p, dpif_port->port_no)) {
1616 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1617 dpif_port->port_no);
1618 return true;
1619 } else if (shash_find(&p->port_by_name, dpif_port->name)) {
1620 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1621 dpif_port->name);
1622 return true;
1623 } else {
1624 return false;
1625 }
1626 }
1627
1628 static int
1629 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1630 {
1631 const struct ofp_phy_port *a = &a_->opp;
1632 const struct ofp_phy_port *b = &b_->opp;
1633
1634 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1635 return (a->port_no == b->port_no
1636 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1637 && !strcmp(a->name, b->name)
1638 && a->state == b->state
1639 && a->config == b->config
1640 && a->curr == b->curr
1641 && a->advertised == b->advertised
1642 && a->supported == b->supported
1643 && a->peer == b->peer);
1644 }
1645
1646 static void
1647 send_port_status(struct ofproto *p, const struct ofport *ofport,
1648 uint8_t reason)
1649 {
1650 /* XXX Should limit the number of queued port status change messages. */
1651 struct ofconn *ofconn;
1652 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1653 struct ofp_port_status *ops;
1654 struct ofpbuf *b;
1655
1656 /* Primary controllers, even slaves, should always get port status
1657 updates. Otherwise obey ofconn_receives_async_msgs(). */
1658 if (ofconn->type != OFCONN_PRIMARY
1659 && !ofconn_receives_async_msgs(ofconn)) {
1660 continue;
1661 }
1662
1663 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1664 ops->reason = reason;
1665 ops->desc = ofport->opp;
1666 hton_ofp_phy_port(&ops->desc);
1667 queue_tx(b, ofconn, NULL);
1668 }
1669 }
1670
1671 static void
1672 ofport_install(struct ofproto *p, struct ofport *ofport)
1673 {
1674 const char *netdev_name = ofport->opp.name;
1675
1676 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1677 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1678 shash_add(&p->port_by_name, netdev_name, ofport);
1679 if (p->sflow) {
1680 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1681 }
1682 }
1683
1684 static void
1685 ofport_remove(struct ofproto *p, struct ofport *ofport)
1686 {
1687 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1688 hmap_remove(&p->ports, &ofport->hmap_node);
1689 shash_delete(&p->port_by_name,
1690 shash_find(&p->port_by_name, ofport->opp.name));
1691 if (p->sflow) {
1692 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1693 }
1694 }
1695
1696 static void
1697 ofport_free(struct ofport *ofport)
1698 {
1699 if (ofport) {
1700 netdev_close(ofport->netdev);
1701 free(ofport);
1702 }
1703 }
1704
1705 static struct ofport *
1706 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1707 {
1708 struct ofport *port;
1709
1710 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1711 hash_int(odp_port, 0), &ofproto->ports) {
1712 if (port->odp_port == odp_port) {
1713 return port;
1714 }
1715 }
1716 return NULL;
1717 }
1718
1719 static void
1720 update_port(struct ofproto *p, const char *devname)
1721 {
1722 struct dpif_port dpif_port;
1723 struct ofport *old_ofport;
1724 struct ofport *new_ofport;
1725 int error;
1726
1727 COVERAGE_INC(ofproto_update_port);
1728
1729 /* Query the datapath for port information. */
1730 error = dpif_port_query_by_name(p->dpif, devname, &dpif_port);
1731
1732 /* Find the old ofport. */
1733 old_ofport = shash_find_data(&p->port_by_name, devname);
1734 if (!error) {
1735 if (!old_ofport) {
1736 /* There's no port named 'devname' but there might be a port with
1737 * the same port number. This could happen if a port is deleted
1738 * and then a new one added in its place very quickly, or if a port
1739 * is renamed. In the former case we want to send an OFPPR_DELETE
1740 * and an OFPPR_ADD, and in the latter case we want to send a
1741 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1742 * the old port's ifindex against the new port, or perhaps less
1743 * reliably but more portably by comparing the old port's MAC
1744 * against the new port's MAC. However, this code isn't that smart
1745 * and always sends an OFPPR_MODIFY (XXX). */
1746 old_ofport = get_port(p, dpif_port.port_no);
1747 }
1748 } else if (error != ENOENT && error != ENODEV) {
1749 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1750 "%s", strerror(error));
1751 goto exit;
1752 }
1753
1754 /* Create a new ofport. */
1755 new_ofport = !error ? make_ofport(&dpif_port) : NULL;
1756
1757 /* Eliminate a few pathological cases. */
1758 if (!old_ofport && !new_ofport) {
1759 goto exit;
1760 } else if (old_ofport && new_ofport) {
1761 /* Most of the 'config' bits are OpenFlow soft state, but
1762 * OFPPC_PORT_DOWN is maintained by the kernel. So transfer the
1763 * OpenFlow bits from old_ofport. (make_ofport() only sets
1764 * OFPPC_PORT_DOWN and leaves the other bits 0.) */
1765 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1766
1767 if (ofport_equal(old_ofport, new_ofport)) {
1768 /* False alarm--no change. */
1769 ofport_free(new_ofport);
1770 goto exit;
1771 }
1772 }
1773
1774 /* Now deal with the normal cases. */
1775 if (old_ofport) {
1776 ofport_remove(p, old_ofport);
1777 }
1778 if (new_ofport) {
1779 ofport_install(p, new_ofport);
1780 }
1781 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1782 (!old_ofport ? OFPPR_ADD
1783 : !new_ofport ? OFPPR_DELETE
1784 : OFPPR_MODIFY));
1785 ofport_free(old_ofport);
1786
1787 exit:
1788 dpif_port_destroy(&dpif_port);
1789 }
1790
1791 static int
1792 init_ports(struct ofproto *p)
1793 {
1794 struct dpif_port_dump dump;
1795 struct dpif_port dpif_port;
1796
1797 DPIF_PORT_FOR_EACH (&dpif_port, &dump, p->dpif) {
1798 if (!ofport_conflicts(p, &dpif_port)) {
1799 struct ofport *ofport = make_ofport(&dpif_port);
1800 if (ofport) {
1801 ofport_install(p, ofport);
1802 }
1803 }
1804 }
1805
1806 return 0;
1807 }
1808 \f
1809 static struct ofconn *
1810 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1811 {
1812 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1813 ofconn->ofproto = p;
1814 list_push_back(&p->all_conns, &ofconn->node);
1815 ofconn->rconn = rconn;
1816 ofconn->type = type;
1817 ofconn->flow_format = NXFF_OPENFLOW10;
1818 ofconn->role = NX_ROLE_OTHER;
1819 ofconn->packet_in_counter = rconn_packet_counter_create ();
1820 ofconn->pktbuf = NULL;
1821 ofconn->miss_send_len = 0;
1822 ofconn->reply_counter = rconn_packet_counter_create ();
1823 return ofconn;
1824 }
1825
1826 static void
1827 ofconn_destroy(struct ofconn *ofconn)
1828 {
1829 if (ofconn->type == OFCONN_PRIMARY) {
1830 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1831 }
1832 discovery_destroy(ofconn->discovery);
1833
1834 list_remove(&ofconn->node);
1835 switch_status_unregister(ofconn->ss);
1836 rconn_destroy(ofconn->rconn);
1837 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1838 rconn_packet_counter_destroy(ofconn->reply_counter);
1839 pktbuf_destroy(ofconn->pktbuf);
1840 free(ofconn);
1841 }
1842
1843 static void
1844 ofconn_run(struct ofconn *ofconn)
1845 {
1846 struct ofproto *p = ofconn->ofproto;
1847 int iteration;
1848 size_t i;
1849
1850 if (ofconn->discovery) {
1851 char *controller_name;
1852 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1853 discovery_question_connectivity(ofconn->discovery);
1854 }
1855 if (discovery_run(ofconn->discovery, &controller_name)) {
1856 if (controller_name) {
1857 char *ofconn_name = ofconn_make_name(p, controller_name);
1858 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1859 free(ofconn_name);
1860 free(controller_name);
1861 } else {
1862 rconn_disconnect(ofconn->rconn);
1863 }
1864 }
1865 }
1866
1867 for (i = 0; i < N_SCHEDULERS; i++) {
1868 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1869 }
1870
1871 rconn_run(ofconn->rconn);
1872
1873 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1874 /* Limit the number of iterations to prevent other tasks from
1875 * starving. */
1876 for (iteration = 0; iteration < 50; iteration++) {
1877 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1878 if (!of_msg) {
1879 break;
1880 }
1881 if (p->fail_open) {
1882 fail_open_maybe_recover(p->fail_open);
1883 }
1884 handle_openflow(ofconn, of_msg);
1885 ofpbuf_delete(of_msg);
1886 }
1887 }
1888
1889 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1890 ofconn_destroy(ofconn);
1891 }
1892 }
1893
1894 static void
1895 ofconn_wait(struct ofconn *ofconn)
1896 {
1897 int i;
1898
1899 if (ofconn->discovery) {
1900 discovery_wait(ofconn->discovery);
1901 }
1902 for (i = 0; i < N_SCHEDULERS; i++) {
1903 pinsched_wait(ofconn->schedulers[i]);
1904 }
1905 rconn_run_wait(ofconn->rconn);
1906 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1907 rconn_recv_wait(ofconn->rconn);
1908 } else {
1909 COVERAGE_INC(ofproto_ofconn_stuck);
1910 }
1911 }
1912
1913 /* Returns true if 'ofconn' should receive asynchronous messages. */
1914 static bool
1915 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1916 {
1917 if (ofconn->type == OFCONN_PRIMARY) {
1918 /* Primary controllers always get asynchronous messages unless they
1919 * have configured themselves as "slaves". */
1920 return ofconn->role != NX_ROLE_SLAVE;
1921 } else {
1922 /* Service connections don't get asynchronous messages unless they have
1923 * explicitly asked for them by setting a nonzero miss send length. */
1924 return ofconn->miss_send_len > 0;
1925 }
1926 }
1927
1928 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1929 * and 'target', suitable for use in log messages for identifying the
1930 * connection.
1931 *
1932 * The name is dynamically allocated. The caller should free it (with free())
1933 * when it is no longer needed. */
1934 static char *
1935 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1936 {
1937 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1938 }
1939
1940 static void
1941 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1942 {
1943 int i;
1944
1945 for (i = 0; i < N_SCHEDULERS; i++) {
1946 struct pinsched **s = &ofconn->schedulers[i];
1947
1948 if (rate > 0) {
1949 if (!*s) {
1950 *s = pinsched_create(rate, burst,
1951 ofconn->ofproto->switch_status);
1952 } else {
1953 pinsched_set_limits(*s, rate, burst);
1954 }
1955 } else {
1956 pinsched_destroy(*s);
1957 *s = NULL;
1958 }
1959 }
1960 }
1961 \f
1962 static void
1963 ofservice_reconfigure(struct ofservice *ofservice,
1964 const struct ofproto_controller *c)
1965 {
1966 ofservice->probe_interval = c->probe_interval;
1967 ofservice->rate_limit = c->rate_limit;
1968 ofservice->burst_limit = c->burst_limit;
1969 }
1970
1971 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1972 * positive errno value. */
1973 static int
1974 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1975 {
1976 struct ofservice *ofservice;
1977 struct pvconn *pvconn;
1978 int error;
1979
1980 error = pvconn_open(c->target, &pvconn);
1981 if (error) {
1982 return error;
1983 }
1984
1985 ofservice = xzalloc(sizeof *ofservice);
1986 hmap_insert(&ofproto->services, &ofservice->node,
1987 hash_string(c->target, 0));
1988 ofservice->pvconn = pvconn;
1989
1990 ofservice_reconfigure(ofservice, c);
1991
1992 return 0;
1993 }
1994
1995 static void
1996 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1997 {
1998 hmap_remove(&ofproto->services, &ofservice->node);
1999 pvconn_close(ofservice->pvconn);
2000 free(ofservice);
2001 }
2002
2003 /* Finds and returns the ofservice within 'ofproto' that has the given
2004 * 'target', or a null pointer if none exists. */
2005 static struct ofservice *
2006 ofservice_lookup(struct ofproto *ofproto, const char *target)
2007 {
2008 struct ofservice *ofservice;
2009
2010 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
2011 &ofproto->services) {
2012 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
2013 return ofservice;
2014 }
2015 }
2016 return NULL;
2017 }
2018 \f
2019 /* Returns true if 'rule' should be hidden from the controller.
2020 *
2021 * Rules with priority higher than UINT16_MAX are set up by ofproto itself
2022 * (e.g. by in-band control) and are intentionally hidden from the
2023 * controller. */
2024 static bool
2025 rule_is_hidden(const struct rule *rule)
2026 {
2027 return rule->cr.priority > UINT16_MAX;
2028 }
2029
2030 /* Creates and returns a new rule initialized as specified.
2031 *
2032 * The caller is responsible for inserting the rule into the classifier (with
2033 * rule_insert()). */
2034 static struct rule *
2035 rule_create(const struct cls_rule *cls_rule,
2036 const union ofp_action *actions, size_t n_actions,
2037 uint16_t idle_timeout, uint16_t hard_timeout,
2038 ovs_be64 flow_cookie, bool send_flow_removed)
2039 {
2040 struct rule *rule = xzalloc(sizeof *rule);
2041 rule->cr = *cls_rule;
2042 rule->idle_timeout = idle_timeout;
2043 rule->hard_timeout = hard_timeout;
2044 rule->flow_cookie = flow_cookie;
2045 rule->used = rule->created = time_msec();
2046 rule->send_flow_removed = send_flow_removed;
2047 list_init(&rule->facets);
2048 if (n_actions > 0) {
2049 rule->n_actions = n_actions;
2050 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
2051 }
2052
2053 return rule;
2054 }
2055
2056 static struct rule *
2057 rule_from_cls_rule(const struct cls_rule *cls_rule)
2058 {
2059 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
2060 }
2061
2062 static void
2063 rule_free(struct rule *rule)
2064 {
2065 free(rule->actions);
2066 free(rule);
2067 }
2068
2069 /* Destroys 'rule' and iterates through all of its facets and revalidates them,
2070 * destroying any that no longer has a rule (which is probably all of them).
2071 *
2072 * The caller must have already removed 'rule' from the classifier. */
2073 static void
2074 rule_destroy(struct ofproto *ofproto, struct rule *rule)
2075 {
2076 struct facet *facet, *next_facet;
2077 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
2078 facet_revalidate(ofproto, facet);
2079 }
2080 rule_free(rule);
2081 }
2082
2083 /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action
2084 * that outputs to 'out_port' (output to OFPP_FLOOD and OFPP_ALL doesn't
2085 * count). */
2086 static bool
2087 rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
2088 {
2089 const union ofp_action *oa;
2090 struct actions_iterator i;
2091
2092 if (out_port == htons(OFPP_NONE)) {
2093 return true;
2094 }
2095 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
2096 oa = actions_next(&i)) {
2097 if (action_outputs_to_port(oa, out_port)) {
2098 return true;
2099 }
2100 }
2101 return false;
2102 }
2103
2104 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
2105 * 'packet', which arrived on 'in_port'.
2106 *
2107 * Takes ownership of 'packet'. */
2108 static bool
2109 execute_odp_actions(struct ofproto *ofproto, const struct flow *flow,
2110 const struct nlattr *odp_actions, size_t actions_len,
2111 struct ofpbuf *packet)
2112 {
2113 if (actions_len == NLA_ALIGN(NLA_HDRLEN + sizeof(uint64_t))
2114 && odp_actions->nla_type == ODP_ACTION_ATTR_CONTROLLER) {
2115 /* As an optimization, avoid a round-trip from userspace to kernel to
2116 * userspace. This also avoids possibly filling up kernel packet
2117 * buffers along the way. */
2118 struct dpif_upcall upcall;
2119
2120 upcall.type = DPIF_UC_ACTION;
2121 upcall.packet = packet;
2122 upcall.key = NULL;
2123 upcall.key_len = 0;
2124 upcall.userdata = nl_attr_get_u64(odp_actions);
2125 upcall.sample_pool = 0;
2126 upcall.actions = NULL;
2127 upcall.actions_len = 0;
2128
2129 send_packet_in(ofproto, &upcall, flow, false);
2130
2131 return true;
2132 } else {
2133 int error;
2134
2135 error = dpif_execute(ofproto->dpif, odp_actions, actions_len, packet);
2136 ofpbuf_delete(packet);
2137 return !error;
2138 }
2139 }
2140
2141 /* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s
2142 * statistics appropriately. 'packet' must have at least sizeof(struct
2143 * ofp_packet_in) bytes of headroom.
2144 *
2145 * For correct results, 'packet' must actually be in 'facet''s flow; that is,
2146 * applying flow_extract() to 'packet' would yield the same flow as
2147 * 'facet->flow'.
2148 *
2149 * 'facet' must have accurately composed ODP actions; that is, it must not be
2150 * in need of revalidation.
2151 *
2152 * Takes ownership of 'packet'. */
2153 static void
2154 facet_execute(struct ofproto *ofproto, struct facet *facet,
2155 struct ofpbuf *packet)
2156 {
2157 struct dpif_flow_stats stats;
2158
2159 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2160
2161 flow_extract_stats(&facet->flow, packet, &stats);
2162 if (execute_odp_actions(ofproto, &facet->flow,
2163 facet->actions, facet->actions_len, packet)) {
2164 facet->used = time_msec();
2165 facet_update_stats(ofproto, facet, &stats);
2166 netflow_flow_update_time(ofproto->netflow,
2167 &facet->nf_flow, facet->used);
2168 }
2169 }
2170
2171 /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s
2172 * statistics (or the statistics for one of its facets) appropriately.
2173 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of headroom.
2174 *
2175 * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited
2176 * with statistics for 'packet' either way.
2177 *
2178 * Takes ownership of 'packet'. */
2179 static void
2180 rule_execute(struct ofproto *ofproto, struct rule *rule, uint16_t in_port,
2181 struct ofpbuf *packet)
2182 {
2183 struct action_xlate_ctx ctx;
2184 struct ofpbuf *odp_actions;
2185 struct facet *facet;
2186 struct flow flow;
2187 size_t size;
2188
2189 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2190
2191 flow_extract(packet, 0, in_port, &flow);
2192
2193 /* First look for a related facet. If we find one, account it to that. */
2194 facet = facet_lookup_valid(ofproto, &flow);
2195 if (facet && facet->rule == rule) {
2196 facet_execute(ofproto, facet, packet);
2197 return;
2198 }
2199
2200 /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then
2201 * create a new facet for it and use that. */
2202 if (rule_lookup(ofproto, &flow) == rule) {
2203 facet = facet_create(ofproto, rule, &flow, packet);
2204 facet_execute(ofproto, facet, packet);
2205 facet_install(ofproto, facet, true);
2206 return;
2207 }
2208
2209 /* We can't account anything to a facet. If we were to try, then that
2210 * facet would have a non-matching rule, busting our invariants. */
2211 action_xlate_ctx_init(&ctx, ofproto, &flow, packet);
2212 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2213 size = packet->size;
2214 if (execute_odp_actions(ofproto, &flow, odp_actions->data,
2215 odp_actions->size, packet)) {
2216 rule->used = time_msec();
2217 rule->packet_count++;
2218 rule->byte_count += size;
2219 flow_push_stats(ofproto, rule, &flow, 1, size, rule->used);
2220 }
2221 ofpbuf_delete(odp_actions);
2222 }
2223
2224 /* Inserts 'rule' into 'p''s flow table. */
2225 static void
2226 rule_insert(struct ofproto *p, struct rule *rule)
2227 {
2228 struct rule *displaced_rule;
2229
2230 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2231 if (displaced_rule) {
2232 rule_destroy(p, displaced_rule);
2233 }
2234 p->need_revalidate = true;
2235 }
2236
2237 /* Creates and returns a new facet within 'ofproto' owned by 'rule', given a
2238 * 'flow' and an example 'packet' within that flow.
2239 *
2240 * The caller must already have determined that no facet with an identical
2241 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
2242 * 'ofproto''s classifier table. */
2243 static struct facet *
2244 facet_create(struct ofproto *ofproto, struct rule *rule,
2245 const struct flow *flow, const struct ofpbuf *packet)
2246 {
2247 struct facet *facet;
2248
2249 facet = xzalloc(sizeof *facet);
2250 facet->used = time_msec();
2251 hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0));
2252 list_push_back(&rule->facets, &facet->list_node);
2253 facet->rule = rule;
2254 facet->flow = *flow;
2255 netflow_flow_init(&facet->nf_flow);
2256 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
2257
2258 facet_make_actions(ofproto, facet, packet);
2259
2260 return facet;
2261 }
2262
2263 static void
2264 facet_free(struct facet *facet)
2265 {
2266 free(facet->actions);
2267 free(facet);
2268 }
2269
2270 /* Remove 'rule' from 'ofproto' and free up the associated memory:
2271 *
2272 * - Removes 'rule' from the classifier.
2273 *
2274 * - If 'rule' has facets, revalidates them (and possibly uninstalls and
2275 * destroys them), via rule_destroy().
2276 */
2277 static void
2278 rule_remove(struct ofproto *ofproto, struct rule *rule)
2279 {
2280 COVERAGE_INC(ofproto_del_rule);
2281 ofproto->need_revalidate = true;
2282 classifier_remove(&ofproto->cls, &rule->cr);
2283 rule_destroy(ofproto, rule);
2284 }
2285
2286 /* Remove 'facet' from 'ofproto' and free up the associated memory:
2287 *
2288 * - If 'facet' was installed in the datapath, uninstalls it and updates its
2289 * rule's statistics, via facet_uninstall().
2290 *
2291 * - Removes 'facet' from its rule and from ofproto->facets.
2292 */
2293 static void
2294 facet_remove(struct ofproto *ofproto, struct facet *facet)
2295 {
2296 facet_uninstall(ofproto, facet);
2297 facet_flush_stats(ofproto, facet);
2298 hmap_remove(&ofproto->facets, &facet->hmap_node);
2299 list_remove(&facet->list_node);
2300 facet_free(facet);
2301 }
2302
2303 /* Composes the ODP actions for 'facet' based on its rule's actions. */
2304 static void
2305 facet_make_actions(struct ofproto *p, struct facet *facet,
2306 const struct ofpbuf *packet)
2307 {
2308 const struct rule *rule = facet->rule;
2309 struct ofpbuf *odp_actions;
2310 struct action_xlate_ctx ctx;
2311
2312 action_xlate_ctx_init(&ctx, p, &facet->flow, packet);
2313 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2314 facet->tags = ctx.tags;
2315 facet->may_install = ctx.may_set_up_flow;
2316 facet->nf_flow.output_iface = ctx.nf_output_iface;
2317
2318 if (facet->actions_len != odp_actions->size
2319 || memcmp(facet->actions, odp_actions->data, odp_actions->size)) {
2320 free(facet->actions);
2321 facet->actions_len = odp_actions->size;
2322 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2323 }
2324
2325 ofpbuf_delete(odp_actions);
2326 }
2327
2328 static int
2329 facet_put__(struct ofproto *ofproto, struct facet *facet,
2330 const struct nlattr *actions, size_t actions_len,
2331 struct dpif_flow_stats *stats)
2332 {
2333 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
2334 enum dpif_flow_put_flags flags;
2335 struct ofpbuf key;
2336
2337 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
2338 if (stats) {
2339 flags |= DPIF_FP_ZERO_STATS;
2340 facet->dp_packet_count = 0;
2341 facet->dp_byte_count = 0;
2342 }
2343
2344 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
2345 odp_flow_key_from_flow(&key, &facet->flow);
2346 assert(key.base == keybuf);
2347
2348 return dpif_flow_put(ofproto->dpif, flags, key.data, key.size,
2349 actions, actions_len, stats);
2350 }
2351
2352 /* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If
2353 * 'zero_stats' is true, clears any existing statistics from the datapath for
2354 * 'facet'. */
2355 static void
2356 facet_install(struct ofproto *p, struct facet *facet, bool zero_stats)
2357 {
2358 struct dpif_flow_stats stats;
2359
2360 if (facet->may_install
2361 && !facet_put__(p, facet, facet->actions, facet->actions_len,
2362 zero_stats ? &stats : NULL)) {
2363 facet->installed = true;
2364 }
2365 }
2366
2367 /* Ensures that the bytes in 'facet', plus 'extra_bytes', have been passed up
2368 * to the accounting hook function in the ofhooks structure. */
2369 static void
2370 facet_account(struct ofproto *ofproto,
2371 struct facet *facet, uint64_t extra_bytes)
2372 {
2373 uint64_t total_bytes = facet->byte_count + extra_bytes;
2374
2375 if (ofproto->ofhooks->account_flow_cb
2376 && total_bytes > facet->accounted_bytes)
2377 {
2378 ofproto->ofhooks->account_flow_cb(
2379 &facet->flow, facet->tags, facet->actions, facet->actions_len,
2380 total_bytes - facet->accounted_bytes, ofproto->aux);
2381 facet->accounted_bytes = total_bytes;
2382 }
2383 }
2384
2385 /* If 'rule' is installed in the datapath, uninstalls it. */
2386 static void
2387 facet_uninstall(struct ofproto *p, struct facet *facet)
2388 {
2389 if (facet->installed) {
2390 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
2391 struct dpif_flow_stats stats;
2392 struct ofpbuf key;
2393
2394 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
2395 odp_flow_key_from_flow(&key, &facet->flow);
2396 assert(key.base == keybuf);
2397
2398 if (!dpif_flow_del(p->dpif, key.data, key.size, &stats)) {
2399 facet_update_stats(p, facet, &stats);
2400 }
2401 facet->installed = false;
2402 facet->dp_packet_count = 0;
2403 facet->dp_byte_count = 0;
2404 }
2405 }
2406
2407 /* Returns true if the only action for 'facet' is to send to the controller.
2408 * (We don't report NetFlow expiration messages for such facets because they
2409 * are just part of the control logic for the network, not real traffic). */
2410 static bool
2411 facet_is_controller_flow(struct facet *facet)
2412 {
2413 return (facet
2414 && facet->rule->n_actions == 1
2415 && action_outputs_to_port(&facet->rule->actions[0],
2416 htons(OFPP_CONTROLLER)));
2417 }
2418
2419 /* Folds all of 'facet''s statistics into its rule. Also updates the
2420 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
2421 * 'facet''s statistics in the datapath should have been zeroed and folded into
2422 * its packet and byte counts before this function is called. */
2423 static void
2424 facet_flush_stats(struct ofproto *ofproto, struct facet *facet)
2425 {
2426 assert(!facet->dp_byte_count);
2427 assert(!facet->dp_packet_count);
2428
2429 facet_push_stats(ofproto, facet);
2430 facet_account(ofproto, facet, 0);
2431
2432 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
2433 struct ofexpired expired;
2434 expired.flow = facet->flow;
2435 expired.packet_count = facet->packet_count;
2436 expired.byte_count = facet->byte_count;
2437 expired.used = facet->used;
2438 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
2439 }
2440
2441 facet->rule->packet_count += facet->packet_count;
2442 facet->rule->byte_count += facet->byte_count;
2443
2444 /* Reset counters to prevent double counting if 'facet' ever gets
2445 * reinstalled. */
2446 facet->packet_count = 0;
2447 facet->byte_count = 0;
2448 facet->rs_packet_count = 0;
2449 facet->rs_byte_count = 0;
2450 facet->accounted_bytes = 0;
2451
2452 netflow_flow_clear(&facet->nf_flow);
2453 }
2454
2455 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2456 * Returns it if found, otherwise a null pointer.
2457 *
2458 * The returned facet might need revalidation; use facet_lookup_valid()
2459 * instead if that is important. */
2460 static struct facet *
2461 facet_find(struct ofproto *ofproto, const struct flow *flow)
2462 {
2463 struct facet *facet;
2464
2465 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0),
2466 &ofproto->facets) {
2467 if (flow_equal(flow, &facet->flow)) {
2468 return facet;
2469 }
2470 }
2471
2472 return NULL;
2473 }
2474
2475 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2476 * Returns it if found, otherwise a null pointer.
2477 *
2478 * The returned facet is guaranteed to be valid. */
2479 static struct facet *
2480 facet_lookup_valid(struct ofproto *ofproto, const struct flow *flow)
2481 {
2482 struct facet *facet = facet_find(ofproto, flow);
2483
2484 /* The facet we found might not be valid, since we could be in need of
2485 * revalidation. If it is not valid, don't return it. */
2486 if (facet
2487 && ofproto->need_revalidate
2488 && !facet_revalidate(ofproto, facet)) {
2489 COVERAGE_INC(ofproto_invalidated);
2490 return NULL;
2491 }
2492
2493 return facet;
2494 }
2495
2496 /* Re-searches 'ofproto''s classifier for a rule matching 'facet':
2497 *
2498 * - If the rule found is different from 'facet''s current rule, moves
2499 * 'facet' to the new rule and recompiles its actions.
2500 *
2501 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
2502 * where it is and recompiles its actions anyway.
2503 *
2504 * - If there is none, destroys 'facet'.
2505 *
2506 * Returns true if 'facet' still exists, false if it has been destroyed. */
2507 static bool
2508 facet_revalidate(struct ofproto *ofproto, struct facet *facet)
2509 {
2510 struct action_xlate_ctx ctx;
2511 struct ofpbuf *odp_actions;
2512 struct rule *new_rule;
2513 bool actions_changed;
2514
2515 COVERAGE_INC(facet_revalidate);
2516
2517 /* Determine the new rule. */
2518 new_rule = rule_lookup(ofproto, &facet->flow);
2519 if (!new_rule) {
2520 /* No new rule, so delete the facet. */
2521 facet_remove(ofproto, facet);
2522 return false;
2523 }
2524
2525 /* Calculate new ODP actions.
2526 *
2527 * We do not modify any 'facet' state yet, because we might need to, e.g.,
2528 * emit a NetFlow expiration and, if so, we need to have the old state
2529 * around to properly compose it. */
2530 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, NULL);
2531 odp_actions = xlate_actions(&ctx, new_rule->actions, new_rule->n_actions);
2532 actions_changed = (facet->actions_len != odp_actions->size
2533 || memcmp(facet->actions, odp_actions->data,
2534 facet->actions_len));
2535
2536 /* If the ODP actions changed or the installability changed, then we need
2537 * to talk to the datapath. */
2538 if (actions_changed || ctx.may_set_up_flow != facet->installed) {
2539 if (ctx.may_set_up_flow) {
2540 struct dpif_flow_stats stats;
2541
2542 facet_put__(ofproto, facet,
2543 odp_actions->data, odp_actions->size, &stats);
2544 facet_update_stats(ofproto, facet, &stats);
2545 } else {
2546 facet_uninstall(ofproto, facet);
2547 }
2548
2549 /* The datapath flow is gone or has zeroed stats, so push stats out of
2550 * 'facet' into 'rule'. */
2551 facet_flush_stats(ofproto, facet);
2552 }
2553
2554 /* Update 'facet' now that we've taken care of all the old state. */
2555 facet->tags = ctx.tags;
2556 facet->nf_flow.output_iface = ctx.nf_output_iface;
2557 facet->may_install = ctx.may_set_up_flow;
2558 if (actions_changed) {
2559 free(facet->actions);
2560 facet->actions_len = odp_actions->size;
2561 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2562 }
2563 if (facet->rule != new_rule) {
2564 COVERAGE_INC(facet_changed_rule);
2565 list_remove(&facet->list_node);
2566 list_push_back(&new_rule->facets, &facet->list_node);
2567 facet->rule = new_rule;
2568 facet->used = new_rule->created;
2569 }
2570
2571 ofpbuf_delete(odp_actions);
2572
2573 return true;
2574 }
2575 \f
2576 static void
2577 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2578 struct rconn_packet_counter *counter)
2579 {
2580 update_openflow_length(msg);
2581 if (rconn_send(ofconn->rconn, msg, counter)) {
2582 ofpbuf_delete(msg);
2583 }
2584 }
2585
2586 static void
2587 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2588 int error)
2589 {
2590 struct ofpbuf *buf = ofputil_encode_error_msg(error, oh);
2591 if (buf) {
2592 COVERAGE_INC(ofproto_error);
2593 queue_tx(buf, ofconn, ofconn->reply_counter);
2594 }
2595 }
2596
2597 static void
2598 hton_ofp_phy_port(struct ofp_phy_port *opp)
2599 {
2600 opp->port_no = htons(opp->port_no);
2601 opp->config = htonl(opp->config);
2602 opp->state = htonl(opp->state);
2603 opp->curr = htonl(opp->curr);
2604 opp->advertised = htonl(opp->advertised);
2605 opp->supported = htonl(opp->supported);
2606 opp->peer = htonl(opp->peer);
2607 }
2608
2609 static int
2610 handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh)
2611 {
2612 queue_tx(make_echo_reply(oh), ofconn, ofconn->reply_counter);
2613 return 0;
2614 }
2615
2616 static int
2617 handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh)
2618 {
2619 struct ofp_switch_features *osf;
2620 struct ofpbuf *buf;
2621 struct ofport *port;
2622
2623 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2624 osf->datapath_id = htonll(ofconn->ofproto->datapath_id);
2625 osf->n_buffers = htonl(pktbuf_capacity());
2626 osf->n_tables = 2;
2627 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2628 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2629 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2630 (1u << OFPAT_SET_VLAN_VID) |
2631 (1u << OFPAT_SET_VLAN_PCP) |
2632 (1u << OFPAT_STRIP_VLAN) |
2633 (1u << OFPAT_SET_DL_SRC) |
2634 (1u << OFPAT_SET_DL_DST) |
2635 (1u << OFPAT_SET_NW_SRC) |
2636 (1u << OFPAT_SET_NW_DST) |
2637 (1u << OFPAT_SET_NW_TOS) |
2638 (1u << OFPAT_SET_TP_SRC) |
2639 (1u << OFPAT_SET_TP_DST) |
2640 (1u << OFPAT_ENQUEUE));
2641
2642 HMAP_FOR_EACH (port, hmap_node, &ofconn->ofproto->ports) {
2643 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2644 }
2645
2646 queue_tx(buf, ofconn, ofconn->reply_counter);
2647 return 0;
2648 }
2649
2650 static int
2651 handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh)
2652 {
2653 struct ofpbuf *buf;
2654 struct ofp_switch_config *osc;
2655 uint16_t flags;
2656 bool drop_frags;
2657
2658 /* Figure out flags. */
2659 dpif_get_drop_frags(ofconn->ofproto->dpif, &drop_frags);
2660 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2661
2662 /* Send reply. */
2663 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2664 osc->flags = htons(flags);
2665 osc->miss_send_len = htons(ofconn->miss_send_len);
2666 queue_tx(buf, ofconn, ofconn->reply_counter);
2667
2668 return 0;
2669 }
2670
2671 static int
2672 handle_set_config(struct ofconn *ofconn, const struct ofp_switch_config *osc)
2673 {
2674 uint16_t flags = ntohs(osc->flags);
2675
2676 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2677 switch (flags & OFPC_FRAG_MASK) {
2678 case OFPC_FRAG_NORMAL:
2679 dpif_set_drop_frags(ofconn->ofproto->dpif, false);
2680 break;
2681 case OFPC_FRAG_DROP:
2682 dpif_set_drop_frags(ofconn->ofproto->dpif, true);
2683 break;
2684 default:
2685 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2686 osc->flags);
2687 break;
2688 }
2689 }
2690
2691 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2692
2693 return 0;
2694 }
2695
2696 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2697 struct action_xlate_ctx *ctx);
2698
2699 static void
2700 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2701 {
2702 const struct ofport *ofport = get_port(ctx->ofproto, port);
2703
2704 if (ofport) {
2705 if (ofport->opp.config & OFPPC_NO_FWD) {
2706 /* Forwarding disabled on port. */
2707 return;
2708 }
2709 } else {
2710 /*
2711 * We don't have an ofport record for this port, but it doesn't hurt to
2712 * allow forwarding to it anyhow. Maybe such a port will appear later
2713 * and we're pre-populating the flow table.
2714 */
2715 }
2716
2717 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_OUTPUT, port);
2718 ctx->nf_output_iface = port;
2719 }
2720
2721 static struct rule *
2722 rule_lookup(struct ofproto *ofproto, const struct flow *flow)
2723 {
2724 return rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2725 }
2726
2727 static void
2728 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2729 {
2730 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2731 uint16_t old_in_port;
2732 struct rule *rule;
2733
2734 /* Look up a flow with 'in_port' as the input port. Then restore the
2735 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2736 * have surprising behavior). */
2737 old_in_port = ctx->flow.in_port;
2738 ctx->flow.in_port = in_port;
2739 rule = rule_lookup(ctx->ofproto, &ctx->flow);
2740 ctx->flow.in_port = old_in_port;
2741
2742 if (ctx->resubmit_hook) {
2743 ctx->resubmit_hook(ctx, rule);
2744 }
2745
2746 if (rule) {
2747 ctx->recurse++;
2748 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2749 ctx->recurse--;
2750 }
2751 } else {
2752 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2753
2754 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2755 MAX_RESUBMIT_RECURSION);
2756 }
2757 }
2758
2759 static void
2760 flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2761 uint16_t *nf_output_iface, struct ofpbuf *odp_actions)
2762 {
2763 struct ofport *ofport;
2764
2765 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2766 uint16_t odp_port = ofport->odp_port;
2767 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2768 nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT, odp_port);
2769 }
2770 }
2771 *nf_output_iface = NF_OUT_FLOOD;
2772 }
2773
2774 static void
2775 xlate_output_action__(struct action_xlate_ctx *ctx,
2776 uint16_t port, uint16_t max_len)
2777 {
2778 uint16_t odp_port;
2779 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2780
2781 ctx->nf_output_iface = NF_OUT_DROP;
2782
2783 switch (port) {
2784 case OFPP_IN_PORT:
2785 add_output_action(ctx, ctx->flow.in_port);
2786 break;
2787 case OFPP_TABLE:
2788 xlate_table_action(ctx, ctx->flow.in_port);
2789 break;
2790 case OFPP_NORMAL:
2791 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2792 ctx->odp_actions, &ctx->tags,
2793 &ctx->nf_output_iface,
2794 ctx->ofproto->aux)) {
2795 COVERAGE_INC(ofproto_uninstallable);
2796 ctx->may_set_up_flow = false;
2797 }
2798 break;
2799 case OFPP_FLOOD:
2800 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2801 &ctx->nf_output_iface, ctx->odp_actions);
2802 break;
2803 case OFPP_ALL:
2804 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2805 &ctx->nf_output_iface, ctx->odp_actions);
2806 break;
2807 case OFPP_CONTROLLER:
2808 nl_msg_put_u64(ctx->odp_actions, ODP_ACTION_ATTR_CONTROLLER, max_len);
2809 break;
2810 case OFPP_LOCAL:
2811 add_output_action(ctx, ODPP_LOCAL);
2812 break;
2813 default:
2814 odp_port = ofp_port_to_odp_port(port);
2815 if (odp_port != ctx->flow.in_port) {
2816 add_output_action(ctx, odp_port);
2817 }
2818 break;
2819 }
2820
2821 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2822 ctx->nf_output_iface = NF_OUT_FLOOD;
2823 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2824 ctx->nf_output_iface = prev_nf_output_iface;
2825 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2826 ctx->nf_output_iface != NF_OUT_FLOOD) {
2827 ctx->nf_output_iface = NF_OUT_MULTI;
2828 }
2829 }
2830
2831 static void
2832 xlate_output_action(struct action_xlate_ctx *ctx,
2833 const struct ofp_action_output *oao)
2834 {
2835 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2836 }
2837
2838 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2839 * optimization, because we're going to add another action that sets the
2840 * priority immediately after, or because there are no actions following the
2841 * pop. */
2842 static void
2843 remove_pop_action(struct action_xlate_ctx *ctx)
2844 {
2845 if (ctx->odp_actions->size == ctx->last_pop_priority) {
2846 ctx->odp_actions->size -= NLA_ALIGN(NLA_HDRLEN);
2847 ctx->last_pop_priority = -1;
2848 }
2849 }
2850
2851 static void
2852 add_pop_action(struct action_xlate_ctx *ctx)
2853 {
2854 if (ctx->odp_actions->size != ctx->last_pop_priority) {
2855 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_POP_PRIORITY);
2856 ctx->last_pop_priority = ctx->odp_actions->size;
2857 }
2858 }
2859
2860 static void
2861 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2862 const struct ofp_action_enqueue *oae)
2863 {
2864 uint16_t ofp_port, odp_port;
2865 uint32_t priority;
2866 int error;
2867
2868 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2869 &priority);
2870 if (error) {
2871 /* Fall back to ordinary output action. */
2872 xlate_output_action__(ctx, ntohs(oae->port), 0);
2873 return;
2874 }
2875
2876 /* Figure out ODP output port. */
2877 ofp_port = ntohs(oae->port);
2878 if (ofp_port != OFPP_IN_PORT) {
2879 odp_port = ofp_port_to_odp_port(ofp_port);
2880 } else {
2881 odp_port = ctx->flow.in_port;
2882 }
2883
2884 /* Add ODP actions. */
2885 remove_pop_action(ctx);
2886 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2887 add_output_action(ctx, odp_port);
2888 add_pop_action(ctx);
2889
2890 /* Update NetFlow output port. */
2891 if (ctx->nf_output_iface == NF_OUT_DROP) {
2892 ctx->nf_output_iface = odp_port;
2893 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2894 ctx->nf_output_iface = NF_OUT_MULTI;
2895 }
2896 }
2897
2898 static void
2899 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2900 const struct nx_action_set_queue *nasq)
2901 {
2902 uint32_t priority;
2903 int error;
2904
2905 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2906 &priority);
2907 if (error) {
2908 /* Couldn't translate queue to a priority, so ignore. A warning
2909 * has already been logged. */
2910 return;
2911 }
2912
2913 remove_pop_action(ctx);
2914 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2915 }
2916
2917 static void
2918 xlate_set_dl_tci(struct action_xlate_ctx *ctx)
2919 {
2920 ovs_be16 tci = ctx->flow.vlan_tci;
2921 if (!(tci & htons(VLAN_CFI))) {
2922 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_STRIP_VLAN);
2923 } else {
2924 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_TCI,
2925 tci & ~htons(VLAN_CFI));
2926 }
2927 }
2928
2929 struct xlate_reg_state {
2930 ovs_be16 vlan_tci;
2931 ovs_be64 tun_id;
2932 };
2933
2934 static void
2935 save_reg_state(const struct action_xlate_ctx *ctx,
2936 struct xlate_reg_state *state)
2937 {
2938 state->vlan_tci = ctx->flow.vlan_tci;
2939 state->tun_id = ctx->flow.tun_id;
2940 }
2941
2942 static void
2943 update_reg_state(struct action_xlate_ctx *ctx,
2944 const struct xlate_reg_state *state)
2945 {
2946 if (ctx->flow.vlan_tci != state->vlan_tci) {
2947 xlate_set_dl_tci(ctx);
2948 }
2949 if (ctx->flow.tun_id != state->tun_id) {
2950 nl_msg_put_be64(ctx->odp_actions,
2951 ODP_ACTION_ATTR_SET_TUNNEL, ctx->flow.tun_id);
2952 }
2953 }
2954
2955 static void
2956 xlate_nicira_action(struct action_xlate_ctx *ctx,
2957 const struct nx_action_header *nah)
2958 {
2959 const struct nx_action_resubmit *nar;
2960 const struct nx_action_set_tunnel *nast;
2961 const struct nx_action_set_queue *nasq;
2962 const struct nx_action_multipath *nam;
2963 enum nx_action_subtype subtype = ntohs(nah->subtype);
2964 struct xlate_reg_state state;
2965 ovs_be64 tun_id;
2966
2967 assert(nah->vendor == htonl(NX_VENDOR_ID));
2968 switch (subtype) {
2969 case NXAST_RESUBMIT:
2970 nar = (const struct nx_action_resubmit *) nah;
2971 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2972 break;
2973
2974 case NXAST_SET_TUNNEL:
2975 nast = (const struct nx_action_set_tunnel *) nah;
2976 tun_id = htonll(ntohl(nast->tun_id));
2977 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
2978 ctx->flow.tun_id = tun_id;
2979 break;
2980
2981 case NXAST_DROP_SPOOFED_ARP:
2982 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2983 nl_msg_put_flag(ctx->odp_actions,
2984 ODP_ACTION_ATTR_DROP_SPOOFED_ARP);
2985 }
2986 break;
2987
2988 case NXAST_SET_QUEUE:
2989 nasq = (const struct nx_action_set_queue *) nah;
2990 xlate_set_queue_action(ctx, nasq);
2991 break;
2992
2993 case NXAST_POP_QUEUE:
2994 add_pop_action(ctx);
2995 break;
2996
2997 case NXAST_REG_MOVE:
2998 save_reg_state(ctx, &state);
2999 nxm_execute_reg_move((const struct nx_action_reg_move *) nah,
3000 &ctx->flow);
3001 update_reg_state(ctx, &state);
3002 break;
3003
3004 case NXAST_REG_LOAD:
3005 save_reg_state(ctx, &state);
3006 nxm_execute_reg_load((const struct nx_action_reg_load *) nah,
3007 &ctx->flow);
3008 update_reg_state(ctx, &state);
3009 break;
3010
3011 case NXAST_NOTE:
3012 /* Nothing to do. */
3013 break;
3014
3015 case NXAST_SET_TUNNEL64:
3016 tun_id = ((const struct nx_action_set_tunnel64 *) nah)->tun_id;
3017 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
3018 ctx->flow.tun_id = tun_id;
3019 break;
3020
3021 case NXAST_MULTIPATH:
3022 nam = (const struct nx_action_multipath *) nah;
3023 multipath_execute(nam, &ctx->flow);
3024 break;
3025
3026 /* If you add a new action here that modifies flow data, don't forget to
3027 * update the flow key in ctx->flow at the same time. */
3028
3029 case NXAST_SNAT__OBSOLETE:
3030 default:
3031 VLOG_DBG_RL(&rl, "unknown Nicira action type %d", (int) subtype);
3032 break;
3033 }
3034 }
3035
3036 static void
3037 do_xlate_actions(const union ofp_action *in, size_t n_in,
3038 struct action_xlate_ctx *ctx)
3039 {
3040 struct actions_iterator iter;
3041 const union ofp_action *ia;
3042 const struct ofport *port;
3043
3044 port = get_port(ctx->ofproto, ctx->flow.in_port);
3045 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
3046 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
3047 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
3048 /* Drop this flow. */
3049 return;
3050 }
3051
3052 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
3053 enum ofp_action_type type = ntohs(ia->type);
3054 const struct ofp_action_dl_addr *oada;
3055
3056 switch (type) {
3057 case OFPAT_OUTPUT:
3058 xlate_output_action(ctx, &ia->output);
3059 break;
3060
3061 case OFPAT_SET_VLAN_VID:
3062 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
3063 ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI);
3064 xlate_set_dl_tci(ctx);
3065 break;
3066
3067 case OFPAT_SET_VLAN_PCP:
3068 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
3069 ctx->flow.vlan_tci |= htons(
3070 (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
3071 xlate_set_dl_tci(ctx);
3072 break;
3073
3074 case OFPAT_STRIP_VLAN:
3075 ctx->flow.vlan_tci = htons(0);
3076 xlate_set_dl_tci(ctx);
3077 break;
3078
3079 case OFPAT_SET_DL_SRC:
3080 oada = ((struct ofp_action_dl_addr *) ia);
3081 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_SRC,
3082 oada->dl_addr, ETH_ADDR_LEN);
3083 memcpy(ctx->flow.dl_src, oada->dl_addr, ETH_ADDR_LEN);
3084 break;
3085
3086 case OFPAT_SET_DL_DST:
3087 oada = ((struct ofp_action_dl_addr *) ia);
3088 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_DST,
3089 oada->dl_addr, ETH_ADDR_LEN);
3090 memcpy(ctx->flow.dl_dst, oada->dl_addr, ETH_ADDR_LEN);
3091 break;
3092
3093 case OFPAT_SET_NW_SRC:
3094 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_SRC,
3095 ia->nw_addr.nw_addr);
3096 ctx->flow.nw_src = ia->nw_addr.nw_addr;
3097 break;
3098
3099 case OFPAT_SET_NW_DST:
3100 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_DST,
3101 ia->nw_addr.nw_addr);
3102 ctx->flow.nw_dst = ia->nw_addr.nw_addr;
3103 break;
3104
3105 case OFPAT_SET_NW_TOS:
3106 nl_msg_put_u8(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_TOS,
3107 ia->nw_tos.nw_tos);
3108 ctx->flow.nw_tos = ia->nw_tos.nw_tos;
3109 break;
3110
3111 case OFPAT_SET_TP_SRC:
3112 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_SRC,
3113 ia->tp_port.tp_port);
3114 ctx->flow.tp_src = ia->tp_port.tp_port;
3115 break;
3116
3117 case OFPAT_SET_TP_DST:
3118 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_DST,
3119 ia->tp_port.tp_port);
3120 ctx->flow.tp_dst = ia->tp_port.tp_port;
3121 break;
3122
3123 case OFPAT_VENDOR:
3124 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
3125 break;
3126
3127 case OFPAT_ENQUEUE:
3128 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
3129 break;
3130
3131 default:
3132 VLOG_DBG_RL(&rl, "unknown action type %d", (int) type);
3133 break;
3134 }
3135 }
3136 }
3137
3138 static void
3139 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
3140 struct ofproto *ofproto, const struct flow *flow,
3141 const struct ofpbuf *packet)
3142 {
3143 ctx->ofproto = ofproto;
3144 ctx->flow = *flow;
3145 ctx->packet = packet;
3146 ctx->resubmit_hook = NULL;
3147 ctx->check_special = true;
3148 }
3149
3150 static struct ofpbuf *
3151 xlate_actions(struct action_xlate_ctx *ctx,
3152 const union ofp_action *in, size_t n_in)
3153 {
3154 COVERAGE_INC(ofproto_ofp2odp);
3155
3156 ctx->odp_actions = ofpbuf_new(512);
3157 ctx->tags = 0;
3158 ctx->may_set_up_flow = true;
3159 ctx->nf_output_iface = NF_OUT_DROP;
3160 ctx->recurse = 0;
3161 ctx->last_pop_priority = -1;
3162
3163 if (!ctx->check_special
3164 || !ctx->ofproto->ofhooks->special_cb
3165 || ctx->ofproto->ofhooks->special_cb(&ctx->flow, ctx->packet,
3166 ctx->ofproto->aux)) {
3167 do_xlate_actions(in, n_in, ctx);
3168 } else {
3169 ctx->may_set_up_flow = false;
3170 }
3171
3172 remove_pop_action(ctx);
3173
3174 /* Check with in-band control to see if we're allowed to set up this
3175 * flow. */
3176 if (!in_band_rule_check(ctx->ofproto->in_band, &ctx->flow,
3177 ctx->odp_actions->data, ctx->odp_actions->size)) {
3178 ctx->may_set_up_flow = false;
3179 }
3180
3181 return ctx->odp_actions;
3182 }
3183
3184 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
3185 * error message code (composed with ofp_mkerr()) for the caller to propagate
3186 * upward. Otherwise, returns 0.
3187 *
3188 * The log message mentions 'msg_type'. */
3189 static int
3190 reject_slave_controller(struct ofconn *ofconn, const const char *msg_type)
3191 {
3192 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
3193 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
3194 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
3195 msg_type);
3196
3197 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3198 } else {
3199 return 0;
3200 }
3201 }
3202
3203 static int
3204 handle_packet_out(struct ofconn *ofconn, const struct ofp_header *oh)
3205 {
3206 struct ofproto *p = ofconn->ofproto;
3207 struct ofp_packet_out *opo;
3208 struct ofpbuf payload, *buffer;
3209 union ofp_action *ofp_actions;
3210 struct action_xlate_ctx ctx;
3211 struct ofpbuf *odp_actions;
3212 struct ofpbuf request;
3213 struct flow flow;
3214 size_t n_ofp_actions;
3215 uint16_t in_port;
3216 int error;
3217
3218 COVERAGE_INC(ofproto_packet_out);
3219
3220 error = reject_slave_controller(ofconn, "OFPT_PACKET_OUT");
3221 if (error) {
3222 return error;
3223 }
3224
3225 /* Get ofp_packet_out. */
3226 ofpbuf_use_const(&request, oh, ntohs(oh->length));
3227 opo = ofpbuf_pull(&request, offsetof(struct ofp_packet_out, actions));
3228
3229 /* Get actions. */
3230 error = ofputil_pull_actions(&request, ntohs(opo->actions_len),
3231 &ofp_actions, &n_ofp_actions);
3232 if (error) {
3233 return error;
3234 }
3235
3236 /* Get payload. */
3237 if (opo->buffer_id != htonl(UINT32_MAX)) {
3238 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
3239 &buffer, &in_port);
3240 if (error || !buffer) {
3241 return error;
3242 }
3243 payload = *buffer;
3244 } else {
3245 payload = request;
3246 buffer = NULL;
3247 }
3248
3249 /* Extract flow, check actions. */
3250 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)),
3251 &flow);
3252 error = validate_actions(ofp_actions, n_ofp_actions, &flow, p->max_ports);
3253 if (error) {
3254 goto exit;
3255 }
3256
3257 /* Send. */
3258 action_xlate_ctx_init(&ctx, p, &flow, &payload);
3259 odp_actions = xlate_actions(&ctx, ofp_actions, n_ofp_actions);
3260 dpif_execute(p->dpif, odp_actions->data, odp_actions->size, &payload);
3261 ofpbuf_delete(odp_actions);
3262
3263 exit:
3264 ofpbuf_delete(buffer);
3265 return 0;
3266 }
3267
3268 static void
3269 update_port_config(struct ofproto *p, struct ofport *port,
3270 uint32_t config, uint32_t mask)
3271 {
3272 mask &= config ^ port->opp.config;
3273 if (mask & OFPPC_PORT_DOWN) {
3274 if (config & OFPPC_PORT_DOWN) {
3275 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
3276 } else {
3277 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
3278 }
3279 }
3280 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
3281 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
3282 if (mask & REVALIDATE_BITS) {
3283 COVERAGE_INC(ofproto_costly_flags);
3284 port->opp.config ^= mask & REVALIDATE_BITS;
3285 p->need_revalidate = true;
3286 }
3287 #undef REVALIDATE_BITS
3288 if (mask & OFPPC_NO_PACKET_IN) {
3289 port->opp.config ^= OFPPC_NO_PACKET_IN;
3290 }
3291 }
3292
3293 static int
3294 handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh)
3295 {
3296 struct ofproto *p = ofconn->ofproto;
3297 const struct ofp_port_mod *opm = (const struct ofp_port_mod *) oh;
3298 struct ofport *port;
3299 int error;
3300
3301 error = reject_slave_controller(ofconn, "OFPT_PORT_MOD");
3302 if (error) {
3303 return error;
3304 }
3305
3306 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
3307 if (!port) {
3308 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
3309 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
3310 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
3311 } else {
3312 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
3313 if (opm->advertise) {
3314 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
3315 }
3316 }
3317 return 0;
3318 }
3319
3320 static struct ofpbuf *
3321 make_ofp_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
3322 {
3323 struct ofp_stats_reply *osr;
3324 struct ofpbuf *msg;
3325
3326 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3327 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3328 osr->type = type;
3329 osr->flags = htons(0);
3330 return msg;
3331 }
3332
3333 static struct ofpbuf *
3334 start_ofp_stats_reply(const struct ofp_header *request, size_t body_len)
3335 {
3336 const struct ofp_stats_request *osr
3337 = (const struct ofp_stats_request *) request;
3338 return make_ofp_stats_reply(osr->header.xid, osr->type, body_len);
3339 }
3340
3341 static void *
3342 append_ofp_stats_reply(size_t nbytes, struct ofconn *ofconn,
3343 struct ofpbuf **msgp)
3344 {
3345 struct ofpbuf *msg = *msgp;
3346 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3347 if (nbytes + msg->size > UINT16_MAX) {
3348 struct ofp_stats_reply *reply = msg->data;
3349 reply->flags = htons(OFPSF_REPLY_MORE);
3350 *msgp = make_ofp_stats_reply(reply->header.xid, reply->type, nbytes);
3351 queue_tx(msg, ofconn, ofconn->reply_counter);
3352 }
3353 return ofpbuf_put_uninit(*msgp, nbytes);
3354 }
3355
3356 static struct ofpbuf *
3357 make_nxstats_reply(ovs_be32 xid, ovs_be32 subtype, size_t body_len)
3358 {
3359 struct nicira_stats_msg *nsm;
3360 struct ofpbuf *msg;
3361
3362 msg = ofpbuf_new(MIN(sizeof *nsm + body_len, UINT16_MAX));
3363 nsm = put_openflow_xid(sizeof *nsm, OFPT_STATS_REPLY, xid, msg);
3364 nsm->type = htons(OFPST_VENDOR);
3365 nsm->flags = htons(0);
3366 nsm->vendor = htonl(NX_VENDOR_ID);
3367 nsm->subtype = subtype;
3368 return msg;
3369 }
3370
3371 static struct ofpbuf *
3372 start_nxstats_reply(const struct nicira_stats_msg *request, size_t body_len)
3373 {
3374 return make_nxstats_reply(request->header.xid, request->subtype, body_len);
3375 }
3376
3377 static void
3378 append_nxstats_reply(size_t nbytes, struct ofconn *ofconn,
3379 struct ofpbuf **msgp)
3380 {
3381 struct ofpbuf *msg = *msgp;
3382 assert(nbytes <= UINT16_MAX - sizeof(struct nicira_stats_msg));
3383 if (nbytes + msg->size > UINT16_MAX) {
3384 struct nicira_stats_msg *reply = msg->data;
3385 reply->flags = htons(OFPSF_REPLY_MORE);
3386 *msgp = make_nxstats_reply(reply->header.xid, reply->subtype, nbytes);
3387 queue_tx(msg, ofconn, ofconn->reply_counter);
3388 }
3389 ofpbuf_prealloc_tailroom(*msgp, nbytes);
3390 }
3391
3392 static int
3393 handle_desc_stats_request(struct ofconn *ofconn,
3394 const struct ofp_header *request)
3395 {
3396 struct ofproto *p = ofconn->ofproto;
3397 struct ofp_desc_stats *ods;
3398 struct ofpbuf *msg;
3399
3400 msg = start_ofp_stats_reply(request, sizeof *ods);
3401 ods = append_ofp_stats_reply(sizeof *ods, ofconn, &msg);
3402 memset(ods, 0, sizeof *ods);
3403 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3404 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3405 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3406 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3407 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3408 queue_tx(msg, ofconn, ofconn->reply_counter);
3409
3410 return 0;
3411 }
3412
3413 static int
3414 handle_table_stats_request(struct ofconn *ofconn,
3415 const struct ofp_header *request)
3416 {
3417 struct ofproto *p = ofconn->ofproto;
3418 struct ofp_table_stats *ots;
3419 struct ofpbuf *msg;
3420
3421 msg = start_ofp_stats_reply(request, sizeof *ots * 2);
3422
3423 /* Classifier table. */
3424 ots = append_ofp_stats_reply(sizeof *ots, ofconn, &msg);
3425 memset(ots, 0, sizeof *ots);
3426 strcpy(ots->name, "classifier");
3427 ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10
3428 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3429 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3430 ots->active_count = htonl(classifier_count(&p->cls));
3431 put_32aligned_be64(&ots->lookup_count, htonll(0)); /* XXX */
3432 put_32aligned_be64(&ots->matched_count, htonll(0)); /* XXX */
3433
3434 queue_tx(msg, ofconn, ofconn->reply_counter);
3435 return 0;
3436 }
3437
3438 static void
3439 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3440 struct ofpbuf **msgp)
3441 {
3442 struct netdev_stats stats;
3443 struct ofp_port_stats *ops;
3444
3445 /* Intentionally ignore return value, since errors will set
3446 * 'stats' to all-1s, which is correct for OpenFlow, and
3447 * netdev_get_stats() will log errors. */
3448 netdev_get_stats(port->netdev, &stats);
3449
3450 ops = append_ofp_stats_reply(sizeof *ops, ofconn, msgp);
3451 ops->port_no = htons(port->opp.port_no);
3452 memset(ops->pad, 0, sizeof ops->pad);
3453 put_32aligned_be64(&ops->rx_packets, htonll(stats.rx_packets));
3454 put_32aligned_be64(&ops->tx_packets, htonll(stats.tx_packets));
3455 put_32aligned_be64(&ops->rx_bytes, htonll(stats.rx_bytes));
3456 put_32aligned_be64(&ops->tx_bytes, htonll(stats.tx_bytes));
3457 put_32aligned_be64(&ops->rx_dropped, htonll(stats.rx_dropped));
3458 put_32aligned_be64(&ops->tx_dropped, htonll(stats.tx_dropped));
3459 put_32aligned_be64(&ops->rx_errors, htonll(stats.rx_errors));
3460 put_32aligned_be64(&ops->tx_errors, htonll(stats.tx_errors));
3461 put_32aligned_be64(&ops->rx_frame_err, htonll(stats.rx_frame_errors));
3462 put_32aligned_be64(&ops->rx_over_err, htonll(stats.rx_over_errors));
3463 put_32aligned_be64(&ops->rx_crc_err, htonll(stats.rx_crc_errors));
3464 put_32aligned_be64(&ops->collisions, htonll(stats.collisions));
3465 }
3466
3467 static int
3468 handle_port_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3469 {
3470 struct ofproto *p = ofconn->ofproto;
3471 const struct ofp_port_stats_request *psr = ofputil_stats_body(oh);
3472 struct ofp_port_stats *ops;
3473 struct ofpbuf *msg;
3474 struct ofport *port;
3475
3476 msg = start_ofp_stats_reply(oh, sizeof *ops * 16);
3477 if (psr->port_no != htons(OFPP_NONE)) {
3478 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3479 if (port) {
3480 append_port_stat(port, ofconn, &msg);
3481 }
3482 } else {
3483 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3484 append_port_stat(port, ofconn, &msg);
3485 }
3486 }
3487
3488 queue_tx(msg, ofconn, ofconn->reply_counter);
3489 return 0;
3490 }
3491
3492 static void
3493 calc_flow_duration(long long int start, ovs_be32 *sec, ovs_be32 *nsec)
3494 {
3495 long long int msecs = time_msec() - start;
3496 *sec = htonl(msecs / 1000);
3497 *nsec = htonl((msecs % 1000) * (1000 * 1000));
3498 }
3499
3500 static void
3501 put_ofp_flow_stats(struct ofconn *ofconn, struct rule *rule,
3502 ovs_be16 out_port, struct ofpbuf **replyp)
3503 {
3504 struct ofp_flow_stats *ofs;
3505 uint64_t packet_count, byte_count;
3506 ovs_be64 cookie;
3507 size_t act_len, len;
3508
3509 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3510 return;
3511 }
3512
3513 act_len = sizeof *rule->actions * rule->n_actions;
3514 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3515
3516 rule_get_stats(rule, &packet_count, &byte_count);
3517
3518 ofs = append_ofp_stats_reply(len, ofconn, replyp);
3519 ofs->length = htons(len);
3520 ofs->table_id = 0;
3521 ofs->pad = 0;
3522 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofs->match,
3523 rule->flow_cookie, &cookie);
3524 put_32aligned_be64(&ofs->cookie, cookie);
3525 calc_flow_duration(rule->created, &ofs->duration_sec, &ofs->duration_nsec);
3526 ofs->priority = htons(rule->cr.priority);
3527 ofs->idle_timeout = htons(rule->idle_timeout);
3528 ofs->hard_timeout = htons(rule->hard_timeout);
3529 memset(ofs->pad2, 0, sizeof ofs->pad2);
3530 put_32aligned_be64(&ofs->packet_count, htonll(packet_count));
3531 put_32aligned_be64(&ofs->byte_count, htonll(byte_count));
3532 if (rule->n_actions > 0) {
3533 memcpy(ofs->actions, rule->actions, act_len);
3534 }
3535 }
3536
3537 static bool
3538 is_valid_table(uint8_t table_id)
3539 {
3540 return table_id == 0 || table_id == 0xff;
3541 }
3542
3543 static int
3544 handle_flow_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3545 {
3546 const struct ofp_flow_stats_request *fsr = ofputil_stats_body(oh);
3547 struct ofpbuf *reply;
3548
3549 COVERAGE_INC(ofproto_flows_req);
3550 reply = start_ofp_stats_reply(oh, 1024);
3551 if (is_valid_table(fsr->table_id)) {
3552 struct cls_cursor cursor;
3553 struct cls_rule target;
3554 struct rule *rule;
3555
3556 ofputil_cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0,
3557 &target);
3558 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3559 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3560 put_ofp_flow_stats(ofconn, rule, fsr->out_port, &reply);
3561 }
3562 }
3563 queue_tx(reply, ofconn, ofconn->reply_counter);
3564
3565 return 0;
3566 }
3567
3568 static void
3569 put_nx_flow_stats(struct ofconn *ofconn, struct rule *rule,
3570 ovs_be16 out_port, struct ofpbuf **replyp)
3571 {
3572 struct nx_flow_stats *nfs;
3573 uint64_t packet_count, byte_count;
3574 size_t act_len, start_len;
3575 struct ofpbuf *reply;
3576
3577 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3578 return;
3579 }
3580
3581 rule_get_stats(rule, &packet_count, &byte_count);
3582
3583 act_len = sizeof *rule->actions * rule->n_actions;
3584
3585 append_nxstats_reply(sizeof *nfs + NXM_MAX_LEN + act_len, ofconn, replyp);
3586 start_len = (*replyp)->size;
3587 reply = *replyp;
3588
3589 nfs = ofpbuf_put_uninit(reply, sizeof *nfs);
3590 nfs->table_id = 0;
3591 nfs->pad = 0;
3592 calc_flow_duration(rule->created, &nfs->duration_sec, &nfs->duration_nsec);
3593 nfs->cookie = rule->flow_cookie;
3594 nfs->priority = htons(rule->cr.priority);
3595 nfs->idle_timeout = htons(rule->idle_timeout);
3596 nfs->hard_timeout = htons(rule->hard_timeout);
3597 nfs->match_len = htons(nx_put_match(reply, &rule->cr));
3598 memset(nfs->pad2, 0, sizeof nfs->pad2);
3599 nfs->packet_count = htonll(packet_count);
3600 nfs->byte_count = htonll(byte_count);
3601 if (rule->n_actions > 0) {
3602 ofpbuf_put(reply, rule->actions, act_len);
3603 }
3604 nfs->length = htons(reply->size - start_len);
3605 }
3606
3607 static int
3608 handle_nxst_flow(struct ofconn *ofconn, const struct ofp_header *oh)
3609 {
3610 struct nx_flow_stats_request *nfsr;
3611 struct cls_rule target;
3612 struct ofpbuf *reply;
3613 struct ofpbuf b;
3614 int error;
3615
3616 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3617
3618 /* Dissect the message. */
3619 nfsr = ofpbuf_pull(&b, sizeof *nfsr);
3620 error = nx_pull_match(&b, ntohs(nfsr->match_len), 0, &target);
3621 if (error) {
3622 return error;
3623 }
3624 if (b.size) {
3625 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3626 }
3627
3628 COVERAGE_INC(ofproto_flows_req);
3629 reply = start_nxstats_reply(&nfsr->nsm, 1024);
3630 if (is_valid_table(nfsr->table_id)) {
3631 struct cls_cursor cursor;
3632 struct rule *rule;
3633
3634 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3635 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3636 put_nx_flow_stats(ofconn, rule, nfsr->out_port, &reply);
3637 }
3638 }
3639 queue_tx(reply, ofconn, ofconn->reply_counter);
3640
3641 return 0;
3642 }
3643
3644 static void
3645 flow_stats_ds(struct rule *rule, struct ds *results)
3646 {
3647 uint64_t packet_count, byte_count;
3648 size_t act_len = sizeof *rule->actions * rule->n_actions;
3649
3650 rule_get_stats(rule, &packet_count, &byte_count);
3651
3652 ds_put_format(results, "duration=%llds, ",
3653 (time_msec() - rule->created) / 1000);
3654 ds_put_format(results, "idle=%.3fs, ", (time_msec() - rule->used) / 1000.0);
3655 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3656 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3657 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3658 cls_rule_format(&rule->cr, results);
3659 ds_put_char(results, ',');
3660 if (act_len > 0) {
3661 ofp_print_actions(results, &rule->actions->header, act_len);
3662 } else {
3663 ds_put_cstr(results, "drop");
3664 }
3665 ds_put_cstr(results, "\n");
3666 }
3667
3668 /* Adds a pretty-printed description of all flows to 'results', including
3669 * those marked hidden by secchan (e.g., by in-band control). */
3670 void
3671 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3672 {
3673 struct cls_cursor cursor;
3674 struct rule *rule;
3675
3676 cls_cursor_init(&cursor, &p->cls, NULL);
3677 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3678 flow_stats_ds(rule, results);
3679 }
3680 }
3681
3682 static void
3683 query_aggregate_stats(struct ofproto *ofproto, struct cls_rule *target,
3684 ovs_be16 out_port, uint8_t table_id,
3685 struct ofp_aggregate_stats_reply *oasr)
3686 {
3687 uint64_t total_packets = 0;
3688 uint64_t total_bytes = 0;
3689 int n_flows = 0;
3690
3691 COVERAGE_INC(ofproto_agg_request);
3692
3693 if (is_valid_table(table_id)) {
3694 struct cls_cursor cursor;
3695 struct rule *rule;
3696
3697 cls_cursor_init(&cursor, &ofproto->cls, target);
3698 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3699 if (!rule_is_hidden(rule) && rule_has_out_port(rule, out_port)) {
3700 uint64_t packet_count;
3701 uint64_t byte_count;
3702
3703 rule_get_stats(rule, &packet_count, &byte_count);
3704
3705 total_packets += packet_count;
3706 total_bytes += byte_count;
3707 n_flows++;
3708 }
3709 }
3710 }
3711
3712 oasr->flow_count = htonl(n_flows);
3713 put_32aligned_be64(&oasr->packet_count, htonll(total_packets));
3714 put_32aligned_be64(&oasr->byte_count, htonll(total_bytes));
3715 memset(oasr->pad, 0, sizeof oasr->pad);
3716 }
3717
3718 static int
3719 handle_aggregate_stats_request(struct ofconn *ofconn,
3720 const struct ofp_header *oh)
3721 {
3722 const struct ofp_aggregate_stats_request *request = ofputil_stats_body(oh);
3723 struct ofp_aggregate_stats_reply *reply;
3724 struct cls_rule target;
3725 struct ofpbuf *msg;
3726
3727 ofputil_cls_rule_from_match(&request->match, 0, NXFF_OPENFLOW10, 0,
3728 &target);
3729
3730 msg = start_ofp_stats_reply(oh, sizeof *reply);
3731 reply = append_ofp_stats_reply(sizeof *reply, ofconn, &msg);
3732 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3733 request->table_id, reply);
3734 queue_tx(msg, ofconn, ofconn->reply_counter);
3735 return 0;
3736 }
3737
3738 static int
3739 handle_nxst_aggregate(struct ofconn *ofconn, const struct ofp_header *oh)
3740 {
3741 struct nx_aggregate_stats_request *request;
3742 struct ofp_aggregate_stats_reply *reply;
3743 struct cls_rule target;
3744 struct ofpbuf b;
3745 struct ofpbuf *buf;
3746 int error;
3747
3748 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3749
3750 /* Dissect the message. */
3751 request = ofpbuf_pull(&b, sizeof *request);
3752 error = nx_pull_match(&b, ntohs(request->match_len), 0, &target);
3753 if (error) {
3754 return error;
3755 }
3756 if (b.size) {
3757 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3758 }
3759
3760 /* Reply. */
3761 COVERAGE_INC(ofproto_flows_req);
3762 buf = start_nxstats_reply(&request->nsm, sizeof *reply);
3763 reply = ofpbuf_put_uninit(buf, sizeof *reply);
3764 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3765 request->table_id, reply);
3766 queue_tx(buf, ofconn, ofconn->reply_counter);
3767
3768 return 0;
3769 }
3770
3771 struct queue_stats_cbdata {
3772 struct ofconn *ofconn;
3773 struct ofport *ofport;
3774 struct ofpbuf *msg;
3775 };
3776
3777 static void
3778 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3779 const struct netdev_queue_stats *stats)
3780 {
3781 struct ofp_queue_stats *reply;
3782
3783 reply = append_ofp_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3784 reply->port_no = htons(cbdata->ofport->opp.port_no);
3785 memset(reply->pad, 0, sizeof reply->pad);
3786 reply->queue_id = htonl(queue_id);
3787 put_32aligned_be64(&reply->tx_bytes, htonll(stats->tx_bytes));
3788 put_32aligned_be64(&reply->tx_packets, htonll(stats->tx_packets));
3789 put_32aligned_be64(&reply->tx_errors, htonll(stats->tx_errors));
3790 }
3791
3792 static void
3793 handle_queue_stats_dump_cb(uint32_t queue_id,
3794 struct netdev_queue_stats *stats,
3795 void *cbdata_)
3796 {
3797 struct queue_stats_cbdata *cbdata = cbdata_;
3798
3799 put_queue_stats(cbdata, queue_id, stats);
3800 }
3801
3802 static void
3803 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3804 struct queue_stats_cbdata *cbdata)
3805 {
3806 cbdata->ofport = port;
3807 if (queue_id == OFPQ_ALL) {
3808 netdev_dump_queue_stats(port->netdev,
3809 handle_queue_stats_dump_cb, cbdata);
3810 } else {
3811 struct netdev_queue_stats stats;
3812
3813 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3814 put_queue_stats(cbdata, queue_id, &stats);
3815 }
3816 }
3817 }
3818
3819 static int
3820 handle_queue_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3821 {
3822 struct ofproto *ofproto = ofconn->ofproto;
3823 const struct ofp_queue_stats_request *qsr;
3824 struct queue_stats_cbdata cbdata;
3825 struct ofport *port;
3826 unsigned int port_no;
3827 uint32_t queue_id;
3828
3829 qsr = ofputil_stats_body(oh);
3830 if (!qsr) {
3831 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3832 }
3833
3834 COVERAGE_INC(ofproto_queue_req);
3835
3836 cbdata.ofconn = ofconn;
3837 cbdata.msg = start_ofp_stats_reply(oh, 128);
3838
3839 port_no = ntohs(qsr->port_no);
3840 queue_id = ntohl(qsr->queue_id);
3841 if (port_no == OFPP_ALL) {
3842 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3843 handle_queue_stats_for_port(port, queue_id, &cbdata);
3844 }
3845 } else if (port_no < ofproto->max_ports) {
3846 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3847 if (port) {
3848 handle_queue_stats_for_port(port, queue_id, &cbdata);
3849 }
3850 } else {
3851 ofpbuf_delete(cbdata.msg);
3852 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3853 }
3854 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3855
3856 return 0;
3857 }
3858
3859 /* Updates 'facet''s used time. Caller is responsible for calling
3860 * facet_push_stats() to update the flows which 'facet' resubmits into. */
3861 static void
3862 facet_update_time(struct ofproto *ofproto, struct facet *facet,
3863 long long int used)
3864 {
3865 if (used > facet->used) {
3866 facet->used = used;
3867 if (used > facet->rule->used) {
3868 facet->rule->used = used;
3869 }
3870 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
3871 }
3872 }
3873
3874 /* Folds the statistics from 'stats' into the counters in 'facet'.
3875 *
3876 * Because of the meaning of a facet's counters, it only makes sense to do this
3877 * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a
3878 * packet that was sent by hand or if it represents statistics that have been
3879 * cleared out of the datapath. */
3880 static void
3881 facet_update_stats(struct ofproto *ofproto, struct facet *facet,
3882 const struct dpif_flow_stats *stats)
3883 {
3884 if (stats->n_packets) {
3885 facet_update_time(ofproto, facet, stats->used);
3886 facet->packet_count += stats->n_packets;
3887 facet->byte_count += stats->n_bytes;
3888 facet_push_stats(ofproto, facet);
3889 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
3890 }
3891 }
3892
3893 static void
3894 facet_push_stats(struct ofproto *ofproto, struct facet *facet)
3895 {
3896 uint64_t rs_packets, rs_bytes;
3897
3898 assert(facet->packet_count >= facet->rs_packet_count);
3899 assert(facet->byte_count >= facet->rs_byte_count);
3900 assert(facet->used >= facet->rs_used);
3901
3902 rs_packets = facet->packet_count - facet->rs_packet_count;
3903 rs_bytes = facet->byte_count - facet->rs_byte_count;
3904
3905 if (rs_packets || rs_bytes || facet->used > facet->rs_used) {
3906 facet->rs_packet_count = facet->packet_count;
3907 facet->rs_byte_count = facet->byte_count;
3908 facet->rs_used = facet->used;
3909
3910 flow_push_stats(ofproto, facet->rule, &facet->flow,
3911 rs_packets, rs_bytes, facet->used);
3912 }
3913 }
3914
3915 struct ofproto_push {
3916 struct action_xlate_ctx ctx;
3917 uint64_t packets;
3918 uint64_t bytes;
3919 long long int used;
3920 };
3921
3922 static void
3923 push_resubmit(struct action_xlate_ctx *ctx, struct rule *rule)
3924 {
3925 struct ofproto_push *push = CONTAINER_OF(ctx, struct ofproto_push, ctx);
3926
3927 if (rule) {
3928 rule->packet_count += push->packets;
3929 rule->byte_count += push->bytes;
3930 rule->used = MAX(push->used, rule->used);
3931 }
3932 }
3933
3934 /* Pushes flow statistics to the rules which 'flow' resubmits into given
3935 * 'rule''s actions. */
3936 static void
3937 flow_push_stats(struct ofproto *ofproto, const struct rule *rule,
3938 struct flow *flow, uint64_t packets, uint64_t bytes,
3939 long long int used)
3940 {
3941 struct ofproto_push push;
3942
3943 push.packets = packets;
3944 push.bytes = bytes;
3945 push.used = used;
3946
3947 action_xlate_ctx_init(&push.ctx, ofproto, flow, NULL);
3948 push.ctx.resubmit_hook = push_resubmit;
3949 ofpbuf_delete(xlate_actions(&push.ctx, rule->actions, rule->n_actions));
3950 }
3951
3952 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3953 * in which no matching flow already exists in the flow table.
3954 *
3955 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3956 * ofp_actions, to ofconn->ofproto's flow table. Returns 0 on success or an
3957 * OpenFlow error code as encoded by ofp_mkerr() on failure.
3958 *
3959 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3960 * if any. */
3961 static int
3962 add_flow(struct ofconn *ofconn, struct flow_mod *fm)
3963 {
3964 struct ofproto *p = ofconn->ofproto;
3965 struct ofpbuf *packet;
3966 struct rule *rule;
3967 uint16_t in_port;
3968 int error;
3969
3970 if (fm->flags & OFPFF_CHECK_OVERLAP
3971 && classifier_rule_overlaps(&p->cls, &fm->cr)) {
3972 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3973 }
3974
3975 error = 0;
3976 if (fm->buffer_id != UINT32_MAX) {
3977 error = pktbuf_retrieve(ofconn->pktbuf, fm->buffer_id,
3978 &packet, &in_port);
3979 } else {
3980 packet = NULL;
3981 in_port = UINT16_MAX;
3982 }
3983
3984 rule = rule_create(&fm->cr, fm->actions, fm->n_actions,
3985 fm->idle_timeout, fm->hard_timeout, fm->cookie,
3986 fm->flags & OFPFF_SEND_FLOW_REM);
3987 rule_insert(p, rule);
3988 if (packet) {
3989 rule_execute(p, rule, in_port, packet);
3990 }
3991 return error;
3992 }
3993
3994 static struct rule *
3995 find_flow_strict(struct ofproto *p, const struct flow_mod *fm)
3996 {
3997 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &fm->cr));
3998 }
3999
4000 static int
4001 send_buffered_packet(struct ofconn *ofconn,
4002 struct rule *rule, uint32_t buffer_id)
4003 {
4004 struct ofpbuf *packet;
4005 uint16_t in_port;
4006 int error;
4007
4008 if (buffer_id == UINT32_MAX) {
4009 return 0;
4010 }
4011
4012 error = pktbuf_retrieve(ofconn->pktbuf, buffer_id, &packet, &in_port);
4013 if (error) {
4014 return error;
4015 }
4016
4017 rule_execute(ofconn->ofproto, rule, in_port, packet);
4018
4019 return 0;
4020 }
4021 \f
4022 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
4023
4024 struct modify_flows_cbdata {
4025 struct ofproto *ofproto;
4026 const struct flow_mod *fm;
4027 struct rule *match;
4028 };
4029
4030 static int modify_flow(struct ofproto *, const struct flow_mod *,
4031 struct rule *);
4032
4033 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
4034 * encoded by ofp_mkerr() on failure.
4035 *
4036 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
4037 * if any. */
4038 static int
4039 modify_flows_loose(struct ofconn *ofconn, struct flow_mod *fm)
4040 {
4041 struct ofproto *p = ofconn->ofproto;
4042 struct rule *match = NULL;
4043 struct cls_cursor cursor;
4044 struct rule *rule;
4045
4046 cls_cursor_init(&cursor, &p->cls, &fm->cr);
4047 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
4048 if (!rule_is_hidden(rule)) {
4049 match = rule;
4050 modify_flow(p, fm, rule);
4051 }
4052 }
4053
4054 if (match) {
4055 /* This credits the packet to whichever flow happened to match last.
4056 * That's weird. Maybe we should do a lookup for the flow that
4057 * actually matches the packet? Who knows. */
4058 send_buffered_packet(ofconn, match, fm->buffer_id);
4059 return 0;
4060 } else {
4061 return add_flow(ofconn, fm);
4062 }
4063 }
4064
4065 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
4066 * code as encoded by ofp_mkerr() on failure.
4067 *
4068 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
4069 * if any. */
4070 static int
4071 modify_flow_strict(struct ofconn *ofconn, struct flow_mod *fm)
4072 {
4073 struct ofproto *p = ofconn->ofproto;
4074 struct rule *rule = find_flow_strict(p, fm);
4075 if (rule && !rule_is_hidden(rule)) {
4076 modify_flow(p, fm, rule);
4077 return send_buffered_packet(ofconn, rule, fm->buffer_id);
4078 } else {
4079 return add_flow(ofconn, fm);
4080 }
4081 }
4082
4083 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
4084 * been identified as a flow in 'p''s flow table to be modified, by changing
4085 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
4086 * ofp_action[] structures). */
4087 static int
4088 modify_flow(struct ofproto *p, const struct flow_mod *fm, struct rule *rule)
4089 {
4090 size_t actions_len = fm->n_actions * sizeof *rule->actions;
4091
4092 rule->flow_cookie = fm->cookie;
4093
4094 /* If the actions are the same, do nothing. */
4095 if (fm->n_actions == rule->n_actions
4096 && (!fm->n_actions
4097 || !memcmp(fm->actions, rule->actions, actions_len))) {
4098 return 0;
4099 }
4100
4101 /* Replace actions. */
4102 free(rule->actions);
4103 rule->actions = fm->n_actions ? xmemdup(fm->actions, actions_len) : NULL;
4104 rule->n_actions = fm->n_actions;
4105
4106 p->need_revalidate = true;
4107
4108 return 0;
4109 }
4110 \f
4111 /* OFPFC_DELETE implementation. */
4112
4113 static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
4114
4115 /* Implements OFPFC_DELETE. */
4116 static void
4117 delete_flows_loose(struct ofproto *p, const struct flow_mod *fm)
4118 {
4119 struct rule *rule, *next_rule;
4120 struct cls_cursor cursor;
4121
4122 cls_cursor_init(&cursor, &p->cls, &fm->cr);
4123 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4124 delete_flow(p, rule, htons(fm->out_port));
4125 }
4126 }
4127
4128 /* Implements OFPFC_DELETE_STRICT. */
4129 static void
4130 delete_flow_strict(struct ofproto *p, struct flow_mod *fm)
4131 {
4132 struct rule *rule = find_flow_strict(p, fm);
4133 if (rule) {
4134 delete_flow(p, rule, htons(fm->out_port));
4135 }
4136 }
4137
4138 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
4139 * been identified as a flow to delete from 'p''s flow table, by deleting the
4140 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
4141 * controller.
4142 *
4143 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
4144 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
4145 * specified 'out_port'. */
4146 static void
4147 delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
4148 {
4149 if (rule_is_hidden(rule)) {
4150 return;
4151 }
4152
4153 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
4154 return;
4155 }
4156
4157 rule_send_removed(p, rule, OFPRR_DELETE);
4158 rule_remove(p, rule);
4159 }
4160 \f
4161 static int
4162 handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh)
4163 {
4164 struct ofproto *p = ofconn->ofproto;
4165 struct flow_mod fm;
4166 int error;
4167
4168 error = reject_slave_controller(ofconn, "flow_mod");
4169 if (error) {
4170 return error;
4171 }
4172
4173 error = ofputil_decode_flow_mod(&fm, oh, ofconn->flow_format);
4174 if (error) {
4175 return error;
4176 }
4177
4178 /* We do not support the emergency flow cache. It will hopefully get
4179 * dropped from OpenFlow in the near future. */
4180 if (fm.flags & OFPFF_EMERG) {
4181 /* There isn't a good fit for an error code, so just state that the
4182 * flow table is full. */
4183 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
4184 }
4185
4186 error = validate_actions(fm.actions, fm.n_actions,
4187 &fm.cr.flow, p->max_ports);
4188 if (error) {
4189 return error;
4190 }
4191
4192 switch (fm.command) {
4193 case OFPFC_ADD:
4194 return add_flow(ofconn, &fm);
4195
4196 case OFPFC_MODIFY:
4197 return modify_flows_loose(ofconn, &fm);
4198
4199 case OFPFC_MODIFY_STRICT:
4200 return modify_flow_strict(ofconn, &fm);
4201
4202 case OFPFC_DELETE:
4203 delete_flows_loose(p, &fm);
4204 return 0;
4205
4206 case OFPFC_DELETE_STRICT:
4207 delete_flow_strict(p, &fm);
4208 return 0;
4209
4210 default:
4211 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
4212 }
4213 }
4214
4215 static int
4216 handle_tun_id_from_cookie(struct ofconn *ofconn, const struct ofp_header *oh)
4217 {
4218 const struct nxt_tun_id_cookie *msg
4219 = (const struct nxt_tun_id_cookie *) oh;
4220
4221 ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
4222 return 0;
4223 }
4224
4225 static int
4226 handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh)
4227 {
4228 struct nx_role_request *nrr = (struct nx_role_request *) oh;
4229 struct nx_role_request *reply;
4230 struct ofpbuf *buf;
4231 uint32_t role;
4232
4233 if (ofconn->type != OFCONN_PRIMARY) {
4234 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
4235 "connection");
4236 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4237 }
4238
4239 role = ntohl(nrr->role);
4240 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
4241 && role != NX_ROLE_SLAVE) {
4242 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
4243
4244 /* There's no good error code for this. */
4245 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
4246 }
4247
4248 if (role == NX_ROLE_MASTER) {
4249 struct ofconn *other;
4250
4251 HMAP_FOR_EACH (other, hmap_node, &ofconn->ofproto->controllers) {
4252 if (other->role == NX_ROLE_MASTER) {
4253 other->role = NX_ROLE_SLAVE;
4254 }
4255 }
4256 }
4257 ofconn->role = role;
4258
4259 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, oh->xid, &buf);
4260 reply->role = htonl(role);
4261 queue_tx(buf, ofconn, ofconn->reply_counter);
4262
4263 return 0;
4264 }
4265
4266 static int
4267 handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh)
4268 {
4269 const struct nxt_set_flow_format *msg
4270 = (const struct nxt_set_flow_format *) oh;
4271 uint32_t format;
4272
4273 format = ntohl(msg->format);
4274 if (format == NXFF_OPENFLOW10
4275 || format == NXFF_TUN_ID_FROM_COOKIE
4276 || format == NXFF_NXM) {
4277 ofconn->flow_format = format;
4278 return 0;
4279 } else {
4280 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4281 }
4282 }
4283
4284 static int
4285 handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh)
4286 {
4287 struct ofp_header *ob;
4288 struct ofpbuf *buf;
4289
4290 /* Currently, everything executes synchronously, so we can just
4291 * immediately send the barrier reply. */
4292 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4293 queue_tx(buf, ofconn, ofconn->reply_counter);
4294 return 0;
4295 }
4296
4297 static int
4298 handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg)
4299 {
4300 const struct ofp_header *oh = msg->data;
4301 const struct ofputil_msg_type *type;
4302 int error;
4303
4304 error = ofputil_decode_msg_type(oh, &type);
4305 if (error) {
4306 return error;
4307 }
4308
4309 switch (ofputil_msg_type_code(type)) {
4310 /* OpenFlow requests. */
4311 case OFPUTIL_OFPT_ECHO_REQUEST:
4312 return handle_echo_request(ofconn, oh);
4313
4314 case OFPUTIL_OFPT_FEATURES_REQUEST:
4315 return handle_features_request(ofconn, oh);
4316
4317 case OFPUTIL_OFPT_GET_CONFIG_REQUEST:
4318 return handle_get_config_request(ofconn, oh);
4319
4320 case OFPUTIL_OFPT_SET_CONFIG:
4321 return handle_set_config(ofconn, msg->data);
4322
4323 case OFPUTIL_OFPT_PACKET_OUT:
4324 return handle_packet_out(ofconn, oh);
4325
4326 case OFPUTIL_OFPT_PORT_MOD:
4327 return handle_port_mod(ofconn, oh);
4328
4329 case OFPUTIL_OFPT_FLOW_MOD:
4330 return handle_flow_mod(ofconn, oh);
4331
4332 case OFPUTIL_OFPT_BARRIER_REQUEST:
4333 return handle_barrier_request(ofconn, oh);
4334
4335 /* OpenFlow replies. */
4336 case OFPUTIL_OFPT_ECHO_REPLY:
4337 return 0;
4338
4339 /* Nicira extension requests. */
4340 case OFPUTIL_NXT_STATUS_REQUEST:
4341 return switch_status_handle_request(
4342 ofconn->ofproto->switch_status, ofconn->rconn, oh);
4343
4344 case OFPUTIL_NXT_TUN_ID_FROM_COOKIE:
4345 return handle_tun_id_from_cookie(ofconn, oh);
4346
4347 case OFPUTIL_NXT_ROLE_REQUEST:
4348 return handle_role_request(ofconn, oh);
4349
4350 case OFPUTIL_NXT_SET_FLOW_FORMAT:
4351 return handle_nxt_set_flow_format(ofconn, oh);
4352
4353 case OFPUTIL_NXT_FLOW_MOD:
4354 return handle_flow_mod(ofconn, oh);
4355
4356 /* OpenFlow statistics requests. */
4357 case OFPUTIL_OFPST_DESC_REQUEST:
4358 return handle_desc_stats_request(ofconn, oh);
4359
4360 case OFPUTIL_OFPST_FLOW_REQUEST:
4361 return handle_flow_stats_request(ofconn, oh);
4362
4363 case OFPUTIL_OFPST_AGGREGATE_REQUEST:
4364 return handle_aggregate_stats_request(ofconn, oh);
4365
4366 case OFPUTIL_OFPST_TABLE_REQUEST:
4367 return handle_table_stats_request(ofconn, oh);
4368
4369 case OFPUTIL_OFPST_PORT_REQUEST:
4370 return handle_port_stats_request(ofconn, oh);
4371
4372 case OFPUTIL_OFPST_QUEUE_REQUEST:
4373 return handle_queue_stats_request(ofconn, oh);
4374
4375 /* Nicira extension statistics requests. */
4376 case OFPUTIL_NXST_FLOW_REQUEST:
4377 return handle_nxst_flow(ofconn, oh);
4378
4379 case OFPUTIL_NXST_AGGREGATE_REQUEST:
4380 return handle_nxst_aggregate(ofconn, oh);
4381
4382 case OFPUTIL_INVALID:
4383 case OFPUTIL_OFPT_HELLO:
4384 case OFPUTIL_OFPT_ERROR:
4385 case OFPUTIL_OFPT_FEATURES_REPLY:
4386 case OFPUTIL_OFPT_GET_CONFIG_REPLY:
4387 case OFPUTIL_OFPT_PACKET_IN:
4388 case OFPUTIL_OFPT_FLOW_REMOVED:
4389 case OFPUTIL_OFPT_PORT_STATUS:
4390 case OFPUTIL_OFPT_BARRIER_REPLY:
4391 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REQUEST:
4392 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REPLY:
4393 case OFPUTIL_OFPST_DESC_REPLY:
4394 case OFPUTIL_OFPST_FLOW_REPLY:
4395 case OFPUTIL_OFPST_QUEUE_REPLY:
4396 case OFPUTIL_OFPST_PORT_REPLY:
4397 case OFPUTIL_OFPST_TABLE_REPLY:
4398 case OFPUTIL_OFPST_AGGREGATE_REPLY:
4399 case OFPUTIL_NXT_STATUS_REPLY:
4400 case OFPUTIL_NXT_ROLE_REPLY:
4401 case OFPUTIL_NXT_FLOW_REMOVED:
4402 case OFPUTIL_NXST_FLOW_REPLY:
4403 case OFPUTIL_NXST_AGGREGATE_REPLY:
4404 default:
4405 if (VLOG_IS_WARN_ENABLED()) {
4406 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4407 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4408 free(s);
4409 }
4410 if (oh->type == OFPT_STATS_REQUEST || oh->type == OFPT_STATS_REPLY) {
4411 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
4412 } else {
4413 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4414 }
4415 }
4416 }
4417
4418 static void
4419 handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
4420 {
4421 int error = handle_openflow__(ofconn, ofp_msg);
4422 if (error) {
4423 send_error_oh(ofconn, ofp_msg->data, error);
4424 }
4425 COVERAGE_INC(ofproto_recv_openflow);
4426 }
4427 \f
4428 static void
4429 handle_miss_upcall(struct ofproto *p, struct dpif_upcall *upcall)
4430 {
4431 struct facet *facet;
4432 struct flow flow;
4433
4434 /* Obtain in_port and tun_id, at least. */
4435 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4436
4437 /* Set header pointers in 'flow'. */
4438 flow_extract(upcall->packet, flow.tun_id, flow.in_port, &flow);
4439
4440 if (p->ofhooks->special_cb
4441 && !p->ofhooks->special_cb(&flow, upcall->packet, p->aux)) {
4442 ofpbuf_delete(upcall->packet);
4443 return;
4444 }
4445
4446 /* Check with in-band control to see if this packet should be sent
4447 * to the local port regardless of the flow table. */
4448 if (in_band_msg_in_hook(p->in_band, &flow, upcall->packet)) {
4449 struct ofpbuf odp_actions;
4450
4451 ofpbuf_init(&odp_actions, 32);
4452 nl_msg_put_u32(&odp_actions, ODP_ACTION_ATTR_OUTPUT, ODPP_LOCAL);
4453 dpif_execute(p->dpif, odp_actions.data, odp_actions.size,
4454 upcall->packet);
4455 ofpbuf_uninit(&odp_actions);
4456 }
4457
4458 facet = facet_lookup_valid(p, &flow);
4459 if (!facet) {
4460 struct rule *rule = rule_lookup(p, &flow);
4461 if (!rule) {
4462 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4463 struct ofport *port = get_port(p, flow.in_port);
4464 if (port) {
4465 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4466 COVERAGE_INC(ofproto_no_packet_in);
4467 /* XXX install 'drop' flow entry */
4468 ofpbuf_delete(upcall->packet);
4469 return;
4470 }
4471 } else {
4472 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16,
4473 flow.in_port);
4474 }
4475
4476 COVERAGE_INC(ofproto_packet_in);
4477 send_packet_in(p, upcall, &flow, false);
4478 return;
4479 }
4480
4481 facet = facet_create(p, rule, &flow, upcall->packet);
4482 } else if (!facet->may_install) {
4483 /* The facet is not installable, that is, we need to process every
4484 * packet, so process the current packet's actions into 'facet'. */
4485 facet_make_actions(p, facet, upcall->packet);
4486 }
4487
4488 if (facet->rule->cr.priority == FAIL_OPEN_PRIORITY) {
4489 /*
4490 * Extra-special case for fail-open mode.
4491 *
4492 * We are in fail-open mode and the packet matched the fail-open rule,
4493 * but we are connected to a controller too. We should send the packet
4494 * up to the controller in the hope that it will try to set up a flow
4495 * and thereby allow us to exit fail-open.
4496 *
4497 * See the top-level comment in fail-open.c for more information.
4498 */
4499 send_packet_in(p, upcall, &flow, true);
4500 }
4501
4502 facet_execute(p, facet, upcall->packet);
4503 facet_install(p, facet, false);
4504 }
4505
4506 static void
4507 handle_upcall(struct ofproto *p, struct dpif_upcall *upcall)
4508 {
4509 struct flow flow;
4510
4511 switch (upcall->type) {
4512 case DPIF_UC_ACTION:
4513 COVERAGE_INC(ofproto_ctlr_action);
4514 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4515 send_packet_in(p, upcall, &flow, false);
4516 break;
4517
4518 case DPIF_UC_SAMPLE:
4519 if (p->sflow) {
4520 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4521 ofproto_sflow_received(p->sflow, upcall, &flow);
4522 }
4523 ofpbuf_delete(upcall->packet);
4524 break;
4525
4526 case DPIF_UC_MISS:
4527 handle_miss_upcall(p, upcall);
4528 break;
4529
4530 case DPIF_N_UC_TYPES:
4531 default:
4532 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
4533 break;
4534 }
4535 }
4536 \f
4537 /* Flow expiration. */
4538
4539 static int ofproto_dp_max_idle(const struct ofproto *);
4540 static void ofproto_update_stats(struct ofproto *);
4541 static void rule_expire(struct ofproto *, struct rule *);
4542 static void ofproto_expire_facets(struct ofproto *, int dp_max_idle);
4543
4544 /* This function is called periodically by ofproto_run(). Its job is to
4545 * collect updates for the flows that have been installed into the datapath,
4546 * most importantly when they last were used, and then use that information to
4547 * expire flows that have not been used recently.
4548 *
4549 * Returns the number of milliseconds after which it should be called again. */
4550 static int
4551 ofproto_expire(struct ofproto *ofproto)
4552 {
4553 struct rule *rule, *next_rule;
4554 struct cls_cursor cursor;
4555 int dp_max_idle;
4556
4557 /* Update stats for each flow in the datapath. */
4558 ofproto_update_stats(ofproto);
4559
4560 /* Expire facets that have been idle too long. */
4561 dp_max_idle = ofproto_dp_max_idle(ofproto);
4562 ofproto_expire_facets(ofproto, dp_max_idle);
4563
4564 /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */
4565 cls_cursor_init(&cursor, &ofproto->cls, NULL);
4566 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4567 rule_expire(ofproto, rule);
4568 }
4569
4570 /* Let the hook know that we're at a stable point: all outstanding data
4571 * in existing flows has been accounted to the account_cb. Thus, the
4572 * hook can now reasonably do operations that depend on having accurate
4573 * flow volume accounting (currently, that's just bond rebalancing). */
4574 if (ofproto->ofhooks->account_checkpoint_cb) {
4575 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4576 }
4577
4578 return MIN(dp_max_idle, 1000);
4579 }
4580
4581 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
4582 *
4583 * This function also pushes statistics updates to rules which each facet
4584 * resubmits into. Generally these statistics will be accurate. However, if a
4585 * facet changes the rule it resubmits into at some time in between
4586 * ofproto_update_stats() runs, it is possible that statistics accrued to the
4587 * old rule will be incorrectly attributed to the new rule. This could be
4588 * avoided by calling ofproto_update_stats() whenever rules are created or
4589 * deleted. However, the performance impact of making so many calls to the
4590 * datapath do not justify the benefit of having perfectly accurate statistics.
4591 */
4592 static void
4593 ofproto_update_stats(struct ofproto *p)
4594 {
4595 const struct dpif_flow_stats *stats;
4596 struct dpif_flow_dump dump;
4597 const struct nlattr *key;
4598 size_t key_len;
4599
4600 dpif_flow_dump_start(&dump, p->dpif);
4601 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
4602 struct facet *facet;
4603 struct flow flow;
4604
4605 if (odp_flow_key_to_flow(key, key_len, &flow)) {
4606 struct ds s;
4607
4608 ds_init(&s);
4609 odp_flow_key_format(key, key_len, &s);
4610 VLOG_WARN_RL(&rl, "failed to convert ODP flow key to flow: %s",
4611 ds_cstr(&s));
4612 ds_destroy(&s);
4613
4614 continue;
4615 }
4616 facet = facet_find(p, &flow);
4617
4618 if (facet && facet->installed) {
4619
4620 if (stats->n_packets >= facet->dp_packet_count) {
4621 facet->packet_count += stats->n_packets - facet->dp_packet_count;
4622 } else {
4623 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
4624 }
4625
4626 if (stats->n_bytes >= facet->dp_byte_count) {
4627 facet->byte_count += stats->n_bytes - facet->dp_byte_count;
4628 } else {
4629 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
4630 }
4631
4632 facet->dp_packet_count = stats->n_packets;
4633 facet->dp_byte_count = stats->n_bytes;
4634
4635 facet_update_time(p, facet, stats->used);
4636 facet_account(p, facet, stats->n_bytes);
4637 facet_push_stats(p, facet);
4638 } else {
4639 /* There's a flow in the datapath that we know nothing about.
4640 * Delete it. */
4641 COVERAGE_INC(ofproto_unexpected_rule);
4642 dpif_flow_del(p->dpif, key, key_len, NULL);
4643 }
4644 }
4645 dpif_flow_dump_done(&dump);
4646 }
4647
4648 /* Calculates and returns the number of milliseconds of idle time after which
4649 * facets should expire from the datapath and we should fold their statistics
4650 * into their parent rules in userspace. */
4651 static int
4652 ofproto_dp_max_idle(const struct ofproto *ofproto)
4653 {
4654 /*
4655 * Idle time histogram.
4656 *
4657 * Most of the time a switch has a relatively small number of facets. When
4658 * this is the case we might as well keep statistics for all of them in
4659 * userspace and to cache them in the kernel datapath for performance as
4660 * well.
4661 *
4662 * As the number of facets increases, the memory required to maintain
4663 * statistics about them in userspace and in the kernel becomes
4664 * significant. However, with a large number of facets it is likely that
4665 * only a few of them are "heavy hitters" that consume a large amount of
4666 * bandwidth. At this point, only heavy hitters are worth caching in the
4667 * kernel and maintaining in userspaces; other facets we can discard.
4668 *
4669 * The technique used to compute the idle time is to build a histogram with
4670 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet
4671 * that is installed in the kernel gets dropped in the appropriate bucket.
4672 * After the histogram has been built, we compute the cutoff so that only
4673 * the most-recently-used 1% of facets (but at least 1000 flows) are kept
4674 * cached. At least the most-recently-used bucket of facets is kept, so
4675 * actually an arbitrary number of facets can be kept in any given
4676 * expiration run (though the next run will delete most of those unless
4677 * they receive additional data).
4678 *
4679 * This requires a second pass through the facets, in addition to the pass
4680 * made by ofproto_update_stats(), because the former function never looks
4681 * at uninstallable facets.
4682 */
4683 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4684 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4685 int buckets[N_BUCKETS] = { 0 };
4686 struct facet *facet;
4687 int total, bucket;
4688 long long int now;
4689 int i;
4690
4691 total = hmap_count(&ofproto->facets);
4692 if (total <= 1000) {
4693 return N_BUCKETS * BUCKET_WIDTH;
4694 }
4695
4696 /* Build histogram. */
4697 now = time_msec();
4698 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
4699 long long int idle = now - facet->used;
4700 int bucket = (idle <= 0 ? 0
4701 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4702 : (unsigned int) idle / BUCKET_WIDTH);
4703 buckets[bucket]++;
4704 }
4705
4706 /* Find the first bucket whose flows should be expired. */
4707 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4708 if (buckets[bucket]) {
4709 int subtotal = 0;
4710 do {
4711 subtotal += buckets[bucket++];
4712 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4713 break;
4714 }
4715 }
4716
4717 if (VLOG_IS_DBG_ENABLED()) {
4718 struct ds s;
4719
4720 ds_init(&s);
4721 ds_put_cstr(&s, "keep");
4722 for (i = 0; i < N_BUCKETS; i++) {
4723 if (i == bucket) {
4724 ds_put_cstr(&s, ", drop");
4725 }
4726 if (buckets[i]) {
4727 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4728 }
4729 }
4730 VLOG_INFO("%s: %s (msec:count)",
4731 dpif_name(ofproto->dpif), ds_cstr(&s));
4732 ds_destroy(&s);
4733 }
4734
4735 return bucket * BUCKET_WIDTH;
4736 }
4737
4738 static void
4739 facet_active_timeout(struct ofproto *ofproto, struct facet *facet)
4740 {
4741 if (ofproto->netflow && !facet_is_controller_flow(facet) &&
4742 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
4743 struct ofexpired expired;
4744
4745 if (facet->installed) {
4746 struct dpif_flow_stats stats;
4747
4748 facet_put__(ofproto, facet, facet->actions, facet->actions_len,
4749 &stats);
4750 facet_update_stats(ofproto, facet, &stats);
4751 }
4752
4753 expired.flow = facet->flow;
4754 expired.packet_count = facet->packet_count;
4755 expired.byte_count = facet->byte_count;
4756 expired.used = facet->used;
4757 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4758 }
4759 }
4760
4761 static void
4762 ofproto_expire_facets(struct ofproto *ofproto, int dp_max_idle)
4763 {
4764 long long int cutoff = time_msec() - dp_max_idle;
4765 struct facet *facet, *next_facet;
4766
4767 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
4768 facet_active_timeout(ofproto, facet);
4769 if (facet->used < cutoff) {
4770 facet_remove(ofproto, facet);
4771 }
4772 }
4773 }
4774
4775 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4776 * then delete it entirely. */
4777 static void
4778 rule_expire(struct ofproto *ofproto, struct rule *rule)
4779 {
4780 struct facet *facet, *next_facet;
4781 long long int now;
4782 uint8_t reason;
4783
4784 /* Has 'rule' expired? */
4785 now = time_msec();
4786 if (rule->hard_timeout
4787 && now > rule->created + rule->hard_timeout * 1000) {
4788 reason = OFPRR_HARD_TIMEOUT;
4789 } else if (rule->idle_timeout && list_is_empty(&rule->facets)
4790 && now >rule->used + rule->idle_timeout * 1000) {
4791 reason = OFPRR_IDLE_TIMEOUT;
4792 } else {
4793 return;
4794 }
4795
4796 COVERAGE_INC(ofproto_expired);
4797
4798 /* Update stats. (This is a no-op if the rule expired due to an idle
4799 * timeout, because that only happens when the rule has no facets left.) */
4800 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4801 facet_remove(ofproto, facet);
4802 }
4803
4804 /* Get rid of the rule. */
4805 if (!rule_is_hidden(rule)) {
4806 rule_send_removed(ofproto, rule, reason);
4807 }
4808 rule_remove(ofproto, rule);
4809 }
4810 \f
4811 static struct ofpbuf *
4812 compose_ofp_flow_removed(struct ofconn *ofconn, const struct rule *rule,
4813 uint8_t reason)
4814 {
4815 struct ofp_flow_removed *ofr;
4816 struct ofpbuf *buf;
4817
4818 ofr = make_openflow_xid(sizeof *ofr, OFPT_FLOW_REMOVED, htonl(0), &buf);
4819 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofr->match,
4820 rule->flow_cookie, &ofr->cookie);
4821 ofr->priority = htons(rule->cr.priority);
4822 ofr->reason = reason;
4823 calc_flow_duration(rule->created, &ofr->duration_sec, &ofr->duration_nsec);
4824 ofr->idle_timeout = htons(rule->idle_timeout);
4825 ofr->packet_count = htonll(rule->packet_count);
4826 ofr->byte_count = htonll(rule->byte_count);
4827
4828 return buf;
4829 }
4830
4831 static struct ofpbuf *
4832 compose_nx_flow_removed(const struct rule *rule, uint8_t reason)
4833 {
4834 struct nx_flow_removed *nfr;
4835 struct ofpbuf *buf;
4836 int match_len;
4837
4838 make_nxmsg_xid(sizeof *nfr, NXT_FLOW_REMOVED, htonl(0), &buf);
4839 match_len = nx_put_match(buf, &rule->cr);
4840
4841 nfr = buf->data;
4842 nfr->cookie = rule->flow_cookie;
4843 nfr->priority = htons(rule->cr.priority);
4844 nfr->reason = reason;
4845 calc_flow_duration(rule->created, &nfr->duration_sec, &nfr->duration_nsec);
4846 nfr->idle_timeout = htons(rule->idle_timeout);
4847 nfr->match_len = htons(match_len);
4848 nfr->packet_count = htonll(rule->packet_count);
4849 nfr->byte_count = htonll(rule->byte_count);
4850
4851 return buf;
4852 }
4853
4854 static void
4855 rule_send_removed(struct ofproto *p, struct rule *rule, uint8_t reason)
4856 {
4857 struct ofconn *ofconn;
4858
4859 if (!rule->send_flow_removed) {
4860 return;
4861 }
4862
4863 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4864 struct ofpbuf *msg;
4865
4866 if (!rconn_is_connected(ofconn->rconn)
4867 || !ofconn_receives_async_msgs(ofconn)) {
4868 continue;
4869 }
4870
4871 msg = (ofconn->flow_format == NXFF_NXM
4872 ? compose_nx_flow_removed(rule, reason)
4873 : compose_ofp_flow_removed(ofconn, rule, reason));
4874
4875 /* Account flow expirations under ofconn->reply_counter, the counter
4876 * for replies to OpenFlow requests. That works because preventing
4877 * OpenFlow requests from being processed also prevents new flows from
4878 * being added (and expiring). (It also prevents processing OpenFlow
4879 * requests that would not add new flows, so it is imperfect.) */
4880 queue_tx(msg, ofconn, ofconn->reply_counter);
4881 }
4882 }
4883
4884 /* Obtains statistics for 'rule' and stores them in '*packets' and '*bytes'.
4885 * The returned statistics include statistics for all of 'rule''s facets. */
4886 static void
4887 rule_get_stats(const struct rule *rule, uint64_t *packets, uint64_t *bytes)
4888 {
4889 uint64_t p, b;
4890 struct facet *facet;
4891
4892 /* Start from historical data for 'rule' itself that are no longer tracked
4893 * in facets. This counts, for example, facets that have expired. */
4894 p = rule->packet_count;
4895 b = rule->byte_count;
4896
4897 /* Add any statistics that are tracked by facets. This includes
4898 * statistical data recently updated by ofproto_update_stats() as well as
4899 * stats for packets that were executed "by hand" via dpif_execute(). */
4900 LIST_FOR_EACH (facet, list_node, &rule->facets) {
4901 p += facet->packet_count;
4902 b += facet->byte_count;
4903 }
4904
4905 *packets = p;
4906 *bytes = b;
4907 }
4908
4909 /* pinsched callback for sending 'ofp_packet_in' on 'ofconn'. */
4910 static void
4911 do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn_)
4912 {
4913 struct ofconn *ofconn = ofconn_;
4914
4915 rconn_send_with_limit(ofconn->rconn, ofp_packet_in,
4916 ofconn->packet_in_counter, 100);
4917 }
4918
4919 /* Takes 'upcall', whose packet has the flow specified by 'flow', composes an
4920 * OpenFlow packet-in message from it, and passes it to 'ofconn''s packet
4921 * scheduler for sending.
4922 *
4923 * If 'clone' is true, the caller retains ownership of 'upcall->packet'.
4924 * Otherwise, ownership is transferred to this function. */
4925 static void
4926 schedule_packet_in(struct ofconn *ofconn, struct dpif_upcall *upcall,
4927 const struct flow *flow, bool clone)
4928 {
4929 enum { OPI_SIZE = offsetof(struct ofp_packet_in, data) };
4930 struct ofproto *ofproto = ofconn->ofproto;
4931 struct ofp_packet_in *opi;
4932 int total_len, send_len;
4933 struct ofpbuf *packet;
4934 uint32_t buffer_id;
4935 int idx;
4936
4937 /* Get OpenFlow buffer_id. */
4938 if (upcall->type == DPIF_UC_ACTION) {
4939 buffer_id = UINT32_MAX;
4940 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4941 buffer_id = pktbuf_get_null();
4942 } else if (!ofconn->pktbuf) {
4943 buffer_id = UINT32_MAX;
4944 } else {
4945 buffer_id = pktbuf_save(ofconn->pktbuf, upcall->packet, flow->in_port);
4946 }
4947
4948 /* Figure out how much of the packet to send. */
4949 total_len = send_len = upcall->packet->size;
4950 if (buffer_id != UINT32_MAX) {
4951 send_len = MIN(send_len, ofconn->miss_send_len);
4952 }
4953 if (upcall->type == DPIF_UC_ACTION) {
4954 send_len = MIN(send_len, upcall->userdata);
4955 }
4956
4957 /* Copy or steal buffer for OFPT_PACKET_IN. */
4958 if (clone) {
4959 packet = ofpbuf_clone_data_with_headroom(upcall->packet->data,
4960 send_len, OPI_SIZE);
4961 } else {
4962 packet = upcall->packet;
4963 packet->size = send_len;
4964 }
4965
4966 /* Add OFPT_PACKET_IN. */
4967 opi = ofpbuf_push_zeros(packet, OPI_SIZE);
4968 opi->header.version = OFP_VERSION;
4969 opi->header.type = OFPT_PACKET_IN;
4970 opi->total_len = htons(total_len);
4971 opi->in_port = htons(odp_port_to_ofp_port(flow->in_port));
4972 opi->reason = upcall->type == DPIF_UC_MISS ? OFPR_NO_MATCH : OFPR_ACTION;
4973 opi->buffer_id = htonl(buffer_id);
4974 update_openflow_length(packet);
4975
4976 /* Hand over to packet scheduler. It might immediately call into
4977 * do_send_packet_in() or it might buffer it for a while (until a later
4978 * call to pinsched_run()). */
4979 idx = upcall->type == DPIF_UC_MISS ? 0 : 1;
4980 pinsched_send(ofconn->schedulers[idx], flow->in_port,
4981 packet, do_send_packet_in, ofconn);
4982 }
4983
4984 /* Given 'upcall', of type DPIF_UC_ACTION or DPIF_UC_MISS, sends an
4985 * OFPT_PACKET_IN message to each OpenFlow controller as necessary according to
4986 * their individual configurations.
4987 *
4988 * Takes ownership of 'packet'. */
4989 static void
4990 send_packet_in(struct ofproto *ofproto, struct dpif_upcall *upcall,
4991 const struct flow *flow, bool clone)
4992 {
4993 struct ofconn *ofconn, *prev;
4994
4995 prev = NULL;
4996 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
4997 if (ofconn_receives_async_msgs(ofconn)) {
4998 if (prev) {
4999 schedule_packet_in(prev, upcall, flow, true);
5000 }
5001 prev = ofconn;
5002 }
5003 }
5004 if (prev) {
5005 schedule_packet_in(prev, upcall, flow, clone);
5006 } else if (!clone) {
5007 ofpbuf_delete(upcall->packet);
5008 }
5009 }
5010
5011 static uint64_t
5012 pick_datapath_id(const struct ofproto *ofproto)
5013 {
5014 const struct ofport *port;
5015
5016 port = get_port(ofproto, ODPP_LOCAL);
5017 if (port) {
5018 uint8_t ea[ETH_ADDR_LEN];
5019 int error;
5020
5021 error = netdev_get_etheraddr(port->netdev, ea);
5022 if (!error) {
5023 return eth_addr_to_uint64(ea);
5024 }
5025 VLOG_WARN("could not get MAC address for %s (%s)",
5026 netdev_get_name(port->netdev), strerror(error));
5027 }
5028 return ofproto->fallback_dpid;
5029 }
5030
5031 static uint64_t
5032 pick_fallback_dpid(void)
5033 {
5034 uint8_t ea[ETH_ADDR_LEN];
5035 eth_addr_nicira_random(ea);
5036 return eth_addr_to_uint64(ea);
5037 }
5038 \f
5039 static void
5040 ofproto_unixctl_list(struct unixctl_conn *conn, const char *arg OVS_UNUSED,
5041 void *aux OVS_UNUSED)
5042 {
5043 const struct shash_node *node;
5044 struct ds results;
5045
5046 ds_init(&results);
5047 SHASH_FOR_EACH (node, &all_ofprotos) {
5048 ds_put_format(&results, "%s\n", node->name);
5049 }
5050 unixctl_command_reply(conn, 200, ds_cstr(&results));
5051 ds_destroy(&results);
5052 }
5053
5054 struct ofproto_trace {
5055 struct action_xlate_ctx ctx;
5056 struct flow flow;
5057 struct ds *result;
5058 };
5059
5060 static void
5061 trace_format_rule(struct ds *result, int level, const struct rule *rule)
5062 {
5063 ds_put_char_multiple(result, '\t', level);
5064 if (!rule) {
5065 ds_put_cstr(result, "No match\n");
5066 return;
5067 }
5068
5069 ds_put_format(result, "Rule: cookie=%#"PRIx64" ",
5070 ntohll(rule->flow_cookie));
5071 cls_rule_format(&rule->cr, result);
5072 ds_put_char(result, '\n');
5073
5074 ds_put_char_multiple(result, '\t', level);
5075 ds_put_cstr(result, "OpenFlow ");
5076 ofp_print_actions(result, (const struct ofp_action_header *) rule->actions,
5077 rule->n_actions * sizeof *rule->actions);
5078 ds_put_char(result, '\n');
5079 }
5080
5081 static void
5082 trace_format_flow(struct ds *result, int level, const char *title,
5083 struct ofproto_trace *trace)
5084 {
5085 ds_put_char_multiple(result, '\t', level);
5086 ds_put_format(result, "%s: ", title);
5087 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
5088 ds_put_cstr(result, "unchanged");
5089 } else {
5090 flow_format(result, &trace->ctx.flow);
5091 trace->flow = trace->ctx.flow;
5092 }
5093 ds_put_char(result, '\n');
5094 }
5095
5096 static void
5097 trace_resubmit(struct action_xlate_ctx *ctx, struct rule *rule)
5098 {
5099 struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx);
5100 struct ds *result = trace->result;
5101
5102 ds_put_char(result, '\n');
5103 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
5104 trace_format_rule(result, ctx->recurse + 1, rule);
5105 }
5106
5107 static void
5108 ofproto_unixctl_trace(struct unixctl_conn *conn, const char *args_,
5109 void *aux OVS_UNUSED)
5110 {
5111 char *dpname, *in_port_s, *tun_id_s, *packet_s;
5112 char *args = xstrdup(args_);
5113 char *save_ptr = NULL;
5114 struct ofproto *ofproto;
5115 struct ofpbuf packet;
5116 struct rule *rule;
5117 struct ds result;
5118 struct flow flow;
5119 uint16_t in_port;
5120 ovs_be64 tun_id;
5121 char *s;
5122
5123 ofpbuf_init(&packet, strlen(args) / 2);
5124 ds_init(&result);
5125
5126 dpname = strtok_r(args, " ", &save_ptr);
5127 tun_id_s = strtok_r(NULL, " ", &save_ptr);
5128 in_port_s = strtok_r(NULL, " ", &save_ptr);
5129 packet_s = strtok_r(NULL, "", &save_ptr); /* Get entire rest of line. */
5130 if (!dpname || !in_port_s || !packet_s) {
5131 unixctl_command_reply(conn, 501, "Bad command syntax");
5132 goto exit;
5133 }
5134
5135 ofproto = shash_find_data(&all_ofprotos, dpname);
5136 if (!ofproto) {
5137 unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list "
5138 "for help)");
5139 goto exit;
5140 }
5141
5142 tun_id = htonll(strtoull(tun_id_s, NULL, 10));
5143 in_port = ofp_port_to_odp_port(atoi(in_port_s));
5144
5145 packet_s = ofpbuf_put_hex(&packet, packet_s, NULL);
5146 packet_s += strspn(packet_s, " ");
5147 if (*packet_s != '\0') {
5148 unixctl_command_reply(conn, 501, "Trailing garbage in command");
5149 goto exit;
5150 }
5151 if (packet.size < ETH_HEADER_LEN) {
5152 unixctl_command_reply(conn, 501, "Packet data too short for Ethernet");
5153 goto exit;
5154 }
5155
5156 ds_put_cstr(&result, "Packet: ");
5157 s = ofp_packet_to_string(packet.data, packet.size, packet.size);
5158 ds_put_cstr(&result, s);
5159 free(s);
5160
5161 flow_extract(&packet, tun_id, in_port, &flow);
5162 ds_put_cstr(&result, "Flow: ");
5163 flow_format(&result, &flow);
5164 ds_put_char(&result, '\n');
5165
5166 rule = rule_lookup(ofproto, &flow);
5167 trace_format_rule(&result, 0, rule);
5168 if (rule) {
5169 struct ofproto_trace trace;
5170 struct ofpbuf *odp_actions;
5171
5172 trace.result = &result;
5173 trace.flow = flow;
5174 action_xlate_ctx_init(&trace.ctx, ofproto, &flow, &packet);
5175 trace.ctx.resubmit_hook = trace_resubmit;
5176 odp_actions = xlate_actions(&trace.ctx,
5177 rule->actions, rule->n_actions);
5178
5179 ds_put_char(&result, '\n');
5180 trace_format_flow(&result, 0, "Final flow", &trace);
5181 ds_put_cstr(&result, "Datapath actions: ");
5182 format_odp_actions(&result, odp_actions->data, odp_actions->size);
5183 ofpbuf_delete(odp_actions);
5184 }
5185
5186 unixctl_command_reply(conn, 200, ds_cstr(&result));
5187
5188 exit:
5189 ds_destroy(&result);
5190 ofpbuf_uninit(&packet);
5191 free(args);
5192 }
5193
5194 static void
5195 ofproto_unixctl_init(void)
5196 {
5197 static bool registered;
5198 if (registered) {
5199 return;
5200 }
5201 registered = true;
5202
5203 unixctl_command_register("ofproto/list", ofproto_unixctl_list, NULL);
5204 unixctl_command_register("ofproto/trace", ofproto_unixctl_trace, NULL);
5205 }
5206 \f
5207 static bool
5208 default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
5209 struct ofpbuf *odp_actions, tag_type *tags,
5210 uint16_t *nf_output_iface, void *ofproto_)
5211 {
5212 struct ofproto *ofproto = ofproto_;
5213 int out_port;
5214
5215 /* Drop frames for reserved multicast addresses. */
5216 if (eth_addr_is_reserved(flow->dl_dst)) {
5217 return true;
5218 }
5219
5220 /* Learn source MAC (but don't try to learn from revalidation). */
5221 if (packet != NULL) {
5222 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
5223 0, flow->in_port,
5224 GRAT_ARP_LOCK_NONE);
5225 if (rev_tag) {
5226 /* The log messages here could actually be useful in debugging,
5227 * so keep the rate limit relatively high. */
5228 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
5229 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
5230 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
5231 ofproto_revalidate(ofproto, rev_tag);
5232 }
5233 }
5234
5235 /* Determine output port. */
5236 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
5237 NULL);
5238 if (out_port < 0) {
5239 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
5240 nf_output_iface, odp_actions);
5241 } else if (out_port != flow->in_port) {
5242 nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT, out_port);
5243 *nf_output_iface = out_port;
5244 } else {
5245 /* Drop. */
5246 }
5247
5248 return true;
5249 }
5250
5251 static const struct ofhooks default_ofhooks = {
5252 default_normal_ofhook_cb,
5253 NULL,
5254 NULL,
5255 NULL
5256 };