]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
ofproto: Generalize tun_id_from_cookie into flow_format.
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "byte-order.h"
28 #include "classifier.h"
29 #include "coverage.h"
30 #include "discovery.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hash.h"
35 #include "hmap.h"
36 #include "in-band.h"
37 #include "mac-learning.h"
38 #include "netdev.h"
39 #include "netflow.h"
40 #include "odp-util.h"
41 #include "ofp-print.h"
42 #include "ofp-util.h"
43 #include "ofproto-sflow.h"
44 #include "ofpbuf.h"
45 #include "openflow/nicira-ext.h"
46 #include "openflow/openflow.h"
47 #include "openvswitch/datapath-protocol.h"
48 #include "packets.h"
49 #include "pinsched.h"
50 #include "pktbuf.h"
51 #include "poll-loop.h"
52 #include "rconn.h"
53 #include "shash.h"
54 #include "status.h"
55 #include "stream-ssl.h"
56 #include "svec.h"
57 #include "tag.h"
58 #include "timeval.h"
59 #include "unixctl.h"
60 #include "vconn.h"
61 #include "vlog.h"
62
63 VLOG_DEFINE_THIS_MODULE(ofproto);
64
65 #include "sflow_api.h"
66
67 struct ofport {
68 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
69 struct netdev *netdev;
70 struct ofp_phy_port opp; /* In host byte order. */
71 uint16_t odp_port;
72 };
73
74 static void ofport_free(struct ofport *);
75 static void hton_ofp_phy_port(struct ofp_phy_port *);
76
77 static int xlate_actions(const union ofp_action *in, size_t n_in,
78 const struct flow *, struct ofproto *,
79 const struct ofpbuf *packet,
80 struct odp_actions *out, tag_type *tags,
81 bool *may_set_up_flow, uint16_t *nf_output_iface);
82
83 struct rule {
84 struct cls_rule cr;
85
86 ovs_be64 flow_cookie; /* Controller-issued identifier. */
87 uint16_t idle_timeout; /* In seconds from time of last use. */
88 uint16_t hard_timeout; /* In seconds from time of creation. */
89 bool send_flow_removed; /* Send a flow removed message? */
90 long long int used; /* Last-used time (0 if never used). */
91 long long int created; /* Creation time. */
92 uint64_t packet_count; /* Number of packets received. */
93 uint64_t byte_count; /* Number of bytes received. */
94 uint64_t accounted_bytes; /* Number of bytes passed to account_cb. */
95 tag_type tags; /* Tags (set only by hooks). */
96 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
97
98 /* If 'super' is non-NULL, this rule is a subrule, that is, it is an
99 * exact-match rule (having cr.wc.wildcards of 0) generated from the
100 * wildcard rule 'super'. In this case, 'list' is an element of the
101 * super-rule's list.
102 *
103 * If 'super' is NULL, this rule is a super-rule, and 'list' is the head of
104 * a list of subrules. A super-rule with no wildcards (where
105 * cr.wc.wildcards is 0) will never have any subrules. */
106 struct rule *super;
107 struct list list;
108
109 /* OpenFlow actions.
110 *
111 * 'n_actions' is the number of elements in the 'actions' array. A single
112 * action may take up more more than one element's worth of space.
113 *
114 * A subrule has no actions (it uses the super-rule's actions). */
115 int n_actions;
116 union ofp_action *actions;
117
118 /* Datapath actions.
119 *
120 * A super-rule with wildcard fields never has ODP actions (since the
121 * datapath only supports exact-match flows). */
122 bool installed; /* Installed in datapath? */
123 bool may_install; /* True ordinarily; false if actions must
124 * be reassessed for every packet. */
125 int n_odp_actions;
126 union odp_action *odp_actions;
127 };
128
129 static inline bool
130 rule_is_hidden(const struct rule *rule)
131 {
132 /* Subrules are merely an implementation detail, so hide them from the
133 * controller. */
134 if (rule->super != NULL) {
135 return true;
136 }
137
138 /* Rules with priority higher than UINT16_MAX are set up by ofproto itself
139 * (e.g. by in-band control) and are intentionally hidden from the
140 * controller. */
141 if (rule->cr.priority > UINT16_MAX) {
142 return true;
143 }
144
145 return false;
146 }
147
148 static struct rule *rule_create(struct ofproto *, struct rule *super,
149 const union ofp_action *, size_t n_actions,
150 uint16_t idle_timeout, uint16_t hard_timeout,
151 ovs_be64 flow_cookie, bool send_flow_removed);
152 static void rule_free(struct rule *);
153 static void rule_destroy(struct ofproto *, struct rule *);
154 static struct rule *rule_from_cls_rule(const struct cls_rule *);
155 static void rule_insert(struct ofproto *, struct rule *,
156 struct ofpbuf *packet, uint16_t in_port);
157 static void rule_remove(struct ofproto *, struct rule *);
158 static bool rule_make_actions(struct ofproto *, struct rule *,
159 const struct ofpbuf *packet);
160 static void rule_install(struct ofproto *, struct rule *,
161 struct rule *displaced_rule);
162 static void rule_uninstall(struct ofproto *, struct rule *);
163 static void rule_post_uninstall(struct ofproto *, struct rule *);
164 static void send_flow_removed(struct ofproto *p, struct rule *rule,
165 long long int now, uint8_t reason);
166
167 /* ofproto supports two kinds of OpenFlow connections:
168 *
169 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
170 * maintains persistent connections to these controllers and by default
171 * sends them asynchronous messages such as packet-ins.
172 *
173 * - "Service" connections, e.g. from ovs-ofctl. When these connections
174 * drop, it is the other side's responsibility to reconnect them if
175 * necessary. ofproto does not send them asynchronous messages by default.
176 *
177 * Currently, active (tcp, ssl, unix) connections are always "primary"
178 * connections and passive (ptcp, pssl, punix) connections are always "service"
179 * connections. There is no inherent reason for this, but it reflects the
180 * common case.
181 */
182 enum ofconn_type {
183 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
184 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
185 };
186
187 /* A listener for incoming OpenFlow "service" connections. */
188 struct ofservice {
189 struct hmap_node node; /* In struct ofproto's "services" hmap. */
190 struct pvconn *pvconn; /* OpenFlow connection listener. */
191
192 /* These are not used by ofservice directly. They are settings for
193 * accepted "struct ofconn"s from the pvconn. */
194 int probe_interval; /* Max idle time before probing, in seconds. */
195 int rate_limit; /* Max packet-in rate in packets per second. */
196 int burst_limit; /* Limit on accumulating packet credits. */
197 };
198
199 static struct ofservice *ofservice_lookup(struct ofproto *,
200 const char *target);
201 static int ofservice_create(struct ofproto *,
202 const struct ofproto_controller *);
203 static void ofservice_reconfigure(struct ofservice *,
204 const struct ofproto_controller *);
205 static void ofservice_destroy(struct ofproto *, struct ofservice *);
206
207 /* An OpenFlow connection. */
208 struct ofconn {
209 struct ofproto *ofproto; /* The ofproto that owns this connection. */
210 struct list node; /* In struct ofproto's "all_conns" list. */
211 struct rconn *rconn; /* OpenFlow connection. */
212 enum ofconn_type type; /* Type. */
213
214 /* OFPT_PACKET_IN related data. */
215 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
216 struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */
217 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
218 int miss_send_len; /* Bytes to send of buffered packets. */
219
220 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
221 * requests, and the maximum number before we stop reading OpenFlow
222 * requests. */
223 #define OFCONN_REPLY_MAX 100
224 struct rconn_packet_counter *reply_counter;
225
226 /* type == OFCONN_PRIMARY only. */
227 enum nx_role role; /* Role. */
228 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
229 struct discovery *discovery; /* Controller discovery object, if enabled. */
230 struct status_category *ss; /* Switch status category. */
231 enum ofproto_band band; /* In-band or out-of-band? */
232 };
233
234 /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's
235 * "schedulers" array. Their values are 0 and 1, and their meanings and values
236 * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In
237 * case anything ever changes, check their values here. */
238 #define N_SCHEDULERS 2
239 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0);
240 BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR);
241 BUILD_ASSERT_DECL(OFPR_ACTION == 1);
242 BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR);
243
244 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
245 enum ofconn_type);
246 static void ofconn_destroy(struct ofconn *);
247 static void ofconn_run(struct ofconn *, struct ofproto *);
248 static void ofconn_wait(struct ofconn *);
249 static bool ofconn_receives_async_msgs(const struct ofconn *);
250 static char *ofconn_make_name(const struct ofproto *, const char *target);
251 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
252
253 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
254 struct rconn_packet_counter *counter);
255
256 static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg);
257 static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn);
258
259 struct ofproto {
260 /* Settings. */
261 uint64_t datapath_id; /* Datapath ID. */
262 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
263 char *mfr_desc; /* Manufacturer. */
264 char *hw_desc; /* Hardware. */
265 char *sw_desc; /* Software version. */
266 char *serial_desc; /* Serial number. */
267 char *dp_desc; /* Datapath description. */
268
269 /* Datapath. */
270 struct dpif *dpif;
271 struct netdev_monitor *netdev_monitor;
272 struct hmap ports; /* Contains "struct ofport"s. */
273 struct shash port_by_name;
274 uint32_t max_ports;
275
276 /* Configuration. */
277 struct switch_status *switch_status;
278 struct fail_open *fail_open;
279 struct netflow *netflow;
280 struct ofproto_sflow *sflow;
281
282 /* In-band control. */
283 struct in_band *in_band;
284 long long int next_in_band_update;
285 struct sockaddr_in *extra_in_band_remotes;
286 size_t n_extra_remotes;
287
288 /* Flow table. */
289 struct classifier cls;
290 bool need_revalidate;
291 long long int next_expiration;
292 struct tag_set revalidate_set;
293 int flow_format; /* One of NXFF_*. */
294
295 /* OpenFlow connections. */
296 struct hmap controllers; /* Controller "struct ofconn"s. */
297 struct list all_conns; /* Contains "struct ofconn"s. */
298 enum ofproto_fail_mode fail_mode;
299
300 /* OpenFlow listeners. */
301 struct hmap services; /* Contains "struct ofservice"s. */
302 struct pvconn **snoops;
303 size_t n_snoops;
304
305 /* Hooks for ovs-vswitchd. */
306 const struct ofhooks *ofhooks;
307 void *aux;
308
309 /* Used by default ofhooks. */
310 struct mac_learning *ml;
311 };
312
313 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
314
315 static const struct ofhooks default_ofhooks;
316
317 static uint64_t pick_datapath_id(const struct ofproto *);
318 static uint64_t pick_fallback_dpid(void);
319
320 static int ofproto_expire(struct ofproto *);
321
322 static void update_stats(struct ofproto *, struct rule *,
323 const struct odp_flow_stats *);
324 static bool revalidate_rule(struct ofproto *p, struct rule *rule);
325 static void revalidate_cb(struct cls_rule *rule_, void *p_);
326
327 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
328
329 static void handle_openflow(struct ofconn *, struct ofproto *,
330 struct ofpbuf *);
331
332 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
333 static void update_port(struct ofproto *, const char *devname);
334 static int init_ports(struct ofproto *);
335 static void reinit_ports(struct ofproto *);
336
337 int
338 ofproto_create(const char *datapath, const char *datapath_type,
339 const struct ofhooks *ofhooks, void *aux,
340 struct ofproto **ofprotop)
341 {
342 struct odp_stats stats;
343 struct ofproto *p;
344 struct dpif *dpif;
345 int error;
346
347 *ofprotop = NULL;
348
349 /* Connect to datapath and start listening for messages. */
350 error = dpif_open(datapath, datapath_type, &dpif);
351 if (error) {
352 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
353 return error;
354 }
355 error = dpif_get_dp_stats(dpif, &stats);
356 if (error) {
357 VLOG_ERR("failed to obtain stats for datapath %s: %s",
358 datapath, strerror(error));
359 dpif_close(dpif);
360 return error;
361 }
362 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW);
363 if (error) {
364 VLOG_ERR("failed to listen on datapath %s: %s",
365 datapath, strerror(error));
366 dpif_close(dpif);
367 return error;
368 }
369 dpif_flow_flush(dpif);
370 dpif_recv_purge(dpif);
371
372 /* Initialize settings. */
373 p = xzalloc(sizeof *p);
374 p->fallback_dpid = pick_fallback_dpid();
375 p->datapath_id = p->fallback_dpid;
376 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
377 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
378 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
379 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
380 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
381
382 /* Initialize datapath. */
383 p->dpif = dpif;
384 p->netdev_monitor = netdev_monitor_create();
385 hmap_init(&p->ports);
386 shash_init(&p->port_by_name);
387 p->max_ports = stats.max_ports;
388
389 /* Initialize submodules. */
390 p->switch_status = switch_status_create(p);
391 p->in_band = NULL;
392 p->fail_open = NULL;
393 p->netflow = NULL;
394 p->sflow = NULL;
395
396 /* Initialize flow table. */
397 classifier_init(&p->cls);
398 p->need_revalidate = false;
399 p->next_expiration = time_msec() + 1000;
400 tag_set_init(&p->revalidate_set);
401 p->flow_format = NXFF_OPENFLOW10;
402
403 /* Initialize OpenFlow connections. */
404 list_init(&p->all_conns);
405 hmap_init(&p->controllers);
406 hmap_init(&p->services);
407 p->snoops = NULL;
408 p->n_snoops = 0;
409
410 /* Initialize hooks. */
411 if (ofhooks) {
412 p->ofhooks = ofhooks;
413 p->aux = aux;
414 p->ml = NULL;
415 } else {
416 p->ofhooks = &default_ofhooks;
417 p->aux = p;
418 p->ml = mac_learning_create();
419 }
420
421 /* Pick final datapath ID. */
422 p->datapath_id = pick_datapath_id(p);
423 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
424
425 *ofprotop = p;
426 return 0;
427 }
428
429 void
430 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
431 {
432 uint64_t old_dpid = p->datapath_id;
433 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
434 if (p->datapath_id != old_dpid) {
435 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
436
437 /* Force all active connections to reconnect, since there is no way to
438 * notify a controller that the datapath ID has changed. */
439 ofproto_reconnect_controllers(p);
440 }
441 }
442
443 static bool
444 is_discovery_controller(const struct ofproto_controller *c)
445 {
446 return !strcmp(c->target, "discover");
447 }
448
449 static bool
450 is_in_band_controller(const struct ofproto_controller *c)
451 {
452 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
453 }
454
455 /* Creates a new controller in 'ofproto'. Some of the settings are initially
456 * drawn from 'c', but update_controller() needs to be called later to finish
457 * the new ofconn's configuration. */
458 static void
459 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
460 {
461 struct discovery *discovery;
462 struct ofconn *ofconn;
463
464 if (is_discovery_controller(c)) {
465 int error = discovery_create(c->accept_re, c->update_resolv_conf,
466 ofproto->dpif, ofproto->switch_status,
467 &discovery);
468 if (error) {
469 return;
470 }
471 } else {
472 discovery = NULL;
473 }
474
475 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
476 ofconn->pktbuf = pktbuf_create();
477 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
478 if (discovery) {
479 ofconn->discovery = discovery;
480 } else {
481 char *name = ofconn_make_name(ofproto, c->target);
482 rconn_connect(ofconn->rconn, c->target, name);
483 free(name);
484 }
485 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
486 hash_string(c->target, 0));
487 }
488
489 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
490 * target or turn discovery on or off (these are done by creating new ofconns
491 * and deleting old ones), but it can update the rest of an ofconn's
492 * settings. */
493 static void
494 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
495 {
496 int probe_interval;
497
498 ofconn->band = (is_in_band_controller(c)
499 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
500
501 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
502
503 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
504 rconn_set_probe_interval(ofconn->rconn, probe_interval);
505
506 if (ofconn->discovery) {
507 discovery_set_update_resolv_conf(ofconn->discovery,
508 c->update_resolv_conf);
509 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
510 }
511
512 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
513 }
514
515 static const char *
516 ofconn_get_target(const struct ofconn *ofconn)
517 {
518 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
519 }
520
521 static struct ofconn *
522 find_controller_by_target(struct ofproto *ofproto, const char *target)
523 {
524 struct ofconn *ofconn;
525
526 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
527 hash_string(target, 0), &ofproto->controllers) {
528 if (!strcmp(ofconn_get_target(ofconn), target)) {
529 return ofconn;
530 }
531 }
532 return NULL;
533 }
534
535 static void
536 update_in_band_remotes(struct ofproto *ofproto)
537 {
538 const struct ofconn *ofconn;
539 struct sockaddr_in *addrs;
540 size_t max_addrs, n_addrs;
541 bool discovery;
542 size_t i;
543
544 /* Allocate enough memory for as many remotes as we could possibly have. */
545 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
546 addrs = xmalloc(max_addrs * sizeof *addrs);
547 n_addrs = 0;
548
549 /* Add all the remotes. */
550 discovery = false;
551 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
552 struct sockaddr_in *sin = &addrs[n_addrs];
553
554 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
555 continue;
556 }
557
558 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
559 if (sin->sin_addr.s_addr) {
560 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
561 n_addrs++;
562 }
563 if (ofconn->discovery) {
564 discovery = true;
565 }
566 }
567 for (i = 0; i < ofproto->n_extra_remotes; i++) {
568 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
569 }
570
571 /* Create or update or destroy in-band.
572 *
573 * Ordinarily we only enable in-band if there's at least one remote
574 * address, but discovery needs the in-band rules for DHCP to be installed
575 * even before we know any remote addresses. */
576 if (n_addrs || discovery) {
577 if (!ofproto->in_band) {
578 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
579 &ofproto->in_band);
580 }
581 if (ofproto->in_band) {
582 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
583 }
584 ofproto->next_in_band_update = time_msec() + 1000;
585 } else {
586 in_band_destroy(ofproto->in_band);
587 ofproto->in_band = NULL;
588 }
589
590 /* Clean up. */
591 free(addrs);
592 }
593
594 static void
595 update_fail_open(struct ofproto *p)
596 {
597 struct ofconn *ofconn;
598
599 if (!hmap_is_empty(&p->controllers)
600 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
601 struct rconn **rconns;
602 size_t n;
603
604 if (!p->fail_open) {
605 p->fail_open = fail_open_create(p, p->switch_status);
606 }
607
608 n = 0;
609 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
610 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
611 rconns[n++] = ofconn->rconn;
612 }
613
614 fail_open_set_controllers(p->fail_open, rconns, n);
615 /* p->fail_open takes ownership of 'rconns'. */
616 } else {
617 fail_open_destroy(p->fail_open);
618 p->fail_open = NULL;
619 }
620 }
621
622 void
623 ofproto_set_controllers(struct ofproto *p,
624 const struct ofproto_controller *controllers,
625 size_t n_controllers)
626 {
627 struct shash new_controllers;
628 struct ofconn *ofconn, *next_ofconn;
629 struct ofservice *ofservice, *next_ofservice;
630 bool ss_exists;
631 size_t i;
632
633 /* Create newly configured controllers and services.
634 * Create a name to ofproto_controller mapping in 'new_controllers'. */
635 shash_init(&new_controllers);
636 for (i = 0; i < n_controllers; i++) {
637 const struct ofproto_controller *c = &controllers[i];
638
639 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
640 if (!find_controller_by_target(p, c->target)) {
641 add_controller(p, c);
642 }
643 } else if (!pvconn_verify_name(c->target)) {
644 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
645 continue;
646 }
647 } else {
648 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
649 dpif_name(p->dpif), c->target);
650 continue;
651 }
652
653 shash_add_once(&new_controllers, c->target, &controllers[i]);
654 }
655
656 /* Delete controllers that are no longer configured.
657 * Update configuration of all now-existing controllers. */
658 ss_exists = false;
659 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
660 struct ofproto_controller *c;
661
662 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
663 if (!c) {
664 ofconn_destroy(ofconn);
665 } else {
666 update_controller(ofconn, c);
667 if (ofconn->ss) {
668 ss_exists = true;
669 }
670 }
671 }
672
673 /* Delete services that are no longer configured.
674 * Update configuration of all now-existing services. */
675 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
676 struct ofproto_controller *c;
677
678 c = shash_find_data(&new_controllers,
679 pvconn_get_name(ofservice->pvconn));
680 if (!c) {
681 ofservice_destroy(p, ofservice);
682 } else {
683 ofservice_reconfigure(ofservice, c);
684 }
685 }
686
687 shash_destroy(&new_controllers);
688
689 update_in_band_remotes(p);
690 update_fail_open(p);
691
692 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
693 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
694 struct ofconn, hmap_node);
695 ofconn->ss = switch_status_register(p->switch_status, "remote",
696 rconn_status_cb, ofconn->rconn);
697 }
698 }
699
700 void
701 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
702 {
703 p->fail_mode = fail_mode;
704 update_fail_open(p);
705 }
706
707 /* Drops the connections between 'ofproto' and all of its controllers, forcing
708 * them to reconnect. */
709 void
710 ofproto_reconnect_controllers(struct ofproto *ofproto)
711 {
712 struct ofconn *ofconn;
713
714 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
715 rconn_reconnect(ofconn->rconn);
716 }
717 }
718
719 static bool
720 any_extras_changed(const struct ofproto *ofproto,
721 const struct sockaddr_in *extras, size_t n)
722 {
723 size_t i;
724
725 if (n != ofproto->n_extra_remotes) {
726 return true;
727 }
728
729 for (i = 0; i < n; i++) {
730 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
731 const struct sockaddr_in *new = &extras[i];
732
733 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
734 old->sin_port != new->sin_port) {
735 return true;
736 }
737 }
738
739 return false;
740 }
741
742 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
743 * in-band control should guarantee access, in the same way that in-band
744 * control guarantees access to OpenFlow controllers. */
745 void
746 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
747 const struct sockaddr_in *extras, size_t n)
748 {
749 if (!any_extras_changed(ofproto, extras, n)) {
750 return;
751 }
752
753 free(ofproto->extra_in_band_remotes);
754 ofproto->n_extra_remotes = n;
755 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
756
757 update_in_band_remotes(ofproto);
758 }
759
760 void
761 ofproto_set_desc(struct ofproto *p,
762 const char *mfr_desc, const char *hw_desc,
763 const char *sw_desc, const char *serial_desc,
764 const char *dp_desc)
765 {
766 struct ofp_desc_stats *ods;
767
768 if (mfr_desc) {
769 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
770 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
771 sizeof ods->mfr_desc);
772 }
773 free(p->mfr_desc);
774 p->mfr_desc = xstrdup(mfr_desc);
775 }
776 if (hw_desc) {
777 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
778 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
779 sizeof ods->hw_desc);
780 }
781 free(p->hw_desc);
782 p->hw_desc = xstrdup(hw_desc);
783 }
784 if (sw_desc) {
785 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
786 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
787 sizeof ods->sw_desc);
788 }
789 free(p->sw_desc);
790 p->sw_desc = xstrdup(sw_desc);
791 }
792 if (serial_desc) {
793 if (strlen(serial_desc) >= sizeof ods->serial_num) {
794 VLOG_WARN("truncating serial_desc, must be less than %zu "
795 "characters",
796 sizeof ods->serial_num);
797 }
798 free(p->serial_desc);
799 p->serial_desc = xstrdup(serial_desc);
800 }
801 if (dp_desc) {
802 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
803 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
804 sizeof ods->dp_desc);
805 }
806 free(p->dp_desc);
807 p->dp_desc = xstrdup(dp_desc);
808 }
809 }
810
811 static int
812 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
813 const struct svec *svec)
814 {
815 struct pvconn **pvconns = *pvconnsp;
816 size_t n_pvconns = *n_pvconnsp;
817 int retval = 0;
818 size_t i;
819
820 for (i = 0; i < n_pvconns; i++) {
821 pvconn_close(pvconns[i]);
822 }
823 free(pvconns);
824
825 pvconns = xmalloc(svec->n * sizeof *pvconns);
826 n_pvconns = 0;
827 for (i = 0; i < svec->n; i++) {
828 const char *name = svec->names[i];
829 struct pvconn *pvconn;
830 int error;
831
832 error = pvconn_open(name, &pvconn);
833 if (!error) {
834 pvconns[n_pvconns++] = pvconn;
835 } else {
836 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
837 if (!retval) {
838 retval = error;
839 }
840 }
841 }
842
843 *pvconnsp = pvconns;
844 *n_pvconnsp = n_pvconns;
845
846 return retval;
847 }
848
849 int
850 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
851 {
852 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
853 }
854
855 int
856 ofproto_set_netflow(struct ofproto *ofproto,
857 const struct netflow_options *nf_options)
858 {
859 if (nf_options && nf_options->collectors.n) {
860 if (!ofproto->netflow) {
861 ofproto->netflow = netflow_create();
862 }
863 return netflow_set_options(ofproto->netflow, nf_options);
864 } else {
865 netflow_destroy(ofproto->netflow);
866 ofproto->netflow = NULL;
867 return 0;
868 }
869 }
870
871 void
872 ofproto_set_sflow(struct ofproto *ofproto,
873 const struct ofproto_sflow_options *oso)
874 {
875 struct ofproto_sflow *os = ofproto->sflow;
876 if (oso) {
877 if (!os) {
878 struct ofport *ofport;
879
880 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
881 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
882 ofproto_sflow_add_port(os, ofport->odp_port,
883 netdev_get_name(ofport->netdev));
884 }
885 }
886 ofproto_sflow_set_options(os, oso);
887 } else {
888 ofproto_sflow_destroy(os);
889 ofproto->sflow = NULL;
890 }
891 }
892
893 uint64_t
894 ofproto_get_datapath_id(const struct ofproto *ofproto)
895 {
896 return ofproto->datapath_id;
897 }
898
899 bool
900 ofproto_has_primary_controller(const struct ofproto *ofproto)
901 {
902 return !hmap_is_empty(&ofproto->controllers);
903 }
904
905 enum ofproto_fail_mode
906 ofproto_get_fail_mode(const struct ofproto *p)
907 {
908 return p->fail_mode;
909 }
910
911 void
912 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
913 {
914 size_t i;
915
916 for (i = 0; i < ofproto->n_snoops; i++) {
917 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
918 }
919 }
920
921 void
922 ofproto_destroy(struct ofproto *p)
923 {
924 struct ofservice *ofservice, *next_ofservice;
925 struct ofconn *ofconn, *next_ofconn;
926 struct ofport *ofport, *next_ofport;
927 size_t i;
928
929 if (!p) {
930 return;
931 }
932
933 /* Destroy fail-open and in-band early, since they touch the classifier. */
934 fail_open_destroy(p->fail_open);
935 p->fail_open = NULL;
936
937 in_band_destroy(p->in_band);
938 p->in_band = NULL;
939 free(p->extra_in_band_remotes);
940
941 ofproto_flush_flows(p);
942 classifier_destroy(&p->cls);
943
944 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
945 ofconn_destroy(ofconn);
946 }
947 hmap_destroy(&p->controllers);
948
949 dpif_close(p->dpif);
950 netdev_monitor_destroy(p->netdev_monitor);
951 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
952 hmap_remove(&p->ports, &ofport->hmap_node);
953 ofport_free(ofport);
954 }
955 shash_destroy(&p->port_by_name);
956
957 switch_status_destroy(p->switch_status);
958 netflow_destroy(p->netflow);
959 ofproto_sflow_destroy(p->sflow);
960
961 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
962 ofservice_destroy(p, ofservice);
963 }
964 hmap_destroy(&p->services);
965
966 for (i = 0; i < p->n_snoops; i++) {
967 pvconn_close(p->snoops[i]);
968 }
969 free(p->snoops);
970
971 mac_learning_destroy(p->ml);
972
973 free(p->mfr_desc);
974 free(p->hw_desc);
975 free(p->sw_desc);
976 free(p->serial_desc);
977 free(p->dp_desc);
978
979 hmap_destroy(&p->ports);
980
981 free(p);
982 }
983
984 int
985 ofproto_run(struct ofproto *p)
986 {
987 int error = ofproto_run1(p);
988 if (!error) {
989 error = ofproto_run2(p, false);
990 }
991 return error;
992 }
993
994 static void
995 process_port_change(struct ofproto *ofproto, int error, char *devname)
996 {
997 if (error == ENOBUFS) {
998 reinit_ports(ofproto);
999 } else if (!error) {
1000 update_port(ofproto, devname);
1001 free(devname);
1002 }
1003 }
1004
1005 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1006 * means that 'ofconn' is more interesting for monitoring than a lower return
1007 * value. */
1008 static int
1009 snoop_preference(const struct ofconn *ofconn)
1010 {
1011 switch (ofconn->role) {
1012 case NX_ROLE_MASTER:
1013 return 3;
1014 case NX_ROLE_OTHER:
1015 return 2;
1016 case NX_ROLE_SLAVE:
1017 return 1;
1018 default:
1019 /* Shouldn't happen. */
1020 return 0;
1021 }
1022 }
1023
1024 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1025 * Connects this vconn to a controller. */
1026 static void
1027 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1028 {
1029 struct ofconn *ofconn, *best;
1030
1031 /* Pick a controller for monitoring. */
1032 best = NULL;
1033 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1034 if (ofconn->type == OFCONN_PRIMARY
1035 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1036 best = ofconn;
1037 }
1038 }
1039
1040 if (best) {
1041 rconn_add_monitor(best->rconn, vconn);
1042 } else {
1043 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1044 vconn_close(vconn);
1045 }
1046 }
1047
1048 int
1049 ofproto_run1(struct ofproto *p)
1050 {
1051 struct ofconn *ofconn, *next_ofconn;
1052 struct ofservice *ofservice;
1053 char *devname;
1054 int error;
1055 int i;
1056
1057 if (shash_is_empty(&p->port_by_name)) {
1058 init_ports(p);
1059 }
1060
1061 for (i = 0; i < 50; i++) {
1062 struct ofpbuf *buf;
1063
1064 error = dpif_recv(p->dpif, &buf);
1065 if (error) {
1066 if (error == ENODEV) {
1067 /* Someone destroyed the datapath behind our back. The caller
1068 * better destroy us and give up, because we're just going to
1069 * spin from here on out. */
1070 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1071 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1072 dpif_name(p->dpif));
1073 return ENODEV;
1074 }
1075 break;
1076 }
1077
1078 handle_odp_msg(p, buf);
1079 }
1080
1081 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1082 process_port_change(p, error, devname);
1083 }
1084 while ((error = netdev_monitor_poll(p->netdev_monitor,
1085 &devname)) != EAGAIN) {
1086 process_port_change(p, error, devname);
1087 }
1088
1089 if (p->in_band) {
1090 if (time_msec() >= p->next_in_band_update) {
1091 update_in_band_remotes(p);
1092 }
1093 in_band_run(p->in_band);
1094 }
1095
1096 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1097 ofconn_run(ofconn, p);
1098 }
1099
1100 /* Fail-open maintenance. Do this after processing the ofconns since
1101 * fail-open checks the status of the controller rconn. */
1102 if (p->fail_open) {
1103 fail_open_run(p->fail_open);
1104 }
1105
1106 HMAP_FOR_EACH (ofservice, node, &p->services) {
1107 struct vconn *vconn;
1108 int retval;
1109
1110 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1111 if (!retval) {
1112 struct rconn *rconn;
1113 char *name;
1114
1115 rconn = rconn_create(ofservice->probe_interval, 0);
1116 name = ofconn_make_name(p, vconn_get_name(vconn));
1117 rconn_connect_unreliably(rconn, vconn, name);
1118 free(name);
1119
1120 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1121 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1122 ofservice->burst_limit);
1123 } else if (retval != EAGAIN) {
1124 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1125 }
1126 }
1127
1128 for (i = 0; i < p->n_snoops; i++) {
1129 struct vconn *vconn;
1130 int retval;
1131
1132 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1133 if (!retval) {
1134 add_snooper(p, vconn);
1135 } else if (retval != EAGAIN) {
1136 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1137 }
1138 }
1139
1140 if (time_msec() >= p->next_expiration) {
1141 int delay = ofproto_expire(p);
1142 p->next_expiration = time_msec() + delay;
1143 COVERAGE_INC(ofproto_expiration);
1144 }
1145
1146 if (p->netflow) {
1147 netflow_run(p->netflow);
1148 }
1149 if (p->sflow) {
1150 ofproto_sflow_run(p->sflow);
1151 }
1152
1153 return 0;
1154 }
1155
1156 struct revalidate_cbdata {
1157 struct ofproto *ofproto;
1158 bool revalidate_all; /* Revalidate all exact-match rules? */
1159 bool revalidate_subrules; /* Revalidate all exact-match subrules? */
1160 struct tag_set revalidate_set; /* Set of tags to revalidate. */
1161 };
1162
1163 int
1164 ofproto_run2(struct ofproto *p, bool revalidate_all)
1165 {
1166 if (p->need_revalidate || revalidate_all
1167 || !tag_set_is_empty(&p->revalidate_set)) {
1168 struct revalidate_cbdata cbdata;
1169 cbdata.ofproto = p;
1170 cbdata.revalidate_all = revalidate_all;
1171 cbdata.revalidate_subrules = p->need_revalidate;
1172 cbdata.revalidate_set = p->revalidate_set;
1173 tag_set_init(&p->revalidate_set);
1174 COVERAGE_INC(ofproto_revalidate);
1175 classifier_for_each(&p->cls, CLS_INC_EXACT, revalidate_cb, &cbdata);
1176 p->need_revalidate = false;
1177 }
1178
1179 return 0;
1180 }
1181
1182 void
1183 ofproto_wait(struct ofproto *p)
1184 {
1185 struct ofservice *ofservice;
1186 struct ofconn *ofconn;
1187 size_t i;
1188
1189 dpif_recv_wait(p->dpif);
1190 dpif_port_poll_wait(p->dpif);
1191 netdev_monitor_poll_wait(p->netdev_monitor);
1192 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1193 ofconn_wait(ofconn);
1194 }
1195 if (p->in_band) {
1196 poll_timer_wait_until(p->next_in_band_update);
1197 in_band_wait(p->in_band);
1198 }
1199 if (p->fail_open) {
1200 fail_open_wait(p->fail_open);
1201 }
1202 if (p->sflow) {
1203 ofproto_sflow_wait(p->sflow);
1204 }
1205 if (!tag_set_is_empty(&p->revalidate_set)) {
1206 poll_immediate_wake();
1207 }
1208 if (p->need_revalidate) {
1209 /* Shouldn't happen, but if it does just go around again. */
1210 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1211 poll_immediate_wake();
1212 } else if (p->next_expiration != LLONG_MAX) {
1213 poll_timer_wait_until(p->next_expiration);
1214 }
1215 HMAP_FOR_EACH (ofservice, node, &p->services) {
1216 pvconn_wait(ofservice->pvconn);
1217 }
1218 for (i = 0; i < p->n_snoops; i++) {
1219 pvconn_wait(p->snoops[i]);
1220 }
1221 }
1222
1223 void
1224 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1225 {
1226 tag_set_add(&ofproto->revalidate_set, tag);
1227 }
1228
1229 struct tag_set *
1230 ofproto_get_revalidate_set(struct ofproto *ofproto)
1231 {
1232 return &ofproto->revalidate_set;
1233 }
1234
1235 bool
1236 ofproto_is_alive(const struct ofproto *p)
1237 {
1238 return !hmap_is_empty(&p->controllers);
1239 }
1240
1241 /* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1242 *
1243 * This is almost the same as calling dpif_port_del() directly on the
1244 * datapath, but it also makes 'ofproto' close its open netdev for the port
1245 * (if any). This makes it possible to create a new netdev of a different
1246 * type under the same name, which otherwise the netdev library would refuse
1247 * to do because of the conflict. (The netdev would eventually get closed on
1248 * the next trip through ofproto_run(), but this interface is more direct.)
1249 *
1250 * Returns 0 if successful, otherwise a positive errno. */
1251 int
1252 ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1253 {
1254 struct ofport *ofport = get_port(ofproto, odp_port);
1255 const char *name = ofport ? (char *) ofport->opp.name : "<unknown>";
1256 int error;
1257
1258 error = dpif_port_del(ofproto->dpif, odp_port);
1259 if (error) {
1260 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1261 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1262 } else if (ofport) {
1263 /* 'name' is ofport->opp.name and update_port() is going to destroy
1264 * 'ofport'. Just in case update_port() refers to 'name' after it
1265 * destroys 'ofport', make a copy of it around the update_port()
1266 * call. */
1267 char *devname = xstrdup(name);
1268 update_port(ofproto, devname);
1269 free(devname);
1270 }
1271 return error;
1272 }
1273
1274 /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1275 * true if 'odp_port' exists and should be included, false otherwise. */
1276 bool
1277 ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1278 {
1279 struct ofport *ofport = get_port(ofproto, odp_port);
1280 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1281 }
1282
1283 int
1284 ofproto_send_packet(struct ofproto *p, const struct flow *flow,
1285 const union ofp_action *actions, size_t n_actions,
1286 const struct ofpbuf *packet)
1287 {
1288 struct odp_actions odp_actions;
1289 int error;
1290
1291 error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions,
1292 NULL, NULL, NULL);
1293 if (error) {
1294 return error;
1295 }
1296
1297 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1298 * error code? */
1299 dpif_execute(p->dpif, odp_actions.actions, odp_actions.n_actions, packet);
1300 return 0;
1301 }
1302
1303 void
1304 ofproto_add_flow(struct ofproto *p, const struct flow *flow,
1305 uint32_t wildcards, unsigned int priority,
1306 const union ofp_action *actions, size_t n_actions,
1307 int idle_timeout)
1308 {
1309 struct rule *rule;
1310 rule = rule_create(p, NULL, actions, n_actions,
1311 idle_timeout >= 0 ? idle_timeout : 5 /* XXX */,
1312 0, 0, false);
1313 cls_rule_from_flow(flow, wildcards, priority, &rule->cr);
1314 rule_insert(p, rule, NULL, 0);
1315 }
1316
1317 void
1318 ofproto_delete_flow(struct ofproto *ofproto, const struct flow *flow,
1319 uint32_t wildcards, unsigned int priority)
1320 {
1321 struct cls_rule target;
1322 struct rule *rule;
1323
1324 cls_rule_from_flow(flow, wildcards, priority, &target);
1325 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1326 &target));
1327 if (rule) {
1328 rule_remove(ofproto, rule);
1329 }
1330 }
1331
1332 static void
1333 destroy_rule(struct cls_rule *rule_, void *ofproto_)
1334 {
1335 struct rule *rule = rule_from_cls_rule(rule_);
1336 struct ofproto *ofproto = ofproto_;
1337
1338 /* Mark the flow as not installed, even though it might really be
1339 * installed, so that rule_remove() doesn't bother trying to uninstall it.
1340 * There is no point in uninstalling it individually since we are about to
1341 * blow away all the flows with dpif_flow_flush(). */
1342 rule->installed = false;
1343
1344 rule_remove(ofproto, rule);
1345 }
1346
1347 void
1348 ofproto_flush_flows(struct ofproto *ofproto)
1349 {
1350 COVERAGE_INC(ofproto_flush);
1351 classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto);
1352 dpif_flow_flush(ofproto->dpif);
1353 if (ofproto->in_band) {
1354 in_band_flushed(ofproto->in_band);
1355 }
1356 if (ofproto->fail_open) {
1357 fail_open_flushed(ofproto->fail_open);
1358 }
1359 }
1360 \f
1361 static void
1362 reinit_ports(struct ofproto *p)
1363 {
1364 struct svec devnames;
1365 struct ofport *ofport;
1366 struct odp_port *odp_ports;
1367 size_t n_odp_ports;
1368 size_t i;
1369
1370 COVERAGE_INC(ofproto_reinit_ports);
1371
1372 svec_init(&devnames);
1373 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1374 svec_add (&devnames, (char *) ofport->opp.name);
1375 }
1376 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1377 for (i = 0; i < n_odp_ports; i++) {
1378 svec_add (&devnames, odp_ports[i].devname);
1379 }
1380 free(odp_ports);
1381
1382 svec_sort_unique(&devnames);
1383 for (i = 0; i < devnames.n; i++) {
1384 update_port(p, devnames.names[i]);
1385 }
1386 svec_destroy(&devnames);
1387 }
1388
1389 static struct ofport *
1390 make_ofport(const struct odp_port *odp_port)
1391 {
1392 struct netdev_options netdev_options;
1393 enum netdev_flags flags;
1394 struct ofport *ofport;
1395 struct netdev *netdev;
1396 int error;
1397
1398 memset(&netdev_options, 0, sizeof netdev_options);
1399 netdev_options.name = odp_port->devname;
1400 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1401
1402 error = netdev_open(&netdev_options, &netdev);
1403 if (error) {
1404 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1405 "cannot be opened (%s)",
1406 odp_port->devname, odp_port->port,
1407 odp_port->devname, strerror(error));
1408 return NULL;
1409 }
1410
1411 ofport = xmalloc(sizeof *ofport);
1412 ofport->netdev = netdev;
1413 ofport->odp_port = odp_port->port;
1414 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1415 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1416 memcpy(ofport->opp.name, odp_port->devname,
1417 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1418 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1419
1420 netdev_get_flags(netdev, &flags);
1421 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1422
1423 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1424
1425 netdev_get_features(netdev,
1426 &ofport->opp.curr, &ofport->opp.advertised,
1427 &ofport->opp.supported, &ofport->opp.peer);
1428 return ofport;
1429 }
1430
1431 static bool
1432 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1433 {
1434 if (get_port(p, odp_port->port)) {
1435 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1436 odp_port->port);
1437 return true;
1438 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1439 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1440 odp_port->devname);
1441 return true;
1442 } else {
1443 return false;
1444 }
1445 }
1446
1447 static int
1448 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1449 {
1450 const struct ofp_phy_port *a = &a_->opp;
1451 const struct ofp_phy_port *b = &b_->opp;
1452
1453 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1454 return (a->port_no == b->port_no
1455 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1456 && !strcmp((char *) a->name, (char *) b->name)
1457 && a->state == b->state
1458 && a->config == b->config
1459 && a->curr == b->curr
1460 && a->advertised == b->advertised
1461 && a->supported == b->supported
1462 && a->peer == b->peer);
1463 }
1464
1465 static void
1466 send_port_status(struct ofproto *p, const struct ofport *ofport,
1467 uint8_t reason)
1468 {
1469 /* XXX Should limit the number of queued port status change messages. */
1470 struct ofconn *ofconn;
1471 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1472 struct ofp_port_status *ops;
1473 struct ofpbuf *b;
1474
1475 if (!ofconn_receives_async_msgs(ofconn)) {
1476 continue;
1477 }
1478
1479 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1480 ops->reason = reason;
1481 ops->desc = ofport->opp;
1482 hton_ofp_phy_port(&ops->desc);
1483 queue_tx(b, ofconn, NULL);
1484 }
1485 }
1486
1487 static void
1488 ofport_install(struct ofproto *p, struct ofport *ofport)
1489 {
1490 const char *netdev_name = (const char *) ofport->opp.name;
1491
1492 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1493 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1494 shash_add(&p->port_by_name, netdev_name, ofport);
1495 if (p->sflow) {
1496 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1497 }
1498 }
1499
1500 static void
1501 ofport_remove(struct ofproto *p, struct ofport *ofport)
1502 {
1503 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1504 hmap_remove(&p->ports, &ofport->hmap_node);
1505 shash_delete(&p->port_by_name,
1506 shash_find(&p->port_by_name, (char *) ofport->opp.name));
1507 if (p->sflow) {
1508 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1509 }
1510 }
1511
1512 static void
1513 ofport_free(struct ofport *ofport)
1514 {
1515 if (ofport) {
1516 netdev_close(ofport->netdev);
1517 free(ofport);
1518 }
1519 }
1520
1521 static struct ofport *
1522 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1523 {
1524 struct ofport *port;
1525
1526 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1527 hash_int(odp_port, 0), &ofproto->ports) {
1528 if (port->odp_port == odp_port) {
1529 return port;
1530 }
1531 }
1532 return NULL;
1533 }
1534
1535 static void
1536 update_port(struct ofproto *p, const char *devname)
1537 {
1538 struct odp_port odp_port;
1539 struct ofport *old_ofport;
1540 struct ofport *new_ofport;
1541 int error;
1542
1543 COVERAGE_INC(ofproto_update_port);
1544
1545 /* Query the datapath for port information. */
1546 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1547
1548 /* Find the old ofport. */
1549 old_ofport = shash_find_data(&p->port_by_name, devname);
1550 if (!error) {
1551 if (!old_ofport) {
1552 /* There's no port named 'devname' but there might be a port with
1553 * the same port number. This could happen if a port is deleted
1554 * and then a new one added in its place very quickly, or if a port
1555 * is renamed. In the former case we want to send an OFPPR_DELETE
1556 * and an OFPPR_ADD, and in the latter case we want to send a
1557 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1558 * the old port's ifindex against the new port, or perhaps less
1559 * reliably but more portably by comparing the old port's MAC
1560 * against the new port's MAC. However, this code isn't that smart
1561 * and always sends an OFPPR_MODIFY (XXX). */
1562 old_ofport = get_port(p, odp_port.port);
1563 }
1564 } else if (error != ENOENT && error != ENODEV) {
1565 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1566 "%s", strerror(error));
1567 return;
1568 }
1569
1570 /* Create a new ofport. */
1571 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1572
1573 /* Eliminate a few pathological cases. */
1574 if (!old_ofport && !new_ofport) {
1575 return;
1576 } else if (old_ofport && new_ofport) {
1577 /* Most of the 'config' bits are OpenFlow soft state, but
1578 * OFPPC_PORT_DOWN is maintained the kernel. So transfer the OpenFlow
1579 * bits from old_ofport. (make_ofport() only sets OFPPC_PORT_DOWN and
1580 * leaves the other bits 0.) */
1581 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1582
1583 if (ofport_equal(old_ofport, new_ofport)) {
1584 /* False alarm--no change. */
1585 ofport_free(new_ofport);
1586 return;
1587 }
1588 }
1589
1590 /* Now deal with the normal cases. */
1591 if (old_ofport) {
1592 ofport_remove(p, old_ofport);
1593 }
1594 if (new_ofport) {
1595 ofport_install(p, new_ofport);
1596 }
1597 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1598 (!old_ofport ? OFPPR_ADD
1599 : !new_ofport ? OFPPR_DELETE
1600 : OFPPR_MODIFY));
1601 ofport_free(old_ofport);
1602 }
1603
1604 static int
1605 init_ports(struct ofproto *p)
1606 {
1607 struct odp_port *ports;
1608 size_t n_ports;
1609 size_t i;
1610 int error;
1611
1612 error = dpif_port_list(p->dpif, &ports, &n_ports);
1613 if (error) {
1614 return error;
1615 }
1616
1617 for (i = 0; i < n_ports; i++) {
1618 const struct odp_port *odp_port = &ports[i];
1619 if (!ofport_conflicts(p, odp_port)) {
1620 struct ofport *ofport = make_ofport(odp_port);
1621 if (ofport) {
1622 ofport_install(p, ofport);
1623 }
1624 }
1625 }
1626 free(ports);
1627 return 0;
1628 }
1629 \f
1630 static struct ofconn *
1631 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1632 {
1633 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1634 ofconn->ofproto = p;
1635 list_push_back(&p->all_conns, &ofconn->node);
1636 ofconn->rconn = rconn;
1637 ofconn->type = type;
1638 ofconn->role = NX_ROLE_OTHER;
1639 ofconn->packet_in_counter = rconn_packet_counter_create ();
1640 ofconn->pktbuf = NULL;
1641 ofconn->miss_send_len = 0;
1642 ofconn->reply_counter = rconn_packet_counter_create ();
1643 return ofconn;
1644 }
1645
1646 static void
1647 ofconn_destroy(struct ofconn *ofconn)
1648 {
1649 if (ofconn->type == OFCONN_PRIMARY) {
1650 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1651 }
1652 discovery_destroy(ofconn->discovery);
1653
1654 list_remove(&ofconn->node);
1655 switch_status_unregister(ofconn->ss);
1656 rconn_destroy(ofconn->rconn);
1657 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1658 rconn_packet_counter_destroy(ofconn->reply_counter);
1659 pktbuf_destroy(ofconn->pktbuf);
1660 free(ofconn);
1661 }
1662
1663 static void
1664 ofconn_run(struct ofconn *ofconn, struct ofproto *p)
1665 {
1666 int iteration;
1667 size_t i;
1668
1669 if (ofconn->discovery) {
1670 char *controller_name;
1671 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1672 discovery_question_connectivity(ofconn->discovery);
1673 }
1674 if (discovery_run(ofconn->discovery, &controller_name)) {
1675 if (controller_name) {
1676 char *ofconn_name = ofconn_make_name(p, controller_name);
1677 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1678 free(ofconn_name);
1679 } else {
1680 rconn_disconnect(ofconn->rconn);
1681 }
1682 }
1683 }
1684
1685 for (i = 0; i < N_SCHEDULERS; i++) {
1686 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1687 }
1688
1689 rconn_run(ofconn->rconn);
1690
1691 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1692 /* Limit the number of iterations to prevent other tasks from
1693 * starving. */
1694 for (iteration = 0; iteration < 50; iteration++) {
1695 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1696 if (!of_msg) {
1697 break;
1698 }
1699 if (p->fail_open) {
1700 fail_open_maybe_recover(p->fail_open);
1701 }
1702 handle_openflow(ofconn, p, of_msg);
1703 ofpbuf_delete(of_msg);
1704 }
1705 }
1706
1707 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1708 ofconn_destroy(ofconn);
1709 }
1710 }
1711
1712 static void
1713 ofconn_wait(struct ofconn *ofconn)
1714 {
1715 int i;
1716
1717 if (ofconn->discovery) {
1718 discovery_wait(ofconn->discovery);
1719 }
1720 for (i = 0; i < N_SCHEDULERS; i++) {
1721 pinsched_wait(ofconn->schedulers[i]);
1722 }
1723 rconn_run_wait(ofconn->rconn);
1724 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1725 rconn_recv_wait(ofconn->rconn);
1726 } else {
1727 COVERAGE_INC(ofproto_ofconn_stuck);
1728 }
1729 }
1730
1731 /* Returns true if 'ofconn' should receive asynchronous messages. */
1732 static bool
1733 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1734 {
1735 if (ofconn->type == OFCONN_PRIMARY) {
1736 /* Primary controllers always get asynchronous messages unless they
1737 * have configured themselves as "slaves". */
1738 return ofconn->role != NX_ROLE_SLAVE;
1739 } else {
1740 /* Service connections don't get asynchronous messages unless they have
1741 * explicitly asked for them by setting a nonzero miss send length. */
1742 return ofconn->miss_send_len > 0;
1743 }
1744 }
1745
1746 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1747 * and 'target', suitable for use in log messages for identifying the
1748 * connection.
1749 *
1750 * The name is dynamically allocated. The caller should free it (with free())
1751 * when it is no longer needed. */
1752 static char *
1753 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1754 {
1755 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1756 }
1757
1758 static void
1759 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1760 {
1761 int i;
1762
1763 for (i = 0; i < N_SCHEDULERS; i++) {
1764 struct pinsched **s = &ofconn->schedulers[i];
1765
1766 if (rate > 0) {
1767 if (!*s) {
1768 *s = pinsched_create(rate, burst,
1769 ofconn->ofproto->switch_status);
1770 } else {
1771 pinsched_set_limits(*s, rate, burst);
1772 }
1773 } else {
1774 pinsched_destroy(*s);
1775 *s = NULL;
1776 }
1777 }
1778 }
1779 \f
1780 static void
1781 ofservice_reconfigure(struct ofservice *ofservice,
1782 const struct ofproto_controller *c)
1783 {
1784 ofservice->probe_interval = c->probe_interval;
1785 ofservice->rate_limit = c->rate_limit;
1786 ofservice->burst_limit = c->burst_limit;
1787 }
1788
1789 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1790 * positive errno value. */
1791 static int
1792 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1793 {
1794 struct ofservice *ofservice;
1795 struct pvconn *pvconn;
1796 int error;
1797
1798 error = pvconn_open(c->target, &pvconn);
1799 if (error) {
1800 return error;
1801 }
1802
1803 ofservice = xzalloc(sizeof *ofservice);
1804 hmap_insert(&ofproto->services, &ofservice->node,
1805 hash_string(c->target, 0));
1806 ofservice->pvconn = pvconn;
1807
1808 ofservice_reconfigure(ofservice, c);
1809
1810 return 0;
1811 }
1812
1813 static void
1814 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1815 {
1816 hmap_remove(&ofproto->services, &ofservice->node);
1817 pvconn_close(ofservice->pvconn);
1818 free(ofservice);
1819 }
1820
1821 /* Finds and returns the ofservice within 'ofproto' that has the given
1822 * 'target', or a null pointer if none exists. */
1823 static struct ofservice *
1824 ofservice_lookup(struct ofproto *ofproto, const char *target)
1825 {
1826 struct ofservice *ofservice;
1827
1828 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
1829 &ofproto->services) {
1830 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
1831 return ofservice;
1832 }
1833 }
1834 return NULL;
1835 }
1836 \f
1837 /* Caller is responsible for initializing the 'cr' member of the returned
1838 * rule. */
1839 static struct rule *
1840 rule_create(struct ofproto *ofproto, struct rule *super,
1841 const union ofp_action *actions, size_t n_actions,
1842 uint16_t idle_timeout, uint16_t hard_timeout,
1843 ovs_be64 flow_cookie, bool send_flow_removed)
1844 {
1845 struct rule *rule = xzalloc(sizeof *rule);
1846 rule->idle_timeout = idle_timeout;
1847 rule->hard_timeout = hard_timeout;
1848 rule->flow_cookie = flow_cookie;
1849 rule->used = rule->created = time_msec();
1850 rule->send_flow_removed = send_flow_removed;
1851 rule->super = super;
1852 if (super) {
1853 list_push_back(&super->list, &rule->list);
1854 } else {
1855 list_init(&rule->list);
1856 }
1857 if (n_actions > 0) {
1858 rule->n_actions = n_actions;
1859 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1860 }
1861 netflow_flow_clear(&rule->nf_flow);
1862 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->created);
1863
1864 return rule;
1865 }
1866
1867 static struct rule *
1868 rule_from_cls_rule(const struct cls_rule *cls_rule)
1869 {
1870 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
1871 }
1872
1873 static void
1874 rule_free(struct rule *rule)
1875 {
1876 free(rule->actions);
1877 free(rule->odp_actions);
1878 free(rule);
1879 }
1880
1881 /* Destroys 'rule'. If 'rule' is a subrule, also removes it from its
1882 * super-rule's list of subrules. If 'rule' is a super-rule, also iterates
1883 * through all of its subrules and revalidates them, destroying any that no
1884 * longer has a super-rule (which is probably all of them).
1885 *
1886 * Before calling this function, the caller must make have removed 'rule' from
1887 * the classifier. If 'rule' is an exact-match rule, the caller is also
1888 * responsible for ensuring that it has been uninstalled from the datapath. */
1889 static void
1890 rule_destroy(struct ofproto *ofproto, struct rule *rule)
1891 {
1892 if (!rule->super) {
1893 struct rule *subrule, *next;
1894 LIST_FOR_EACH_SAFE (subrule, next, list, &rule->list) {
1895 revalidate_rule(ofproto, subrule);
1896 }
1897 } else {
1898 list_remove(&rule->list);
1899 }
1900 rule_free(rule);
1901 }
1902
1903 static bool
1904 rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
1905 {
1906 const union ofp_action *oa;
1907 struct actions_iterator i;
1908
1909 if (out_port == htons(OFPP_NONE)) {
1910 return true;
1911 }
1912 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
1913 oa = actions_next(&i)) {
1914 if (action_outputs_to_port(oa, out_port)) {
1915 return true;
1916 }
1917 }
1918 return false;
1919 }
1920
1921 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
1922 * 'packet', which arrived on 'in_port'.
1923 *
1924 * Takes ownership of 'packet'. */
1925 static bool
1926 execute_odp_actions(struct ofproto *ofproto, uint16_t in_port,
1927 const union odp_action *actions, size_t n_actions,
1928 struct ofpbuf *packet)
1929 {
1930 if (n_actions == 1 && actions[0].type == ODPAT_CONTROLLER) {
1931 /* As an optimization, avoid a round-trip from userspace to kernel to
1932 * userspace. This also avoids possibly filling up kernel packet
1933 * buffers along the way. */
1934 struct odp_msg *msg;
1935
1936 msg = ofpbuf_push_uninit(packet, sizeof *msg);
1937 msg->type = _ODPL_ACTION_NR;
1938 msg->length = sizeof(struct odp_msg) + packet->size;
1939 msg->port = in_port;
1940 msg->reserved = 0;
1941 msg->arg = actions[0].controller.arg;
1942
1943 send_packet_in(ofproto, packet);
1944
1945 return true;
1946 } else {
1947 int error;
1948
1949 error = dpif_execute(ofproto->dpif, actions, n_actions, packet);
1950 ofpbuf_delete(packet);
1951 return !error;
1952 }
1953 }
1954
1955 /* Executes the actions indicated by 'rule' on 'packet', which is in flow
1956 * 'flow' and is considered to have arrived on ODP port 'in_port'. 'packet'
1957 * must have at least sizeof(struct ofp_packet_in) bytes of headroom.
1958 *
1959 * The flow that 'packet' actually contains does not need to actually match
1960 * 'rule'; the actions in 'rule' will be applied to it either way. Likewise,
1961 * the packet and byte counters for 'rule' will be credited for the packet sent
1962 * out whether or not the packet actually matches 'rule'.
1963 *
1964 * If 'rule' is an exact-match rule and 'flow' actually equals the rule's flow,
1965 * the caller must already have accurately composed ODP actions for it given
1966 * 'packet' using rule_make_actions(). If 'rule' is a wildcard rule, or if
1967 * 'rule' is an exact-match rule but 'flow' is not the rule's flow, then this
1968 * function will compose a set of ODP actions based on 'rule''s OpenFlow
1969 * actions and apply them to 'packet'.
1970 *
1971 * Takes ownership of 'packet'. */
1972 static void
1973 rule_execute(struct ofproto *ofproto, struct rule *rule,
1974 struct ofpbuf *packet, const struct flow *flow)
1975 {
1976 const union odp_action *actions;
1977 struct odp_flow_stats stats;
1978 size_t n_actions;
1979 struct odp_actions a;
1980
1981 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
1982
1983 /* Grab or compose the ODP actions.
1984 *
1985 * The special case for an exact-match 'rule' where 'flow' is not the
1986 * rule's flow is important to avoid, e.g., sending a packet out its input
1987 * port simply because the ODP actions were composed for the wrong
1988 * scenario. */
1989 if (rule->cr.wc.wildcards || !flow_equal(flow, &rule->cr.flow)) {
1990 struct rule *super = rule->super ? rule->super : rule;
1991 if (xlate_actions(super->actions, super->n_actions, flow, ofproto,
1992 packet, &a, NULL, 0, NULL)) {
1993 ofpbuf_delete(packet);
1994 return;
1995 }
1996 actions = a.actions;
1997 n_actions = a.n_actions;
1998 } else {
1999 actions = rule->odp_actions;
2000 n_actions = rule->n_odp_actions;
2001 }
2002
2003 /* Execute the ODP actions. */
2004 flow_extract_stats(flow, packet, &stats);
2005 if (execute_odp_actions(ofproto, flow->in_port,
2006 actions, n_actions, packet)) {
2007 update_stats(ofproto, rule, &stats);
2008 rule->used = time_msec();
2009 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->used);
2010 }
2011 }
2012
2013 /* Inserts 'rule' into 'p''s flow table.
2014 *
2015 * If 'packet' is nonnull, takes ownership of 'packet', executes 'rule''s
2016 * actions on it and credits the statistics for sending the packet to 'rule'.
2017 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of
2018 * headroom. */
2019 static void
2020 rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet,
2021 uint16_t in_port)
2022 {
2023 struct rule *displaced_rule;
2024
2025 /* Insert the rule in the classifier. */
2026 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2027 if (!rule->cr.wc.wildcards) {
2028 rule_make_actions(p, rule, packet);
2029 }
2030
2031 /* Send the packet and credit it to the rule. */
2032 if (packet) {
2033 struct flow flow;
2034 flow_extract(packet, 0, in_port, &flow);
2035 rule_execute(p, rule, packet, &flow);
2036 }
2037
2038 /* Install the rule in the datapath only after sending the packet, to
2039 * avoid packet reordering. */
2040 if (rule->cr.wc.wildcards) {
2041 COVERAGE_INC(ofproto_add_wc_flow);
2042 p->need_revalidate = true;
2043 } else {
2044 rule_install(p, rule, displaced_rule);
2045 }
2046
2047 /* Free the rule that was displaced, if any. */
2048 if (displaced_rule) {
2049 rule_destroy(p, displaced_rule);
2050 }
2051 }
2052
2053 static struct rule *
2054 rule_create_subrule(struct ofproto *ofproto, struct rule *rule,
2055 const struct flow *flow)
2056 {
2057 struct rule *subrule = rule_create(ofproto, rule, NULL, 0,
2058 rule->idle_timeout, rule->hard_timeout,
2059 0, false);
2060 COVERAGE_INC(ofproto_subrule_create);
2061 cls_rule_from_flow(flow, 0, (rule->cr.priority <= UINT16_MAX ? UINT16_MAX
2062 : rule->cr.priority), &subrule->cr);
2063
2064 if (classifier_insert(&ofproto->cls, &subrule->cr)) {
2065 /* Can't happen, */
2066 NOT_REACHED();
2067 }
2068
2069 return subrule;
2070 }
2071
2072 /* Remove 'rule' from 'ofproto' and free up the associated memory:
2073 *
2074 * - If 'rule' was installed in the datapath, uninstalls it and updates
2075 * 'rule''s statistics (or its super-rule's statistics, if it is a
2076 * subrule), via rule_uninstall().
2077 *
2078 * - Removes 'rule' from the classifier.
2079 *
2080 * - If 'rule' is a super-rule that has subrules, revalidates (and possibly
2081 * uninstalls and destroys) its subrules, via rule_destroy().
2082 */
2083 static void
2084 rule_remove(struct ofproto *ofproto, struct rule *rule)
2085 {
2086 if (rule->cr.wc.wildcards) {
2087 COVERAGE_INC(ofproto_del_wc_flow);
2088 ofproto->need_revalidate = true;
2089 } else {
2090 rule_uninstall(ofproto, rule);
2091 }
2092 classifier_remove(&ofproto->cls, &rule->cr);
2093 rule_destroy(ofproto, rule);
2094 }
2095
2096 /* Returns true if the actions changed, false otherwise. */
2097 static bool
2098 rule_make_actions(struct ofproto *p, struct rule *rule,
2099 const struct ofpbuf *packet)
2100 {
2101 const struct rule *super;
2102 struct odp_actions a;
2103 size_t actions_len;
2104
2105 assert(!rule->cr.wc.wildcards);
2106
2107 super = rule->super ? rule->super : rule;
2108 rule->tags = 0;
2109 xlate_actions(super->actions, super->n_actions, &rule->cr.flow, p,
2110 packet, &a, &rule->tags, &rule->may_install,
2111 &rule->nf_flow.output_iface);
2112
2113 actions_len = a.n_actions * sizeof *a.actions;
2114 if (rule->n_odp_actions != a.n_actions
2115 || memcmp(rule->odp_actions, a.actions, actions_len)) {
2116 COVERAGE_INC(ofproto_odp_unchanged);
2117 free(rule->odp_actions);
2118 rule->n_odp_actions = a.n_actions;
2119 rule->odp_actions = xmemdup(a.actions, actions_len);
2120 return true;
2121 } else {
2122 return false;
2123 }
2124 }
2125
2126 static int
2127 do_put_flow(struct ofproto *ofproto, struct rule *rule, int flags,
2128 struct odp_flow_put *put)
2129 {
2130 memset(&put->flow.stats, 0, sizeof put->flow.stats);
2131 odp_flow_key_from_flow(&put->flow.key, &rule->cr.flow);
2132 put->flow.actions = rule->odp_actions;
2133 put->flow.n_actions = rule->n_odp_actions;
2134 put->flow.flags = 0;
2135 put->flags = flags;
2136 return dpif_flow_put(ofproto->dpif, put);
2137 }
2138
2139 static void
2140 rule_install(struct ofproto *p, struct rule *rule, struct rule *displaced_rule)
2141 {
2142 assert(!rule->cr.wc.wildcards);
2143
2144 if (rule->may_install) {
2145 struct odp_flow_put put;
2146 if (!do_put_flow(p, rule,
2147 ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS,
2148 &put)) {
2149 rule->installed = true;
2150 if (displaced_rule) {
2151 update_stats(p, displaced_rule, &put.flow.stats);
2152 rule_post_uninstall(p, displaced_rule);
2153 }
2154 }
2155 } else if (displaced_rule) {
2156 rule_uninstall(p, displaced_rule);
2157 }
2158 }
2159
2160 static void
2161 rule_reinstall(struct ofproto *ofproto, struct rule *rule)
2162 {
2163 if (rule->installed) {
2164 struct odp_flow_put put;
2165 COVERAGE_INC(ofproto_dp_missed);
2166 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put);
2167 } else {
2168 rule_install(ofproto, rule, NULL);
2169 }
2170 }
2171
2172 static void
2173 rule_update_actions(struct ofproto *ofproto, struct rule *rule)
2174 {
2175 bool actions_changed;
2176 uint16_t new_out_iface, old_out_iface;
2177
2178 old_out_iface = rule->nf_flow.output_iface;
2179 actions_changed = rule_make_actions(ofproto, rule, NULL);
2180
2181 if (rule->may_install) {
2182 if (rule->installed) {
2183 if (actions_changed) {
2184 struct odp_flow_put put;
2185 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY
2186 | ODPPF_ZERO_STATS, &put);
2187 update_stats(ofproto, rule, &put.flow.stats);
2188
2189 /* Temporarily set the old output iface so that NetFlow
2190 * messages have the correct output interface for the old
2191 * stats. */
2192 new_out_iface = rule->nf_flow.output_iface;
2193 rule->nf_flow.output_iface = old_out_iface;
2194 rule_post_uninstall(ofproto, rule);
2195 rule->nf_flow.output_iface = new_out_iface;
2196 }
2197 } else {
2198 rule_install(ofproto, rule, NULL);
2199 }
2200 } else {
2201 rule_uninstall(ofproto, rule);
2202 }
2203 }
2204
2205 static void
2206 rule_account(struct ofproto *ofproto, struct rule *rule, uint64_t extra_bytes)
2207 {
2208 uint64_t total_bytes = rule->byte_count + extra_bytes;
2209
2210 if (ofproto->ofhooks->account_flow_cb
2211 && total_bytes > rule->accounted_bytes)
2212 {
2213 ofproto->ofhooks->account_flow_cb(
2214 &rule->cr.flow, rule->tags, rule->odp_actions, rule->n_odp_actions,
2215 total_bytes - rule->accounted_bytes, ofproto->aux);
2216 rule->accounted_bytes = total_bytes;
2217 }
2218 }
2219
2220 /* 'rule' must be an exact-match rule in 'p'.
2221 *
2222 * If 'rule' is installed in the datapath, uninstalls it and updates's
2223 * statistics. If 'rule' is a subrule, the statistics that are updated are
2224 * actually its super-rule's statistics; otherwise 'rule''s own statistics are
2225 * updated.
2226 *
2227 * If 'rule' is not installed, this function has no effect. */
2228 static void
2229 rule_uninstall(struct ofproto *p, struct rule *rule)
2230 {
2231 assert(!rule->cr.wc.wildcards);
2232 if (rule->installed) {
2233 struct odp_flow odp_flow;
2234
2235 odp_flow_key_from_flow(&odp_flow.key, &rule->cr.flow);
2236 odp_flow.actions = NULL;
2237 odp_flow.n_actions = 0;
2238 odp_flow.flags = 0;
2239 if (!dpif_flow_del(p->dpif, &odp_flow)) {
2240 update_stats(p, rule, &odp_flow.stats);
2241 }
2242 rule->installed = false;
2243
2244 rule_post_uninstall(p, rule);
2245 }
2246 }
2247
2248 static bool
2249 is_controller_rule(struct rule *rule)
2250 {
2251 /* If the only action is send to the controller then don't report
2252 * NetFlow expiration messages since it is just part of the control
2253 * logic for the network and not real traffic. */
2254
2255 return (rule
2256 && rule->super
2257 && rule->super->n_actions == 1
2258 && action_outputs_to_port(&rule->super->actions[0],
2259 htons(OFPP_CONTROLLER)));
2260 }
2261
2262 static void
2263 rule_post_uninstall(struct ofproto *ofproto, struct rule *rule)
2264 {
2265 struct rule *super = rule->super;
2266
2267 rule_account(ofproto, rule, 0);
2268
2269 if (ofproto->netflow && !is_controller_rule(rule)) {
2270 struct ofexpired expired;
2271 expired.flow = rule->cr.flow;
2272 expired.packet_count = rule->packet_count;
2273 expired.byte_count = rule->byte_count;
2274 expired.used = rule->used;
2275 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
2276 }
2277 if (super) {
2278 super->packet_count += rule->packet_count;
2279 super->byte_count += rule->byte_count;
2280
2281 /* Reset counters to prevent double counting if the rule ever gets
2282 * reinstalled. */
2283 rule->packet_count = 0;
2284 rule->byte_count = 0;
2285 rule->accounted_bytes = 0;
2286
2287 netflow_flow_clear(&rule->nf_flow);
2288 }
2289 }
2290 \f
2291 static void
2292 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2293 struct rconn_packet_counter *counter)
2294 {
2295 update_openflow_length(msg);
2296 if (rconn_send(ofconn->rconn, msg, counter)) {
2297 ofpbuf_delete(msg);
2298 }
2299 }
2300
2301 static void
2302 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2303 int error)
2304 {
2305 struct ofpbuf *buf = make_ofp_error_msg(error, oh);
2306 if (buf) {
2307 COVERAGE_INC(ofproto_error);
2308 queue_tx(buf, ofconn, ofconn->reply_counter);
2309 }
2310 }
2311
2312 static void
2313 hton_ofp_phy_port(struct ofp_phy_port *opp)
2314 {
2315 opp->port_no = htons(opp->port_no);
2316 opp->config = htonl(opp->config);
2317 opp->state = htonl(opp->state);
2318 opp->curr = htonl(opp->curr);
2319 opp->advertised = htonl(opp->advertised);
2320 opp->supported = htonl(opp->supported);
2321 opp->peer = htonl(opp->peer);
2322 }
2323
2324 static int
2325 handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh)
2326 {
2327 struct ofp_header *rq = oh;
2328 queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter);
2329 return 0;
2330 }
2331
2332 static int
2333 handle_features_request(struct ofproto *p, struct ofconn *ofconn,
2334 struct ofp_header *oh)
2335 {
2336 struct ofp_switch_features *osf;
2337 struct ofpbuf *buf;
2338 struct ofport *port;
2339
2340 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2341 osf->datapath_id = htonll(p->datapath_id);
2342 osf->n_buffers = htonl(pktbuf_capacity());
2343 osf->n_tables = 2;
2344 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2345 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2346 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2347 (1u << OFPAT_SET_VLAN_VID) |
2348 (1u << OFPAT_SET_VLAN_PCP) |
2349 (1u << OFPAT_STRIP_VLAN) |
2350 (1u << OFPAT_SET_DL_SRC) |
2351 (1u << OFPAT_SET_DL_DST) |
2352 (1u << OFPAT_SET_NW_SRC) |
2353 (1u << OFPAT_SET_NW_DST) |
2354 (1u << OFPAT_SET_NW_TOS) |
2355 (1u << OFPAT_SET_TP_SRC) |
2356 (1u << OFPAT_SET_TP_DST) |
2357 (1u << OFPAT_ENQUEUE));
2358
2359 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
2360 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2361 }
2362
2363 queue_tx(buf, ofconn, ofconn->reply_counter);
2364 return 0;
2365 }
2366
2367 static int
2368 handle_get_config_request(struct ofproto *p, struct ofconn *ofconn,
2369 struct ofp_header *oh)
2370 {
2371 struct ofpbuf *buf;
2372 struct ofp_switch_config *osc;
2373 uint16_t flags;
2374 bool drop_frags;
2375
2376 /* Figure out flags. */
2377 dpif_get_drop_frags(p->dpif, &drop_frags);
2378 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2379
2380 /* Send reply. */
2381 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2382 osc->flags = htons(flags);
2383 osc->miss_send_len = htons(ofconn->miss_send_len);
2384 queue_tx(buf, ofconn, ofconn->reply_counter);
2385
2386 return 0;
2387 }
2388
2389 static int
2390 handle_set_config(struct ofproto *p, struct ofconn *ofconn,
2391 struct ofp_switch_config *osc)
2392 {
2393 uint16_t flags;
2394 int error;
2395
2396 error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc);
2397 if (error) {
2398 return error;
2399 }
2400 flags = ntohs(osc->flags);
2401
2402 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2403 switch (flags & OFPC_FRAG_MASK) {
2404 case OFPC_FRAG_NORMAL:
2405 dpif_set_drop_frags(p->dpif, false);
2406 break;
2407 case OFPC_FRAG_DROP:
2408 dpif_set_drop_frags(p->dpif, true);
2409 break;
2410 default:
2411 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2412 osc->flags);
2413 break;
2414 }
2415 }
2416
2417 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2418
2419 return 0;
2420 }
2421
2422 static void
2423 add_controller_action(struct odp_actions *actions, uint16_t max_len)
2424 {
2425 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
2426 a->controller.arg = max_len;
2427 }
2428
2429 struct action_xlate_ctx {
2430 /* Input. */
2431 struct flow flow; /* Flow to which these actions correspond. */
2432 int recurse; /* Recursion level, via xlate_table_action. */
2433 struct ofproto *ofproto;
2434 const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a
2435 * null pointer if we are revalidating
2436 * without a packet to refer to. */
2437
2438 /* Output. */
2439 struct odp_actions *out; /* Datapath actions. */
2440 tag_type *tags; /* Tags associated with OFPP_NORMAL actions. */
2441 bool may_set_up_flow; /* True ordinarily; false if the actions must
2442 * be reassessed for every packet. */
2443 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
2444 };
2445
2446 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
2447 * flow translation. */
2448 #define MAX_RESUBMIT_RECURSION 8
2449
2450 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2451 struct action_xlate_ctx *ctx);
2452
2453 static void
2454 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2455 {
2456 const struct ofport *ofport = get_port(ctx->ofproto, port);
2457
2458 if (ofport) {
2459 if (ofport->opp.config & OFPPC_NO_FWD) {
2460 /* Forwarding disabled on port. */
2461 return;
2462 }
2463 } else {
2464 /*
2465 * We don't have an ofport record for this port, but it doesn't hurt to
2466 * allow forwarding to it anyhow. Maybe such a port will appear later
2467 * and we're pre-populating the flow table.
2468 */
2469 }
2470
2471 odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port;
2472 ctx->nf_output_iface = port;
2473 }
2474
2475 static struct rule *
2476 lookup_valid_rule(struct ofproto *ofproto, const struct flow *flow)
2477 {
2478 struct rule *rule;
2479 rule = rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow,
2480 CLS_INC_ALL));
2481
2482 /* The rule we found might not be valid, since we could be in need of
2483 * revalidation. If it is not valid, don't return it. */
2484 if (rule
2485 && rule->super
2486 && ofproto->need_revalidate
2487 && !revalidate_rule(ofproto, rule)) {
2488 COVERAGE_INC(ofproto_invalidated);
2489 return NULL;
2490 }
2491
2492 return rule;
2493 }
2494
2495 static void
2496 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2497 {
2498 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2499 uint16_t old_in_port;
2500 struct rule *rule;
2501
2502 /* Look up a flow with 'in_port' as the input port. Then restore the
2503 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2504 * have surprising behavior). */
2505 old_in_port = ctx->flow.in_port;
2506 ctx->flow.in_port = in_port;
2507 rule = lookup_valid_rule(ctx->ofproto, &ctx->flow);
2508 ctx->flow.in_port = old_in_port;
2509
2510 if (rule) {
2511 if (rule->super) {
2512 rule = rule->super;
2513 }
2514
2515 ctx->recurse++;
2516 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2517 ctx->recurse--;
2518 }
2519 } else {
2520 struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2521
2522 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2523 MAX_RESUBMIT_RECURSION);
2524 }
2525 }
2526
2527 static void
2528 flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2529 uint16_t *nf_output_iface, struct odp_actions *actions)
2530 {
2531 struct ofport *ofport;
2532
2533 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2534 uint16_t odp_port = ofport->odp_port;
2535 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2536 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = odp_port;
2537 }
2538 }
2539 *nf_output_iface = NF_OUT_FLOOD;
2540 }
2541
2542 static void
2543 xlate_output_action__(struct action_xlate_ctx *ctx,
2544 uint16_t port, uint16_t max_len)
2545 {
2546 uint16_t odp_port;
2547 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2548
2549 ctx->nf_output_iface = NF_OUT_DROP;
2550
2551 switch (port) {
2552 case OFPP_IN_PORT:
2553 add_output_action(ctx, ctx->flow.in_port);
2554 break;
2555 case OFPP_TABLE:
2556 xlate_table_action(ctx, ctx->flow.in_port);
2557 break;
2558 case OFPP_NORMAL:
2559 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2560 ctx->out, ctx->tags,
2561 &ctx->nf_output_iface,
2562 ctx->ofproto->aux)) {
2563 COVERAGE_INC(ofproto_uninstallable);
2564 ctx->may_set_up_flow = false;
2565 }
2566 break;
2567 case OFPP_FLOOD:
2568 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2569 &ctx->nf_output_iface, ctx->out);
2570 break;
2571 case OFPP_ALL:
2572 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2573 &ctx->nf_output_iface, ctx->out);
2574 break;
2575 case OFPP_CONTROLLER:
2576 add_controller_action(ctx->out, max_len);
2577 break;
2578 case OFPP_LOCAL:
2579 add_output_action(ctx, ODPP_LOCAL);
2580 break;
2581 default:
2582 odp_port = ofp_port_to_odp_port(port);
2583 if (odp_port != ctx->flow.in_port) {
2584 add_output_action(ctx, odp_port);
2585 }
2586 break;
2587 }
2588
2589 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2590 ctx->nf_output_iface = NF_OUT_FLOOD;
2591 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2592 ctx->nf_output_iface = prev_nf_output_iface;
2593 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2594 ctx->nf_output_iface != NF_OUT_FLOOD) {
2595 ctx->nf_output_iface = NF_OUT_MULTI;
2596 }
2597 }
2598
2599 static void
2600 xlate_output_action(struct action_xlate_ctx *ctx,
2601 const struct ofp_action_output *oao)
2602 {
2603 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2604 }
2605
2606 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2607 * optimization, because we're going to add another action that sets the
2608 * priority immediately after, or because there are no actions following the
2609 * pop. */
2610 static void
2611 remove_pop_action(struct action_xlate_ctx *ctx)
2612 {
2613 size_t n = ctx->out->n_actions;
2614 if (n > 0 && ctx->out->actions[n - 1].type == ODPAT_POP_PRIORITY) {
2615 ctx->out->n_actions--;
2616 }
2617 }
2618
2619 static void
2620 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2621 const struct ofp_action_enqueue *oae)
2622 {
2623 uint16_t ofp_port, odp_port;
2624 uint32_t priority;
2625 int error;
2626
2627 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2628 &priority);
2629 if (error) {
2630 /* Fall back to ordinary output action. */
2631 xlate_output_action__(ctx, ntohs(oae->port), 0);
2632 return;
2633 }
2634
2635 /* Figure out ODP output port. */
2636 ofp_port = ntohs(oae->port);
2637 if (ofp_port != OFPP_IN_PORT) {
2638 odp_port = ofp_port_to_odp_port(ofp_port);
2639 } else {
2640 odp_port = ctx->flow.in_port;
2641 }
2642
2643 /* Add ODP actions. */
2644 remove_pop_action(ctx);
2645 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2646 = priority;
2647 add_output_action(ctx, odp_port);
2648 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2649
2650 /* Update NetFlow output port. */
2651 if (ctx->nf_output_iface == NF_OUT_DROP) {
2652 ctx->nf_output_iface = odp_port;
2653 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2654 ctx->nf_output_iface = NF_OUT_MULTI;
2655 }
2656 }
2657
2658 static void
2659 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2660 const struct nx_action_set_queue *nasq)
2661 {
2662 uint32_t priority;
2663 int error;
2664
2665 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2666 &priority);
2667 if (error) {
2668 /* Couldn't translate queue to a priority, so ignore. A warning
2669 * has already been logged. */
2670 return;
2671 }
2672
2673 remove_pop_action(ctx);
2674 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2675 = priority;
2676 }
2677
2678 static void
2679 xlate_nicira_action(struct action_xlate_ctx *ctx,
2680 const struct nx_action_header *nah)
2681 {
2682 const struct nx_action_resubmit *nar;
2683 const struct nx_action_set_tunnel *nast;
2684 const struct nx_action_set_queue *nasq;
2685 union odp_action *oa;
2686 int subtype = ntohs(nah->subtype);
2687
2688 assert(nah->vendor == htonl(NX_VENDOR_ID));
2689 switch (subtype) {
2690 case NXAST_RESUBMIT:
2691 nar = (const struct nx_action_resubmit *) nah;
2692 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2693 break;
2694
2695 case NXAST_SET_TUNNEL:
2696 nast = (const struct nx_action_set_tunnel *) nah;
2697 oa = odp_actions_add(ctx->out, ODPAT_SET_TUNNEL);
2698 ctx->flow.tun_id = oa->tunnel.tun_id = nast->tun_id;
2699 break;
2700
2701 case NXAST_DROP_SPOOFED_ARP:
2702 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2703 odp_actions_add(ctx->out, ODPAT_DROP_SPOOFED_ARP);
2704 }
2705 break;
2706
2707 case NXAST_SET_QUEUE:
2708 nasq = (const struct nx_action_set_queue *) nah;
2709 xlate_set_queue_action(ctx, nasq);
2710 break;
2711
2712 case NXAST_POP_QUEUE:
2713 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2714 break;
2715
2716 /* If you add a new action here that modifies flow data, don't forget to
2717 * update the flow key in ctx->flow at the same time. */
2718
2719 default:
2720 VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype);
2721 break;
2722 }
2723 }
2724
2725 static void
2726 do_xlate_actions(const union ofp_action *in, size_t n_in,
2727 struct action_xlate_ctx *ctx)
2728 {
2729 struct actions_iterator iter;
2730 const union ofp_action *ia;
2731 const struct ofport *port;
2732
2733 port = get_port(ctx->ofproto, ctx->flow.in_port);
2734 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2735 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
2736 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2737 /* Drop this flow. */
2738 return;
2739 }
2740
2741 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2742 uint16_t type = ntohs(ia->type);
2743 union odp_action *oa;
2744
2745 switch (type) {
2746 case OFPAT_OUTPUT:
2747 xlate_output_action(ctx, &ia->output);
2748 break;
2749
2750 case OFPAT_SET_VLAN_VID:
2751 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_TCI);
2752 oa->dl_tci.tci = ia->vlan_vid.vlan_vid;
2753 oa->dl_tci.tci |= htons(ctx->flow.dl_vlan_pcp << VLAN_PCP_SHIFT);
2754 ctx->flow.dl_vlan = ia->vlan_vid.vlan_vid;
2755 break;
2756
2757 case OFPAT_SET_VLAN_PCP:
2758 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_TCI);
2759 oa->dl_tci.tci = htons(ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT);
2760 oa->dl_tci.tci |= ctx->flow.dl_vlan;
2761 ctx->flow.dl_vlan_pcp = ia->vlan_pcp.vlan_pcp;
2762 break;
2763
2764 case OFPAT_STRIP_VLAN:
2765 odp_actions_add(ctx->out, ODPAT_STRIP_VLAN);
2766 ctx->flow.dl_vlan = htons(OFP_VLAN_NONE);
2767 ctx->flow.dl_vlan_pcp = 0;
2768 break;
2769
2770 case OFPAT_SET_DL_SRC:
2771 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC);
2772 memcpy(oa->dl_addr.dl_addr,
2773 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2774 memcpy(ctx->flow.dl_src,
2775 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2776 break;
2777
2778 case OFPAT_SET_DL_DST:
2779 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST);
2780 memcpy(oa->dl_addr.dl_addr,
2781 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2782 memcpy(ctx->flow.dl_dst,
2783 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2784 break;
2785
2786 case OFPAT_SET_NW_SRC:
2787 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC);
2788 ctx->flow.nw_src = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2789 break;
2790
2791 case OFPAT_SET_NW_DST:
2792 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_DST);
2793 ctx->flow.nw_dst = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2794 break;
2795
2796 case OFPAT_SET_NW_TOS:
2797 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_TOS);
2798 ctx->flow.nw_tos = oa->nw_tos.nw_tos = ia->nw_tos.nw_tos;
2799 break;
2800
2801 case OFPAT_SET_TP_SRC:
2802 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC);
2803 ctx->flow.tp_src = oa->tp_port.tp_port = ia->tp_port.tp_port;
2804 break;
2805
2806 case OFPAT_SET_TP_DST:
2807 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_DST);
2808 ctx->flow.tp_dst = oa->tp_port.tp_port = ia->tp_port.tp_port;
2809 break;
2810
2811 case OFPAT_VENDOR:
2812 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
2813 break;
2814
2815 case OFPAT_ENQUEUE:
2816 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
2817 break;
2818
2819 default:
2820 VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type);
2821 break;
2822 }
2823 }
2824 }
2825
2826 static int
2827 xlate_actions(const union ofp_action *in, size_t n_in,
2828 const struct flow *flow, struct ofproto *ofproto,
2829 const struct ofpbuf *packet,
2830 struct odp_actions *out, tag_type *tags, bool *may_set_up_flow,
2831 uint16_t *nf_output_iface)
2832 {
2833 tag_type no_tags = 0;
2834 struct action_xlate_ctx ctx;
2835 COVERAGE_INC(ofproto_ofp2odp);
2836 odp_actions_init(out);
2837 ctx.flow = *flow;
2838 ctx.recurse = 0;
2839 ctx.ofproto = ofproto;
2840 ctx.packet = packet;
2841 ctx.out = out;
2842 ctx.tags = tags ? tags : &no_tags;
2843 ctx.may_set_up_flow = true;
2844 ctx.nf_output_iface = NF_OUT_DROP;
2845 do_xlate_actions(in, n_in, &ctx);
2846 remove_pop_action(&ctx);
2847
2848 /* Check with in-band control to see if we're allowed to set up this
2849 * flow. */
2850 if (!in_band_rule_check(ofproto->in_band, flow, out)) {
2851 ctx.may_set_up_flow = false;
2852 }
2853
2854 if (may_set_up_flow) {
2855 *may_set_up_flow = ctx.may_set_up_flow;
2856 }
2857 if (nf_output_iface) {
2858 *nf_output_iface = ctx.nf_output_iface;
2859 }
2860 if (odp_actions_overflow(out)) {
2861 COVERAGE_INC(odp_overflow);
2862 odp_actions_init(out);
2863 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
2864 }
2865 return 0;
2866 }
2867
2868 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
2869 * error message code (composed with ofp_mkerr()) for the caller to propagate
2870 * upward. Otherwise, returns 0.
2871 *
2872 * 'oh' is used to make log messages more informative. */
2873 static int
2874 reject_slave_controller(struct ofconn *ofconn, const struct ofp_header *oh)
2875 {
2876 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
2877 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
2878 char *type_name;
2879
2880 type_name = ofp_message_type_to_string(oh->type);
2881 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
2882 type_name);
2883 free(type_name);
2884
2885 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
2886 } else {
2887 return 0;
2888 }
2889 }
2890
2891 static int
2892 handle_packet_out(struct ofproto *p, struct ofconn *ofconn,
2893 struct ofp_header *oh)
2894 {
2895 struct ofp_packet_out *opo;
2896 struct ofpbuf payload, *buffer;
2897 struct odp_actions actions;
2898 struct flow flow;
2899 int n_actions;
2900 uint16_t in_port;
2901 int error;
2902
2903 error = reject_slave_controller(ofconn, oh);
2904 if (error) {
2905 return error;
2906 }
2907
2908 error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports);
2909 if (error) {
2910 return error;
2911 }
2912 opo = (struct ofp_packet_out *) oh;
2913
2914 COVERAGE_INC(ofproto_packet_out);
2915 if (opo->buffer_id != htonl(UINT32_MAX)) {
2916 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
2917 &buffer, &in_port);
2918 if (error || !buffer) {
2919 return error;
2920 }
2921 payload = *buffer;
2922 } else {
2923 buffer = NULL;
2924 }
2925
2926 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow);
2927 error = xlate_actions((const union ofp_action *) opo->actions, n_actions,
2928 &flow, p, &payload, &actions, NULL, NULL, NULL);
2929 if (!error) {
2930 dpif_execute(p->dpif, actions.actions, actions.n_actions, &payload);
2931 }
2932 ofpbuf_delete(buffer);
2933
2934 return error;
2935 }
2936
2937 static void
2938 update_port_config(struct ofproto *p, struct ofport *port,
2939 uint32_t config, uint32_t mask)
2940 {
2941 mask &= config ^ port->opp.config;
2942 if (mask & OFPPC_PORT_DOWN) {
2943 if (config & OFPPC_PORT_DOWN) {
2944 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
2945 } else {
2946 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
2947 }
2948 }
2949 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
2950 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
2951 if (mask & REVALIDATE_BITS) {
2952 COVERAGE_INC(ofproto_costly_flags);
2953 port->opp.config ^= mask & REVALIDATE_BITS;
2954 p->need_revalidate = true;
2955 }
2956 #undef REVALIDATE_BITS
2957 if (mask & OFPPC_NO_PACKET_IN) {
2958 port->opp.config ^= OFPPC_NO_PACKET_IN;
2959 }
2960 }
2961
2962 static int
2963 handle_port_mod(struct ofproto *p, struct ofconn *ofconn,
2964 struct ofp_header *oh)
2965 {
2966 const struct ofp_port_mod *opm;
2967 struct ofport *port;
2968 int error;
2969
2970 error = reject_slave_controller(ofconn, oh);
2971 if (error) {
2972 return error;
2973 }
2974 error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm);
2975 if (error) {
2976 return error;
2977 }
2978 opm = (struct ofp_port_mod *) oh;
2979
2980 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
2981 if (!port) {
2982 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
2983 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
2984 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
2985 } else {
2986 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
2987 if (opm->advertise) {
2988 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
2989 }
2990 }
2991 return 0;
2992 }
2993
2994 static struct ofpbuf *
2995 make_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
2996 {
2997 struct ofp_stats_reply *osr;
2998 struct ofpbuf *msg;
2999
3000 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3001 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3002 osr->type = type;
3003 osr->flags = htons(0);
3004 return msg;
3005 }
3006
3007 static struct ofpbuf *
3008 start_stats_reply(const struct ofp_stats_request *request, size_t body_len)
3009 {
3010 return make_stats_reply(request->header.xid, request->type, body_len);
3011 }
3012
3013 static void *
3014 append_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp)
3015 {
3016 struct ofpbuf *msg = *msgp;
3017 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3018 if (nbytes + msg->size > UINT16_MAX) {
3019 struct ofp_stats_reply *reply = msg->data;
3020 reply->flags = htons(OFPSF_REPLY_MORE);
3021 *msgp = make_stats_reply(reply->header.xid, reply->type, nbytes);
3022 queue_tx(msg, ofconn, ofconn->reply_counter);
3023 }
3024 return ofpbuf_put_uninit(*msgp, nbytes);
3025 }
3026
3027 static int
3028 handle_desc_stats_request(struct ofproto *p, struct ofconn *ofconn,
3029 struct ofp_stats_request *request)
3030 {
3031 struct ofp_desc_stats *ods;
3032 struct ofpbuf *msg;
3033
3034 msg = start_stats_reply(request, sizeof *ods);
3035 ods = append_stats_reply(sizeof *ods, ofconn, &msg);
3036 memset(ods, 0, sizeof *ods);
3037 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3038 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3039 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3040 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3041 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3042 queue_tx(msg, ofconn, ofconn->reply_counter);
3043
3044 return 0;
3045 }
3046
3047 static int
3048 handle_table_stats_request(struct ofproto *p, struct ofconn *ofconn,
3049 struct ofp_stats_request *request)
3050 {
3051 struct ofp_table_stats *ots;
3052 struct ofpbuf *msg;
3053 struct rule *rule;
3054 int n_rules;
3055
3056 msg = start_stats_reply(request, sizeof *ots * 2);
3057
3058 /* Count rules other than subrules. */
3059 n_rules = classifier_count(&p->cls);
3060 CLASSIFIER_FOR_EACH_EXACT_RULE (rule, cr, &p->cls) {
3061 if (rule->super) {
3062 n_rules--;
3063 }
3064 }
3065
3066 /* Classifier table. */
3067 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
3068 memset(ots, 0, sizeof *ots);
3069 strcpy(ots->name, "classifier");
3070 ots->wildcards = (p->flow_format == NXFF_OPENFLOW10
3071 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3072 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3073 ots->active_count = htonl(n_rules);
3074 ots->lookup_count = htonll(0); /* XXX */
3075 ots->matched_count = htonll(0); /* XXX */
3076
3077 queue_tx(msg, ofconn, ofconn->reply_counter);
3078 return 0;
3079 }
3080
3081 static void
3082 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3083 struct ofpbuf **msgp)
3084 {
3085 struct netdev_stats stats;
3086 struct ofp_port_stats *ops;
3087
3088 /* Intentionally ignore return value, since errors will set
3089 * 'stats' to all-1s, which is correct for OpenFlow, and
3090 * netdev_get_stats() will log errors. */
3091 netdev_get_stats(port->netdev, &stats);
3092
3093 ops = append_stats_reply(sizeof *ops, ofconn, msgp);
3094 ops->port_no = htons(port->opp.port_no);
3095 memset(ops->pad, 0, sizeof ops->pad);
3096 ops->rx_packets = htonll(stats.rx_packets);
3097 ops->tx_packets = htonll(stats.tx_packets);
3098 ops->rx_bytes = htonll(stats.rx_bytes);
3099 ops->tx_bytes = htonll(stats.tx_bytes);
3100 ops->rx_dropped = htonll(stats.rx_dropped);
3101 ops->tx_dropped = htonll(stats.tx_dropped);
3102 ops->rx_errors = htonll(stats.rx_errors);
3103 ops->tx_errors = htonll(stats.tx_errors);
3104 ops->rx_frame_err = htonll(stats.rx_frame_errors);
3105 ops->rx_over_err = htonll(stats.rx_over_errors);
3106 ops->rx_crc_err = htonll(stats.rx_crc_errors);
3107 ops->collisions = htonll(stats.collisions);
3108 }
3109
3110 static int
3111 handle_port_stats_request(struct ofproto *p, struct ofconn *ofconn,
3112 struct ofp_stats_request *osr,
3113 size_t arg_size)
3114 {
3115 struct ofp_port_stats_request *psr;
3116 struct ofp_port_stats *ops;
3117 struct ofpbuf *msg;
3118 struct ofport *port;
3119
3120 if (arg_size != sizeof *psr) {
3121 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3122 }
3123 psr = (struct ofp_port_stats_request *) osr->body;
3124
3125 msg = start_stats_reply(osr, sizeof *ops * 16);
3126 if (psr->port_no != htons(OFPP_NONE)) {
3127 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3128 if (port) {
3129 append_port_stat(port, ofconn, &msg);
3130 }
3131 } else {
3132 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3133 append_port_stat(port, ofconn, &msg);
3134 }
3135 }
3136
3137 queue_tx(msg, ofconn, ofconn->reply_counter);
3138 return 0;
3139 }
3140
3141 struct flow_stats_cbdata {
3142 struct ofproto *ofproto;
3143 struct ofconn *ofconn;
3144 ovs_be16 out_port;
3145 struct ofpbuf *msg;
3146 };
3147
3148 /* Obtains statistic counters for 'rule' within 'p' and stores them into
3149 * '*packet_countp' and '*byte_countp'. If 'rule' is a wildcarded rule, the
3150 * returned statistic include statistics for all of 'rule''s subrules. */
3151 static void
3152 query_stats(struct ofproto *p, struct rule *rule,
3153 uint64_t *packet_countp, uint64_t *byte_countp)
3154 {
3155 uint64_t packet_count, byte_count;
3156 struct rule *subrule;
3157 struct odp_flow *odp_flows;
3158 size_t n_odp_flows;
3159
3160 /* Start from historical data for 'rule' itself that are no longer tracked
3161 * by the datapath. This counts, for example, subrules that have
3162 * expired. */
3163 packet_count = rule->packet_count;
3164 byte_count = rule->byte_count;
3165
3166 /* Prepare to ask the datapath for statistics on 'rule', or if it is
3167 * wildcarded then on all of its subrules.
3168 *
3169 * Also, add any statistics that are not tracked by the datapath for each
3170 * subrule. This includes, for example, statistics for packets that were
3171 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3172 * to a flow. */
3173 n_odp_flows = rule->cr.wc.wildcards ? list_size(&rule->list) : 1;
3174 odp_flows = xzalloc(n_odp_flows * sizeof *odp_flows);
3175 if (rule->cr.wc.wildcards) {
3176 size_t i = 0;
3177 LIST_FOR_EACH (subrule, list, &rule->list) {
3178 odp_flow_key_from_flow(&odp_flows[i++].key, &subrule->cr.flow);
3179 packet_count += subrule->packet_count;
3180 byte_count += subrule->byte_count;
3181 }
3182 } else {
3183 odp_flow_key_from_flow(&odp_flows[0].key, &rule->cr.flow);
3184 }
3185
3186 /* Fetch up-to-date statistics from the datapath and add them in. */
3187 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
3188 size_t i;
3189 for (i = 0; i < n_odp_flows; i++) {
3190 struct odp_flow *odp_flow = &odp_flows[i];
3191 packet_count += odp_flow->stats.n_packets;
3192 byte_count += odp_flow->stats.n_bytes;
3193 }
3194 }
3195 free(odp_flows);
3196
3197 /* Return the stats to the caller. */
3198 *packet_countp = packet_count;
3199 *byte_countp = byte_count;
3200 }
3201
3202 static void
3203 flow_stats_cb(struct cls_rule *rule_, void *cbdata_)
3204 {
3205 struct rule *rule = rule_from_cls_rule(rule_);
3206 struct flow_stats_cbdata *cbdata = cbdata_;
3207 struct ofp_flow_stats *ofs;
3208 uint64_t packet_count, byte_count;
3209 size_t act_len, len;
3210 long long int tdiff = time_msec() - rule->created;
3211 uint32_t sec = tdiff / 1000;
3212 uint32_t msec = tdiff - (sec * 1000);
3213
3214 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3215 return;
3216 }
3217
3218 act_len = sizeof *rule->actions * rule->n_actions;
3219 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3220
3221 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3222
3223 ofs = append_stats_reply(len, cbdata->ofconn, &cbdata->msg);
3224 ofs->length = htons(len);
3225 ofs->table_id = 0;
3226 ofs->pad = 0;
3227 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3228 cbdata->ofproto->flow_format, &ofs->match);
3229 ofs->duration_sec = htonl(sec);
3230 ofs->duration_nsec = htonl(msec * 1000000);
3231 ofs->cookie = rule->flow_cookie;
3232 ofs->priority = htons(rule->cr.priority);
3233 ofs->idle_timeout = htons(rule->idle_timeout);
3234 ofs->hard_timeout = htons(rule->hard_timeout);
3235 memset(ofs->pad2, 0, sizeof ofs->pad2);
3236 ofs->packet_count = htonll(packet_count);
3237 ofs->byte_count = htonll(byte_count);
3238 if (rule->n_actions > 0) {
3239 memcpy(ofs->actions, rule->actions, act_len);
3240 }
3241 }
3242
3243 static int
3244 table_id_to_include(uint8_t table_id)
3245 {
3246 return table_id == 0 || table_id == 0xff ? CLS_INC_ALL : 0;
3247 }
3248
3249 static int
3250 handle_flow_stats_request(struct ofproto *p, struct ofconn *ofconn,
3251 const struct ofp_stats_request *osr,
3252 size_t arg_size)
3253 {
3254 struct ofp_flow_stats_request *fsr;
3255 struct flow_stats_cbdata cbdata;
3256 struct cls_rule target;
3257
3258 if (arg_size != sizeof *fsr) {
3259 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3260 }
3261 fsr = (struct ofp_flow_stats_request *) osr->body;
3262
3263 COVERAGE_INC(ofproto_flows_req);
3264 cbdata.ofproto = p;
3265 cbdata.ofconn = ofconn;
3266 cbdata.out_port = fsr->out_port;
3267 cbdata.msg = start_stats_reply(osr, 1024);
3268 cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0, &target);
3269 classifier_for_each_match(&p->cls, &target,
3270 table_id_to_include(fsr->table_id),
3271 flow_stats_cb, &cbdata);
3272 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3273 return 0;
3274 }
3275
3276 struct flow_stats_ds_cbdata {
3277 struct ofproto *ofproto;
3278 struct ds *results;
3279 };
3280
3281 static void
3282 flow_stats_ds_cb(struct cls_rule *rule_, void *cbdata_)
3283 {
3284 struct rule *rule = rule_from_cls_rule(rule_);
3285 struct flow_stats_ds_cbdata *cbdata = cbdata_;
3286 struct ds *results = cbdata->results;
3287 struct ofp_match match;
3288 uint64_t packet_count, byte_count;
3289 size_t act_len = sizeof *rule->actions * rule->n_actions;
3290
3291 /* Don't report on subrules. */
3292 if (rule->super != NULL) {
3293 return;
3294 }
3295
3296 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3297 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3298 cbdata->ofproto->flow_format, &match);
3299
3300 ds_put_format(results, "duration=%llds, ",
3301 (time_msec() - rule->created) / 1000);
3302 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3303 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3304 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3305 ofp_print_match(results, &match, true);
3306 if (act_len > 0) {
3307 ofp_print_actions(results, &rule->actions->header, act_len);
3308 } else {
3309 ds_put_cstr(results, "drop");
3310 }
3311 ds_put_cstr(results, "\n");
3312 }
3313
3314 /* Adds a pretty-printed description of all flows to 'results', including
3315 * those marked hidden by secchan (e.g., by in-band control). */
3316 void
3317 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3318 {
3319 struct ofp_match match;
3320 struct cls_rule target;
3321 struct flow_stats_ds_cbdata cbdata;
3322
3323 memset(&match, 0, sizeof match);
3324 match.wildcards = htonl(OVSFW_ALL);
3325
3326 cbdata.ofproto = p;
3327 cbdata.results = results;
3328
3329 cls_rule_from_match(&match, 0, NXFF_OPENFLOW10, 0, &target);
3330 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3331 flow_stats_ds_cb, &cbdata);
3332 }
3333
3334 struct aggregate_stats_cbdata {
3335 struct ofproto *ofproto;
3336 ovs_be16 out_port;
3337 uint64_t packet_count;
3338 uint64_t byte_count;
3339 uint32_t n_flows;
3340 };
3341
3342 static void
3343 aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_)
3344 {
3345 struct rule *rule = rule_from_cls_rule(rule_);
3346 struct aggregate_stats_cbdata *cbdata = cbdata_;
3347 uint64_t packet_count, byte_count;
3348
3349 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3350 return;
3351 }
3352
3353 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3354
3355 cbdata->packet_count += packet_count;
3356 cbdata->byte_count += byte_count;
3357 cbdata->n_flows++;
3358 }
3359
3360 static int
3361 handle_aggregate_stats_request(struct ofproto *p, struct ofconn *ofconn,
3362 const struct ofp_stats_request *osr,
3363 size_t arg_size)
3364 {
3365 struct ofp_aggregate_stats_request *asr;
3366 struct ofp_aggregate_stats_reply *reply;
3367 struct aggregate_stats_cbdata cbdata;
3368 struct cls_rule target;
3369 struct ofpbuf *msg;
3370
3371 if (arg_size != sizeof *asr) {
3372 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3373 }
3374 asr = (struct ofp_aggregate_stats_request *) osr->body;
3375
3376 COVERAGE_INC(ofproto_agg_request);
3377 cbdata.ofproto = p;
3378 cbdata.out_port = asr->out_port;
3379 cbdata.packet_count = 0;
3380 cbdata.byte_count = 0;
3381 cbdata.n_flows = 0;
3382 cls_rule_from_match(&asr->match, 0, NXFF_OPENFLOW10, 0, &target);
3383 classifier_for_each_match(&p->cls, &target,
3384 table_id_to_include(asr->table_id),
3385 aggregate_stats_cb, &cbdata);
3386
3387 msg = start_stats_reply(osr, sizeof *reply);
3388 reply = append_stats_reply(sizeof *reply, ofconn, &msg);
3389 reply->flow_count = htonl(cbdata.n_flows);
3390 reply->packet_count = htonll(cbdata.packet_count);
3391 reply->byte_count = htonll(cbdata.byte_count);
3392 queue_tx(msg, ofconn, ofconn->reply_counter);
3393 return 0;
3394 }
3395
3396 struct queue_stats_cbdata {
3397 struct ofconn *ofconn;
3398 struct ofport *ofport;
3399 struct ofpbuf *msg;
3400 };
3401
3402 static void
3403 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3404 const struct netdev_queue_stats *stats)
3405 {
3406 struct ofp_queue_stats *reply;
3407
3408 reply = append_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3409 reply->port_no = htons(cbdata->ofport->opp.port_no);
3410 memset(reply->pad, 0, sizeof reply->pad);
3411 reply->queue_id = htonl(queue_id);
3412 reply->tx_bytes = htonll(stats->tx_bytes);
3413 reply->tx_packets = htonll(stats->tx_packets);
3414 reply->tx_errors = htonll(stats->tx_errors);
3415 }
3416
3417 static void
3418 handle_queue_stats_dump_cb(uint32_t queue_id,
3419 struct netdev_queue_stats *stats,
3420 void *cbdata_)
3421 {
3422 struct queue_stats_cbdata *cbdata = cbdata_;
3423
3424 put_queue_stats(cbdata, queue_id, stats);
3425 }
3426
3427 static void
3428 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3429 struct queue_stats_cbdata *cbdata)
3430 {
3431 cbdata->ofport = port;
3432 if (queue_id == OFPQ_ALL) {
3433 netdev_dump_queue_stats(port->netdev,
3434 handle_queue_stats_dump_cb, cbdata);
3435 } else {
3436 struct netdev_queue_stats stats;
3437
3438 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3439 put_queue_stats(cbdata, queue_id, &stats);
3440 }
3441 }
3442 }
3443
3444 static int
3445 handle_queue_stats_request(struct ofproto *ofproto, struct ofconn *ofconn,
3446 const struct ofp_stats_request *osr,
3447 size_t arg_size)
3448 {
3449 struct ofp_queue_stats_request *qsr;
3450 struct queue_stats_cbdata cbdata;
3451 struct ofport *port;
3452 unsigned int port_no;
3453 uint32_t queue_id;
3454
3455 if (arg_size != sizeof *qsr) {
3456 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3457 }
3458 qsr = (struct ofp_queue_stats_request *) osr->body;
3459
3460 COVERAGE_INC(ofproto_queue_req);
3461
3462 cbdata.ofconn = ofconn;
3463 cbdata.msg = start_stats_reply(osr, 128);
3464
3465 port_no = ntohs(qsr->port_no);
3466 queue_id = ntohl(qsr->queue_id);
3467 if (port_no == OFPP_ALL) {
3468 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3469 handle_queue_stats_for_port(port, queue_id, &cbdata);
3470 }
3471 } else if (port_no < ofproto->max_ports) {
3472 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3473 if (port) {
3474 handle_queue_stats_for_port(port, queue_id, &cbdata);
3475 }
3476 } else {
3477 ofpbuf_delete(cbdata.msg);
3478 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3479 }
3480 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3481
3482 return 0;
3483 }
3484
3485 static int
3486 handle_stats_request(struct ofproto *p, struct ofconn *ofconn,
3487 struct ofp_header *oh)
3488 {
3489 struct ofp_stats_request *osr;
3490 size_t arg_size;
3491 int error;
3492
3493 error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr,
3494 1, &arg_size);
3495 if (error) {
3496 return error;
3497 }
3498 osr = (struct ofp_stats_request *) oh;
3499
3500 switch (ntohs(osr->type)) {
3501 case OFPST_DESC:
3502 return handle_desc_stats_request(p, ofconn, osr);
3503
3504 case OFPST_FLOW:
3505 return handle_flow_stats_request(p, ofconn, osr, arg_size);
3506
3507 case OFPST_AGGREGATE:
3508 return handle_aggregate_stats_request(p, ofconn, osr, arg_size);
3509
3510 case OFPST_TABLE:
3511 return handle_table_stats_request(p, ofconn, osr);
3512
3513 case OFPST_PORT:
3514 return handle_port_stats_request(p, ofconn, osr, arg_size);
3515
3516 case OFPST_QUEUE:
3517 return handle_queue_stats_request(p, ofconn, osr, arg_size);
3518
3519 case OFPST_VENDOR:
3520 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3521
3522 default:
3523 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
3524 }
3525 }
3526
3527 static long long int
3528 msec_from_nsec(uint64_t sec, uint32_t nsec)
3529 {
3530 return !sec ? 0 : sec * 1000 + nsec / 1000000;
3531 }
3532
3533 static void
3534 update_time(struct ofproto *ofproto, struct rule *rule,
3535 const struct odp_flow_stats *stats)
3536 {
3537 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
3538 if (used > rule->used) {
3539 rule->used = used;
3540 if (rule->super && used > rule->super->used) {
3541 rule->super->used = used;
3542 }
3543 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, used);
3544 }
3545 }
3546
3547 static void
3548 update_stats(struct ofproto *ofproto, struct rule *rule,
3549 const struct odp_flow_stats *stats)
3550 {
3551 if (stats->n_packets) {
3552 update_time(ofproto, rule, stats);
3553 rule->packet_count += stats->n_packets;
3554 rule->byte_count += stats->n_bytes;
3555 netflow_flow_update_flags(&rule->nf_flow, stats->tcp_flags);
3556 }
3557 }
3558
3559 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3560 * in which no matching flow already exists in the flow table.
3561 *
3562 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3563 * ofp_actions, to 'p''s flow table. Returns 0 on success or an OpenFlow error
3564 * code as encoded by ofp_mkerr() on failure.
3565 *
3566 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3567 * if any. */
3568 static int
3569 add_flow(struct ofproto *p, struct ofconn *ofconn,
3570 const struct ofp_flow_mod *ofm, size_t n_actions)
3571 {
3572 struct ofpbuf *packet;
3573 struct rule *rule;
3574 uint16_t in_port;
3575 int error;
3576
3577 if (ofm->flags & htons(OFPFF_CHECK_OVERLAP)) {
3578 struct cls_rule cr;
3579
3580 cls_rule_from_match(&ofm->match, ntohs(ofm->priority),
3581 p->flow_format, ofm->cookie, &cr);
3582 if (classifier_rule_overlaps(&p->cls, &cr)) {
3583 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3584 }
3585 }
3586
3587 rule = rule_create(p, NULL, (const union ofp_action *) ofm->actions,
3588 n_actions, ntohs(ofm->idle_timeout),
3589 ntohs(ofm->hard_timeout), ofm->cookie,
3590 ofm->flags & htons(OFPFF_SEND_FLOW_REM));
3591 cls_rule_from_match(&ofm->match, ntohs(ofm->priority),
3592 p->flow_format, ofm->cookie, &rule->cr);
3593
3594 error = 0;
3595 if (ofm->buffer_id != htonl(UINT32_MAX)) {
3596 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
3597 &packet, &in_port);
3598 } else {
3599 packet = NULL;
3600 in_port = UINT16_MAX;
3601 }
3602
3603 rule_insert(p, rule, packet, in_port);
3604 return error;
3605 }
3606
3607 static struct rule *
3608 find_flow_strict(struct ofproto *p, const struct ofp_flow_mod *ofm)
3609 {
3610 struct cls_rule target;
3611
3612 cls_rule_from_match(&ofm->match, ntohs(ofm->priority),
3613 p->flow_format, ofm->cookie, &target);
3614 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &target));
3615 }
3616
3617 static int
3618 send_buffered_packet(struct ofproto *ofproto, struct ofconn *ofconn,
3619 struct rule *rule, const struct ofp_flow_mod *ofm)
3620 {
3621 struct ofpbuf *packet;
3622 uint16_t in_port;
3623 struct flow flow;
3624 int error;
3625
3626 if (ofm->buffer_id == htonl(UINT32_MAX)) {
3627 return 0;
3628 }
3629
3630 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
3631 &packet, &in_port);
3632 if (error) {
3633 return error;
3634 }
3635
3636 flow_extract(packet, 0, in_port, &flow);
3637 rule_execute(ofproto, rule, packet, &flow);
3638
3639 return 0;
3640 }
3641 \f
3642 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3643
3644 struct modify_flows_cbdata {
3645 struct ofproto *ofproto;
3646 const struct ofp_flow_mod *ofm;
3647 size_t n_actions;
3648 struct rule *match;
3649 };
3650
3651 static int modify_flow(struct ofproto *, const struct ofp_flow_mod *,
3652 size_t n_actions, struct rule *);
3653 static void modify_flows_cb(struct cls_rule *, void *cbdata_);
3654
3655 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3656 * encoded by ofp_mkerr() on failure.
3657 *
3658 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3659 * if any. */
3660 static int
3661 modify_flows_loose(struct ofproto *p, struct ofconn *ofconn,
3662 const struct ofp_flow_mod *ofm, size_t n_actions)
3663 {
3664 struct modify_flows_cbdata cbdata;
3665 struct cls_rule target;
3666
3667 cbdata.ofproto = p;
3668 cbdata.ofm = ofm;
3669 cbdata.n_actions = n_actions;
3670 cbdata.match = NULL;
3671
3672 cls_rule_from_match(&ofm->match, 0, p->flow_format, ofm->cookie, &target);
3673
3674 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3675 modify_flows_cb, &cbdata);
3676 if (cbdata.match) {
3677 /* This credits the packet to whichever flow happened to happened to
3678 * match last. That's weird. Maybe we should do a lookup for the
3679 * flow that actually matches the packet? Who knows. */
3680 send_buffered_packet(p, ofconn, cbdata.match, ofm);
3681 return 0;
3682 } else {
3683 return add_flow(p, ofconn, ofm, n_actions);
3684 }
3685 }
3686
3687 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
3688 * code as encoded by ofp_mkerr() on failure.
3689 *
3690 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3691 * if any. */
3692 static int
3693 modify_flow_strict(struct ofproto *p, struct ofconn *ofconn,
3694 struct ofp_flow_mod *ofm, size_t n_actions)
3695 {
3696 struct rule *rule = find_flow_strict(p, ofm);
3697 if (rule && !rule_is_hidden(rule)) {
3698 modify_flow(p, ofm, n_actions, rule);
3699 return send_buffered_packet(p, ofconn, rule, ofm);
3700 } else {
3701 return add_flow(p, ofconn, ofm, n_actions);
3702 }
3703 }
3704
3705 /* Callback for modify_flows_loose(). */
3706 static void
3707 modify_flows_cb(struct cls_rule *rule_, void *cbdata_)
3708 {
3709 struct rule *rule = rule_from_cls_rule(rule_);
3710 struct modify_flows_cbdata *cbdata = cbdata_;
3711
3712 if (!rule_is_hidden(rule)) {
3713 cbdata->match = rule;
3714 modify_flow(cbdata->ofproto, cbdata->ofm, cbdata->n_actions, rule);
3715 }
3716 }
3717
3718 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
3719 * been identified as a flow in 'p''s flow table to be modified, by changing
3720 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
3721 * ofp_action[] structures). */
3722 static int
3723 modify_flow(struct ofproto *p, const struct ofp_flow_mod *ofm,
3724 size_t n_actions, struct rule *rule)
3725 {
3726 size_t actions_len = n_actions * sizeof *rule->actions;
3727
3728 rule->flow_cookie = ofm->cookie;
3729
3730 /* If the actions are the same, do nothing. */
3731 if (n_actions == rule->n_actions
3732 && (!n_actions || !memcmp(ofm->actions, rule->actions, actions_len)))
3733 {
3734 return 0;
3735 }
3736
3737 /* Replace actions. */
3738 free(rule->actions);
3739 rule->actions = n_actions ? xmemdup(ofm->actions, actions_len) : NULL;
3740 rule->n_actions = n_actions;
3741
3742 /* Make sure that the datapath gets updated properly. */
3743 if (rule->cr.wc.wildcards) {
3744 COVERAGE_INC(ofproto_mod_wc_flow);
3745 p->need_revalidate = true;
3746 } else {
3747 rule_update_actions(p, rule);
3748 }
3749
3750 return 0;
3751 }
3752 \f
3753 /* OFPFC_DELETE implementation. */
3754
3755 struct delete_flows_cbdata {
3756 struct ofproto *ofproto;
3757 ovs_be16 out_port;
3758 };
3759
3760 static void delete_flows_cb(struct cls_rule *, void *cbdata_);
3761 static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
3762
3763 /* Implements OFPFC_DELETE. */
3764 static void
3765 delete_flows_loose(struct ofproto *p, const struct ofp_flow_mod *ofm)
3766 {
3767 struct delete_flows_cbdata cbdata;
3768 struct cls_rule target;
3769
3770 cbdata.ofproto = p;
3771 cbdata.out_port = ofm->out_port;
3772
3773 cls_rule_from_match(&ofm->match, 0, p->flow_format, ofm->cookie, &target);
3774
3775 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3776 delete_flows_cb, &cbdata);
3777 }
3778
3779 /* Implements OFPFC_DELETE_STRICT. */
3780 static void
3781 delete_flow_strict(struct ofproto *p, struct ofp_flow_mod *ofm)
3782 {
3783 struct rule *rule = find_flow_strict(p, ofm);
3784 if (rule) {
3785 delete_flow(p, rule, ofm->out_port);
3786 }
3787 }
3788
3789 /* Callback for delete_flows_loose(). */
3790 static void
3791 delete_flows_cb(struct cls_rule *rule_, void *cbdata_)
3792 {
3793 struct rule *rule = rule_from_cls_rule(rule_);
3794 struct delete_flows_cbdata *cbdata = cbdata_;
3795
3796 delete_flow(cbdata->ofproto, rule, cbdata->out_port);
3797 }
3798
3799 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
3800 * been identified as a flow to delete from 'p''s flow table, by deleting the
3801 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
3802 * controller.
3803 *
3804 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
3805 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
3806 * specified 'out_port'. */
3807 static void
3808 delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
3809 {
3810 if (rule_is_hidden(rule)) {
3811 return;
3812 }
3813
3814 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
3815 return;
3816 }
3817
3818 send_flow_removed(p, rule, time_msec(), OFPRR_DELETE);
3819 rule_remove(p, rule);
3820 }
3821 \f
3822 static int
3823 handle_flow_mod(struct ofproto *p, struct ofconn *ofconn,
3824 struct ofp_flow_mod *ofm)
3825 {
3826 struct ofp_match orig_match;
3827 size_t n_actions;
3828 int error;
3829
3830 error = reject_slave_controller(ofconn, &ofm->header);
3831 if (error) {
3832 return error;
3833 }
3834 error = check_ofp_message_array(&ofm->header, OFPT_FLOW_MOD, sizeof *ofm,
3835 sizeof *ofm->actions, &n_actions);
3836 if (error) {
3837 return error;
3838 }
3839
3840 /* We do not support the emergency flow cache. It will hopefully
3841 * get dropped from OpenFlow in the near future. */
3842 if (ofm->flags & htons(OFPFF_EMERG)) {
3843 /* There isn't a good fit for an error code, so just state that the
3844 * flow table is full. */
3845 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
3846 }
3847
3848 /* Normalize ofp->match. If normalization actually changes anything, then
3849 * log the differences. */
3850 ofm->match.pad1[0] = ofm->match.pad2[0] = 0;
3851 orig_match = ofm->match;
3852 normalize_match(&ofm->match);
3853 if (memcmp(&ofm->match, &orig_match, sizeof orig_match)) {
3854 static struct vlog_rate_limit normal_rl = VLOG_RATE_LIMIT_INIT(1, 1);
3855 if (!VLOG_DROP_INFO(&normal_rl)) {
3856 char *old = ofp_match_to_literal_string(&orig_match);
3857 char *new = ofp_match_to_literal_string(&ofm->match);
3858 VLOG_INFO("%s: normalization changed ofp_match, details:",
3859 rconn_get_name(ofconn->rconn));
3860 VLOG_INFO(" pre: %s", old);
3861 VLOG_INFO("post: %s", new);
3862 free(old);
3863 free(new);
3864 }
3865 }
3866
3867 if (!ofm->match.wildcards) {
3868 ofm->priority = htons(UINT16_MAX);
3869 }
3870
3871 error = validate_actions((const union ofp_action *) ofm->actions,
3872 n_actions, p->max_ports);
3873 if (error) {
3874 return error;
3875 }
3876
3877 switch (ntohs(ofm->command)) {
3878 case OFPFC_ADD:
3879 return add_flow(p, ofconn, ofm, n_actions);
3880
3881 case OFPFC_MODIFY:
3882 return modify_flows_loose(p, ofconn, ofm, n_actions);
3883
3884 case OFPFC_MODIFY_STRICT:
3885 return modify_flow_strict(p, ofconn, ofm, n_actions);
3886
3887 case OFPFC_DELETE:
3888 delete_flows_loose(p, ofm);
3889 return 0;
3890
3891 case OFPFC_DELETE_STRICT:
3892 delete_flow_strict(p, ofm);
3893 return 0;
3894
3895 default:
3896 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
3897 }
3898 }
3899
3900 static int
3901 handle_tun_id_from_cookie(struct ofproto *p, struct nxt_tun_id_cookie *msg)
3902 {
3903 int error;
3904
3905 error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg);
3906 if (error) {
3907 return error;
3908 }
3909
3910 p->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
3911 return 0;
3912 }
3913
3914 static int
3915 handle_role_request(struct ofproto *ofproto,
3916 struct ofconn *ofconn, struct nicira_header *msg)
3917 {
3918 struct nx_role_request *nrr;
3919 struct nx_role_request *reply;
3920 struct ofpbuf *buf;
3921 uint32_t role;
3922
3923 if (ntohs(msg->header.length) != sizeof *nrr) {
3924 VLOG_WARN_RL(&rl, "received role request of length %u (expected %zu)",
3925 ntohs(msg->header.length), sizeof *nrr);
3926 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3927 }
3928 nrr = (struct nx_role_request *) msg;
3929
3930 if (ofconn->type != OFCONN_PRIMARY) {
3931 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
3932 "connection");
3933 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3934 }
3935
3936 role = ntohl(nrr->role);
3937 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
3938 && role != NX_ROLE_SLAVE) {
3939 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
3940
3941 /* There's no good error code for this. */
3942 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
3943 }
3944
3945 if (role == NX_ROLE_MASTER) {
3946 struct ofconn *other;
3947
3948 HMAP_FOR_EACH (other, hmap_node, &ofproto->controllers) {
3949 if (other->role == NX_ROLE_MASTER) {
3950 other->role = NX_ROLE_SLAVE;
3951 }
3952 }
3953 }
3954 ofconn->role = role;
3955
3956 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, msg->header.xid,
3957 &buf);
3958 reply->role = htonl(role);
3959 queue_tx(buf, ofconn, ofconn->reply_counter);
3960
3961 return 0;
3962 }
3963
3964 static int
3965 handle_vendor(struct ofproto *p, struct ofconn *ofconn, void *msg)
3966 {
3967 struct ofp_vendor_header *ovh = msg;
3968 struct nicira_header *nh;
3969
3970 if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) {
3971 VLOG_WARN_RL(&rl, "received vendor message of length %u "
3972 "(expected at least %zu)",
3973 ntohs(ovh->header.length), sizeof(struct ofp_vendor_header));
3974 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3975 }
3976 if (ovh->vendor != htonl(NX_VENDOR_ID)) {
3977 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3978 }
3979 if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) {
3980 VLOG_WARN_RL(&rl, "received Nicira vendor message of length %u "
3981 "(expected at least %zu)",
3982 ntohs(ovh->header.length), sizeof(struct nicira_header));
3983 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3984 }
3985
3986 nh = msg;
3987 switch (ntohl(nh->subtype)) {
3988 case NXT_STATUS_REQUEST:
3989 return switch_status_handle_request(p->switch_status, ofconn->rconn,
3990 msg);
3991
3992 case NXT_TUN_ID_FROM_COOKIE:
3993 return handle_tun_id_from_cookie(p, msg);
3994
3995 case NXT_ROLE_REQUEST:
3996 return handle_role_request(p, ofconn, msg);
3997 }
3998
3999 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
4000 }
4001
4002 static int
4003 handle_barrier_request(struct ofconn *ofconn, struct ofp_header *oh)
4004 {
4005 struct ofp_header *ob;
4006 struct ofpbuf *buf;
4007
4008 /* Currently, everything executes synchronously, so we can just
4009 * immediately send the barrier reply. */
4010 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4011 queue_tx(buf, ofconn, ofconn->reply_counter);
4012 return 0;
4013 }
4014
4015 static void
4016 handle_openflow(struct ofconn *ofconn, struct ofproto *p,
4017 struct ofpbuf *ofp_msg)
4018 {
4019 struct ofp_header *oh = ofp_msg->data;
4020 int error;
4021
4022 COVERAGE_INC(ofproto_recv_openflow);
4023 switch (oh->type) {
4024 case OFPT_ECHO_REQUEST:
4025 error = handle_echo_request(ofconn, oh);
4026 break;
4027
4028 case OFPT_ECHO_REPLY:
4029 error = 0;
4030 break;
4031
4032 case OFPT_FEATURES_REQUEST:
4033 error = handle_features_request(p, ofconn, oh);
4034 break;
4035
4036 case OFPT_GET_CONFIG_REQUEST:
4037 error = handle_get_config_request(p, ofconn, oh);
4038 break;
4039
4040 case OFPT_SET_CONFIG:
4041 error = handle_set_config(p, ofconn, ofp_msg->data);
4042 break;
4043
4044 case OFPT_PACKET_OUT:
4045 error = handle_packet_out(p, ofconn, ofp_msg->data);
4046 break;
4047
4048 case OFPT_PORT_MOD:
4049 error = handle_port_mod(p, ofconn, oh);
4050 break;
4051
4052 case OFPT_FLOW_MOD:
4053 error = handle_flow_mod(p, ofconn, ofp_msg->data);
4054 break;
4055
4056 case OFPT_STATS_REQUEST:
4057 error = handle_stats_request(p, ofconn, oh);
4058 break;
4059
4060 case OFPT_VENDOR:
4061 error = handle_vendor(p, ofconn, ofp_msg->data);
4062 break;
4063
4064 case OFPT_BARRIER_REQUEST:
4065 error = handle_barrier_request(ofconn, oh);
4066 break;
4067
4068 default:
4069 if (VLOG_IS_WARN_ENABLED()) {
4070 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4071 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4072 free(s);
4073 }
4074 error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4075 break;
4076 }
4077
4078 if (error) {
4079 send_error_oh(ofconn, ofp_msg->data, error);
4080 }
4081 }
4082 \f
4083 static void
4084 handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet)
4085 {
4086 struct odp_msg *msg = packet->data;
4087 struct rule *rule;
4088 struct ofpbuf payload;
4089 struct flow flow;
4090
4091 payload.data = msg + 1;
4092 payload.size = msg->length - sizeof *msg;
4093 flow_extract(&payload, msg->arg, msg->port, &flow);
4094
4095 /* Check with in-band control to see if this packet should be sent
4096 * to the local port regardless of the flow table. */
4097 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
4098 union odp_action action;
4099
4100 memset(&action, 0, sizeof(action));
4101 action.output.type = ODPAT_OUTPUT;
4102 action.output.port = ODPP_LOCAL;
4103 dpif_execute(p->dpif, &action, 1, &payload);
4104 }
4105
4106 rule = lookup_valid_rule(p, &flow);
4107 if (!rule) {
4108 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4109 struct ofport *port = get_port(p, msg->port);
4110 if (port) {
4111 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4112 COVERAGE_INC(ofproto_no_packet_in);
4113 /* XXX install 'drop' flow entry */
4114 ofpbuf_delete(packet);
4115 return;
4116 }
4117 } else {
4118 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port);
4119 }
4120
4121 COVERAGE_INC(ofproto_packet_in);
4122 send_packet_in(p, packet);
4123 return;
4124 }
4125
4126 if (rule->cr.wc.wildcards) {
4127 rule = rule_create_subrule(p, rule, &flow);
4128 rule_make_actions(p, rule, packet);
4129 } else {
4130 if (!rule->may_install) {
4131 /* The rule is not installable, that is, we need to process every
4132 * packet, so process the current packet and set its actions into
4133 * 'subrule'. */
4134 rule_make_actions(p, rule, packet);
4135 } else {
4136 /* XXX revalidate rule if it needs it */
4137 }
4138 }
4139
4140 if (rule->super && rule->super->cr.priority == FAIL_OPEN_PRIORITY) {
4141 /*
4142 * Extra-special case for fail-open mode.
4143 *
4144 * We are in fail-open mode and the packet matched the fail-open rule,
4145 * but we are connected to a controller too. We should send the packet
4146 * up to the controller in the hope that it will try to set up a flow
4147 * and thereby allow us to exit fail-open.
4148 *
4149 * See the top-level comment in fail-open.c for more information.
4150 */
4151 send_packet_in(p, ofpbuf_clone_with_headroom(packet,
4152 DPIF_RECV_MSG_PADDING));
4153 }
4154
4155 ofpbuf_pull(packet, sizeof *msg);
4156 rule_execute(p, rule, packet, &flow);
4157 rule_reinstall(p, rule);
4158 }
4159
4160 static void
4161 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
4162 {
4163 struct odp_msg *msg = packet->data;
4164
4165 switch (msg->type) {
4166 case _ODPL_ACTION_NR:
4167 COVERAGE_INC(ofproto_ctlr_action);
4168 send_packet_in(p, packet);
4169 break;
4170
4171 case _ODPL_SFLOW_NR:
4172 if (p->sflow) {
4173 ofproto_sflow_received(p->sflow, msg);
4174 }
4175 ofpbuf_delete(packet);
4176 break;
4177
4178 case _ODPL_MISS_NR:
4179 handle_odp_miss_msg(p, packet);
4180 break;
4181
4182 default:
4183 VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32,
4184 msg->type);
4185 break;
4186 }
4187 }
4188 \f
4189 /* Flow expiration. */
4190
4191 struct expire_cbdata {
4192 struct ofproto *ofproto;
4193 int dp_max_idle;
4194 };
4195
4196 static int ofproto_dp_max_idle(const struct ofproto *);
4197 static void ofproto_update_used(struct ofproto *);
4198 static void rule_expire(struct cls_rule *, void *cbdata);
4199
4200 /* This function is called periodically by ofproto_run(). Its job is to
4201 * collect updates for the flows that have been installed into the datapath,
4202 * most importantly when they last were used, and then use that information to
4203 * expire flows that have not been used recently.
4204 *
4205 * Returns the number of milliseconds after which it should be called again. */
4206 static int
4207 ofproto_expire(struct ofproto *ofproto)
4208 {
4209 struct expire_cbdata cbdata;
4210
4211 /* Update 'used' for each flow in the datapath. */
4212 ofproto_update_used(ofproto);
4213
4214 /* Expire idle flows.
4215 *
4216 * A wildcarded flow is idle only when all of its subrules have expired due
4217 * to becoming idle, so iterate through the exact-match flows first. */
4218 cbdata.ofproto = ofproto;
4219 cbdata.dp_max_idle = ofproto_dp_max_idle(ofproto);
4220 classifier_for_each(&ofproto->cls, CLS_INC_EXACT, rule_expire, &cbdata);
4221 classifier_for_each(&ofproto->cls, CLS_INC_WILD, rule_expire, &cbdata);
4222
4223 /* Let the hook know that we're at a stable point: all outstanding data
4224 * in existing flows has been accounted to the account_cb. Thus, the
4225 * hook can now reasonably do operations that depend on having accurate
4226 * flow volume accounting (currently, that's just bond rebalancing). */
4227 if (ofproto->ofhooks->account_checkpoint_cb) {
4228 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4229 }
4230
4231 return MIN(cbdata.dp_max_idle, 1000);
4232 }
4233
4234 /* Update 'used' member of each flow currently installed into the datapath. */
4235 static void
4236 ofproto_update_used(struct ofproto *p)
4237 {
4238 struct odp_flow *flows;
4239 size_t n_flows;
4240 size_t i;
4241 int error;
4242
4243 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
4244 if (error) {
4245 return;
4246 }
4247
4248 for (i = 0; i < n_flows; i++) {
4249 struct odp_flow *f = &flows[i];
4250 struct cls_rule target;
4251 struct rule *rule;
4252 struct flow flow;
4253
4254 odp_flow_key_to_flow(&f->key, &flow);
4255 cls_rule_from_flow(&flow, 0, UINT16_MAX, &target);
4256
4257 rule = rule_from_cls_rule(classifier_find_rule_exactly(&p->cls,
4258 &target));
4259
4260 if (rule && rule->installed) {
4261 update_time(p, rule, &f->stats);
4262 rule_account(p, rule, f->stats.n_bytes);
4263 } else {
4264 /* There's a flow in the datapath that we know nothing about.
4265 * Delete it. */
4266 COVERAGE_INC(ofproto_unexpected_rule);
4267 dpif_flow_del(p->dpif, f);
4268 }
4269
4270 }
4271 free(flows);
4272 }
4273
4274 /* Calculates and returns the number of milliseconds of idle time after which
4275 * flows should expire from the datapath and we should fold their statistics
4276 * into their parent rules in userspace. */
4277 static int
4278 ofproto_dp_max_idle(const struct ofproto *ofproto)
4279 {
4280 /*
4281 * Idle time histogram.
4282 *
4283 * Most of the time a switch has a relatively small number of flows. When
4284 * this is the case we might as well keep statistics for all of them in
4285 * userspace and to cache them in the kernel datapath for performance as
4286 * well.
4287 *
4288 * As the number of flows increases, the memory required to maintain
4289 * statistics about them in userspace and in the kernel becomes
4290 * significant. However, with a large number of flows it is likely that
4291 * only a few of them are "heavy hitters" that consume a large amount of
4292 * bandwidth. At this point, only heavy hitters are worth caching in the
4293 * kernel and maintaining in userspaces; other flows we can discard.
4294 *
4295 * The technique used to compute the idle time is to build a histogram with
4296 * N_BUCKETS bucket whose width is BUCKET_WIDTH msecs each. Each flow that
4297 * is installed in the kernel gets dropped in the appropriate bucket.
4298 * After the histogram has been built, we compute the cutoff so that only
4299 * the most-recently-used 1% of flows (but at least 1000 flows) are kept
4300 * cached. At least the most-recently-used bucket of flows is kept, so
4301 * actually an arbitrary number of flows can be kept in any given
4302 * expiration run (though the next run will delete most of those unless
4303 * they receive additional data).
4304 *
4305 * This requires a second pass through the exact-match flows, in addition
4306 * to the pass made by ofproto_update_used(), because the former function
4307 * never looks at uninstallable flows.
4308 */
4309 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4310 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4311 int buckets[N_BUCKETS] = { 0 };
4312 int total, bucket;
4313 struct rule *rule;
4314 long long int now;
4315 int i;
4316
4317 total = classifier_count_exact(&ofproto->cls);
4318 if (total <= 1000) {
4319 return N_BUCKETS * BUCKET_WIDTH;
4320 }
4321
4322 /* Build histogram. */
4323 now = time_msec();
4324 CLASSIFIER_FOR_EACH_EXACT_RULE (rule, cr, &ofproto->cls) {
4325 long long int idle = now - rule->used;
4326 int bucket = (idle <= 0 ? 0
4327 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4328 : (unsigned int) idle / BUCKET_WIDTH);
4329 buckets[bucket]++;
4330 }
4331
4332 /* Find the first bucket whose flows should be expired. */
4333 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4334 if (buckets[bucket]) {
4335 int subtotal = 0;
4336 do {
4337 subtotal += buckets[bucket++];
4338 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4339 break;
4340 }
4341 }
4342
4343 if (VLOG_IS_DBG_ENABLED()) {
4344 struct ds s;
4345
4346 ds_init(&s);
4347 ds_put_cstr(&s, "keep");
4348 for (i = 0; i < N_BUCKETS; i++) {
4349 if (i == bucket) {
4350 ds_put_cstr(&s, ", drop");
4351 }
4352 if (buckets[i]) {
4353 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4354 }
4355 }
4356 VLOG_INFO("%s: %s (msec:count)",
4357 dpif_name(ofproto->dpif), ds_cstr(&s));
4358 ds_destroy(&s);
4359 }
4360
4361 return bucket * BUCKET_WIDTH;
4362 }
4363
4364 static void
4365 rule_active_timeout(struct ofproto *ofproto, struct rule *rule)
4366 {
4367 if (ofproto->netflow && !is_controller_rule(rule) &&
4368 netflow_active_timeout_expired(ofproto->netflow, &rule->nf_flow)) {
4369 struct ofexpired expired;
4370 struct odp_flow odp_flow;
4371
4372 /* Get updated flow stats.
4373 *
4374 * XXX We could avoid this call entirely if (1) ofproto_update_used()
4375 * updated TCP flags and (2) the dpif_flow_list_all() in
4376 * ofproto_update_used() zeroed TCP flags. */
4377 memset(&odp_flow, 0, sizeof odp_flow);
4378 if (rule->installed) {
4379 odp_flow_key_from_flow(&odp_flow.key, &rule->cr.flow);
4380 odp_flow.flags = ODPFF_ZERO_TCP_FLAGS;
4381 dpif_flow_get(ofproto->dpif, &odp_flow);
4382
4383 if (odp_flow.stats.n_packets) {
4384 update_time(ofproto, rule, &odp_flow.stats);
4385 netflow_flow_update_flags(&rule->nf_flow,
4386 odp_flow.stats.tcp_flags);
4387 }
4388 }
4389
4390 expired.flow = rule->cr.flow;
4391 expired.packet_count = rule->packet_count +
4392 odp_flow.stats.n_packets;
4393 expired.byte_count = rule->byte_count + odp_flow.stats.n_bytes;
4394 expired.used = rule->used;
4395
4396 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
4397 }
4398 }
4399
4400 /* If 'cls_rule' is an OpenFlow rule, that has expired according to OpenFlow
4401 * rules, then delete it entirely.
4402 *
4403 * If 'cls_rule' is a subrule, that has not been used recently, remove it from
4404 * the datapath and fold its statistics back into its super-rule.
4405 *
4406 * (This is a callback function for classifier_for_each().) */
4407 static void
4408 rule_expire(struct cls_rule *cls_rule, void *cbdata_)
4409 {
4410 struct expire_cbdata *cbdata = cbdata_;
4411 struct ofproto *ofproto = cbdata->ofproto;
4412 struct rule *rule = rule_from_cls_rule(cls_rule);
4413 long long int hard_expire, idle_expire, expire, now;
4414
4415 /* Calculate OpenFlow expiration times for 'rule'. */
4416 hard_expire = (rule->hard_timeout
4417 ? rule->created + rule->hard_timeout * 1000
4418 : LLONG_MAX);
4419 idle_expire = (rule->idle_timeout
4420 && (rule->super || list_is_empty(&rule->list))
4421 ? rule->used + rule->idle_timeout * 1000
4422 : LLONG_MAX);
4423 expire = MIN(hard_expire, idle_expire);
4424
4425 now = time_msec();
4426 if (now < expire) {
4427 /* 'rule' has not expired according to OpenFlow rules. */
4428 if (!rule->cr.wc.wildcards) {
4429 if (now >= rule->used + cbdata->dp_max_idle) {
4430 /* This rule is idle, so drop it to free up resources. */
4431 if (rule->super) {
4432 /* It's not part of the OpenFlow flow table, so we can
4433 * delete it entirely and fold its statistics into its
4434 * super-rule. */
4435 rule_remove(ofproto, rule);
4436 } else {
4437 /* It is part of the OpenFlow flow table, so we have to
4438 * keep the rule but we can at least uninstall it from the
4439 * datapath. */
4440 rule_uninstall(ofproto, rule);
4441 }
4442 } else {
4443 /* Send NetFlow active timeout if appropriate. */
4444 rule_active_timeout(cbdata->ofproto, rule);
4445 }
4446 }
4447 } else {
4448 /* 'rule' has expired according to OpenFlow rules. */
4449 COVERAGE_INC(ofproto_expired);
4450
4451 /* Update stats. (This is a no-op if the rule expired due to an idle
4452 * timeout, because that only happens when the rule has no subrules
4453 * left.) */
4454 if (rule->cr.wc.wildcards) {
4455 struct rule *subrule, *next;
4456 LIST_FOR_EACH_SAFE (subrule, next, list, &rule->list) {
4457 rule_remove(cbdata->ofproto, subrule);
4458 }
4459 } else {
4460 rule_uninstall(cbdata->ofproto, rule);
4461 }
4462
4463 /* Get rid of the rule. */
4464 if (!rule_is_hidden(rule)) {
4465 send_flow_removed(cbdata->ofproto, rule, now,
4466 (now >= hard_expire
4467 ? OFPRR_HARD_TIMEOUT : OFPRR_IDLE_TIMEOUT));
4468 }
4469 rule_remove(cbdata->ofproto, rule);
4470 }
4471 }
4472 \f
4473 static void
4474 revalidate_cb(struct cls_rule *sub_, void *cbdata_)
4475 {
4476 struct rule *sub = rule_from_cls_rule(sub_);
4477 struct revalidate_cbdata *cbdata = cbdata_;
4478
4479 if (cbdata->revalidate_all
4480 || (cbdata->revalidate_subrules && sub->super)
4481 || (tag_set_intersects(&cbdata->revalidate_set, sub->tags))) {
4482 revalidate_rule(cbdata->ofproto, sub);
4483 }
4484 }
4485
4486 static bool
4487 revalidate_rule(struct ofproto *p, struct rule *rule)
4488 {
4489 const struct flow *flow = &rule->cr.flow;
4490
4491 COVERAGE_INC(ofproto_revalidate_rule);
4492 if (rule->super) {
4493 struct rule *super;
4494 super = rule_from_cls_rule(classifier_lookup(&p->cls, flow,
4495 CLS_INC_WILD));
4496 if (!super) {
4497 rule_remove(p, rule);
4498 return false;
4499 } else if (super != rule->super) {
4500 COVERAGE_INC(ofproto_revalidate_moved);
4501 list_remove(&rule->list);
4502 list_push_back(&super->list, &rule->list);
4503 rule->super = super;
4504 rule->hard_timeout = super->hard_timeout;
4505 rule->idle_timeout = super->idle_timeout;
4506 rule->created = super->created;
4507 rule->used = 0;
4508 }
4509 }
4510
4511 rule_update_actions(p, rule);
4512 return true;
4513 }
4514
4515 static struct ofpbuf *
4516 compose_flow_removed(struct ofproto *p, const struct rule *rule,
4517 long long int now, uint8_t reason)
4518 {
4519 struct ofp_flow_removed *ofr;
4520 struct ofpbuf *buf;
4521 long long int tdiff = now - rule->created;
4522 uint32_t sec = tdiff / 1000;
4523 uint32_t msec = tdiff - (sec * 1000);
4524
4525 ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf);
4526 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, p->flow_format,
4527 &ofr->match);
4528 ofr->cookie = rule->flow_cookie;
4529 ofr->priority = htons(rule->cr.priority);
4530 ofr->reason = reason;
4531 ofr->duration_sec = htonl(sec);
4532 ofr->duration_nsec = htonl(msec * 1000000);
4533 ofr->idle_timeout = htons(rule->idle_timeout);
4534 ofr->packet_count = htonll(rule->packet_count);
4535 ofr->byte_count = htonll(rule->byte_count);
4536
4537 return buf;
4538 }
4539
4540 static void
4541 send_flow_removed(struct ofproto *p, struct rule *rule,
4542 long long int now, uint8_t reason)
4543 {
4544 struct ofconn *ofconn;
4545
4546 if (!rule->send_flow_removed) {
4547 return;
4548 }
4549
4550 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4551 struct ofpbuf *msg;
4552
4553 if (!rconn_is_connected(ofconn->rconn)
4554 || !ofconn_receives_async_msgs(ofconn)) {
4555 continue;
4556 }
4557
4558 msg = compose_flow_removed(p, rule, now, reason);
4559
4560 /* Account flow expirations under ofconn->reply_counter, the counter
4561 * for replies to OpenFlow requests. That works because preventing
4562 * OpenFlow requests from being processed also prevents new flows from
4563 * being added (and expiring). (It also prevents processing OpenFlow
4564 * requests that would not add new flows, so it is imperfect.) */
4565 queue_tx(msg, ofconn, ofconn->reply_counter);
4566 }
4567 }
4568
4569 /* pinsched callback for sending 'packet' on 'ofconn'. */
4570 static void
4571 do_send_packet_in(struct ofpbuf *packet, void *ofconn_)
4572 {
4573 struct ofconn *ofconn = ofconn_;
4574
4575 rconn_send_with_limit(ofconn->rconn, packet,
4576 ofconn->packet_in_counter, 100);
4577 }
4578
4579 /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and
4580 * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s
4581 * packet scheduler for sending.
4582 *
4583 * 'max_len' specifies the maximum number of bytes of the packet to send on
4584 * 'ofconn' (INT_MAX specifies no limit).
4585 *
4586 * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise,
4587 * ownership is transferred to this function. */
4588 static void
4589 schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len,
4590 bool clone)
4591 {
4592 struct ofproto *ofproto = ofconn->ofproto;
4593 struct ofp_packet_in *opi = packet->data;
4594 uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port));
4595 int send_len, trim_size;
4596 uint32_t buffer_id;
4597
4598 /* Get buffer. */
4599 if (opi->reason == OFPR_ACTION) {
4600 buffer_id = UINT32_MAX;
4601 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4602 buffer_id = pktbuf_get_null();
4603 } else if (!ofconn->pktbuf) {
4604 buffer_id = UINT32_MAX;
4605 } else {
4606 struct ofpbuf payload;
4607 payload.data = opi->data;
4608 payload.size = packet->size - offsetof(struct ofp_packet_in, data);
4609 buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port);
4610 }
4611
4612 /* Figure out how much of the packet to send. */
4613 send_len = ntohs(opi->total_len);
4614 if (buffer_id != UINT32_MAX) {
4615 send_len = MIN(send_len, ofconn->miss_send_len);
4616 }
4617 send_len = MIN(send_len, max_len);
4618
4619 /* Adjust packet length and clone if necessary. */
4620 trim_size = offsetof(struct ofp_packet_in, data) + send_len;
4621 if (clone) {
4622 packet = ofpbuf_clone_data(packet->data, trim_size);
4623 opi = packet->data;
4624 } else {
4625 packet->size = trim_size;
4626 }
4627
4628 /* Update packet headers. */
4629 opi->buffer_id = htonl(buffer_id);
4630 update_openflow_length(packet);
4631
4632 /* Hand over to packet scheduler. It might immediately call into
4633 * do_send_packet_in() or it might buffer it for a while (until a later
4634 * call to pinsched_run()). */
4635 pinsched_send(ofconn->schedulers[opi->reason], in_port,
4636 packet, do_send_packet_in, ofconn);
4637 }
4638
4639 /* Replace struct odp_msg header in 'packet' by equivalent struct
4640 * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as
4641 * returned by dpif_recv()).
4642 *
4643 * The conversion is not complete: the caller still needs to trim any unneeded
4644 * payload off the end of the buffer, set the length in the OpenFlow header,
4645 * and set buffer_id. Those require us to know the controller settings and so
4646 * must be done on a per-controller basis.
4647 *
4648 * Returns the maximum number of bytes of the packet that should be sent to
4649 * the controller (INT_MAX if no limit). */
4650 static int
4651 do_convert_to_packet_in(struct ofpbuf *packet)
4652 {
4653 struct odp_msg *msg = packet->data;
4654 struct ofp_packet_in *opi;
4655 uint8_t reason;
4656 uint16_t total_len;
4657 uint16_t in_port;
4658 int max_len;
4659
4660 /* Extract relevant header fields */
4661 if (msg->type == _ODPL_ACTION_NR) {
4662 reason = OFPR_ACTION;
4663 max_len = msg->arg;
4664 } else {
4665 reason = OFPR_NO_MATCH;
4666 max_len = INT_MAX;
4667 }
4668 total_len = msg->length - sizeof *msg;
4669 in_port = odp_port_to_ofp_port(msg->port);
4670
4671 /* Repurpose packet buffer by overwriting header. */
4672 ofpbuf_pull(packet, sizeof(struct odp_msg));
4673 opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data));
4674 opi->header.version = OFP_VERSION;
4675 opi->header.type = OFPT_PACKET_IN;
4676 opi->total_len = htons(total_len);
4677 opi->in_port = htons(in_port);
4678 opi->reason = reason;
4679
4680 return max_len;
4681 }
4682
4683 /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or
4684 * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller
4685 * as necessary according to their individual configurations.
4686 *
4687 * 'packet' must have sufficient headroom to convert it into a struct
4688 * ofp_packet_in (e.g. as returned by dpif_recv()).
4689 *
4690 * Takes ownership of 'packet'. */
4691 static void
4692 send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet)
4693 {
4694 struct ofconn *ofconn, *prev;
4695 int max_len;
4696
4697 max_len = do_convert_to_packet_in(packet);
4698
4699 prev = NULL;
4700 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
4701 if (ofconn_receives_async_msgs(ofconn)) {
4702 if (prev) {
4703 schedule_packet_in(prev, packet, max_len, true);
4704 }
4705 prev = ofconn;
4706 }
4707 }
4708 if (prev) {
4709 schedule_packet_in(prev, packet, max_len, false);
4710 } else {
4711 ofpbuf_delete(packet);
4712 }
4713 }
4714
4715 static uint64_t
4716 pick_datapath_id(const struct ofproto *ofproto)
4717 {
4718 const struct ofport *port;
4719
4720 port = get_port(ofproto, ODPP_LOCAL);
4721 if (port) {
4722 uint8_t ea[ETH_ADDR_LEN];
4723 int error;
4724
4725 error = netdev_get_etheraddr(port->netdev, ea);
4726 if (!error) {
4727 return eth_addr_to_uint64(ea);
4728 }
4729 VLOG_WARN("could not get MAC address for %s (%s)",
4730 netdev_get_name(port->netdev), strerror(error));
4731 }
4732 return ofproto->fallback_dpid;
4733 }
4734
4735 static uint64_t
4736 pick_fallback_dpid(void)
4737 {
4738 uint8_t ea[ETH_ADDR_LEN];
4739 eth_addr_nicira_random(ea);
4740 return eth_addr_to_uint64(ea);
4741 }
4742 \f
4743 static bool
4744 default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
4745 struct odp_actions *actions, tag_type *tags,
4746 uint16_t *nf_output_iface, void *ofproto_)
4747 {
4748 struct ofproto *ofproto = ofproto_;
4749 int out_port;
4750
4751 /* Drop frames for reserved multicast addresses. */
4752 if (eth_addr_is_reserved(flow->dl_dst)) {
4753 return true;
4754 }
4755
4756 /* Learn source MAC (but don't try to learn from revalidation). */
4757 if (packet != NULL) {
4758 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
4759 0, flow->in_port,
4760 GRAT_ARP_LOCK_NONE);
4761 if (rev_tag) {
4762 /* The log messages here could actually be useful in debugging,
4763 * so keep the rate limit relatively high. */
4764 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
4765 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
4766 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
4767 ofproto_revalidate(ofproto, rev_tag);
4768 }
4769 }
4770
4771 /* Determine output port. */
4772 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
4773 NULL);
4774 if (out_port < 0) {
4775 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
4776 nf_output_iface, actions);
4777 } else if (out_port != flow->in_port) {
4778 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
4779 *nf_output_iface = out_port;
4780 } else {
4781 /* Drop. */
4782 }
4783
4784 return true;
4785 }
4786
4787 static const struct ofhooks default_ofhooks = {
4788 default_normal_ofhook_cb,
4789 NULL,
4790 NULL
4791 };