]> git.proxmox.com Git - mirror_qemu.git/blob - op-i386.c
added minimal segment support
[mirror_qemu.git] / op-i386.c
1 /*
2 * i386 micro operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include "exec-i386.h"
21
22 /* NOTE: data are not static to force relocation generation by GCC */
23
24 uint8_t parity_table[256] = {
25 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
26 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
27 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
28 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
29 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
30 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
31 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
32 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
33 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
34 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
35 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
36 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
37 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
38 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
39 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
40 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
41 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
42 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
43 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
44 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
45 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
46 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
47 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
48 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
49 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
50 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
51 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
54 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
55 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
56 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
57 };
58
59 /* modulo 17 table */
60 const uint8_t rclw_table[32] = {
61 0, 1, 2, 3, 4, 5, 6, 7,
62 8, 9,10,11,12,13,14,15,
63 16, 0, 1, 2, 3, 4, 5, 6,
64 7, 8, 9,10,11,12,13,14,
65 };
66
67 /* modulo 9 table */
68 const uint8_t rclb_table[32] = {
69 0, 1, 2, 3, 4, 5, 6, 7,
70 8, 0, 1, 2, 3, 4, 5, 6,
71 7, 8, 0, 1, 2, 3, 4, 5,
72 6, 7, 8, 0, 1, 2, 3, 4,
73 };
74
75 #ifdef USE_X86LDOUBLE
76 /* an array of Intel 80-bit FP constants, to be loaded via integer ops */
77 typedef unsigned short f15ld[5];
78 const f15ld f15rk[] =
79 {
80 /*0*/ {0x0000,0x0000,0x0000,0x0000,0x0000},
81 /*1*/ {0x0000,0x0000,0x0000,0x8000,0x3fff},
82 /*pi*/ {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
83 /*lg2*/ {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
84 /*ln2*/ {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
85 /*l2e*/ {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
86 /*l2t*/ {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
87 };
88 #else
89 /* the same, 64-bit version */
90 typedef unsigned short f15ld[4];
91 const f15ld f15rk[] =
92 {
93 #ifndef WORDS_BIGENDIAN
94 /*0*/ {0x0000,0x0000,0x0000,0x0000},
95 /*1*/ {0x0000,0x0000,0x0000,0x3ff0},
96 /*pi*/ {0x2d18,0x5444,0x21fb,0x4009},
97 /*lg2*/ {0x79ff,0x509f,0x4413,0x3fd3},
98 /*ln2*/ {0x39ef,0xfefa,0x2e42,0x3fe6},
99 /*l2e*/ {0x82fe,0x652b,0x1547,0x3ff7},
100 /*l2t*/ {0xa371,0x0979,0x934f,0x400a}
101 #else
102 /*0*/ {0x0000,0x0000,0x0000,0x0000},
103 /*1*/ {0x3ff0,0x0000,0x0000,0x0000},
104 /*pi*/ {0x4009,0x21fb,0x5444,0x2d18},
105 /*lg2*/ {0x3fd3,0x4413,0x509f,0x79ff},
106 /*ln2*/ {0x3fe6,0x2e42,0xfefa,0x39ef},
107 /*l2e*/ {0x3ff7,0x1547,0x652b,0x82fe},
108 /*l2t*/ {0x400a,0x934f,0x0979,0xa371}
109 #endif
110 };
111 #endif
112
113 /* n must be a constant to be efficient */
114 static inline int lshift(int x, int n)
115 {
116 if (n >= 0)
117 return x << n;
118 else
119 return x >> (-n);
120 }
121
122 /* exception support */
123 /* NOTE: not static to force relocation generation by GCC */
124 void raise_exception(int exception_index)
125 {
126 env->exception_index = exception_index;
127 longjmp(env->jmp_env, 1);
128 }
129
130 /* we define the various pieces of code used by the JIT */
131
132 #define REG EAX
133 #define REGNAME _EAX
134 #include "opreg_template.h"
135 #undef REG
136 #undef REGNAME
137
138 #define REG ECX
139 #define REGNAME _ECX
140 #include "opreg_template.h"
141 #undef REG
142 #undef REGNAME
143
144 #define REG EDX
145 #define REGNAME _EDX
146 #include "opreg_template.h"
147 #undef REG
148 #undef REGNAME
149
150 #define REG EBX
151 #define REGNAME _EBX
152 #include "opreg_template.h"
153 #undef REG
154 #undef REGNAME
155
156 #define REG ESP
157 #define REGNAME _ESP
158 #include "opreg_template.h"
159 #undef REG
160 #undef REGNAME
161
162 #define REG EBP
163 #define REGNAME _EBP
164 #include "opreg_template.h"
165 #undef REG
166 #undef REGNAME
167
168 #define REG ESI
169 #define REGNAME _ESI
170 #include "opreg_template.h"
171 #undef REG
172 #undef REGNAME
173
174 #define REG EDI
175 #define REGNAME _EDI
176 #include "opreg_template.h"
177 #undef REG
178 #undef REGNAME
179
180 /* operations */
181
182 void OPPROTO op_addl_T0_T1_cc(void)
183 {
184 CC_SRC = T0;
185 T0 += T1;
186 CC_DST = T0;
187 }
188
189 void OPPROTO op_orl_T0_T1_cc(void)
190 {
191 T0 |= T1;
192 CC_DST = T0;
193 }
194
195 void OPPROTO op_andl_T0_T1_cc(void)
196 {
197 T0 &= T1;
198 CC_DST = T0;
199 }
200
201 void OPPROTO op_subl_T0_T1_cc(void)
202 {
203 CC_SRC = T0;
204 T0 -= T1;
205 CC_DST = T0;
206 }
207
208 void OPPROTO op_xorl_T0_T1_cc(void)
209 {
210 T0 ^= T1;
211 CC_DST = T0;
212 }
213
214 void OPPROTO op_cmpl_T0_T1_cc(void)
215 {
216 CC_SRC = T0;
217 CC_DST = T0 - T1;
218 }
219
220 void OPPROTO op_notl_T0(void)
221 {
222 T0 = ~T0;
223 }
224
225 void OPPROTO op_negl_T0_cc(void)
226 {
227 CC_SRC = 0;
228 T0 = -T0;
229 CC_DST = T0;
230 }
231
232 void OPPROTO op_incl_T0_cc(void)
233 {
234 CC_SRC = cc_table[CC_OP].compute_c();
235 T0++;
236 CC_DST = T0;
237 }
238
239 void OPPROTO op_decl_T0_cc(void)
240 {
241 CC_SRC = cc_table[CC_OP].compute_c();
242 T0--;
243 CC_DST = T0;
244 }
245
246 void OPPROTO op_testl_T0_T1_cc(void)
247 {
248 CC_DST = T0 & T1;
249 }
250
251 void OPPROTO op_bswapl_T0(void)
252 {
253 T0 = bswap32(T0);
254 }
255
256 /* multiply/divide */
257 void OPPROTO op_mulb_AL_T0(void)
258 {
259 unsigned int res;
260 res = (uint8_t)EAX * (uint8_t)T0;
261 EAX = (EAX & 0xffff0000) | res;
262 CC_SRC = (res & 0xff00);
263 }
264
265 void OPPROTO op_imulb_AL_T0(void)
266 {
267 int res;
268 res = (int8_t)EAX * (int8_t)T0;
269 EAX = (EAX & 0xffff0000) | (res & 0xffff);
270 CC_SRC = (res != (int8_t)res);
271 }
272
273 void OPPROTO op_mulw_AX_T0(void)
274 {
275 unsigned int res;
276 res = (uint16_t)EAX * (uint16_t)T0;
277 EAX = (EAX & 0xffff0000) | (res & 0xffff);
278 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
279 CC_SRC = res >> 16;
280 }
281
282 void OPPROTO op_imulw_AX_T0(void)
283 {
284 int res;
285 res = (int16_t)EAX * (int16_t)T0;
286 EAX = (EAX & 0xffff0000) | (res & 0xffff);
287 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
288 CC_SRC = (res != (int16_t)res);
289 }
290
291 void OPPROTO op_mull_EAX_T0(void)
292 {
293 uint64_t res;
294 res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
295 EAX = res;
296 EDX = res >> 32;
297 CC_SRC = res >> 32;
298 }
299
300 void OPPROTO op_imull_EAX_T0(void)
301 {
302 int64_t res;
303 res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
304 EAX = res;
305 EDX = res >> 32;
306 CC_SRC = (res != (int32_t)res);
307 }
308
309 void OPPROTO op_imulw_T0_T1(void)
310 {
311 int res;
312 res = (int16_t)T0 * (int16_t)T1;
313 T0 = res;
314 CC_SRC = (res != (int16_t)res);
315 }
316
317 void OPPROTO op_imull_T0_T1(void)
318 {
319 int64_t res;
320 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
321 T0 = res;
322 CC_SRC = (res != (int32_t)res);
323 }
324
325 /* division, flags are undefined */
326 /* XXX: add exceptions for overflow & div by zero */
327 void OPPROTO op_divb_AL_T0(void)
328 {
329 unsigned int num, den, q, r;
330
331 num = (EAX & 0xffff);
332 den = (T0 & 0xff);
333 q = (num / den) & 0xff;
334 r = (num % den) & 0xff;
335 EAX = (EAX & 0xffff0000) | (r << 8) | q;
336 }
337
338 void OPPROTO op_idivb_AL_T0(void)
339 {
340 int num, den, q, r;
341
342 num = (int16_t)EAX;
343 den = (int8_t)T0;
344 q = (num / den) & 0xff;
345 r = (num % den) & 0xff;
346 EAX = (EAX & 0xffff0000) | (r << 8) | q;
347 }
348
349 void OPPROTO op_divw_AX_T0(void)
350 {
351 unsigned int num, den, q, r;
352
353 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
354 den = (T0 & 0xffff);
355 q = (num / den) & 0xffff;
356 r = (num % den) & 0xffff;
357 EAX = (EAX & 0xffff0000) | q;
358 EDX = (EDX & 0xffff0000) | r;
359 }
360
361 void OPPROTO op_idivw_AX_T0(void)
362 {
363 int num, den, q, r;
364
365 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
366 den = (int16_t)T0;
367 q = (num / den) & 0xffff;
368 r = (num % den) & 0xffff;
369 EAX = (EAX & 0xffff0000) | q;
370 EDX = (EDX & 0xffff0000) | r;
371 }
372
373 void OPPROTO op_divl_EAX_T0(void)
374 {
375 unsigned int den, q, r;
376 uint64_t num;
377
378 num = EAX | ((uint64_t)EDX << 32);
379 den = T0;
380 q = (num / den);
381 r = (num % den);
382 EAX = q;
383 EDX = r;
384 }
385
386 void OPPROTO op_idivl_EAX_T0(void)
387 {
388 int den, q, r;
389 int64_t num;
390
391 num = EAX | ((uint64_t)EDX << 32);
392 den = T0;
393 q = (num / den);
394 r = (num % den);
395 EAX = q;
396 EDX = r;
397 }
398
399 /* constant load */
400
401 void OPPROTO op_movl_T0_im(void)
402 {
403 T0 = PARAM1;
404 }
405
406 void OPPROTO op_movl_T1_im(void)
407 {
408 T1 = PARAM1;
409 }
410
411 void OPPROTO op_movl_A0_im(void)
412 {
413 A0 = PARAM1;
414 }
415
416 void OPPROTO op_addl_A0_im(void)
417 {
418 A0 += PARAM1;
419 }
420
421 void OPPROTO op_andl_A0_ffff(void)
422 {
423 A0 = A0 & 0xffff;
424 }
425
426 /* memory access */
427
428 void OPPROTO op_ldub_T0_A0(void)
429 {
430 T0 = ldub((uint8_t *)A0);
431 }
432
433 void OPPROTO op_ldsb_T0_A0(void)
434 {
435 T0 = ldsb((int8_t *)A0);
436 }
437
438 void OPPROTO op_lduw_T0_A0(void)
439 {
440 T0 = lduw((uint8_t *)A0);
441 }
442
443 void OPPROTO op_ldsw_T0_A0(void)
444 {
445 T0 = ldsw((int8_t *)A0);
446 }
447
448 void OPPROTO op_ldl_T0_A0(void)
449 {
450 T0 = ldl((uint8_t *)A0);
451 }
452
453 void OPPROTO op_ldub_T1_A0(void)
454 {
455 T1 = ldub((uint8_t *)A0);
456 }
457
458 void OPPROTO op_ldsb_T1_A0(void)
459 {
460 T1 = ldsb((int8_t *)A0);
461 }
462
463 void OPPROTO op_lduw_T1_A0(void)
464 {
465 T1 = lduw((uint8_t *)A0);
466 }
467
468 void OPPROTO op_ldsw_T1_A0(void)
469 {
470 T1 = ldsw((int8_t *)A0);
471 }
472
473 void OPPROTO op_ldl_T1_A0(void)
474 {
475 T1 = ldl((uint8_t *)A0);
476 }
477
478 void OPPROTO op_stb_T0_A0(void)
479 {
480 stb((uint8_t *)A0, T0);
481 }
482
483 void OPPROTO op_stw_T0_A0(void)
484 {
485 stw((uint8_t *)A0, T0);
486 }
487
488 void OPPROTO op_stl_T0_A0(void)
489 {
490 stl((uint8_t *)A0, T0);
491 }
492
493 /* used for bit operations */
494
495 void OPPROTO op_add_bitw_A0_T1(void)
496 {
497 A0 += ((int32_t)T1 >> 4) << 1;
498 }
499
500 void OPPROTO op_add_bitl_A0_T1(void)
501 {
502 A0 += ((int32_t)T1 >> 5) << 2;
503 }
504
505 /* indirect jump */
506
507 void OPPROTO op_jmp_T0(void)
508 {
509 PC = T0;
510 }
511
512 void OPPROTO op_jmp_im(void)
513 {
514 PC = PARAM1;
515 }
516
517 void OPPROTO op_int_im(void)
518 {
519 PC = PARAM1;
520 raise_exception(EXCP0D_GPF);
521 }
522
523 void OPPROTO op_int3(void)
524 {
525 PC = PARAM1;
526 raise_exception(EXCP03_INT3);
527 }
528
529 void OPPROTO op_into(void)
530 {
531 int eflags;
532 eflags = cc_table[CC_OP].compute_all();
533 if (eflags & CC_O) {
534 PC = PARAM1;
535 raise_exception(EXCP04_INTO);
536 } else {
537 PC = PARAM2;
538 }
539 }
540
541 /* string ops */
542
543 #define ldul ldl
544
545 #define SHIFT 0
546 #include "ops_template.h"
547 #undef SHIFT
548
549 #define SHIFT 1
550 #include "ops_template.h"
551 #undef SHIFT
552
553 #define SHIFT 2
554 #include "ops_template.h"
555 #undef SHIFT
556
557 /* sign extend */
558
559 void OPPROTO op_movsbl_T0_T0(void)
560 {
561 T0 = (int8_t)T0;
562 }
563
564 void OPPROTO op_movzbl_T0_T0(void)
565 {
566 T0 = (uint8_t)T0;
567 }
568
569 void OPPROTO op_movswl_T0_T0(void)
570 {
571 T0 = (int16_t)T0;
572 }
573
574 void OPPROTO op_movzwl_T0_T0(void)
575 {
576 T0 = (uint16_t)T0;
577 }
578
579 void OPPROTO op_movswl_EAX_AX(void)
580 {
581 EAX = (int16_t)EAX;
582 }
583
584 void OPPROTO op_movsbw_AX_AL(void)
585 {
586 EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
587 }
588
589 void OPPROTO op_movslq_EDX_EAX(void)
590 {
591 EDX = (int32_t)EAX >> 31;
592 }
593
594 void OPPROTO op_movswl_DX_AX(void)
595 {
596 EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
597 }
598
599 /* push/pop */
600 /* XXX: add 16 bit operand/16 bit seg variants */
601
602 void op_pushl_T0(void)
603 {
604 uint32_t offset;
605 offset = ESP - 4;
606 stl((void *)offset, T0);
607 /* modify ESP after to handle exceptions correctly */
608 ESP = offset;
609 }
610
611 void op_pushl_T1(void)
612 {
613 uint32_t offset;
614 offset = ESP - 4;
615 stl((void *)offset, T1);
616 /* modify ESP after to handle exceptions correctly */
617 ESP = offset;
618 }
619
620 void op_popl_T0(void)
621 {
622 T0 = ldl((void *)ESP);
623 ESP += 4;
624 }
625
626 void op_addl_ESP_im(void)
627 {
628 ESP += PARAM1;
629 }
630
631 void op_pushal(void)
632 {
633 uint8_t *sp;
634 sp = (void *)(ESP - 32);
635 stl(sp, EDI);
636 stl(sp + 4, ESI);
637 stl(sp + 8, EBP);
638 stl(sp + 12, ESP);
639 stl(sp + 16, EBX);
640 stl(sp + 20, EDX);
641 stl(sp + 24, ECX);
642 stl(sp + 28, EAX);
643 ESP = (unsigned long)sp;
644 }
645
646 void op_pushaw(void)
647 {
648 uint8_t *sp;
649 sp = (void *)(ESP - 16);
650 stw(sp, EDI);
651 stw(sp + 2, ESI);
652 stw(sp + 4, EBP);
653 stw(sp + 6, ESP);
654 stw(sp + 8, EBX);
655 stw(sp + 10, EDX);
656 stw(sp + 12, ECX);
657 stw(sp + 14, EAX);
658 ESP = (unsigned long)sp;
659 }
660
661 void op_popal(void)
662 {
663 uint8_t *sp;
664 sp = (void *)ESP;
665 EDI = ldl(sp);
666 ESI = ldl(sp + 4);
667 EBP = ldl(sp + 8);
668 EBX = ldl(sp + 16);
669 EDX = ldl(sp + 20);
670 ECX = ldl(sp + 24);
671 EAX = ldl(sp + 28);
672 ESP = (unsigned long)sp + 32;
673 }
674
675 void op_popaw(void)
676 {
677 uint8_t *sp;
678 sp = (void *)ESP;
679 EDI = ldl(sp);
680 ESI = ldl(sp + 2);
681 EBP = ldl(sp + 4);
682 EBX = ldl(sp + 8);
683 EDX = ldl(sp + 10);
684 ECX = ldl(sp + 12);
685 EAX = ldl(sp + 14);
686 ESP = (unsigned long)sp + 16;
687 }
688
689 void op_enterl(void)
690 {
691 unsigned int bp, frame_temp, level;
692 uint8_t *sp;
693
694 sp = (void *)ESP;
695 bp = EBP;
696 sp -= 4;
697 stl(sp, bp);
698 frame_temp = (unsigned int)sp;
699 level = PARAM2;
700 if (level) {
701 while (level--) {
702 bp -= 4;
703 sp -= 4;
704 stl(sp, bp);
705 }
706 sp -= 4;
707 stl(sp, frame_temp);
708 }
709 EBP = frame_temp;
710 sp -= PARAM1;
711 ESP = (int)sp;
712 }
713
714 /* rdtsc */
715 #ifndef __i386__
716 uint64_t emu_time;
717 #endif
718 void op_rdtsc(void)
719 {
720 uint64_t val;
721 #ifdef __i386__
722 asm("rdtsc" : "=A" (val));
723 #else
724 /* better than nothing: the time increases */
725 val = emu_time++;
726 #endif
727 EAX = val;
728 EDX = val >> 32;
729 }
730
731 /* bcd */
732
733 /* XXX: exception */
734 void OPPROTO op_aam(void)
735 {
736 int base = PARAM1;
737 int al, ah;
738 al = EAX & 0xff;
739 ah = al / base;
740 al = al % base;
741 EAX = (EAX & ~0xffff) | al | (ah << 8);
742 CC_DST = al;
743 }
744
745 void OPPROTO op_aad(void)
746 {
747 int base = PARAM1;
748 int al, ah;
749 al = EAX & 0xff;
750 ah = (EAX >> 8) & 0xff;
751 al = ((ah * base) + al) & 0xff;
752 EAX = (EAX & ~0xffff) | al;
753 CC_DST = al;
754 }
755
756 void OPPROTO op_aaa(void)
757 {
758 int icarry;
759 int al, ah, af;
760 int eflags;
761
762 eflags = cc_table[CC_OP].compute_all();
763 af = eflags & CC_A;
764 al = EAX & 0xff;
765 ah = (EAX >> 8) & 0xff;
766
767 icarry = (al > 0xf9);
768 if (((al & 0x0f) > 9 ) || af) {
769 al = (al + 6) & 0x0f;
770 ah = (ah + 1 + icarry) & 0xff;
771 eflags |= CC_C | CC_A;
772 } else {
773 eflags &= ~(CC_C | CC_A);
774 al &= 0x0f;
775 }
776 EAX = (EAX & ~0xffff) | al | (ah << 8);
777 CC_SRC = eflags;
778 }
779
780 void OPPROTO op_aas(void)
781 {
782 int icarry;
783 int al, ah, af;
784 int eflags;
785
786 eflags = cc_table[CC_OP].compute_all();
787 af = eflags & CC_A;
788 al = EAX & 0xff;
789 ah = (EAX >> 8) & 0xff;
790
791 icarry = (al < 6);
792 if (((al & 0x0f) > 9 ) || af) {
793 al = (al - 6) & 0x0f;
794 ah = (ah - 1 - icarry) & 0xff;
795 eflags |= CC_C | CC_A;
796 } else {
797 eflags &= ~(CC_C | CC_A);
798 al &= 0x0f;
799 }
800 EAX = (EAX & ~0xffff) | al | (ah << 8);
801 CC_SRC = eflags;
802 }
803
804 void OPPROTO op_daa(void)
805 {
806 int al, af, cf;
807 int eflags;
808
809 eflags = cc_table[CC_OP].compute_all();
810 cf = eflags & CC_C;
811 af = eflags & CC_A;
812 al = EAX & 0xff;
813
814 eflags = 0;
815 if (((al & 0x0f) > 9 ) || af) {
816 al = (al + 6) & 0xff;
817 eflags |= CC_A;
818 }
819 if ((al > 0x9f) || cf) {
820 al = (al + 0x60) & 0xff;
821 eflags |= CC_C;
822 }
823 EAX = (EAX & ~0xff) | al;
824 /* well, speed is not an issue here, so we compute the flags by hand */
825 eflags |= (al == 0) << 6; /* zf */
826 eflags |= parity_table[al]; /* pf */
827 eflags |= (al & 0x80); /* sf */
828 CC_SRC = eflags;
829 }
830
831 void OPPROTO op_das(void)
832 {
833 int al, al1, af, cf;
834 int eflags;
835
836 eflags = cc_table[CC_OP].compute_all();
837 cf = eflags & CC_C;
838 af = eflags & CC_A;
839 al = EAX & 0xff;
840
841 eflags = 0;
842 al1 = al;
843 if (((al & 0x0f) > 9 ) || af) {
844 eflags |= CC_A;
845 if (al < 6 || cf)
846 eflags |= CC_C;
847 al = (al - 6) & 0xff;
848 }
849 if ((al1 > 0x99) || cf) {
850 al = (al - 0x60) & 0xff;
851 eflags |= CC_C;
852 }
853 EAX = (EAX & ~0xff) | al;
854 /* well, speed is not an issue here, so we compute the flags by hand */
855 eflags |= (al == 0) << 6; /* zf */
856 eflags |= parity_table[al]; /* pf */
857 eflags |= (al & 0x80); /* sf */
858 CC_SRC = eflags;
859 }
860
861 /* segment handling */
862
863 void load_seg(int seg_reg, int selector)
864 {
865 SegmentCache *sc;
866 SegmentDescriptorTable *dt;
867 int index;
868 uint32_t e1, e2;
869 uint8_t *ptr;
870
871 env->segs[seg_reg] = selector;
872 sc = &env->seg_cache[seg_reg];
873 if (env->vm86) {
874 sc->base = (void *)(selector << 4);
875 sc->limit = 0xffff;
876 sc->seg_32bit = 0;
877 } else {
878 if (selector & 0x4)
879 dt = &env->ldt;
880 else
881 dt = &env->gdt;
882 index = selector & ~7;
883 if ((index + 7) > dt->limit)
884 raise_exception(EXCP0D_GPF);
885 ptr = dt->base + index;
886 e1 = ldl(ptr);
887 e2 = ldl(ptr + 4);
888 sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
889 sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
890 if (e2 & (1 << 23))
891 sc->limit = (sc->limit << 12) | 0xfff;
892 sc->seg_32bit = (e2 >> 22) & 1;
893 #if 0
894 fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n",
895 selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
896 #endif
897 }
898 }
899
900 void OPPROTO op_movl_seg_T0(void)
901 {
902 load_seg(PARAM1, T0 & 0xffff);
903 }
904
905 void OPPROTO op_movl_T0_seg(void)
906 {
907 T0 = env->segs[PARAM1];
908 }
909
910 void OPPROTO op_addl_A0_seg(void)
911 {
912 A0 += *(unsigned long *)((char *)env + PARAM1);
913 }
914
915 /* flags handling */
916
917 /* slow jumps cases (compute x86 flags) */
918 void OPPROTO op_jo_cc(void)
919 {
920 int eflags;
921 eflags = cc_table[CC_OP].compute_all();
922 if (eflags & CC_O)
923 PC = PARAM1;
924 else
925 PC = PARAM2;
926 FORCE_RET();
927 }
928
929 void OPPROTO op_jb_cc(void)
930 {
931 if (cc_table[CC_OP].compute_c())
932 PC = PARAM1;
933 else
934 PC = PARAM2;
935 FORCE_RET();
936 }
937
938 void OPPROTO op_jz_cc(void)
939 {
940 int eflags;
941 eflags = cc_table[CC_OP].compute_all();
942 if (eflags & CC_Z)
943 PC = PARAM1;
944 else
945 PC = PARAM2;
946 FORCE_RET();
947 }
948
949 void OPPROTO op_jbe_cc(void)
950 {
951 int eflags;
952 eflags = cc_table[CC_OP].compute_all();
953 if (eflags & (CC_Z | CC_C))
954 PC = PARAM1;
955 else
956 PC = PARAM2;
957 FORCE_RET();
958 }
959
960 void OPPROTO op_js_cc(void)
961 {
962 int eflags;
963 eflags = cc_table[CC_OP].compute_all();
964 if (eflags & CC_S)
965 PC = PARAM1;
966 else
967 PC = PARAM2;
968 FORCE_RET();
969 }
970
971 void OPPROTO op_jp_cc(void)
972 {
973 int eflags;
974 eflags = cc_table[CC_OP].compute_all();
975 if (eflags & CC_P)
976 PC = PARAM1;
977 else
978 PC = PARAM2;
979 FORCE_RET();
980 }
981
982 void OPPROTO op_jl_cc(void)
983 {
984 int eflags;
985 eflags = cc_table[CC_OP].compute_all();
986 if ((eflags ^ (eflags >> 4)) & 0x80)
987 PC = PARAM1;
988 else
989 PC = PARAM2;
990 FORCE_RET();
991 }
992
993 void OPPROTO op_jle_cc(void)
994 {
995 int eflags;
996 eflags = cc_table[CC_OP].compute_all();
997 if (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z))
998 PC = PARAM1;
999 else
1000 PC = PARAM2;
1001 FORCE_RET();
1002 }
1003
1004 /* slow set cases (compute x86 flags) */
1005 void OPPROTO op_seto_T0_cc(void)
1006 {
1007 int eflags;
1008 eflags = cc_table[CC_OP].compute_all();
1009 T0 = (eflags >> 11) & 1;
1010 }
1011
1012 void OPPROTO op_setb_T0_cc(void)
1013 {
1014 T0 = cc_table[CC_OP].compute_c();
1015 }
1016
1017 void OPPROTO op_setz_T0_cc(void)
1018 {
1019 int eflags;
1020 eflags = cc_table[CC_OP].compute_all();
1021 T0 = (eflags >> 6) & 1;
1022 }
1023
1024 void OPPROTO op_setbe_T0_cc(void)
1025 {
1026 int eflags;
1027 eflags = cc_table[CC_OP].compute_all();
1028 T0 = (eflags & (CC_Z | CC_C)) != 0;
1029 }
1030
1031 void OPPROTO op_sets_T0_cc(void)
1032 {
1033 int eflags;
1034 eflags = cc_table[CC_OP].compute_all();
1035 T0 = (eflags >> 7) & 1;
1036 }
1037
1038 void OPPROTO op_setp_T0_cc(void)
1039 {
1040 int eflags;
1041 eflags = cc_table[CC_OP].compute_all();
1042 T0 = (eflags >> 2) & 1;
1043 }
1044
1045 void OPPROTO op_setl_T0_cc(void)
1046 {
1047 int eflags;
1048 eflags = cc_table[CC_OP].compute_all();
1049 T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1050 }
1051
1052 void OPPROTO op_setle_T0_cc(void)
1053 {
1054 int eflags;
1055 eflags = cc_table[CC_OP].compute_all();
1056 T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1057 }
1058
1059 void OPPROTO op_xor_T0_1(void)
1060 {
1061 T0 ^= 1;
1062 }
1063
1064 void OPPROTO op_set_cc_op(void)
1065 {
1066 CC_OP = PARAM1;
1067 }
1068
1069 void OPPROTO op_movl_eflags_T0(void)
1070 {
1071 CC_SRC = T0;
1072 DF = 1 - (2 * ((T0 >> 10) & 1));
1073 }
1074
1075 /* XXX: compute only O flag */
1076 void OPPROTO op_movb_eflags_T0(void)
1077 {
1078 int of;
1079 of = cc_table[CC_OP].compute_all() & CC_O;
1080 CC_SRC = T0 | of;
1081 }
1082
1083 void OPPROTO op_movl_T0_eflags(void)
1084 {
1085 T0 = cc_table[CC_OP].compute_all();
1086 T0 |= (DF & DIRECTION_FLAG);
1087 }
1088
1089 void OPPROTO op_cld(void)
1090 {
1091 DF = 1;
1092 }
1093
1094 void OPPROTO op_std(void)
1095 {
1096 DF = -1;
1097 }
1098
1099 void OPPROTO op_clc(void)
1100 {
1101 int eflags;
1102 eflags = cc_table[CC_OP].compute_all();
1103 eflags &= ~CC_C;
1104 CC_SRC = eflags;
1105 }
1106
1107 void OPPROTO op_stc(void)
1108 {
1109 int eflags;
1110 eflags = cc_table[CC_OP].compute_all();
1111 eflags |= CC_C;
1112 CC_SRC = eflags;
1113 }
1114
1115 void OPPROTO op_cmc(void)
1116 {
1117 int eflags;
1118 eflags = cc_table[CC_OP].compute_all();
1119 eflags ^= CC_C;
1120 CC_SRC = eflags;
1121 }
1122
1123 void OPPROTO op_salc(void)
1124 {
1125 int cf;
1126 cf = cc_table[CC_OP].compute_c();
1127 EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1128 }
1129
1130 static int compute_all_eflags(void)
1131 {
1132 return CC_SRC;
1133 }
1134
1135 static int compute_c_eflags(void)
1136 {
1137 return CC_SRC & CC_C;
1138 }
1139
1140 static int compute_c_mul(void)
1141 {
1142 int cf;
1143 cf = (CC_SRC != 0);
1144 return cf;
1145 }
1146
1147 static int compute_all_mul(void)
1148 {
1149 int cf, pf, af, zf, sf, of;
1150 cf = (CC_SRC != 0);
1151 pf = 0; /* undefined */
1152 af = 0; /* undefined */
1153 zf = 0; /* undefined */
1154 sf = 0; /* undefined */
1155 of = cf << 11;
1156 return cf | pf | af | zf | sf | of;
1157 }
1158
1159 CCTable cc_table[CC_OP_NB] = {
1160 [CC_OP_DYNAMIC] = { /* should never happen */ },
1161
1162 [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1163
1164 [CC_OP_MUL] = { compute_all_mul, compute_c_mul },
1165
1166 [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1167 [CC_OP_ADDW] = { compute_all_addw, compute_c_addw },
1168 [CC_OP_ADDL] = { compute_all_addl, compute_c_addl },
1169
1170 [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1171 [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw },
1172 [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl },
1173
1174 [CC_OP_SUBB] = { compute_all_subb, compute_c_subb },
1175 [CC_OP_SUBW] = { compute_all_subw, compute_c_subw },
1176 [CC_OP_SUBL] = { compute_all_subl, compute_c_subl },
1177
1178 [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb },
1179 [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw },
1180 [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl },
1181
1182 [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1183 [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1184 [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1185
1186 [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1187 [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1188 [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1189
1190 [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1191 [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1192 [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1193
1194 [CC_OP_SHLB] = { compute_all_shlb, compute_c_shll },
1195 [CC_OP_SHLW] = { compute_all_shlw, compute_c_shll },
1196 [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1197
1198 [CC_OP_SARB] = { compute_all_sarb, compute_c_shll },
1199 [CC_OP_SARW] = { compute_all_sarw, compute_c_shll },
1200 [CC_OP_SARL] = { compute_all_sarl, compute_c_shll },
1201 };
1202
1203 /* floating point support */
1204
1205 #ifdef USE_X86LDOUBLE
1206 /* use long double functions */
1207 #define lrint lrintl
1208 #define llrint llrintl
1209 #define fabs fabsl
1210 #define sin sinl
1211 #define cos cosl
1212 #define sqrt sqrtl
1213 #define pow powl
1214 #define log logl
1215 #define tan tanl
1216 #define atan2 atan2l
1217 #define floor floorl
1218 #define ceil ceill
1219 #define rint rintl
1220 #endif
1221
1222 extern int lrint(CPU86_LDouble x);
1223 extern int64_t llrint(CPU86_LDouble x);
1224 extern CPU86_LDouble fabs(CPU86_LDouble x);
1225 extern CPU86_LDouble sin(CPU86_LDouble x);
1226 extern CPU86_LDouble cos(CPU86_LDouble x);
1227 extern CPU86_LDouble sqrt(CPU86_LDouble x);
1228 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
1229 extern CPU86_LDouble log(CPU86_LDouble x);
1230 extern CPU86_LDouble tan(CPU86_LDouble x);
1231 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
1232 extern CPU86_LDouble floor(CPU86_LDouble x);
1233 extern CPU86_LDouble ceil(CPU86_LDouble x);
1234 extern CPU86_LDouble rint(CPU86_LDouble x);
1235
1236 #define RC_MASK 0xc00
1237 #define RC_NEAR 0x000
1238 #define RC_DOWN 0x400
1239 #define RC_UP 0x800
1240 #define RC_CHOP 0xc00
1241
1242 #define MAXTAN 9223372036854775808.0
1243
1244 #ifdef USE_X86LDOUBLE
1245
1246 /* only for x86 */
1247 typedef union {
1248 long double d;
1249 struct {
1250 unsigned long long lower;
1251 unsigned short upper;
1252 } l;
1253 } CPU86_LDoubleU;
1254
1255 /* the following deal with x86 long double-precision numbers */
1256 #define MAXEXPD 0x7fff
1257 #define EXPBIAS 16383
1258 #define EXPD(fp) (fp.l.upper & 0x7fff)
1259 #define SIGND(fp) ((fp.l.upper) & 0x8000)
1260 #define MANTD(fp) (fp.l.lower)
1261 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
1262
1263 #else
1264
1265 typedef union {
1266 double d;
1267 #ifndef WORDS_BIGENDIAN
1268 struct {
1269 unsigned long lower;
1270 long upper;
1271 } l;
1272 #else
1273 struct {
1274 long upper;
1275 unsigned long lower;
1276 } l;
1277 #endif
1278 long long ll;
1279 } CPU86_LDoubleU;
1280
1281 /* the following deal with IEEE double-precision numbers */
1282 #define MAXEXPD 0x7ff
1283 #define EXPBIAS 1023
1284 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
1285 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
1286 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
1287 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
1288 #endif
1289
1290 /* fp load FT0 */
1291
1292 void OPPROTO op_flds_FT0_A0(void)
1293 {
1294 FT0 = ldfl((void *)A0);
1295 }
1296
1297 void OPPROTO op_fldl_FT0_A0(void)
1298 {
1299 FT0 = ldfq((void *)A0);
1300 }
1301
1302 void OPPROTO op_fild_FT0_A0(void)
1303 {
1304 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1305 }
1306
1307 void OPPROTO op_fildl_FT0_A0(void)
1308 {
1309 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1310 }
1311
1312 void OPPROTO op_fildll_FT0_A0(void)
1313 {
1314 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1315 }
1316
1317 /* fp load ST0 */
1318
1319 void OPPROTO op_flds_ST0_A0(void)
1320 {
1321 ST0 = ldfl((void *)A0);
1322 }
1323
1324 void OPPROTO op_fldl_ST0_A0(void)
1325 {
1326 ST0 = ldfq((void *)A0);
1327 }
1328
1329 #ifdef USE_X86LDOUBLE
1330 void OPPROTO op_fldt_ST0_A0(void)
1331 {
1332 ST0 = *(long double *)A0;
1333 }
1334 #else
1335 void helper_fldt_ST0_A0(void)
1336 {
1337 CPU86_LDoubleU temp;
1338 int upper, e;
1339 /* mantissa */
1340 upper = lduw((uint8_t *)A0 + 8);
1341 /* XXX: handle overflow ? */
1342 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
1343 e |= (upper >> 4) & 0x800; /* sign */
1344 temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
1345 ST0 = temp.d;
1346 }
1347
1348 void OPPROTO op_fldt_ST0_A0(void)
1349 {
1350 helper_fldt_ST0_A0();
1351 }
1352 #endif
1353
1354 void OPPROTO op_fild_ST0_A0(void)
1355 {
1356 ST0 = (CPU86_LDouble)ldsw((void *)A0);
1357 }
1358
1359 void OPPROTO op_fildl_ST0_A0(void)
1360 {
1361 ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1362 }
1363
1364 void OPPROTO op_fildll_ST0_A0(void)
1365 {
1366 ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1367 }
1368
1369 /* fp store */
1370
1371 void OPPROTO op_fsts_ST0_A0(void)
1372 {
1373 stfl((void *)A0, (float)ST0);
1374 }
1375
1376 void OPPROTO op_fstl_ST0_A0(void)
1377 {
1378 stfq((void *)A0, (double)ST0);
1379 }
1380
1381 #ifdef USE_X86LDOUBLE
1382 void OPPROTO op_fstt_ST0_A0(void)
1383 {
1384 *(long double *)A0 = ST0;
1385 }
1386 #else
1387 void helper_fstt_ST0_A0(void)
1388 {
1389 CPU86_LDoubleU temp;
1390 int e;
1391 temp.d = ST0;
1392 /* mantissa */
1393 stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
1394 /* exponent + sign */
1395 e = EXPD(temp) - EXPBIAS + 16383;
1396 e |= SIGND(temp) >> 16;
1397 stw((uint8_t *)A0 + 8, e);
1398 }
1399
1400 void OPPROTO op_fstt_ST0_A0(void)
1401 {
1402 helper_fstt_ST0_A0();
1403 }
1404 #endif
1405
1406 void OPPROTO op_fist_ST0_A0(void)
1407 {
1408 int val;
1409 val = lrint(ST0);
1410 stw((void *)A0, val);
1411 }
1412
1413 void OPPROTO op_fistl_ST0_A0(void)
1414 {
1415 int val;
1416 val = lrint(ST0);
1417 stl((void *)A0, val);
1418 }
1419
1420 void OPPROTO op_fistll_ST0_A0(void)
1421 {
1422 int64_t val;
1423 val = llrint(ST0);
1424 stq((void *)A0, val);
1425 }
1426
1427 /* BCD ops */
1428
1429 #define MUL10(iv) ( iv + iv + (iv << 3) )
1430
1431 void helper_fbld_ST0_A0(void)
1432 {
1433 uint8_t *seg;
1434 CPU86_LDouble fpsrcop;
1435 int m32i;
1436 unsigned int v;
1437
1438 /* in this code, seg/m32i will be used as temporary ptr/int */
1439 seg = (uint8_t *)A0 + 8;
1440 v = ldub(seg--);
1441 /* XXX: raise exception */
1442 if (v != 0)
1443 return;
1444 v = ldub(seg--);
1445 /* XXX: raise exception */
1446 if ((v & 0xf0) != 0)
1447 return;
1448 m32i = v; /* <-- d14 */
1449 v = ldub(seg--);
1450 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d13 */
1451 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
1452 v = ldub(seg--);
1453 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d11 */
1454 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
1455 v = ldub(seg--);
1456 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d9 */
1457 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
1458 fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
1459
1460 v = ldub(seg--);
1461 m32i = (v >> 4); /* <-- d7 */
1462 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
1463 v = ldub(seg--);
1464 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d5 */
1465 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
1466 v = ldub(seg--);
1467 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d3 */
1468 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
1469 v = ldub(seg);
1470 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d1 */
1471 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
1472 fpsrcop += ((CPU86_LDouble)m32i);
1473 if ( ldub(seg+9) & 0x80 )
1474 fpsrcop = -fpsrcop;
1475 ST0 = fpsrcop;
1476 }
1477
1478 void OPPROTO op_fbld_ST0_A0(void)
1479 {
1480 helper_fbld_ST0_A0();
1481 }
1482
1483 void helper_fbst_ST0_A0(void)
1484 {
1485 CPU86_LDouble fptemp;
1486 CPU86_LDouble fpsrcop;
1487 int v;
1488 uint8_t *mem_ref, *mem_end;
1489
1490 fpsrcop = rint(ST0);
1491 mem_ref = (uint8_t *)A0;
1492 mem_end = mem_ref + 8;
1493 if ( fpsrcop < 0.0 ) {
1494 stw(mem_end, 0x8000);
1495 fpsrcop = -fpsrcop;
1496 } else {
1497 stw(mem_end, 0x0000);
1498 }
1499 while (mem_ref < mem_end) {
1500 if (fpsrcop == 0.0)
1501 break;
1502 fptemp = floor(fpsrcop/10.0);
1503 v = ((int)(fpsrcop - fptemp*10.0));
1504 if (fptemp == 0.0) {
1505 stb(mem_ref++, v);
1506 break;
1507 }
1508 fpsrcop = fptemp;
1509 fptemp = floor(fpsrcop/10.0);
1510 v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
1511 stb(mem_ref++, v);
1512 fpsrcop = fptemp;
1513 }
1514 while (mem_ref < mem_end) {
1515 stb(mem_ref++, 0);
1516 }
1517 }
1518
1519 void OPPROTO op_fbst_ST0_A0(void)
1520 {
1521 helper_fbst_ST0_A0();
1522 }
1523
1524 /* FPU move */
1525
1526 static inline void fpush(void)
1527 {
1528 env->fpstt = (env->fpstt - 1) & 7;
1529 env->fptags[env->fpstt] = 0; /* validate stack entry */
1530 }
1531
1532 static inline void fpop(void)
1533 {
1534 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
1535 env->fpstt = (env->fpstt + 1) & 7;
1536 }
1537
1538 void OPPROTO op_fpush(void)
1539 {
1540 fpush();
1541 }
1542
1543 void OPPROTO op_fpop(void)
1544 {
1545 fpop();
1546 }
1547
1548 void OPPROTO op_fdecstp(void)
1549 {
1550 env->fpstt = (env->fpstt - 1) & 7;
1551 env->fpus &= (~0x4700);
1552 }
1553
1554 void OPPROTO op_fincstp(void)
1555 {
1556 env->fpstt = (env->fpstt + 1) & 7;
1557 env->fpus &= (~0x4700);
1558 }
1559
1560 void OPPROTO op_fmov_ST0_FT0(void)
1561 {
1562 ST0 = FT0;
1563 }
1564
1565 void OPPROTO op_fmov_FT0_STN(void)
1566 {
1567 FT0 = ST(PARAM1);
1568 }
1569
1570 void OPPROTO op_fmov_ST0_STN(void)
1571 {
1572 ST0 = ST(PARAM1);
1573 }
1574
1575 void OPPROTO op_fmov_STN_ST0(void)
1576 {
1577 ST(PARAM1) = ST0;
1578 }
1579
1580 void OPPROTO op_fxchg_ST0_STN(void)
1581 {
1582 CPU86_LDouble tmp;
1583 tmp = ST(PARAM1);
1584 ST(PARAM1) = ST0;
1585 ST0 = tmp;
1586 }
1587
1588 /* FPU operations */
1589
1590 /* XXX: handle nans */
1591 void OPPROTO op_fcom_ST0_FT0(void)
1592 {
1593 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
1594 if (ST0 < FT0)
1595 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
1596 else if (ST0 == FT0)
1597 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
1598 FORCE_RET();
1599 }
1600
1601 /* XXX: handle nans */
1602 void OPPROTO op_fucom_ST0_FT0(void)
1603 {
1604 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
1605 if (ST0 < FT0)
1606 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
1607 else if (ST0 == FT0)
1608 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
1609 FORCE_RET();
1610 }
1611
1612 void OPPROTO op_fadd_ST0_FT0(void)
1613 {
1614 ST0 += FT0;
1615 }
1616
1617 void OPPROTO op_fmul_ST0_FT0(void)
1618 {
1619 ST0 *= FT0;
1620 }
1621
1622 void OPPROTO op_fsub_ST0_FT0(void)
1623 {
1624 ST0 -= FT0;
1625 }
1626
1627 void OPPROTO op_fsubr_ST0_FT0(void)
1628 {
1629 ST0 = FT0 - ST0;
1630 }
1631
1632 void OPPROTO op_fdiv_ST0_FT0(void)
1633 {
1634 ST0 /= FT0;
1635 }
1636
1637 void OPPROTO op_fdivr_ST0_FT0(void)
1638 {
1639 ST0 = FT0 / ST0;
1640 }
1641
1642 /* fp operations between STN and ST0 */
1643
1644 void OPPROTO op_fadd_STN_ST0(void)
1645 {
1646 ST(PARAM1) += ST0;
1647 }
1648
1649 void OPPROTO op_fmul_STN_ST0(void)
1650 {
1651 ST(PARAM1) *= ST0;
1652 }
1653
1654 void OPPROTO op_fsub_STN_ST0(void)
1655 {
1656 ST(PARAM1) -= ST0;
1657 }
1658
1659 void OPPROTO op_fsubr_STN_ST0(void)
1660 {
1661 CPU86_LDouble *p;
1662 p = &ST(PARAM1);
1663 *p = ST0 - *p;
1664 }
1665
1666 void OPPROTO op_fdiv_STN_ST0(void)
1667 {
1668 ST(PARAM1) /= ST0;
1669 }
1670
1671 void OPPROTO op_fdivr_STN_ST0(void)
1672 {
1673 CPU86_LDouble *p;
1674 p = &ST(PARAM1);
1675 *p = ST0 / *p;
1676 }
1677
1678 /* misc FPU operations */
1679 void OPPROTO op_fchs_ST0(void)
1680 {
1681 ST0 = -ST0;
1682 }
1683
1684 void OPPROTO op_fabs_ST0(void)
1685 {
1686 ST0 = fabs(ST0);
1687 }
1688
1689 void helper_fxam_ST0(void)
1690 {
1691 CPU86_LDoubleU temp;
1692 int expdif;
1693
1694 temp.d = ST0;
1695
1696 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
1697 if (SIGND(temp))
1698 env->fpus |= 0x200; /* C1 <-- 1 */
1699
1700 expdif = EXPD(temp);
1701 if (expdif == MAXEXPD) {
1702 if (MANTD(temp) == 0)
1703 env->fpus |= 0x500 /*Infinity*/;
1704 else
1705 env->fpus |= 0x100 /*NaN*/;
1706 } else if (expdif == 0) {
1707 if (MANTD(temp) == 0)
1708 env->fpus |= 0x4000 /*Zero*/;
1709 else
1710 env->fpus |= 0x4400 /*Denormal*/;
1711 } else {
1712 env->fpus |= 0x400;
1713 }
1714 }
1715
1716 void OPPROTO op_fxam_ST0(void)
1717 {
1718 helper_fxam_ST0();
1719 }
1720
1721 void OPPROTO op_fld1_ST0(void)
1722 {
1723 ST0 = *(CPU86_LDouble *)&f15rk[1];
1724 }
1725
1726 void OPPROTO op_fldl2t_ST0(void)
1727 {
1728 ST0 = *(CPU86_LDouble *)&f15rk[6];
1729 }
1730
1731 void OPPROTO op_fldl2e_ST0(void)
1732 {
1733 ST0 = *(CPU86_LDouble *)&f15rk[5];
1734 }
1735
1736 void OPPROTO op_fldpi_ST0(void)
1737 {
1738 ST0 = *(CPU86_LDouble *)&f15rk[2];
1739 }
1740
1741 void OPPROTO op_fldlg2_ST0(void)
1742 {
1743 ST0 = *(CPU86_LDouble *)&f15rk[3];
1744 }
1745
1746 void OPPROTO op_fldln2_ST0(void)
1747 {
1748 ST0 = *(CPU86_LDouble *)&f15rk[4];
1749 }
1750
1751 void OPPROTO op_fldz_ST0(void)
1752 {
1753 ST0 = *(CPU86_LDouble *)&f15rk[0];
1754 }
1755
1756 void OPPROTO op_fldz_FT0(void)
1757 {
1758 ST0 = *(CPU86_LDouble *)&f15rk[0];
1759 }
1760
1761 void helper_f2xm1(void)
1762 {
1763 ST0 = pow(2.0,ST0) - 1.0;
1764 }
1765
1766 void helper_fyl2x(void)
1767 {
1768 CPU86_LDouble fptemp;
1769
1770 fptemp = ST0;
1771 if (fptemp>0.0){
1772 fptemp = log(fptemp)/log(2.0); /* log2(ST) */
1773 ST1 *= fptemp;
1774 fpop();
1775 } else {
1776 env->fpus &= (~0x4700);
1777 env->fpus |= 0x400;
1778 }
1779 }
1780
1781 void helper_fptan(void)
1782 {
1783 CPU86_LDouble fptemp;
1784
1785 fptemp = ST0;
1786 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
1787 env->fpus |= 0x400;
1788 } else {
1789 ST0 = tan(fptemp);
1790 fpush();
1791 ST0 = 1.0;
1792 env->fpus &= (~0x400); /* C2 <-- 0 */
1793 /* the above code is for |arg| < 2**52 only */
1794 }
1795 }
1796
1797 void helper_fpatan(void)
1798 {
1799 CPU86_LDouble fptemp, fpsrcop;
1800
1801 fpsrcop = ST1;
1802 fptemp = ST0;
1803 ST1 = atan2(fpsrcop,fptemp);
1804 fpop();
1805 }
1806
1807 void helper_fxtract(void)
1808 {
1809 CPU86_LDoubleU temp;
1810 unsigned int expdif;
1811
1812 temp.d = ST0;
1813 expdif = EXPD(temp) - EXPBIAS;
1814 /*DP exponent bias*/
1815 ST0 = expdif;
1816 fpush();
1817 BIASEXPONENT(temp);
1818 ST0 = temp.d;
1819 }
1820
1821 void helper_fprem1(void)
1822 {
1823 CPU86_LDouble dblq, fpsrcop, fptemp;
1824 CPU86_LDoubleU fpsrcop1, fptemp1;
1825 int expdif;
1826 int q;
1827
1828 fpsrcop = ST0;
1829 fptemp = ST1;
1830 fpsrcop1.d = fpsrcop;
1831 fptemp1.d = fptemp;
1832 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
1833 if (expdif < 53) {
1834 dblq = fpsrcop / fptemp;
1835 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
1836 ST0 = fpsrcop - fptemp*dblq;
1837 q = (int)dblq; /* cutting off top bits is assumed here */
1838 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
1839 /* (C0,C1,C3) <-- (q2,q1,q0) */
1840 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
1841 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
1842 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
1843 } else {
1844 env->fpus |= 0x400; /* C2 <-- 1 */
1845 fptemp = pow(2.0, expdif-50);
1846 fpsrcop = (ST0 / ST1) / fptemp;
1847 /* fpsrcop = integer obtained by rounding to the nearest */
1848 fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
1849 floor(fpsrcop): ceil(fpsrcop);
1850 ST0 -= (ST1 * fpsrcop * fptemp);
1851 }
1852 }
1853
1854 void helper_fprem(void)
1855 {
1856 CPU86_LDouble dblq, fpsrcop, fptemp;
1857 CPU86_LDoubleU fpsrcop1, fptemp1;
1858 int expdif;
1859 int q;
1860
1861 fpsrcop = ST0;
1862 fptemp = ST1;
1863 fpsrcop1.d = fpsrcop;
1864 fptemp1.d = fptemp;
1865 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
1866 if ( expdif < 53 ) {
1867 dblq = fpsrcop / fptemp;
1868 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
1869 ST0 = fpsrcop - fptemp*dblq;
1870 q = (int)dblq; /* cutting off top bits is assumed here */
1871 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
1872 /* (C0,C1,C3) <-- (q2,q1,q0) */
1873 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
1874 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
1875 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
1876 } else {
1877 env->fpus |= 0x400; /* C2 <-- 1 */
1878 fptemp = pow(2.0, expdif-50);
1879 fpsrcop = (ST0 / ST1) / fptemp;
1880 /* fpsrcop = integer obtained by chopping */
1881 fpsrcop = (fpsrcop < 0.0)?
1882 -(floor(fabs(fpsrcop))): floor(fpsrcop);
1883 ST0 -= (ST1 * fpsrcop * fptemp);
1884 }
1885 }
1886
1887 void helper_fyl2xp1(void)
1888 {
1889 CPU86_LDouble fptemp;
1890
1891 fptemp = ST0;
1892 if ((fptemp+1.0)>0.0) {
1893 fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
1894 ST1 *= fptemp;
1895 fpop();
1896 } else {
1897 env->fpus &= (~0x4700);
1898 env->fpus |= 0x400;
1899 }
1900 }
1901
1902 void helper_fsqrt(void)
1903 {
1904 CPU86_LDouble fptemp;
1905
1906 fptemp = ST0;
1907 if (fptemp<0.0) {
1908 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
1909 env->fpus |= 0x400;
1910 }
1911 ST0 = sqrt(fptemp);
1912 }
1913
1914 void helper_fsincos(void)
1915 {
1916 CPU86_LDouble fptemp;
1917
1918 fptemp = ST0;
1919 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
1920 env->fpus |= 0x400;
1921 } else {
1922 ST0 = sin(fptemp);
1923 fpush();
1924 ST0 = cos(fptemp);
1925 env->fpus &= (~0x400); /* C2 <-- 0 */
1926 /* the above code is for |arg| < 2**63 only */
1927 }
1928 }
1929
1930 void helper_frndint(void)
1931 {
1932 ST0 = rint(ST0);
1933 }
1934
1935 void helper_fscale(void)
1936 {
1937 CPU86_LDouble fpsrcop, fptemp;
1938
1939 fpsrcop = 2.0;
1940 fptemp = pow(fpsrcop,ST1);
1941 ST0 *= fptemp;
1942 }
1943
1944 void helper_fsin(void)
1945 {
1946 CPU86_LDouble fptemp;
1947
1948 fptemp = ST0;
1949 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
1950 env->fpus |= 0x400;
1951 } else {
1952 ST0 = sin(fptemp);
1953 env->fpus &= (~0x400); /* C2 <-- 0 */
1954 /* the above code is for |arg| < 2**53 only */
1955 }
1956 }
1957
1958 void helper_fcos(void)
1959 {
1960 CPU86_LDouble fptemp;
1961
1962 fptemp = ST0;
1963 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
1964 env->fpus |= 0x400;
1965 } else {
1966 ST0 = cos(fptemp);
1967 env->fpus &= (~0x400); /* C2 <-- 0 */
1968 /* the above code is for |arg5 < 2**63 only */
1969 }
1970 }
1971
1972 /* associated heplers to reduce generated code length and to simplify
1973 relocation (FP constants are usually stored in .rodata section) */
1974
1975 void OPPROTO op_f2xm1(void)
1976 {
1977 helper_f2xm1();
1978 }
1979
1980 void OPPROTO op_fyl2x(void)
1981 {
1982 helper_fyl2x();
1983 }
1984
1985 void OPPROTO op_fptan(void)
1986 {
1987 helper_fptan();
1988 }
1989
1990 void OPPROTO op_fpatan(void)
1991 {
1992 helper_fpatan();
1993 }
1994
1995 void OPPROTO op_fxtract(void)
1996 {
1997 helper_fxtract();
1998 }
1999
2000 void OPPROTO op_fprem1(void)
2001 {
2002 helper_fprem1();
2003 }
2004
2005
2006 void OPPROTO op_fprem(void)
2007 {
2008 helper_fprem();
2009 }
2010
2011 void OPPROTO op_fyl2xp1(void)
2012 {
2013 helper_fyl2xp1();
2014 }
2015
2016 void OPPROTO op_fsqrt(void)
2017 {
2018 helper_fsqrt();
2019 }
2020
2021 void OPPROTO op_fsincos(void)
2022 {
2023 helper_fsincos();
2024 }
2025
2026 void OPPROTO op_frndint(void)
2027 {
2028 helper_frndint();
2029 }
2030
2031 void OPPROTO op_fscale(void)
2032 {
2033 helper_fscale();
2034 }
2035
2036 void OPPROTO op_fsin(void)
2037 {
2038 helper_fsin();
2039 }
2040
2041 void OPPROTO op_fcos(void)
2042 {
2043 helper_fcos();
2044 }
2045
2046 void OPPROTO op_fnstsw_A0(void)
2047 {
2048 int fpus;
2049 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2050 stw((void *)A0, fpus);
2051 }
2052
2053 void OPPROTO op_fnstsw_EAX(void)
2054 {
2055 int fpus;
2056 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2057 EAX = (EAX & 0xffff0000) | fpus;
2058 }
2059
2060 void OPPROTO op_fnstcw_A0(void)
2061 {
2062 stw((void *)A0, env->fpuc);
2063 }
2064
2065 void OPPROTO op_fldcw_A0(void)
2066 {
2067 int rnd_type;
2068 env->fpuc = lduw((void *)A0);
2069 /* set rounding mode */
2070 switch(env->fpuc & RC_MASK) {
2071 default:
2072 case RC_NEAR:
2073 rnd_type = FE_TONEAREST;
2074 break;
2075 case RC_DOWN:
2076 rnd_type = FE_DOWNWARD;
2077 break;
2078 case RC_UP:
2079 rnd_type = FE_UPWARD;
2080 break;
2081 case RC_CHOP:
2082 rnd_type = FE_TOWARDZERO;
2083 break;
2084 }
2085 fesetround(rnd_type);
2086 }
2087