]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
Merge citrix branch into master.
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009 Nicira Networks.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "ofproto.h"
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <net/if.h>
22 #include <netinet/in.h>
23 #include <stdbool.h>
24 #include <stdlib.h>
25 #include "classifier.h"
26 #include "coverage.h"
27 #include "discovery.h"
28 #include "dpif.h"
29 #include "dynamic-string.h"
30 #include "executer.h"
31 #include "fail-open.h"
32 #include "in-band.h"
33 #include "mac-learning.h"
34 #include "netdev.h"
35 #include "netflow.h"
36 #include "odp-util.h"
37 #include "ofp-print.h"
38 #include "ofpbuf.h"
39 #include "openflow/nicira-ext.h"
40 #include "openflow/openflow.h"
41 #include "openflow/openflow-mgmt.h"
42 #include "openvswitch/datapath-protocol.h"
43 #include "packets.h"
44 #include "pinsched.h"
45 #include "pktbuf.h"
46 #include "poll-loop.h"
47 #include "port-array.h"
48 #include "rconn.h"
49 #include "shash.h"
50 #include "status.h"
51 #include "stp.h"
52 #include "svec.h"
53 #include "tag.h"
54 #include "timeval.h"
55 #include "unixctl.h"
56 #include "vconn.h"
57 #include "vconn-ssl.h"
58 #include "xtoxll.h"
59
60 #define THIS_MODULE VLM_ofproto
61 #include "vlog.h"
62
63 enum {
64 DP_GROUP_FLOOD = 0,
65 DP_GROUP_ALL = 1
66 };
67
68 enum {
69 TABLEID_HASH = 0,
70 TABLEID_CLASSIFIER = 1
71 };
72
73 struct ofport {
74 struct netdev *netdev;
75 struct ofp_phy_port opp; /* In host byte order. */
76 };
77
78 static void ofport_free(struct ofport *);
79 static void hton_ofp_phy_port(struct ofp_phy_port *);
80
81 static int xlate_actions(const union ofp_action *in, size_t n_in,
82 const flow_t *flow, struct ofproto *ofproto,
83 const struct ofpbuf *packet,
84 struct odp_actions *out, tag_type *tags,
85 bool *may_setup_flow);
86
87 struct rule {
88 struct cls_rule cr;
89
90 uint16_t idle_timeout; /* In seconds from time of last use. */
91 uint16_t hard_timeout; /* In seconds from time of creation. */
92 long long int used; /* Last-used time (0 if never used). */
93 long long int created; /* Creation time. */
94 uint64_t packet_count; /* Number of packets received. */
95 uint64_t byte_count; /* Number of bytes received. */
96 uint64_t accounted_bytes; /* Number of bytes passed to account_cb. */
97 uint8_t tcp_flags; /* Bitwise-OR of all TCP flags seen. */
98 uint8_t ip_tos; /* Last-seen IP type-of-service. */
99 tag_type tags; /* Tags (set only by hooks). */
100
101 /* If 'super' is non-NULL, this rule is a subrule, that is, it is an
102 * exact-match rule (having cr.wc.wildcards of 0) generated from the
103 * wildcard rule 'super'. In this case, 'list' is an element of the
104 * super-rule's list.
105 *
106 * If 'super' is NULL, this rule is a super-rule, and 'list' is the head of
107 * a list of subrules. A super-rule with no wildcards (where
108 * cr.wc.wildcards is 0) will never have any subrules. */
109 struct rule *super;
110 struct list list;
111
112 /* OpenFlow actions.
113 *
114 * A subrule has no actions (it uses the super-rule's actions). */
115 int n_actions;
116 union ofp_action *actions;
117
118 /* Datapath actions.
119 *
120 * A super-rule with wildcard fields never has ODP actions (since the
121 * datapath only supports exact-match flows). */
122 bool installed; /* Installed in datapath? */
123 bool may_install; /* True ordinarily; false if actions must
124 * be reassessed for every packet. */
125 int n_odp_actions;
126 union odp_action *odp_actions;
127 };
128
129 static inline bool
130 rule_is_hidden(const struct rule *rule)
131 {
132 /* Subrules are merely an implementation detail, so hide them from the
133 * controller. */
134 if (rule->super != NULL) {
135 return true;
136 }
137
138 /* Rules with priority higher than UINT16_MAX are set up by ofproto itself
139 * (e.g. by in-band control) and are intentionally hidden from the
140 * controller. */
141 if (rule->cr.priority > UINT16_MAX) {
142 return true;
143 }
144
145 return false;
146 }
147
148 static struct rule *rule_create(struct rule *super, const union ofp_action *,
149 size_t n_actions, uint16_t idle_timeout,
150 uint16_t hard_timeout);
151 static void rule_free(struct rule *);
152 static void rule_destroy(struct ofproto *, struct rule *);
153 static struct rule *rule_from_cls_rule(const struct cls_rule *);
154 static void rule_insert(struct ofproto *, struct rule *,
155 struct ofpbuf *packet, uint16_t in_port);
156 static void rule_remove(struct ofproto *, struct rule *);
157 static bool rule_make_actions(struct ofproto *, struct rule *,
158 const struct ofpbuf *packet);
159 static void rule_install(struct ofproto *, struct rule *,
160 struct rule *displaced_rule);
161 static void rule_uninstall(struct ofproto *, struct rule *);
162 static void rule_post_uninstall(struct ofproto *, struct rule *);
163
164 struct ofconn {
165 struct list node;
166 struct rconn *rconn;
167 struct pktbuf *pktbuf;
168 bool send_flow_exp;
169 int miss_send_len;
170
171 struct rconn_packet_counter *packet_in_counter;
172
173 /* Number of OpenFlow messages queued as replies to OpenFlow requests, and
174 * the maximum number before we stop reading OpenFlow requests. */
175 #define OFCONN_REPLY_MAX 100
176 struct rconn_packet_counter *reply_counter;
177 };
178
179 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *);
180 static void ofconn_destroy(struct ofconn *, struct ofproto *);
181 static void ofconn_run(struct ofconn *, struct ofproto *);
182 static void ofconn_wait(struct ofconn *);
183 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
184 struct rconn_packet_counter *counter);
185
186 struct ofproto {
187 /* Settings. */
188 uint64_t datapath_id; /* Datapath ID. */
189 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
190 uint64_t mgmt_id; /* Management channel identifier. */
191 char *manufacturer; /* Manufacturer. */
192 char *hardware; /* Hardware. */
193 char *software; /* Software version. */
194 char *serial; /* Serial number. */
195
196 /* Datapath. */
197 struct dpif *dpif;
198 struct netdev_monitor *netdev_monitor;
199 struct port_array ports; /* Index is ODP port nr; ofport->opp.port_no is
200 * OFP port nr. */
201 struct shash port_by_name;
202 uint32_t max_ports;
203
204 /* Configuration. */
205 struct switch_status *switch_status;
206 struct status_category *ss_cat;
207 struct in_band *in_band;
208 struct discovery *discovery;
209 struct fail_open *fail_open;
210 struct pinsched *miss_sched, *action_sched;
211 struct executer *executer;
212 struct netflow *netflow;
213
214 /* Flow table. */
215 struct classifier cls;
216 bool need_revalidate;
217 long long int next_expiration;
218 struct tag_set revalidate_set;
219
220 /* OpenFlow connections. */
221 struct list all_conns;
222 struct ofconn *controller;
223 struct pvconn **listeners;
224 size_t n_listeners;
225 struct pvconn **snoops;
226 size_t n_snoops;
227
228 /* Hooks for ovs-vswitchd. */
229 const struct ofhooks *ofhooks;
230 void *aux;
231
232 /* Used by default ofhooks. */
233 struct mac_learning *ml;
234 };
235
236 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
237
238 static const struct ofhooks default_ofhooks;
239
240 static uint64_t pick_datapath_id(const struct ofproto *);
241 static uint64_t pick_fallback_dpid(void);
242 static void send_packet_in_miss(struct ofpbuf *, void *ofproto);
243 static void send_packet_in_action(struct ofpbuf *, void *ofproto);
244 static void update_used(struct ofproto *);
245 static void update_stats(struct rule *, const struct odp_flow_stats *);
246 static void expire_rule(struct cls_rule *, void *ofproto);
247 static bool revalidate_rule(struct ofproto *p, struct rule *rule);
248 static void revalidate_cb(struct cls_rule *rule_, void *p_);
249
250 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
251
252 static void handle_openflow(struct ofconn *, struct ofproto *,
253 struct ofpbuf *);
254
255 static void refresh_port_group(struct ofproto *, unsigned int group);
256 static void update_port(struct ofproto *, const char *devname);
257 static int init_ports(struct ofproto *);
258 static void reinit_ports(struct ofproto *);
259
260 int
261 ofproto_create(const char *datapath, const struct ofhooks *ofhooks, void *aux,
262 struct ofproto **ofprotop)
263 {
264 struct odp_stats stats;
265 struct ofproto *p;
266 struct dpif *dpif;
267 int error;
268
269 *ofprotop = NULL;
270
271 /* Connect to datapath and start listening for messages. */
272 error = dpif_open(datapath, &dpif);
273 if (error) {
274 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
275 return error;
276 }
277 error = dpif_get_dp_stats(dpif, &stats);
278 if (error) {
279 VLOG_ERR("failed to obtain stats for datapath %s: %s",
280 datapath, strerror(error));
281 dpif_close(dpif);
282 return error;
283 }
284 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION);
285 if (error) {
286 VLOG_ERR("failed to listen on datapath %s: %s",
287 datapath, strerror(error));
288 dpif_close(dpif);
289 return error;
290 }
291 dpif_flow_flush(dpif);
292 dpif_recv_purge(dpif);
293
294 /* Initialize settings. */
295 p = xcalloc(1, sizeof *p);
296 p->fallback_dpid = pick_fallback_dpid();
297 p->datapath_id = p->fallback_dpid;
298 p->manufacturer = xstrdup("Nicira Networks, Inc.");
299 p->hardware = xstrdup("Reference Implementation");
300 p->software = xstrdup(VERSION BUILDNR);
301 p->serial = xstrdup("None");
302
303 /* Initialize datapath. */
304 p->dpif = dpif;
305 p->netdev_monitor = netdev_monitor_create();
306 port_array_init(&p->ports);
307 shash_init(&p->port_by_name);
308 p->max_ports = stats.max_ports;
309
310 /* Initialize submodules. */
311 p->switch_status = switch_status_create(p);
312 p->in_band = NULL;
313 p->discovery = NULL;
314 p->fail_open = NULL;
315 p->miss_sched = p->action_sched = NULL;
316 p->executer = NULL;
317 p->netflow = NULL;
318
319 /* Initialize flow table. */
320 classifier_init(&p->cls);
321 p->need_revalidate = false;
322 p->next_expiration = time_msec() + 1000;
323 tag_set_init(&p->revalidate_set);
324
325 /* Initialize OpenFlow connections. */
326 list_init(&p->all_conns);
327 p->controller = ofconn_create(p, rconn_create(5, 8));
328 p->controller->pktbuf = pktbuf_create();
329 p->controller->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
330 p->listeners = NULL;
331 p->n_listeners = 0;
332 p->snoops = NULL;
333 p->n_snoops = 0;
334
335 /* Initialize hooks. */
336 if (ofhooks) {
337 p->ofhooks = ofhooks;
338 p->aux = aux;
339 p->ml = NULL;
340 } else {
341 p->ofhooks = &default_ofhooks;
342 p->aux = p;
343 p->ml = mac_learning_create();
344 }
345
346 /* Register switch status category. */
347 p->ss_cat = switch_status_register(p->switch_status, "remote",
348 rconn_status_cb, p->controller->rconn);
349
350 /* Almost done... */
351 error = init_ports(p);
352 if (error) {
353 ofproto_destroy(p);
354 return error;
355 }
356
357 /* Pick final datapath ID. */
358 p->datapath_id = pick_datapath_id(p);
359 VLOG_INFO("using datapath ID %012"PRIx64, p->datapath_id);
360
361 *ofprotop = p;
362 return 0;
363 }
364
365 void
366 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
367 {
368 uint64_t old_dpid = p->datapath_id;
369 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
370 if (p->datapath_id != old_dpid) {
371 VLOG_INFO("datapath ID changed to %012"PRIx64, p->datapath_id);
372 rconn_reconnect(p->controller->rconn);
373 }
374 }
375
376 void
377 ofproto_set_mgmt_id(struct ofproto *p, uint64_t mgmt_id)
378 {
379 p->mgmt_id = mgmt_id;
380 }
381
382 void
383 ofproto_set_probe_interval(struct ofproto *p, int probe_interval)
384 {
385 probe_interval = probe_interval ? MAX(probe_interval, 5) : 0;
386 rconn_set_probe_interval(p->controller->rconn, probe_interval);
387 if (p->fail_open) {
388 int trigger_duration = probe_interval ? probe_interval * 3 : 15;
389 fail_open_set_trigger_duration(p->fail_open, trigger_duration);
390 }
391 }
392
393 void
394 ofproto_set_max_backoff(struct ofproto *p, int max_backoff)
395 {
396 rconn_set_max_backoff(p->controller->rconn, max_backoff);
397 }
398
399 void
400 ofproto_set_desc(struct ofproto *p,
401 const char *manufacturer, const char *hardware,
402 const char *software, const char *serial)
403 {
404 if (manufacturer) {
405 free(p->manufacturer);
406 p->manufacturer = xstrdup(manufacturer);
407 }
408 if (hardware) {
409 free(p->hardware);
410 p->hardware = xstrdup(hardware);
411 }
412 if (software) {
413 free(p->software);
414 p->software = xstrdup(software);
415 }
416 if (serial) {
417 free(p->serial);
418 p->serial = xstrdup(serial);
419 }
420 }
421
422 int
423 ofproto_set_in_band(struct ofproto *p, bool in_band)
424 {
425 if (in_band != (p->in_band != NULL)) {
426 if (in_band) {
427 return in_band_create(p, p->dpif, p->switch_status,
428 p->controller->rconn, &p->in_band);
429 } else {
430 ofproto_set_discovery(p, false, NULL, true);
431 in_band_destroy(p->in_band);
432 p->in_band = NULL;
433 }
434 rconn_reconnect(p->controller->rconn);
435 }
436 return 0;
437 }
438
439 int
440 ofproto_set_discovery(struct ofproto *p, bool discovery,
441 const char *re, bool update_resolv_conf)
442 {
443 if (discovery != (p->discovery != NULL)) {
444 if (discovery) {
445 int error = ofproto_set_in_band(p, true);
446 if (error) {
447 return error;
448 }
449 error = discovery_create(re, update_resolv_conf,
450 p->dpif, p->switch_status,
451 &p->discovery);
452 if (error) {
453 return error;
454 }
455 } else {
456 discovery_destroy(p->discovery);
457 p->discovery = NULL;
458 }
459 rconn_disconnect(p->controller->rconn);
460 } else if (discovery) {
461 discovery_set_update_resolv_conf(p->discovery, update_resolv_conf);
462 return discovery_set_accept_controller_re(p->discovery, re);
463 }
464 return 0;
465 }
466
467 int
468 ofproto_set_controller(struct ofproto *ofproto, const char *controller)
469 {
470 if (ofproto->discovery) {
471 return EINVAL;
472 } else if (controller) {
473 if (strcmp(rconn_get_name(ofproto->controller->rconn), controller)) {
474 return rconn_connect(ofproto->controller->rconn, controller);
475 } else {
476 return 0;
477 }
478 } else {
479 rconn_disconnect(ofproto->controller->rconn);
480 return 0;
481 }
482 }
483
484 static int
485 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
486 const struct svec *svec)
487 {
488 struct pvconn **pvconns = *pvconnsp;
489 size_t n_pvconns = *n_pvconnsp;
490 int retval = 0;
491 size_t i;
492
493 for (i = 0; i < n_pvconns; i++) {
494 pvconn_close(pvconns[i]);
495 }
496 free(pvconns);
497
498 pvconns = xmalloc(svec->n * sizeof *pvconns);
499 n_pvconns = 0;
500 for (i = 0; i < svec->n; i++) {
501 const char *name = svec->names[i];
502 struct pvconn *pvconn;
503 int error;
504
505 error = pvconn_open(name, &pvconn);
506 if (!error) {
507 pvconns[n_pvconns++] = pvconn;
508 } else {
509 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
510 if (!retval) {
511 retval = error;
512 }
513 }
514 }
515
516 *pvconnsp = pvconns;
517 *n_pvconnsp = n_pvconns;
518
519 return retval;
520 }
521
522 int
523 ofproto_set_listeners(struct ofproto *ofproto, const struct svec *listeners)
524 {
525 return set_pvconns(&ofproto->listeners, &ofproto->n_listeners, listeners);
526 }
527
528 int
529 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
530 {
531 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
532 }
533
534 int
535 ofproto_set_netflow(struct ofproto *ofproto, const struct svec *collectors,
536 uint8_t engine_type, uint8_t engine_id, bool add_id_to_iface)
537 {
538 if (collectors && collectors->n) {
539 if (!ofproto->netflow) {
540 ofproto->netflow = netflow_create();
541 }
542 netflow_set_engine(ofproto->netflow, engine_type, engine_id,
543 add_id_to_iface);
544 return netflow_set_collectors(ofproto->netflow, collectors);
545 } else {
546 netflow_destroy(ofproto->netflow);
547 ofproto->netflow = NULL;
548 return 0;
549 }
550 }
551
552 void
553 ofproto_set_failure(struct ofproto *ofproto, bool fail_open)
554 {
555 if (fail_open) {
556 struct rconn *rconn = ofproto->controller->rconn;
557 int trigger_duration = rconn_get_probe_interval(rconn) * 3;
558 if (!ofproto->fail_open) {
559 ofproto->fail_open = fail_open_create(ofproto, trigger_duration,
560 ofproto->switch_status,
561 rconn);
562 } else {
563 fail_open_set_trigger_duration(ofproto->fail_open,
564 trigger_duration);
565 }
566 } else {
567 fail_open_destroy(ofproto->fail_open);
568 ofproto->fail_open = NULL;
569 }
570 }
571
572 void
573 ofproto_set_rate_limit(struct ofproto *ofproto,
574 int rate_limit, int burst_limit)
575 {
576 if (rate_limit > 0) {
577 if (!ofproto->miss_sched) {
578 ofproto->miss_sched = pinsched_create(rate_limit, burst_limit,
579 ofproto->switch_status);
580 ofproto->action_sched = pinsched_create(rate_limit, burst_limit,
581 NULL);
582 } else {
583 pinsched_set_limits(ofproto->miss_sched, rate_limit, burst_limit);
584 pinsched_set_limits(ofproto->action_sched,
585 rate_limit, burst_limit);
586 }
587 } else {
588 pinsched_destroy(ofproto->miss_sched);
589 ofproto->miss_sched = NULL;
590 pinsched_destroy(ofproto->action_sched);
591 ofproto->action_sched = NULL;
592 }
593 }
594
595 int
596 ofproto_set_stp(struct ofproto *ofproto UNUSED, bool enable_stp)
597 {
598 /* XXX */
599 if (enable_stp) {
600 VLOG_WARN("STP is not yet implemented");
601 return EINVAL;
602 } else {
603 return 0;
604 }
605 }
606
607 int
608 ofproto_set_remote_execution(struct ofproto *ofproto, const char *command_acl,
609 const char *command_dir)
610 {
611 if (command_acl) {
612 if (!ofproto->executer) {
613 return executer_create(command_acl, command_dir,
614 &ofproto->executer);
615 } else {
616 executer_set_acl(ofproto->executer, command_acl, command_dir);
617 }
618 } else {
619 executer_destroy(ofproto->executer);
620 ofproto->executer = NULL;
621 }
622 return 0;
623 }
624
625 uint64_t
626 ofproto_get_datapath_id(const struct ofproto *ofproto)
627 {
628 return ofproto->datapath_id;
629 }
630
631 uint64_t
632 ofproto_get_mgmt_id(const struct ofproto *ofproto)
633 {
634 return ofproto->mgmt_id;
635 }
636
637 int
638 ofproto_get_probe_interval(const struct ofproto *ofproto)
639 {
640 return rconn_get_probe_interval(ofproto->controller->rconn);
641 }
642
643 int
644 ofproto_get_max_backoff(const struct ofproto *ofproto)
645 {
646 return rconn_get_max_backoff(ofproto->controller->rconn);
647 }
648
649 bool
650 ofproto_get_in_band(const struct ofproto *ofproto)
651 {
652 return ofproto->in_band != NULL;
653 }
654
655 bool
656 ofproto_get_discovery(const struct ofproto *ofproto)
657 {
658 return ofproto->discovery != NULL;
659 }
660
661 const char *
662 ofproto_get_controller(const struct ofproto *ofproto)
663 {
664 return rconn_get_name(ofproto->controller->rconn);
665 }
666
667 void
668 ofproto_get_listeners(const struct ofproto *ofproto, struct svec *listeners)
669 {
670 size_t i;
671
672 for (i = 0; i < ofproto->n_listeners; i++) {
673 svec_add(listeners, pvconn_get_name(ofproto->listeners[i]));
674 }
675 }
676
677 void
678 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
679 {
680 size_t i;
681
682 for (i = 0; i < ofproto->n_snoops; i++) {
683 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
684 }
685 }
686
687 void
688 ofproto_destroy(struct ofproto *p)
689 {
690 struct ofconn *ofconn, *next_ofconn;
691 struct ofport *ofport;
692 unsigned int port_no;
693 size_t i;
694
695 if (!p) {
696 return;
697 }
698
699 ofproto_flush_flows(p);
700 classifier_destroy(&p->cls);
701
702 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node,
703 &p->all_conns) {
704 ofconn_destroy(ofconn, p);
705 }
706
707 dpif_close(p->dpif);
708 netdev_monitor_destroy(p->netdev_monitor);
709 PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) {
710 ofport_free(ofport);
711 }
712 shash_destroy(&p->port_by_name);
713
714 switch_status_destroy(p->switch_status);
715 in_band_destroy(p->in_band);
716 discovery_destroy(p->discovery);
717 fail_open_destroy(p->fail_open);
718 pinsched_destroy(p->miss_sched);
719 pinsched_destroy(p->action_sched);
720 executer_destroy(p->executer);
721 netflow_destroy(p->netflow);
722
723 switch_status_unregister(p->ss_cat);
724
725 for (i = 0; i < p->n_listeners; i++) {
726 pvconn_close(p->listeners[i]);
727 }
728 free(p->listeners);
729
730 for (i = 0; i < p->n_snoops; i++) {
731 pvconn_close(p->snoops[i]);
732 }
733 free(p->snoops);
734
735 mac_learning_destroy(p->ml);
736
737 free(p);
738 }
739
740 int
741 ofproto_run(struct ofproto *p)
742 {
743 int error = ofproto_run1(p);
744 if (!error) {
745 error = ofproto_run2(p, false);
746 }
747 return error;
748 }
749
750 static void
751 process_port_change(struct ofproto *ofproto, int error, char *devname)
752 {
753 if (error == ENOBUFS) {
754 reinit_ports(ofproto);
755 } else if (!error) {
756 update_port(ofproto, devname);
757 free(devname);
758 }
759 }
760
761 int
762 ofproto_run1(struct ofproto *p)
763 {
764 struct ofconn *ofconn, *next_ofconn;
765 char *devname;
766 int error;
767 int i;
768
769 for (i = 0; i < 50; i++) {
770 struct ofpbuf *buf;
771 int error;
772
773 error = dpif_recv(p->dpif, &buf);
774 if (error) {
775 if (error == ENODEV) {
776 /* Someone destroyed the datapath behind our back. The caller
777 * better destroy us and give up, because we're just going to
778 * spin from here on out. */
779 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
780 VLOG_ERR_RL(&rl, "%s: datapath was destroyed externally",
781 dpif_name(p->dpif));
782 return ENODEV;
783 }
784 break;
785 }
786
787 handle_odp_msg(p, buf);
788 }
789
790 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
791 process_port_change(p, error, devname);
792 }
793 while ((error = netdev_monitor_poll(p->netdev_monitor,
794 &devname)) != EAGAIN) {
795 process_port_change(p, error, devname);
796 }
797
798 if (p->in_band) {
799 in_band_run(p->in_band);
800 }
801 if (p->discovery) {
802 char *controller_name;
803 if (rconn_is_connectivity_questionable(p->controller->rconn)) {
804 discovery_question_connectivity(p->discovery);
805 }
806 if (discovery_run(p->discovery, &controller_name)) {
807 if (controller_name) {
808 rconn_connect(p->controller->rconn, controller_name);
809 } else {
810 rconn_disconnect(p->controller->rconn);
811 }
812 }
813 }
814 if (p->fail_open) {
815 fail_open_run(p->fail_open);
816 }
817 pinsched_run(p->miss_sched, send_packet_in_miss, p);
818 pinsched_run(p->action_sched, send_packet_in_action, p);
819 if (p->executer) {
820 executer_run(p->executer);
821 }
822
823 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node,
824 &p->all_conns) {
825 ofconn_run(ofconn, p);
826 }
827
828 for (i = 0; i < p->n_listeners; i++) {
829 struct vconn *vconn;
830 int retval;
831
832 retval = pvconn_accept(p->listeners[i], OFP_VERSION, &vconn);
833 if (!retval) {
834 ofconn_create(p, rconn_new_from_vconn("passive", vconn));
835 } else if (retval != EAGAIN) {
836 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
837 }
838 }
839
840 for (i = 0; i < p->n_snoops; i++) {
841 struct vconn *vconn;
842 int retval;
843
844 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
845 if (!retval) {
846 rconn_add_monitor(p->controller->rconn, vconn);
847 } else if (retval != EAGAIN) {
848 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
849 }
850 }
851
852 if (time_msec() >= p->next_expiration) {
853 COVERAGE_INC(ofproto_expiration);
854 p->next_expiration = time_msec() + 1000;
855 update_used(p);
856
857 classifier_for_each(&p->cls, CLS_INC_ALL, expire_rule, p);
858
859 /* Let the hook know that we're at a stable point: all outstanding data
860 * in existing flows has been accounted to the account_cb. Thus, the
861 * hook can now reasonably do operations that depend on having accurate
862 * flow volume accounting (currently, that's just bond rebalancing). */
863 if (p->ofhooks->account_checkpoint_cb) {
864 p->ofhooks->account_checkpoint_cb(p->aux);
865 }
866 }
867
868 if (p->netflow) {
869 netflow_run(p->netflow);
870 }
871
872 return 0;
873 }
874
875 struct revalidate_cbdata {
876 struct ofproto *ofproto;
877 bool revalidate_all; /* Revalidate all exact-match rules? */
878 bool revalidate_subrules; /* Revalidate all exact-match subrules? */
879 struct tag_set revalidate_set; /* Set of tags to revalidate. */
880 };
881
882 int
883 ofproto_run2(struct ofproto *p, bool revalidate_all)
884 {
885 if (p->need_revalidate || revalidate_all
886 || !tag_set_is_empty(&p->revalidate_set)) {
887 struct revalidate_cbdata cbdata;
888 cbdata.ofproto = p;
889 cbdata.revalidate_all = revalidate_all;
890 cbdata.revalidate_subrules = p->need_revalidate;
891 cbdata.revalidate_set = p->revalidate_set;
892 tag_set_init(&p->revalidate_set);
893 COVERAGE_INC(ofproto_revalidate);
894 classifier_for_each(&p->cls, CLS_INC_EXACT, revalidate_cb, &cbdata);
895 p->need_revalidate = false;
896 }
897
898 return 0;
899 }
900
901 void
902 ofproto_wait(struct ofproto *p)
903 {
904 struct ofconn *ofconn;
905 size_t i;
906
907 dpif_recv_wait(p->dpif);
908 dpif_port_poll_wait(p->dpif);
909 netdev_monitor_poll_wait(p->netdev_monitor);
910 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
911 ofconn_wait(ofconn);
912 }
913 if (p->in_band) {
914 in_band_wait(p->in_band);
915 }
916 if (p->discovery) {
917 discovery_wait(p->discovery);
918 }
919 if (p->fail_open) {
920 fail_open_wait(p->fail_open);
921 }
922 pinsched_wait(p->miss_sched);
923 pinsched_wait(p->action_sched);
924 if (p->executer) {
925 executer_wait(p->executer);
926 }
927 if (!tag_set_is_empty(&p->revalidate_set)) {
928 poll_immediate_wake();
929 }
930 if (p->need_revalidate) {
931 /* Shouldn't happen, but if it does just go around again. */
932 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
933 poll_immediate_wake();
934 } else if (p->next_expiration != LLONG_MAX) {
935 poll_timer_wait(p->next_expiration - time_msec());
936 }
937 for (i = 0; i < p->n_listeners; i++) {
938 pvconn_wait(p->listeners[i]);
939 }
940 for (i = 0; i < p->n_snoops; i++) {
941 pvconn_wait(p->snoops[i]);
942 }
943 }
944
945 void
946 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
947 {
948 tag_set_add(&ofproto->revalidate_set, tag);
949 }
950
951 struct tag_set *
952 ofproto_get_revalidate_set(struct ofproto *ofproto)
953 {
954 return &ofproto->revalidate_set;
955 }
956
957 bool
958 ofproto_is_alive(const struct ofproto *p)
959 {
960 return p->discovery || rconn_is_alive(p->controller->rconn);
961 }
962
963 int
964 ofproto_send_packet(struct ofproto *p, const flow_t *flow,
965 const union ofp_action *actions, size_t n_actions,
966 const struct ofpbuf *packet)
967 {
968 struct odp_actions odp_actions;
969 int error;
970
971 error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions,
972 NULL, NULL);
973 if (error) {
974 return error;
975 }
976
977 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
978 * error code? */
979 dpif_execute(p->dpif, flow->in_port, odp_actions.actions,
980 odp_actions.n_actions, packet);
981 return 0;
982 }
983
984 void
985 ofproto_add_flow(struct ofproto *p,
986 const flow_t *flow, uint32_t wildcards, unsigned int priority,
987 const union ofp_action *actions, size_t n_actions,
988 int idle_timeout)
989 {
990 struct rule *rule;
991 rule = rule_create(NULL, actions, n_actions,
992 idle_timeout >= 0 ? idle_timeout : 5 /* XXX */, 0);
993 cls_rule_from_flow(&rule->cr, flow, wildcards, priority);
994 rule_insert(p, rule, NULL, 0);
995 }
996
997 void
998 ofproto_delete_flow(struct ofproto *ofproto, const flow_t *flow,
999 uint32_t wildcards, unsigned int priority)
1000 {
1001 struct rule *rule;
1002
1003 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1004 flow, wildcards,
1005 priority));
1006 if (rule) {
1007 rule_remove(ofproto, rule);
1008 }
1009 }
1010
1011 static void
1012 destroy_rule(struct cls_rule *rule_, void *ofproto_)
1013 {
1014 struct rule *rule = rule_from_cls_rule(rule_);
1015 struct ofproto *ofproto = ofproto_;
1016
1017 /* Mark the flow as not installed, even though it might really be
1018 * installed, so that rule_remove() doesn't bother trying to uninstall it.
1019 * There is no point in uninstalling it individually since we are about to
1020 * blow away all the flows with dpif_flow_flush(). */
1021 rule->installed = false;
1022
1023 rule_remove(ofproto, rule);
1024 }
1025
1026 void
1027 ofproto_flush_flows(struct ofproto *ofproto)
1028 {
1029 COVERAGE_INC(ofproto_flush);
1030 classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto);
1031 dpif_flow_flush(ofproto->dpif);
1032 if (ofproto->in_band) {
1033 in_band_flushed(ofproto->in_band);
1034 }
1035 if (ofproto->fail_open) {
1036 fail_open_flushed(ofproto->fail_open);
1037 }
1038 }
1039 \f
1040 static void
1041 reinit_ports(struct ofproto *p)
1042 {
1043 struct svec devnames;
1044 struct ofport *ofport;
1045 unsigned int port_no;
1046 struct odp_port *odp_ports;
1047 size_t n_odp_ports;
1048 size_t i;
1049
1050 svec_init(&devnames);
1051 PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) {
1052 svec_add (&devnames, (char *) ofport->opp.name);
1053 }
1054 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1055 for (i = 0; i < n_odp_ports; i++) {
1056 svec_add (&devnames, odp_ports[i].devname);
1057 }
1058 free(odp_ports);
1059
1060 svec_sort_unique(&devnames);
1061 for (i = 0; i < devnames.n; i++) {
1062 update_port(p, devnames.names[i]);
1063 }
1064 svec_destroy(&devnames);
1065 }
1066
1067 static void
1068 refresh_port_group(struct ofproto *p, unsigned int group)
1069 {
1070 uint16_t *ports;
1071 size_t n_ports;
1072 struct ofport *port;
1073 unsigned int port_no;
1074
1075 assert(group == DP_GROUP_ALL || group == DP_GROUP_FLOOD);
1076
1077 ports = xmalloc(port_array_count(&p->ports) * sizeof *ports);
1078 n_ports = 0;
1079 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
1080 if (group == DP_GROUP_ALL || !(port->opp.config & OFPPC_NO_FLOOD)) {
1081 ports[n_ports++] = port_no;
1082 }
1083 }
1084 dpif_port_group_set(p->dpif, group, ports, n_ports);
1085 free(ports);
1086 }
1087
1088 static void
1089 refresh_port_groups(struct ofproto *p)
1090 {
1091 refresh_port_group(p, DP_GROUP_FLOOD);
1092 refresh_port_group(p, DP_GROUP_ALL);
1093 }
1094
1095 static struct ofport *
1096 make_ofport(const struct odp_port *odp_port)
1097 {
1098 enum netdev_flags flags;
1099 struct ofport *ofport;
1100 struct netdev *netdev;
1101 bool carrier;
1102 int error;
1103
1104 error = netdev_open(odp_port->devname, NETDEV_ETH_TYPE_NONE, &netdev);
1105 if (error) {
1106 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1107 "cannot be opened (%s)",
1108 odp_port->devname, odp_port->port,
1109 odp_port->devname, strerror(error));
1110 return NULL;
1111 }
1112
1113 ofport = xmalloc(sizeof *ofport);
1114 ofport->netdev = netdev;
1115 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1116 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1117 memcpy(ofport->opp.name, odp_port->devname,
1118 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1119 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1120
1121 netdev_get_flags(netdev, &flags);
1122 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1123
1124 netdev_get_carrier(netdev, &carrier);
1125 ofport->opp.state = carrier ? 0 : OFPPS_LINK_DOWN;
1126
1127 netdev_get_features(netdev,
1128 &ofport->opp.curr, &ofport->opp.advertised,
1129 &ofport->opp.supported, &ofport->opp.peer);
1130 return ofport;
1131 }
1132
1133 static bool
1134 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1135 {
1136 if (port_array_get(&p->ports, odp_port->port)) {
1137 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1138 odp_port->port);
1139 return true;
1140 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1141 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1142 odp_port->devname);
1143 return true;
1144 } else {
1145 return false;
1146 }
1147 }
1148
1149 static int
1150 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1151 {
1152 const struct ofp_phy_port *a = &a_->opp;
1153 const struct ofp_phy_port *b = &b_->opp;
1154
1155 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1156 return (a->port_no == b->port_no
1157 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1158 && !strcmp((char *) a->name, (char *) b->name)
1159 && a->state == b->state
1160 && a->config == b->config
1161 && a->curr == b->curr
1162 && a->advertised == b->advertised
1163 && a->supported == b->supported
1164 && a->peer == b->peer);
1165 }
1166
1167 static void
1168 send_port_status(struct ofproto *p, const struct ofport *ofport,
1169 uint8_t reason)
1170 {
1171 /* XXX Should limit the number of queued port status change messages. */
1172 struct ofconn *ofconn;
1173 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
1174 struct ofp_port_status *ops;
1175 struct ofpbuf *b;
1176
1177 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1178 ops->reason = reason;
1179 ops->desc = ofport->opp;
1180 hton_ofp_phy_port(&ops->desc);
1181 queue_tx(b, ofconn, NULL);
1182 }
1183 if (p->ofhooks->port_changed_cb) {
1184 p->ofhooks->port_changed_cb(reason, &ofport->opp, p->aux);
1185 }
1186 }
1187
1188 static void
1189 ofport_install(struct ofproto *p, struct ofport *ofport)
1190 {
1191 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1192 port_array_set(&p->ports, ofp_port_to_odp_port(ofport->opp.port_no),
1193 ofport);
1194 shash_add(&p->port_by_name, (char *) ofport->opp.name, ofport);
1195 }
1196
1197 static void
1198 ofport_remove(struct ofproto *p, struct ofport *ofport)
1199 {
1200 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1201 port_array_set(&p->ports, ofp_port_to_odp_port(ofport->opp.port_no), NULL);
1202 shash_delete(&p->port_by_name,
1203 shash_find(&p->port_by_name, (char *) ofport->opp.name));
1204 }
1205
1206 static void
1207 ofport_free(struct ofport *ofport)
1208 {
1209 if (ofport) {
1210 netdev_close(ofport->netdev);
1211 free(ofport);
1212 }
1213 }
1214
1215 static void
1216 update_port(struct ofproto *p, const char *devname)
1217 {
1218 struct odp_port odp_port;
1219 struct ofport *old_ofport;
1220 struct ofport *new_ofport;
1221 int error;
1222
1223 COVERAGE_INC(ofproto_update_port);
1224
1225 /* Query the datapath for port information. */
1226 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1227
1228 /* Find the old ofport. */
1229 old_ofport = shash_find_data(&p->port_by_name, devname);
1230 if (!error) {
1231 if (!old_ofport) {
1232 /* There's no port named 'devname' but there might be a port with
1233 * the same port number. This could happen if a port is deleted
1234 * and then a new one added in its place very quickly, or if a port
1235 * is renamed. In the former case we want to send an OFPPR_DELETE
1236 * and an OFPPR_ADD, and in the latter case we want to send a
1237 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1238 * the old port's ifindex against the new port, or perhaps less
1239 * reliably but more portably by comparing the old port's MAC
1240 * against the new port's MAC. However, this code isn't that smart
1241 * and always sends an OFPPR_MODIFY (XXX). */
1242 old_ofport = port_array_get(&p->ports, odp_port.port);
1243 }
1244 } else if (error != ENOENT && error != ENODEV) {
1245 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1246 "%s", strerror(error));
1247 return;
1248 }
1249
1250 /* Create a new ofport. */
1251 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1252
1253 /* Eliminate a few pathological cases. */
1254 if (!old_ofport && !new_ofport) {
1255 return;
1256 } else if (old_ofport && new_ofport) {
1257 /* Most of the 'config' bits are OpenFlow soft state, but
1258 * OFPPC_PORT_DOWN is maintained the kernel. So transfer the OpenFlow
1259 * bits from old_ofport. (make_ofport() only sets OFPPC_PORT_DOWN and
1260 * leaves the other bits 0.) */
1261 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1262
1263 if (ofport_equal(old_ofport, new_ofport)) {
1264 /* False alarm--no change. */
1265 ofport_free(new_ofport);
1266 return;
1267 }
1268 }
1269
1270 /* Now deal with the normal cases. */
1271 if (old_ofport) {
1272 ofport_remove(p, old_ofport);
1273 }
1274 if (new_ofport) {
1275 ofport_install(p, new_ofport);
1276 }
1277 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1278 (!old_ofport ? OFPPR_ADD
1279 : !new_ofport ? OFPPR_DELETE
1280 : OFPPR_MODIFY));
1281 ofport_free(old_ofport);
1282
1283 /* Update port groups. */
1284 refresh_port_groups(p);
1285 }
1286
1287 static int
1288 init_ports(struct ofproto *p)
1289 {
1290 struct odp_port *ports;
1291 size_t n_ports;
1292 size_t i;
1293 int error;
1294
1295 error = dpif_port_list(p->dpif, &ports, &n_ports);
1296 if (error) {
1297 return error;
1298 }
1299
1300 for (i = 0; i < n_ports; i++) {
1301 const struct odp_port *odp_port = &ports[i];
1302 if (!ofport_conflicts(p, odp_port)) {
1303 struct ofport *ofport = make_ofport(odp_port);
1304 if (ofport) {
1305 ofport_install(p, ofport);
1306 }
1307 }
1308 }
1309 free(ports);
1310 refresh_port_groups(p);
1311 return 0;
1312 }
1313 \f
1314 static struct ofconn *
1315 ofconn_create(struct ofproto *p, struct rconn *rconn)
1316 {
1317 struct ofconn *ofconn = xmalloc(sizeof *ofconn);
1318 list_push_back(&p->all_conns, &ofconn->node);
1319 ofconn->rconn = rconn;
1320 ofconn->pktbuf = NULL;
1321 ofconn->send_flow_exp = false;
1322 ofconn->miss_send_len = 0;
1323 ofconn->packet_in_counter = rconn_packet_counter_create ();
1324 ofconn->reply_counter = rconn_packet_counter_create ();
1325 return ofconn;
1326 }
1327
1328 static void
1329 ofconn_destroy(struct ofconn *ofconn, struct ofproto *p)
1330 {
1331 if (p->executer) {
1332 executer_rconn_closing(p->executer, ofconn->rconn);
1333 }
1334
1335 list_remove(&ofconn->node);
1336 rconn_destroy(ofconn->rconn);
1337 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1338 rconn_packet_counter_destroy(ofconn->reply_counter);
1339 pktbuf_destroy(ofconn->pktbuf);
1340 free(ofconn);
1341 }
1342
1343 static void
1344 ofconn_run(struct ofconn *ofconn, struct ofproto *p)
1345 {
1346 int iteration;
1347
1348 rconn_run(ofconn->rconn);
1349
1350 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1351 /* Limit the number of iterations to prevent other tasks from
1352 * starving. */
1353 for (iteration = 0; iteration < 50; iteration++) {
1354 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1355 if (!of_msg) {
1356 break;
1357 }
1358 handle_openflow(ofconn, p, of_msg);
1359 ofpbuf_delete(of_msg);
1360 }
1361 }
1362
1363 if (ofconn != p->controller && !rconn_is_alive(ofconn->rconn)) {
1364 ofconn_destroy(ofconn, p);
1365 }
1366 }
1367
1368 static void
1369 ofconn_wait(struct ofconn *ofconn)
1370 {
1371 rconn_run_wait(ofconn->rconn);
1372 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1373 rconn_recv_wait(ofconn->rconn);
1374 } else {
1375 COVERAGE_INC(ofproto_ofconn_stuck);
1376 }
1377 }
1378 \f
1379 /* Caller is responsible for initializing the 'cr' member of the returned
1380 * rule. */
1381 static struct rule *
1382 rule_create(struct rule *super,
1383 const union ofp_action *actions, size_t n_actions,
1384 uint16_t idle_timeout, uint16_t hard_timeout)
1385 {
1386 struct rule *rule = xcalloc(1, sizeof *rule);
1387 rule->idle_timeout = idle_timeout;
1388 rule->hard_timeout = hard_timeout;
1389 rule->used = rule->created = time_msec();
1390 rule->super = super;
1391 if (super) {
1392 list_push_back(&super->list, &rule->list);
1393 } else {
1394 list_init(&rule->list);
1395 }
1396 rule->n_actions = n_actions;
1397 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1398 return rule;
1399 }
1400
1401 static struct rule *
1402 rule_from_cls_rule(const struct cls_rule *cls_rule)
1403 {
1404 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
1405 }
1406
1407 static void
1408 rule_free(struct rule *rule)
1409 {
1410 free(rule->actions);
1411 free(rule->odp_actions);
1412 free(rule);
1413 }
1414
1415 /* Destroys 'rule'. If 'rule' is a subrule, also removes it from its
1416 * super-rule's list of subrules. If 'rule' is a super-rule, also iterates
1417 * through all of its subrules and revalidates them, destroying any that no
1418 * longer has a super-rule (which is probably all of them).
1419 *
1420 * Before calling this function, the caller must make have removed 'rule' from
1421 * the classifier. If 'rule' is an exact-match rule, the caller is also
1422 * responsible for ensuring that it has been uninstalled from the datapath. */
1423 static void
1424 rule_destroy(struct ofproto *ofproto, struct rule *rule)
1425 {
1426 if (!rule->super) {
1427 struct rule *subrule, *next;
1428 LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) {
1429 revalidate_rule(ofproto, subrule);
1430 }
1431 } else {
1432 list_remove(&rule->list);
1433 }
1434 rule_free(rule);
1435 }
1436
1437 static bool
1438 rule_has_out_port(const struct rule *rule, uint16_t out_port)
1439 {
1440 const union ofp_action *oa;
1441 struct actions_iterator i;
1442
1443 if (out_port == htons(OFPP_NONE)) {
1444 return true;
1445 }
1446 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
1447 oa = actions_next(&i)) {
1448 if (oa->type == htons(OFPAT_OUTPUT) && oa->output.port == out_port) {
1449 return true;
1450 }
1451 }
1452 return false;
1453 }
1454
1455 /* Executes the actions indicated by 'rule' on 'packet', which is in flow
1456 * 'flow' and is considered to have arrived on ODP port 'in_port'.
1457 *
1458 * The flow that 'packet' actually contains does not need to actually match
1459 * 'rule'; the actions in 'rule' will be applied to it either way. Likewise,
1460 * the packet and byte counters for 'rule' will be credited for the packet sent
1461 * out whether or not the packet actually matches 'rule'.
1462 *
1463 * If 'rule' is an exact-match rule and 'flow' actually equals the rule's flow,
1464 * the caller must already have accurately composed ODP actions for it given
1465 * 'packet' using rule_make_actions(). If 'rule' is a wildcard rule, or if
1466 * 'rule' is an exact-match rule but 'flow' is not the rule's flow, then this
1467 * function will compose a set of ODP actions based on 'rule''s OpenFlow
1468 * actions and apply them to 'packet'. */
1469 static void
1470 rule_execute(struct ofproto *ofproto, struct rule *rule,
1471 struct ofpbuf *packet, const flow_t *flow)
1472 {
1473 const union odp_action *actions;
1474 size_t n_actions;
1475 struct odp_actions a;
1476
1477 /* Grab or compose the ODP actions.
1478 *
1479 * The special case for an exact-match 'rule' where 'flow' is not the
1480 * rule's flow is important to avoid, e.g., sending a packet out its input
1481 * port simply because the ODP actions were composed for the wrong
1482 * scenario. */
1483 if (rule->cr.wc.wildcards || !flow_equal(flow, &rule->cr.flow)) {
1484 struct rule *super = rule->super ? rule->super : rule;
1485 if (xlate_actions(super->actions, super->n_actions, flow, ofproto,
1486 packet, &a, NULL, 0)) {
1487 return;
1488 }
1489 actions = a.actions;
1490 n_actions = a.n_actions;
1491 } else {
1492 actions = rule->odp_actions;
1493 n_actions = rule->n_odp_actions;
1494 }
1495
1496 /* Execute the ODP actions. */
1497 if (!dpif_execute(ofproto->dpif, flow->in_port,
1498 actions, n_actions, packet)) {
1499 struct odp_flow_stats stats;
1500 flow_extract_stats(flow, packet, &stats);
1501 update_stats(rule, &stats);
1502 rule->used = time_msec();
1503 }
1504 }
1505
1506 static void
1507 rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet,
1508 uint16_t in_port)
1509 {
1510 struct rule *displaced_rule;
1511
1512 /* Insert the rule in the classifier. */
1513 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
1514 if (!rule->cr.wc.wildcards) {
1515 rule_make_actions(p, rule, packet);
1516 }
1517
1518 /* Send the packet and credit it to the rule. */
1519 if (packet) {
1520 flow_t flow;
1521 flow_extract(packet, in_port, &flow);
1522 rule_execute(p, rule, packet, &flow);
1523 }
1524
1525 /* Install the rule in the datapath only after sending the packet, to
1526 * avoid packet reordering. */
1527 if (rule->cr.wc.wildcards) {
1528 COVERAGE_INC(ofproto_add_wc_flow);
1529 p->need_revalidate = true;
1530 } else {
1531 rule_install(p, rule, displaced_rule);
1532 }
1533
1534 /* Free the rule that was displaced, if any. */
1535 if (displaced_rule) {
1536 rule_destroy(p, displaced_rule);
1537 }
1538 }
1539
1540 static struct rule *
1541 rule_create_subrule(struct ofproto *ofproto, struct rule *rule,
1542 const flow_t *flow)
1543 {
1544 struct rule *subrule = rule_create(rule, NULL, 0,
1545 rule->idle_timeout, rule->hard_timeout);
1546 COVERAGE_INC(ofproto_subrule_create);
1547 cls_rule_from_flow(&subrule->cr, flow, 0,
1548 (rule->cr.priority <= UINT16_MAX ? UINT16_MAX
1549 : rule->cr.priority));
1550 classifier_insert_exact(&ofproto->cls, &subrule->cr);
1551
1552 return subrule;
1553 }
1554
1555 static void
1556 rule_remove(struct ofproto *ofproto, struct rule *rule)
1557 {
1558 if (rule->cr.wc.wildcards) {
1559 COVERAGE_INC(ofproto_del_wc_flow);
1560 ofproto->need_revalidate = true;
1561 } else {
1562 rule_uninstall(ofproto, rule);
1563 }
1564 classifier_remove(&ofproto->cls, &rule->cr);
1565 rule_destroy(ofproto, rule);
1566 }
1567
1568 /* Returns true if the actions changed, false otherwise. */
1569 static bool
1570 rule_make_actions(struct ofproto *p, struct rule *rule,
1571 const struct ofpbuf *packet)
1572 {
1573 const struct rule *super;
1574 struct odp_actions a;
1575 size_t actions_len;
1576
1577 assert(!rule->cr.wc.wildcards);
1578
1579 super = rule->super ? rule->super : rule;
1580 rule->tags = 0;
1581 xlate_actions(super->actions, super->n_actions, &rule->cr.flow, p,
1582 packet, &a, &rule->tags, &rule->may_install);
1583
1584 actions_len = a.n_actions * sizeof *a.actions;
1585 if (rule->n_odp_actions != a.n_actions
1586 || memcmp(rule->odp_actions, a.actions, actions_len)) {
1587 COVERAGE_INC(ofproto_odp_unchanged);
1588 free(rule->odp_actions);
1589 rule->n_odp_actions = a.n_actions;
1590 rule->odp_actions = xmemdup(a.actions, actions_len);
1591 return true;
1592 } else {
1593 return false;
1594 }
1595 }
1596
1597 static int
1598 do_put_flow(struct ofproto *ofproto, struct rule *rule, int flags,
1599 struct odp_flow_put *put)
1600 {
1601 memset(&put->flow.stats, 0, sizeof put->flow.stats);
1602 put->flow.key = rule->cr.flow;
1603 put->flow.actions = rule->odp_actions;
1604 put->flow.n_actions = rule->n_odp_actions;
1605 put->flags = flags;
1606 return dpif_flow_put(ofproto->dpif, put);
1607 }
1608
1609 static void
1610 rule_install(struct ofproto *p, struct rule *rule, struct rule *displaced_rule)
1611 {
1612 assert(!rule->cr.wc.wildcards);
1613
1614 if (rule->may_install) {
1615 struct odp_flow_put put;
1616 if (!do_put_flow(p, rule,
1617 ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS,
1618 &put)) {
1619 rule->installed = true;
1620 if (displaced_rule) {
1621 update_stats(rule, &put.flow.stats);
1622 rule_post_uninstall(p, displaced_rule);
1623 }
1624 }
1625 } else if (displaced_rule) {
1626 rule_uninstall(p, displaced_rule);
1627 }
1628 }
1629
1630 static void
1631 rule_reinstall(struct ofproto *ofproto, struct rule *rule)
1632 {
1633 if (rule->installed) {
1634 struct odp_flow_put put;
1635 COVERAGE_INC(ofproto_dp_missed);
1636 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put);
1637 } else {
1638 rule_install(ofproto, rule, NULL);
1639 }
1640 }
1641
1642 static void
1643 rule_update_actions(struct ofproto *ofproto, struct rule *rule)
1644 {
1645 bool actions_changed = rule_make_actions(ofproto, rule, NULL);
1646 if (rule->may_install) {
1647 if (rule->installed) {
1648 if (actions_changed) {
1649 /* XXX should really do rule_post_uninstall() for the *old* set
1650 * of actions, and distinguish the old stats from the new. */
1651 struct odp_flow_put put;
1652 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put);
1653 }
1654 } else {
1655 rule_install(ofproto, rule, NULL);
1656 }
1657 } else {
1658 rule_uninstall(ofproto, rule);
1659 }
1660 }
1661
1662 static void
1663 rule_account(struct ofproto *ofproto, struct rule *rule, uint64_t extra_bytes)
1664 {
1665 uint64_t total_bytes = rule->byte_count + extra_bytes;
1666
1667 if (ofproto->ofhooks->account_flow_cb
1668 && total_bytes > rule->accounted_bytes)
1669 {
1670 ofproto->ofhooks->account_flow_cb(
1671 &rule->cr.flow, rule->odp_actions, rule->n_odp_actions,
1672 total_bytes - rule->accounted_bytes, ofproto->aux);
1673 rule->accounted_bytes = total_bytes;
1674 }
1675 }
1676
1677 static void
1678 rule_uninstall(struct ofproto *p, struct rule *rule)
1679 {
1680 assert(!rule->cr.wc.wildcards);
1681 if (rule->installed) {
1682 struct odp_flow odp_flow;
1683
1684 odp_flow.key = rule->cr.flow;
1685 odp_flow.actions = NULL;
1686 odp_flow.n_actions = 0;
1687 if (!dpif_flow_del(p->dpif, &odp_flow)) {
1688 update_stats(rule, &odp_flow.stats);
1689 }
1690 rule->installed = false;
1691
1692 rule_post_uninstall(p, rule);
1693 }
1694 }
1695
1696 static void
1697 rule_post_uninstall(struct ofproto *ofproto, struct rule *rule)
1698 {
1699 struct rule *super = rule->super;
1700
1701 rule_account(ofproto, rule, 0);
1702 if (ofproto->netflow && rule->byte_count) {
1703 struct ofexpired expired;
1704 expired.flow = rule->cr.flow;
1705 expired.packet_count = rule->packet_count;
1706 expired.byte_count = rule->byte_count;
1707 expired.used = rule->used;
1708 expired.created = rule->created;
1709 expired.tcp_flags = rule->tcp_flags;
1710 expired.ip_tos = rule->ip_tos;
1711 netflow_expire(ofproto->netflow, &expired);
1712 }
1713 if (super) {
1714 super->packet_count += rule->packet_count;
1715 super->byte_count += rule->byte_count;
1716 super->tcp_flags |= rule->tcp_flags;
1717 if (rule->packet_count) {
1718 super->ip_tos = rule->ip_tos;
1719 }
1720 }
1721
1722 /* Reset counters to prevent double counting if the rule ever gets
1723 * reinstalled. */
1724 rule->packet_count = 0;
1725 rule->byte_count = 0;
1726 rule->accounted_bytes = 0;
1727 rule->tcp_flags = 0;
1728 rule->ip_tos = 0;
1729 }
1730 \f
1731 static void
1732 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
1733 struct rconn_packet_counter *counter)
1734 {
1735 update_openflow_length(msg);
1736 if (rconn_send(ofconn->rconn, msg, counter)) {
1737 ofpbuf_delete(msg);
1738 }
1739 }
1740
1741 static void
1742 send_error(const struct ofconn *ofconn, const struct ofp_header *oh,
1743 int error, const void *data, size_t len)
1744 {
1745 struct ofpbuf *buf;
1746 struct ofp_error_msg *oem;
1747
1748 if (!(error >> 16)) {
1749 VLOG_WARN_RL(&rl, "not sending bad error code %d to controller",
1750 error);
1751 return;
1752 }
1753
1754 COVERAGE_INC(ofproto_error);
1755 oem = make_openflow_xid(len + sizeof *oem, OFPT_ERROR,
1756 oh ? oh->xid : 0, &buf);
1757 oem->type = htons((unsigned int) error >> 16);
1758 oem->code = htons(error & 0xffff);
1759 memcpy(oem->data, data, len);
1760 queue_tx(buf, ofconn, ofconn->reply_counter);
1761 }
1762
1763 static void
1764 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
1765 int error)
1766 {
1767 size_t oh_length = ntohs(oh->length);
1768 send_error(ofconn, oh, error, oh, MIN(oh_length, 64));
1769 }
1770
1771 static void
1772 hton_ofp_phy_port(struct ofp_phy_port *opp)
1773 {
1774 opp->port_no = htons(opp->port_no);
1775 opp->config = htonl(opp->config);
1776 opp->state = htonl(opp->state);
1777 opp->curr = htonl(opp->curr);
1778 opp->advertised = htonl(opp->advertised);
1779 opp->supported = htonl(opp->supported);
1780 opp->peer = htonl(opp->peer);
1781 }
1782
1783 static int
1784 handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh)
1785 {
1786 struct ofp_header *rq = oh;
1787 queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter);
1788 return 0;
1789 }
1790
1791 static int
1792 handle_features_request(struct ofproto *p, struct ofconn *ofconn,
1793 struct ofp_header *oh)
1794 {
1795 struct ofp_switch_features *osf;
1796 struct ofpbuf *buf;
1797 unsigned int port_no;
1798 struct ofport *port;
1799
1800 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
1801 osf->datapath_id = htonll(p->datapath_id);
1802 osf->n_buffers = htonl(pktbuf_capacity());
1803 osf->n_tables = 2;
1804 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
1805 OFPC_PORT_STATS | OFPC_MULTI_PHY_TX);
1806 osf->actions = htonl((1u << OFPAT_OUTPUT) |
1807 (1u << OFPAT_SET_VLAN_VID) |
1808 (1u << OFPAT_SET_VLAN_PCP) |
1809 (1u << OFPAT_STRIP_VLAN) |
1810 (1u << OFPAT_SET_DL_SRC) |
1811 (1u << OFPAT_SET_DL_DST) |
1812 (1u << OFPAT_SET_NW_SRC) |
1813 (1u << OFPAT_SET_NW_DST) |
1814 (1u << OFPAT_SET_TP_SRC) |
1815 (1u << OFPAT_SET_TP_DST));
1816
1817 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
1818 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
1819 }
1820
1821 queue_tx(buf, ofconn, ofconn->reply_counter);
1822 return 0;
1823 }
1824
1825 static int
1826 handle_get_config_request(struct ofproto *p, struct ofconn *ofconn,
1827 struct ofp_header *oh)
1828 {
1829 struct ofpbuf *buf;
1830 struct ofp_switch_config *osc;
1831 uint16_t flags;
1832 bool drop_frags;
1833
1834 /* Figure out flags. */
1835 dpif_get_drop_frags(p->dpif, &drop_frags);
1836 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
1837 if (ofconn->send_flow_exp) {
1838 flags |= OFPC_SEND_FLOW_EXP;
1839 }
1840
1841 /* Send reply. */
1842 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
1843 osc->flags = htons(flags);
1844 osc->miss_send_len = htons(ofconn->miss_send_len);
1845 queue_tx(buf, ofconn, ofconn->reply_counter);
1846
1847 return 0;
1848 }
1849
1850 static int
1851 handle_set_config(struct ofproto *p, struct ofconn *ofconn,
1852 struct ofp_switch_config *osc)
1853 {
1854 uint16_t flags;
1855 int error;
1856
1857 error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc);
1858 if (error) {
1859 return error;
1860 }
1861 flags = ntohs(osc->flags);
1862
1863 ofconn->send_flow_exp = (flags & OFPC_SEND_FLOW_EXP) != 0;
1864
1865 if (ofconn == p->controller) {
1866 switch (flags & OFPC_FRAG_MASK) {
1867 case OFPC_FRAG_NORMAL:
1868 dpif_set_drop_frags(p->dpif, false);
1869 break;
1870 case OFPC_FRAG_DROP:
1871 dpif_set_drop_frags(p->dpif, true);
1872 break;
1873 default:
1874 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
1875 osc->flags);
1876 break;
1877 }
1878 }
1879
1880 if ((ntohs(osc->miss_send_len) != 0) != (ofconn->miss_send_len != 0)) {
1881 if (ntohs(osc->miss_send_len) != 0) {
1882 ofconn->pktbuf = pktbuf_create();
1883 } else {
1884 pktbuf_destroy(ofconn->pktbuf);
1885 }
1886 }
1887
1888 ofconn->miss_send_len = ntohs(osc->miss_send_len);
1889
1890 return 0;
1891 }
1892
1893 static void
1894 add_output_group_action(struct odp_actions *actions, uint16_t group)
1895 {
1896 odp_actions_add(actions, ODPAT_OUTPUT_GROUP)->output_group.group = group;
1897 }
1898
1899 static void
1900 add_controller_action(struct odp_actions *actions,
1901 const struct ofp_action_output *oao)
1902 {
1903 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
1904 a->controller.arg = oao->max_len ? ntohs(oao->max_len) : UINT32_MAX;
1905 }
1906
1907 struct action_xlate_ctx {
1908 /* Input. */
1909 const flow_t *flow; /* Flow to which these actions correspond. */
1910 int recurse; /* Recursion level, via xlate_table_action. */
1911 struct ofproto *ofproto;
1912 const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a
1913 * null pointer if we are revalidating
1914 * without a packet to refer to. */
1915
1916 /* Output. */
1917 struct odp_actions *out; /* Datapath actions. */
1918 tag_type *tags; /* Tags associated with OFPP_NORMAL actions. */
1919 bool may_setup_flow; /* True ordinarily; false if the actions must
1920 * be reassessed for every packet. */
1921 };
1922
1923 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
1924 struct action_xlate_ctx *ctx);
1925
1926 static void
1927 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
1928 {
1929 const struct ofport *ofport = port_array_get(&ctx->ofproto->ports, port);
1930 if (!ofport || !(ofport->opp.config & OFPPC_NO_FWD)) {
1931 odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port;
1932 }
1933 }
1934
1935 static struct rule *
1936 lookup_valid_rule(struct ofproto *ofproto, const flow_t *flow)
1937 {
1938 struct rule *rule;
1939 rule = rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
1940
1941 /* The rule we found might not be valid, since we could be in need of
1942 * revalidation. If it is not valid, don't return it. */
1943 if (rule
1944 && rule->super
1945 && ofproto->need_revalidate
1946 && !revalidate_rule(ofproto, rule)) {
1947 COVERAGE_INC(ofproto_invalidated);
1948 return NULL;
1949 }
1950
1951 return rule;
1952 }
1953
1954 static void
1955 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
1956 {
1957 if (!ctx->recurse) {
1958 struct rule *rule;
1959 flow_t flow;
1960
1961 flow = *ctx->flow;
1962 flow.in_port = in_port;
1963
1964 rule = lookup_valid_rule(ctx->ofproto, &flow);
1965 if (rule) {
1966 if (rule->super) {
1967 rule = rule->super;
1968 }
1969
1970 ctx->recurse++;
1971 do_xlate_actions(rule->actions, rule->n_actions, ctx);
1972 ctx->recurse--;
1973 }
1974 }
1975 }
1976
1977 static void
1978 xlate_output_action(struct action_xlate_ctx *ctx,
1979 const struct ofp_action_output *oao)
1980 {
1981 uint16_t odp_port;
1982
1983 switch (ntohs(oao->port)) {
1984 case OFPP_IN_PORT:
1985 add_output_action(ctx, ctx->flow->in_port);
1986 break;
1987 case OFPP_TABLE:
1988 xlate_table_action(ctx, ctx->flow->in_port);
1989 break;
1990 case OFPP_NORMAL:
1991 if (!ctx->ofproto->ofhooks->normal_cb(ctx->flow, ctx->packet,
1992 ctx->out, ctx->tags,
1993 ctx->ofproto->aux)) {
1994 COVERAGE_INC(ofproto_uninstallable);
1995 ctx->may_setup_flow = false;
1996 }
1997 break;
1998 case OFPP_FLOOD:
1999 add_output_group_action(ctx->out, DP_GROUP_FLOOD);
2000 break;
2001 case OFPP_ALL:
2002 add_output_group_action(ctx->out, DP_GROUP_ALL);
2003 break;
2004 case OFPP_CONTROLLER:
2005 add_controller_action(ctx->out, oao);
2006 break;
2007 case OFPP_LOCAL:
2008 add_output_action(ctx, ODPP_LOCAL);
2009 break;
2010 default:
2011 odp_port = ofp_port_to_odp_port(ntohs(oao->port));
2012 if (odp_port != ctx->flow->in_port) {
2013 add_output_action(ctx, odp_port);
2014 }
2015 break;
2016 }
2017 }
2018
2019 static void
2020 xlate_nicira_action(struct action_xlate_ctx *ctx,
2021 const struct nx_action_header *nah)
2022 {
2023 const struct nx_action_resubmit *nar;
2024 int subtype = ntohs(nah->subtype);
2025
2026 assert(nah->vendor == htonl(NX_VENDOR_ID));
2027 switch (subtype) {
2028 case NXAST_RESUBMIT:
2029 nar = (const struct nx_action_resubmit *) nah;
2030 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2031 break;
2032
2033 default:
2034 VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype);
2035 break;
2036 }
2037 }
2038
2039 static void
2040 do_xlate_actions(const union ofp_action *in, size_t n_in,
2041 struct action_xlate_ctx *ctx)
2042 {
2043 struct actions_iterator iter;
2044 const union ofp_action *ia;
2045 const struct ofport *port;
2046
2047 port = port_array_get(&ctx->ofproto->ports, ctx->flow->in_port);
2048 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2049 port->opp.config & (eth_addr_equals(ctx->flow->dl_dst, stp_eth_addr)
2050 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2051 /* Drop this flow. */
2052 return;
2053 }
2054
2055 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2056 uint16_t type = ntohs(ia->type);
2057 union odp_action *oa;
2058
2059 switch (type) {
2060 case OFPAT_OUTPUT:
2061 xlate_output_action(ctx, &ia->output);
2062 break;
2063
2064 case OFPAT_SET_VLAN_VID:
2065 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_VID);
2066 oa->vlan_vid.vlan_vid = ia->vlan_vid.vlan_vid;
2067 break;
2068
2069 case OFPAT_SET_VLAN_PCP:
2070 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_PCP);
2071 oa->vlan_pcp.vlan_pcp = ia->vlan_pcp.vlan_pcp;
2072 break;
2073
2074 case OFPAT_STRIP_VLAN:
2075 odp_actions_add(ctx->out, ODPAT_STRIP_VLAN);
2076 break;
2077
2078 case OFPAT_SET_DL_SRC:
2079 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC);
2080 memcpy(oa->dl_addr.dl_addr,
2081 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2082 break;
2083
2084 case OFPAT_SET_DL_DST:
2085 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST);
2086 memcpy(oa->dl_addr.dl_addr,
2087 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2088 break;
2089
2090 case OFPAT_SET_NW_SRC:
2091 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC);
2092 oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2093 break;
2094
2095 case OFPAT_SET_TP_SRC:
2096 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC);
2097 oa->tp_port.tp_port = ia->tp_port.tp_port;
2098 break;
2099
2100 case OFPAT_VENDOR:
2101 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
2102 break;
2103
2104 default:
2105 VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type);
2106 break;
2107 }
2108 }
2109 }
2110
2111 static int
2112 xlate_actions(const union ofp_action *in, size_t n_in,
2113 const flow_t *flow, struct ofproto *ofproto,
2114 const struct ofpbuf *packet,
2115 struct odp_actions *out, tag_type *tags, bool *may_setup_flow)
2116 {
2117 tag_type no_tags = 0;
2118 struct action_xlate_ctx ctx;
2119 COVERAGE_INC(ofproto_ofp2odp);
2120 odp_actions_init(out);
2121 ctx.flow = flow;
2122 ctx.recurse = 0;
2123 ctx.ofproto = ofproto;
2124 ctx.packet = packet;
2125 ctx.out = out;
2126 ctx.tags = tags ? tags : &no_tags;
2127 ctx.may_setup_flow = true;
2128 do_xlate_actions(in, n_in, &ctx);
2129
2130 /* Check with in-band control to see if we're allowed to setup this
2131 * flow. */
2132 if (!in_band_rule_check(ofproto->in_band, flow, out)) {
2133 ctx.may_setup_flow = false;
2134 }
2135
2136 if (may_setup_flow) {
2137 *may_setup_flow = ctx.may_setup_flow;
2138 }
2139 if (odp_actions_overflow(out)) {
2140 odp_actions_init(out);
2141 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
2142 }
2143 return 0;
2144 }
2145
2146 static int
2147 handle_packet_out(struct ofproto *p, struct ofconn *ofconn,
2148 struct ofp_header *oh)
2149 {
2150 struct ofp_packet_out *opo;
2151 struct ofpbuf payload, *buffer;
2152 struct odp_actions actions;
2153 int n_actions;
2154 uint16_t in_port;
2155 flow_t flow;
2156 int error;
2157
2158 error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports);
2159 if (error) {
2160 return error;
2161 }
2162 opo = (struct ofp_packet_out *) oh;
2163
2164 COVERAGE_INC(ofproto_packet_out);
2165 if (opo->buffer_id != htonl(UINT32_MAX)) {
2166 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
2167 &buffer, &in_port);
2168 if (error) {
2169 return error;
2170 }
2171 payload = *buffer;
2172 } else {
2173 buffer = NULL;
2174 }
2175
2176 flow_extract(&payload, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow);
2177 error = xlate_actions((const union ofp_action *) opo->actions, n_actions,
2178 &flow, p, &payload, &actions, NULL, NULL);
2179 if (error) {
2180 return error;
2181 }
2182
2183 dpif_execute(p->dpif, flow.in_port, actions.actions, actions.n_actions,
2184 &payload);
2185 ofpbuf_delete(buffer);
2186
2187 return 0;
2188 }
2189
2190 static void
2191 update_port_config(struct ofproto *p, struct ofport *port,
2192 uint32_t config, uint32_t mask)
2193 {
2194 mask &= config ^ port->opp.config;
2195 if (mask & OFPPC_PORT_DOWN) {
2196 if (config & OFPPC_PORT_DOWN) {
2197 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
2198 } else {
2199 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
2200 }
2201 }
2202 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | OFPPC_NO_FWD)
2203 if (mask & REVALIDATE_BITS) {
2204 COVERAGE_INC(ofproto_costly_flags);
2205 port->opp.config ^= mask & REVALIDATE_BITS;
2206 p->need_revalidate = true;
2207 }
2208 #undef REVALIDATE_BITS
2209 if (mask & OFPPC_NO_FLOOD) {
2210 port->opp.config ^= OFPPC_NO_FLOOD;
2211 refresh_port_group(p, DP_GROUP_FLOOD);
2212 }
2213 if (mask & OFPPC_NO_PACKET_IN) {
2214 port->opp.config ^= OFPPC_NO_PACKET_IN;
2215 }
2216 }
2217
2218 static int
2219 handle_port_mod(struct ofproto *p, struct ofp_header *oh)
2220 {
2221 const struct ofp_port_mod *opm;
2222 struct ofport *port;
2223 int error;
2224
2225 error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm);
2226 if (error) {
2227 return error;
2228 }
2229 opm = (struct ofp_port_mod *) oh;
2230
2231 port = port_array_get(&p->ports,
2232 ofp_port_to_odp_port(ntohs(opm->port_no)));
2233 if (!port) {
2234 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
2235 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
2236 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
2237 } else {
2238 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
2239 if (opm->advertise) {
2240 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
2241 }
2242 }
2243 return 0;
2244 }
2245
2246 static struct ofpbuf *
2247 make_stats_reply(uint32_t xid, uint16_t type, size_t body_len)
2248 {
2249 struct ofp_stats_reply *osr;
2250 struct ofpbuf *msg;
2251
2252 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
2253 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
2254 osr->type = type;
2255 osr->flags = htons(0);
2256 return msg;
2257 }
2258
2259 static struct ofpbuf *
2260 start_stats_reply(const struct ofp_stats_request *request, size_t body_len)
2261 {
2262 return make_stats_reply(request->header.xid, request->type, body_len);
2263 }
2264
2265 static void *
2266 append_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp)
2267 {
2268 struct ofpbuf *msg = *msgp;
2269 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
2270 if (nbytes + msg->size > UINT16_MAX) {
2271 struct ofp_stats_reply *reply = msg->data;
2272 reply->flags = htons(OFPSF_REPLY_MORE);
2273 *msgp = make_stats_reply(reply->header.xid, reply->type, nbytes);
2274 queue_tx(msg, ofconn, ofconn->reply_counter);
2275 }
2276 return ofpbuf_put_uninit(*msgp, nbytes);
2277 }
2278
2279 static int
2280 handle_desc_stats_request(struct ofproto *p, struct ofconn *ofconn,
2281 struct ofp_stats_request *request)
2282 {
2283 struct ofp_desc_stats *ods;
2284 struct ofpbuf *msg;
2285
2286 msg = start_stats_reply(request, sizeof *ods);
2287 ods = append_stats_reply(sizeof *ods, ofconn, &msg);
2288 strncpy(ods->mfr_desc, p->manufacturer, sizeof ods->mfr_desc);
2289 strncpy(ods->hw_desc, p->hardware, sizeof ods->hw_desc);
2290 strncpy(ods->sw_desc, p->software, sizeof ods->sw_desc);
2291 strncpy(ods->serial_num, p->serial, sizeof ods->serial_num);
2292 queue_tx(msg, ofconn, ofconn->reply_counter);
2293
2294 return 0;
2295 }
2296
2297 static void
2298 count_subrules(struct cls_rule *cls_rule, void *n_subrules_)
2299 {
2300 struct rule *rule = rule_from_cls_rule(cls_rule);
2301 int *n_subrules = n_subrules_;
2302
2303 if (rule->super) {
2304 (*n_subrules)++;
2305 }
2306 }
2307
2308 static int
2309 handle_table_stats_request(struct ofproto *p, struct ofconn *ofconn,
2310 struct ofp_stats_request *request)
2311 {
2312 struct ofp_table_stats *ots;
2313 struct ofpbuf *msg;
2314 struct odp_stats dpstats;
2315 int n_exact, n_subrules, n_wild;
2316
2317 msg = start_stats_reply(request, sizeof *ots * 2);
2318
2319 /* Count rules of various kinds. */
2320 n_subrules = 0;
2321 classifier_for_each(&p->cls, CLS_INC_EXACT, count_subrules, &n_subrules);
2322 n_exact = classifier_count_exact(&p->cls) - n_subrules;
2323 n_wild = classifier_count(&p->cls) - classifier_count_exact(&p->cls);
2324
2325 /* Hash table. */
2326 dpif_get_dp_stats(p->dpif, &dpstats);
2327 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
2328 memset(ots, 0, sizeof *ots);
2329 ots->table_id = TABLEID_HASH;
2330 strcpy(ots->name, "hash");
2331 ots->wildcards = htonl(0);
2332 ots->max_entries = htonl(dpstats.max_capacity);
2333 ots->active_count = htonl(n_exact);
2334 ots->lookup_count = htonll(dpstats.n_frags + dpstats.n_hit +
2335 dpstats.n_missed);
2336 ots->matched_count = htonll(dpstats.n_hit); /* XXX */
2337
2338 /* Classifier table. */
2339 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
2340 memset(ots, 0, sizeof *ots);
2341 ots->table_id = TABLEID_CLASSIFIER;
2342 strcpy(ots->name, "classifier");
2343 ots->wildcards = htonl(OFPFW_ALL);
2344 ots->max_entries = htonl(65536);
2345 ots->active_count = htonl(n_wild);
2346 ots->lookup_count = htonll(0); /* XXX */
2347 ots->matched_count = htonll(0); /* XXX */
2348
2349 queue_tx(msg, ofconn, ofconn->reply_counter);
2350 return 0;
2351 }
2352
2353 static int
2354 handle_port_stats_request(struct ofproto *p, struct ofconn *ofconn,
2355 struct ofp_stats_request *request)
2356 {
2357 struct ofp_port_stats *ops;
2358 struct ofpbuf *msg;
2359 struct ofport *port;
2360 unsigned int port_no;
2361
2362 msg = start_stats_reply(request, sizeof *ops * 16);
2363 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
2364 struct netdev_stats stats;
2365
2366 /* Intentionally ignore return value, since errors will set 'stats' to
2367 * all-1s, which is correct for OpenFlow, and netdev_get_stats() will
2368 * log errors. */
2369 netdev_get_stats(port->netdev, &stats);
2370
2371 ops = append_stats_reply(sizeof *ops, ofconn, &msg);
2372 ops->port_no = htons(odp_port_to_ofp_port(port_no));
2373 memset(ops->pad, 0, sizeof ops->pad);
2374 ops->rx_packets = htonll(stats.rx_packets);
2375 ops->tx_packets = htonll(stats.tx_packets);
2376 ops->rx_bytes = htonll(stats.rx_bytes);
2377 ops->tx_bytes = htonll(stats.tx_bytes);
2378 ops->rx_dropped = htonll(stats.rx_dropped);
2379 ops->tx_dropped = htonll(stats.tx_dropped);
2380 ops->rx_errors = htonll(stats.rx_errors);
2381 ops->tx_errors = htonll(stats.tx_errors);
2382 ops->rx_frame_err = htonll(stats.rx_frame_errors);
2383 ops->rx_over_err = htonll(stats.rx_over_errors);
2384 ops->rx_crc_err = htonll(stats.rx_crc_errors);
2385 ops->collisions = htonll(stats.collisions);
2386 }
2387
2388 queue_tx(msg, ofconn, ofconn->reply_counter);
2389 return 0;
2390 }
2391
2392 struct flow_stats_cbdata {
2393 struct ofproto *ofproto;
2394 struct ofconn *ofconn;
2395 uint16_t out_port;
2396 struct ofpbuf *msg;
2397 };
2398
2399 static void
2400 query_stats(struct ofproto *p, struct rule *rule,
2401 uint64_t *packet_countp, uint64_t *byte_countp)
2402 {
2403 uint64_t packet_count, byte_count;
2404 struct rule *subrule;
2405 struct odp_flow *odp_flows;
2406 size_t n_odp_flows;
2407
2408 n_odp_flows = rule->cr.wc.wildcards ? list_size(&rule->list) : 1;
2409 odp_flows = xcalloc(1, n_odp_flows * sizeof *odp_flows);
2410 if (rule->cr.wc.wildcards) {
2411 size_t i = 0;
2412 LIST_FOR_EACH (subrule, struct rule, list, &rule->list) {
2413 odp_flows[i++].key = subrule->cr.flow;
2414 }
2415 } else {
2416 odp_flows[0].key = rule->cr.flow;
2417 }
2418
2419 packet_count = rule->packet_count;
2420 byte_count = rule->byte_count;
2421 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
2422 size_t i;
2423 for (i = 0; i < n_odp_flows; i++) {
2424 struct odp_flow *odp_flow = &odp_flows[i];
2425 packet_count += odp_flow->stats.n_packets;
2426 byte_count += odp_flow->stats.n_bytes;
2427 }
2428 }
2429 free(odp_flows);
2430
2431 *packet_countp = packet_count;
2432 *byte_countp = byte_count;
2433 }
2434
2435 static void
2436 flow_stats_cb(struct cls_rule *rule_, void *cbdata_)
2437 {
2438 struct rule *rule = rule_from_cls_rule(rule_);
2439 struct flow_stats_cbdata *cbdata = cbdata_;
2440 struct ofp_flow_stats *ofs;
2441 uint64_t packet_count, byte_count;
2442 size_t act_len, len;
2443
2444 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
2445 return;
2446 }
2447
2448 act_len = sizeof *rule->actions * rule->n_actions;
2449 len = offsetof(struct ofp_flow_stats, actions) + act_len;
2450
2451 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
2452
2453 ofs = append_stats_reply(len, cbdata->ofconn, &cbdata->msg);
2454 ofs->length = htons(len);
2455 ofs->table_id = rule->cr.wc.wildcards ? TABLEID_CLASSIFIER : TABLEID_HASH;
2456 ofs->pad = 0;
2457 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, &ofs->match);
2458 ofs->duration = htonl((time_msec() - rule->created) / 1000);
2459 ofs->priority = htons(rule->cr.priority);
2460 ofs->idle_timeout = htons(rule->idle_timeout);
2461 ofs->hard_timeout = htons(rule->hard_timeout);
2462 memset(ofs->pad2, 0, sizeof ofs->pad2);
2463 ofs->packet_count = htonll(packet_count);
2464 ofs->byte_count = htonll(byte_count);
2465 memcpy(ofs->actions, rule->actions, act_len);
2466 }
2467
2468 static int
2469 table_id_to_include(uint8_t table_id)
2470 {
2471 return (table_id == TABLEID_HASH ? CLS_INC_EXACT
2472 : table_id == TABLEID_CLASSIFIER ? CLS_INC_WILD
2473 : table_id == 0xff ? CLS_INC_ALL
2474 : 0);
2475 }
2476
2477 static int
2478 handle_flow_stats_request(struct ofproto *p, struct ofconn *ofconn,
2479 const struct ofp_stats_request *osr,
2480 size_t arg_size)
2481 {
2482 struct ofp_flow_stats_request *fsr;
2483 struct flow_stats_cbdata cbdata;
2484 struct cls_rule target;
2485
2486 if (arg_size != sizeof *fsr) {
2487 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2488 }
2489 fsr = (struct ofp_flow_stats_request *) osr->body;
2490
2491 COVERAGE_INC(ofproto_flows_req);
2492 cbdata.ofproto = p;
2493 cbdata.ofconn = ofconn;
2494 cbdata.out_port = fsr->out_port;
2495 cbdata.msg = start_stats_reply(osr, 1024);
2496 cls_rule_from_match(&target, &fsr->match, 0);
2497 classifier_for_each_match(&p->cls, &target,
2498 table_id_to_include(fsr->table_id),
2499 flow_stats_cb, &cbdata);
2500 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
2501 return 0;
2502 }
2503
2504 struct flow_stats_ds_cbdata {
2505 struct ofproto *ofproto;
2506 struct ds *results;
2507 };
2508
2509 static void
2510 flow_stats_ds_cb(struct cls_rule *rule_, void *cbdata_)
2511 {
2512 struct rule *rule = rule_from_cls_rule(rule_);
2513 struct flow_stats_ds_cbdata *cbdata = cbdata_;
2514 struct ds *results = cbdata->results;
2515 struct ofp_match match;
2516 uint64_t packet_count, byte_count;
2517 size_t act_len = sizeof *rule->actions * rule->n_actions;
2518
2519 /* Don't report on subrules. */
2520 if (rule->super != NULL) {
2521 return;
2522 }
2523
2524 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
2525 flow_to_ovs_match(&rule->cr.flow, rule->cr.wc.wildcards, &match);
2526
2527 ds_put_format(results, "duration=%llds, ",
2528 (time_msec() - rule->created) / 1000);
2529 ds_put_format(results, "priority=%u, ", rule->cr.priority);
2530 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
2531 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
2532 ofp_print_match(results, &match, true);
2533 ofp_print_actions(results, &rule->actions->header, act_len);
2534 ds_put_cstr(results, "\n");
2535 }
2536
2537 /* Adds a pretty-printed description of all flows to 'results', including
2538 * those marked hidden by secchan (e.g., by in-band control). */
2539 void
2540 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
2541 {
2542 struct ofp_match match;
2543 struct cls_rule target;
2544 struct flow_stats_ds_cbdata cbdata;
2545
2546 memset(&match, 0, sizeof match);
2547 match.wildcards = htonl(OFPFW_ALL);
2548
2549 cbdata.ofproto = p;
2550 cbdata.results = results;
2551
2552 cls_rule_from_match(&target, &match, 0);
2553 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
2554 flow_stats_ds_cb, &cbdata);
2555 }
2556
2557 struct aggregate_stats_cbdata {
2558 struct ofproto *ofproto;
2559 uint16_t out_port;
2560 uint64_t packet_count;
2561 uint64_t byte_count;
2562 uint32_t n_flows;
2563 };
2564
2565 static void
2566 aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_)
2567 {
2568 struct rule *rule = rule_from_cls_rule(rule_);
2569 struct aggregate_stats_cbdata *cbdata = cbdata_;
2570 uint64_t packet_count, byte_count;
2571
2572 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
2573 return;
2574 }
2575
2576 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
2577
2578 cbdata->packet_count += packet_count;
2579 cbdata->byte_count += byte_count;
2580 cbdata->n_flows++;
2581 }
2582
2583 static int
2584 handle_aggregate_stats_request(struct ofproto *p, struct ofconn *ofconn,
2585 const struct ofp_stats_request *osr,
2586 size_t arg_size)
2587 {
2588 struct ofp_aggregate_stats_request *asr;
2589 struct ofp_aggregate_stats_reply *reply;
2590 struct aggregate_stats_cbdata cbdata;
2591 struct cls_rule target;
2592 struct ofpbuf *msg;
2593
2594 if (arg_size != sizeof *asr) {
2595 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2596 }
2597 asr = (struct ofp_aggregate_stats_request *) osr->body;
2598
2599 COVERAGE_INC(ofproto_agg_request);
2600 cbdata.ofproto = p;
2601 cbdata.out_port = asr->out_port;
2602 cbdata.packet_count = 0;
2603 cbdata.byte_count = 0;
2604 cbdata.n_flows = 0;
2605 cls_rule_from_match(&target, &asr->match, 0);
2606 classifier_for_each_match(&p->cls, &target,
2607 table_id_to_include(asr->table_id),
2608 aggregate_stats_cb, &cbdata);
2609
2610 msg = start_stats_reply(osr, sizeof *reply);
2611 reply = append_stats_reply(sizeof *reply, ofconn, &msg);
2612 reply->flow_count = htonl(cbdata.n_flows);
2613 reply->packet_count = htonll(cbdata.packet_count);
2614 reply->byte_count = htonll(cbdata.byte_count);
2615 queue_tx(msg, ofconn, ofconn->reply_counter);
2616 return 0;
2617 }
2618
2619 static int
2620 handle_stats_request(struct ofproto *p, struct ofconn *ofconn,
2621 struct ofp_header *oh)
2622 {
2623 struct ofp_stats_request *osr;
2624 size_t arg_size;
2625 int error;
2626
2627 error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr,
2628 1, &arg_size);
2629 if (error) {
2630 return error;
2631 }
2632 osr = (struct ofp_stats_request *) oh;
2633
2634 switch (ntohs(osr->type)) {
2635 case OFPST_DESC:
2636 return handle_desc_stats_request(p, ofconn, osr);
2637
2638 case OFPST_FLOW:
2639 return handle_flow_stats_request(p, ofconn, osr, arg_size);
2640
2641 case OFPST_AGGREGATE:
2642 return handle_aggregate_stats_request(p, ofconn, osr, arg_size);
2643
2644 case OFPST_TABLE:
2645 return handle_table_stats_request(p, ofconn, osr);
2646
2647 case OFPST_PORT:
2648 return handle_port_stats_request(p, ofconn, osr);
2649
2650 case OFPST_VENDOR:
2651 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
2652
2653 default:
2654 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
2655 }
2656 }
2657
2658 static long long int
2659 msec_from_nsec(uint64_t sec, uint32_t nsec)
2660 {
2661 return !sec ? 0 : sec * 1000 + nsec / 1000000;
2662 }
2663
2664 static void
2665 update_time(struct rule *rule, const struct odp_flow_stats *stats)
2666 {
2667 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
2668 if (used > rule->used) {
2669 rule->used = used;
2670 }
2671 }
2672
2673 static void
2674 update_stats(struct rule *rule, const struct odp_flow_stats *stats)
2675 {
2676 update_time(rule, stats);
2677 rule->packet_count += stats->n_packets;
2678 rule->byte_count += stats->n_bytes;
2679 rule->tcp_flags |= stats->tcp_flags;
2680 if (stats->n_packets) {
2681 rule->ip_tos = stats->ip_tos;
2682 }
2683 }
2684
2685 static int
2686 add_flow(struct ofproto *p, struct ofconn *ofconn,
2687 struct ofp_flow_mod *ofm, size_t n_actions)
2688 {
2689 struct ofpbuf *packet;
2690 struct rule *rule;
2691 uint16_t in_port;
2692 int error;
2693
2694 rule = rule_create(NULL, (const union ofp_action *) ofm->actions,
2695 n_actions, ntohs(ofm->idle_timeout),
2696 ntohs(ofm->hard_timeout));
2697 cls_rule_from_match(&rule->cr, &ofm->match, ntohs(ofm->priority));
2698
2699 packet = NULL;
2700 error = 0;
2701 if (ofm->buffer_id != htonl(UINT32_MAX)) {
2702 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
2703 &packet, &in_port);
2704 }
2705
2706 rule_insert(p, rule, packet, in_port);
2707 ofpbuf_delete(packet);
2708 return error;
2709 }
2710
2711 static int
2712 modify_flow(struct ofproto *p, const struct ofp_flow_mod *ofm,
2713 size_t n_actions, uint16_t command, struct rule *rule)
2714 {
2715 if (rule_is_hidden(rule)) {
2716 return 0;
2717 }
2718
2719 if (command == OFPFC_DELETE) {
2720 rule_remove(p, rule);
2721 } else {
2722 size_t actions_len = n_actions * sizeof *rule->actions;
2723
2724 if (n_actions == rule->n_actions
2725 && !memcmp(ofm->actions, rule->actions, actions_len))
2726 {
2727 return 0;
2728 }
2729
2730 free(rule->actions);
2731 rule->actions = xmemdup(ofm->actions, actions_len);
2732 rule->n_actions = n_actions;
2733
2734 if (rule->cr.wc.wildcards) {
2735 COVERAGE_INC(ofproto_mod_wc_flow);
2736 p->need_revalidate = true;
2737 } else {
2738 rule_update_actions(p, rule);
2739 }
2740 }
2741
2742 return 0;
2743 }
2744
2745 static int
2746 modify_flows_strict(struct ofproto *p, const struct ofp_flow_mod *ofm,
2747 size_t n_actions, uint16_t command)
2748 {
2749 struct rule *rule;
2750 uint32_t wildcards;
2751 flow_t flow;
2752
2753 flow_from_match(&flow, &wildcards, &ofm->match);
2754 rule = rule_from_cls_rule(classifier_find_rule_exactly(
2755 &p->cls, &flow, wildcards,
2756 ntohs(ofm->priority)));
2757
2758 if (rule) {
2759 if (command == OFPFC_DELETE
2760 && ofm->out_port != htons(OFPP_NONE)
2761 && !rule_has_out_port(rule, ofm->out_port)) {
2762 return 0;
2763 }
2764
2765 modify_flow(p, ofm, n_actions, command, rule);
2766 }
2767 return 0;
2768 }
2769
2770 struct modify_flows_cbdata {
2771 struct ofproto *ofproto;
2772 const struct ofp_flow_mod *ofm;
2773 uint16_t out_port;
2774 size_t n_actions;
2775 uint16_t command;
2776 };
2777
2778 static void
2779 modify_flows_cb(struct cls_rule *rule_, void *cbdata_)
2780 {
2781 struct rule *rule = rule_from_cls_rule(rule_);
2782 struct modify_flows_cbdata *cbdata = cbdata_;
2783
2784 if (cbdata->out_port != htons(OFPP_NONE)
2785 && !rule_has_out_port(rule, cbdata->out_port)) {
2786 return;
2787 }
2788
2789 modify_flow(cbdata->ofproto, cbdata->ofm, cbdata->n_actions,
2790 cbdata->command, rule);
2791 }
2792
2793 static int
2794 modify_flows_loose(struct ofproto *p, const struct ofp_flow_mod *ofm,
2795 size_t n_actions, uint16_t command)
2796 {
2797 struct modify_flows_cbdata cbdata;
2798 struct cls_rule target;
2799
2800 cbdata.ofproto = p;
2801 cbdata.ofm = ofm;
2802 cbdata.out_port = (command == OFPFC_DELETE ? ofm->out_port
2803 : htons(OFPP_NONE));
2804 cbdata.n_actions = n_actions;
2805 cbdata.command = command;
2806
2807 cls_rule_from_match(&target, &ofm->match, 0);
2808
2809 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
2810 modify_flows_cb, &cbdata);
2811 return 0;
2812 }
2813
2814 static int
2815 handle_flow_mod(struct ofproto *p, struct ofconn *ofconn,
2816 struct ofp_flow_mod *ofm)
2817 {
2818 size_t n_actions;
2819 int error;
2820
2821 error = check_ofp_message_array(&ofm->header, OFPT_FLOW_MOD, sizeof *ofm,
2822 sizeof *ofm->actions, &n_actions);
2823 if (error) {
2824 return error;
2825 }
2826
2827 normalize_match(&ofm->match);
2828 if (!ofm->match.wildcards) {
2829 ofm->priority = htons(UINT16_MAX);
2830 }
2831
2832 error = validate_actions((const union ofp_action *) ofm->actions,
2833 n_actions, p->max_ports);
2834 if (error) {
2835 return error;
2836 }
2837
2838 switch (ntohs(ofm->command)) {
2839 case OFPFC_ADD:
2840 return add_flow(p, ofconn, ofm, n_actions);
2841
2842 case OFPFC_MODIFY:
2843 return modify_flows_loose(p, ofm, n_actions, OFPFC_MODIFY);
2844
2845 case OFPFC_MODIFY_STRICT:
2846 return modify_flows_strict(p, ofm, n_actions, OFPFC_MODIFY);
2847
2848 case OFPFC_DELETE:
2849 return modify_flows_loose(p, ofm, n_actions, OFPFC_DELETE);
2850
2851 case OFPFC_DELETE_STRICT:
2852 return modify_flows_strict(p, ofm, n_actions, OFPFC_DELETE);
2853
2854 default:
2855 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
2856 }
2857 }
2858
2859 static void
2860 send_capability_reply(struct ofproto *p, struct ofconn *ofconn, uint32_t xid)
2861 {
2862 struct ofmp_capability_reply *ocr;
2863 struct ofpbuf *b;
2864 char capabilities[] = "com.nicira.mgmt.manager=false\n";
2865
2866 ocr = make_openflow_xid(sizeof(*ocr), OFPT_VENDOR, xid, &b);
2867 ocr->header.header.vendor = htonl(NX_VENDOR_ID);
2868 ocr->header.header.subtype = htonl(NXT_MGMT);
2869 ocr->header.type = htons(OFMPT_CAPABILITY_REPLY);
2870
2871 ocr->format = htonl(OFMPCOF_SIMPLE);
2872 ocr->mgmt_id = htonll(p->mgmt_id);
2873
2874 ofpbuf_put(b, capabilities, strlen(capabilities));
2875
2876 queue_tx(b, ofconn, ofconn->reply_counter);
2877 }
2878
2879 static int
2880 handle_ofmp(struct ofproto *p, struct ofconn *ofconn,
2881 struct ofmp_header *ofmph)
2882 {
2883 size_t msg_len = ntohs(ofmph->header.header.length);
2884 if (msg_len < sizeof(*ofmph)) {
2885 VLOG_WARN_RL(&rl, "dropping short managment message: %d\n", msg_len);
2886 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2887 }
2888
2889 if (ofmph->type == htons(OFMPT_CAPABILITY_REQUEST)) {
2890 struct ofmp_capability_request *ofmpcr;
2891
2892 if (msg_len < sizeof(struct ofmp_capability_request)) {
2893 VLOG_WARN_RL(&rl, "dropping short capability request: %d\n",
2894 msg_len);
2895 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2896 }
2897
2898 ofmpcr = (struct ofmp_capability_request *)ofmph;
2899 if (ofmpcr->format != htonl(OFMPCAF_SIMPLE)) {
2900 /* xxx Find a better type than bad subtype */
2901 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
2902 }
2903
2904 send_capability_reply(p, ofconn, ofmph->header.header.xid);
2905 return 0;
2906 } else {
2907 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
2908 }
2909 }
2910
2911 static int
2912 handle_vendor(struct ofproto *p, struct ofconn *ofconn, void *msg)
2913 {
2914 struct ofp_vendor_header *ovh = msg;
2915 struct nicira_header *nh;
2916
2917 if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) {
2918 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2919 }
2920 if (ovh->vendor != htonl(NX_VENDOR_ID)) {
2921 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
2922 }
2923 if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) {
2924 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2925 }
2926
2927 nh = msg;
2928 switch (ntohl(nh->subtype)) {
2929 case NXT_STATUS_REQUEST:
2930 return switch_status_handle_request(p->switch_status, ofconn->rconn,
2931 msg);
2932
2933 case NXT_ACT_SET_CONFIG:
2934 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE); /* XXX */
2935
2936 case NXT_ACT_GET_CONFIG:
2937 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE); /* XXX */
2938
2939 case NXT_COMMAND_REQUEST:
2940 if (p->executer) {
2941 return executer_handle_request(p->executer, ofconn->rconn, msg);
2942 }
2943 break;
2944
2945 case NXT_MGMT:
2946 return handle_ofmp(p, ofconn, msg);
2947 }
2948
2949 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
2950 }
2951
2952 static void
2953 handle_openflow(struct ofconn *ofconn, struct ofproto *p,
2954 struct ofpbuf *ofp_msg)
2955 {
2956 struct ofp_header *oh = ofp_msg->data;
2957 int error;
2958
2959 COVERAGE_INC(ofproto_recv_openflow);
2960 switch (oh->type) {
2961 case OFPT_ECHO_REQUEST:
2962 error = handle_echo_request(ofconn, oh);
2963 break;
2964
2965 case OFPT_ECHO_REPLY:
2966 error = 0;
2967 break;
2968
2969 case OFPT_FEATURES_REQUEST:
2970 error = handle_features_request(p, ofconn, oh);
2971 break;
2972
2973 case OFPT_GET_CONFIG_REQUEST:
2974 error = handle_get_config_request(p, ofconn, oh);
2975 break;
2976
2977 case OFPT_SET_CONFIG:
2978 error = handle_set_config(p, ofconn, ofp_msg->data);
2979 break;
2980
2981 case OFPT_PACKET_OUT:
2982 error = handle_packet_out(p, ofconn, ofp_msg->data);
2983 break;
2984
2985 case OFPT_PORT_MOD:
2986 error = handle_port_mod(p, oh);
2987 break;
2988
2989 case OFPT_FLOW_MOD:
2990 error = handle_flow_mod(p, ofconn, ofp_msg->data);
2991 break;
2992
2993 case OFPT_STATS_REQUEST:
2994 error = handle_stats_request(p, ofconn, oh);
2995 break;
2996
2997 case OFPT_VENDOR:
2998 error = handle_vendor(p, ofconn, ofp_msg->data);
2999 break;
3000
3001 default:
3002 if (VLOG_IS_WARN_ENABLED()) {
3003 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
3004 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
3005 free(s);
3006 }
3007 error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
3008 break;
3009 }
3010
3011 if (error) {
3012 send_error_oh(ofconn, ofp_msg->data, error);
3013 }
3014 }
3015 \f
3016 static void
3017 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
3018 {
3019 struct odp_msg *msg = packet->data;
3020 uint16_t in_port = odp_port_to_ofp_port(msg->port);
3021 struct rule *rule;
3022 struct ofpbuf payload;
3023 flow_t flow;
3024
3025 /* Handle controller actions. */
3026 if (msg->type == _ODPL_ACTION_NR) {
3027 COVERAGE_INC(ofproto_ctlr_action);
3028 pinsched_send(p->action_sched, in_port, packet,
3029 send_packet_in_action, p);
3030 return;
3031 }
3032
3033 payload.data = msg + 1;
3034 payload.size = msg->length - sizeof *msg;
3035 flow_extract(&payload, msg->port, &flow);
3036
3037 /* Check with in-band control to see if this packet should be sent
3038 * to the local port regardless of the flow table. */
3039 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
3040 union odp_action action;
3041
3042 memset(&action, 0, sizeof(action));
3043 action.output.type = ODPAT_OUTPUT;
3044 action.output.port = ODPP_LOCAL;
3045 dpif_execute(p->dpif, flow.in_port, &action, 1, &payload);
3046 }
3047
3048 rule = lookup_valid_rule(p, &flow);
3049 if (!rule) {
3050 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
3051 struct ofport *port = port_array_get(&p->ports, msg->port);
3052 if (port) {
3053 if (port->opp.config & OFPPC_NO_PACKET_IN) {
3054 COVERAGE_INC(ofproto_no_packet_in);
3055 /* XXX install 'drop' flow entry */
3056 ofpbuf_delete(packet);
3057 return;
3058 }
3059 } else {
3060 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port);
3061 }
3062
3063 COVERAGE_INC(ofproto_packet_in);
3064 pinsched_send(p->miss_sched, in_port, packet, send_packet_in_miss, p);
3065 return;
3066 }
3067
3068 if (rule->cr.wc.wildcards) {
3069 rule = rule_create_subrule(p, rule, &flow);
3070 rule_make_actions(p, rule, packet);
3071 } else {
3072 if (!rule->may_install) {
3073 /* The rule is not installable, that is, we need to process every
3074 * packet, so process the current packet and set its actions into
3075 * 'subrule'. */
3076 rule_make_actions(p, rule, packet);
3077 } else {
3078 /* XXX revalidate rule if it needs it */
3079 }
3080 }
3081
3082 rule_execute(p, rule, &payload, &flow);
3083 rule_reinstall(p, rule);
3084 ofpbuf_delete(packet);
3085 }
3086 \f
3087 static void
3088 revalidate_cb(struct cls_rule *sub_, void *cbdata_)
3089 {
3090 struct rule *sub = rule_from_cls_rule(sub_);
3091 struct revalidate_cbdata *cbdata = cbdata_;
3092
3093 if (cbdata->revalidate_all
3094 || (cbdata->revalidate_subrules && sub->super)
3095 || (tag_set_intersects(&cbdata->revalidate_set, sub->tags))) {
3096 revalidate_rule(cbdata->ofproto, sub);
3097 }
3098 }
3099
3100 static bool
3101 revalidate_rule(struct ofproto *p, struct rule *rule)
3102 {
3103 const flow_t *flow = &rule->cr.flow;
3104
3105 COVERAGE_INC(ofproto_revalidate_rule);
3106 if (rule->super) {
3107 struct rule *super;
3108 super = rule_from_cls_rule(classifier_lookup_wild(&p->cls, flow));
3109 if (!super) {
3110 rule_remove(p, rule);
3111 return false;
3112 } else if (super != rule->super) {
3113 COVERAGE_INC(ofproto_revalidate_moved);
3114 list_remove(&rule->list);
3115 list_push_back(&super->list, &rule->list);
3116 rule->super = super;
3117 rule->hard_timeout = super->hard_timeout;
3118 rule->idle_timeout = super->idle_timeout;
3119 rule->created = super->created;
3120 rule->used = 0;
3121 }
3122 }
3123
3124 rule_update_actions(p, rule);
3125 return true;
3126 }
3127
3128 static struct ofpbuf *
3129 compose_flow_exp(const struct rule *rule, long long int now, uint8_t reason)
3130 {
3131 struct ofp_flow_expired *ofe;
3132 struct ofpbuf *buf;
3133
3134 ofe = make_openflow(sizeof *ofe, OFPT_FLOW_EXPIRED, &buf);
3135 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, &ofe->match);
3136 ofe->priority = htons(rule->cr.priority);
3137 ofe->reason = reason;
3138 ofe->duration = (now - rule->created) / 1000;
3139 ofe->packet_count = rule->packet_count;
3140 ofe->byte_count = rule->byte_count;
3141
3142 return buf;
3143 }
3144
3145 static void
3146 send_flow_exp(struct ofproto *p, struct rule *rule,
3147 long long int now, uint8_t reason)
3148 {
3149 struct ofconn *ofconn;
3150 struct ofconn *prev;
3151 struct ofpbuf *buf = NULL;
3152
3153 /* We limit the maximum number of queued flow expirations it by accounting
3154 * them under the counter for replies. That works because preventing
3155 * OpenFlow requests from being processed also prevents new flows from
3156 * being added (and expiring). (It also prevents processing OpenFlow
3157 * requests that would not add new flows, so it is imperfect.) */
3158
3159 prev = NULL;
3160 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
3161 if (ofconn->send_flow_exp && rconn_is_connected(ofconn->rconn)) {
3162 if (prev) {
3163 queue_tx(ofpbuf_clone(buf), prev, ofconn->reply_counter);
3164 } else {
3165 buf = compose_flow_exp(rule, now, reason);
3166 }
3167 prev = ofconn;
3168 }
3169 }
3170 if (prev) {
3171 queue_tx(buf, prev, ofconn->reply_counter);
3172 }
3173 }
3174
3175 static void
3176 uninstall_idle_flow(struct ofproto *ofproto, struct rule *rule)
3177 {
3178 assert(rule->installed);
3179 assert(!rule->cr.wc.wildcards);
3180
3181 if (rule->super) {
3182 rule_remove(ofproto, rule);
3183 } else {
3184 rule_uninstall(ofproto, rule);
3185 }
3186 }
3187
3188 static void
3189 expire_rule(struct cls_rule *cls_rule, void *p_)
3190 {
3191 struct ofproto *p = p_;
3192 struct rule *rule = rule_from_cls_rule(cls_rule);
3193 long long int hard_expire, idle_expire, expire, now;
3194
3195 hard_expire = (rule->hard_timeout
3196 ? rule->created + rule->hard_timeout * 1000
3197 : LLONG_MAX);
3198 idle_expire = (rule->idle_timeout
3199 && (rule->super || list_is_empty(&rule->list))
3200 ? rule->used + rule->idle_timeout * 1000
3201 : LLONG_MAX);
3202 expire = MIN(hard_expire, idle_expire);
3203 if (expire == LLONG_MAX) {
3204 if (rule->installed && time_msec() >= rule->used + 5000) {
3205 uninstall_idle_flow(p, rule);
3206 }
3207 return;
3208 }
3209
3210 now = time_msec();
3211 if (now < expire) {
3212 if (rule->installed && now >= rule->used + 5000) {
3213 uninstall_idle_flow(p, rule);
3214 }
3215 return;
3216 }
3217
3218 COVERAGE_INC(ofproto_expired);
3219 if (rule->cr.wc.wildcards) {
3220 /* Update stats. (This code will be a no-op if the rule expired
3221 * due to an idle timeout, because in that case the rule has no
3222 * subrules left.) */
3223 struct rule *subrule, *next;
3224 LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) {
3225 rule_remove(p, subrule);
3226 }
3227 }
3228
3229 send_flow_exp(p, rule, now,
3230 (now >= hard_expire
3231 ? OFPER_HARD_TIMEOUT : OFPER_IDLE_TIMEOUT));
3232 rule_remove(p, rule);
3233 }
3234
3235 static void
3236 update_used(struct ofproto *p)
3237 {
3238 struct odp_flow *flows;
3239 size_t n_flows;
3240 size_t i;
3241 int error;
3242
3243 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
3244 if (error) {
3245 return;
3246 }
3247
3248 for (i = 0; i < n_flows; i++) {
3249 struct odp_flow *f = &flows[i];
3250 struct rule *rule;
3251
3252 rule = rule_from_cls_rule(
3253 classifier_find_rule_exactly(&p->cls, &f->key, 0, UINT16_MAX));
3254 if (!rule || !rule->installed) {
3255 COVERAGE_INC(ofproto_unexpected_rule);
3256 dpif_flow_del(p->dpif, f);
3257 continue;
3258 }
3259
3260 update_time(rule, &f->stats);
3261 rule_account(p, rule, f->stats.n_bytes);
3262 }
3263 free(flows);
3264 }
3265
3266 static void
3267 do_send_packet_in(struct ofconn *ofconn, uint32_t buffer_id,
3268 const struct ofpbuf *packet, int send_len)
3269 {
3270 struct ofp_packet_in *opi;
3271 struct ofpbuf payload, *buf;
3272 struct odp_msg *msg;
3273
3274 msg = packet->data;
3275 payload.data = msg + 1;
3276 payload.size = msg->length - sizeof *msg;
3277
3278 send_len = MIN(send_len, payload.size);
3279 buf = ofpbuf_new(sizeof *opi + send_len);
3280 opi = put_openflow_xid(offsetof(struct ofp_packet_in, data),
3281 OFPT_PACKET_IN, 0, buf);
3282 opi->buffer_id = htonl(buffer_id);
3283 opi->total_len = htons(payload.size);
3284 opi->in_port = htons(odp_port_to_ofp_port(msg->port));
3285 opi->reason = msg->type == _ODPL_ACTION_NR ? OFPR_ACTION : OFPR_NO_MATCH;
3286 ofpbuf_put(buf, payload.data, MIN(send_len, payload.size));
3287 update_openflow_length(buf);
3288 rconn_send_with_limit(ofconn->rconn, buf, ofconn->packet_in_counter, 100);
3289 }
3290
3291 static void
3292 send_packet_in_action(struct ofpbuf *packet, void *p_)
3293 {
3294 struct ofproto *p = p_;
3295 struct ofconn *ofconn;
3296 struct odp_msg *msg;
3297
3298 msg = packet->data;
3299 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
3300 if (ofconn == p->controller || ofconn->miss_send_len) {
3301 do_send_packet_in(ofconn, UINT32_MAX, packet, msg->arg);
3302 }
3303 }
3304 ofpbuf_delete(packet);
3305 }
3306
3307 static void
3308 send_packet_in_miss(struct ofpbuf *packet, void *p_)
3309 {
3310 struct ofproto *p = p_;
3311 struct ofconn *ofconn;
3312 struct ofpbuf payload;
3313 struct odp_msg *msg;
3314
3315 msg = packet->data;
3316 payload.data = msg + 1;
3317 payload.size = msg->length - sizeof *msg;
3318 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
3319 if (ofconn->miss_send_len) {
3320 uint32_t buffer_id = pktbuf_save(ofconn->pktbuf, &payload,
3321 msg->port);
3322 int send_len = (buffer_id != UINT32_MAX ? ofconn->miss_send_len
3323 : UINT32_MAX);
3324 do_send_packet_in(ofconn, buffer_id, packet, send_len);
3325 }
3326 }
3327 ofpbuf_delete(packet);
3328 }
3329
3330 static uint64_t
3331 pick_datapath_id(const struct ofproto *ofproto)
3332 {
3333 const struct ofport *port;
3334
3335 port = port_array_get(&ofproto->ports, ODPP_LOCAL);
3336 if (port) {
3337 uint8_t ea[ETH_ADDR_LEN];
3338 int error;
3339
3340 error = netdev_get_etheraddr(port->netdev, ea);
3341 if (!error) {
3342 return eth_addr_to_uint64(ea);
3343 }
3344 VLOG_WARN("could not get MAC address for %s (%s)",
3345 netdev_get_name(port->netdev), strerror(error));
3346 }
3347 return ofproto->fallback_dpid;
3348 }
3349
3350 static uint64_t
3351 pick_fallback_dpid(void)
3352 {
3353 uint8_t ea[ETH_ADDR_LEN];
3354 eth_addr_random(ea);
3355 ea[0] = 0x00; /* Set Nicira OUI. */
3356 ea[1] = 0x23;
3357 ea[2] = 0x20;
3358 return eth_addr_to_uint64(ea);
3359 }
3360 \f
3361 static bool
3362 default_normal_ofhook_cb(const flow_t *flow, const struct ofpbuf *packet,
3363 struct odp_actions *actions, tag_type *tags,
3364 void *ofproto_)
3365 {
3366 struct ofproto *ofproto = ofproto_;
3367 int out_port;
3368
3369 /* Drop frames for reserved multicast addresses. */
3370 if (eth_addr_is_reserved(flow->dl_dst)) {
3371 return true;
3372 }
3373
3374 /* Learn source MAC (but don't try to learn from revalidation). */
3375 if (packet != NULL) {
3376 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
3377 0, flow->in_port);
3378 if (rev_tag) {
3379 /* The log messages here could actually be useful in debugging,
3380 * so keep the rate limit relatively high. */
3381 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
3382 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
3383 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
3384 ofproto_revalidate(ofproto, rev_tag);
3385 }
3386 }
3387
3388 /* Determine output port. */
3389 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags);
3390 if (out_port < 0) {
3391 add_output_group_action(actions, DP_GROUP_FLOOD);
3392 } else if (out_port != flow->in_port) {
3393 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
3394 } else {
3395 /* Drop. */
3396 }
3397
3398 return true;
3399 }
3400
3401 static const struct ofhooks default_ofhooks = {
3402 NULL,
3403 default_normal_ofhook_cb,
3404 NULL,
3405 NULL
3406 };