]> git.proxmox.com Git - ovs.git/blob - ovn/ovn-sb.xml
ovn: Document supported predicates.
[ovs.git] / ovn / ovn-sb.xml
1 <?xml version="1.0" encoding="utf-8"?>
2 <database name="ovn-sb" title="OVN Southbound Database">
3 <p>
4 This database holds logical and physical configuration and state for the
5 Open Virtual Network (OVN) system to support virtual network abstraction.
6 For an introduction to OVN, please see <code>ovn-architecture</code>(7).
7 </p>
8
9 <p>
10 The OVN Southbound database sits at the center of the OVN
11 architecture. It is the one component that speaks both southbound
12 directly to all the hypervisors and gateways, via
13 <code>ovn-controller</code>, and northbound to the Cloud Management
14 System, via <code>ovn-northd</code>:
15 </p>
16
17 <h2>Database Structure</h2>
18
19 <p>
20 The OVN Southbound database contains three classes of data with
21 different properties, as described in the sections below.
22 </p>
23
24 <h3>Physical Network (PN) data</h3>
25
26 <p>
27 PN tables contain information about the chassis nodes in the system. This
28 contains all the information necessary to wire the overlay, such as IP
29 addresses, supported tunnel types, and security keys.
30 </p>
31
32 <p>
33 The amount of PN data is small (O(n) in the number of chassis) and it
34 changes infrequently, so it can be replicated to every chassis.
35 </p>
36
37 <p>
38 The <ref table="Chassis"/> table comprises the PN tables.
39 </p>
40
41 <h3>Logical Network (LN) data</h3>
42
43 <p>
44 LN tables contain the topology of logical switches and routers, ACLs,
45 firewall rules, and everything needed to describe how packets traverse a
46 logical network, represented as logical datapath flows (see Logical
47 Datapath Flows, below).
48 </p>
49
50 <p>
51 LN data may be large (O(n) in the number of logical ports, ACL rules,
52 etc.). Thus, to improve scaling, each chassis should receive only data
53 related to logical networks in which that chassis participates. Past
54 experience shows that in the presence of large logical networks, even
55 finer-grained partitioning of data, e.g. designing logical flows so that
56 only the chassis hosting a logical port needs related flows, pays off
57 scale-wise. (This is not necessary initially but it is worth bearing in
58 mind in the design.)
59 </p>
60
61 <p>
62 The LN is a slave of the cloud management system running northbound of OVN.
63 That CMS determines the entire OVN logical configuration and therefore the
64 LN's content at any given time is a deterministic function of the CMS's
65 configuration, although that happens indirectly via the
66 <ref db="OVN_Northbound"/> database and <code>ovn-northd</code>.
67 </p>
68
69 <p>
70 LN data is likely to change more quickly than PN data. This is especially
71 true in a container environment where VMs are created and destroyed (and
72 therefore added to and deleted from logical switches) quickly.
73 </p>
74
75 <p>
76 <ref table="Logical_Flow"/> and <ref table="Multicast_Group"/> contain LN
77 data.
78 </p>
79
80 <h3>Bindings data</h3>
81
82 <p>
83 Bindings data link logical and physical components. They show the current
84 placement of logical components (such as VMs and VIFs) onto chassis, and
85 map logical entities to the values that represent them in tunnel
86 encapsulations.
87 </p>
88
89 <p>
90 Bindings change frequently, at least every time a VM powers up or down
91 or migrates, and especially quickly in a container environment. The
92 amount of data per VM (or VIF) is small.
93 </p>
94
95 <p>
96 Each chassis is authoritative about the VMs and VIFs that it hosts at any
97 given time and can efficiently flood that state to a central location, so
98 the consistency needs are minimal.
99 </p>
100
101 <p>
102 The <ref table="Port_Binding"/> and <ref table="Datapath_Binding"/> tables
103 contain binding data.
104 </p>
105
106 <h2>Common Columns</h2>
107
108 <p>
109 Some tables contain a special column named <code>external_ids</code>. This
110 column has the same form and purpose each place that it appears, so we
111 describe it here to save space later.
112 </p>
113
114 <dl>
115 <dt><code>external_ids</code>: map of string-string pairs</dt>
116 <dd>
117 Key-value pairs for use by the software that manages the OVN Southbound
118 database rather than by <code>ovn-controller</code>. In particular,
119 <code>ovn-northd</code> can use key-value pairs in this column to relate
120 entities in the southbound database to higher-level entities (such as
121 entities in the OVN Northbound database). Individual key-value pairs in
122 this column may be documented in some cases to aid in understanding and
123 troubleshooting, but the reader should not mistake such documentation as
124 comprehensive.
125 </dd>
126 </dl>
127
128 <table name="Chassis" title="Physical Network Hypervisor and Gateway Information">
129 <p>
130 Each row in this table represents a hypervisor or gateway (a chassis) in
131 the physical network (PN). Each chassis, via
132 <code>ovn-controller</code>, adds and updates its own row, and keeps a
133 copy of the remaining rows to determine how to reach other hypervisors.
134 </p>
135
136 <p>
137 When a chassis shuts down gracefully, it should remove its own row.
138 (This is not critical because resources hosted on the chassis are equally
139 unreachable regardless of whether the row is present.) If a chassis
140 shuts down permanently without removing its row, some kind of manual or
141 automatic cleanup is eventually needed; we can devise a process for that
142 as necessary.
143 </p>
144
145 <column name="name">
146 A chassis name, taken from <ref key="system-id" table="Open_vSwitch"
147 column="external_ids" db="Open_vSwitch"/> in the Open_vSwitch
148 database's <ref table="Open_vSwitch" db="Open_vSwitch"/> table. OVN does
149 not prescribe a particular format for chassis names.
150 </column>
151
152 <group title="Encapsulation Configuration">
153 <p>
154 OVN uses encapsulation to transmit logical dataplane packets
155 between chassis.
156 </p>
157
158 <column name="encaps">
159 Points to supported encapsulation configurations to transmit
160 logical dataplane packets to this chassis. Each entry is a <ref
161 table="Encap"/> record that describes the configuration.
162 </column>
163 </group>
164
165 <group title="Gateway Configuration">
166 <p>
167 A <dfn>gateway</dfn> is a chassis that forwards traffic between the
168 OVN-managed part of a logical network and a physical VLAN, extending a
169 tunnel-based logical network into a physical network. Gateways are
170 typically dedicated nodes that do not host VMs.
171 </p>
172
173 <column name="vtep_logical_switches">
174 Stores all vtep logical switch names connected by this gateway
175 chassis.
176 </column>
177 </group>
178 </table>
179
180 <table name="Encap" title="Encapsulation Types">
181 <p>
182 The <ref column="encaps" table="Chassis"/> column in the <ref
183 table="Chassis"/> table refers to rows in this table to identify
184 how OVN may transmit logical dataplane packets to this chassis.
185 Each chassis, via <code>ovn-controller</code>(8), adds and updates
186 its own rows and keeps a copy of the remaining rows to determine
187 how to reach other chassis.
188 </p>
189
190 <column name="type">
191 The encapsulation to use to transmit packets to this chassis.
192 Hypervisors must use either <code>geneve</code> or
193 <code>stt</code>. Gateways may use <code>vxlan</code>,
194 <code>geneve</code>, or <code>stt</code>.
195 </column>
196
197 <column name="options">
198 Options for configuring the encapsulation, e.g. IPsec parameters when
199 IPsec support is introduced. No options are currently defined.
200 </column>
201
202 <column name="ip">
203 The IPv4 address of the encapsulation tunnel endpoint.
204 </column>
205 </table>
206
207 <table name="Logical_Flow" title="Logical Network Flows">
208 <p>
209 Each row in this table represents one logical flow.
210 <code>ovn-northd</code> populates this table with logical flows
211 that implement the L2 and L3 topologies specified in the
212 <ref db="OVN_Northbound"/> database. Each hypervisor, via
213 <code>ovn-controller</code>, translates the logical flows into
214 OpenFlow flows specific to its hypervisor and installs them into
215 Open vSwitch.
216 </p>
217
218 <p>
219 Logical flows are expressed in an OVN-specific format, described here. A
220 logical datapath flow is much like an OpenFlow flow, except that the
221 flows are written in terms of logical ports and logical datapaths instead
222 of physical ports and physical datapaths. Translation between logical
223 and physical flows helps to ensure isolation between logical datapaths.
224 (The logical flow abstraction also allows the OVN centralized
225 components to do less work, since they do not have to separately
226 compute and push out physical flows to each chassis.)
227 </p>
228
229 <p>
230 The default action when no flow matches is to drop packets.
231 </p>
232
233 <p><em>Logical Life Cycle of a Packet</em></p>
234
235 <p>
236 This following description focuses on the life cycle of a packet through
237 a logical datapath, ignoring physical details of the implementation.
238 Please refer to <em>Life Cycle of a Packet</em> in
239 <code>ovn-architecture</code>(7) for the physical information.
240 </p>
241
242 <p>
243 The description here is written as if OVN itself executes these steps,
244 but in fact OVN (that is, <code>ovn-controller</code>) programs Open
245 vSwitch, via OpenFlow and OVSDB, to execute them on its behalf.
246 </p>
247
248 <p>
249 At a high level, OVN passes each packet through the logical datapath's
250 logical ingress pipeline, which may output the packet to one or more
251 logical port or logical multicast groups. For each such logical output
252 port, OVN passes the packet through the datapath's logical egress
253 pipeline, which may either drop the packet or deliver it to the
254 destination. Between the two pipelines, outputs to logical multicast
255 groups are expanded into logical ports, so that the egress pipeline only
256 processes a single logical output port at a time. Between the two
257 pipelines is also where, when necessary, OVN encapsulates a packet in a
258 tunnel (or tunnels) to transmit to remote hypervisors.
259 </p>
260
261 <p>
262 In more detail, to start, OVN searches the <ref table="Logical_Flow"/>
263 table for a row with correct <ref column="logical_datapath"/>, a <ref
264 column="pipeline"/> of <code>ingress</code>, a <ref column="table_id"/>
265 of 0, and a <ref column="match"/> that is true for the packet. If none
266 is found, OVN drops the packet. If OVN finds more than one, it chooses
267 the match with the highest <ref column="priority"/>. Then OVN executes
268 each of the actions specified in the row's <ref table="actions"/> column,
269 in the order specified. Some actions, such as those to modify packet
270 headers, require no further details. The <code>next</code> and
271 <code>output</code> actions are special.
272 </p>
273
274 <p>
275 The <code>next</code> action causes the above process to be repeated
276 recursively, except that OVN searches for <ref column="table_id"/> of 1
277 instead of 0. Similarly, any <code>next</code> action in a row found in
278 that table would cause a further search for a <ref column="table_id"/> of
279 2, and so on. When recursive processing completes, flow control returns
280 to the action following <code>next</code>.
281 </p>
282
283 <p>
284 The <code>output</code> action also introduces recursion. Its effect
285 depends on the current value of the <code>outport</code> field. Suppose
286 <code>outport</code> designates a logical port. First, OVN compares
287 <code>inport</code> to <code>outport</code>; if they are equal, it treats
288 the <code>output</code> as a no-op. In the common case, where they are
289 different, the packet enters the egress pipeline. This transition to the
290 egress pipeline discards register data, e.g. <code>reg0</code>
291 ... <code>reg5</code>, to achieve uniform behavior regardless of whether
292 the egress pipeline is on a different hypervisor (because registers
293 aren't preserve across tunnel encapsulation).
294 </p>
295
296 <p>
297 To execute the egress pipeline, OVN again searches the <ref
298 table="Logical_Flow"/> table for a row with correct <ref
299 column="logical_datapath"/>, a <ref column="table_id"/> of 0, a <ref
300 column="match"/> that is true for the packet, but now looking for a <ref
301 column="pipeline"/> of <code>egress</code>. If no matching row is found,
302 the output becomes a no-op. Otherwise, OVN executes the actions for the
303 matching flow (which is chosen from multiple, if necessary, as already
304 described).
305 </p>
306
307 <p>
308 In the <code>egress</code> pipeline, the <code>next</code> action acts as
309 already described, except that it, of course, searches for
310 <code>egress</code> flows. The <code>output</code> action, however, now
311 directly outputs the packet to the output port (which is now fixed,
312 because <code>outport</code> is read-only within the egress pipeline).
313 </p>
314
315 <p>
316 The description earlier assumed that <code>outport</code> referred to a
317 logical port. If it instead designates a logical multicast group, then
318 the description above still applies, with the addition of fan-out from
319 the logical multicast group to each logical port in the group. For each
320 member of the group, OVN executes the logical pipeline as described, with
321 the logical output port replaced by the group member.
322 </p>
323
324 <p><em>Pipeline Stages</em></p>
325
326 <p>
327 <code>ovn-northd</code> is responsible for populating the
328 <ref table="Logical_Flow"/> table, so the stages are an
329 implementation detail and subject to change. This section
330 describes the current logical flow table.
331 </p>
332
333 <p>
334 The ingress pipeline consists of the following stages:
335 </p>
336 <ul>
337 <li>
338 Port Security (Table 0): Validates the source address, drops
339 packets with a VLAN tag, and, if configured, verifies that the
340 logical port is allowed to send with the source address.
341 </li>
342
343 <li>
344 L2 Destination Lookup (Table 1): Forwards known unicast
345 addresses to the appropriate logical port. Unicast packets to
346 unknown hosts are forwarded to logical ports configured with the
347 special <code>unknown</code> mac address. Broadcast, and
348 multicast are flooded to all ports in the logical switch.
349 </li>
350 </ul>
351
352 <p>
353 The egress pipeline consists of the following stages:
354 </p>
355 <ul>
356 <li>
357 ACL (Table 0): Applies any specified access control lists.
358 </li>
359
360 <li>
361 Port Security (Table 1): If configured, verifies that the
362 logical port is allowed to receive packets with the destination
363 address.
364 </li>
365 </ul>
366
367 <column name="logical_datapath">
368 The logical datapath to which the logical flow belongs.
369 </column>
370
371 <column name="pipeline">
372 <p>
373 The primary flows used for deciding on a packet's destination are the
374 <code>ingress</code> flows. The <code>egress</code> flows implement
375 ACLs. See <em>Logical Life Cycle of a Packet</em>, above, for details.
376 </p>
377 </column>
378
379 <column name="table_id">
380 The stage in the logical pipeline, analogous to an OpenFlow table number.
381 </column>
382
383 <column name="priority">
384 The flow's priority. Flows with numerically higher priority take
385 precedence over those with lower. If two logical datapath flows with the
386 same priority both match, then the one actually applied to the packet is
387 undefined.
388 </column>
389
390 <column name="match">
391 <p>
392 A matching expression. OVN provides a superset of OpenFlow matching
393 capabilities, using a syntax similar to Boolean expressions in a
394 programming language.
395 </p>
396
397 <p>
398 The most important components of match expression are
399 <dfn>comparisons</dfn> between <dfn>symbols</dfn> and
400 <dfn>constants</dfn>, e.g. <code>ip4.dst == 192.168.0.1</code>,
401 <code>ip.proto == 6</code>, <code>arp.op == 1</code>, <code>eth.type ==
402 0x800</code>. The logical AND operator <code>&amp;&amp;</code> and
403 logical OR operator <code>||</code> can combine comparisons into a
404 larger expression.
405 </p>
406
407 <p>
408 Matching expressions also support parentheses for grouping, the logical
409 NOT prefix operator <code>!</code>, and literals <code>0</code> and
410 <code>1</code> to express ``false'' or ``true,'' respectively. The
411 latter is useful by itself as a catch-all expression that matches every
412 packet.
413 </p>
414
415 <p><em>Symbols</em></p>
416
417 <p>
418 <em>Type</em>. Symbols have <dfn>integer</dfn> or <dfn>string</dfn>
419 type. Integer symbols have a <dfn>width</dfn> in bits.
420 </p>
421
422 <p>
423 <em>Kinds</em>. There are three kinds of symbols:
424 </p>
425
426 <ul>
427 <li>
428 <p>
429 <dfn>Fields</dfn>. A field symbol represents a packet header or
430 metadata field. For example, a field
431 named <code>vlan.tci</code> might represent the VLAN TCI field in a
432 packet.
433 </p>
434
435 <p>
436 A field symbol can have integer or string type. Integer fields can
437 be nominal or ordinal (see <em>Level of Measurement</em>,
438 below).
439 </p>
440 </li>
441
442 <li>
443 <p>
444 <dfn>Subfields</dfn>. A subfield represents a subset of bits from
445 a larger field. For example, a field <code>vlan.vid</code> might
446 be defined as an alias for <code>vlan.tci[0..11]</code>. Subfields
447 are provided for syntactic convenience, because it is always
448 possible to instead refer to a subset of bits from a field
449 directly.
450 </p>
451
452 <p>
453 Only ordinal fields (see <em>Level of Measurement</em>,
454 below) may have subfields. Subfields are always ordinal.
455 </p>
456 </li>
457
458 <li>
459 <p>
460 <dfn>Predicates</dfn>. A predicate is shorthand for a Boolean
461 expression. Predicates may be used much like 1-bit fields. For
462 example, <code>ip4</code> might expand to <code>eth.type ==
463 0x800</code>. Predicates are provided for syntactic convenience,
464 because it is always possible to instead specify the underlying
465 expression directly.
466 </p>
467
468 <p>
469 A predicate whose expansion refers to any nominal field or
470 predicate (see <em>Level of Measurement</em>, below) is nominal;
471 other predicates have Boolean level of measurement.
472 </p>
473 </li>
474 </ul>
475
476 <p>
477 <em>Level of Measurement</em>. See
478 http://en.wikipedia.org/wiki/Level_of_measurement for the statistical
479 concept on which this classification is based. There are three
480 levels:
481 </p>
482
483 <ul>
484 <li>
485 <p>
486 <dfn>Ordinal</dfn>. In statistics, ordinal values can be ordered
487 on a scale. OVN considers a field (or subfield) to be ordinal if
488 its bits can be examined individually. This is true for the
489 OpenFlow fields that OpenFlow or Open vSwitch makes ``maskable.''
490 </p>
491
492 <p>
493 Any use of a nominal field may specify a single bit or a range of
494 bits, e.g. <code>vlan.tci[13..15]</code> refers to the PCP field
495 within the VLAN TCI, and <code>eth.dst[40]</code> refers to the
496 multicast bit in the Ethernet destination address.
497 </p>
498
499 <p>
500 OVN supports all the usual arithmetic relations (<code>==</code>,
501 <code>!=</code>, <code>&lt;</code>, <code>&lt;=</code>,
502 <code>&gt;</code>, and <code>&gt;=</code>) on ordinal fields and
503 their subfields, because OVN can implement these in OpenFlow and
504 Open vSwitch as collections of bitwise tests.
505 </p>
506 </li>
507
508 <li>
509 <p>
510 <dfn>Nominal</dfn>. In statistics, nominal values cannot be
511 usefully compared except for equality. This is true of OpenFlow
512 port numbers, Ethernet types, and IP protocols are examples: all of
513 these are just identifiers assigned arbitrarily with no deeper
514 meaning. In OpenFlow and Open vSwitch, bits in these fields
515 generally aren't individually addressable.
516 </p>
517
518 <p>
519 OVN only supports arithmetic tests for equality on nominal fields,
520 because OpenFlow and Open vSwitch provide no way for a flow to
521 efficiently implement other comparisons on them. (A test for
522 inequality can be sort of built out of two flows with different
523 priorities, but OVN matching expressions always generate flows with
524 a single priority.)
525 </p>
526
527 <p>
528 String fields are always nominal.
529 </p>
530 </li>
531
532 <li>
533 <p>
534 <dfn>Boolean</dfn>. A nominal field that has only two values, 0
535 and 1, is somewhat exceptional, since it is easy to support both
536 equality and inequality tests on such a field: either one can be
537 implemented as a test for 0 or 1.
538 </p>
539
540 <p>
541 Only predicates (see above) have a Boolean level of measurement.
542 </p>
543
544 <p>
545 This isn't a standard level of measurement.
546 </p>
547 </li>
548 </ul>
549
550 <p>
551 <em>Prerequisites</em>. Any symbol can have prerequisites, which are
552 additional condition implied by the use of the symbol. For example,
553 For example, <code>icmp4.type</code> symbol might have prerequisite
554 <code>icmp4</code>, which would cause an expression <code>icmp4.type ==
555 0</code> to be interpreted as <code>icmp4.type == 0 &amp;&amp;
556 icmp4</code>, which would in turn expand to <code>icmp4.type == 0
557 &amp;&amp; eth.type == 0x800 &amp;&amp; ip4.proto == 1</code> (assuming
558 <code>icmp4</code> is a predicate defined as suggested under
559 <em>Types</em> above).
560 </p>
561
562 <p><em>Relational operators</em></p>
563
564 <p>
565 All of the standard relational operators <code>==</code>,
566 <code>!=</code>, <code>&lt;</code>, <code>&lt;=</code>,
567 <code>&gt;</code>, and <code>&gt;=</code> are supported. Nominal
568 fields support only <code>==</code> and <code>!=</code>, and only in a
569 positive sense when outer <code>!</code> are taken into account,
570 e.g. given string field <code>inport</code>, <code>inport ==
571 "eth0"</code> and <code>!(inport != "eth0")</code> are acceptable, but
572 not <code>inport != "eth0"</code>.
573 </p>
574
575 <p>
576 The implementation of <code>==</code> (or <code>!=</code> when it is
577 negated), is more efficient than that of the other relational
578 operators.
579 </p>
580
581 <p><em>Constants</em></p>
582
583 <p>
584 Integer constants may be expressed in decimal, hexadecimal prefixed by
585 <code>0x</code>, or as dotted-quad IPv4 addresses, IPv6 addresses in
586 their standard forms, or Ethernet addresses as colon-separated hex
587 digits. A constant in any of these forms may be followed by a slash
588 and a second constant (the mask) in the same form, to form a masked
589 constant. IPv4 and IPv6 masks may be given as integers, to express
590 CIDR prefixes.
591 </p>
592
593 <p>
594 String constants have the same syntax as quoted strings in JSON (thus,
595 they are Unicode strings).
596 </p>
597
598 <p>
599 Some operators support sets of constants written inside curly braces
600 <code>{</code> ... <code>}</code>. Commas between elements of a set,
601 and after the last elements, are optional. With <code>==</code>,
602 ``<code><var>field</var> == { <var>constant1</var>,
603 <var>constant2</var>,</code> ... <code>}</code>'' is syntactic sugar
604 for ``<code><var>field</var> == <var>constant1</var> ||
605 <var>field</var> == <var>constant2</var> || </code>...<code></code>.
606 Similarly, ``<code><var>field</var> != { <var>constant1</var>,
607 <var>constant2</var>, </code>...<code> }</code>'' is equivalent to
608 ``<code><var>field</var> != <var>constant1</var> &amp;&amp;
609 <var>field</var> != <var>constant2</var> &amp;&amp;
610 </code>...<code></code>''.
611 </p>
612
613 <p><em>Miscellaneous</em></p>
614
615 <p>
616 Comparisons may name the symbol or the constant first,
617 e.g. <code>tcp.src == 80</code> and <code>80 == tcp.src</code> are both
618 acceptable.
619 </p>
620
621 <p>
622 Tests for a range may be expressed using a syntax like <code>1024 &lt;=
623 tcp.src &lt;= 49151</code>, which is equivalent to <code>1024 &lt;=
624 tcp.src &amp;&amp; tcp.src &lt;= 49151</code>.
625 </p>
626
627 <p>
628 For a one-bit field or predicate, a mention of its name is equivalent
629 to <code><var>symobl</var> == 1</code>, e.g. <code>vlan.present</code>
630 is equivalent to <code>vlan.present == 1</code>. The same is true for
631 one-bit subfields, e.g. <code>vlan.tci[12]</code>. There is no
632 technical limitation to implementing the same for ordinal fields of all
633 widths, but the implementation is expensive enough that the syntax
634 parser requires writing an explicit comparison against zero to make
635 mistakes less likely, e.g. in <code>tcp.src != 0</code> the comparison
636 against 0 is required.
637 </p>
638
639 <p>
640 <em>Operator precedence</em> is as shown below, from highest to lowest.
641 There are two exceptions where parentheses are required even though the
642 table would suggest that they are not: <code>&amp;&amp;</code> and
643 <code>||</code> require parentheses when used together, and
644 <code>!</code> requires parentheses when applied to a relational
645 expression. Thus, in <code>(eth.type == 0x800 || eth.type == 0x86dd)
646 &amp;&amp; ip.proto == 6</code> or <code>!(arp.op == 1)</code>, the
647 parentheses are mandatory.
648 </p>
649
650 <ul>
651 <li><code>()</code></li>
652 <li><code>== != &lt; &lt;= &gt; &gt;=</code></li>
653 <li><code>!</code></li>
654 <li><code>&amp;&amp; ||</code></li>
655 </ul>
656
657 <p>
658 <em>Comments</em> may be introduced by <code>//</code>, which extends
659 to the next new-line. Comments within a line may be bracketed by
660 <code>/*</code> and <code>*/</code>. Multiline comments are not
661 supported.
662 </p>
663
664 <p><em>Symbols</em></p>
665
666 <p>
667 Most of the symbols below have integer type. Only <code>inport</code>
668 and <code>outport</code> have string type. <code>inport</code> names a
669 logical port. Thus, its value is a <ref column="logical_port"/> name
670 from the <ref table="Port_Binding"/> table. <code>outport</code> may
671 name a logical port, as <code>inport</code>, or a logical multicast
672 group defined in the <ref table="Multicast_Group"/> table. For both
673 symbols, only names within the flow's logical datapath may be used.
674 </p>
675
676 <ul>
677 <li><code>reg0</code>...<code>reg5</code></li>
678 <li><code>inport</code> <code>outport</code></li>
679 <li><code>eth.src</code> <code>eth.dst</code> <code>eth.type</code></li>
680 <li><code>vlan.tci</code> <code>vlan.vid</code> <code>vlan.pcp</code> <code>vlan.present</code></li>
681 <li><code>ip.proto</code> <code>ip.dscp</code> <code>ip.ecn</code> <code>ip.ttl</code> <code>ip.frag</code></li>
682 <li><code>ip4.src</code> <code>ip4.dst</code></li>
683 <li><code>ip6.src</code> <code>ip6.dst</code> <code>ip6.label</code></li>
684 <li><code>arp.op</code> <code>arp.spa</code> <code>arp.tpa</code> <code>arp.sha</code> <code>arp.tha</code></li>
685 <li><code>tcp.src</code> <code>tcp.dst</code> <code>tcp.flags</code></li>
686 <li><code>udp.src</code> <code>udp.dst</code></li>
687 <li><code>sctp.src</code> <code>sctp.dst</code></li>
688 <li><code>icmp4.type</code> <code>icmp4.code</code></li>
689 <li><code>icmp6.type</code> <code>icmp6.code</code></li>
690 <li><code>nd.target</code> <code>nd.sll</code> <code>nd.tll</code></li>
691 </ul>
692
693 <p>
694 The following predicates are supported:
695 </p>
696
697 <ul>
698 <li><code>vlan.present</code> expands to <code>vlan.tci[12]</code></li>
699 <li><code>ip4</code> expands to <code>eth.type == 0x800</code></li>
700 <li><code>ip6</code> expands to <code>eth.type == 0x86dd</code></li>
701 <li><code>ip</code> expands to <code>ip4 || ip6</code></li>
702 <li><code>icmp4</code> expands to <code>ip4 &amp;&amp; ip.proto == 1</code></li>
703 <li><code>icmp6</code> expands to <code>ip6 &amp;&amp; ip.proto == 58</code></li>
704 <li><code>icmp</code> expands to <code>icmp4 || icmp6</code></li>
705 <li><code>ip.is_frag</code> expands to <code>ip.frag[0]</code></li>
706 <li><code>ip.later_frag</code> expands to <code>ip.frag[1]</code></li>
707 <li><code>ip.first_frag</code> expands to <code>ip.is_frag &amp;&amp; !ip.later_frag</code></li>
708 <li><code>arp</code> expands to <code>eth.type == 0x806</code></li>
709 <li><code>nd</code> expands to <code>icmp6.type == {135, 136} &amp;&amp; icmp6.code == 0</code></li>
710 <li><code>tcp</code> expands to <code>ip.proto == 6</code></li>
711 <li><code>udp</code> expands to <code>ip.proto == 17</code></li>
712 <li><code>sctp</code> expands to <code>ip.proto == 132</code></li>
713 </ul>
714 </column>
715
716 <column name="actions">
717 <p>
718 Logical datapath actions, to be executed when the logical flow
719 represented by this row is the highest-priority match.
720 </p>
721
722 <p>
723 Actions share lexical syntax with the <ref column="match"/> column. An
724 empty set of actions (or one that contains just white space or
725 comments), or a set of actions that consists of just
726 <code>drop;</code>, causes the matched packets to be dropped.
727 Otherwise, the column should contain a sequence of actions, each
728 terminated by a semicolon.
729 </p>
730
731 <p>
732 The following actions are defined:
733 </p>
734
735 <dl>
736 <dt><code>output;</code></dt>
737 <dd>
738 <p>
739 In the ingress pipeline, this action executes the
740 <code>egress</code> pipeline as a subroutine. If
741 <code>outport</code> names a logical port, the egress pipeline
742 executes once; if it is a multicast group, the egress pipeline runs
743 once for each logical port in the group.
744 </p>
745
746 <p>
747 In the egress pipeline, this action performs the actual
748 output to the <code>outport</code> logical port. (In the egress
749 pipeline, <code>outport</code> never names a multicast group.)
750 </p>
751
752 <p>
753 Output to the input port is implicitly dropped, that is,
754 <code>output</code> becomes a no-op if <code>outport</code> ==
755 <code>inport</code>.
756 </p>
757 </dd>
758
759 <dt><code>next;</code></dt>
760 <dd>
761 Executes the next logical datapath table as a subroutine.
762 </dd>
763
764 <dt><code><var>field</var> = <var>constant</var>;</code></dt>
765 <dd>
766 <p>
767 Sets data or metadata field <var>field</var> to constant value
768 <var>constant</var>, e.g. <code>outport = "vif0";</code> to set the
769 logical output port. To set only a subset of bits in a field,
770 specify a subfield for <var>field</var> or a masked
771 <var>constant</var>, e.g. one may use <code>vlan.pcp[2] = 1;</code>
772 or <code>vlan.pcp = 4/4;</code> to set the most sigificant bit of
773 the VLAN PCP.
774 </p>
775
776 <p>
777 Assigning to a field with prerequisites implicitly adds those
778 prerequisites to <ref column="match"/>; thus, for example, a flow
779 that sets <code>tcp.dst</code> applies only to TCP flows,
780 regardless of whether its <ref column="match"/> mentions any TCP
781 field.
782 </p>
783
784 <p>
785 Not all fields are modifiable (e.g. <code>eth.type</code> and
786 <code>ip.proto</code> are read-only), and not all modifiable fields
787 may be partially modified (e.g. <code>ip.ttl</code> must assigned
788 as a whole). The <code>outport</code> field is modifiable in the
789 <code>ingress</code> pipeline but not in the <code>egress</code>
790 pipeline.
791 </p>
792 </dd>
793 </dl>
794
795 <p>
796 The following actions will likely be useful later, but they have not
797 been thought out carefully.
798 </p>
799
800 <dl>
801 <dt><code><var>field1</var> = <var>field2</var>;</code></dt>
802 <dd>
803 Extends the assignment action to allow copying between fields.
804 </dd>
805
806 <dt><code>learn</code></dt>
807
808 <dt><code>conntrack</code></dt>
809
810 <dt><code>dec_ttl { <var>action</var>, </code>...<code> } { <var>action</var>; </code>...<code>};</code></dt>
811 <dd>
812 decrement TTL; execute first set of actions if
813 successful, second set if TTL decrement fails
814 </dd>
815
816 <dt><code>icmp_reply { <var>action</var>, </code>...<code> };</code></dt>
817 <dd>generate ICMP reply from packet, execute <var>action</var>s</dd>
818
819 <dt><code>arp { <var>action</var>, </code>...<code> }</code></dt>
820 <dd>generate ARP from packet, execute <var>action</var>s</dd>
821 </dl>
822 </column>
823
824 <column name="external_ids" key="stage-name">
825 Human-readable name for this flow's stage in the pipeline.
826 </column>
827
828 <group title="Common Columns">
829 The overall purpose of these columns is described under <code>Common
830 Columns</code> at the beginning of this document.
831
832 <column name="external_ids"/>
833 </group>
834 </table>
835
836 <table name="Multicast_Group" title="Logical Port Multicast Groups">
837 <p>
838 The rows in this table define multicast groups of logical ports.
839 Multicast groups allow a single packet transmitted over a tunnel to a
840 hypervisor to be delivered to multiple VMs on that hypervisor, which
841 uses bandwidth more efficiently.
842 </p>
843
844 <p>
845 Each row in this table defines a logical multicast group numbered <ref
846 column="tunnel_key"/> within <ref column="datapath"/>, whose logical
847 ports are listed in the <ref column="ports"/> column.
848 </p>
849
850 <column name="datapath">
851 The logical datapath in which the multicast group resides.
852 </column>
853
854 <column name="tunnel_key">
855 The value used to designate this logical egress port in tunnel
856 encapsulations. An index forces the key to be unique within the <ref
857 column="datapath"/>. The unusual range ensures that multicast group IDs
858 do not overlap with logical port IDs.
859 </column>
860
861 <column name="name">
862 <p>
863 The logical multicast group's name. An index forces the name to be
864 unique within the <ref column="datapath"/>. Logical flows in the
865 ingress pipeline may output to the group just as for individual logical
866 ports, by assigning the group's name to <code>outport</code> and
867 executing an <code>output</code> action.
868 </p>
869
870 <p>
871 Multicast group names and logical port names share a single namespace
872 and thus should not overlap (but the database schema cannot enforce
873 this). To try to avoid conflicts, <code>ovn-northd</code> uses names
874 that begin with <code>_MC_</code>.
875 </p>
876 </column>
877
878 <column name="ports">
879 The logical ports included in the multicast group. All of these ports
880 must be in the <ref column="datapath"/> logical datapath (but the
881 database schema cannot enforce this).
882 </column>
883 </table>
884
885 <table name="Datapath_Binding" title="Physical-Logical Datapath Bindings">
886 <p>
887 Each row in this table identifies physical bindings of a logical
888 datapath. A logical datapath implements a logical pipeline among the
889 ports in the <ref table="Port_Binding"/> table associated with it. In
890 practice, the pipeline in a given logical datapath implements either a
891 logical switch or a logical router.
892 </p>
893
894 <column name="tunnel_key">
895 The tunnel key value to which the logical datapath is bound.
896 The <code>Tunnel Encapsulation</code> section in
897 <code>ovn-architecture</code>(7) describes how tunnel keys are
898 constructed for each supported encapsulation.
899 </column>
900
901 <column name="external_ids" key="logical-switch" type='{"type": "uuid"}'>
902 Each row in <ref table="Datapath_Binding"/> is associated with some
903 logical datapath. <code>ovn-northd</code> uses this key to store the
904 UUID of the logical datapath <ref table="Logical_Switch"
905 db="OVN_Northbound"/> row in the <ref db="OVN_Northbound"/> database.
906 </column>
907
908 <group title="Common Columns">
909 The overall purpose of these columns is described under <code>Common
910 Columns</code> at the beginning of this document.
911
912 <column name="external_ids"/>
913 </group>
914 </table>
915
916 <table name="Port_Binding" title="Physical-Logical Port Bindings">
917 <p>
918 Each row in this table identifies the physical location of a logical
919 port.
920 </p>
921
922 <p>
923 For every <code>Logical_Port</code> record in <code>OVN_Northbound</code>
924 database, <code>ovn-northd</code> creates a record in this table.
925 <code>ovn-northd</code> populates and maintains every column except
926 the <code>chassis</code> column, which it leaves empty in new records.
927 </p>
928
929 <p>
930 <code>ovn-controller</code> populates the <code>chassis</code> column
931 for the records that identify the logical ports that are located on its
932 hypervisor, which <code>ovn-controller</code> in turn finds out by
933 monitoring the local hypervisor's Open_vSwitch database, which
934 identifies logical ports via the conventions described in
935 <code>IntegrationGuide.md</code>.
936 </p>
937
938 <p>
939 When a chassis shuts down gracefully, it should clean up the
940 <code>chassis</code> column that it previously had populated.
941 (This is not critical because resources hosted on the chassis are equally
942 unreachable regardless of whether their rows are present.) To handle the
943 case where a VM is shut down abruptly on one chassis, then brought up
944 again on a different one, <code>ovn-controller</code> must overwrite the
945 <code>chassis</code> column with new information.
946 </p>
947
948 <column name="datapath">
949 The logical datapath to which the logical port belongs.
950 </column>
951
952 <column name="logical_port">
953 A logical port, taken from <ref table="Logical_Port" column="name"
954 db="OVN_Northbound"/> in the OVN_Northbound database's
955 <ref table="Logical_Port" db="OVN_Northbound"/> table. OVN does not
956 prescribe a particular format for the logical port ID.
957 </column>
958
959 <column name="type">
960 <p>
961 A type for this logical port. Logical ports can be used to model
962 other types of connectivity into an OVN logical switch. Leaving this column
963 blank maintains the default logical port behavior.
964 </p>
965
966 <p>
967 There are no other logical port types implemented yet.
968 </p>
969 </column>
970
971 <column name="options">
972 This column provides key/value settings specific to the logical port
973 <ref column="type"/>.
974 </column>
975
976 <column name="tunnel_key">
977 <p>
978 A number that represents the logical port in the key (e.g. STT key or
979 Geneve TLV) field carried within tunnel protocol packets.
980 </p>
981
982 <p>
983 The tunnel ID must be unique within the scope of a logical datapath.
984 </p>
985 </column>
986
987 <column name="parent_port">
988 For containers created inside a VM, this is taken from
989 <ref table="Logical_Port" column="parent_name" db="OVN_Northbound"/>
990 in the OVN_Northbound database's <ref table="Logical_Port"
991 db="OVN_Northbound"/> table. It is left empty if
992 <ref column="logical_port"/> belongs to a VM or a container created
993 in the hypervisor.
994 </column>
995
996 <column name="tag">
997 When <ref column="logical_port"/> identifies the interface of a container
998 spawned inside a VM, this column identifies the VLAN tag in
999 the network traffic associated with that container's network interface.
1000 It is left empty if <ref column="logical_port"/> belongs to a VM or a
1001 container created in the hypervisor.
1002 </column>
1003
1004 <column name="chassis">
1005 The physical location of the logical port. To successfully identify a
1006 chassis, this column must be a <ref table="Chassis"/> record. This is
1007 populated by <code>ovn-controller</code>.
1008 </column>
1009
1010 <column name="mac">
1011 <p>
1012 The Ethernet address or addresses used as a source address on the
1013 logical port, each in the form
1014 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
1015 The string <code>unknown</code> is also allowed to indicate that the
1016 logical port has an unknown set of (additional) source addresses.
1017 </p>
1018
1019 <p>
1020 A VM interface would ordinarily have a single Ethernet address. A
1021 gateway port might initially only have <code>unknown</code>, and then
1022 add MAC addresses to the set as it learns new source addresses.
1023 </p>
1024 </column>
1025 </table>
1026 </database>