]> git.proxmox.com Git - mirror_qemu.git/blob - plugins/api.c
target/hppa: Extract diagnose immediate value
[mirror_qemu.git] / plugins / api.c
1 /*
2 * QEMU Plugin API
3 *
4 * This provides the API that is available to the plugins to interact
5 * with QEMU. We have to be careful not to expose internal details of
6 * how QEMU works so we abstract out things like translation and
7 * instructions to anonymous data types:
8 *
9 * qemu_plugin_tb
10 * qemu_plugin_insn
11 *
12 * Which can then be passed back into the API to do additional things.
13 * As such all the public functions in here are exported in
14 * qemu-plugin.h.
15 *
16 * The general life-cycle of a plugin is:
17 *
18 * - plugin is loaded, public qemu_plugin_install called
19 * - the install func registers callbacks for events
20 * - usually an atexit_cb is registered to dump info at the end
21 * - when a registered event occurs the plugin is called
22 * - some events pass additional info
23 * - during translation the plugin can decide to instrument any
24 * instruction
25 * - when QEMU exits all the registered atexit callbacks are called
26 *
27 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
28 * Copyright (C) 2019, Linaro
29 *
30 * License: GNU GPL, version 2 or later.
31 * See the COPYING file in the top-level directory.
32 *
33 * SPDX-License-Identifier: GPL-2.0-or-later
34 *
35 */
36
37 #include "qemu/osdep.h"
38 #include "qemu/plugin.h"
39 #include "qemu/log.h"
40 #include "tcg/tcg.h"
41 #include "exec/exec-all.h"
42 #include "exec/ram_addr.h"
43 #include "disas/disas.h"
44 #include "plugin.h"
45 #ifndef CONFIG_USER_ONLY
46 #include "qemu/plugin-memory.h"
47 #include "hw/boards.h"
48 #else
49 #include "qemu.h"
50 #ifdef CONFIG_LINUX
51 #include "loader.h"
52 #endif
53 #endif
54
55 /* Uninstall and Reset handlers */
56
57 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
58 {
59 plugin_reset_uninstall(id, cb, false);
60 }
61
62 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
63 {
64 plugin_reset_uninstall(id, cb, true);
65 }
66
67 /*
68 * Plugin Register Functions
69 *
70 * This allows the plugin to register callbacks for various events
71 * during the translation.
72 */
73
74 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
75 qemu_plugin_vcpu_simple_cb_t cb)
76 {
77 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
78 }
79
80 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
81 qemu_plugin_vcpu_simple_cb_t cb)
82 {
83 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
84 }
85
86 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
87 qemu_plugin_vcpu_udata_cb_t cb,
88 enum qemu_plugin_cb_flags flags,
89 void *udata)
90 {
91 if (!tb->mem_only) {
92 plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR],
93 cb, flags, udata);
94 }
95 }
96
97 void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
98 enum qemu_plugin_op op,
99 void *ptr, uint64_t imm)
100 {
101 if (!tb->mem_only) {
102 plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
103 }
104 }
105
106 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
107 qemu_plugin_vcpu_udata_cb_t cb,
108 enum qemu_plugin_cb_flags flags,
109 void *udata)
110 {
111 if (!insn->mem_only) {
112 plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR],
113 cb, flags, udata);
114 }
115 }
116
117 void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
118 enum qemu_plugin_op op,
119 void *ptr, uint64_t imm)
120 {
121 if (!insn->mem_only) {
122 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
123 0, op, ptr, imm);
124 }
125 }
126
127
128 /*
129 * We always plant memory instrumentation because they don't finalise until
130 * after the operation has complete.
131 */
132 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
133 qemu_plugin_vcpu_mem_cb_t cb,
134 enum qemu_plugin_cb_flags flags,
135 enum qemu_plugin_mem_rw rw,
136 void *udata)
137 {
138 plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
139 cb, flags, rw, udata);
140 }
141
142 void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
143 enum qemu_plugin_mem_rw rw,
144 enum qemu_plugin_op op, void *ptr,
145 uint64_t imm)
146 {
147 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
148 rw, op, ptr, imm);
149 }
150
151 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
152 qemu_plugin_vcpu_tb_trans_cb_t cb)
153 {
154 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
155 }
156
157 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
158 qemu_plugin_vcpu_syscall_cb_t cb)
159 {
160 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
161 }
162
163 void
164 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
165 qemu_plugin_vcpu_syscall_ret_cb_t cb)
166 {
167 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
168 }
169
170 /*
171 * Plugin Queries
172 *
173 * These are queries that the plugin can make to gauge information
174 * from our opaque data types. We do not want to leak internal details
175 * here just information useful to the plugin.
176 */
177
178 /*
179 * Translation block information:
180 *
181 * A plugin can query the virtual address of the start of the block
182 * and the number of instructions in it. It can also get access to
183 * each translated instruction.
184 */
185
186 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
187 {
188 return tb->n;
189 }
190
191 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
192 {
193 return tb->vaddr;
194 }
195
196 struct qemu_plugin_insn *
197 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
198 {
199 struct qemu_plugin_insn *insn;
200 if (unlikely(idx >= tb->n)) {
201 return NULL;
202 }
203 insn = g_ptr_array_index(tb->insns, idx);
204 insn->mem_only = tb->mem_only;
205 return insn;
206 }
207
208 /*
209 * Instruction information
210 *
211 * These queries allow the plugin to retrieve information about each
212 * instruction being translated.
213 */
214
215 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
216 {
217 return insn->data->data;
218 }
219
220 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
221 {
222 return insn->data->len;
223 }
224
225 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
226 {
227 return insn->vaddr;
228 }
229
230 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
231 {
232 return insn->haddr;
233 }
234
235 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
236 {
237 CPUState *cpu = current_cpu;
238 return plugin_disas(cpu, insn->vaddr, insn->data->len);
239 }
240
241 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
242 {
243 const char *sym = lookup_symbol(insn->vaddr);
244 return sym[0] != 0 ? sym : NULL;
245 }
246
247 /*
248 * The memory queries allow the plugin to query information about a
249 * memory access.
250 */
251
252 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
253 {
254 MemOp op = get_memop(info);
255 return op & MO_SIZE;
256 }
257
258 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
259 {
260 MemOp op = get_memop(info);
261 return op & MO_SIGN;
262 }
263
264 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
265 {
266 MemOp op = get_memop(info);
267 return (op & MO_BSWAP) == MO_BE;
268 }
269
270 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
271 {
272 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
273 }
274
275 /*
276 * Virtual Memory queries
277 */
278
279 #ifdef CONFIG_SOFTMMU
280 static __thread struct qemu_plugin_hwaddr hwaddr_info;
281 #endif
282
283 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
284 uint64_t vaddr)
285 {
286 #ifdef CONFIG_SOFTMMU
287 CPUState *cpu = current_cpu;
288 unsigned int mmu_idx = get_mmuidx(info);
289 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
290 hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
291
292 assert(mmu_idx < NB_MMU_MODES);
293
294 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
295 hwaddr_info.is_store, &hwaddr_info)) {
296 error_report("invalid use of qemu_plugin_get_hwaddr");
297 return NULL;
298 }
299
300 return &hwaddr_info;
301 #else
302 return NULL;
303 #endif
304 }
305
306 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
307 {
308 #ifdef CONFIG_SOFTMMU
309 return haddr->is_io;
310 #else
311 return false;
312 #endif
313 }
314
315 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
316 {
317 #ifdef CONFIG_SOFTMMU
318 if (haddr) {
319 if (!haddr->is_io) {
320 RAMBlock *block;
321 ram_addr_t offset;
322 void *hostaddr = haddr->v.ram.hostaddr;
323
324 block = qemu_ram_block_from_host(hostaddr, false, &offset);
325 if (!block) {
326 error_report("Bad host ram pointer %p", haddr->v.ram.hostaddr);
327 abort();
328 }
329
330 return block->offset + offset + block->mr->addr;
331 } else {
332 MemoryRegionSection *mrs = haddr->v.io.section;
333 return mrs->offset_within_address_space + haddr->v.io.offset;
334 }
335 }
336 #endif
337 return 0;
338 }
339
340 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
341 {
342 #ifdef CONFIG_SOFTMMU
343 if (h && h->is_io) {
344 MemoryRegionSection *mrs = h->v.io.section;
345 if (!mrs->mr->name) {
346 unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr;
347 g_autofree char *temp = g_strdup_printf("anon%08lx", maddr);
348 return g_intern_string(temp);
349 } else {
350 return g_intern_string(mrs->mr->name);
351 }
352 } else {
353 return g_intern_static_string("RAM");
354 }
355 #else
356 return g_intern_static_string("Invalid");
357 #endif
358 }
359
360 /*
361 * Queries to the number and potential maximum number of vCPUs there
362 * will be. This helps the plugin dimension per-vcpu arrays.
363 */
364
365 #ifndef CONFIG_USER_ONLY
366 static MachineState * get_ms(void)
367 {
368 return MACHINE(qdev_get_machine());
369 }
370 #endif
371
372 int qemu_plugin_n_vcpus(void)
373 {
374 #ifdef CONFIG_USER_ONLY
375 return -1;
376 #else
377 return get_ms()->smp.cpus;
378 #endif
379 }
380
381 int qemu_plugin_n_max_vcpus(void)
382 {
383 #ifdef CONFIG_USER_ONLY
384 return -1;
385 #else
386 return get_ms()->smp.max_cpus;
387 #endif
388 }
389
390 /*
391 * Plugin output
392 */
393 void qemu_plugin_outs(const char *string)
394 {
395 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
396 }
397
398 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
399 {
400 return name && value && qapi_bool_parse(name, value, ret, NULL);
401 }
402
403 /*
404 * Binary path, start and end locations
405 */
406 const char *qemu_plugin_path_to_binary(void)
407 {
408 char *path = NULL;
409 #ifdef CONFIG_USER_ONLY
410 TaskState *ts = (TaskState *) current_cpu->opaque;
411 path = g_strdup(ts->bprm->filename);
412 #endif
413 return path;
414 }
415
416 uint64_t qemu_plugin_start_code(void)
417 {
418 uint64_t start = 0;
419 #ifdef CONFIG_USER_ONLY
420 TaskState *ts = (TaskState *) current_cpu->opaque;
421 start = ts->info->start_code;
422 #endif
423 return start;
424 }
425
426 uint64_t qemu_plugin_end_code(void)
427 {
428 uint64_t end = 0;
429 #ifdef CONFIG_USER_ONLY
430 TaskState *ts = (TaskState *) current_cpu->opaque;
431 end = ts->info->end_code;
432 #endif
433 return end;
434 }
435
436 uint64_t qemu_plugin_entry_code(void)
437 {
438 uint64_t entry = 0;
439 #ifdef CONFIG_USER_ONLY
440 TaskState *ts = (TaskState *) current_cpu->opaque;
441 entry = ts->info->entry;
442 #endif
443 return entry;
444 }