]> git.proxmox.com Git - mirror_qemu.git/blob - op-i386.c
added vm86.c
[mirror_qemu.git] / op-i386.c
1 /*
2 * i386 micro operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec-i386.h"
21
22 /* NOTE: data are not static to force relocation generation by GCC */
23
24 uint8_t parity_table[256] = {
25 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
26 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
27 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
28 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
29 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
30 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
31 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
32 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
33 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
34 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
35 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
36 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
37 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
38 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
39 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
40 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
41 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
42 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
43 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
44 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
45 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
46 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
47 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
48 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
49 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
50 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
51 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
54 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
55 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
56 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
57 };
58
59 /* modulo 17 table */
60 const uint8_t rclw_table[32] = {
61 0, 1, 2, 3, 4, 5, 6, 7,
62 8, 9,10,11,12,13,14,15,
63 16, 0, 1, 2, 3, 4, 5, 6,
64 7, 8, 9,10,11,12,13,14,
65 };
66
67 /* modulo 9 table */
68 const uint8_t rclb_table[32] = {
69 0, 1, 2, 3, 4, 5, 6, 7,
70 8, 0, 1, 2, 3, 4, 5, 6,
71 7, 8, 0, 1, 2, 3, 4, 5,
72 6, 7, 8, 0, 1, 2, 3, 4,
73 };
74
75 #ifdef USE_X86LDOUBLE
76 /* an array of Intel 80-bit FP constants, to be loaded via integer ops */
77 typedef unsigned short f15ld[5];
78 const f15ld f15rk[] =
79 {
80 /*0*/ {0x0000,0x0000,0x0000,0x0000,0x0000},
81 /*1*/ {0x0000,0x0000,0x0000,0x8000,0x3fff},
82 /*pi*/ {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
83 /*lg2*/ {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
84 /*ln2*/ {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
85 /*l2e*/ {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
86 /*l2t*/ {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
87 };
88 #else
89 /* the same, 64-bit version */
90 typedef unsigned short f15ld[4];
91 const f15ld f15rk[] =
92 {
93 #ifndef WORDS_BIGENDIAN
94 /*0*/ {0x0000,0x0000,0x0000,0x0000},
95 /*1*/ {0x0000,0x0000,0x0000,0x3ff0},
96 /*pi*/ {0x2d18,0x5444,0x21fb,0x4009},
97 /*lg2*/ {0x79ff,0x509f,0x4413,0x3fd3},
98 /*ln2*/ {0x39ef,0xfefa,0x2e42,0x3fe6},
99 /*l2e*/ {0x82fe,0x652b,0x1547,0x3ff7},
100 /*l2t*/ {0xa371,0x0979,0x934f,0x400a}
101 #else
102 /*0*/ {0x0000,0x0000,0x0000,0x0000},
103 /*1*/ {0x3ff0,0x0000,0x0000,0x0000},
104 /*pi*/ {0x4009,0x21fb,0x5444,0x2d18},
105 /*lg2*/ {0x3fd3,0x4413,0x509f,0x79ff},
106 /*ln2*/ {0x3fe6,0x2e42,0xfefa,0x39ef},
107 /*l2e*/ {0x3ff7,0x1547,0x652b,0x82fe},
108 /*l2t*/ {0x400a,0x934f,0x0979,0xa371}
109 #endif
110 };
111 #endif
112
113 /* n must be a constant to be efficient */
114 static inline int lshift(int x, int n)
115 {
116 if (n >= 0)
117 return x << n;
118 else
119 return x >> (-n);
120 }
121
122 /* we define the various pieces of code used by the JIT */
123
124 #define REG EAX
125 #define REGNAME _EAX
126 #include "opreg_template.h"
127 #undef REG
128 #undef REGNAME
129
130 #define REG ECX
131 #define REGNAME _ECX
132 #include "opreg_template.h"
133 #undef REG
134 #undef REGNAME
135
136 #define REG EDX
137 #define REGNAME _EDX
138 #include "opreg_template.h"
139 #undef REG
140 #undef REGNAME
141
142 #define REG EBX
143 #define REGNAME _EBX
144 #include "opreg_template.h"
145 #undef REG
146 #undef REGNAME
147
148 #define REG ESP
149 #define REGNAME _ESP
150 #include "opreg_template.h"
151 #undef REG
152 #undef REGNAME
153
154 #define REG EBP
155 #define REGNAME _EBP
156 #include "opreg_template.h"
157 #undef REG
158 #undef REGNAME
159
160 #define REG ESI
161 #define REGNAME _ESI
162 #include "opreg_template.h"
163 #undef REG
164 #undef REGNAME
165
166 #define REG EDI
167 #define REGNAME _EDI
168 #include "opreg_template.h"
169 #undef REG
170 #undef REGNAME
171
172 /* operations with flags */
173
174 void OPPROTO op_addl_T0_T1_cc(void)
175 {
176 CC_SRC = T0;
177 T0 += T1;
178 CC_DST = T0;
179 }
180
181 void OPPROTO op_orl_T0_T1_cc(void)
182 {
183 T0 |= T1;
184 CC_DST = T0;
185 }
186
187 void OPPROTO op_andl_T0_T1_cc(void)
188 {
189 T0 &= T1;
190 CC_DST = T0;
191 }
192
193 void OPPROTO op_subl_T0_T1_cc(void)
194 {
195 CC_SRC = T0;
196 T0 -= T1;
197 CC_DST = T0;
198 }
199
200 void OPPROTO op_xorl_T0_T1_cc(void)
201 {
202 T0 ^= T1;
203 CC_DST = T0;
204 }
205
206 void OPPROTO op_cmpl_T0_T1_cc(void)
207 {
208 CC_SRC = T0;
209 CC_DST = T0 - T1;
210 }
211
212 void OPPROTO op_negl_T0_cc(void)
213 {
214 CC_SRC = 0;
215 T0 = -T0;
216 CC_DST = T0;
217 }
218
219 void OPPROTO op_incl_T0_cc(void)
220 {
221 CC_SRC = cc_table[CC_OP].compute_c();
222 T0++;
223 CC_DST = T0;
224 }
225
226 void OPPROTO op_decl_T0_cc(void)
227 {
228 CC_SRC = cc_table[CC_OP].compute_c();
229 T0--;
230 CC_DST = T0;
231 }
232
233 void OPPROTO op_testl_T0_T1_cc(void)
234 {
235 CC_DST = T0 & T1;
236 }
237
238 /* operations without flags */
239
240 void OPPROTO op_addl_T0_T1(void)
241 {
242 T0 += T1;
243 }
244
245 void OPPROTO op_orl_T0_T1(void)
246 {
247 T0 |= T1;
248 }
249
250 void OPPROTO op_andl_T0_T1(void)
251 {
252 T0 &= T1;
253 }
254
255 void OPPROTO op_subl_T0_T1(void)
256 {
257 T0 -= T1;
258 }
259
260 void OPPROTO op_xorl_T0_T1(void)
261 {
262 T0 ^= T1;
263 }
264
265 void OPPROTO op_negl_T0(void)
266 {
267 T0 = -T0;
268 }
269
270 void OPPROTO op_incl_T0(void)
271 {
272 T0++;
273 }
274
275 void OPPROTO op_decl_T0(void)
276 {
277 T0--;
278 }
279
280 void OPPROTO op_notl_T0(void)
281 {
282 T0 = ~T0;
283 }
284
285 void OPPROTO op_bswapl_T0(void)
286 {
287 T0 = bswap32(T0);
288 }
289
290 /* multiply/divide */
291 void OPPROTO op_mulb_AL_T0(void)
292 {
293 unsigned int res;
294 res = (uint8_t)EAX * (uint8_t)T0;
295 EAX = (EAX & 0xffff0000) | res;
296 CC_SRC = (res & 0xff00);
297 }
298
299 void OPPROTO op_imulb_AL_T0(void)
300 {
301 int res;
302 res = (int8_t)EAX * (int8_t)T0;
303 EAX = (EAX & 0xffff0000) | (res & 0xffff);
304 CC_SRC = (res != (int8_t)res);
305 }
306
307 void OPPROTO op_mulw_AX_T0(void)
308 {
309 unsigned int res;
310 res = (uint16_t)EAX * (uint16_t)T0;
311 EAX = (EAX & 0xffff0000) | (res & 0xffff);
312 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
313 CC_SRC = res >> 16;
314 }
315
316 void OPPROTO op_imulw_AX_T0(void)
317 {
318 int res;
319 res = (int16_t)EAX * (int16_t)T0;
320 EAX = (EAX & 0xffff0000) | (res & 0xffff);
321 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
322 CC_SRC = (res != (int16_t)res);
323 }
324
325 void OPPROTO op_mull_EAX_T0(void)
326 {
327 uint64_t res;
328 res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
329 EAX = res;
330 EDX = res >> 32;
331 CC_SRC = res >> 32;
332 }
333
334 void OPPROTO op_imull_EAX_T0(void)
335 {
336 int64_t res;
337 res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
338 EAX = res;
339 EDX = res >> 32;
340 CC_SRC = (res != (int32_t)res);
341 }
342
343 void OPPROTO op_imulw_T0_T1(void)
344 {
345 int res;
346 res = (int16_t)T0 * (int16_t)T1;
347 T0 = res;
348 CC_SRC = (res != (int16_t)res);
349 }
350
351 void OPPROTO op_imull_T0_T1(void)
352 {
353 int64_t res;
354 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
355 T0 = res;
356 CC_SRC = (res != (int32_t)res);
357 }
358
359 /* division, flags are undefined */
360 /* XXX: add exceptions for overflow */
361 void OPPROTO op_divb_AL_T0(void)
362 {
363 unsigned int num, den, q, r;
364
365 num = (EAX & 0xffff);
366 den = (T0 & 0xff);
367 if (den == 0)
368 raise_exception(EXCP00_DIVZ);
369 q = (num / den) & 0xff;
370 r = (num % den) & 0xff;
371 EAX = (EAX & 0xffff0000) | (r << 8) | q;
372 }
373
374 void OPPROTO op_idivb_AL_T0(void)
375 {
376 int num, den, q, r;
377
378 num = (int16_t)EAX;
379 den = (int8_t)T0;
380 if (den == 0)
381 raise_exception(EXCP00_DIVZ);
382 q = (num / den) & 0xff;
383 r = (num % den) & 0xff;
384 EAX = (EAX & 0xffff0000) | (r << 8) | q;
385 }
386
387 void OPPROTO op_divw_AX_T0(void)
388 {
389 unsigned int num, den, q, r;
390
391 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
392 den = (T0 & 0xffff);
393 if (den == 0)
394 raise_exception(EXCP00_DIVZ);
395 q = (num / den) & 0xffff;
396 r = (num % den) & 0xffff;
397 EAX = (EAX & 0xffff0000) | q;
398 EDX = (EDX & 0xffff0000) | r;
399 }
400
401 void OPPROTO op_idivw_AX_T0(void)
402 {
403 int num, den, q, r;
404
405 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
406 den = (int16_t)T0;
407 if (den == 0)
408 raise_exception(EXCP00_DIVZ);
409 q = (num / den) & 0xffff;
410 r = (num % den) & 0xffff;
411 EAX = (EAX & 0xffff0000) | q;
412 EDX = (EDX & 0xffff0000) | r;
413 }
414
415 #ifdef BUGGY_GCC_DIV64
416 /* gcc 2.95.4 on PowerPC does not seem to like using __udivdi3, so we
417 call it from another function */
418 uint32_t div64(uint32_t *q_ptr, uint64_t num, uint32_t den)
419 {
420 *q_ptr = num / den;
421 return num % den;
422 }
423
424 int32_t idiv64(int32_t *q_ptr, int64_t num, int32_t den)
425 {
426 *q_ptr = num / den;
427 return num % den;
428 }
429 #endif
430
431 void OPPROTO op_divl_EAX_T0(void)
432 {
433 unsigned int den, q, r;
434 uint64_t num;
435
436 num = EAX | ((uint64_t)EDX << 32);
437 den = T0;
438 if (den == 0)
439 raise_exception(EXCP00_DIVZ);
440 #ifdef BUGGY_GCC_DIV64
441 r = div64(&q, num, den);
442 #else
443 q = (num / den);
444 r = (num % den);
445 #endif
446 EAX = q;
447 EDX = r;
448 }
449
450 void OPPROTO op_idivl_EAX_T0(void)
451 {
452 int den, q, r;
453 int64_t num;
454
455 num = EAX | ((uint64_t)EDX << 32);
456 den = T0;
457 if (den == 0)
458 raise_exception(EXCP00_DIVZ);
459 #ifdef BUGGY_GCC_DIV64
460 r = idiv64(&q, num, den);
461 #else
462 q = (num / den);
463 r = (num % den);
464 #endif
465 EAX = q;
466 EDX = r;
467 }
468
469 /* constant load & misc op */
470
471 void OPPROTO op_movl_T0_im(void)
472 {
473 T0 = PARAM1;
474 }
475
476 void OPPROTO op_addl_T0_im(void)
477 {
478 T0 += PARAM1;
479 }
480
481 void OPPROTO op_andl_T0_ffff(void)
482 {
483 T0 = T0 & 0xffff;
484 }
485
486 void OPPROTO op_movl_T0_T1(void)
487 {
488 T0 = T1;
489 }
490
491 void OPPROTO op_movl_T1_im(void)
492 {
493 T1 = PARAM1;
494 }
495
496 void OPPROTO op_addl_T1_im(void)
497 {
498 T1 += PARAM1;
499 }
500
501 void OPPROTO op_movl_T1_A0(void)
502 {
503 T1 = A0;
504 }
505
506 void OPPROTO op_movl_A0_im(void)
507 {
508 A0 = PARAM1;
509 }
510
511 void OPPROTO op_addl_A0_im(void)
512 {
513 A0 += PARAM1;
514 }
515
516 void OPPROTO op_addl_A0_AL(void)
517 {
518 A0 += (EAX & 0xff);
519 }
520
521 void OPPROTO op_andl_A0_ffff(void)
522 {
523 A0 = A0 & 0xffff;
524 }
525
526 /* memory access */
527
528 void OPPROTO op_ldub_T0_A0(void)
529 {
530 T0 = ldub((uint8_t *)A0);
531 }
532
533 void OPPROTO op_ldsb_T0_A0(void)
534 {
535 T0 = ldsb((int8_t *)A0);
536 }
537
538 void OPPROTO op_lduw_T0_A0(void)
539 {
540 T0 = lduw((uint8_t *)A0);
541 }
542
543 void OPPROTO op_ldsw_T0_A0(void)
544 {
545 T0 = ldsw((int8_t *)A0);
546 }
547
548 void OPPROTO op_ldl_T0_A0(void)
549 {
550 T0 = ldl((uint8_t *)A0);
551 }
552
553 void OPPROTO op_ldub_T1_A0(void)
554 {
555 T1 = ldub((uint8_t *)A0);
556 }
557
558 void OPPROTO op_ldsb_T1_A0(void)
559 {
560 T1 = ldsb((int8_t *)A0);
561 }
562
563 void OPPROTO op_lduw_T1_A0(void)
564 {
565 T1 = lduw((uint8_t *)A0);
566 }
567
568 void OPPROTO op_ldsw_T1_A0(void)
569 {
570 T1 = ldsw((int8_t *)A0);
571 }
572
573 void OPPROTO op_ldl_T1_A0(void)
574 {
575 T1 = ldl((uint8_t *)A0);
576 }
577
578 void OPPROTO op_stb_T0_A0(void)
579 {
580 stb((uint8_t *)A0, T0);
581 }
582
583 void OPPROTO op_stw_T0_A0(void)
584 {
585 stw((uint8_t *)A0, T0);
586 }
587
588 void OPPROTO op_stl_T0_A0(void)
589 {
590 stl((uint8_t *)A0, T0);
591 }
592
593 /* used for bit operations */
594
595 void OPPROTO op_add_bitw_A0_T1(void)
596 {
597 A0 += ((int32_t)T1 >> 4) << 1;
598 }
599
600 void OPPROTO op_add_bitl_A0_T1(void)
601 {
602 A0 += ((int32_t)T1 >> 5) << 2;
603 }
604
605 /* indirect jump */
606
607 void OPPROTO op_jmp_T0(void)
608 {
609 EIP = T0;
610 }
611
612 void OPPROTO op_jmp_im(void)
613 {
614 EIP = PARAM1;
615 }
616
617 void OPPROTO op_int_im(void)
618 {
619 int intno;
620 intno = PARAM1;
621 EIP = PARAM2;
622 raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
623 }
624
625 void OPPROTO op_int3(void)
626 {
627 EIP = PARAM1;
628 raise_exception(EXCP03_INT3);
629 }
630
631 void OPPROTO op_into(void)
632 {
633 int eflags;
634 eflags = cc_table[CC_OP].compute_all();
635 if (eflags & CC_O) {
636 raise_exception(EXCP04_INTO);
637 }
638 FORCE_RET();
639 }
640
641 void OPPROTO op_gpf(void)
642 {
643 EIP = PARAM1;
644 raise_exception(EXCP0D_GPF);
645 }
646
647 void OPPROTO op_cli(void)
648 {
649 env->eflags &= ~IF_MASK;
650 }
651
652 void OPPROTO op_sti(void)
653 {
654 env->eflags |= IF_MASK;
655 }
656
657 /* vm86plus instructions */
658
659 void OPPROTO op_cli_vm(void)
660 {
661 env->eflags &= ~VIF_MASK;
662 }
663
664 void OPPROTO op_sti_vm(void)
665 {
666 env->eflags |= VIF_MASK;
667 if (env->eflags & VIP_MASK) {
668 EIP = PARAM1;
669 raise_exception(EXCP0D_GPF);
670 }
671 FORCE_RET();
672 }
673
674 void OPPROTO op_boundw(void)
675 {
676 int low, high, v;
677 low = ldsw((uint8_t *)A0);
678 high = ldsw((uint8_t *)A0 + 2);
679 v = (int16_t)T0;
680 if (v < low || v > high)
681 raise_exception(EXCP05_BOUND);
682 FORCE_RET();
683 }
684
685 void OPPROTO op_boundl(void)
686 {
687 int low, high, v;
688 low = ldl((uint8_t *)A0);
689 high = ldl((uint8_t *)A0 + 4);
690 v = T0;
691 if (v < low || v > high)
692 raise_exception(EXCP05_BOUND);
693 FORCE_RET();
694 }
695
696 void OPPROTO op_cmpxchg8b(void)
697 {
698 uint64_t d;
699 int eflags;
700
701 eflags = cc_table[CC_OP].compute_all();
702 d = ldq((uint8_t *)A0);
703 if (d == (((uint64_t)EDX << 32) | EAX)) {
704 stq((uint8_t *)A0, ((uint64_t)ECX << 32) | EBX);
705 eflags |= CC_Z;
706 } else {
707 EDX = d >> 32;
708 EAX = d;
709 eflags &= ~CC_Z;
710 }
711 CC_SRC = eflags;
712 FORCE_RET();
713 }
714
715 /* string ops */
716
717 #define ldul ldl
718
719 #define SHIFT 0
720 #include "ops_template.h"
721 #undef SHIFT
722
723 #define SHIFT 1
724 #include "ops_template.h"
725 #undef SHIFT
726
727 #define SHIFT 2
728 #include "ops_template.h"
729 #undef SHIFT
730
731 /* sign extend */
732
733 void OPPROTO op_movsbl_T0_T0(void)
734 {
735 T0 = (int8_t)T0;
736 }
737
738 void OPPROTO op_movzbl_T0_T0(void)
739 {
740 T0 = (uint8_t)T0;
741 }
742
743 void OPPROTO op_movswl_T0_T0(void)
744 {
745 T0 = (int16_t)T0;
746 }
747
748 void OPPROTO op_movzwl_T0_T0(void)
749 {
750 T0 = (uint16_t)T0;
751 }
752
753 void OPPROTO op_movswl_EAX_AX(void)
754 {
755 EAX = (int16_t)EAX;
756 }
757
758 void OPPROTO op_movsbw_AX_AL(void)
759 {
760 EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
761 }
762
763 void OPPROTO op_movslq_EDX_EAX(void)
764 {
765 EDX = (int32_t)EAX >> 31;
766 }
767
768 void OPPROTO op_movswl_DX_AX(void)
769 {
770 EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
771 }
772
773 /* push/pop */
774
775 void op_pushl_T0(void)
776 {
777 uint32_t offset;
778 offset = ESP - 4;
779 stl((void *)offset, T0);
780 /* modify ESP after to handle exceptions correctly */
781 ESP = offset;
782 }
783
784 void op_pushw_T0(void)
785 {
786 uint32_t offset;
787 offset = ESP - 2;
788 stw((void *)offset, T0);
789 /* modify ESP after to handle exceptions correctly */
790 ESP = offset;
791 }
792
793 void op_pushl_ss32_T0(void)
794 {
795 uint32_t offset;
796 offset = ESP - 4;
797 stl(env->seg_cache[R_SS].base + offset, T0);
798 /* modify ESP after to handle exceptions correctly */
799 ESP = offset;
800 }
801
802 void op_pushw_ss32_T0(void)
803 {
804 uint32_t offset;
805 offset = ESP - 2;
806 stw(env->seg_cache[R_SS].base + offset, T0);
807 /* modify ESP after to handle exceptions correctly */
808 ESP = offset;
809 }
810
811 void op_pushl_ss16_T0(void)
812 {
813 uint32_t offset;
814 offset = (ESP - 4) & 0xffff;
815 stl(env->seg_cache[R_SS].base + offset, T0);
816 /* modify ESP after to handle exceptions correctly */
817 ESP = (ESP & ~0xffff) | offset;
818 }
819
820 void op_pushw_ss16_T0(void)
821 {
822 uint32_t offset;
823 offset = (ESP - 2) & 0xffff;
824 stw(env->seg_cache[R_SS].base + offset, T0);
825 /* modify ESP after to handle exceptions correctly */
826 ESP = (ESP & ~0xffff) | offset;
827 }
828
829 /* NOTE: ESP update is done after */
830 void op_popl_T0(void)
831 {
832 T0 = ldl((void *)ESP);
833 }
834
835 void op_popw_T0(void)
836 {
837 T0 = lduw((void *)ESP);
838 }
839
840 void op_popl_ss32_T0(void)
841 {
842 T0 = ldl(env->seg_cache[R_SS].base + ESP);
843 }
844
845 void op_popw_ss32_T0(void)
846 {
847 T0 = lduw(env->seg_cache[R_SS].base + ESP);
848 }
849
850 void op_popl_ss16_T0(void)
851 {
852 T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff));
853 }
854
855 void op_popw_ss16_T0(void)
856 {
857 T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff));
858 }
859
860 void op_addl_ESP_4(void)
861 {
862 ESP += 4;
863 }
864
865 void op_addl_ESP_2(void)
866 {
867 ESP += 2;
868 }
869
870 void op_addw_ESP_4(void)
871 {
872 ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
873 }
874
875 void op_addw_ESP_2(void)
876 {
877 ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
878 }
879
880 void op_addl_ESP_im(void)
881 {
882 ESP += PARAM1;
883 }
884
885 void op_addw_ESP_im(void)
886 {
887 ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
888 }
889
890 /* rdtsc */
891 #ifndef __i386__
892 uint64_t emu_time;
893 #endif
894
895 void OPPROTO op_rdtsc(void)
896 {
897 uint64_t val;
898 #ifdef __i386__
899 asm("rdtsc" : "=A" (val));
900 #else
901 /* better than nothing: the time increases */
902 val = emu_time++;
903 #endif
904 EAX = val;
905 EDX = val >> 32;
906 }
907
908 /* We simulate a pre-MMX pentium as in valgrind */
909 #define CPUID_FP87 (1 << 0)
910 #define CPUID_VME (1 << 1)
911 #define CPUID_DE (1 << 2)
912 #define CPUID_PSE (1 << 3)
913 #define CPUID_TSC (1 << 4)
914 #define CPUID_MSR (1 << 5)
915 #define CPUID_PAE (1 << 6)
916 #define CPUID_MCE (1 << 7)
917 #define CPUID_CX8 (1 << 8)
918 #define CPUID_APIC (1 << 9)
919 #define CPUID_SEP (1 << 11) /* sysenter/sysexit */
920 #define CPUID_MTRR (1 << 12)
921 #define CPUID_PGE (1 << 13)
922 #define CPUID_MCA (1 << 14)
923 #define CPUID_CMOV (1 << 15)
924 /* ... */
925 #define CPUID_MMX (1 << 23)
926 #define CPUID_FXSR (1 << 24)
927 #define CPUID_SSE (1 << 25)
928 #define CPUID_SSE2 (1 << 26)
929
930 void helper_cpuid(void)
931 {
932 if (EAX == 0) {
933 EAX = 1; /* max EAX index supported */
934 EBX = 0x756e6547;
935 ECX = 0x6c65746e;
936 EDX = 0x49656e69;
937 } else {
938 /* EAX = 1 info */
939 EAX = 0x52b;
940 EBX = 0;
941 ECX = 0;
942 EDX = CPUID_FP87 | CPUID_VME | CPUID_DE | CPUID_PSE |
943 CPUID_TSC | CPUID_MSR | CPUID_MCE |
944 CPUID_CX8;
945 }
946 }
947
948 void OPPROTO op_cpuid(void)
949 {
950 helper_cpuid();
951 }
952
953 /* bcd */
954
955 /* XXX: exception */
956 void OPPROTO op_aam(void)
957 {
958 int base = PARAM1;
959 int al, ah;
960 al = EAX & 0xff;
961 ah = al / base;
962 al = al % base;
963 EAX = (EAX & ~0xffff) | al | (ah << 8);
964 CC_DST = al;
965 }
966
967 void OPPROTO op_aad(void)
968 {
969 int base = PARAM1;
970 int al, ah;
971 al = EAX & 0xff;
972 ah = (EAX >> 8) & 0xff;
973 al = ((ah * base) + al) & 0xff;
974 EAX = (EAX & ~0xffff) | al;
975 CC_DST = al;
976 }
977
978 void OPPROTO op_aaa(void)
979 {
980 int icarry;
981 int al, ah, af;
982 int eflags;
983
984 eflags = cc_table[CC_OP].compute_all();
985 af = eflags & CC_A;
986 al = EAX & 0xff;
987 ah = (EAX >> 8) & 0xff;
988
989 icarry = (al > 0xf9);
990 if (((al & 0x0f) > 9 ) || af) {
991 al = (al + 6) & 0x0f;
992 ah = (ah + 1 + icarry) & 0xff;
993 eflags |= CC_C | CC_A;
994 } else {
995 eflags &= ~(CC_C | CC_A);
996 al &= 0x0f;
997 }
998 EAX = (EAX & ~0xffff) | al | (ah << 8);
999 CC_SRC = eflags;
1000 }
1001
1002 void OPPROTO op_aas(void)
1003 {
1004 int icarry;
1005 int al, ah, af;
1006 int eflags;
1007
1008 eflags = cc_table[CC_OP].compute_all();
1009 af = eflags & CC_A;
1010 al = EAX & 0xff;
1011 ah = (EAX >> 8) & 0xff;
1012
1013 icarry = (al < 6);
1014 if (((al & 0x0f) > 9 ) || af) {
1015 al = (al - 6) & 0x0f;
1016 ah = (ah - 1 - icarry) & 0xff;
1017 eflags |= CC_C | CC_A;
1018 } else {
1019 eflags &= ~(CC_C | CC_A);
1020 al &= 0x0f;
1021 }
1022 EAX = (EAX & ~0xffff) | al | (ah << 8);
1023 CC_SRC = eflags;
1024 }
1025
1026 void OPPROTO op_daa(void)
1027 {
1028 int al, af, cf;
1029 int eflags;
1030
1031 eflags = cc_table[CC_OP].compute_all();
1032 cf = eflags & CC_C;
1033 af = eflags & CC_A;
1034 al = EAX & 0xff;
1035
1036 eflags = 0;
1037 if (((al & 0x0f) > 9 ) || af) {
1038 al = (al + 6) & 0xff;
1039 eflags |= CC_A;
1040 }
1041 if ((al > 0x9f) || cf) {
1042 al = (al + 0x60) & 0xff;
1043 eflags |= CC_C;
1044 }
1045 EAX = (EAX & ~0xff) | al;
1046 /* well, speed is not an issue here, so we compute the flags by hand */
1047 eflags |= (al == 0) << 6; /* zf */
1048 eflags |= parity_table[al]; /* pf */
1049 eflags |= (al & 0x80); /* sf */
1050 CC_SRC = eflags;
1051 }
1052
1053 void OPPROTO op_das(void)
1054 {
1055 int al, al1, af, cf;
1056 int eflags;
1057
1058 eflags = cc_table[CC_OP].compute_all();
1059 cf = eflags & CC_C;
1060 af = eflags & CC_A;
1061 al = EAX & 0xff;
1062
1063 eflags = 0;
1064 al1 = al;
1065 if (((al & 0x0f) > 9 ) || af) {
1066 eflags |= CC_A;
1067 if (al < 6 || cf)
1068 eflags |= CC_C;
1069 al = (al - 6) & 0xff;
1070 }
1071 if ((al1 > 0x99) || cf) {
1072 al = (al - 0x60) & 0xff;
1073 eflags |= CC_C;
1074 }
1075 EAX = (EAX & ~0xff) | al;
1076 /* well, speed is not an issue here, so we compute the flags by hand */
1077 eflags |= (al == 0) << 6; /* zf */
1078 eflags |= parity_table[al]; /* pf */
1079 eflags |= (al & 0x80); /* sf */
1080 CC_SRC = eflags;
1081 }
1082
1083 /* segment handling */
1084
1085 /* XXX: use static VM86 information */
1086 void load_seg(int seg_reg, int selector)
1087 {
1088 SegmentCache *sc;
1089 SegmentDescriptorTable *dt;
1090 int index;
1091 uint32_t e1, e2;
1092 uint8_t *ptr;
1093
1094 env->segs[seg_reg] = selector;
1095 sc = &env->seg_cache[seg_reg];
1096 if (env->eflags & VM_MASK) {
1097 sc->base = (void *)(selector << 4);
1098 sc->limit = 0xffff;
1099 sc->seg_32bit = 0;
1100 } else {
1101 if (selector & 0x4)
1102 dt = &env->ldt;
1103 else
1104 dt = &env->gdt;
1105 index = selector & ~7;
1106 if ((index + 7) > dt->limit)
1107 raise_exception_err(EXCP0D_GPF, selector);
1108 ptr = dt->base + index;
1109 e1 = ldl(ptr);
1110 e2 = ldl(ptr + 4);
1111 sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1112 sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1113 if (e2 & (1 << 23))
1114 sc->limit = (sc->limit << 12) | 0xfff;
1115 sc->seg_32bit = (e2 >> 22) & 1;
1116 #if 0
1117 fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n",
1118 selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
1119 #endif
1120 }
1121 }
1122
1123 void OPPROTO op_movl_seg_T0(void)
1124 {
1125 load_seg(PARAM1, T0 & 0xffff);
1126 }
1127
1128 void OPPROTO op_movl_T0_seg(void)
1129 {
1130 T0 = env->segs[PARAM1];
1131 }
1132
1133 void OPPROTO op_movl_A0_seg(void)
1134 {
1135 A0 = *(unsigned long *)((char *)env + PARAM1);
1136 }
1137
1138 void OPPROTO op_addl_A0_seg(void)
1139 {
1140 A0 += *(unsigned long *)((char *)env + PARAM1);
1141 }
1142
1143 /* flags handling */
1144
1145 /* slow jumps cases (compute x86 flags) */
1146 void OPPROTO op_jo_cc(void)
1147 {
1148 int eflags;
1149 eflags = cc_table[CC_OP].compute_all();
1150 if (eflags & CC_O)
1151 EIP = PARAM1;
1152 else
1153 EIP = PARAM2;
1154 FORCE_RET();
1155 }
1156
1157 void OPPROTO op_jb_cc(void)
1158 {
1159 if (cc_table[CC_OP].compute_c())
1160 EIP = PARAM1;
1161 else
1162 EIP = PARAM2;
1163 FORCE_RET();
1164 }
1165
1166 void OPPROTO op_jz_cc(void)
1167 {
1168 int eflags;
1169 eflags = cc_table[CC_OP].compute_all();
1170 if (eflags & CC_Z)
1171 EIP = PARAM1;
1172 else
1173 EIP = PARAM2;
1174 FORCE_RET();
1175 }
1176
1177 void OPPROTO op_jbe_cc(void)
1178 {
1179 int eflags;
1180 eflags = cc_table[CC_OP].compute_all();
1181 if (eflags & (CC_Z | CC_C))
1182 EIP = PARAM1;
1183 else
1184 EIP = PARAM2;
1185 FORCE_RET();
1186 }
1187
1188 void OPPROTO op_js_cc(void)
1189 {
1190 int eflags;
1191 eflags = cc_table[CC_OP].compute_all();
1192 if (eflags & CC_S)
1193 EIP = PARAM1;
1194 else
1195 EIP = PARAM2;
1196 FORCE_RET();
1197 }
1198
1199 void OPPROTO op_jp_cc(void)
1200 {
1201 int eflags;
1202 eflags = cc_table[CC_OP].compute_all();
1203 if (eflags & CC_P)
1204 EIP = PARAM1;
1205 else
1206 EIP = PARAM2;
1207 FORCE_RET();
1208 }
1209
1210 void OPPROTO op_jl_cc(void)
1211 {
1212 int eflags;
1213 eflags = cc_table[CC_OP].compute_all();
1214 if ((eflags ^ (eflags >> 4)) & 0x80)
1215 EIP = PARAM1;
1216 else
1217 EIP = PARAM2;
1218 FORCE_RET();
1219 }
1220
1221 void OPPROTO op_jle_cc(void)
1222 {
1223 int eflags;
1224 eflags = cc_table[CC_OP].compute_all();
1225 if (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z))
1226 EIP = PARAM1;
1227 else
1228 EIP = PARAM2;
1229 FORCE_RET();
1230 }
1231
1232 /* slow set cases (compute x86 flags) */
1233 void OPPROTO op_seto_T0_cc(void)
1234 {
1235 int eflags;
1236 eflags = cc_table[CC_OP].compute_all();
1237 T0 = (eflags >> 11) & 1;
1238 }
1239
1240 void OPPROTO op_setb_T0_cc(void)
1241 {
1242 T0 = cc_table[CC_OP].compute_c();
1243 }
1244
1245 void OPPROTO op_setz_T0_cc(void)
1246 {
1247 int eflags;
1248 eflags = cc_table[CC_OP].compute_all();
1249 T0 = (eflags >> 6) & 1;
1250 }
1251
1252 void OPPROTO op_setbe_T0_cc(void)
1253 {
1254 int eflags;
1255 eflags = cc_table[CC_OP].compute_all();
1256 T0 = (eflags & (CC_Z | CC_C)) != 0;
1257 }
1258
1259 void OPPROTO op_sets_T0_cc(void)
1260 {
1261 int eflags;
1262 eflags = cc_table[CC_OP].compute_all();
1263 T0 = (eflags >> 7) & 1;
1264 }
1265
1266 void OPPROTO op_setp_T0_cc(void)
1267 {
1268 int eflags;
1269 eflags = cc_table[CC_OP].compute_all();
1270 T0 = (eflags >> 2) & 1;
1271 }
1272
1273 void OPPROTO op_setl_T0_cc(void)
1274 {
1275 int eflags;
1276 eflags = cc_table[CC_OP].compute_all();
1277 T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1278 }
1279
1280 void OPPROTO op_setle_T0_cc(void)
1281 {
1282 int eflags;
1283 eflags = cc_table[CC_OP].compute_all();
1284 T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1285 }
1286
1287 void OPPROTO op_xor_T0_1(void)
1288 {
1289 T0 ^= 1;
1290 }
1291
1292 void OPPROTO op_set_cc_op(void)
1293 {
1294 CC_OP = PARAM1;
1295 }
1296
1297 #define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
1298 #define FL_UPDATE_MASK16 (TF_MASK)
1299
1300 void OPPROTO op_movl_eflags_T0(void)
1301 {
1302 int eflags;
1303 eflags = T0;
1304 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1305 DF = 1 - (2 * ((eflags >> 10) & 1));
1306 /* we also update some system flags as in user mode */
1307 env->eflags = (env->eflags & ~FL_UPDATE_MASK32) | (eflags & FL_UPDATE_MASK32);
1308 }
1309
1310 void OPPROTO op_movw_eflags_T0(void)
1311 {
1312 int eflags;
1313 eflags = T0;
1314 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1315 DF = 1 - (2 * ((eflags >> 10) & 1));
1316 /* we also update some system flags as in user mode */
1317 env->eflags = (env->eflags & ~FL_UPDATE_MASK16) | (eflags & FL_UPDATE_MASK16);
1318 }
1319
1320 /* vm86 version */
1321 void OPPROTO op_movw_eflags_T0_vm(void)
1322 {
1323 int eflags;
1324 eflags = T0;
1325 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1326 DF = 1 - (2 * ((eflags >> 10) & 1));
1327 /* we also update some system flags as in user mode */
1328 env->eflags = (env->eflags & ~(FL_UPDATE_MASK16 | VIF_MASK)) |
1329 (eflags & FL_UPDATE_MASK16);
1330 if (eflags & IF_MASK) {
1331 env->eflags |= VIF_MASK;
1332 if (env->eflags & VIP_MASK) {
1333 EIP = PARAM1;
1334 raise_exception(EXCP0D_GPF);
1335 }
1336 }
1337 FORCE_RET();
1338 }
1339
1340 void OPPROTO op_movl_eflags_T0_vm(void)
1341 {
1342 int eflags;
1343 eflags = T0;
1344 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1345 DF = 1 - (2 * ((eflags >> 10) & 1));
1346 /* we also update some system flags as in user mode */
1347 env->eflags = (env->eflags & ~(FL_UPDATE_MASK32 | VIF_MASK)) |
1348 (eflags & FL_UPDATE_MASK32);
1349 if (eflags & IF_MASK) {
1350 env->eflags |= VIF_MASK;
1351 if (env->eflags & VIP_MASK) {
1352 EIP = PARAM1;
1353 raise_exception(EXCP0D_GPF);
1354 }
1355 }
1356 FORCE_RET();
1357 }
1358
1359 /* XXX: compute only O flag */
1360 void OPPROTO op_movb_eflags_T0(void)
1361 {
1362 int of;
1363 of = cc_table[CC_OP].compute_all() & CC_O;
1364 CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
1365 }
1366
1367 void OPPROTO op_movl_T0_eflags(void)
1368 {
1369 int eflags;
1370 eflags = cc_table[CC_OP].compute_all();
1371 eflags |= (DF & DF_MASK);
1372 eflags |= env->eflags & ~(VM_MASK | RF_MASK);
1373 T0 = eflags;
1374 }
1375
1376 /* vm86 version */
1377 void OPPROTO op_movl_T0_eflags_vm(void)
1378 {
1379 int eflags;
1380 eflags = cc_table[CC_OP].compute_all();
1381 eflags |= (DF & DF_MASK);
1382 eflags |= env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
1383 if (env->eflags & VIF_MASK)
1384 eflags |= IF_MASK;
1385 T0 = eflags;
1386 }
1387
1388 void OPPROTO op_cld(void)
1389 {
1390 DF = 1;
1391 }
1392
1393 void OPPROTO op_std(void)
1394 {
1395 DF = -1;
1396 }
1397
1398 void OPPROTO op_clc(void)
1399 {
1400 int eflags;
1401 eflags = cc_table[CC_OP].compute_all();
1402 eflags &= ~CC_C;
1403 CC_SRC = eflags;
1404 }
1405
1406 void OPPROTO op_stc(void)
1407 {
1408 int eflags;
1409 eflags = cc_table[CC_OP].compute_all();
1410 eflags |= CC_C;
1411 CC_SRC = eflags;
1412 }
1413
1414 void OPPROTO op_cmc(void)
1415 {
1416 int eflags;
1417 eflags = cc_table[CC_OP].compute_all();
1418 eflags ^= CC_C;
1419 CC_SRC = eflags;
1420 }
1421
1422 void OPPROTO op_salc(void)
1423 {
1424 int cf;
1425 cf = cc_table[CC_OP].compute_c();
1426 EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1427 }
1428
1429 static int compute_all_eflags(void)
1430 {
1431 return CC_SRC;
1432 }
1433
1434 static int compute_c_eflags(void)
1435 {
1436 return CC_SRC & CC_C;
1437 }
1438
1439 static int compute_c_mul(void)
1440 {
1441 int cf;
1442 cf = (CC_SRC != 0);
1443 return cf;
1444 }
1445
1446 static int compute_all_mul(void)
1447 {
1448 int cf, pf, af, zf, sf, of;
1449 cf = (CC_SRC != 0);
1450 pf = 0; /* undefined */
1451 af = 0; /* undefined */
1452 zf = 0; /* undefined */
1453 sf = 0; /* undefined */
1454 of = cf << 11;
1455 return cf | pf | af | zf | sf | of;
1456 }
1457
1458 CCTable cc_table[CC_OP_NB] = {
1459 [CC_OP_DYNAMIC] = { /* should never happen */ },
1460
1461 [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1462
1463 [CC_OP_MUL] = { compute_all_mul, compute_c_mul },
1464
1465 [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1466 [CC_OP_ADDW] = { compute_all_addw, compute_c_addw },
1467 [CC_OP_ADDL] = { compute_all_addl, compute_c_addl },
1468
1469 [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1470 [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw },
1471 [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl },
1472
1473 [CC_OP_SUBB] = { compute_all_subb, compute_c_subb },
1474 [CC_OP_SUBW] = { compute_all_subw, compute_c_subw },
1475 [CC_OP_SUBL] = { compute_all_subl, compute_c_subl },
1476
1477 [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb },
1478 [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw },
1479 [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl },
1480
1481 [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1482 [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1483 [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1484
1485 [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1486 [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1487 [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1488
1489 [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1490 [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1491 [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1492
1493 [CC_OP_SHLB] = { compute_all_shlb, compute_c_shll },
1494 [CC_OP_SHLW] = { compute_all_shlw, compute_c_shll },
1495 [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1496
1497 [CC_OP_SARB] = { compute_all_sarb, compute_c_shll },
1498 [CC_OP_SARW] = { compute_all_sarw, compute_c_shll },
1499 [CC_OP_SARL] = { compute_all_sarl, compute_c_shll },
1500 };
1501
1502 /* floating point support. Some of the code for complicated x87
1503 functions comes from the LGPL'ed x86 emulator found in the Willows
1504 TWIN windows emulator. */
1505
1506 #ifdef USE_X86LDOUBLE
1507 /* use long double functions */
1508 #define lrint lrintl
1509 #define llrint llrintl
1510 #define fabs fabsl
1511 #define sin sinl
1512 #define cos cosl
1513 #define sqrt sqrtl
1514 #define pow powl
1515 #define log logl
1516 #define tan tanl
1517 #define atan2 atan2l
1518 #define floor floorl
1519 #define ceil ceill
1520 #define rint rintl
1521 #endif
1522
1523 extern int lrint(CPU86_LDouble x);
1524 extern int64_t llrint(CPU86_LDouble x);
1525 extern CPU86_LDouble fabs(CPU86_LDouble x);
1526 extern CPU86_LDouble sin(CPU86_LDouble x);
1527 extern CPU86_LDouble cos(CPU86_LDouble x);
1528 extern CPU86_LDouble sqrt(CPU86_LDouble x);
1529 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
1530 extern CPU86_LDouble log(CPU86_LDouble x);
1531 extern CPU86_LDouble tan(CPU86_LDouble x);
1532 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
1533 extern CPU86_LDouble floor(CPU86_LDouble x);
1534 extern CPU86_LDouble ceil(CPU86_LDouble x);
1535 extern CPU86_LDouble rint(CPU86_LDouble x);
1536
1537 #if defined(__powerpc__)
1538 extern CPU86_LDouble copysign(CPU86_LDouble, CPU86_LDouble);
1539
1540 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
1541 double qemu_rint(double x)
1542 {
1543 double y = 4503599627370496.0;
1544 if (fabs(x) >= y)
1545 return x;
1546 if (x < 0)
1547 y = -y;
1548 y = (x + y) - y;
1549 if (y == 0.0)
1550 y = copysign(y, x);
1551 return y;
1552 }
1553
1554 #define rint qemu_rint
1555 #endif
1556
1557 #define RC_MASK 0xc00
1558 #define RC_NEAR 0x000
1559 #define RC_DOWN 0x400
1560 #define RC_UP 0x800
1561 #define RC_CHOP 0xc00
1562
1563 #define MAXTAN 9223372036854775808.0
1564
1565 #ifdef USE_X86LDOUBLE
1566
1567 /* only for x86 */
1568 typedef union {
1569 long double d;
1570 struct {
1571 unsigned long long lower;
1572 unsigned short upper;
1573 } l;
1574 } CPU86_LDoubleU;
1575
1576 /* the following deal with x86 long double-precision numbers */
1577 #define MAXEXPD 0x7fff
1578 #define EXPBIAS 16383
1579 #define EXPD(fp) (fp.l.upper & 0x7fff)
1580 #define SIGND(fp) ((fp.l.upper) & 0x8000)
1581 #define MANTD(fp) (fp.l.lower)
1582 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
1583
1584 #else
1585
1586 typedef union {
1587 double d;
1588 #ifndef WORDS_BIGENDIAN
1589 struct {
1590 unsigned long lower;
1591 long upper;
1592 } l;
1593 #else
1594 struct {
1595 long upper;
1596 unsigned long lower;
1597 } l;
1598 #endif
1599 long long ll;
1600 } CPU86_LDoubleU;
1601
1602 /* the following deal with IEEE double-precision numbers */
1603 #define MAXEXPD 0x7ff
1604 #define EXPBIAS 1023
1605 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
1606 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
1607 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
1608 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
1609 #endif
1610
1611 /* fp load FT0 */
1612
1613 void OPPROTO op_flds_FT0_A0(void)
1614 {
1615 #ifdef USE_FP_CONVERT
1616 FP_CONVERT.i32 = ldl((void *)A0);
1617 FT0 = FP_CONVERT.f;
1618 #else
1619 FT0 = ldfl((void *)A0);
1620 #endif
1621 }
1622
1623 void OPPROTO op_fldl_FT0_A0(void)
1624 {
1625 #ifdef USE_FP_CONVERT
1626 FP_CONVERT.i64 = ldq((void *)A0);
1627 FT0 = FP_CONVERT.d;
1628 #else
1629 FT0 = ldfq((void *)A0);
1630 #endif
1631 }
1632
1633 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1634 #ifdef USE_INT_TO_FLOAT_HELPERS
1635
1636 void helper_fild_FT0_A0(void)
1637 {
1638 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1639 }
1640
1641 void helper_fildl_FT0_A0(void)
1642 {
1643 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1644 }
1645
1646 void helper_fildll_FT0_A0(void)
1647 {
1648 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1649 }
1650
1651 void OPPROTO op_fild_FT0_A0(void)
1652 {
1653 helper_fild_FT0_A0();
1654 }
1655
1656 void OPPROTO op_fildl_FT0_A0(void)
1657 {
1658 helper_fildl_FT0_A0();
1659 }
1660
1661 void OPPROTO op_fildll_FT0_A0(void)
1662 {
1663 helper_fildll_FT0_A0();
1664 }
1665
1666 #else
1667
1668 void OPPROTO op_fild_FT0_A0(void)
1669 {
1670 #ifdef USE_FP_CONVERT
1671 FP_CONVERT.i32 = ldsw((void *)A0);
1672 FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1673 #else
1674 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1675 #endif
1676 }
1677
1678 void OPPROTO op_fildl_FT0_A0(void)
1679 {
1680 #ifdef USE_FP_CONVERT
1681 FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1682 FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1683 #else
1684 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1685 #endif
1686 }
1687
1688 void OPPROTO op_fildll_FT0_A0(void)
1689 {
1690 #ifdef USE_FP_CONVERT
1691 FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1692 FT0 = (CPU86_LDouble)FP_CONVERT.i64;
1693 #else
1694 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1695 #endif
1696 }
1697 #endif
1698
1699 /* fp load ST0 */
1700
1701 void OPPROTO op_flds_ST0_A0(void)
1702 {
1703 #ifdef USE_FP_CONVERT
1704 FP_CONVERT.i32 = ldl((void *)A0);
1705 ST0 = FP_CONVERT.f;
1706 #else
1707 ST0 = ldfl((void *)A0);
1708 #endif
1709 }
1710
1711 void OPPROTO op_fldl_ST0_A0(void)
1712 {
1713 #ifdef USE_FP_CONVERT
1714 FP_CONVERT.i64 = ldq((void *)A0);
1715 ST0 = FP_CONVERT.d;
1716 #else
1717 ST0 = ldfq((void *)A0);
1718 #endif
1719 }
1720
1721 #ifdef USE_X86LDOUBLE
1722 void OPPROTO op_fldt_ST0_A0(void)
1723 {
1724 ST0 = *(long double *)A0;
1725 }
1726 #else
1727 void helper_fldt_ST0_A0(void)
1728 {
1729 CPU86_LDoubleU temp;
1730 int upper, e;
1731 /* mantissa */
1732 upper = lduw((uint8_t *)A0 + 8);
1733 /* XXX: handle overflow ? */
1734 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
1735 e |= (upper >> 4) & 0x800; /* sign */
1736 temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
1737 ST0 = temp.d;
1738 }
1739
1740 void OPPROTO op_fldt_ST0_A0(void)
1741 {
1742 helper_fldt_ST0_A0();
1743 }
1744 #endif
1745
1746 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1747 #ifdef USE_INT_TO_FLOAT_HELPERS
1748
1749 void helper_fild_ST0_A0(void)
1750 {
1751 ST0 = (CPU86_LDouble)ldsw((void *)A0);
1752 }
1753
1754 void helper_fildl_ST0_A0(void)
1755 {
1756 ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1757 }
1758
1759 void helper_fildll_ST0_A0(void)
1760 {
1761 ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1762 }
1763
1764 void OPPROTO op_fild_ST0_A0(void)
1765 {
1766 helper_fild_ST0_A0();
1767 }
1768
1769 void OPPROTO op_fildl_ST0_A0(void)
1770 {
1771 helper_fildl_ST0_A0();
1772 }
1773
1774 void OPPROTO op_fildll_ST0_A0(void)
1775 {
1776 helper_fildll_ST0_A0();
1777 }
1778
1779 #else
1780
1781 void OPPROTO op_fild_ST0_A0(void)
1782 {
1783 #ifdef USE_FP_CONVERT
1784 FP_CONVERT.i32 = ldsw((void *)A0);
1785 ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1786 #else
1787 ST0 = (CPU86_LDouble)ldsw((void *)A0);
1788 #endif
1789 }
1790
1791 void OPPROTO op_fildl_ST0_A0(void)
1792 {
1793 #ifdef USE_FP_CONVERT
1794 FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1795 ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1796 #else
1797 ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1798 #endif
1799 }
1800
1801 void OPPROTO op_fildll_ST0_A0(void)
1802 {
1803 #ifdef USE_FP_CONVERT
1804 FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1805 ST0 = (CPU86_LDouble)FP_CONVERT.i64;
1806 #else
1807 ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1808 #endif
1809 }
1810
1811 #endif
1812
1813 /* fp store */
1814
1815 void OPPROTO op_fsts_ST0_A0(void)
1816 {
1817 #ifdef USE_FP_CONVERT
1818 FP_CONVERT.d = ST0;
1819 stfl((void *)A0, FP_CONVERT.f);
1820 #else
1821 stfl((void *)A0, (float)ST0);
1822 #endif
1823 }
1824
1825 void OPPROTO op_fstl_ST0_A0(void)
1826 {
1827 stfq((void *)A0, (double)ST0);
1828 }
1829
1830 #ifdef USE_X86LDOUBLE
1831 void OPPROTO op_fstt_ST0_A0(void)
1832 {
1833 *(long double *)A0 = ST0;
1834 }
1835 #else
1836 void helper_fstt_ST0_A0(void)
1837 {
1838 CPU86_LDoubleU temp;
1839 int e;
1840 temp.d = ST0;
1841 /* mantissa */
1842 stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
1843 /* exponent + sign */
1844 e = EXPD(temp) - EXPBIAS + 16383;
1845 e |= SIGND(temp) >> 16;
1846 stw((uint8_t *)A0 + 8, e);
1847 }
1848
1849 void OPPROTO op_fstt_ST0_A0(void)
1850 {
1851 helper_fstt_ST0_A0();
1852 }
1853 #endif
1854
1855 void OPPROTO op_fist_ST0_A0(void)
1856 {
1857 #if defined(__sparc__) && !defined(__sparc_v9__)
1858 register CPU86_LDouble d asm("o0");
1859 #else
1860 CPU86_LDouble d;
1861 #endif
1862 int val;
1863
1864 d = ST0;
1865 val = lrint(d);
1866 stw((void *)A0, val);
1867 }
1868
1869 void OPPROTO op_fistl_ST0_A0(void)
1870 {
1871 #if defined(__sparc__) && !defined(__sparc_v9__)
1872 register CPU86_LDouble d asm("o0");
1873 #else
1874 CPU86_LDouble d;
1875 #endif
1876 int val;
1877
1878 d = ST0;
1879 val = lrint(d);
1880 stl((void *)A0, val);
1881 }
1882
1883 void OPPROTO op_fistll_ST0_A0(void)
1884 {
1885 #if defined(__sparc__) && !defined(__sparc_v9__)
1886 register CPU86_LDouble d asm("o0");
1887 #else
1888 CPU86_LDouble d;
1889 #endif
1890 int64_t val;
1891
1892 d = ST0;
1893 val = llrint(d);
1894 stq((void *)A0, val);
1895 }
1896
1897 /* BCD ops */
1898
1899 #define MUL10(iv) ( iv + iv + (iv << 3) )
1900
1901 void helper_fbld_ST0_A0(void)
1902 {
1903 uint8_t *seg;
1904 CPU86_LDouble fpsrcop;
1905 int m32i;
1906 unsigned int v;
1907
1908 /* in this code, seg/m32i will be used as temporary ptr/int */
1909 seg = (uint8_t *)A0 + 8;
1910 v = ldub(seg--);
1911 /* XXX: raise exception */
1912 if (v != 0)
1913 return;
1914 v = ldub(seg--);
1915 /* XXX: raise exception */
1916 if ((v & 0xf0) != 0)
1917 return;
1918 m32i = v; /* <-- d14 */
1919 v = ldub(seg--);
1920 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d13 */
1921 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
1922 v = ldub(seg--);
1923 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d11 */
1924 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
1925 v = ldub(seg--);
1926 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d9 */
1927 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
1928 fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
1929
1930 v = ldub(seg--);
1931 m32i = (v >> 4); /* <-- d7 */
1932 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
1933 v = ldub(seg--);
1934 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d5 */
1935 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
1936 v = ldub(seg--);
1937 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d3 */
1938 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
1939 v = ldub(seg);
1940 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d1 */
1941 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
1942 fpsrcop += ((CPU86_LDouble)m32i);
1943 if ( ldub(seg+9) & 0x80 )
1944 fpsrcop = -fpsrcop;
1945 ST0 = fpsrcop;
1946 }
1947
1948 void OPPROTO op_fbld_ST0_A0(void)
1949 {
1950 helper_fbld_ST0_A0();
1951 }
1952
1953 void helper_fbst_ST0_A0(void)
1954 {
1955 CPU86_LDouble fptemp;
1956 CPU86_LDouble fpsrcop;
1957 int v;
1958 uint8_t *mem_ref, *mem_end;
1959
1960 fpsrcop = rint(ST0);
1961 mem_ref = (uint8_t *)A0;
1962 mem_end = mem_ref + 8;
1963 if ( fpsrcop < 0.0 ) {
1964 stw(mem_end, 0x8000);
1965 fpsrcop = -fpsrcop;
1966 } else {
1967 stw(mem_end, 0x0000);
1968 }
1969 while (mem_ref < mem_end) {
1970 if (fpsrcop == 0.0)
1971 break;
1972 fptemp = floor(fpsrcop/10.0);
1973 v = ((int)(fpsrcop - fptemp*10.0));
1974 if (fptemp == 0.0) {
1975 stb(mem_ref++, v);
1976 break;
1977 }
1978 fpsrcop = fptemp;
1979 fptemp = floor(fpsrcop/10.0);
1980 v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
1981 stb(mem_ref++, v);
1982 fpsrcop = fptemp;
1983 }
1984 while (mem_ref < mem_end) {
1985 stb(mem_ref++, 0);
1986 }
1987 }
1988
1989 void OPPROTO op_fbst_ST0_A0(void)
1990 {
1991 helper_fbst_ST0_A0();
1992 }
1993
1994 /* FPU move */
1995
1996 static inline void fpush(void)
1997 {
1998 env->fpstt = (env->fpstt - 1) & 7;
1999 env->fptags[env->fpstt] = 0; /* validate stack entry */
2000 }
2001
2002 static inline void fpop(void)
2003 {
2004 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
2005 env->fpstt = (env->fpstt + 1) & 7;
2006 }
2007
2008 void OPPROTO op_fpush(void)
2009 {
2010 fpush();
2011 }
2012
2013 void OPPROTO op_fpop(void)
2014 {
2015 fpop();
2016 }
2017
2018 void OPPROTO op_fdecstp(void)
2019 {
2020 env->fpstt = (env->fpstt - 1) & 7;
2021 env->fpus &= (~0x4700);
2022 }
2023
2024 void OPPROTO op_fincstp(void)
2025 {
2026 env->fpstt = (env->fpstt + 1) & 7;
2027 env->fpus &= (~0x4700);
2028 }
2029
2030 void OPPROTO op_fmov_ST0_FT0(void)
2031 {
2032 ST0 = FT0;
2033 }
2034
2035 void OPPROTO op_fmov_FT0_STN(void)
2036 {
2037 FT0 = ST(PARAM1);
2038 }
2039
2040 void OPPROTO op_fmov_ST0_STN(void)
2041 {
2042 ST0 = ST(PARAM1);
2043 }
2044
2045 void OPPROTO op_fmov_STN_ST0(void)
2046 {
2047 ST(PARAM1) = ST0;
2048 }
2049
2050 void OPPROTO op_fxchg_ST0_STN(void)
2051 {
2052 CPU86_LDouble tmp;
2053 tmp = ST(PARAM1);
2054 ST(PARAM1) = ST0;
2055 ST0 = tmp;
2056 }
2057
2058 /* FPU operations */
2059
2060 /* XXX: handle nans */
2061 void OPPROTO op_fcom_ST0_FT0(void)
2062 {
2063 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
2064 if (ST0 < FT0)
2065 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
2066 else if (ST0 == FT0)
2067 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2068 FORCE_RET();
2069 }
2070
2071 /* XXX: handle nans */
2072 void OPPROTO op_fucom_ST0_FT0(void)
2073 {
2074 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
2075 if (ST0 < FT0)
2076 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
2077 else if (ST0 == FT0)
2078 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2079 FORCE_RET();
2080 }
2081
2082 void OPPROTO op_fadd_ST0_FT0(void)
2083 {
2084 ST0 += FT0;
2085 }
2086
2087 void OPPROTO op_fmul_ST0_FT0(void)
2088 {
2089 ST0 *= FT0;
2090 }
2091
2092 void OPPROTO op_fsub_ST0_FT0(void)
2093 {
2094 ST0 -= FT0;
2095 }
2096
2097 void OPPROTO op_fsubr_ST0_FT0(void)
2098 {
2099 ST0 = FT0 - ST0;
2100 }
2101
2102 void OPPROTO op_fdiv_ST0_FT0(void)
2103 {
2104 ST0 /= FT0;
2105 }
2106
2107 void OPPROTO op_fdivr_ST0_FT0(void)
2108 {
2109 ST0 = FT0 / ST0;
2110 }
2111
2112 /* fp operations between STN and ST0 */
2113
2114 void OPPROTO op_fadd_STN_ST0(void)
2115 {
2116 ST(PARAM1) += ST0;
2117 }
2118
2119 void OPPROTO op_fmul_STN_ST0(void)
2120 {
2121 ST(PARAM1) *= ST0;
2122 }
2123
2124 void OPPROTO op_fsub_STN_ST0(void)
2125 {
2126 ST(PARAM1) -= ST0;
2127 }
2128
2129 void OPPROTO op_fsubr_STN_ST0(void)
2130 {
2131 CPU86_LDouble *p;
2132 p = &ST(PARAM1);
2133 *p = ST0 - *p;
2134 }
2135
2136 void OPPROTO op_fdiv_STN_ST0(void)
2137 {
2138 ST(PARAM1) /= ST0;
2139 }
2140
2141 void OPPROTO op_fdivr_STN_ST0(void)
2142 {
2143 CPU86_LDouble *p;
2144 p = &ST(PARAM1);
2145 *p = ST0 / *p;
2146 }
2147
2148 /* misc FPU operations */
2149 void OPPROTO op_fchs_ST0(void)
2150 {
2151 ST0 = -ST0;
2152 }
2153
2154 void OPPROTO op_fabs_ST0(void)
2155 {
2156 ST0 = fabs(ST0);
2157 }
2158
2159 void helper_fxam_ST0(void)
2160 {
2161 CPU86_LDoubleU temp;
2162 int expdif;
2163
2164 temp.d = ST0;
2165
2166 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2167 if (SIGND(temp))
2168 env->fpus |= 0x200; /* C1 <-- 1 */
2169
2170 expdif = EXPD(temp);
2171 if (expdif == MAXEXPD) {
2172 if (MANTD(temp) == 0)
2173 env->fpus |= 0x500 /*Infinity*/;
2174 else
2175 env->fpus |= 0x100 /*NaN*/;
2176 } else if (expdif == 0) {
2177 if (MANTD(temp) == 0)
2178 env->fpus |= 0x4000 /*Zero*/;
2179 else
2180 env->fpus |= 0x4400 /*Denormal*/;
2181 } else {
2182 env->fpus |= 0x400;
2183 }
2184 }
2185
2186 void OPPROTO op_fxam_ST0(void)
2187 {
2188 helper_fxam_ST0();
2189 }
2190
2191 void OPPROTO op_fld1_ST0(void)
2192 {
2193 ST0 = *(CPU86_LDouble *)&f15rk[1];
2194 }
2195
2196 void OPPROTO op_fldl2t_ST0(void)
2197 {
2198 ST0 = *(CPU86_LDouble *)&f15rk[6];
2199 }
2200
2201 void OPPROTO op_fldl2e_ST0(void)
2202 {
2203 ST0 = *(CPU86_LDouble *)&f15rk[5];
2204 }
2205
2206 void OPPROTO op_fldpi_ST0(void)
2207 {
2208 ST0 = *(CPU86_LDouble *)&f15rk[2];
2209 }
2210
2211 void OPPROTO op_fldlg2_ST0(void)
2212 {
2213 ST0 = *(CPU86_LDouble *)&f15rk[3];
2214 }
2215
2216 void OPPROTO op_fldln2_ST0(void)
2217 {
2218 ST0 = *(CPU86_LDouble *)&f15rk[4];
2219 }
2220
2221 void OPPROTO op_fldz_ST0(void)
2222 {
2223 ST0 = *(CPU86_LDouble *)&f15rk[0];
2224 }
2225
2226 void OPPROTO op_fldz_FT0(void)
2227 {
2228 ST0 = *(CPU86_LDouble *)&f15rk[0];
2229 }
2230
2231 void helper_f2xm1(void)
2232 {
2233 ST0 = pow(2.0,ST0) - 1.0;
2234 }
2235
2236 void helper_fyl2x(void)
2237 {
2238 CPU86_LDouble fptemp;
2239
2240 fptemp = ST0;
2241 if (fptemp>0.0){
2242 fptemp = log(fptemp)/log(2.0); /* log2(ST) */
2243 ST1 *= fptemp;
2244 fpop();
2245 } else {
2246 env->fpus &= (~0x4700);
2247 env->fpus |= 0x400;
2248 }
2249 }
2250
2251 void helper_fptan(void)
2252 {
2253 CPU86_LDouble fptemp;
2254
2255 fptemp = ST0;
2256 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2257 env->fpus |= 0x400;
2258 } else {
2259 ST0 = tan(fptemp);
2260 fpush();
2261 ST0 = 1.0;
2262 env->fpus &= (~0x400); /* C2 <-- 0 */
2263 /* the above code is for |arg| < 2**52 only */
2264 }
2265 }
2266
2267 void helper_fpatan(void)
2268 {
2269 CPU86_LDouble fptemp, fpsrcop;
2270
2271 fpsrcop = ST1;
2272 fptemp = ST0;
2273 ST1 = atan2(fpsrcop,fptemp);
2274 fpop();
2275 }
2276
2277 void helper_fxtract(void)
2278 {
2279 CPU86_LDoubleU temp;
2280 unsigned int expdif;
2281
2282 temp.d = ST0;
2283 expdif = EXPD(temp) - EXPBIAS;
2284 /*DP exponent bias*/
2285 ST0 = expdif;
2286 fpush();
2287 BIASEXPONENT(temp);
2288 ST0 = temp.d;
2289 }
2290
2291 void helper_fprem1(void)
2292 {
2293 CPU86_LDouble dblq, fpsrcop, fptemp;
2294 CPU86_LDoubleU fpsrcop1, fptemp1;
2295 int expdif;
2296 int q;
2297
2298 fpsrcop = ST0;
2299 fptemp = ST1;
2300 fpsrcop1.d = fpsrcop;
2301 fptemp1.d = fptemp;
2302 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2303 if (expdif < 53) {
2304 dblq = fpsrcop / fptemp;
2305 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2306 ST0 = fpsrcop - fptemp*dblq;
2307 q = (int)dblq; /* cutting off top bits is assumed here */
2308 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2309 /* (C0,C1,C3) <-- (q2,q1,q0) */
2310 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2311 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2312 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2313 } else {
2314 env->fpus |= 0x400; /* C2 <-- 1 */
2315 fptemp = pow(2.0, expdif-50);
2316 fpsrcop = (ST0 / ST1) / fptemp;
2317 /* fpsrcop = integer obtained by rounding to the nearest */
2318 fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
2319 floor(fpsrcop): ceil(fpsrcop);
2320 ST0 -= (ST1 * fpsrcop * fptemp);
2321 }
2322 }
2323
2324 void helper_fprem(void)
2325 {
2326 CPU86_LDouble dblq, fpsrcop, fptemp;
2327 CPU86_LDoubleU fpsrcop1, fptemp1;
2328 int expdif;
2329 int q;
2330
2331 fpsrcop = ST0;
2332 fptemp = ST1;
2333 fpsrcop1.d = fpsrcop;
2334 fptemp1.d = fptemp;
2335 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2336 if ( expdif < 53 ) {
2337 dblq = fpsrcop / fptemp;
2338 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2339 ST0 = fpsrcop - fptemp*dblq;
2340 q = (int)dblq; /* cutting off top bits is assumed here */
2341 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2342 /* (C0,C1,C3) <-- (q2,q1,q0) */
2343 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2344 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2345 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2346 } else {
2347 env->fpus |= 0x400; /* C2 <-- 1 */
2348 fptemp = pow(2.0, expdif-50);
2349 fpsrcop = (ST0 / ST1) / fptemp;
2350 /* fpsrcop = integer obtained by chopping */
2351 fpsrcop = (fpsrcop < 0.0)?
2352 -(floor(fabs(fpsrcop))): floor(fpsrcop);
2353 ST0 -= (ST1 * fpsrcop * fptemp);
2354 }
2355 }
2356
2357 void helper_fyl2xp1(void)
2358 {
2359 CPU86_LDouble fptemp;
2360
2361 fptemp = ST0;
2362 if ((fptemp+1.0)>0.0) {
2363 fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
2364 ST1 *= fptemp;
2365 fpop();
2366 } else {
2367 env->fpus &= (~0x4700);
2368 env->fpus |= 0x400;
2369 }
2370 }
2371
2372 void helper_fsqrt(void)
2373 {
2374 CPU86_LDouble fptemp;
2375
2376 fptemp = ST0;
2377 if (fptemp<0.0) {
2378 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2379 env->fpus |= 0x400;
2380 }
2381 ST0 = sqrt(fptemp);
2382 }
2383
2384 void helper_fsincos(void)
2385 {
2386 CPU86_LDouble fptemp;
2387
2388 fptemp = ST0;
2389 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2390 env->fpus |= 0x400;
2391 } else {
2392 ST0 = sin(fptemp);
2393 fpush();
2394 ST0 = cos(fptemp);
2395 env->fpus &= (~0x400); /* C2 <-- 0 */
2396 /* the above code is for |arg| < 2**63 only */
2397 }
2398 }
2399
2400 void helper_frndint(void)
2401 {
2402 ST0 = rint(ST0);
2403 }
2404
2405 void helper_fscale(void)
2406 {
2407 CPU86_LDouble fpsrcop, fptemp;
2408
2409 fpsrcop = 2.0;
2410 fptemp = pow(fpsrcop,ST1);
2411 ST0 *= fptemp;
2412 }
2413
2414 void helper_fsin(void)
2415 {
2416 CPU86_LDouble fptemp;
2417
2418 fptemp = ST0;
2419 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2420 env->fpus |= 0x400;
2421 } else {
2422 ST0 = sin(fptemp);
2423 env->fpus &= (~0x400); /* C2 <-- 0 */
2424 /* the above code is for |arg| < 2**53 only */
2425 }
2426 }
2427
2428 void helper_fcos(void)
2429 {
2430 CPU86_LDouble fptemp;
2431
2432 fptemp = ST0;
2433 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2434 env->fpus |= 0x400;
2435 } else {
2436 ST0 = cos(fptemp);
2437 env->fpus &= (~0x400); /* C2 <-- 0 */
2438 /* the above code is for |arg5 < 2**63 only */
2439 }
2440 }
2441
2442 /* associated heplers to reduce generated code length and to simplify
2443 relocation (FP constants are usually stored in .rodata section) */
2444
2445 void OPPROTO op_f2xm1(void)
2446 {
2447 helper_f2xm1();
2448 }
2449
2450 void OPPROTO op_fyl2x(void)
2451 {
2452 helper_fyl2x();
2453 }
2454
2455 void OPPROTO op_fptan(void)
2456 {
2457 helper_fptan();
2458 }
2459
2460 void OPPROTO op_fpatan(void)
2461 {
2462 helper_fpatan();
2463 }
2464
2465 void OPPROTO op_fxtract(void)
2466 {
2467 helper_fxtract();
2468 }
2469
2470 void OPPROTO op_fprem1(void)
2471 {
2472 helper_fprem1();
2473 }
2474
2475
2476 void OPPROTO op_fprem(void)
2477 {
2478 helper_fprem();
2479 }
2480
2481 void OPPROTO op_fyl2xp1(void)
2482 {
2483 helper_fyl2xp1();
2484 }
2485
2486 void OPPROTO op_fsqrt(void)
2487 {
2488 helper_fsqrt();
2489 }
2490
2491 void OPPROTO op_fsincos(void)
2492 {
2493 helper_fsincos();
2494 }
2495
2496 void OPPROTO op_frndint(void)
2497 {
2498 helper_frndint();
2499 }
2500
2501 void OPPROTO op_fscale(void)
2502 {
2503 helper_fscale();
2504 }
2505
2506 void OPPROTO op_fsin(void)
2507 {
2508 helper_fsin();
2509 }
2510
2511 void OPPROTO op_fcos(void)
2512 {
2513 helper_fcos();
2514 }
2515
2516 void OPPROTO op_fnstsw_A0(void)
2517 {
2518 int fpus;
2519 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2520 stw((void *)A0, fpus);
2521 }
2522
2523 void OPPROTO op_fnstsw_EAX(void)
2524 {
2525 int fpus;
2526 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2527 EAX = (EAX & 0xffff0000) | fpus;
2528 }
2529
2530 void OPPROTO op_fnstcw_A0(void)
2531 {
2532 stw((void *)A0, env->fpuc);
2533 }
2534
2535 void OPPROTO op_fldcw_A0(void)
2536 {
2537 int rnd_type;
2538 env->fpuc = lduw((void *)A0);
2539 /* set rounding mode */
2540 switch(env->fpuc & RC_MASK) {
2541 default:
2542 case RC_NEAR:
2543 rnd_type = FE_TONEAREST;
2544 break;
2545 case RC_DOWN:
2546 rnd_type = FE_DOWNWARD;
2547 break;
2548 case RC_UP:
2549 rnd_type = FE_UPWARD;
2550 break;
2551 case RC_CHOP:
2552 rnd_type = FE_TOWARDZERO;
2553 break;
2554 }
2555 fesetround(rnd_type);
2556 }
2557
2558 void OPPROTO op_fclex(void)
2559 {
2560 env->fpus &= 0x7f00;
2561 }
2562
2563 void OPPROTO op_fninit(void)
2564 {
2565 env->fpus = 0;
2566 env->fpstt = 0;
2567 env->fpuc = 0x37f;
2568 env->fptags[0] = 1;
2569 env->fptags[1] = 1;
2570 env->fptags[2] = 1;
2571 env->fptags[3] = 1;
2572 env->fptags[4] = 1;
2573 env->fptags[5] = 1;
2574 env->fptags[6] = 1;
2575 env->fptags[7] = 1;
2576 }
2577
2578 /* threading support */
2579 void OPPROTO op_lock(void)
2580 {
2581 cpu_lock();
2582 }
2583
2584 void OPPROTO op_unlock(void)
2585 {
2586 cpu_unlock();
2587 }