]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto.c
util: New macro CONST_CAST.
[mirror_ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012 Nicira, Inc.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <stdbool.h>
23 #include <stdlib.h>
24 #include "bitmap.h"
25 #include "byte-order.h"
26 #include "classifier.h"
27 #include "connmgr.h"
28 #include "coverage.h"
29 #include "dynamic-string.h"
30 #include "hash.h"
31 #include "hmap.h"
32 #include "meta-flow.h"
33 #include "netdev.h"
34 #include "nx-match.h"
35 #include "ofp-actions.h"
36 #include "ofp-errors.h"
37 #include "ofp-msgs.h"
38 #include "ofp-print.h"
39 #include "ofp-util.h"
40 #include "ofpbuf.h"
41 #include "ofproto-provider.h"
42 #include "openflow/nicira-ext.h"
43 #include "openflow/openflow.h"
44 #include "packets.h"
45 #include "pinsched.h"
46 #include "pktbuf.h"
47 #include "poll-loop.h"
48 #include "random.h"
49 #include "shash.h"
50 #include "simap.h"
51 #include "sset.h"
52 #include "timeval.h"
53 #include "unaligned.h"
54 #include "unixctl.h"
55 #include "vlog.h"
56
57 VLOG_DEFINE_THIS_MODULE(ofproto);
58
59 COVERAGE_DEFINE(ofproto_error);
60 COVERAGE_DEFINE(ofproto_flush);
61 COVERAGE_DEFINE(ofproto_no_packet_in);
62 COVERAGE_DEFINE(ofproto_packet_out);
63 COVERAGE_DEFINE(ofproto_queue_req);
64 COVERAGE_DEFINE(ofproto_recv_openflow);
65 COVERAGE_DEFINE(ofproto_reinit_ports);
66 COVERAGE_DEFINE(ofproto_uninstallable);
67 COVERAGE_DEFINE(ofproto_update_port);
68
69 enum ofproto_state {
70 S_OPENFLOW, /* Processing OpenFlow commands. */
71 S_EVICT, /* Evicting flows from over-limit tables. */
72 S_FLUSH, /* Deleting all flow table rules. */
73 };
74
75 enum ofoperation_type {
76 OFOPERATION_ADD,
77 OFOPERATION_DELETE,
78 OFOPERATION_MODIFY
79 };
80
81 /* A single OpenFlow request can execute any number of operations. The
82 * ofopgroup maintain OpenFlow state common to all of the operations, e.g. the
83 * ofconn to which an error reply should be sent if necessary.
84 *
85 * ofproto initiates some operations internally. These operations are still
86 * assigned to groups but will not have an associated ofconn. */
87 struct ofopgroup {
88 struct ofproto *ofproto; /* Owning ofproto. */
89 struct list ofproto_node; /* In ofproto's "pending" list. */
90 struct list ops; /* List of "struct ofoperation"s. */
91 int n_running; /* Number of ops still pending. */
92
93 /* Data needed to send OpenFlow reply on failure or to send a buffered
94 * packet on success.
95 *
96 * If list_is_empty(ofconn_node) then this ofopgroup never had an
97 * associated ofconn or its ofconn's connection dropped after it initiated
98 * the operation. In the latter case 'ofconn' is a wild pointer that
99 * refers to freed memory, so the 'ofconn' member must be used only if
100 * !list_is_empty(ofconn_node).
101 */
102 struct list ofconn_node; /* In ofconn's list of pending opgroups. */
103 struct ofconn *ofconn; /* ofconn for reply (but see note above). */
104 struct ofp_header *request; /* Original request (truncated at 64 bytes). */
105 uint32_t buffer_id; /* Buffer id from original request. */
106 };
107
108 static struct ofopgroup *ofopgroup_create_unattached(struct ofproto *);
109 static struct ofopgroup *ofopgroup_create(struct ofproto *, struct ofconn *,
110 const struct ofp_header *,
111 uint32_t buffer_id);
112 static void ofopgroup_submit(struct ofopgroup *);
113 static void ofopgroup_complete(struct ofopgroup *);
114
115 /* A single flow table operation. */
116 struct ofoperation {
117 struct ofopgroup *group; /* Owning group. */
118 struct list group_node; /* In ofopgroup's "ops" list. */
119 struct hmap_node hmap_node; /* In ofproto's "deletions" hmap. */
120 struct rule *rule; /* Rule being operated upon. */
121 enum ofoperation_type type; /* Type of operation. */
122
123 /* OFOPERATION_ADD. */
124 struct rule *victim; /* Rule being replaced, if any.. */
125
126 /* OFOPERATION_MODIFY: The old actions, if the actions are changing. */
127 struct ofpact *ofpacts;
128 size_t ofpacts_len;
129
130 /* OFOPERATION_DELETE. */
131 enum ofp_flow_removed_reason reason; /* Reason flow was removed. */
132
133 ovs_be64 flow_cookie; /* Rule's old flow cookie. */
134 enum ofperr error; /* 0 if no error. */
135 };
136
137 static struct ofoperation *ofoperation_create(struct ofopgroup *,
138 struct rule *,
139 enum ofoperation_type,
140 enum ofp_flow_removed_reason);
141 static void ofoperation_destroy(struct ofoperation *);
142
143 /* oftable. */
144 static void oftable_init(struct oftable *);
145 static void oftable_destroy(struct oftable *);
146
147 static void oftable_set_name(struct oftable *, const char *name);
148
149 static void oftable_disable_eviction(struct oftable *);
150 static void oftable_enable_eviction(struct oftable *,
151 const struct mf_subfield *fields,
152 size_t n_fields);
153
154 static void oftable_remove_rule(struct rule *);
155 static struct rule *oftable_replace_rule(struct rule *);
156 static void oftable_substitute_rule(struct rule *old, struct rule *new);
157
158 /* A set of rules within a single OpenFlow table (oftable) that have the same
159 * values for the oftable's eviction_fields. A rule to be evicted, when one is
160 * needed, is taken from the eviction group that contains the greatest number
161 * of rules.
162 *
163 * An oftable owns any number of eviction groups, each of which contains any
164 * number of rules.
165 *
166 * Membership in an eviction group is imprecise, based on the hash of the
167 * oftable's eviction_fields (in the eviction_group's id_node.hash member).
168 * That is, if two rules have different eviction_fields, but those
169 * eviction_fields hash to the same value, then they will belong to the same
170 * eviction_group anyway.
171 *
172 * (When eviction is not enabled on an oftable, we don't track any eviction
173 * groups, to save time and space.) */
174 struct eviction_group {
175 struct hmap_node id_node; /* In oftable's "eviction_groups_by_id". */
176 struct heap_node size_node; /* In oftable's "eviction_groups_by_size". */
177 struct heap rules; /* Contains "struct rule"s. */
178 };
179
180 static struct rule *choose_rule_to_evict(struct oftable *);
181 static void ofproto_evict(struct ofproto *);
182 static uint32_t rule_eviction_priority(struct rule *);
183
184 /* ofport. */
185 static void ofport_destroy__(struct ofport *);
186 static void ofport_destroy(struct ofport *);
187
188 static void update_port(struct ofproto *, const char *devname);
189 static int init_ports(struct ofproto *);
190 static void reinit_ports(struct ofproto *);
191
192 /* rule. */
193 static void ofproto_rule_destroy__(struct rule *);
194 static void ofproto_rule_send_removed(struct rule *, uint8_t reason);
195 static bool rule_is_modifiable(const struct rule *);
196
197 /* OpenFlow. */
198 static enum ofperr add_flow(struct ofproto *, struct ofconn *,
199 const struct ofputil_flow_mod *,
200 const struct ofp_header *);
201 static void delete_flow__(struct rule *, struct ofopgroup *);
202 static bool handle_openflow(struct ofconn *, struct ofpbuf *);
203 static enum ofperr handle_flow_mod__(struct ofproto *, struct ofconn *,
204 const struct ofputil_flow_mod *,
205 const struct ofp_header *);
206
207 /* ofproto. */
208 static uint64_t pick_datapath_id(const struct ofproto *);
209 static uint64_t pick_fallback_dpid(void);
210 static void ofproto_destroy__(struct ofproto *);
211 static void update_mtu(struct ofproto *, struct ofport *);
212
213 /* unixctl. */
214 static void ofproto_unixctl_init(void);
215
216 /* All registered ofproto classes, in probe order. */
217 static const struct ofproto_class **ofproto_classes;
218 static size_t n_ofproto_classes;
219 static size_t allocated_ofproto_classes;
220
221 /* Map from datapath name to struct ofproto, for use by unixctl commands. */
222 static struct hmap all_ofprotos = HMAP_INITIALIZER(&all_ofprotos);
223
224 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
225
226 static void
227 ofproto_initialize(void)
228 {
229 static bool inited;
230
231 if (!inited) {
232 inited = true;
233 ofproto_class_register(&ofproto_dpif_class);
234 }
235 }
236
237 /* 'type' should be a normalized datapath type, as returned by
238 * ofproto_normalize_type(). Returns the corresponding ofproto_class
239 * structure, or a null pointer if there is none registered for 'type'. */
240 static const struct ofproto_class *
241 ofproto_class_find__(const char *type)
242 {
243 size_t i;
244
245 ofproto_initialize();
246 for (i = 0; i < n_ofproto_classes; i++) {
247 const struct ofproto_class *class = ofproto_classes[i];
248 struct sset types;
249 bool found;
250
251 sset_init(&types);
252 class->enumerate_types(&types);
253 found = sset_contains(&types, type);
254 sset_destroy(&types);
255
256 if (found) {
257 return class;
258 }
259 }
260 VLOG_WARN("unknown datapath type %s", type);
261 return NULL;
262 }
263
264 /* Registers a new ofproto class. After successful registration, new ofprotos
265 * of that type can be created using ofproto_create(). */
266 int
267 ofproto_class_register(const struct ofproto_class *new_class)
268 {
269 size_t i;
270
271 for (i = 0; i < n_ofproto_classes; i++) {
272 if (ofproto_classes[i] == new_class) {
273 return EEXIST;
274 }
275 }
276
277 if (n_ofproto_classes >= allocated_ofproto_classes) {
278 ofproto_classes = x2nrealloc(ofproto_classes,
279 &allocated_ofproto_classes,
280 sizeof *ofproto_classes);
281 }
282 ofproto_classes[n_ofproto_classes++] = new_class;
283 return 0;
284 }
285
286 /* Unregisters a datapath provider. 'type' must have been previously
287 * registered and not currently be in use by any ofprotos. After
288 * unregistration new datapaths of that type cannot be opened using
289 * ofproto_create(). */
290 int
291 ofproto_class_unregister(const struct ofproto_class *class)
292 {
293 size_t i;
294
295 for (i = 0; i < n_ofproto_classes; i++) {
296 if (ofproto_classes[i] == class) {
297 for (i++; i < n_ofproto_classes; i++) {
298 ofproto_classes[i - 1] = ofproto_classes[i];
299 }
300 n_ofproto_classes--;
301 return 0;
302 }
303 }
304 VLOG_WARN("attempted to unregister an ofproto class that is not "
305 "registered");
306 return EAFNOSUPPORT;
307 }
308
309 /* Clears 'types' and enumerates all registered ofproto types into it. The
310 * caller must first initialize the sset. */
311 void
312 ofproto_enumerate_types(struct sset *types)
313 {
314 size_t i;
315
316 ofproto_initialize();
317 for (i = 0; i < n_ofproto_classes; i++) {
318 ofproto_classes[i]->enumerate_types(types);
319 }
320 }
321
322 /* Returns the fully spelled out name for the given ofproto 'type'.
323 *
324 * Normalized type string can be compared with strcmp(). Unnormalized type
325 * string might be the same even if they have different spellings. */
326 const char *
327 ofproto_normalize_type(const char *type)
328 {
329 return type && type[0] ? type : "system";
330 }
331
332 /* Clears 'names' and enumerates the names of all known created ofprotos with
333 * the given 'type'. The caller must first initialize the sset. Returns 0 if
334 * successful, otherwise a positive errno value.
335 *
336 * Some kinds of datapaths might not be practically enumerable. This is not
337 * considered an error. */
338 int
339 ofproto_enumerate_names(const char *type, struct sset *names)
340 {
341 const struct ofproto_class *class = ofproto_class_find__(type);
342 return class ? class->enumerate_names(type, names) : EAFNOSUPPORT;
343 }
344
345 int
346 ofproto_create(const char *datapath_name, const char *datapath_type,
347 struct ofproto **ofprotop)
348 {
349 const struct ofproto_class *class;
350 struct ofproto *ofproto;
351 int error;
352
353 *ofprotop = NULL;
354
355 ofproto_initialize();
356 ofproto_unixctl_init();
357
358 datapath_type = ofproto_normalize_type(datapath_type);
359 class = ofproto_class_find__(datapath_type);
360 if (!class) {
361 VLOG_WARN("could not create datapath %s of unknown type %s",
362 datapath_name, datapath_type);
363 return EAFNOSUPPORT;
364 }
365
366 ofproto = class->alloc();
367 if (!ofproto) {
368 VLOG_ERR("failed to allocate datapath %s of type %s",
369 datapath_name, datapath_type);
370 return ENOMEM;
371 }
372
373 /* Initialize. */
374 memset(ofproto, 0, sizeof *ofproto);
375 ofproto->ofproto_class = class;
376 ofproto->name = xstrdup(datapath_name);
377 ofproto->type = xstrdup(datapath_type);
378 hmap_insert(&all_ofprotos, &ofproto->hmap_node,
379 hash_string(ofproto->name, 0));
380 ofproto->datapath_id = 0;
381 ofproto_set_flow_eviction_threshold(ofproto,
382 OFPROTO_FLOW_EVICTON_THRESHOLD_DEFAULT);
383 ofproto->forward_bpdu = false;
384 ofproto->fallback_dpid = pick_fallback_dpid();
385 ofproto->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
386 ofproto->hw_desc = xstrdup(DEFAULT_HW_DESC);
387 ofproto->sw_desc = xstrdup(DEFAULT_SW_DESC);
388 ofproto->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
389 ofproto->dp_desc = xstrdup(DEFAULT_DP_DESC);
390 ofproto->frag_handling = OFPC_FRAG_NORMAL;
391 hmap_init(&ofproto->ports);
392 shash_init(&ofproto->port_by_name);
393 ofproto->tables = NULL;
394 ofproto->n_tables = 0;
395 ofproto->connmgr = connmgr_create(ofproto, datapath_name, datapath_name);
396 ofproto->state = S_OPENFLOW;
397 list_init(&ofproto->pending);
398 ofproto->n_pending = 0;
399 hmap_init(&ofproto->deletions);
400 ofproto->n_add = ofproto->n_delete = ofproto->n_modify = 0;
401 ofproto->first_op = ofproto->last_op = LLONG_MIN;
402 ofproto->next_op_report = LLONG_MAX;
403 ofproto->op_backoff = LLONG_MIN;
404 ofproto->vlan_bitmap = NULL;
405 ofproto->vlans_changed = false;
406 ofproto->min_mtu = INT_MAX;
407
408 error = ofproto->ofproto_class->construct(ofproto);
409 if (error) {
410 VLOG_ERR("failed to open datapath %s: %s",
411 datapath_name, strerror(error));
412 ofproto_destroy__(ofproto);
413 return error;
414 }
415
416 assert(ofproto->n_tables);
417
418 ofproto->datapath_id = pick_datapath_id(ofproto);
419 init_ports(ofproto);
420
421 *ofprotop = ofproto;
422 return 0;
423 }
424
425 void
426 ofproto_init_tables(struct ofproto *ofproto, int n_tables)
427 {
428 struct oftable *table;
429
430 assert(!ofproto->n_tables);
431 assert(n_tables >= 1 && n_tables <= 255);
432
433 ofproto->n_tables = n_tables;
434 ofproto->tables = xmalloc(n_tables * sizeof *ofproto->tables);
435 OFPROTO_FOR_EACH_TABLE (table, ofproto) {
436 oftable_init(table);
437 }
438 }
439
440 uint64_t
441 ofproto_get_datapath_id(const struct ofproto *ofproto)
442 {
443 return ofproto->datapath_id;
444 }
445
446 void
447 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
448 {
449 uint64_t old_dpid = p->datapath_id;
450 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
451 if (p->datapath_id != old_dpid) {
452 /* Force all active connections to reconnect, since there is no way to
453 * notify a controller that the datapath ID has changed. */
454 ofproto_reconnect_controllers(p);
455 }
456 }
457
458 void
459 ofproto_set_controllers(struct ofproto *p,
460 const struct ofproto_controller *controllers,
461 size_t n_controllers)
462 {
463 connmgr_set_controllers(p->connmgr, controllers, n_controllers);
464 }
465
466 void
467 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
468 {
469 connmgr_set_fail_mode(p->connmgr, fail_mode);
470 }
471
472 /* Drops the connections between 'ofproto' and all of its controllers, forcing
473 * them to reconnect. */
474 void
475 ofproto_reconnect_controllers(struct ofproto *ofproto)
476 {
477 connmgr_reconnect(ofproto->connmgr);
478 }
479
480 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
481 * in-band control should guarantee access, in the same way that in-band
482 * control guarantees access to OpenFlow controllers. */
483 void
484 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
485 const struct sockaddr_in *extras, size_t n)
486 {
487 connmgr_set_extra_in_band_remotes(ofproto->connmgr, extras, n);
488 }
489
490 /* Sets the OpenFlow queue used by flows set up by in-band control on
491 * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control
492 * flows will use the default queue. */
493 void
494 ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id)
495 {
496 connmgr_set_in_band_queue(ofproto->connmgr, queue_id);
497 }
498
499 /* Sets the number of flows at which eviction from the kernel flow table
500 * will occur. */
501 void
502 ofproto_set_flow_eviction_threshold(struct ofproto *ofproto, unsigned threshold)
503 {
504 if (threshold < OFPROTO_FLOW_EVICTION_THRESHOLD_MIN) {
505 ofproto->flow_eviction_threshold = OFPROTO_FLOW_EVICTION_THRESHOLD_MIN;
506 } else {
507 ofproto->flow_eviction_threshold = threshold;
508 }
509 }
510
511 /* If forward_bpdu is true, the NORMAL action will forward frames with
512 * reserved (e.g. STP) destination Ethernet addresses. if forward_bpdu is false,
513 * the NORMAL action will drop these frames. */
514 void
515 ofproto_set_forward_bpdu(struct ofproto *ofproto, bool forward_bpdu)
516 {
517 bool old_val = ofproto->forward_bpdu;
518 ofproto->forward_bpdu = forward_bpdu;
519 if (old_val != ofproto->forward_bpdu) {
520 if (ofproto->ofproto_class->forward_bpdu_changed) {
521 ofproto->ofproto_class->forward_bpdu_changed(ofproto);
522 }
523 }
524 }
525
526 /* Sets the MAC aging timeout for the OFPP_NORMAL action on 'ofproto' to
527 * 'idle_time', in seconds. */
528 void
529 ofproto_set_mac_idle_time(struct ofproto *ofproto, unsigned idle_time)
530 {
531 if (ofproto->ofproto_class->set_mac_idle_time) {
532 ofproto->ofproto_class->set_mac_idle_time(ofproto, idle_time);
533 }
534 }
535
536 void
537 ofproto_set_desc(struct ofproto *p,
538 const char *mfr_desc, const char *hw_desc,
539 const char *sw_desc, const char *serial_desc,
540 const char *dp_desc)
541 {
542 struct ofp_desc_stats *ods;
543
544 if (mfr_desc) {
545 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
546 VLOG_WARN("%s: truncating mfr_desc, must be less than %zu bytes",
547 p->name, sizeof ods->mfr_desc);
548 }
549 free(p->mfr_desc);
550 p->mfr_desc = xstrdup(mfr_desc);
551 }
552 if (hw_desc) {
553 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
554 VLOG_WARN("%s: truncating hw_desc, must be less than %zu bytes",
555 p->name, sizeof ods->hw_desc);
556 }
557 free(p->hw_desc);
558 p->hw_desc = xstrdup(hw_desc);
559 }
560 if (sw_desc) {
561 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
562 VLOG_WARN("%s: truncating sw_desc, must be less than %zu bytes",
563 p->name, sizeof ods->sw_desc);
564 }
565 free(p->sw_desc);
566 p->sw_desc = xstrdup(sw_desc);
567 }
568 if (serial_desc) {
569 if (strlen(serial_desc) >= sizeof ods->serial_num) {
570 VLOG_WARN("%s: truncating serial_desc, must be less than %zu "
571 "bytes", p->name, sizeof ods->serial_num);
572 }
573 free(p->serial_desc);
574 p->serial_desc = xstrdup(serial_desc);
575 }
576 if (dp_desc) {
577 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
578 VLOG_WARN("%s: truncating dp_desc, must be less than %zu bytes",
579 p->name, sizeof ods->dp_desc);
580 }
581 free(p->dp_desc);
582 p->dp_desc = xstrdup(dp_desc);
583 }
584 }
585
586 int
587 ofproto_set_snoops(struct ofproto *ofproto, const struct sset *snoops)
588 {
589 return connmgr_set_snoops(ofproto->connmgr, snoops);
590 }
591
592 int
593 ofproto_set_netflow(struct ofproto *ofproto,
594 const struct netflow_options *nf_options)
595 {
596 if (nf_options && sset_is_empty(&nf_options->collectors)) {
597 nf_options = NULL;
598 }
599
600 if (ofproto->ofproto_class->set_netflow) {
601 return ofproto->ofproto_class->set_netflow(ofproto, nf_options);
602 } else {
603 return nf_options ? EOPNOTSUPP : 0;
604 }
605 }
606
607 int
608 ofproto_set_sflow(struct ofproto *ofproto,
609 const struct ofproto_sflow_options *oso)
610 {
611 if (oso && sset_is_empty(&oso->targets)) {
612 oso = NULL;
613 }
614
615 if (ofproto->ofproto_class->set_sflow) {
616 return ofproto->ofproto_class->set_sflow(ofproto, oso);
617 } else {
618 return oso ? EOPNOTSUPP : 0;
619 }
620 }
621 \f
622 /* Spanning Tree Protocol (STP) configuration. */
623
624 /* Configures STP on 'ofproto' using the settings defined in 's'. If
625 * 's' is NULL, disables STP.
626 *
627 * Returns 0 if successful, otherwise a positive errno value. */
628 int
629 ofproto_set_stp(struct ofproto *ofproto,
630 const struct ofproto_stp_settings *s)
631 {
632 return (ofproto->ofproto_class->set_stp
633 ? ofproto->ofproto_class->set_stp(ofproto, s)
634 : EOPNOTSUPP);
635 }
636
637 /* Retrieves STP status of 'ofproto' and stores it in 's'. If the
638 * 'enabled' member of 's' is false, then the other members are not
639 * meaningful.
640 *
641 * Returns 0 if successful, otherwise a positive errno value. */
642 int
643 ofproto_get_stp_status(struct ofproto *ofproto,
644 struct ofproto_stp_status *s)
645 {
646 return (ofproto->ofproto_class->get_stp_status
647 ? ofproto->ofproto_class->get_stp_status(ofproto, s)
648 : EOPNOTSUPP);
649 }
650
651 /* Configures STP on 'ofp_port' of 'ofproto' using the settings defined
652 * in 's'. The caller is responsible for assigning STP port numbers
653 * (using the 'port_num' member in the range of 1 through 255, inclusive)
654 * and ensuring there are no duplicates. If the 's' is NULL, then STP
655 * is disabled on the port.
656 *
657 * Returns 0 if successful, otherwise a positive errno value.*/
658 int
659 ofproto_port_set_stp(struct ofproto *ofproto, uint16_t ofp_port,
660 const struct ofproto_port_stp_settings *s)
661 {
662 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
663 if (!ofport) {
664 VLOG_WARN("%s: cannot configure STP on nonexistent port %"PRIu16,
665 ofproto->name, ofp_port);
666 return ENODEV;
667 }
668
669 return (ofproto->ofproto_class->set_stp_port
670 ? ofproto->ofproto_class->set_stp_port(ofport, s)
671 : EOPNOTSUPP);
672 }
673
674 /* Retrieves STP port status of 'ofp_port' on 'ofproto' and stores it in
675 * 's'. If the 'enabled' member in 's' is false, then the other members
676 * are not meaningful.
677 *
678 * Returns 0 if successful, otherwise a positive errno value.*/
679 int
680 ofproto_port_get_stp_status(struct ofproto *ofproto, uint16_t ofp_port,
681 struct ofproto_port_stp_status *s)
682 {
683 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
684 if (!ofport) {
685 VLOG_WARN_RL(&rl, "%s: cannot get STP status on nonexistent "
686 "port %"PRIu16, ofproto->name, ofp_port);
687 return ENODEV;
688 }
689
690 return (ofproto->ofproto_class->get_stp_port_status
691 ? ofproto->ofproto_class->get_stp_port_status(ofport, s)
692 : EOPNOTSUPP);
693 }
694 \f
695 /* Queue DSCP configuration. */
696
697 /* Registers meta-data associated with the 'n_qdscp' Qualities of Service
698 * 'queues' attached to 'ofport'. This data is not intended to be sufficient
699 * to implement QoS. Instead, it is used to implement features which require
700 * knowledge of what queues exist on a port, and some basic information about
701 * them.
702 *
703 * Returns 0 if successful, otherwise a positive errno value. */
704 int
705 ofproto_port_set_queues(struct ofproto *ofproto, uint16_t ofp_port,
706 const struct ofproto_port_queue *queues,
707 size_t n_queues)
708 {
709 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
710
711 if (!ofport) {
712 VLOG_WARN("%s: cannot set queues on nonexistent port %"PRIu16,
713 ofproto->name, ofp_port);
714 return ENODEV;
715 }
716
717 return (ofproto->ofproto_class->set_queues
718 ? ofproto->ofproto_class->set_queues(ofport, queues, n_queues)
719 : EOPNOTSUPP);
720 }
721 \f
722 /* Connectivity Fault Management configuration. */
723
724 /* Clears the CFM configuration from 'ofp_port' on 'ofproto'. */
725 void
726 ofproto_port_clear_cfm(struct ofproto *ofproto, uint16_t ofp_port)
727 {
728 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
729 if (ofport && ofproto->ofproto_class->set_cfm) {
730 ofproto->ofproto_class->set_cfm(ofport, NULL);
731 }
732 }
733
734 /* Configures connectivity fault management on 'ofp_port' in 'ofproto'. Takes
735 * basic configuration from the configuration members in 'cfm', and the remote
736 * maintenance point ID from remote_mpid. Ignores the statistics members of
737 * 'cfm'.
738 *
739 * This function has no effect if 'ofproto' does not have a port 'ofp_port'. */
740 void
741 ofproto_port_set_cfm(struct ofproto *ofproto, uint16_t ofp_port,
742 const struct cfm_settings *s)
743 {
744 struct ofport *ofport;
745 int error;
746
747 ofport = ofproto_get_port(ofproto, ofp_port);
748 if (!ofport) {
749 VLOG_WARN("%s: cannot configure CFM on nonexistent port %"PRIu16,
750 ofproto->name, ofp_port);
751 return;
752 }
753
754 /* XXX: For configuration simplicity, we only support one remote_mpid
755 * outside of the CFM module. It's not clear if this is the correct long
756 * term solution or not. */
757 error = (ofproto->ofproto_class->set_cfm
758 ? ofproto->ofproto_class->set_cfm(ofport, s)
759 : EOPNOTSUPP);
760 if (error) {
761 VLOG_WARN("%s: CFM configuration on port %"PRIu16" (%s) failed (%s)",
762 ofproto->name, ofp_port, netdev_get_name(ofport->netdev),
763 strerror(error));
764 }
765 }
766
767 /* Checks the status of LACP negotiation for 'ofp_port' within ofproto.
768 * Returns 1 if LACP partner information for 'ofp_port' is up-to-date,
769 * 0 if LACP partner information is not current (generally indicating a
770 * connectivity problem), or -1 if LACP is not enabled on 'ofp_port'. */
771 int
772 ofproto_port_is_lacp_current(struct ofproto *ofproto, uint16_t ofp_port)
773 {
774 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
775 return (ofport && ofproto->ofproto_class->port_is_lacp_current
776 ? ofproto->ofproto_class->port_is_lacp_current(ofport)
777 : -1);
778 }
779 \f
780 /* Bundles. */
781
782 /* Registers a "bundle" associated with client data pointer 'aux' in 'ofproto'.
783 * A bundle is the same concept as a Port in OVSDB, that is, it consists of one
784 * or more "slave" devices (Interfaces, in OVSDB) along with a VLAN
785 * configuration plus, if there is more than one slave, a bonding
786 * configuration.
787 *
788 * If 'aux' is already registered then this function updates its configuration
789 * to 's'. Otherwise, this function registers a new bundle.
790 *
791 * Bundles only affect the NXAST_AUTOPATH action and output to the OFPP_NORMAL
792 * port. */
793 int
794 ofproto_bundle_register(struct ofproto *ofproto, void *aux,
795 const struct ofproto_bundle_settings *s)
796 {
797 return (ofproto->ofproto_class->bundle_set
798 ? ofproto->ofproto_class->bundle_set(ofproto, aux, s)
799 : EOPNOTSUPP);
800 }
801
802 /* Unregisters the bundle registered on 'ofproto' with auxiliary data 'aux'.
803 * If no such bundle has been registered, this has no effect. */
804 int
805 ofproto_bundle_unregister(struct ofproto *ofproto, void *aux)
806 {
807 return ofproto_bundle_register(ofproto, aux, NULL);
808 }
809
810 \f
811 /* Registers a mirror associated with client data pointer 'aux' in 'ofproto'.
812 * If 'aux' is already registered then this function updates its configuration
813 * to 's'. Otherwise, this function registers a new mirror. */
814 int
815 ofproto_mirror_register(struct ofproto *ofproto, void *aux,
816 const struct ofproto_mirror_settings *s)
817 {
818 return (ofproto->ofproto_class->mirror_set
819 ? ofproto->ofproto_class->mirror_set(ofproto, aux, s)
820 : EOPNOTSUPP);
821 }
822
823 /* Unregisters the mirror registered on 'ofproto' with auxiliary data 'aux'.
824 * If no mirror has been registered, this has no effect. */
825 int
826 ofproto_mirror_unregister(struct ofproto *ofproto, void *aux)
827 {
828 return ofproto_mirror_register(ofproto, aux, NULL);
829 }
830
831 /* Retrieves statistics from mirror associated with client data pointer
832 * 'aux' in 'ofproto'. Stores packet and byte counts in 'packets' and
833 * 'bytes', respectively. If a particular counters is not supported,
834 * the appropriate argument is set to UINT64_MAX. */
835 int
836 ofproto_mirror_get_stats(struct ofproto *ofproto, void *aux,
837 uint64_t *packets, uint64_t *bytes)
838 {
839 if (!ofproto->ofproto_class->mirror_get_stats) {
840 *packets = *bytes = UINT64_MAX;
841 return EOPNOTSUPP;
842 }
843
844 return ofproto->ofproto_class->mirror_get_stats(ofproto, aux,
845 packets, bytes);
846 }
847
848 /* Configures the VLANs whose bits are set to 1 in 'flood_vlans' as VLANs on
849 * which all packets are flooded, instead of using MAC learning. If
850 * 'flood_vlans' is NULL, then MAC learning applies to all VLANs.
851 *
852 * Flood VLANs affect only the treatment of packets output to the OFPP_NORMAL
853 * port. */
854 int
855 ofproto_set_flood_vlans(struct ofproto *ofproto, unsigned long *flood_vlans)
856 {
857 return (ofproto->ofproto_class->set_flood_vlans
858 ? ofproto->ofproto_class->set_flood_vlans(ofproto, flood_vlans)
859 : EOPNOTSUPP);
860 }
861
862 /* Returns true if 'aux' is a registered bundle that is currently in use as the
863 * output for a mirror. */
864 bool
865 ofproto_is_mirror_output_bundle(const struct ofproto *ofproto, void *aux)
866 {
867 return (ofproto->ofproto_class->is_mirror_output_bundle
868 ? ofproto->ofproto_class->is_mirror_output_bundle(ofproto, aux)
869 : false);
870 }
871 \f
872 /* Configuration of OpenFlow tables. */
873
874 /* Returns the number of OpenFlow tables in 'ofproto'. */
875 int
876 ofproto_get_n_tables(const struct ofproto *ofproto)
877 {
878 return ofproto->n_tables;
879 }
880
881 /* Configures the OpenFlow table in 'ofproto' with id 'table_id' with the
882 * settings from 's'. 'table_id' must be in the range 0 through the number of
883 * OpenFlow tables in 'ofproto' minus 1, inclusive.
884 *
885 * For read-only tables, only the name may be configured. */
886 void
887 ofproto_configure_table(struct ofproto *ofproto, int table_id,
888 const struct ofproto_table_settings *s)
889 {
890 struct oftable *table;
891
892 assert(table_id >= 0 && table_id < ofproto->n_tables);
893 table = &ofproto->tables[table_id];
894
895 oftable_set_name(table, s->name);
896
897 if (table->flags & OFTABLE_READONLY) {
898 return;
899 }
900
901 if (s->groups) {
902 oftable_enable_eviction(table, s->groups, s->n_groups);
903 } else {
904 oftable_disable_eviction(table);
905 }
906
907 table->max_flows = s->max_flows;
908 if (classifier_count(&table->cls) > table->max_flows
909 && table->eviction_fields) {
910 /* 'table' contains more flows than allowed. We might not be able to
911 * evict them right away because of the asynchronous nature of flow
912 * table changes. Schedule eviction for later. */
913 switch (ofproto->state) {
914 case S_OPENFLOW:
915 ofproto->state = S_EVICT;
916 break;
917 case S_EVICT:
918 case S_FLUSH:
919 /* We're already deleting flows, nothing more to do. */
920 break;
921 }
922 }
923 }
924 \f
925 bool
926 ofproto_has_snoops(const struct ofproto *ofproto)
927 {
928 return connmgr_has_snoops(ofproto->connmgr);
929 }
930
931 void
932 ofproto_get_snoops(const struct ofproto *ofproto, struct sset *snoops)
933 {
934 connmgr_get_snoops(ofproto->connmgr, snoops);
935 }
936
937 static void
938 ofproto_flush__(struct ofproto *ofproto)
939 {
940 struct ofopgroup *group;
941 struct oftable *table;
942
943 if (ofproto->ofproto_class->flush) {
944 ofproto->ofproto_class->flush(ofproto);
945 }
946
947 group = ofopgroup_create_unattached(ofproto);
948 OFPROTO_FOR_EACH_TABLE (table, ofproto) {
949 struct rule *rule, *next_rule;
950 struct cls_cursor cursor;
951
952 if (table->flags & OFTABLE_HIDDEN) {
953 continue;
954 }
955
956 cls_cursor_init(&cursor, &table->cls, NULL);
957 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
958 if (!rule->pending) {
959 ofoperation_create(group, rule, OFOPERATION_DELETE,
960 OFPRR_DELETE);
961 oftable_remove_rule(rule);
962 ofproto->ofproto_class->rule_destruct(rule);
963 }
964 }
965 }
966 ofopgroup_submit(group);
967 }
968
969 static void
970 ofproto_destroy__(struct ofproto *ofproto)
971 {
972 struct oftable *table;
973
974 assert(list_is_empty(&ofproto->pending));
975 assert(!ofproto->n_pending);
976
977 connmgr_destroy(ofproto->connmgr);
978
979 hmap_remove(&all_ofprotos, &ofproto->hmap_node);
980 free(ofproto->name);
981 free(ofproto->type);
982 free(ofproto->mfr_desc);
983 free(ofproto->hw_desc);
984 free(ofproto->sw_desc);
985 free(ofproto->serial_desc);
986 free(ofproto->dp_desc);
987 hmap_destroy(&ofproto->ports);
988 shash_destroy(&ofproto->port_by_name);
989
990 OFPROTO_FOR_EACH_TABLE (table, ofproto) {
991 oftable_destroy(table);
992 }
993 free(ofproto->tables);
994
995 hmap_destroy(&ofproto->deletions);
996
997 free(ofproto->vlan_bitmap);
998
999 ofproto->ofproto_class->dealloc(ofproto);
1000 }
1001
1002 void
1003 ofproto_destroy(struct ofproto *p)
1004 {
1005 struct ofport *ofport, *next_ofport;
1006
1007 if (!p) {
1008 return;
1009 }
1010
1011 ofproto_flush__(p);
1012 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
1013 ofport_destroy(ofport);
1014 }
1015
1016 p->ofproto_class->destruct(p);
1017 ofproto_destroy__(p);
1018 }
1019
1020 /* Destroys the datapath with the respective 'name' and 'type'. With the Linux
1021 * kernel datapath, for example, this destroys the datapath in the kernel, and
1022 * with the netdev-based datapath, it tears down the data structures that
1023 * represent the datapath.
1024 *
1025 * The datapath should not be currently open as an ofproto. */
1026 int
1027 ofproto_delete(const char *name, const char *type)
1028 {
1029 const struct ofproto_class *class = ofproto_class_find__(type);
1030 return (!class ? EAFNOSUPPORT
1031 : !class->del ? EACCES
1032 : class->del(type, name));
1033 }
1034
1035 static void
1036 process_port_change(struct ofproto *ofproto, int error, char *devname)
1037 {
1038 if (error == ENOBUFS) {
1039 reinit_ports(ofproto);
1040 } else if (!error) {
1041 update_port(ofproto, devname);
1042 free(devname);
1043 }
1044 }
1045
1046 int
1047 ofproto_run(struct ofproto *p)
1048 {
1049 struct sset changed_netdevs;
1050 const char *changed_netdev;
1051 struct ofport *ofport;
1052 int error;
1053
1054 error = p->ofproto_class->run(p);
1055 if (error && error != EAGAIN) {
1056 VLOG_ERR_RL(&rl, "%s: run failed (%s)", p->name, strerror(error));
1057 }
1058
1059 if (p->ofproto_class->port_poll) {
1060 char *devname;
1061
1062 while ((error = p->ofproto_class->port_poll(p, &devname)) != EAGAIN) {
1063 process_port_change(p, error, devname);
1064 }
1065 }
1066
1067 /* Update OpenFlow port status for any port whose netdev has changed.
1068 *
1069 * Refreshing a given 'ofport' can cause an arbitrary ofport to be
1070 * destroyed, so it's not safe to update ports directly from the
1071 * HMAP_FOR_EACH loop, or even to use HMAP_FOR_EACH_SAFE. Instead, we
1072 * need this two-phase approach. */
1073 sset_init(&changed_netdevs);
1074 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1075 unsigned int change_seq = netdev_change_seq(ofport->netdev);
1076 if (ofport->change_seq != change_seq) {
1077 ofport->change_seq = change_seq;
1078 sset_add(&changed_netdevs, netdev_get_name(ofport->netdev));
1079 }
1080 }
1081 SSET_FOR_EACH (changed_netdev, &changed_netdevs) {
1082 update_port(p, changed_netdev);
1083 }
1084 sset_destroy(&changed_netdevs);
1085
1086 switch (p->state) {
1087 case S_OPENFLOW:
1088 connmgr_run(p->connmgr, handle_openflow);
1089 break;
1090
1091 case S_EVICT:
1092 connmgr_run(p->connmgr, NULL);
1093 ofproto_evict(p);
1094 if (list_is_empty(&p->pending) && hmap_is_empty(&p->deletions)) {
1095 p->state = S_OPENFLOW;
1096 }
1097 break;
1098
1099 case S_FLUSH:
1100 connmgr_run(p->connmgr, NULL);
1101 ofproto_flush__(p);
1102 if (list_is_empty(&p->pending) && hmap_is_empty(&p->deletions)) {
1103 connmgr_flushed(p->connmgr);
1104 p->state = S_OPENFLOW;
1105 }
1106 break;
1107
1108 default:
1109 NOT_REACHED();
1110 }
1111
1112 if (time_msec() >= p->next_op_report) {
1113 long long int ago = (time_msec() - p->first_op) / 1000;
1114 long long int interval = (p->last_op - p->first_op) / 1000;
1115 struct ds s;
1116
1117 ds_init(&s);
1118 ds_put_format(&s, "%d flow_mods ",
1119 p->n_add + p->n_delete + p->n_modify);
1120 if (interval == ago) {
1121 ds_put_format(&s, "in the last %lld s", ago);
1122 } else if (interval) {
1123 ds_put_format(&s, "in the %lld s starting %lld s ago",
1124 interval, ago);
1125 } else {
1126 ds_put_format(&s, "%lld s ago", ago);
1127 }
1128
1129 ds_put_cstr(&s, " (");
1130 if (p->n_add) {
1131 ds_put_format(&s, "%d adds, ", p->n_add);
1132 }
1133 if (p->n_delete) {
1134 ds_put_format(&s, "%d deletes, ", p->n_delete);
1135 }
1136 if (p->n_modify) {
1137 ds_put_format(&s, "%d modifications, ", p->n_modify);
1138 }
1139 s.length -= 2;
1140 ds_put_char(&s, ')');
1141
1142 VLOG_INFO("%s: %s", p->name, ds_cstr(&s));
1143 ds_destroy(&s);
1144
1145 p->n_add = p->n_delete = p->n_modify = 0;
1146 p->next_op_report = LLONG_MAX;
1147 }
1148
1149 return error;
1150 }
1151
1152 /* Performs periodic activity required by 'ofproto' that needs to be done
1153 * with the least possible latency.
1154 *
1155 * It makes sense to call this function a couple of times per poll loop, to
1156 * provide a significant performance boost on some benchmarks with the
1157 * ofproto-dpif implementation. */
1158 int
1159 ofproto_run_fast(struct ofproto *p)
1160 {
1161 int error;
1162
1163 error = p->ofproto_class->run_fast ? p->ofproto_class->run_fast(p) : 0;
1164 if (error && error != EAGAIN) {
1165 VLOG_ERR_RL(&rl, "%s: fastpath run failed (%s)",
1166 p->name, strerror(error));
1167 }
1168 return error;
1169 }
1170
1171 void
1172 ofproto_wait(struct ofproto *p)
1173 {
1174 struct ofport *ofport;
1175
1176 p->ofproto_class->wait(p);
1177 if (p->ofproto_class->port_poll_wait) {
1178 p->ofproto_class->port_poll_wait(p);
1179 }
1180
1181 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1182 if (ofport->change_seq != netdev_change_seq(ofport->netdev)) {
1183 poll_immediate_wake();
1184 }
1185 }
1186
1187 switch (p->state) {
1188 case S_OPENFLOW:
1189 connmgr_wait(p->connmgr, true);
1190 break;
1191
1192 case S_EVICT:
1193 case S_FLUSH:
1194 connmgr_wait(p->connmgr, false);
1195 if (list_is_empty(&p->pending) && hmap_is_empty(&p->deletions)) {
1196 poll_immediate_wake();
1197 }
1198 break;
1199 }
1200 }
1201
1202 bool
1203 ofproto_is_alive(const struct ofproto *p)
1204 {
1205 return connmgr_has_controllers(p->connmgr);
1206 }
1207
1208 /* Adds some memory usage statistics for 'ofproto' into 'usage', for use with
1209 * memory_report(). */
1210 void
1211 ofproto_get_memory_usage(const struct ofproto *ofproto, struct simap *usage)
1212 {
1213 const struct oftable *table;
1214 unsigned int n_rules;
1215
1216 simap_increase(usage, "ports", hmap_count(&ofproto->ports));
1217 simap_increase(usage, "ops",
1218 ofproto->n_pending + hmap_count(&ofproto->deletions));
1219
1220 n_rules = 0;
1221 OFPROTO_FOR_EACH_TABLE (table, ofproto) {
1222 n_rules += classifier_count(&table->cls);
1223 }
1224 simap_increase(usage, "rules", n_rules);
1225
1226 if (ofproto->ofproto_class->get_memory_usage) {
1227 ofproto->ofproto_class->get_memory_usage(ofproto, usage);
1228 }
1229
1230 connmgr_get_memory_usage(ofproto->connmgr, usage);
1231 }
1232
1233 void
1234 ofproto_get_ofproto_controller_info(const struct ofproto *ofproto,
1235 struct shash *info)
1236 {
1237 connmgr_get_controller_info(ofproto->connmgr, info);
1238 }
1239
1240 void
1241 ofproto_free_ofproto_controller_info(struct shash *info)
1242 {
1243 connmgr_free_controller_info(info);
1244 }
1245
1246 /* Makes a deep copy of 'old' into 'port'. */
1247 void
1248 ofproto_port_clone(struct ofproto_port *port, const struct ofproto_port *old)
1249 {
1250 port->name = xstrdup(old->name);
1251 port->type = xstrdup(old->type);
1252 port->ofp_port = old->ofp_port;
1253 }
1254
1255 /* Frees memory allocated to members of 'ofproto_port'.
1256 *
1257 * Do not call this function on an ofproto_port obtained from
1258 * ofproto_port_dump_next(): that function retains ownership of the data in the
1259 * ofproto_port. */
1260 void
1261 ofproto_port_destroy(struct ofproto_port *ofproto_port)
1262 {
1263 free(ofproto_port->name);
1264 free(ofproto_port->type);
1265 }
1266
1267 /* Initializes 'dump' to begin dumping the ports in an ofproto.
1268 *
1269 * This function provides no status indication. An error status for the entire
1270 * dump operation is provided when it is completed by calling
1271 * ofproto_port_dump_done().
1272 */
1273 void
1274 ofproto_port_dump_start(struct ofproto_port_dump *dump,
1275 const struct ofproto *ofproto)
1276 {
1277 dump->ofproto = ofproto;
1278 dump->error = ofproto->ofproto_class->port_dump_start(ofproto,
1279 &dump->state);
1280 }
1281
1282 /* Attempts to retrieve another port from 'dump', which must have been created
1283 * with ofproto_port_dump_start(). On success, stores a new ofproto_port into
1284 * 'port' and returns true. On failure, returns false.
1285 *
1286 * Failure might indicate an actual error or merely that the last port has been
1287 * dumped. An error status for the entire dump operation is provided when it
1288 * is completed by calling ofproto_port_dump_done().
1289 *
1290 * The ofproto owns the data stored in 'port'. It will remain valid until at
1291 * least the next time 'dump' is passed to ofproto_port_dump_next() or
1292 * ofproto_port_dump_done(). */
1293 bool
1294 ofproto_port_dump_next(struct ofproto_port_dump *dump,
1295 struct ofproto_port *port)
1296 {
1297 const struct ofproto *ofproto = dump->ofproto;
1298
1299 if (dump->error) {
1300 return false;
1301 }
1302
1303 dump->error = ofproto->ofproto_class->port_dump_next(ofproto, dump->state,
1304 port);
1305 if (dump->error) {
1306 ofproto->ofproto_class->port_dump_done(ofproto, dump->state);
1307 return false;
1308 }
1309 return true;
1310 }
1311
1312 /* Completes port table dump operation 'dump', which must have been created
1313 * with ofproto_port_dump_start(). Returns 0 if the dump operation was
1314 * error-free, otherwise a positive errno value describing the problem. */
1315 int
1316 ofproto_port_dump_done(struct ofproto_port_dump *dump)
1317 {
1318 const struct ofproto *ofproto = dump->ofproto;
1319 if (!dump->error) {
1320 dump->error = ofproto->ofproto_class->port_dump_done(ofproto,
1321 dump->state);
1322 }
1323 return dump->error == EOF ? 0 : dump->error;
1324 }
1325
1326 /* Attempts to add 'netdev' as a port on 'ofproto'. If successful, returns 0
1327 * and sets '*ofp_portp' to the new port's OpenFlow port number (if 'ofp_portp'
1328 * is non-null). On failure, returns a positive errno value and sets
1329 * '*ofp_portp' to OFPP_NONE (if 'ofp_portp' is non-null). */
1330 int
1331 ofproto_port_add(struct ofproto *ofproto, struct netdev *netdev,
1332 uint16_t *ofp_portp)
1333 {
1334 uint16_t ofp_port;
1335 int error;
1336
1337 error = ofproto->ofproto_class->port_add(ofproto, netdev, &ofp_port);
1338 if (!error) {
1339 update_port(ofproto, netdev_get_name(netdev));
1340 }
1341 if (ofp_portp) {
1342 *ofp_portp = error ? OFPP_NONE : ofp_port;
1343 }
1344 return error;
1345 }
1346
1347 /* Looks up a port named 'devname' in 'ofproto'. On success, returns 0 and
1348 * initializes '*port' appropriately; on failure, returns a positive errno
1349 * value.
1350 *
1351 * The caller owns the data in 'ofproto_port' and must free it with
1352 * ofproto_port_destroy() when it is no longer needed. */
1353 int
1354 ofproto_port_query_by_name(const struct ofproto *ofproto, const char *devname,
1355 struct ofproto_port *port)
1356 {
1357 int error;
1358
1359 error = ofproto->ofproto_class->port_query_by_name(ofproto, devname, port);
1360 if (error) {
1361 memset(port, 0, sizeof *port);
1362 }
1363 return error;
1364 }
1365
1366 /* Deletes port number 'ofp_port' from the datapath for 'ofproto'.
1367 * Returns 0 if successful, otherwise a positive errno. */
1368 int
1369 ofproto_port_del(struct ofproto *ofproto, uint16_t ofp_port)
1370 {
1371 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
1372 const char *name = ofport ? netdev_get_name(ofport->netdev) : "<unknown>";
1373 int error;
1374
1375 error = ofproto->ofproto_class->port_del(ofproto, ofp_port);
1376 if (!error && ofport) {
1377 /* 'name' is the netdev's name and update_port() is going to close the
1378 * netdev. Just in case update_port() refers to 'name' after it
1379 * destroys 'ofport', make a copy of it around the update_port()
1380 * call. */
1381 char *devname = xstrdup(name);
1382 update_port(ofproto, devname);
1383 free(devname);
1384 }
1385 return error;
1386 }
1387
1388 /* Adds a flow to OpenFlow flow table 0 in 'p' that matches 'cls_rule' and
1389 * performs the 'n_actions' actions in 'actions'. The new flow will not
1390 * timeout.
1391 *
1392 * If cls_rule->priority is in the range of priorities supported by OpenFlow
1393 * (0...65535, inclusive) then the flow will be visible to OpenFlow
1394 * controllers; otherwise, it will be hidden.
1395 *
1396 * The caller retains ownership of 'cls_rule' and 'ofpacts'.
1397 *
1398 * This is a helper function for in-band control and fail-open. */
1399 void
1400 ofproto_add_flow(struct ofproto *ofproto, const struct cls_rule *cls_rule,
1401 const struct ofpact *ofpacts, size_t ofpacts_len)
1402 {
1403 const struct rule *rule;
1404
1405 rule = rule_from_cls_rule(classifier_find_rule_exactly(
1406 &ofproto->tables[0].cls, cls_rule));
1407 if (!rule || !ofpacts_equal(rule->ofpacts, rule->ofpacts_len,
1408 ofpacts, ofpacts_len)) {
1409 struct ofputil_flow_mod fm;
1410
1411 memset(&fm, 0, sizeof fm);
1412 fm.cr = *cls_rule;
1413 fm.buffer_id = UINT32_MAX;
1414 fm.ofpacts = xmemdup(ofpacts, ofpacts_len);
1415 fm.ofpacts_len = ofpacts_len;
1416 add_flow(ofproto, NULL, &fm, NULL);
1417 free(fm.ofpacts);
1418 }
1419 }
1420
1421 /* Executes the flow modification specified in 'fm'. Returns 0 on success, an
1422 * OFPERR_* OpenFlow error code on failure, or OFPROTO_POSTPONE if the
1423 * operation cannot be initiated now but may be retried later.
1424 *
1425 * This is a helper function for in-band control and fail-open. */
1426 int
1427 ofproto_flow_mod(struct ofproto *ofproto, const struct ofputil_flow_mod *fm)
1428 {
1429 return handle_flow_mod__(ofproto, NULL, fm, NULL);
1430 }
1431
1432 /* Searches for a rule with matching criteria exactly equal to 'target' in
1433 * ofproto's table 0 and, if it finds one, deletes it.
1434 *
1435 * This is a helper function for in-band control and fail-open. */
1436 bool
1437 ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target)
1438 {
1439 struct rule *rule;
1440
1441 rule = rule_from_cls_rule(classifier_find_rule_exactly(
1442 &ofproto->tables[0].cls, target));
1443 if (!rule) {
1444 /* No such rule -> success. */
1445 return true;
1446 } else if (rule->pending) {
1447 /* An operation on the rule is already pending -> failure.
1448 * Caller must retry later if it's important. */
1449 return false;
1450 } else {
1451 /* Initiate deletion -> success. */
1452 struct ofopgroup *group = ofopgroup_create_unattached(ofproto);
1453 ofoperation_create(group, rule, OFOPERATION_DELETE, OFPRR_DELETE);
1454 oftable_remove_rule(rule);
1455 ofproto->ofproto_class->rule_destruct(rule);
1456 ofopgroup_submit(group);
1457 return true;
1458 }
1459
1460 }
1461
1462 /* Starts the process of deleting all of the flows from all of ofproto's flow
1463 * tables and then reintroducing the flows required by in-band control and
1464 * fail-open. The process will complete in a later call to ofproto_run(). */
1465 void
1466 ofproto_flush_flows(struct ofproto *ofproto)
1467 {
1468 COVERAGE_INC(ofproto_flush);
1469 ofproto->state = S_FLUSH;
1470 }
1471 \f
1472 static void
1473 reinit_ports(struct ofproto *p)
1474 {
1475 struct ofproto_port_dump dump;
1476 struct sset devnames;
1477 struct ofport *ofport;
1478 struct ofproto_port ofproto_port;
1479 const char *devname;
1480
1481 COVERAGE_INC(ofproto_reinit_ports);
1482
1483 sset_init(&devnames);
1484 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1485 sset_add(&devnames, netdev_get_name(ofport->netdev));
1486 }
1487 OFPROTO_PORT_FOR_EACH (&ofproto_port, &dump, p) {
1488 sset_add(&devnames, ofproto_port.name);
1489 }
1490
1491 SSET_FOR_EACH (devname, &devnames) {
1492 update_port(p, devname);
1493 }
1494 sset_destroy(&devnames);
1495 }
1496
1497 /* Opens and returns a netdev for 'ofproto_port' in 'ofproto', or a null
1498 * pointer if the netdev cannot be opened. On success, also fills in
1499 * 'opp'. */
1500 static struct netdev *
1501 ofport_open(const struct ofproto *ofproto,
1502 const struct ofproto_port *ofproto_port,
1503 struct ofputil_phy_port *pp)
1504 {
1505 enum netdev_flags flags;
1506 struct netdev *netdev;
1507 int error;
1508
1509 error = netdev_open(ofproto_port->name, ofproto_port->type, &netdev);
1510 if (error) {
1511 VLOG_WARN_RL(&rl, "%s: ignoring port %s (%"PRIu16") because netdev %s "
1512 "cannot be opened (%s)",
1513 ofproto->name,
1514 ofproto_port->name, ofproto_port->ofp_port,
1515 ofproto_port->name, strerror(error));
1516 return NULL;
1517 }
1518
1519 pp->port_no = ofproto_port->ofp_port;
1520 netdev_get_etheraddr(netdev, pp->hw_addr);
1521 ovs_strlcpy(pp->name, ofproto_port->name, sizeof pp->name);
1522 netdev_get_flags(netdev, &flags);
1523 pp->config = flags & NETDEV_UP ? 0 : OFPUTIL_PC_PORT_DOWN;
1524 pp->state = netdev_get_carrier(netdev) ? 0 : OFPUTIL_PS_LINK_DOWN;
1525 netdev_get_features(netdev, &pp->curr, &pp->advertised,
1526 &pp->supported, &pp->peer);
1527 pp->curr_speed = netdev_features_to_bps(pp->curr);
1528 pp->max_speed = netdev_features_to_bps(pp->supported);
1529
1530 return netdev;
1531 }
1532
1533 /* Returns true if most fields of 'a' and 'b' are equal. Differences in name,
1534 * port number, and 'config' bits other than OFPUTIL_PS_LINK_DOWN are
1535 * disregarded. */
1536 static bool
1537 ofport_equal(const struct ofputil_phy_port *a,
1538 const struct ofputil_phy_port *b)
1539 {
1540 return (eth_addr_equals(a->hw_addr, b->hw_addr)
1541 && a->state == b->state
1542 && !((a->config ^ b->config) & OFPUTIL_PC_PORT_DOWN)
1543 && a->curr == b->curr
1544 && a->advertised == b->advertised
1545 && a->supported == b->supported
1546 && a->peer == b->peer
1547 && a->curr_speed == b->curr_speed
1548 && a->max_speed == b->max_speed);
1549 }
1550
1551 /* Adds an ofport to 'p' initialized based on the given 'netdev' and 'opp'.
1552 * The caller must ensure that 'p' does not have a conflicting ofport (that is,
1553 * one with the same name or port number). */
1554 static void
1555 ofport_install(struct ofproto *p,
1556 struct netdev *netdev, const struct ofputil_phy_port *pp)
1557 {
1558 const char *netdev_name = netdev_get_name(netdev);
1559 struct ofport *ofport;
1560 int error;
1561
1562 /* Create ofport. */
1563 ofport = p->ofproto_class->port_alloc();
1564 if (!ofport) {
1565 error = ENOMEM;
1566 goto error;
1567 }
1568 ofport->ofproto = p;
1569 ofport->netdev = netdev;
1570 ofport->change_seq = netdev_change_seq(netdev);
1571 ofport->pp = *pp;
1572 ofport->ofp_port = pp->port_no;
1573
1574 /* Add port to 'p'. */
1575 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->ofp_port, 0));
1576 shash_add(&p->port_by_name, netdev_name, ofport);
1577
1578 update_mtu(p, ofport);
1579
1580 /* Let the ofproto_class initialize its private data. */
1581 error = p->ofproto_class->port_construct(ofport);
1582 if (error) {
1583 goto error;
1584 }
1585 connmgr_send_port_status(p->connmgr, pp, OFPPR_ADD);
1586 return;
1587
1588 error:
1589 VLOG_WARN_RL(&rl, "%s: could not add port %s (%s)",
1590 p->name, netdev_name, strerror(error));
1591 if (ofport) {
1592 ofport_destroy__(ofport);
1593 } else {
1594 netdev_close(netdev);
1595 }
1596 }
1597
1598 /* Removes 'ofport' from 'p' and destroys it. */
1599 static void
1600 ofport_remove(struct ofport *ofport)
1601 {
1602 connmgr_send_port_status(ofport->ofproto->connmgr, &ofport->pp,
1603 OFPPR_DELETE);
1604 ofport_destroy(ofport);
1605 }
1606
1607 /* If 'ofproto' contains an ofport named 'name', removes it from 'ofproto' and
1608 * destroys it. */
1609 static void
1610 ofport_remove_with_name(struct ofproto *ofproto, const char *name)
1611 {
1612 struct ofport *port = shash_find_data(&ofproto->port_by_name, name);
1613 if (port) {
1614 ofport_remove(port);
1615 }
1616 }
1617
1618 /* Updates 'port' with new 'pp' description.
1619 *
1620 * Does not handle a name or port number change. The caller must implement
1621 * such a change as a delete followed by an add. */
1622 static void
1623 ofport_modified(struct ofport *port, struct ofputil_phy_port *pp)
1624 {
1625 memcpy(port->pp.hw_addr, pp->hw_addr, ETH_ADDR_LEN);
1626 port->pp.config = ((port->pp.config & ~OFPUTIL_PC_PORT_DOWN)
1627 | (pp->config & OFPUTIL_PC_PORT_DOWN));
1628 port->pp.state = pp->state;
1629 port->pp.curr = pp->curr;
1630 port->pp.advertised = pp->advertised;
1631 port->pp.supported = pp->supported;
1632 port->pp.peer = pp->peer;
1633 port->pp.curr_speed = pp->curr_speed;
1634 port->pp.max_speed = pp->max_speed;
1635
1636 connmgr_send_port_status(port->ofproto->connmgr, &port->pp, OFPPR_MODIFY);
1637 }
1638
1639 /* Update OpenFlow 'state' in 'port' and notify controller. */
1640 void
1641 ofproto_port_set_state(struct ofport *port, enum ofputil_port_state state)
1642 {
1643 if (port->pp.state != state) {
1644 port->pp.state = state;
1645 connmgr_send_port_status(port->ofproto->connmgr, &port->pp,
1646 OFPPR_MODIFY);
1647 }
1648 }
1649
1650 void
1651 ofproto_port_unregister(struct ofproto *ofproto, uint16_t ofp_port)
1652 {
1653 struct ofport *port = ofproto_get_port(ofproto, ofp_port);
1654 if (port) {
1655 if (port->ofproto->ofproto_class->set_realdev) {
1656 port->ofproto->ofproto_class->set_realdev(port, 0, 0);
1657 }
1658 if (port->ofproto->ofproto_class->set_stp_port) {
1659 port->ofproto->ofproto_class->set_stp_port(port, NULL);
1660 }
1661 if (port->ofproto->ofproto_class->set_cfm) {
1662 port->ofproto->ofproto_class->set_cfm(port, NULL);
1663 }
1664 if (port->ofproto->ofproto_class->bundle_remove) {
1665 port->ofproto->ofproto_class->bundle_remove(port);
1666 }
1667 }
1668 }
1669
1670 static void
1671 ofport_destroy__(struct ofport *port)
1672 {
1673 struct ofproto *ofproto = port->ofproto;
1674 const char *name = netdev_get_name(port->netdev);
1675
1676 hmap_remove(&ofproto->ports, &port->hmap_node);
1677 shash_delete(&ofproto->port_by_name,
1678 shash_find(&ofproto->port_by_name, name));
1679
1680 netdev_close(port->netdev);
1681 ofproto->ofproto_class->port_dealloc(port);
1682 }
1683
1684 static void
1685 ofport_destroy(struct ofport *port)
1686 {
1687 if (port) {
1688 port->ofproto->ofproto_class->port_destruct(port);
1689 ofport_destroy__(port);
1690 }
1691 }
1692
1693 struct ofport *
1694 ofproto_get_port(const struct ofproto *ofproto, uint16_t ofp_port)
1695 {
1696 struct ofport *port;
1697
1698 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1699 hash_int(ofp_port, 0), &ofproto->ports) {
1700 if (port->ofp_port == ofp_port) {
1701 return port;
1702 }
1703 }
1704 return NULL;
1705 }
1706
1707 int
1708 ofproto_port_get_stats(const struct ofport *port, struct netdev_stats *stats)
1709 {
1710 struct ofproto *ofproto = port->ofproto;
1711 int error;
1712
1713 if (ofproto->ofproto_class->port_get_stats) {
1714 error = ofproto->ofproto_class->port_get_stats(port, stats);
1715 } else {
1716 error = EOPNOTSUPP;
1717 }
1718
1719 return error;
1720 }
1721
1722 static void
1723 update_port(struct ofproto *ofproto, const char *name)
1724 {
1725 struct ofproto_port ofproto_port;
1726 struct ofputil_phy_port pp;
1727 struct netdev *netdev;
1728 struct ofport *port;
1729
1730 COVERAGE_INC(ofproto_update_port);
1731
1732 /* Fetch 'name''s location and properties from the datapath. */
1733 netdev = (!ofproto_port_query_by_name(ofproto, name, &ofproto_port)
1734 ? ofport_open(ofproto, &ofproto_port, &pp)
1735 : NULL);
1736 if (netdev) {
1737 port = ofproto_get_port(ofproto, ofproto_port.ofp_port);
1738 if (port && !strcmp(netdev_get_name(port->netdev), name)) {
1739 struct netdev *old_netdev = port->netdev;
1740
1741 /* 'name' hasn't changed location. Any properties changed? */
1742 if (!ofport_equal(&port->pp, &pp)) {
1743 ofport_modified(port, &pp);
1744 }
1745
1746 update_mtu(ofproto, port);
1747
1748 /* Install the newly opened netdev in case it has changed.
1749 * Don't close the old netdev yet in case port_modified has to
1750 * remove a retained reference to it.*/
1751 port->netdev = netdev;
1752 port->change_seq = netdev_change_seq(netdev);
1753
1754 if (port->ofproto->ofproto_class->port_modified) {
1755 port->ofproto->ofproto_class->port_modified(port);
1756 }
1757
1758 netdev_close(old_netdev);
1759 } else {
1760 /* If 'port' is nonnull then its name differs from 'name' and thus
1761 * we should delete it. If we think there's a port named 'name'
1762 * then its port number must be wrong now so delete it too. */
1763 if (port) {
1764 ofport_remove(port);
1765 }
1766 ofport_remove_with_name(ofproto, name);
1767 ofport_install(ofproto, netdev, &pp);
1768 }
1769 } else {
1770 /* Any port named 'name' is gone now. */
1771 ofport_remove_with_name(ofproto, name);
1772 }
1773 ofproto_port_destroy(&ofproto_port);
1774 }
1775
1776 static int
1777 init_ports(struct ofproto *p)
1778 {
1779 struct ofproto_port_dump dump;
1780 struct ofproto_port ofproto_port;
1781
1782 OFPROTO_PORT_FOR_EACH (&ofproto_port, &dump, p) {
1783 uint16_t ofp_port = ofproto_port.ofp_port;
1784 if (ofproto_get_port(p, ofp_port)) {
1785 VLOG_WARN_RL(&rl, "%s: ignoring duplicate port %"PRIu16" "
1786 "in datapath", p->name, ofp_port);
1787 } else if (shash_find(&p->port_by_name, ofproto_port.name)) {
1788 VLOG_WARN_RL(&rl, "%s: ignoring duplicate device %s in datapath",
1789 p->name, ofproto_port.name);
1790 } else {
1791 struct ofputil_phy_port pp;
1792 struct netdev *netdev;
1793
1794 netdev = ofport_open(p, &ofproto_port, &pp);
1795 if (netdev) {
1796 ofport_install(p, netdev, &pp);
1797 }
1798 }
1799 }
1800
1801 return 0;
1802 }
1803
1804 /* Find the minimum MTU of all non-datapath devices attached to 'p'.
1805 * Returns ETH_PAYLOAD_MAX or the minimum of the ports. */
1806 static int
1807 find_min_mtu(struct ofproto *p)
1808 {
1809 struct ofport *ofport;
1810 int mtu = 0;
1811
1812 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1813 struct netdev *netdev = ofport->netdev;
1814 int dev_mtu;
1815
1816 /* Skip any internal ports, since that's what we're trying to
1817 * set. */
1818 if (!strcmp(netdev_get_type(netdev), "internal")) {
1819 continue;
1820 }
1821
1822 if (netdev_get_mtu(netdev, &dev_mtu)) {
1823 continue;
1824 }
1825 if (!mtu || dev_mtu < mtu) {
1826 mtu = dev_mtu;
1827 }
1828 }
1829
1830 return mtu ? mtu: ETH_PAYLOAD_MAX;
1831 }
1832
1833 /* Update MTU of all datapath devices on 'p' to the minimum of the
1834 * non-datapath ports in event of 'port' added or changed. */
1835 static void
1836 update_mtu(struct ofproto *p, struct ofport *port)
1837 {
1838 struct ofport *ofport;
1839 struct netdev *netdev = port->netdev;
1840 int dev_mtu, old_min;
1841
1842 if (netdev_get_mtu(netdev, &dev_mtu)) {
1843 port->mtu = 0;
1844 return;
1845 }
1846 if (!strcmp(netdev_get_type(port->netdev), "internal")) {
1847 if (dev_mtu > p->min_mtu) {
1848 if (!netdev_set_mtu(port->netdev, p->min_mtu)) {
1849 dev_mtu = p->min_mtu;
1850 }
1851 }
1852 port->mtu = dev_mtu;
1853 return;
1854 }
1855
1856 /* For non-internal port find new min mtu. */
1857 old_min = p->min_mtu;
1858 port->mtu = dev_mtu;
1859 p->min_mtu = find_min_mtu(p);
1860 if (p->min_mtu == old_min) {
1861 return;
1862 }
1863
1864 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1865 struct netdev *netdev = ofport->netdev;
1866
1867 if (!strcmp(netdev_get_type(netdev), "internal")) {
1868 if (!netdev_set_mtu(netdev, p->min_mtu)) {
1869 ofport->mtu = p->min_mtu;
1870 }
1871 }
1872 }
1873 }
1874 \f
1875 static void
1876 ofproto_rule_destroy__(struct rule *rule)
1877 {
1878 if (rule) {
1879 free(rule->ofpacts);
1880 rule->ofproto->ofproto_class->rule_dealloc(rule);
1881 }
1882 }
1883
1884 /* This function allows an ofproto implementation to destroy any rules that
1885 * remain when its ->destruct() function is called. The caller must have
1886 * already uninitialized any derived members of 'rule' (step 5 described in the
1887 * large comment in ofproto/ofproto-provider.h titled "Life Cycle").
1888 * This function implements steps 6 and 7.
1889 *
1890 * This function should only be called from an ofproto implementation's
1891 * ->destruct() function. It is not suitable elsewhere. */
1892 void
1893 ofproto_rule_destroy(struct rule *rule)
1894 {
1895 assert(!rule->pending);
1896 oftable_remove_rule(rule);
1897 ofproto_rule_destroy__(rule);
1898 }
1899
1900 /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action
1901 * that outputs to 'port' (output to OFPP_FLOOD and OFPP_ALL doesn't count). */
1902 bool
1903 ofproto_rule_has_out_port(const struct rule *rule, uint16_t port)
1904 {
1905 return (port == OFPP_NONE
1906 || ofpacts_output_to_port(rule->ofpacts, rule->ofpacts_len, port));
1907 }
1908
1909 /* Returns true if a rule related to 'op' has an OpenFlow OFPAT_OUTPUT or
1910 * OFPAT_ENQUEUE action that outputs to 'out_port'. */
1911 bool
1912 ofoperation_has_out_port(const struct ofoperation *op, uint16_t out_port)
1913 {
1914 if (ofproto_rule_has_out_port(op->rule, out_port)) {
1915 return true;
1916 }
1917
1918 switch (op->type) {
1919 case OFOPERATION_ADD:
1920 return op->victim && ofproto_rule_has_out_port(op->victim, out_port);
1921
1922 case OFOPERATION_DELETE:
1923 return false;
1924
1925 case OFOPERATION_MODIFY:
1926 return ofpacts_output_to_port(op->ofpacts, op->ofpacts_len, out_port);
1927 }
1928
1929 NOT_REACHED();
1930 }
1931
1932 /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s
1933 * statistics appropriately. 'packet' must have at least sizeof(struct
1934 * ofp_packet_in) bytes of headroom.
1935 *
1936 * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited
1937 * with statistics for 'packet' either way.
1938 *
1939 * Takes ownership of 'packet'. */
1940 static int
1941 rule_execute(struct rule *rule, uint16_t in_port, struct ofpbuf *packet)
1942 {
1943 struct flow flow;
1944
1945 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
1946
1947 flow_extract(packet, 0, 0, in_port, &flow);
1948 return rule->ofproto->ofproto_class->rule_execute(rule, &flow, packet);
1949 }
1950
1951 /* Returns true if 'rule' should be hidden from the controller.
1952 *
1953 * Rules with priority higher than UINT16_MAX are set up by ofproto itself
1954 * (e.g. by in-band control) and are intentionally hidden from the
1955 * controller. */
1956 bool
1957 ofproto_rule_is_hidden(const struct rule *rule)
1958 {
1959 return rule->cr.priority > UINT16_MAX;
1960 }
1961
1962 static enum oftable_flags
1963 rule_get_flags(const struct rule *rule)
1964 {
1965 return rule->ofproto->tables[rule->table_id].flags;
1966 }
1967
1968 static bool
1969 rule_is_modifiable(const struct rule *rule)
1970 {
1971 return !(rule_get_flags(rule) & OFTABLE_READONLY);
1972 }
1973 \f
1974 static enum ofperr
1975 handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh)
1976 {
1977 ofconn_send_reply(ofconn, make_echo_reply(oh));
1978 return 0;
1979 }
1980
1981 static enum ofperr
1982 handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh)
1983 {
1984 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
1985 struct ofputil_switch_features features;
1986 struct ofport *port;
1987 bool arp_match_ip;
1988 struct ofpbuf *b;
1989
1990 ofproto->ofproto_class->get_features(ofproto, &arp_match_ip,
1991 &features.actions);
1992 assert(features.actions & OFPUTIL_A_OUTPUT); /* sanity check */
1993
1994 features.datapath_id = ofproto->datapath_id;
1995 features.n_buffers = pktbuf_capacity();
1996 features.n_tables = ofproto->n_tables;
1997 features.capabilities = (OFPUTIL_C_FLOW_STATS | OFPUTIL_C_TABLE_STATS |
1998 OFPUTIL_C_PORT_STATS | OFPUTIL_C_QUEUE_STATS);
1999 if (arp_match_ip) {
2000 features.capabilities |= OFPUTIL_C_ARP_MATCH_IP;
2001 }
2002
2003 b = ofputil_encode_switch_features(&features, ofconn_get_protocol(ofconn),
2004 oh->xid);
2005 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
2006 ofputil_put_switch_features_port(&port->pp, b);
2007 }
2008
2009 ofconn_send_reply(ofconn, b);
2010 return 0;
2011 }
2012
2013 static enum ofperr
2014 handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh)
2015 {
2016 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
2017 struct ofp_switch_config *osc;
2018 enum ofp_config_flags flags;
2019 struct ofpbuf *buf;
2020
2021 /* Send reply. */
2022 buf = ofpraw_alloc_reply(OFPRAW_OFPT_GET_CONFIG_REPLY, oh, 0);
2023 osc = ofpbuf_put_uninit(buf, sizeof *osc);
2024 flags = ofproto->frag_handling;
2025 if (ofconn_get_invalid_ttl_to_controller(ofconn)) {
2026 flags |= OFPC_INVALID_TTL_TO_CONTROLLER;
2027 }
2028 osc->flags = htons(flags);
2029 osc->miss_send_len = htons(ofconn_get_miss_send_len(ofconn));
2030 ofconn_send_reply(ofconn, buf);
2031
2032 return 0;
2033 }
2034
2035 static enum ofperr
2036 handle_set_config(struct ofconn *ofconn, const struct ofp_header *oh)
2037 {
2038 const struct ofp_switch_config *osc = ofpmsg_body(oh);
2039 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
2040 uint16_t flags = ntohs(osc->flags);
2041
2042 if (ofconn_get_type(ofconn) != OFCONN_PRIMARY
2043 || ofconn_get_role(ofconn) != NX_ROLE_SLAVE) {
2044 enum ofp_config_flags cur = ofproto->frag_handling;
2045 enum ofp_config_flags next = flags & OFPC_FRAG_MASK;
2046
2047 assert((cur & OFPC_FRAG_MASK) == cur);
2048 if (cur != next) {
2049 if (ofproto->ofproto_class->set_frag_handling(ofproto, next)) {
2050 ofproto->frag_handling = next;
2051 } else {
2052 VLOG_WARN_RL(&rl, "%s: unsupported fragment handling mode %s",
2053 ofproto->name,
2054 ofputil_frag_handling_to_string(next));
2055 }
2056 }
2057 }
2058 ofconn_set_invalid_ttl_to_controller(ofconn,
2059 (flags & OFPC_INVALID_TTL_TO_CONTROLLER));
2060
2061 ofconn_set_miss_send_len(ofconn, ntohs(osc->miss_send_len));
2062
2063 return 0;
2064 }
2065
2066 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
2067 * error message code for the caller to propagate upward. Otherwise, returns
2068 * 0.
2069 *
2070 * The log message mentions 'msg_type'. */
2071 static enum ofperr
2072 reject_slave_controller(struct ofconn *ofconn)
2073 {
2074 if (ofconn_get_type(ofconn) == OFCONN_PRIMARY
2075 && ofconn_get_role(ofconn) == NX_ROLE_SLAVE) {
2076 return OFPERR_OFPBRC_EPERM;
2077 } else {
2078 return 0;
2079 }
2080 }
2081
2082 static enum ofperr
2083 handle_packet_out(struct ofconn *ofconn, const struct ofp_header *oh)
2084 {
2085 struct ofproto *p = ofconn_get_ofproto(ofconn);
2086 struct ofputil_packet_out po;
2087 struct ofpbuf *payload;
2088 uint64_t ofpacts_stub[1024 / 8];
2089 struct ofpbuf ofpacts;
2090 struct flow flow;
2091 enum ofperr error;
2092
2093 COVERAGE_INC(ofproto_packet_out);
2094
2095 error = reject_slave_controller(ofconn);
2096 if (error) {
2097 goto exit;
2098 }
2099
2100 /* Decode message. */
2101 ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
2102 error = ofputil_decode_packet_out(&po, oh, &ofpacts);
2103 if (error) {
2104 goto exit_free_ofpacts;
2105 }
2106
2107 /* Get payload. */
2108 if (po.buffer_id != UINT32_MAX) {
2109 error = ofconn_pktbuf_retrieve(ofconn, po.buffer_id, &payload, NULL);
2110 if (error || !payload) {
2111 goto exit_free_ofpacts;
2112 }
2113 } else {
2114 payload = xmalloc(sizeof *payload);
2115 ofpbuf_use_const(payload, po.packet, po.packet_len);
2116 }
2117
2118 /* Send out packet. */
2119 flow_extract(payload, 0, 0, po.in_port, &flow);
2120 error = p->ofproto_class->packet_out(p, payload, &flow,
2121 po.ofpacts, po.ofpacts_len);
2122 ofpbuf_delete(payload);
2123
2124 exit_free_ofpacts:
2125 ofpbuf_uninit(&ofpacts);
2126 exit:
2127 return error;
2128 }
2129
2130 static void
2131 update_port_config(struct ofport *port,
2132 enum ofputil_port_config config,
2133 enum ofputil_port_config mask)
2134 {
2135 enum ofputil_port_config old_config = port->pp.config;
2136 enum ofputil_port_config toggle;
2137
2138 toggle = (config ^ port->pp.config) & mask;
2139 if (toggle & OFPUTIL_PC_PORT_DOWN) {
2140 if (config & OFPUTIL_PC_PORT_DOWN) {
2141 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
2142 } else {
2143 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
2144 }
2145 toggle &= ~OFPUTIL_PC_PORT_DOWN;
2146 }
2147
2148 port->pp.config ^= toggle;
2149 if (port->pp.config != old_config) {
2150 port->ofproto->ofproto_class->port_reconfigured(port, old_config);
2151 }
2152 }
2153
2154 static enum ofperr
2155 handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh)
2156 {
2157 struct ofproto *p = ofconn_get_ofproto(ofconn);
2158 struct ofputil_port_mod pm;
2159 struct ofport *port;
2160 enum ofperr error;
2161
2162 error = reject_slave_controller(ofconn);
2163 if (error) {
2164 return error;
2165 }
2166
2167 error = ofputil_decode_port_mod(oh, &pm);
2168 if (error) {
2169 return error;
2170 }
2171
2172 port = ofproto_get_port(p, pm.port_no);
2173 if (!port) {
2174 return OFPERR_OFPPMFC_BAD_PORT;
2175 } else if (!eth_addr_equals(port->pp.hw_addr, pm.hw_addr)) {
2176 return OFPERR_OFPPMFC_BAD_HW_ADDR;
2177 } else {
2178 update_port_config(port, pm.config, pm.mask);
2179 if (pm.advertise) {
2180 netdev_set_advertisements(port->netdev, pm.advertise);
2181 }
2182 }
2183 return 0;
2184 }
2185
2186 static enum ofperr
2187 handle_desc_stats_request(struct ofconn *ofconn,
2188 const struct ofp_header *request)
2189 {
2190 struct ofproto *p = ofconn_get_ofproto(ofconn);
2191 struct ofp_desc_stats *ods;
2192 struct ofpbuf *msg;
2193
2194 msg = ofpraw_alloc_stats_reply(request, 0);
2195 ods = ofpbuf_put_zeros(msg, sizeof *ods);
2196 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
2197 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
2198 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
2199 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
2200 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
2201 ofconn_send_reply(ofconn, msg);
2202
2203 return 0;
2204 }
2205
2206 static enum ofperr
2207 handle_table_stats_request(struct ofconn *ofconn,
2208 const struct ofp_header *request)
2209 {
2210 struct ofproto *p = ofconn_get_ofproto(ofconn);
2211 struct ofp10_table_stats *ots;
2212 struct ofpbuf *msg;
2213 size_t i;
2214
2215 msg = ofpraw_alloc_stats_reply(request, sizeof *ots * p->n_tables);
2216 ots = ofpbuf_put_zeros(msg, sizeof *ots * p->n_tables);
2217 for (i = 0; i < p->n_tables; i++) {
2218 ots[i].table_id = i;
2219 sprintf(ots[i].name, "table%zu", i);
2220 ots[i].wildcards = htonl(OFPFW10_ALL);
2221 ots[i].max_entries = htonl(1000000); /* An arbitrary big number. */
2222 ots[i].active_count = htonl(classifier_count(&p->tables[i].cls));
2223 }
2224
2225 p->ofproto_class->get_tables(p, ots);
2226
2227 for (i = 0; i < p->n_tables; i++) {
2228 const struct oftable *table = &p->tables[i];
2229
2230 if (table->name) {
2231 ovs_strzcpy(ots[i].name, table->name, sizeof ots[i].name);
2232 }
2233
2234 if (table->max_flows < ntohl(ots[i].max_entries)) {
2235 ots[i].max_entries = htonl(table->max_flows);
2236 }
2237 }
2238
2239 ofconn_send_reply(ofconn, msg);
2240 return 0;
2241 }
2242
2243 static void
2244 append_port_stat(struct ofport *port, struct list *replies)
2245 {
2246 struct netdev_stats stats;
2247 struct ofp10_port_stats *ops;
2248
2249 /* Intentionally ignore return value, since errors will set
2250 * 'stats' to all-1s, which is correct for OpenFlow, and
2251 * netdev_get_stats() will log errors. */
2252 ofproto_port_get_stats(port, &stats);
2253
2254 ops = ofpmp_append(replies, sizeof *ops);
2255 ops->port_no = htons(port->pp.port_no);
2256 memset(ops->pad, 0, sizeof ops->pad);
2257 put_32aligned_be64(&ops->rx_packets, htonll(stats.rx_packets));
2258 put_32aligned_be64(&ops->tx_packets, htonll(stats.tx_packets));
2259 put_32aligned_be64(&ops->rx_bytes, htonll(stats.rx_bytes));
2260 put_32aligned_be64(&ops->tx_bytes, htonll(stats.tx_bytes));
2261 put_32aligned_be64(&ops->rx_dropped, htonll(stats.rx_dropped));
2262 put_32aligned_be64(&ops->tx_dropped, htonll(stats.tx_dropped));
2263 put_32aligned_be64(&ops->rx_errors, htonll(stats.rx_errors));
2264 put_32aligned_be64(&ops->tx_errors, htonll(stats.tx_errors));
2265 put_32aligned_be64(&ops->rx_frame_err, htonll(stats.rx_frame_errors));
2266 put_32aligned_be64(&ops->rx_over_err, htonll(stats.rx_over_errors));
2267 put_32aligned_be64(&ops->rx_crc_err, htonll(stats.rx_crc_errors));
2268 put_32aligned_be64(&ops->collisions, htonll(stats.collisions));
2269 }
2270
2271 static enum ofperr
2272 handle_port_stats_request(struct ofconn *ofconn,
2273 const struct ofp_header *request)
2274 {
2275 struct ofproto *p = ofconn_get_ofproto(ofconn);
2276 const struct ofp10_port_stats_request *psr = ofpmsg_body(request);
2277 struct ofport *port;
2278 struct list replies;
2279
2280 ofpmp_init(&replies, request);
2281 if (psr->port_no != htons(OFPP_NONE)) {
2282 port = ofproto_get_port(p, ntohs(psr->port_no));
2283 if (port) {
2284 append_port_stat(port, &replies);
2285 }
2286 } else {
2287 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
2288 append_port_stat(port, &replies);
2289 }
2290 }
2291
2292 ofconn_send_replies(ofconn, &replies);
2293 return 0;
2294 }
2295
2296 static enum ofperr
2297 handle_port_desc_stats_request(struct ofconn *ofconn,
2298 const struct ofp_header *request)
2299 {
2300 struct ofproto *p = ofconn_get_ofproto(ofconn);
2301 enum ofp_version version;
2302 struct ofport *port;
2303 struct list replies;
2304
2305 ofpmp_init(&replies, request);
2306
2307 version = ofputil_protocol_to_ofp_version(ofconn_get_protocol(ofconn));
2308 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
2309 ofputil_append_port_desc_stats_reply(version, &port->pp, &replies);
2310 }
2311
2312 ofconn_send_replies(ofconn, &replies);
2313 return 0;
2314 }
2315
2316 static void
2317 calc_flow_duration__(long long int start, long long int now,
2318 uint32_t *sec, uint32_t *nsec)
2319 {
2320 long long int msecs = now - start;
2321 *sec = msecs / 1000;
2322 *nsec = (msecs % 1000) * (1000 * 1000);
2323 }
2324
2325 /* Checks whether 'table_id' is 0xff or a valid table ID in 'ofproto'. Returns
2326 * 0 if 'table_id' is OK, otherwise an OpenFlow error code. */
2327 static enum ofperr
2328 check_table_id(const struct ofproto *ofproto, uint8_t table_id)
2329 {
2330 return (table_id == 0xff || table_id < ofproto->n_tables
2331 ? 0
2332 : OFPERR_NXBRC_BAD_TABLE_ID);
2333
2334 }
2335
2336 static struct oftable *
2337 next_visible_table(const struct ofproto *ofproto, uint8_t table_id)
2338 {
2339 struct oftable *table;
2340
2341 for (table = &ofproto->tables[table_id];
2342 table < &ofproto->tables[ofproto->n_tables];
2343 table++) {
2344 if (!(table->flags & OFTABLE_HIDDEN)) {
2345 return table;
2346 }
2347 }
2348
2349 return NULL;
2350 }
2351
2352 static struct oftable *
2353 first_matching_table(const struct ofproto *ofproto, uint8_t table_id)
2354 {
2355 if (table_id == 0xff) {
2356 return next_visible_table(ofproto, 0);
2357 } else if (table_id < ofproto->n_tables) {
2358 return &ofproto->tables[table_id];
2359 } else {
2360 return NULL;
2361 }
2362 }
2363
2364 static struct oftable *
2365 next_matching_table(const struct ofproto *ofproto,
2366 const struct oftable *table, uint8_t table_id)
2367 {
2368 return (table_id == 0xff
2369 ? next_visible_table(ofproto, (table - ofproto->tables) + 1)
2370 : NULL);
2371 }
2372
2373 /* Assigns TABLE to each oftable, in turn, that matches TABLE_ID in OFPROTO:
2374 *
2375 * - If TABLE_ID is 0xff, this iterates over every classifier table in
2376 * OFPROTO, skipping tables marked OFTABLE_HIDDEN.
2377 *
2378 * - If TABLE_ID is the number of a table in OFPROTO, then the loop iterates
2379 * only once, for that table. (This can be used to access tables marked
2380 * OFTABLE_HIDDEN.)
2381 *
2382 * - Otherwise, TABLE_ID isn't valid for OFPROTO, so the loop won't be
2383 * entered at all. (Perhaps you should have validated TABLE_ID with
2384 * check_table_id().)
2385 *
2386 * All parameters are evaluated multiple times.
2387 */
2388 #define FOR_EACH_MATCHING_TABLE(TABLE, TABLE_ID, OFPROTO) \
2389 for ((TABLE) = first_matching_table(OFPROTO, TABLE_ID); \
2390 (TABLE) != NULL; \
2391 (TABLE) = next_matching_table(OFPROTO, TABLE, TABLE_ID))
2392
2393 /* Searches 'ofproto' for rules in table 'table_id' (or in all tables, if
2394 * 'table_id' is 0xff) that match 'match' in the "loose" way required for
2395 * OpenFlow OFPFC_MODIFY and OFPFC_DELETE requests and puts them on list
2396 * 'rules'.
2397 *
2398 * If 'out_port' is anything other than OFPP_NONE, then only rules that output
2399 * to 'out_port' are included.
2400 *
2401 * Hidden rules are always omitted.
2402 *
2403 * Returns 0 on success, otherwise an OpenFlow error code. */
2404 static enum ofperr
2405 collect_rules_loose(struct ofproto *ofproto, uint8_t table_id,
2406 const struct cls_rule *match,
2407 ovs_be64 cookie, ovs_be64 cookie_mask,
2408 uint16_t out_port, struct list *rules)
2409 {
2410 struct oftable *table;
2411 enum ofperr error;
2412
2413 error = check_table_id(ofproto, table_id);
2414 if (error) {
2415 return error;
2416 }
2417
2418 list_init(rules);
2419 FOR_EACH_MATCHING_TABLE (table, table_id, ofproto) {
2420 struct cls_cursor cursor;
2421 struct rule *rule;
2422
2423 cls_cursor_init(&cursor, &table->cls, match);
2424 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
2425 if (rule->pending) {
2426 return OFPROTO_POSTPONE;
2427 }
2428 if (!ofproto_rule_is_hidden(rule)
2429 && ofproto_rule_has_out_port(rule, out_port)
2430 && !((rule->flow_cookie ^ cookie) & cookie_mask)) {
2431 list_push_back(rules, &rule->ofproto_node);
2432 }
2433 }
2434 }
2435 return 0;
2436 }
2437
2438 /* Searches 'ofproto' for rules in table 'table_id' (or in all tables, if
2439 * 'table_id' is 0xff) that match 'match' in the "strict" way required for
2440 * OpenFlow OFPFC_MODIFY_STRICT and OFPFC_DELETE_STRICT requests and puts them
2441 * on list 'rules'.
2442 *
2443 * If 'out_port' is anything other than OFPP_NONE, then only rules that output
2444 * to 'out_port' are included.
2445 *
2446 * Hidden rules are always omitted.
2447 *
2448 * Returns 0 on success, otherwise an OpenFlow error code. */
2449 static enum ofperr
2450 collect_rules_strict(struct ofproto *ofproto, uint8_t table_id,
2451 const struct cls_rule *match,
2452 ovs_be64 cookie, ovs_be64 cookie_mask,
2453 uint16_t out_port, struct list *rules)
2454 {
2455 struct oftable *table;
2456 int error;
2457
2458 error = check_table_id(ofproto, table_id);
2459 if (error) {
2460 return error;
2461 }
2462
2463 list_init(rules);
2464 FOR_EACH_MATCHING_TABLE (table, table_id, ofproto) {
2465 struct rule *rule;
2466
2467 rule = rule_from_cls_rule(classifier_find_rule_exactly(&table->cls,
2468 match));
2469 if (rule) {
2470 if (rule->pending) {
2471 return OFPROTO_POSTPONE;
2472 }
2473 if (!ofproto_rule_is_hidden(rule)
2474 && ofproto_rule_has_out_port(rule, out_port)
2475 && !((rule->flow_cookie ^ cookie) & cookie_mask)) {
2476 list_push_back(rules, &rule->ofproto_node);
2477 }
2478 }
2479 }
2480 return 0;
2481 }
2482
2483 /* Returns 'age_ms' (a duration in milliseconds), converted to seconds and
2484 * forced into the range of a uint16_t. */
2485 static int
2486 age_secs(long long int age_ms)
2487 {
2488 return (age_ms < 0 ? 0
2489 : age_ms >= UINT16_MAX * 1000 ? UINT16_MAX
2490 : (unsigned int) age_ms / 1000);
2491 }
2492
2493 static enum ofperr
2494 handle_flow_stats_request(struct ofconn *ofconn,
2495 const struct ofp_header *request)
2496 {
2497 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
2498 struct ofputil_flow_stats_request fsr;
2499 struct list replies;
2500 struct list rules;
2501 struct rule *rule;
2502 enum ofperr error;
2503
2504 error = ofputil_decode_flow_stats_request(&fsr, request);
2505 if (error) {
2506 return error;
2507 }
2508
2509 error = collect_rules_loose(ofproto, fsr.table_id, &fsr.match,
2510 fsr.cookie, fsr.cookie_mask,
2511 fsr.out_port, &rules);
2512 if (error) {
2513 return error;
2514 }
2515
2516 ofpmp_init(&replies, request);
2517 LIST_FOR_EACH (rule, ofproto_node, &rules) {
2518 long long int now = time_msec();
2519 struct ofputil_flow_stats fs;
2520
2521 fs.rule = rule->cr;
2522 fs.cookie = rule->flow_cookie;
2523 fs.table_id = rule->table_id;
2524 calc_flow_duration__(rule->created, now, &fs.duration_sec,
2525 &fs.duration_nsec);
2526 fs.idle_timeout = rule->idle_timeout;
2527 fs.hard_timeout = rule->hard_timeout;
2528 fs.idle_age = age_secs(now - rule->used);
2529 fs.hard_age = age_secs(now - rule->modified);
2530 ofproto->ofproto_class->rule_get_stats(rule, &fs.packet_count,
2531 &fs.byte_count);
2532 fs.ofpacts = rule->ofpacts;
2533 fs.ofpacts_len = rule->ofpacts_len;
2534 ofputil_append_flow_stats_reply(&fs, &replies);
2535 }
2536 ofconn_send_replies(ofconn, &replies);
2537
2538 return 0;
2539 }
2540
2541 static void
2542 flow_stats_ds(struct rule *rule, struct ds *results)
2543 {
2544 uint64_t packet_count, byte_count;
2545
2546 rule->ofproto->ofproto_class->rule_get_stats(rule,
2547 &packet_count, &byte_count);
2548
2549 if (rule->table_id != 0) {
2550 ds_put_format(results, "table_id=%"PRIu8", ", rule->table_id);
2551 }
2552 ds_put_format(results, "duration=%llds, ",
2553 (time_msec() - rule->created) / 1000);
2554 ds_put_format(results, "priority=%u, ", rule->cr.priority);
2555 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
2556 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
2557 cls_rule_format(&rule->cr, results);
2558 ds_put_char(results, ',');
2559 if (rule->ofpacts_len > 0) {
2560 ofpacts_format(rule->ofpacts, rule->ofpacts_len, results);
2561 } else {
2562 ds_put_cstr(results, "drop");
2563 }
2564 ds_put_cstr(results, "\n");
2565 }
2566
2567 /* Adds a pretty-printed description of all flows to 'results', including
2568 * hidden flows (e.g., set up by in-band control). */
2569 void
2570 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
2571 {
2572 struct oftable *table;
2573
2574 OFPROTO_FOR_EACH_TABLE (table, p) {
2575 struct cls_cursor cursor;
2576 struct rule *rule;
2577
2578 cls_cursor_init(&cursor, &table->cls, NULL);
2579 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
2580 flow_stats_ds(rule, results);
2581 }
2582 }
2583 }
2584
2585 /* Obtains the NetFlow engine type and engine ID for 'ofproto' into
2586 * '*engine_type' and '*engine_id', respectively. */
2587 void
2588 ofproto_get_netflow_ids(const struct ofproto *ofproto,
2589 uint8_t *engine_type, uint8_t *engine_id)
2590 {
2591 ofproto->ofproto_class->get_netflow_ids(ofproto, engine_type, engine_id);
2592 }
2593
2594 /* Checks the fault status of CFM for 'ofp_port' within 'ofproto'. Returns a
2595 * bitmask of 'cfm_fault_reason's to indicate a CFM fault (generally
2596 * indicating a connectivity problem). Returns zero if CFM is not faulted,
2597 * and -1 if CFM is not enabled on 'port'. */
2598 int
2599 ofproto_port_get_cfm_fault(const struct ofproto *ofproto, uint16_t ofp_port)
2600 {
2601 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
2602 return (ofport && ofproto->ofproto_class->get_cfm_fault
2603 ? ofproto->ofproto_class->get_cfm_fault(ofport)
2604 : -1);
2605 }
2606
2607 /* Gets the MPIDs of the remote maintenance points broadcasting to 'ofp_port'
2608 * within 'ofproto'. Populates 'rmps' with an array of MPIDs owned by
2609 * 'ofproto', and 'n_rmps' with the number of MPIDs in 'rmps'. Returns a
2610 * number less than 0 if CFM is not enabled on 'ofp_port'. */
2611 int
2612 ofproto_port_get_cfm_remote_mpids(const struct ofproto *ofproto,
2613 uint16_t ofp_port, const uint64_t **rmps,
2614 size_t *n_rmps)
2615 {
2616 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
2617
2618 *rmps = NULL;
2619 *n_rmps = 0;
2620 return (ofport && ofproto->ofproto_class->get_cfm_remote_mpids
2621 ? ofproto->ofproto_class->get_cfm_remote_mpids(ofport, rmps,
2622 n_rmps)
2623 : -1);
2624 }
2625
2626 /* Checks the health of the CFM for 'ofp_port' within 'ofproto'. Returns an
2627 * integer value between 0 and 100 to indicate the health of the port as a
2628 * percentage which is the average of cfm health of all the remote_mpids or
2629 * returns -1 if CFM is not enabled on 'ofport'. */
2630 int
2631 ofproto_port_get_cfm_health(const struct ofproto *ofproto, uint16_t ofp_port)
2632 {
2633 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
2634 return (ofport && ofproto->ofproto_class->get_cfm_health
2635 ? ofproto->ofproto_class->get_cfm_health(ofport)
2636 : -1);
2637 }
2638
2639 static enum ofperr
2640 handle_aggregate_stats_request(struct ofconn *ofconn,
2641 const struct ofp_header *oh)
2642 {
2643 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
2644 struct ofputil_flow_stats_request request;
2645 struct ofputil_aggregate_stats stats;
2646 bool unknown_packets, unknown_bytes;
2647 struct ofpbuf *reply;
2648 struct list rules;
2649 struct rule *rule;
2650 enum ofperr error;
2651
2652 error = ofputil_decode_flow_stats_request(&request, oh);
2653 if (error) {
2654 return error;
2655 }
2656
2657 error = collect_rules_loose(ofproto, request.table_id, &request.match,
2658 request.cookie, request.cookie_mask,
2659 request.out_port, &rules);
2660 if (error) {
2661 return error;
2662 }
2663
2664 memset(&stats, 0, sizeof stats);
2665 unknown_packets = unknown_bytes = false;
2666 LIST_FOR_EACH (rule, ofproto_node, &rules) {
2667 uint64_t packet_count;
2668 uint64_t byte_count;
2669
2670 ofproto->ofproto_class->rule_get_stats(rule, &packet_count,
2671 &byte_count);
2672
2673 if (packet_count == UINT64_MAX) {
2674 unknown_packets = true;
2675 } else {
2676 stats.packet_count += packet_count;
2677 }
2678
2679 if (byte_count == UINT64_MAX) {
2680 unknown_bytes = true;
2681 } else {
2682 stats.byte_count += byte_count;
2683 }
2684
2685 stats.flow_count++;
2686 }
2687 if (unknown_packets) {
2688 stats.packet_count = UINT64_MAX;
2689 }
2690 if (unknown_bytes) {
2691 stats.byte_count = UINT64_MAX;
2692 }
2693
2694 reply = ofputil_encode_aggregate_stats_reply(&stats, oh);
2695 ofconn_send_reply(ofconn, reply);
2696
2697 return 0;
2698 }
2699
2700 struct queue_stats_cbdata {
2701 struct ofport *ofport;
2702 struct list replies;
2703 };
2704
2705 static void
2706 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
2707 const struct netdev_queue_stats *stats)
2708 {
2709 struct ofp10_queue_stats *reply;
2710
2711 reply = ofpmp_append(&cbdata->replies, sizeof *reply);
2712 reply->port_no = htons(cbdata->ofport->pp.port_no);
2713 memset(reply->pad, 0, sizeof reply->pad);
2714 reply->queue_id = htonl(queue_id);
2715 put_32aligned_be64(&reply->tx_bytes, htonll(stats->tx_bytes));
2716 put_32aligned_be64(&reply->tx_packets, htonll(stats->tx_packets));
2717 put_32aligned_be64(&reply->tx_errors, htonll(stats->tx_errors));
2718 }
2719
2720 static void
2721 handle_queue_stats_dump_cb(uint32_t queue_id,
2722 struct netdev_queue_stats *stats,
2723 void *cbdata_)
2724 {
2725 struct queue_stats_cbdata *cbdata = cbdata_;
2726
2727 put_queue_stats(cbdata, queue_id, stats);
2728 }
2729
2730 static enum ofperr
2731 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
2732 struct queue_stats_cbdata *cbdata)
2733 {
2734 cbdata->ofport = port;
2735 if (queue_id == OFPQ_ALL) {
2736 netdev_dump_queue_stats(port->netdev,
2737 handle_queue_stats_dump_cb, cbdata);
2738 } else {
2739 struct netdev_queue_stats stats;
2740
2741 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
2742 put_queue_stats(cbdata, queue_id, &stats);
2743 } else {
2744 return OFPERR_OFPQOFC_BAD_QUEUE;
2745 }
2746 }
2747 return 0;
2748 }
2749
2750 static enum ofperr
2751 handle_queue_stats_request(struct ofconn *ofconn,
2752 const struct ofp_header *rq)
2753 {
2754 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
2755 const struct ofp10_queue_stats_request *qsr = ofpmsg_body(rq);
2756 struct queue_stats_cbdata cbdata;
2757 unsigned int port_no;
2758 struct ofport *port;
2759 uint32_t queue_id;
2760 enum ofperr error;
2761
2762 COVERAGE_INC(ofproto_queue_req);
2763
2764 ofpmp_init(&cbdata.replies, rq);
2765
2766 port_no = ntohs(qsr->port_no);
2767 queue_id = ntohl(qsr->queue_id);
2768 if (port_no == OFPP_ALL) {
2769 error = OFPERR_OFPQOFC_BAD_QUEUE;
2770 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
2771 if (!handle_queue_stats_for_port(port, queue_id, &cbdata)) {
2772 error = 0;
2773 }
2774 }
2775 } else {
2776 port = ofproto_get_port(ofproto, port_no);
2777 error = (port
2778 ? handle_queue_stats_for_port(port, queue_id, &cbdata)
2779 : OFPERR_OFPQOFC_BAD_PORT);
2780 }
2781 if (!error) {
2782 ofconn_send_replies(ofconn, &cbdata.replies);
2783 } else {
2784 ofpbuf_list_delete(&cbdata.replies);
2785 }
2786
2787 return error;
2788 }
2789
2790 static bool
2791 is_flow_deletion_pending(const struct ofproto *ofproto,
2792 const struct cls_rule *cls_rule,
2793 uint8_t table_id)
2794 {
2795 if (!hmap_is_empty(&ofproto->deletions)) {
2796 struct ofoperation *op;
2797
2798 HMAP_FOR_EACH_WITH_HASH (op, hmap_node,
2799 cls_rule_hash(cls_rule, table_id),
2800 &ofproto->deletions) {
2801 if (cls_rule_equal(cls_rule, &op->rule->cr)) {
2802 return true;
2803 }
2804 }
2805 }
2806
2807 return false;
2808 }
2809
2810 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
2811 * in which no matching flow already exists in the flow table.
2812 *
2813 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
2814 * ofp_actions, to the ofproto's flow table. Returns 0 on success, an OpenFlow
2815 * error code on failure, or OFPROTO_POSTPONE if the operation cannot be
2816 * initiated now but may be retried later.
2817 *
2818 * Upon successful return, takes ownership of 'fm->ofpacts'. On failure,
2819 * ownership remains with the caller.
2820 *
2821 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
2822 * if any. */
2823 static enum ofperr
2824 add_flow(struct ofproto *ofproto, struct ofconn *ofconn,
2825 const struct ofputil_flow_mod *fm, const struct ofp_header *request)
2826 {
2827 struct oftable *table;
2828 struct ofopgroup *group;
2829 struct rule *victim;
2830 struct rule *rule;
2831 int error;
2832
2833 error = check_table_id(ofproto, fm->table_id);
2834 if (error) {
2835 return error;
2836 }
2837
2838 /* Pick table. */
2839 if (fm->table_id == 0xff) {
2840 uint8_t table_id;
2841 if (ofproto->ofproto_class->rule_choose_table) {
2842 error = ofproto->ofproto_class->rule_choose_table(ofproto, &fm->cr,
2843 &table_id);
2844 if (error) {
2845 return error;
2846 }
2847 assert(table_id < ofproto->n_tables);
2848 table = &ofproto->tables[table_id];
2849 } else {
2850 table = &ofproto->tables[0];
2851 }
2852 } else if (fm->table_id < ofproto->n_tables) {
2853 table = &ofproto->tables[fm->table_id];
2854 } else {
2855 return OFPERR_NXFMFC_BAD_TABLE_ID;
2856 }
2857
2858 if (table->flags & OFTABLE_READONLY) {
2859 return OFPERR_OFPBRC_EPERM;
2860 }
2861
2862 /* Check for overlap, if requested. */
2863 if (fm->flags & OFPFF_CHECK_OVERLAP
2864 && classifier_rule_overlaps(&table->cls, &fm->cr)) {
2865 return OFPERR_OFPFMFC_OVERLAP;
2866 }
2867
2868 /* Serialize against pending deletion. */
2869 if (is_flow_deletion_pending(ofproto, &fm->cr, table - ofproto->tables)) {
2870 return OFPROTO_POSTPONE;
2871 }
2872
2873 /* Allocate new rule. */
2874 rule = ofproto->ofproto_class->rule_alloc();
2875 if (!rule) {
2876 VLOG_WARN_RL(&rl, "%s: failed to create rule (%s)",
2877 ofproto->name, strerror(error));
2878 return ENOMEM;
2879 }
2880 rule->ofproto = ofproto;
2881 rule->cr = fm->cr;
2882 rule->pending = NULL;
2883 rule->flow_cookie = fm->new_cookie;
2884 rule->created = rule->modified = rule->used = time_msec();
2885 rule->idle_timeout = fm->idle_timeout;
2886 rule->hard_timeout = fm->hard_timeout;
2887 rule->table_id = table - ofproto->tables;
2888 rule->send_flow_removed = (fm->flags & OFPFF_SEND_FLOW_REM) != 0;
2889 rule->ofpacts = xmemdup(fm->ofpacts, fm->ofpacts_len);
2890 rule->ofpacts_len = fm->ofpacts_len;
2891 rule->evictable = true;
2892 rule->eviction_group = NULL;
2893 rule->monitor_flags = 0;
2894 rule->add_seqno = 0;
2895 rule->modify_seqno = 0;
2896
2897 /* Insert new rule. */
2898 victim = oftable_replace_rule(rule);
2899 if (victim && !rule_is_modifiable(victim)) {
2900 error = OFPERR_OFPBRC_EPERM;
2901 } else if (victim && victim->pending) {
2902 error = OFPROTO_POSTPONE;
2903 } else {
2904 struct ofoperation *op;
2905 struct rule *evict;
2906
2907 if (classifier_count(&table->cls) > table->max_flows) {
2908 bool was_evictable;
2909
2910 was_evictable = rule->evictable;
2911 rule->evictable = false;
2912 evict = choose_rule_to_evict(table);
2913 rule->evictable = was_evictable;
2914
2915 if (!evict) {
2916 error = OFPERR_OFPFMFC_ALL_TABLES_FULL;
2917 goto exit;
2918 } else if (evict->pending) {
2919 error = OFPROTO_POSTPONE;
2920 goto exit;
2921 }
2922 } else {
2923 evict = NULL;
2924 }
2925
2926 group = ofopgroup_create(ofproto, ofconn, request, fm->buffer_id);
2927 op = ofoperation_create(group, rule, OFOPERATION_ADD, 0);
2928 op->victim = victim;
2929
2930 error = ofproto->ofproto_class->rule_construct(rule);
2931 if (error) {
2932 op->group->n_running--;
2933 ofoperation_destroy(rule->pending);
2934 } else if (evict) {
2935 delete_flow__(evict, group);
2936 }
2937 ofopgroup_submit(group);
2938 }
2939
2940 exit:
2941 /* Back out if an error occurred. */
2942 if (error) {
2943 oftable_substitute_rule(rule, victim);
2944 ofproto_rule_destroy__(rule);
2945 }
2946 return error;
2947 }
2948 \f
2949 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
2950
2951 /* Modifies the rules listed in 'rules', changing their actions to match those
2952 * in 'fm'.
2953 *
2954 * 'ofconn' is used to retrieve the packet buffer specified in fm->buffer_id,
2955 * if any.
2956 *
2957 * Returns 0 on success, otherwise an OpenFlow error code. */
2958 static enum ofperr
2959 modify_flows__(struct ofproto *ofproto, struct ofconn *ofconn,
2960 const struct ofputil_flow_mod *fm,
2961 const struct ofp_header *request, struct list *rules)
2962 {
2963 struct ofopgroup *group;
2964 struct rule *rule;
2965 enum ofperr error;
2966
2967 group = ofopgroup_create(ofproto, ofconn, request, fm->buffer_id);
2968 error = OFPERR_OFPBRC_EPERM;
2969 LIST_FOR_EACH (rule, ofproto_node, rules) {
2970 struct ofoperation *op;
2971 bool actions_changed;
2972 ovs_be64 new_cookie;
2973
2974 if (rule_is_modifiable(rule)) {
2975 /* At least one rule is modifiable, don't report EPERM error. */
2976 error = 0;
2977 } else {
2978 continue;
2979 }
2980
2981 actions_changed = !ofpacts_equal(fm->ofpacts, fm->ofpacts_len,
2982 rule->ofpacts, rule->ofpacts_len);
2983 new_cookie = (fm->new_cookie != htonll(UINT64_MAX)
2984 ? fm->new_cookie
2985 : rule->flow_cookie);
2986 if (!actions_changed && new_cookie == rule->flow_cookie) {
2987 /* No change at all. */
2988 continue;
2989 }
2990
2991 op = ofoperation_create(group, rule, OFOPERATION_MODIFY, 0);
2992 rule->flow_cookie = new_cookie;
2993 if (actions_changed) {
2994 op->ofpacts = rule->ofpacts;
2995 op->ofpacts_len = rule->ofpacts_len;
2996 rule->ofpacts = xmemdup(fm->ofpacts, fm->ofpacts_len);
2997 rule->ofpacts_len = fm->ofpacts_len;
2998 rule->ofproto->ofproto_class->rule_modify_actions(rule);
2999 } else {
3000 ofoperation_complete(op, 0);
3001 }
3002 }
3003 ofopgroup_submit(group);
3004
3005 return error;
3006 }
3007
3008 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code on
3009 * failure.
3010 *
3011 * 'ofconn' is used to retrieve the packet buffer specified in fm->buffer_id,
3012 * if any. */
3013 static enum ofperr
3014 modify_flows_loose(struct ofproto *ofproto, struct ofconn *ofconn,
3015 const struct ofputil_flow_mod *fm,
3016 const struct ofp_header *request)
3017 {
3018 struct list rules;
3019 int error;
3020
3021 error = collect_rules_loose(ofproto, fm->table_id, &fm->cr,
3022 fm->cookie, fm->cookie_mask,
3023 OFPP_NONE, &rules);
3024 if (error) {
3025 return error;
3026 } else if (list_is_empty(&rules)) {
3027 return fm->cookie_mask ? 0 : add_flow(ofproto, ofconn, fm, request);
3028 } else {
3029 return modify_flows__(ofproto, ofconn, fm, request, &rules);
3030 }
3031 }
3032
3033 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
3034 * code on failure.
3035 *
3036 * 'ofconn' is used to retrieve the packet buffer specified in fm->buffer_id,
3037 * if any. */
3038 static enum ofperr
3039 modify_flow_strict(struct ofproto *ofproto, struct ofconn *ofconn,
3040 const struct ofputil_flow_mod *fm,
3041 const struct ofp_header *request)
3042 {
3043 struct list rules;
3044 int error;
3045
3046 error = collect_rules_strict(ofproto, fm->table_id, &fm->cr,
3047 fm->cookie, fm->cookie_mask,
3048 OFPP_NONE, &rules);
3049
3050 if (error) {
3051 return error;
3052 } else if (list_is_empty(&rules)) {
3053 return fm->cookie_mask ? 0 : add_flow(ofproto, ofconn, fm, request);
3054 } else {
3055 return list_is_singleton(&rules) ? modify_flows__(ofproto, ofconn,
3056 fm, request, &rules)
3057 : 0;
3058 }
3059 }
3060 \f
3061 /* OFPFC_DELETE implementation. */
3062
3063 static void
3064 delete_flow__(struct rule *rule, struct ofopgroup *group)
3065 {
3066 struct ofproto *ofproto = rule->ofproto;
3067
3068 ofproto_rule_send_removed(rule, OFPRR_DELETE);
3069
3070 ofoperation_create(group, rule, OFOPERATION_DELETE, OFPRR_DELETE);
3071 oftable_remove_rule(rule);
3072 ofproto->ofproto_class->rule_destruct(rule);
3073 }
3074
3075 /* Deletes the rules listed in 'rules'.
3076 *
3077 * Returns 0 on success, otherwise an OpenFlow error code. */
3078 static enum ofperr
3079 delete_flows__(struct ofproto *ofproto, struct ofconn *ofconn,
3080 const struct ofp_header *request, struct list *rules)
3081 {
3082 struct rule *rule, *next;
3083 struct ofopgroup *group;
3084
3085 group = ofopgroup_create(ofproto, ofconn, request, UINT32_MAX);
3086 LIST_FOR_EACH_SAFE (rule, next, ofproto_node, rules) {
3087 delete_flow__(rule, group);
3088 }
3089 ofopgroup_submit(group);
3090
3091 return 0;
3092 }
3093
3094 /* Implements OFPFC_DELETE. */
3095 static enum ofperr
3096 delete_flows_loose(struct ofproto *ofproto, struct ofconn *ofconn,
3097 const struct ofputil_flow_mod *fm,
3098 const struct ofp_header *request)
3099 {
3100 struct list rules;
3101 enum ofperr error;
3102
3103 error = collect_rules_loose(ofproto, fm->table_id, &fm->cr,
3104 fm->cookie, fm->cookie_mask,
3105 fm->out_port, &rules);
3106 return (error ? error
3107 : !list_is_empty(&rules) ? delete_flows__(ofproto, ofconn, request,
3108 &rules)
3109 : 0);
3110 }
3111
3112 /* Implements OFPFC_DELETE_STRICT. */
3113 static enum ofperr
3114 delete_flow_strict(struct ofproto *ofproto, struct ofconn *ofconn,
3115 const struct ofputil_flow_mod *fm,
3116 const struct ofp_header *request)
3117 {
3118 struct list rules;
3119 enum ofperr error;
3120
3121 error = collect_rules_strict(ofproto, fm->table_id, &fm->cr,
3122 fm->cookie, fm->cookie_mask,
3123 fm->out_port, &rules);
3124 return (error ? error
3125 : list_is_singleton(&rules) ? delete_flows__(ofproto, ofconn,
3126 request, &rules)
3127 : 0);
3128 }
3129
3130 static void
3131 ofproto_rule_send_removed(struct rule *rule, uint8_t reason)
3132 {
3133 struct ofputil_flow_removed fr;
3134
3135 if (ofproto_rule_is_hidden(rule) || !rule->send_flow_removed) {
3136 return;
3137 }
3138
3139 fr.rule = rule->cr;
3140 fr.cookie = rule->flow_cookie;
3141 fr.reason = reason;
3142 calc_flow_duration__(rule->created, time_msec(),
3143 &fr.duration_sec, &fr.duration_nsec);
3144 fr.idle_timeout = rule->idle_timeout;
3145 rule->ofproto->ofproto_class->rule_get_stats(rule, &fr.packet_count,
3146 &fr.byte_count);
3147
3148 connmgr_send_flow_removed(rule->ofproto->connmgr, &fr);
3149 }
3150
3151 void
3152 ofproto_rule_update_used(struct rule *rule, long long int used)
3153 {
3154 if (used > rule->used) {
3155 struct eviction_group *evg = rule->eviction_group;
3156
3157 rule->used = used;
3158 if (evg) {
3159 heap_change(&evg->rules, &rule->evg_node,
3160 rule_eviction_priority(rule));
3161 }
3162 }
3163 }
3164
3165 /* Sends an OpenFlow "flow removed" message with the given 'reason' (either
3166 * OFPRR_HARD_TIMEOUT or OFPRR_IDLE_TIMEOUT), and then removes 'rule' from its
3167 * ofproto.
3168 *
3169 * 'rule' must not have a pending operation (that is, 'rule->pending' must be
3170 * NULL).
3171 *
3172 * ofproto implementation ->run() functions should use this function to expire
3173 * OpenFlow flows. */
3174 void
3175 ofproto_rule_expire(struct rule *rule, uint8_t reason)
3176 {
3177 struct ofproto *ofproto = rule->ofproto;
3178 struct ofopgroup *group;
3179
3180 assert(reason == OFPRR_HARD_TIMEOUT || reason == OFPRR_IDLE_TIMEOUT);
3181
3182 ofproto_rule_send_removed(rule, reason);
3183
3184 group = ofopgroup_create_unattached(ofproto);
3185 ofoperation_create(group, rule, OFOPERATION_DELETE, reason);
3186 oftable_remove_rule(rule);
3187 ofproto->ofproto_class->rule_destruct(rule);
3188 ofopgroup_submit(group);
3189 }
3190 \f
3191 static enum ofperr
3192 handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh)
3193 {
3194 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
3195 struct ofputil_flow_mod fm;
3196 uint64_t ofpacts_stub[1024 / 8];
3197 struct ofpbuf ofpacts;
3198 enum ofperr error;
3199 long long int now;
3200
3201 error = reject_slave_controller(ofconn);
3202 if (error) {
3203 goto exit;
3204 }
3205
3206 ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
3207 error = ofputil_decode_flow_mod(&fm, oh, ofconn_get_protocol(ofconn),
3208 &ofpacts);
3209 if (error) {
3210 goto exit_free_ofpacts;
3211 }
3212
3213 if (fm.flags & OFPFF10_EMERG) {
3214 /* We do not support the OpenFlow 1.0 emergency flow cache, which is not
3215 * required in OpenFlow 1.0.1 and removed from OpenFlow 1.1. */
3216 /* We do not support the emergency flow cache. It will hopefully get
3217 * dropped from OpenFlow in the near future. There is no good error
3218 * code, so just state that the flow table is full. */
3219 error = OFPERR_OFPFMFC_ALL_TABLES_FULL;
3220 } else {
3221 error = handle_flow_mod__(ofconn_get_ofproto(ofconn), ofconn, &fm, oh);
3222 }
3223 if (error) {
3224 goto exit_free_ofpacts;
3225 }
3226
3227 /* Record the operation for logging a summary report. */
3228 switch (fm.command) {
3229 case OFPFC_ADD:
3230 ofproto->n_add++;
3231 break;
3232
3233 case OFPFC_MODIFY:
3234 case OFPFC_MODIFY_STRICT:
3235 ofproto->n_modify++;
3236 break;
3237
3238 case OFPFC_DELETE:
3239 case OFPFC_DELETE_STRICT:
3240 ofproto->n_delete++;
3241 break;
3242 }
3243
3244 now = time_msec();
3245 if (ofproto->next_op_report == LLONG_MAX) {
3246 ofproto->first_op = now;
3247 ofproto->next_op_report = MAX(now + 10 * 1000,
3248 ofproto->op_backoff);
3249 ofproto->op_backoff = ofproto->next_op_report + 60 * 1000;
3250 }
3251 ofproto->last_op = now;
3252
3253 exit_free_ofpacts:
3254 ofpbuf_uninit(&ofpacts);
3255 exit:
3256 return error;
3257 }
3258
3259 static enum ofperr
3260 handle_flow_mod__(struct ofproto *ofproto, struct ofconn *ofconn,
3261 const struct ofputil_flow_mod *fm,
3262 const struct ofp_header *oh)
3263 {
3264 if (ofproto->n_pending >= 50) {
3265 assert(!list_is_empty(&ofproto->pending));
3266 return OFPROTO_POSTPONE;
3267 }
3268
3269 switch (fm->command) {
3270 case OFPFC_ADD:
3271 return add_flow(ofproto, ofconn, fm, oh);
3272
3273 case OFPFC_MODIFY:
3274 return modify_flows_loose(ofproto, ofconn, fm, oh);
3275
3276 case OFPFC_MODIFY_STRICT:
3277 return modify_flow_strict(ofproto, ofconn, fm, oh);
3278
3279 case OFPFC_DELETE:
3280 return delete_flows_loose(ofproto, ofconn, fm, oh);
3281
3282 case OFPFC_DELETE_STRICT:
3283 return delete_flow_strict(ofproto, ofconn, fm, oh);
3284
3285 default:
3286 if (fm->command > 0xff) {
3287 VLOG_WARN_RL(&rl, "%s: flow_mod has explicit table_id but "
3288 "flow_mod_table_id extension is not enabled",
3289 ofproto->name);
3290 }
3291 return OFPERR_OFPFMFC_BAD_COMMAND;
3292 }
3293 }
3294
3295 static enum ofperr
3296 handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh)
3297 {
3298 const struct nx_role_request *nrr = ofpmsg_body(oh);
3299 struct nx_role_request *reply;
3300 struct ofpbuf *buf;
3301 uint32_t role;
3302
3303 role = ntohl(nrr->role);
3304 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
3305 && role != NX_ROLE_SLAVE) {
3306 return OFPERR_OFPRRFC_BAD_ROLE;
3307 }
3308
3309 if (ofconn_get_role(ofconn) != role
3310 && ofconn_has_pending_opgroups(ofconn)) {
3311 return OFPROTO_POSTPONE;
3312 }
3313
3314 ofconn_set_role(ofconn, role);
3315
3316 buf = ofpraw_alloc_reply(OFPRAW_NXT_ROLE_REPLY, oh, 0);
3317 reply = ofpbuf_put_zeros(buf, sizeof *reply);
3318 reply->role = htonl(role);
3319 ofconn_send_reply(ofconn, buf);
3320
3321 return 0;
3322 }
3323
3324 static enum ofperr
3325 handle_nxt_flow_mod_table_id(struct ofconn *ofconn,
3326 const struct ofp_header *oh)
3327 {
3328 const struct nx_flow_mod_table_id *msg = ofpmsg_body(oh);
3329 enum ofputil_protocol cur, next;
3330
3331 cur = ofconn_get_protocol(ofconn);
3332 next = ofputil_protocol_set_tid(cur, msg->set != 0);
3333 ofconn_set_protocol(ofconn, next);
3334
3335 return 0;
3336 }
3337
3338 static enum ofperr
3339 handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh)
3340 {
3341 const struct nx_set_flow_format *msg = ofpmsg_body(oh);
3342 enum ofputil_protocol cur, next;
3343 enum ofputil_protocol next_base;
3344
3345 next_base = ofputil_nx_flow_format_to_protocol(ntohl(msg->format));
3346 if (!next_base) {
3347 return OFPERR_OFPBRC_EPERM;
3348 }
3349
3350 cur = ofconn_get_protocol(ofconn);
3351 next = ofputil_protocol_set_base(cur, next_base);
3352 if (cur != next && ofconn_has_pending_opgroups(ofconn)) {
3353 /* Avoid sending async messages in surprising protocol. */
3354 return OFPROTO_POSTPONE;
3355 }
3356
3357 ofconn_set_protocol(ofconn, next);
3358 return 0;
3359 }
3360
3361 static enum ofperr
3362 handle_nxt_set_packet_in_format(struct ofconn *ofconn,
3363 const struct ofp_header *oh)
3364 {
3365 const struct nx_set_packet_in_format *msg = ofpmsg_body(oh);
3366 uint32_t format;
3367
3368 format = ntohl(msg->format);
3369 if (format != NXPIF_OPENFLOW10 && format != NXPIF_NXM) {
3370 return OFPERR_OFPBRC_EPERM;
3371 }
3372
3373 if (format != ofconn_get_packet_in_format(ofconn)
3374 && ofconn_has_pending_opgroups(ofconn)) {
3375 /* Avoid sending async message in surprsing packet in format. */
3376 return OFPROTO_POSTPONE;
3377 }
3378
3379 ofconn_set_packet_in_format(ofconn, format);
3380 return 0;
3381 }
3382
3383 static enum ofperr
3384 handle_nxt_set_async_config(struct ofconn *ofconn, const struct ofp_header *oh)
3385 {
3386 const struct nx_async_config *msg = ofpmsg_body(oh);
3387 uint32_t master[OAM_N_TYPES];
3388 uint32_t slave[OAM_N_TYPES];
3389
3390 master[OAM_PACKET_IN] = ntohl(msg->packet_in_mask[0]);
3391 master[OAM_PORT_STATUS] = ntohl(msg->port_status_mask[0]);
3392 master[OAM_FLOW_REMOVED] = ntohl(msg->flow_removed_mask[0]);
3393
3394 slave[OAM_PACKET_IN] = ntohl(msg->packet_in_mask[1]);
3395 slave[OAM_PORT_STATUS] = ntohl(msg->port_status_mask[1]);
3396 slave[OAM_FLOW_REMOVED] = ntohl(msg->flow_removed_mask[1]);
3397
3398 ofconn_set_async_config(ofconn, master, slave);
3399 if (ofconn_get_type(ofconn) == OFCONN_SERVICE &&
3400 !ofconn_get_miss_send_len(ofconn)) {
3401 ofconn_set_miss_send_len(ofconn, OFP_DEFAULT_MISS_SEND_LEN);
3402 }
3403
3404 return 0;
3405 }
3406
3407 static enum ofperr
3408 handle_nxt_set_controller_id(struct ofconn *ofconn,
3409 const struct ofp_header *oh)
3410 {
3411 const struct nx_controller_id *nci = ofpmsg_body(oh);
3412
3413 if (!is_all_zeros(nci->zero, sizeof nci->zero)) {
3414 return OFPERR_NXBRC_MUST_BE_ZERO;
3415 }
3416
3417 ofconn_set_controller_id(ofconn, ntohs(nci->controller_id));
3418 return 0;
3419 }
3420
3421 static enum ofperr
3422 handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh)
3423 {
3424 struct ofpbuf *buf;
3425
3426 if (ofconn_has_pending_opgroups(ofconn)) {
3427 return OFPROTO_POSTPONE;
3428 }
3429
3430 buf = ofpraw_alloc_reply((oh->version == OFP10_VERSION
3431 ? OFPRAW_OFPT10_BARRIER_REPLY
3432 : OFPRAW_OFPT11_BARRIER_REPLY), oh, 0);
3433 ofconn_send_reply(ofconn, buf);
3434 return 0;
3435 }
3436
3437 static void
3438 ofproto_compose_flow_refresh_update(const struct rule *rule,
3439 enum nx_flow_monitor_flags flags,
3440 struct list *msgs)
3441 {
3442 struct ofoperation *op = rule->pending;
3443 struct ofputil_flow_update fu;
3444
3445 if (op && op->type == OFOPERATION_ADD && !op->victim) {
3446 /* We'll report the final flow when the operation completes. Reporting
3447 * it now would cause a duplicate report later. */
3448 return;
3449 }
3450
3451 fu.event = (flags & (NXFMF_INITIAL | NXFMF_ADD)
3452 ? NXFME_ADDED : NXFME_MODIFIED);
3453 fu.reason = 0;
3454 fu.idle_timeout = rule->idle_timeout;
3455 fu.hard_timeout = rule->hard_timeout;
3456 fu.table_id = rule->table_id;
3457 fu.cookie = rule->flow_cookie;
3458 fu.match = CONST_CAST(struct cls_rule *, &rule->cr);
3459 if (!(flags & NXFMF_ACTIONS)) {
3460 fu.ofpacts = NULL;
3461 fu.ofpacts_len = 0;
3462 } else if (!op) {
3463 fu.ofpacts = rule->ofpacts;
3464 fu.ofpacts_len = rule->ofpacts_len;
3465 } else {
3466 /* An operation is in progress. Use the previous version of the flow's
3467 * actions, so that when the operation commits we report the change. */
3468 switch (op->type) {
3469 case OFOPERATION_ADD:
3470 /* We already verified that there was a victim. */
3471 fu.ofpacts = op->victim->ofpacts;
3472 fu.ofpacts_len = op->victim->ofpacts_len;
3473 break;
3474
3475 case OFOPERATION_MODIFY:
3476 if (op->ofpacts) {
3477 fu.ofpacts = op->ofpacts;
3478 fu.ofpacts_len = op->ofpacts_len;
3479 } else {
3480 fu.ofpacts = rule->ofpacts;
3481 fu.ofpacts_len = rule->ofpacts_len;
3482 }
3483 break;
3484
3485 case OFOPERATION_DELETE:
3486 fu.ofpacts = rule->ofpacts;
3487 fu.ofpacts_len = rule->ofpacts_len;
3488 break;
3489
3490 default:
3491 NOT_REACHED();
3492 }
3493 }
3494
3495 if (list_is_empty(msgs)) {
3496 ofputil_start_flow_update(msgs);
3497 }
3498 ofputil_append_flow_update(&fu, msgs);
3499 }
3500
3501 void
3502 ofmonitor_compose_refresh_updates(struct list *rules, struct list *msgs)
3503 {
3504 struct rule *rule;
3505
3506 LIST_FOR_EACH (rule, ofproto_node, rules) {
3507 enum nx_flow_monitor_flags flags = rule->monitor_flags;
3508 rule->monitor_flags = 0;
3509
3510 ofproto_compose_flow_refresh_update(rule, flags, msgs);
3511 }
3512 }
3513
3514 static void
3515 ofproto_collect_ofmonitor_refresh_rule(const struct ofmonitor *m,
3516 struct rule *rule, uint64_t seqno,
3517 struct list *rules)
3518 {
3519 enum nx_flow_monitor_flags update;
3520
3521 if (ofproto_rule_is_hidden(rule)) {
3522 return;
3523 }
3524
3525 if (!(rule->pending
3526 ? ofoperation_has_out_port(rule->pending, m->out_port)
3527 : ofproto_rule_has_out_port(rule, m->out_port))) {
3528 return;
3529 }
3530
3531 if (seqno) {
3532 if (rule->add_seqno > seqno) {
3533 update = NXFMF_ADD | NXFMF_MODIFY;
3534 } else if (rule->modify_seqno > seqno) {
3535 update = NXFMF_MODIFY;
3536 } else {
3537 return;
3538 }
3539
3540 if (!(m->flags & update)) {
3541 return;
3542 }
3543 } else {
3544 update = NXFMF_INITIAL;
3545 }
3546
3547 if (!rule->monitor_flags) {
3548 list_push_back(rules, &rule->ofproto_node);
3549 }
3550 rule->monitor_flags |= update | (m->flags & NXFMF_ACTIONS);
3551 }
3552
3553 static void
3554 ofproto_collect_ofmonitor_refresh_rules(const struct ofmonitor *m,
3555 uint64_t seqno,
3556 struct list *rules)
3557 {
3558 const struct ofproto *ofproto = ofconn_get_ofproto(m->ofconn);
3559 const struct ofoperation *op;
3560 const struct oftable *table;
3561
3562 FOR_EACH_MATCHING_TABLE (table, m->table_id, ofproto) {
3563 struct cls_cursor cursor;
3564 struct rule *rule;
3565
3566 cls_cursor_init(&cursor, &table->cls, &m->match);
3567 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3568 assert(!rule->pending); /* XXX */
3569 ofproto_collect_ofmonitor_refresh_rule(m, rule, seqno, rules);
3570 }
3571 }
3572
3573 HMAP_FOR_EACH (op, hmap_node, &ofproto->deletions) {
3574 struct rule *rule = op->rule;
3575
3576 if (((m->table_id == 0xff
3577 ? !(ofproto->tables[rule->table_id].flags & OFTABLE_HIDDEN)
3578 : m->table_id == rule->table_id))
3579 && cls_rule_is_loose_match(&rule->cr, &m->match)) {
3580 ofproto_collect_ofmonitor_refresh_rule(m, rule, seqno, rules);
3581 }
3582 }
3583 }
3584
3585 static void
3586 ofproto_collect_ofmonitor_initial_rules(struct ofmonitor *m,
3587 struct list *rules)
3588 {
3589 if (m->flags & NXFMF_INITIAL) {
3590 ofproto_collect_ofmonitor_refresh_rules(m, 0, rules);
3591 }
3592 }
3593
3594 void
3595 ofmonitor_collect_resume_rules(struct ofmonitor *m,
3596 uint64_t seqno, struct list *rules)
3597 {
3598 ofproto_collect_ofmonitor_refresh_rules(m, seqno, rules);
3599 }
3600
3601 static enum ofperr
3602 handle_flow_monitor_request(struct ofconn *ofconn, const struct ofp_header *oh)
3603 {
3604 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
3605 struct ofmonitor **monitors;
3606 size_t n_monitors, allocated_monitors;
3607 struct list replies;
3608 enum ofperr error;
3609 struct list rules;
3610 struct ofpbuf b;
3611 size_t i;
3612
3613 error = 0;
3614 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3615 monitors = NULL;
3616 n_monitors = allocated_monitors = 0;
3617 for (;;) {
3618 struct ofputil_flow_monitor_request request;
3619 struct ofmonitor *m;
3620 int retval;
3621
3622 retval = ofputil_decode_flow_monitor_request(&request, &b);
3623 if (retval == EOF) {
3624 break;
3625 } else if (retval) {
3626 error = retval;
3627 goto error;
3628 }
3629
3630 if (request.table_id != 0xff
3631 && request.table_id >= ofproto->n_tables) {
3632 error = OFPERR_OFPBRC_BAD_TABLE_ID;
3633 goto error;
3634 }
3635
3636 error = ofmonitor_create(&request, ofconn, &m);
3637 if (error) {
3638 goto error;
3639 }
3640
3641 if (n_monitors >= allocated_monitors) {
3642 monitors = x2nrealloc(monitors, &allocated_monitors,
3643 sizeof *monitors);
3644 }
3645 monitors[n_monitors++] = m;
3646 }
3647
3648 list_init(&rules);
3649 for (i = 0; i < n_monitors; i++) {
3650 ofproto_collect_ofmonitor_initial_rules(monitors[i], &rules);
3651 }
3652
3653 ofpmp_init(&replies, oh);
3654 ofmonitor_compose_refresh_updates(&rules, &replies);
3655 ofconn_send_replies(ofconn, &replies);
3656
3657 free(monitors);
3658
3659 return 0;
3660
3661 error:
3662 for (i = 0; i < n_monitors; i++) {
3663 ofmonitor_destroy(monitors[i]);
3664 }
3665 free(monitors);
3666 return error;
3667 }
3668
3669 static enum ofperr
3670 handle_flow_monitor_cancel(struct ofconn *ofconn, const struct ofp_header *oh)
3671 {
3672 struct ofmonitor *m;
3673 uint32_t id;
3674
3675 id = ofputil_decode_flow_monitor_cancel(oh);
3676 m = ofmonitor_lookup(ofconn, id);
3677 if (!m) {
3678 return OFPERR_NXBRC_FM_BAD_ID;
3679 }
3680
3681 ofmonitor_destroy(m);
3682 return 0;
3683 }
3684
3685 static enum ofperr
3686 handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg)
3687 {
3688 const struct ofp_header *oh = msg->data;
3689 enum ofptype type;
3690 enum ofperr error;
3691
3692 error = ofptype_decode(&type, oh);
3693 if (error) {
3694 return error;
3695 }
3696
3697 switch (type) {
3698 /* OpenFlow requests. */
3699 case OFPTYPE_ECHO_REQUEST:
3700 return handle_echo_request(ofconn, oh);
3701
3702 case OFPTYPE_FEATURES_REQUEST:
3703 return handle_features_request(ofconn, oh);
3704
3705 case OFPTYPE_GET_CONFIG_REQUEST:
3706 return handle_get_config_request(ofconn, oh);
3707
3708 case OFPTYPE_SET_CONFIG:
3709 return handle_set_config(ofconn, oh);
3710
3711 case OFPTYPE_PACKET_OUT:
3712 return handle_packet_out(ofconn, oh);
3713
3714 case OFPTYPE_PORT_MOD:
3715 return handle_port_mod(ofconn, oh);
3716
3717 case OFPTYPE_FLOW_MOD:
3718 return handle_flow_mod(ofconn, oh);
3719
3720 case OFPTYPE_BARRIER_REQUEST:
3721 return handle_barrier_request(ofconn, oh);
3722
3723 /* OpenFlow replies. */
3724 case OFPTYPE_ECHO_REPLY:
3725 return 0;
3726
3727 /* Nicira extension requests. */
3728 case OFPTYPE_ROLE_REQUEST:
3729 return handle_role_request(ofconn, oh);
3730
3731 case OFPTYPE_FLOW_MOD_TABLE_ID:
3732 return handle_nxt_flow_mod_table_id(ofconn, oh);
3733
3734 case OFPTYPE_SET_FLOW_FORMAT:
3735 return handle_nxt_set_flow_format(ofconn, oh);
3736
3737 case OFPTYPE_SET_PACKET_IN_FORMAT:
3738 return handle_nxt_set_packet_in_format(ofconn, oh);
3739
3740 case OFPTYPE_SET_CONTROLLER_ID:
3741 return handle_nxt_set_controller_id(ofconn, oh);
3742
3743 case OFPTYPE_FLOW_AGE:
3744 /* Nothing to do. */
3745 return 0;
3746
3747 case OFPTYPE_FLOW_MONITOR_CANCEL:
3748 return handle_flow_monitor_cancel(ofconn, oh);
3749
3750 case OFPTYPE_SET_ASYNC_CONFIG:
3751 return handle_nxt_set_async_config(ofconn, oh);
3752
3753 /* Statistics requests. */
3754 case OFPTYPE_DESC_STATS_REQUEST:
3755 return handle_desc_stats_request(ofconn, oh);
3756
3757 case OFPTYPE_FLOW_STATS_REQUEST:
3758 return handle_flow_stats_request(ofconn, oh);
3759
3760 case OFPTYPE_AGGREGATE_STATS_REQUEST:
3761 return handle_aggregate_stats_request(ofconn, oh);
3762
3763 case OFPTYPE_TABLE_STATS_REQUEST:
3764 return handle_table_stats_request(ofconn, oh);
3765
3766 case OFPTYPE_PORT_STATS_REQUEST:
3767 return handle_port_stats_request(ofconn, oh);
3768
3769 case OFPTYPE_QUEUE_STATS_REQUEST:
3770 return handle_queue_stats_request(ofconn, oh);
3771
3772 case OFPTYPE_PORT_DESC_STATS_REQUEST:
3773 return handle_port_desc_stats_request(ofconn, oh);
3774
3775 case OFPTYPE_FLOW_MONITOR_STATS_REQUEST:
3776 return handle_flow_monitor_request(ofconn, oh);
3777
3778 case OFPTYPE_HELLO:
3779 case OFPTYPE_ERROR:
3780 case OFPTYPE_FEATURES_REPLY:
3781 case OFPTYPE_GET_CONFIG_REPLY:
3782 case OFPTYPE_PACKET_IN:
3783 case OFPTYPE_FLOW_REMOVED:
3784 case OFPTYPE_PORT_STATUS:
3785 case OFPTYPE_BARRIER_REPLY:
3786 case OFPTYPE_DESC_STATS_REPLY:
3787 case OFPTYPE_FLOW_STATS_REPLY:
3788 case OFPTYPE_QUEUE_STATS_REPLY:
3789 case OFPTYPE_PORT_STATS_REPLY:
3790 case OFPTYPE_TABLE_STATS_REPLY:
3791 case OFPTYPE_AGGREGATE_STATS_REPLY:
3792 case OFPTYPE_PORT_DESC_STATS_REPLY:
3793 case OFPTYPE_ROLE_REPLY:
3794 case OFPTYPE_FLOW_MONITOR_PAUSED:
3795 case OFPTYPE_FLOW_MONITOR_RESUMED:
3796 case OFPTYPE_FLOW_MONITOR_STATS_REPLY:
3797 default:
3798 return OFPERR_OFPBRC_BAD_TYPE;
3799 }
3800 }
3801
3802 static bool
3803 handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
3804 {
3805 int error = handle_openflow__(ofconn, ofp_msg);
3806 if (error && error != OFPROTO_POSTPONE) {
3807 ofconn_send_error(ofconn, ofp_msg->data, error);
3808 }
3809 COVERAGE_INC(ofproto_recv_openflow);
3810 return error != OFPROTO_POSTPONE;
3811 }
3812 \f
3813 /* Asynchronous operations. */
3814
3815 /* Creates and returns a new ofopgroup that is not associated with any
3816 * OpenFlow connection.
3817 *
3818 * The caller should add operations to the returned group with
3819 * ofoperation_create() and then submit it with ofopgroup_submit(). */
3820 static struct ofopgroup *
3821 ofopgroup_create_unattached(struct ofproto *ofproto)
3822 {
3823 struct ofopgroup *group = xzalloc(sizeof *group);
3824 group->ofproto = ofproto;
3825 list_init(&group->ofproto_node);
3826 list_init(&group->ops);
3827 list_init(&group->ofconn_node);
3828 return group;
3829 }
3830
3831 /* Creates and returns a new ofopgroup for 'ofproto'.
3832 *
3833 * If 'ofconn' is NULL, the new ofopgroup is not associated with any OpenFlow
3834 * connection. The 'request' and 'buffer_id' arguments are ignored.
3835 *
3836 * If 'ofconn' is nonnull, then the new ofopgroup is associated with 'ofconn'.
3837 * If the ofopgroup eventually fails, then the error reply will include
3838 * 'request'. If the ofopgroup eventually succeeds, then the packet with
3839 * buffer id 'buffer_id' on 'ofconn' will be sent by 'ofconn''s ofproto.
3840 *
3841 * The caller should add operations to the returned group with
3842 * ofoperation_create() and then submit it with ofopgroup_submit(). */
3843 static struct ofopgroup *
3844 ofopgroup_create(struct ofproto *ofproto, struct ofconn *ofconn,
3845 const struct ofp_header *request, uint32_t buffer_id)
3846 {
3847 struct ofopgroup *group = ofopgroup_create_unattached(ofproto);
3848 if (ofconn) {
3849 size_t request_len = ntohs(request->length);
3850
3851 assert(ofconn_get_ofproto(ofconn) == ofproto);
3852
3853 ofconn_add_opgroup(ofconn, &group->ofconn_node);
3854 group->ofconn = ofconn;
3855 group->request = xmemdup(request, MIN(request_len, 64));
3856 group->buffer_id = buffer_id;
3857 }
3858 return group;
3859 }
3860
3861 /* Submits 'group' for processing.
3862 *
3863 * If 'group' contains no operations (e.g. none were ever added, or all of the
3864 * ones that were added completed synchronously), then it is destroyed
3865 * immediately. Otherwise it is added to the ofproto's list of pending
3866 * groups. */
3867 static void
3868 ofopgroup_submit(struct ofopgroup *group)
3869 {
3870 if (!group->n_running) {
3871 ofopgroup_complete(group);
3872 } else {
3873 list_push_back(&group->ofproto->pending, &group->ofproto_node);
3874 group->ofproto->n_pending++;
3875 }
3876 }
3877
3878 static void
3879 ofopgroup_complete(struct ofopgroup *group)
3880 {
3881 struct ofproto *ofproto = group->ofproto;
3882
3883 struct ofconn *abbrev_ofconn;
3884 ovs_be32 abbrev_xid;
3885
3886 struct ofoperation *op, *next_op;
3887 int error;
3888
3889 assert(!group->n_running);
3890
3891 error = 0;
3892 LIST_FOR_EACH (op, group_node, &group->ops) {
3893 if (op->error) {
3894 error = op->error;
3895 break;
3896 }
3897 }
3898
3899 if (!error && group->ofconn && group->buffer_id != UINT32_MAX) {
3900 LIST_FOR_EACH (op, group_node, &group->ops) {
3901 if (op->type != OFOPERATION_DELETE) {
3902 struct ofpbuf *packet;
3903 uint16_t in_port;
3904
3905 error = ofconn_pktbuf_retrieve(group->ofconn, group->buffer_id,
3906 &packet, &in_port);
3907 if (packet) {
3908 assert(!error);
3909 error = rule_execute(op->rule, in_port, packet);
3910 }
3911 break;
3912 }
3913 }
3914 }
3915
3916 if (!error && !list_is_empty(&group->ofconn_node)) {
3917 abbrev_ofconn = group->ofconn;
3918 abbrev_xid = group->request->xid;
3919 } else {
3920 abbrev_ofconn = NULL;
3921 abbrev_xid = htonl(0);
3922 }
3923 LIST_FOR_EACH_SAFE (op, next_op, group_node, &group->ops) {
3924 struct rule *rule = op->rule;
3925
3926 if (!op->error && !ofproto_rule_is_hidden(rule)) {
3927 /* Check that we can just cast from ofoperation_type to
3928 * nx_flow_update_event. */
3929 BUILD_ASSERT_DECL((enum nx_flow_update_event) OFOPERATION_ADD
3930 == NXFME_ADDED);
3931 BUILD_ASSERT_DECL((enum nx_flow_update_event) OFOPERATION_DELETE
3932 == NXFME_DELETED);
3933 BUILD_ASSERT_DECL((enum nx_flow_update_event) OFOPERATION_MODIFY
3934 == NXFME_MODIFIED);
3935
3936 ofmonitor_report(ofproto->connmgr, rule,
3937 (enum nx_flow_update_event) op->type,
3938 op->reason, abbrev_ofconn, abbrev_xid);
3939 }
3940
3941 rule->pending = NULL;
3942
3943 switch (op->type) {
3944 case OFOPERATION_ADD:
3945 if (!op->error) {
3946 ofproto_rule_destroy__(op->victim);
3947 if ((rule->cr.wc.vlan_tci_mask & htons(VLAN_VID_MASK))
3948 == htons(VLAN_VID_MASK)) {
3949 if (ofproto->vlan_bitmap) {
3950 uint16_t vid = vlan_tci_to_vid(rule->cr.flow.vlan_tci);
3951
3952 if (!bitmap_is_set(ofproto->vlan_bitmap, vid)) {
3953 bitmap_set1(ofproto->vlan_bitmap, vid);
3954 ofproto->vlans_changed = true;
3955 }
3956 } else {
3957 ofproto->vlans_changed = true;
3958 }
3959 }
3960 } else {
3961 oftable_substitute_rule(rule, op->victim);
3962 ofproto_rule_destroy__(rule);
3963 }
3964 break;
3965
3966 case OFOPERATION_DELETE:
3967 assert(!op->error);
3968 ofproto_rule_destroy__(rule);
3969 op->rule = NULL;
3970 break;
3971
3972 case OFOPERATION_MODIFY:
3973 if (!op->error) {
3974 rule->modified = time_msec();
3975 } else {
3976 rule->flow_cookie = op->flow_cookie;
3977 if (op->ofpacts) {
3978 free(rule->ofpacts);
3979 rule->ofpacts = op->ofpacts;
3980 rule->ofpacts_len = op->ofpacts_len;
3981 op->ofpacts = NULL;
3982 op->ofpacts_len = 0;
3983 }
3984 }
3985 break;
3986
3987 default:
3988 NOT_REACHED();
3989 }
3990
3991 ofoperation_destroy(op);
3992 }
3993
3994 ofmonitor_flush(ofproto->connmgr);
3995
3996 if (!list_is_empty(&group->ofproto_node)) {
3997 assert(ofproto->n_pending > 0);
3998 ofproto->n_pending--;
3999 list_remove(&group->ofproto_node);
4000 }
4001 if (!list_is_empty(&group->ofconn_node)) {
4002 list_remove(&group->ofconn_node);
4003 if (error) {
4004 ofconn_send_error(group->ofconn, group->request, error);
4005 }
4006 connmgr_retry(ofproto->connmgr);
4007 }
4008 free(group->request);
4009 free(group);
4010 }
4011
4012 /* Initiates a new operation on 'rule', of the specified 'type', within
4013 * 'group'. Prior to calling, 'rule' must not have any pending operation.
4014 *
4015 * For a 'type' of OFOPERATION_DELETE, 'reason' should specify the reason that
4016 * the flow is being deleted. For other 'type's, 'reason' is ignored (use 0).
4017 *
4018 * Returns the newly created ofoperation (which is also available as
4019 * rule->pending). */
4020 static struct ofoperation *
4021 ofoperation_create(struct ofopgroup *group, struct rule *rule,
4022 enum ofoperation_type type,
4023 enum ofp_flow_removed_reason reason)
4024 {
4025 struct ofproto *ofproto = group->ofproto;
4026 struct ofoperation *op;
4027
4028 assert(!rule->pending);
4029
4030 op = rule->pending = xzalloc(sizeof *op);
4031 op->group = group;
4032 list_push_back(&group->ops, &op->group_node);
4033 op->rule = rule;
4034 op->type = type;
4035 op->reason = reason;
4036 op->flow_cookie = rule->flow_cookie;
4037
4038 group->n_running++;
4039
4040 if (type == OFOPERATION_DELETE) {
4041 hmap_insert(&ofproto->deletions, &op->hmap_node,
4042 cls_rule_hash(&rule->cr, rule->table_id));
4043 }
4044
4045 return op;
4046 }
4047
4048 static void
4049 ofoperation_destroy(struct ofoperation *op)
4050 {
4051 struct ofopgroup *group = op->group;
4052
4053 if (op->rule) {
4054 op->rule->pending = NULL;
4055 }
4056 if (op->type == OFOPERATION_DELETE) {
4057 hmap_remove(&group->ofproto->deletions, &op->hmap_node);
4058 }
4059 list_remove(&op->group_node);
4060 free(op->ofpacts);
4061 free(op);
4062 }
4063
4064 /* Indicates that 'op' completed with status 'error', which is either 0 to
4065 * indicate success or an OpenFlow error code on failure.
4066 *
4067 * If 'error' is 0, indicating success, the operation will be committed
4068 * permanently to the flow table. There is one interesting subcase:
4069 *
4070 * - If 'op' is an "add flow" operation that is replacing an existing rule in
4071 * the flow table (the "victim" rule) by a new one, then the caller must
4072 * have uninitialized any derived state in the victim rule, as in step 5 in
4073 * the "Life Cycle" in ofproto/ofproto-provider.h. ofoperation_complete()
4074 * performs steps 6 and 7 for the victim rule, most notably by calling its
4075 * ->rule_dealloc() function.
4076 *
4077 * If 'error' is nonzero, then generally the operation will be rolled back:
4078 *
4079 * - If 'op' is an "add flow" operation, ofproto removes the new rule or
4080 * restores the original rule. The caller must have uninitialized any
4081 * derived state in the new rule, as in step 5 of in the "Life Cycle" in
4082 * ofproto/ofproto-provider.h. ofoperation_complete() performs steps 6 and
4083 * and 7 for the new rule, calling its ->rule_dealloc() function.
4084 *
4085 * - If 'op' is a "modify flow" operation, ofproto restores the original
4086 * actions.
4087 *
4088 * - 'op' must not be a "delete flow" operation. Removing a rule is not
4089 * allowed to fail. It must always succeed.
4090 *
4091 * Please see the large comment in ofproto/ofproto-provider.h titled
4092 * "Asynchronous Operation Support" for more information. */
4093 void
4094 ofoperation_complete(struct ofoperation *op, enum ofperr error)
4095 {
4096 struct ofopgroup *group = op->group;
4097
4098 assert(op->rule->pending == op);
4099 assert(group->n_running > 0);
4100 assert(!error || op->type != OFOPERATION_DELETE);
4101
4102 op->error = error;
4103 if (!--group->n_running && !list_is_empty(&group->ofproto_node)) {
4104 ofopgroup_complete(group);
4105 }
4106 }
4107
4108 struct rule *
4109 ofoperation_get_victim(struct ofoperation *op)
4110 {
4111 assert(op->type == OFOPERATION_ADD);
4112 return op->victim;
4113 }
4114 \f
4115 static uint64_t
4116 pick_datapath_id(const struct ofproto *ofproto)
4117 {
4118 const struct ofport *port;
4119
4120 port = ofproto_get_port(ofproto, OFPP_LOCAL);
4121 if (port) {
4122 uint8_t ea[ETH_ADDR_LEN];
4123 int error;
4124
4125 error = netdev_get_etheraddr(port->netdev, ea);
4126 if (!error) {
4127 return eth_addr_to_uint64(ea);
4128 }
4129 VLOG_WARN("%s: could not get MAC address for %s (%s)",
4130 ofproto->name, netdev_get_name(port->netdev),
4131 strerror(error));
4132 }
4133 return ofproto->fallback_dpid;
4134 }
4135
4136 static uint64_t
4137 pick_fallback_dpid(void)
4138 {
4139 uint8_t ea[ETH_ADDR_LEN];
4140 eth_addr_nicira_random(ea);
4141 return eth_addr_to_uint64(ea);
4142 }
4143 \f
4144 /* Table overflow policy. */
4145
4146 /* Chooses and returns a rule to evict from 'table'. Returns NULL if the table
4147 * is not configured to evict rules or if the table contains no evictable
4148 * rules. (Rules with 'evictable' set to false or with no timeouts are not
4149 * evictable.) */
4150 static struct rule *
4151 choose_rule_to_evict(struct oftable *table)
4152 {
4153 struct eviction_group *evg;
4154
4155 if (!table->eviction_fields) {
4156 return NULL;
4157 }
4158
4159 /* In the common case, the outer and inner loops here will each be entered
4160 * exactly once:
4161 *
4162 * - The inner loop normally "return"s in its first iteration. If the
4163 * eviction group has any evictable rules, then it always returns in
4164 * some iteration.
4165 *
4166 * - The outer loop only iterates more than once if the largest eviction
4167 * group has no evictable rules.
4168 *
4169 * - The outer loop can exit only if table's 'max_flows' is all filled up
4170 * by unevictable rules'. */
4171 HEAP_FOR_EACH (evg, size_node, &table->eviction_groups_by_size) {
4172 struct rule *rule;
4173
4174 HEAP_FOR_EACH (rule, evg_node, &evg->rules) {
4175 if (rule->evictable) {
4176 return rule;
4177 }
4178 }
4179 }
4180
4181 return NULL;
4182 }
4183
4184 /* Searches 'ofproto' for tables that have more flows than their configured
4185 * maximum and that have flow eviction enabled, and evicts as many flows as
4186 * necessary and currently feasible from them.
4187 *
4188 * This triggers only when an OpenFlow table has N flows in it and then the
4189 * client configures a maximum number of flows less than N. */
4190 static void
4191 ofproto_evict(struct ofproto *ofproto)
4192 {
4193 struct ofopgroup *group;
4194 struct oftable *table;
4195
4196 group = ofopgroup_create_unattached(ofproto);
4197 OFPROTO_FOR_EACH_TABLE (table, ofproto) {
4198 while (classifier_count(&table->cls) > table->max_flows
4199 && table->eviction_fields) {
4200 struct rule *rule;
4201
4202 rule = choose_rule_to_evict(table);
4203 if (!rule || rule->pending) {
4204 break;
4205 }
4206
4207 ofoperation_create(group, rule,
4208 OFOPERATION_DELETE, OFPRR_EVICTION);
4209 oftable_remove_rule(rule);
4210 ofproto->ofproto_class->rule_destruct(rule);
4211 }
4212 }
4213 ofopgroup_submit(group);
4214 }
4215 \f
4216 /* Eviction groups. */
4217
4218 /* Returns the priority to use for an eviction_group that contains 'n_rules'
4219 * rules. The priority contains low-order random bits to ensure that eviction
4220 * groups with the same number of rules are prioritized randomly. */
4221 static uint32_t
4222 eviction_group_priority(size_t n_rules)
4223 {
4224 uint16_t size = MIN(UINT16_MAX, n_rules);
4225 return (size << 16) | random_uint16();
4226 }
4227
4228 /* Updates 'evg', an eviction_group within 'table', following a change that
4229 * adds or removes rules in 'evg'. */
4230 static void
4231 eviction_group_resized(struct oftable *table, struct eviction_group *evg)
4232 {
4233 heap_change(&table->eviction_groups_by_size, &evg->size_node,
4234 eviction_group_priority(heap_count(&evg->rules)));
4235 }
4236
4237 /* Destroys 'evg', an eviction_group within 'table':
4238 *
4239 * - Removes all the rules, if any, from 'evg'. (It doesn't destroy the
4240 * rules themselves, just removes them from the eviction group.)
4241 *
4242 * - Removes 'evg' from 'table'.
4243 *
4244 * - Frees 'evg'. */
4245 static void
4246 eviction_group_destroy(struct oftable *table, struct eviction_group *evg)
4247 {
4248 while (!heap_is_empty(&evg->rules)) {
4249 struct rule *rule;
4250
4251 rule = CONTAINER_OF(heap_pop(&evg->rules), struct rule, evg_node);
4252 rule->eviction_group = NULL;
4253 }
4254 hmap_remove(&table->eviction_groups_by_id, &evg->id_node);
4255 heap_remove(&table->eviction_groups_by_size, &evg->size_node);
4256 heap_destroy(&evg->rules);
4257 free(evg);
4258 }
4259
4260 /* Removes 'rule' from its eviction group, if any. */
4261 static void
4262 eviction_group_remove_rule(struct rule *rule)
4263 {
4264 if (rule->eviction_group) {
4265 struct oftable *table = &rule->ofproto->tables[rule->table_id];
4266 struct eviction_group *evg = rule->eviction_group;
4267
4268 rule->eviction_group = NULL;
4269 heap_remove(&evg->rules, &rule->evg_node);
4270 if (heap_is_empty(&evg->rules)) {
4271 eviction_group_destroy(table, evg);
4272 } else {
4273 eviction_group_resized(table, evg);
4274 }
4275 }
4276 }
4277
4278 /* Hashes the 'rule''s values for the eviction_fields of 'rule''s table, and
4279 * returns the hash value. */
4280 static uint32_t
4281 eviction_group_hash_rule(struct rule *rule)
4282 {
4283 struct oftable *table = &rule->ofproto->tables[rule->table_id];
4284 const struct mf_subfield *sf;
4285 uint32_t hash;
4286
4287 hash = table->eviction_group_id_basis;
4288 for (sf = table->eviction_fields;
4289 sf < &table->eviction_fields[table->n_eviction_fields];
4290 sf++)
4291 {
4292 if (mf_are_prereqs_ok(sf->field, &rule->cr.flow)) {
4293 union mf_value value;
4294
4295 mf_get_value(sf->field, &rule->cr.flow, &value);
4296 if (sf->ofs) {
4297 bitwise_zero(&value, sf->field->n_bytes, 0, sf->ofs);
4298 }
4299 if (sf->ofs + sf->n_bits < sf->field->n_bytes * 8) {
4300 unsigned int start = sf->ofs + sf->n_bits;
4301 bitwise_zero(&value, sf->field->n_bytes, start,
4302 sf->field->n_bytes * 8 - start);
4303 }
4304 hash = hash_bytes(&value, sf->field->n_bytes, hash);
4305 } else {
4306 hash = hash_int(hash, 0);
4307 }
4308 }
4309
4310 return hash;
4311 }
4312
4313 /* Returns an eviction group within 'table' with the given 'id', creating one
4314 * if necessary. */
4315 static struct eviction_group *
4316 eviction_group_find(struct oftable *table, uint32_t id)
4317 {
4318 struct eviction_group *evg;
4319
4320 HMAP_FOR_EACH_WITH_HASH (evg, id_node, id, &table->eviction_groups_by_id) {
4321 return evg;
4322 }
4323
4324 evg = xmalloc(sizeof *evg);
4325 hmap_insert(&table->eviction_groups_by_id, &evg->id_node, id);
4326 heap_insert(&table->eviction_groups_by_size, &evg->size_node,
4327 eviction_group_priority(0));
4328 heap_init(&evg->rules);
4329
4330 return evg;
4331 }
4332
4333 /* Returns an eviction priority for 'rule'. The return value should be
4334 * interpreted so that higher priorities make a rule more attractive candidates
4335 * for eviction. */
4336 static uint32_t
4337 rule_eviction_priority(struct rule *rule)
4338 {
4339 long long int hard_expiration;
4340 long long int idle_expiration;
4341 long long int expiration;
4342 uint32_t expiration_offset;
4343
4344 /* Calculate time of expiration. */
4345 hard_expiration = (rule->hard_timeout
4346 ? rule->modified + rule->hard_timeout * 1000
4347 : LLONG_MAX);
4348 idle_expiration = (rule->idle_timeout
4349 ? rule->used + rule->idle_timeout * 1000
4350 : LLONG_MAX);
4351 expiration = MIN(hard_expiration, idle_expiration);
4352 if (expiration == LLONG_MAX) {
4353 return 0;
4354 }
4355
4356 /* Calculate the time of expiration as a number of (approximate) seconds
4357 * after program startup.
4358 *
4359 * This should work OK for program runs that last UINT32_MAX seconds or
4360 * less. Therefore, please restart OVS at least once every 136 years. */
4361 expiration_offset = (expiration >> 10) - (time_boot_msec() >> 10);
4362
4363 /* Invert the expiration offset because we're using a max-heap. */
4364 return UINT32_MAX - expiration_offset;
4365 }
4366
4367 /* Adds 'rule' to an appropriate eviction group for its oftable's
4368 * configuration. Does nothing if 'rule''s oftable doesn't have eviction
4369 * enabled, or if 'rule' is a permanent rule (one that will never expire on its
4370 * own).
4371 *
4372 * The caller must ensure that 'rule' is not already in an eviction group. */
4373 static void
4374 eviction_group_add_rule(struct rule *rule)
4375 {
4376 struct ofproto *ofproto = rule->ofproto;
4377 struct oftable *table = &ofproto->tables[rule->table_id];
4378
4379 if (table->eviction_fields
4380 && (rule->hard_timeout || rule->idle_timeout)) {
4381 struct eviction_group *evg;
4382
4383 evg = eviction_group_find(table, eviction_group_hash_rule(rule));
4384
4385 rule->eviction_group = evg;
4386 heap_insert(&evg->rules, &rule->evg_node,
4387 rule_eviction_priority(rule));
4388 eviction_group_resized(table, evg);
4389 }
4390 }
4391 \f
4392 /* oftables. */
4393
4394 /* Initializes 'table'. */
4395 static void
4396 oftable_init(struct oftable *table)
4397 {
4398 memset(table, 0, sizeof *table);
4399 classifier_init(&table->cls);
4400 table->max_flows = UINT_MAX;
4401 }
4402
4403 /* Destroys 'table', including its classifier and eviction groups.
4404 *
4405 * The caller is responsible for freeing 'table' itself. */
4406 static void
4407 oftable_destroy(struct oftable *table)
4408 {
4409 assert(classifier_is_empty(&table->cls));
4410 oftable_disable_eviction(table);
4411 classifier_destroy(&table->cls);
4412 free(table->name);
4413 }
4414
4415 /* Changes the name of 'table' to 'name'. If 'name' is NULL or the empty
4416 * string, then 'table' will use its default name.
4417 *
4418 * This only affects the name exposed for a table exposed through the OpenFlow
4419 * OFPST_TABLE (as printed by "ovs-ofctl dump-tables"). */
4420 static void
4421 oftable_set_name(struct oftable *table, const char *name)
4422 {
4423 if (name && name[0]) {
4424 int len = strnlen(name, OFP_MAX_TABLE_NAME_LEN);
4425 if (!table->name || strncmp(name, table->name, len)) {
4426 free(table->name);
4427 table->name = xmemdup0(name, len);
4428 }
4429 } else {
4430 free(table->name);
4431 table->name = NULL;
4432 }
4433 }
4434
4435 /* oftables support a choice of two policies when adding a rule would cause the
4436 * number of flows in the table to exceed the configured maximum number: either
4437 * they can refuse to add the new flow or they can evict some existing flow.
4438 * This function configures the former policy on 'table'. */
4439 static void
4440 oftable_disable_eviction(struct oftable *table)
4441 {
4442 if (table->eviction_fields) {
4443 struct eviction_group *evg, *next;
4444
4445 HMAP_FOR_EACH_SAFE (evg, next, id_node,
4446 &table->eviction_groups_by_id) {
4447 eviction_group_destroy(table, evg);
4448 }
4449 hmap_destroy(&table->eviction_groups_by_id);
4450 heap_destroy(&table->eviction_groups_by_size);
4451
4452 free(table->eviction_fields);
4453 table->eviction_fields = NULL;
4454 table->n_eviction_fields = 0;
4455 }
4456 }
4457
4458 /* oftables support a choice of two policies when adding a rule would cause the
4459 * number of flows in the table to exceed the configured maximum number: either
4460 * they can refuse to add the new flow or they can evict some existing flow.
4461 * This function configures the latter policy on 'table', with fairness based
4462 * on the values of the 'n_fields' fields specified in 'fields'. (Specifying
4463 * 'n_fields' as 0 disables fairness.) */
4464 static void
4465 oftable_enable_eviction(struct oftable *table,
4466 const struct mf_subfield *fields, size_t n_fields)
4467 {
4468 struct cls_cursor cursor;
4469 struct rule *rule;
4470
4471 if (table->eviction_fields
4472 && n_fields == table->n_eviction_fields
4473 && (!n_fields
4474 || !memcmp(fields, table->eviction_fields,
4475 n_fields * sizeof *fields))) {
4476 /* No change. */
4477 return;
4478 }
4479
4480 oftable_disable_eviction(table);
4481
4482 table->n_eviction_fields = n_fields;
4483 table->eviction_fields = xmemdup(fields, n_fields * sizeof *fields);
4484
4485 table->eviction_group_id_basis = random_uint32();
4486 hmap_init(&table->eviction_groups_by_id);
4487 heap_init(&table->eviction_groups_by_size);
4488
4489 cls_cursor_init(&cursor, &table->cls, NULL);
4490 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
4491 eviction_group_add_rule(rule);
4492 }
4493 }
4494
4495 /* Removes 'rule' from the oftable that contains it. */
4496 static void
4497 oftable_remove_rule(struct rule *rule)
4498 {
4499 struct ofproto *ofproto = rule->ofproto;
4500 struct oftable *table = &ofproto->tables[rule->table_id];
4501
4502 classifier_remove(&table->cls, &rule->cr);
4503 eviction_group_remove_rule(rule);
4504 }
4505
4506 /* Inserts 'rule' into its oftable. Removes any existing rule from 'rule''s
4507 * oftable that has an identical cls_rule. Returns the rule that was removed,
4508 * if any, and otherwise NULL. */
4509 static struct rule *
4510 oftable_replace_rule(struct rule *rule)
4511 {
4512 struct ofproto *ofproto = rule->ofproto;
4513 struct oftable *table = &ofproto->tables[rule->table_id];
4514 struct rule *victim;
4515
4516 victim = rule_from_cls_rule(classifier_replace(&table->cls, &rule->cr));
4517 if (victim) {
4518 eviction_group_remove_rule(victim);
4519 }
4520 eviction_group_add_rule(rule);
4521 return victim;
4522 }
4523
4524 /* Removes 'old' from its oftable then, if 'new' is nonnull, inserts 'new'. */
4525 static void
4526 oftable_substitute_rule(struct rule *old, struct rule *new)
4527 {
4528 if (new) {
4529 oftable_replace_rule(new);
4530 } else {
4531 oftable_remove_rule(old);
4532 }
4533 }
4534 \f
4535 /* unixctl commands. */
4536
4537 struct ofproto *
4538 ofproto_lookup(const char *name)
4539 {
4540 struct ofproto *ofproto;
4541
4542 HMAP_FOR_EACH_WITH_HASH (ofproto, hmap_node, hash_string(name, 0),
4543 &all_ofprotos) {
4544 if (!strcmp(ofproto->name, name)) {
4545 return ofproto;
4546 }
4547 }
4548 return NULL;
4549 }
4550
4551 static void
4552 ofproto_unixctl_list(struct unixctl_conn *conn, int argc OVS_UNUSED,
4553 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
4554 {
4555 struct ofproto *ofproto;
4556 struct ds results;
4557
4558 ds_init(&results);
4559 HMAP_FOR_EACH (ofproto, hmap_node, &all_ofprotos) {
4560 ds_put_format(&results, "%s\n", ofproto->name);
4561 }
4562 unixctl_command_reply(conn, ds_cstr(&results));
4563 ds_destroy(&results);
4564 }
4565
4566 static void
4567 ofproto_unixctl_init(void)
4568 {
4569 static bool registered;
4570 if (registered) {
4571 return;
4572 }
4573 registered = true;
4574
4575 unixctl_command_register("ofproto/list", "", 0, 0,
4576 ofproto_unixctl_list, NULL);
4577 }
4578 \f
4579 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
4580 *
4581 * This is deprecated. It is only for compatibility with broken device drivers
4582 * in old versions of Linux that do not properly support VLANs when VLAN
4583 * devices are not used. When broken device drivers are no longer in
4584 * widespread use, we will delete these interfaces. */
4585
4586 /* Sets a 1-bit in the 4096-bit 'vlan_bitmap' for each VLAN ID that is matched
4587 * (exactly) by an OpenFlow rule in 'ofproto'. */
4588 void
4589 ofproto_get_vlan_usage(struct ofproto *ofproto, unsigned long int *vlan_bitmap)
4590 {
4591 const struct oftable *oftable;
4592
4593 free(ofproto->vlan_bitmap);
4594 ofproto->vlan_bitmap = bitmap_allocate(4096);
4595 ofproto->vlans_changed = false;
4596
4597 OFPROTO_FOR_EACH_TABLE (oftable, ofproto) {
4598 const struct cls_table *table;
4599
4600 HMAP_FOR_EACH (table, hmap_node, &oftable->cls.tables) {
4601 if ((table->wc.vlan_tci_mask & htons(VLAN_VID_MASK))
4602 == htons(VLAN_VID_MASK)) {
4603 const struct cls_rule *rule;
4604
4605 HMAP_FOR_EACH (rule, hmap_node, &table->rules) {
4606 uint16_t vid = vlan_tci_to_vid(rule->flow.vlan_tci);
4607 bitmap_set1(vlan_bitmap, vid);
4608 bitmap_set1(ofproto->vlan_bitmap, vid);
4609 }
4610 }
4611 }
4612 }
4613 }
4614
4615 /* Returns true if new VLANs have come into use by the flow table since the
4616 * last call to ofproto_get_vlan_usage().
4617 *
4618 * We don't track when old VLANs stop being used. */
4619 bool
4620 ofproto_has_vlan_usage_changed(const struct ofproto *ofproto)
4621 {
4622 return ofproto->vlans_changed;
4623 }
4624
4625 /* Configures a VLAN splinter binding between the ports identified by OpenFlow
4626 * port numbers 'vlandev_ofp_port' and 'realdev_ofp_port'. If
4627 * 'realdev_ofp_port' is nonzero, then the VLAN device is enslaved to the real
4628 * device as a VLAN splinter for VLAN ID 'vid'. If 'realdev_ofp_port' is zero,
4629 * then the VLAN device is un-enslaved. */
4630 int
4631 ofproto_port_set_realdev(struct ofproto *ofproto, uint16_t vlandev_ofp_port,
4632 uint16_t realdev_ofp_port, int vid)
4633 {
4634 struct ofport *ofport;
4635 int error;
4636
4637 assert(vlandev_ofp_port != realdev_ofp_port);
4638
4639 ofport = ofproto_get_port(ofproto, vlandev_ofp_port);
4640 if (!ofport) {
4641 VLOG_WARN("%s: cannot set realdev on nonexistent port %"PRIu16,
4642 ofproto->name, vlandev_ofp_port);
4643 return EINVAL;
4644 }
4645
4646 if (!ofproto->ofproto_class->set_realdev) {
4647 if (!vlandev_ofp_port) {
4648 return 0;
4649 }
4650 VLOG_WARN("%s: vlan splinters not supported", ofproto->name);
4651 return EOPNOTSUPP;
4652 }
4653
4654 error = ofproto->ofproto_class->set_realdev(ofport, realdev_ofp_port, vid);
4655 if (error) {
4656 VLOG_WARN("%s: setting realdev on port %"PRIu16" (%s) failed (%s)",
4657 ofproto->name, vlandev_ofp_port,
4658 netdev_get_name(ofport->netdev), strerror(error));
4659 }
4660 return error;
4661 }