]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/machine.json
Merge remote-tracking branch 'remotes/berrange-gitlab/tags/sock-next-pull-request...
[mirror_qemu.git] / qapi / machine.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
6
7 ##
8 # = Machines
9 ##
10
11 ##
12 # @SysEmuTarget:
13 #
14 # The comprehensive enumeration of QEMU system emulation ("softmmu")
15 # targets. Run "./configure --help" in the project root directory, and
16 # look for the \*-softmmu targets near the "--target-list" option. The
17 # individual target constants are not documented here, for the time
18 # being.
19 #
20 # @rx: since 5.0
21 # @avr: since 5.1
22 #
23 # Notes: The resulting QMP strings can be appended to the "qemu-system-"
24 # prefix to produce the corresponding QEMU executable name. This
25 # is true even for "qemu-system-x86_64".
26 #
27 # Since: 3.0
28 ##
29 { 'enum' : 'SysEmuTarget',
30 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 'lm32',
31 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
32 'mips64el', 'mipsel', 'moxie', 'nios2', 'or1k', 'ppc',
33 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
34 'sh4eb', 'sparc', 'sparc64', 'tricore', 'unicore32',
35 'x86_64', 'xtensa', 'xtensaeb' ] }
36
37 ##
38 # @CpuInfoArch:
39 #
40 # An enumeration of cpu types that enable additional information during
41 # @query-cpus and @query-cpus-fast.
42 #
43 # @s390: since 2.12
44 #
45 # @riscv: since 2.12
46 #
47 # Since: 2.6
48 ##
49 { 'enum': 'CpuInfoArch',
50 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
51
52 ##
53 # @CpuInfo:
54 #
55 # Information about a virtual CPU
56 #
57 # @CPU: the index of the virtual CPU
58 #
59 # @current: this only exists for backwards compatibility and should be ignored
60 #
61 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
62 # to a processor specific low power mode.
63 #
64 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
65 #
66 # @thread_id: ID of the underlying host thread
67 #
68 # @props: properties describing to which node/socket/core/thread
69 # virtual CPU belongs to, provided if supported by board (since 2.10)
70 #
71 # @arch: architecture of the cpu, which determines which additional fields
72 # will be listed (since 2.6)
73 #
74 # Since: 0.14.0
75 #
76 # Notes: @halted is a transient state that changes frequently. By the time the
77 # data is sent to the client, the guest may no longer be halted.
78 ##
79 { 'union': 'CpuInfo',
80 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
81 'qom_path': 'str', 'thread_id': 'int',
82 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
83 'discriminator': 'arch',
84 'data': { 'x86': 'CpuInfoX86',
85 'sparc': 'CpuInfoSPARC',
86 'ppc': 'CpuInfoPPC',
87 'mips': 'CpuInfoMIPS',
88 'tricore': 'CpuInfoTricore',
89 's390': 'CpuInfoS390',
90 'riscv': 'CpuInfoRISCV' } }
91
92 ##
93 # @CpuInfoX86:
94 #
95 # Additional information about a virtual i386 or x86_64 CPU
96 #
97 # @pc: the 64-bit instruction pointer
98 #
99 # Since: 2.6
100 ##
101 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
102
103 ##
104 # @CpuInfoSPARC:
105 #
106 # Additional information about a virtual SPARC CPU
107 #
108 # @pc: the PC component of the instruction pointer
109 #
110 # @npc: the NPC component of the instruction pointer
111 #
112 # Since: 2.6
113 ##
114 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
115
116 ##
117 # @CpuInfoPPC:
118 #
119 # Additional information about a virtual PPC CPU
120 #
121 # @nip: the instruction pointer
122 #
123 # Since: 2.6
124 ##
125 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
126
127 ##
128 # @CpuInfoMIPS:
129 #
130 # Additional information about a virtual MIPS CPU
131 #
132 # @PC: the instruction pointer
133 #
134 # Since: 2.6
135 ##
136 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
137
138 ##
139 # @CpuInfoTricore:
140 #
141 # Additional information about a virtual Tricore CPU
142 #
143 # @PC: the instruction pointer
144 #
145 # Since: 2.6
146 ##
147 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
148
149 ##
150 # @CpuInfoRISCV:
151 #
152 # Additional information about a virtual RISCV CPU
153 #
154 # @pc: the instruction pointer
155 #
156 # Since 2.12
157 ##
158 { 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
159
160 ##
161 # @CpuS390State:
162 #
163 # An enumeration of cpu states that can be assumed by a virtual
164 # S390 CPU
165 #
166 # Since: 2.12
167 ##
168 { 'enum': 'CpuS390State',
169 'prefix': 'S390_CPU_STATE',
170 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
171
172 ##
173 # @CpuInfoS390:
174 #
175 # Additional information about a virtual S390 CPU
176 #
177 # @cpu-state: the virtual CPU's state
178 #
179 # Since: 2.12
180 ##
181 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
182
183 ##
184 # @query-cpus:
185 #
186 # Returns a list of information about each virtual CPU.
187 #
188 # This command causes vCPU threads to exit to userspace, which causes
189 # a small interruption to guest CPU execution. This will have a negative
190 # impact on realtime guests and other latency sensitive guest workloads.
191 #
192 # Features:
193 # @deprecated: This command is deprecated, because it interferes with
194 # the guest. Use 'query-cpus-fast' instead to avoid the vCPU
195 # interruption.
196 #
197 # Returns: a list of @CpuInfo for each virtual CPU
198 #
199 # Since: 0.14.0
200 #
201 # Example:
202 #
203 # -> { "execute": "query-cpus" }
204 # <- { "return": [
205 # {
206 # "CPU":0,
207 # "current":true,
208 # "halted":false,
209 # "qom_path":"/machine/unattached/device[0]",
210 # "arch":"x86",
211 # "pc":3227107138,
212 # "thread_id":3134
213 # },
214 # {
215 # "CPU":1,
216 # "current":false,
217 # "halted":true,
218 # "qom_path":"/machine/unattached/device[2]",
219 # "arch":"x86",
220 # "pc":7108165,
221 # "thread_id":3135
222 # }
223 # ]
224 # }
225 #
226 ##
227 { 'command': 'query-cpus', 'returns': ['CpuInfo'],
228 'features': [ 'deprecated' ] }
229
230 ##
231 # @CpuInfoFast:
232 #
233 # Information about a virtual CPU
234 #
235 # @cpu-index: index of the virtual CPU
236 #
237 # @qom-path: path to the CPU object in the QOM tree
238 #
239 # @thread-id: ID of the underlying host thread
240 #
241 # @props: properties describing to which node/socket/core/thread
242 # virtual CPU belongs to, provided if supported by board
243 #
244 # @arch: base architecture of the cpu
245 #
246 # @target: the QEMU system emulation target, which determines which
247 # additional fields will be listed (since 3.0)
248 #
249 # Features:
250 # @deprecated: Member @arch is deprecated. Use @target instead.
251 #
252 # Since: 2.12
253 #
254 ##
255 { 'union' : 'CpuInfoFast',
256 'base' : { 'cpu-index' : 'int',
257 'qom-path' : 'str',
258 'thread-id' : 'int',
259 '*props' : 'CpuInstanceProperties',
260 'arch' : { 'type': 'CpuInfoArch',
261 'features': [ 'deprecated' ] },
262 'target' : 'SysEmuTarget' },
263 'discriminator' : 'target',
264 'data' : { 's390x' : 'CpuInfoS390' } }
265
266 ##
267 # @query-cpus-fast:
268 #
269 # Returns information about all virtual CPUs. This command does not
270 # incur a performance penalty and should be used in production
271 # instead of query-cpus.
272 #
273 # Returns: list of @CpuInfoFast
274 #
275 # Since: 2.12
276 #
277 # Example:
278 #
279 # -> { "execute": "query-cpus-fast" }
280 # <- { "return": [
281 # {
282 # "thread-id": 25627,
283 # "props": {
284 # "core-id": 0,
285 # "thread-id": 0,
286 # "socket-id": 0
287 # },
288 # "qom-path": "/machine/unattached/device[0]",
289 # "arch":"x86",
290 # "target":"x86_64",
291 # "cpu-index": 0
292 # },
293 # {
294 # "thread-id": 25628,
295 # "props": {
296 # "core-id": 0,
297 # "thread-id": 0,
298 # "socket-id": 1
299 # },
300 # "qom-path": "/machine/unattached/device[2]",
301 # "arch":"x86",
302 # "target":"x86_64",
303 # "cpu-index": 1
304 # }
305 # ]
306 # }
307 ##
308 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
309
310 ##
311 # @MachineInfo:
312 #
313 # Information describing a machine.
314 #
315 # @name: the name of the machine
316 #
317 # @alias: an alias for the machine name
318 #
319 # @is-default: whether the machine is default
320 #
321 # @cpu-max: maximum number of CPUs supported by the machine type
322 # (since 1.5.0)
323 #
324 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
325 #
326 # @numa-mem-supported: true if '-numa node,mem' option is supported by
327 # the machine type and false otherwise (since 4.1)
328 #
329 # @deprecated: if true, the machine type is deprecated and may be removed
330 # in future versions of QEMU according to the QEMU deprecation
331 # policy (since 4.1.0)
332 #
333 # @default-cpu-type: default CPU model typename if none is requested via
334 # the -cpu argument. (since 4.2)
335 #
336 # @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
337 #
338 # Since: 1.2.0
339 ##
340 { 'struct': 'MachineInfo',
341 'data': { 'name': 'str', '*alias': 'str',
342 '*is-default': 'bool', 'cpu-max': 'int',
343 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
344 'deprecated': 'bool', '*default-cpu-type': 'str',
345 '*default-ram-id': 'str' } }
346
347 ##
348 # @query-machines:
349 #
350 # Return a list of supported machines
351 #
352 # Returns: a list of MachineInfo
353 #
354 # Since: 1.2.0
355 ##
356 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
357
358 ##
359 # @CurrentMachineParams:
360 #
361 # Information describing the running machine parameters.
362 #
363 # @wakeup-suspend-support: true if the machine supports wake up from
364 # suspend
365 #
366 # Since: 4.0
367 ##
368 { 'struct': 'CurrentMachineParams',
369 'data': { 'wakeup-suspend-support': 'bool'} }
370
371 ##
372 # @query-current-machine:
373 #
374 # Return information on the current virtual machine.
375 #
376 # Returns: CurrentMachineParams
377 #
378 # Since: 4.0
379 ##
380 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
381
382 ##
383 # @TargetInfo:
384 #
385 # Information describing the QEMU target.
386 #
387 # @arch: the target architecture
388 #
389 # Since: 1.2.0
390 ##
391 { 'struct': 'TargetInfo',
392 'data': { 'arch': 'SysEmuTarget' } }
393
394 ##
395 # @query-target:
396 #
397 # Return information about the target for this QEMU
398 #
399 # Returns: TargetInfo
400 #
401 # Since: 1.2.0
402 ##
403 { 'command': 'query-target', 'returns': 'TargetInfo' }
404
405 ##
406 # @UuidInfo:
407 #
408 # Guest UUID information (Universally Unique Identifier).
409 #
410 # @UUID: the UUID of the guest
411 #
412 # Since: 0.14.0
413 #
414 # Notes: If no UUID was specified for the guest, a null UUID is returned.
415 ##
416 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
417
418 ##
419 # @query-uuid:
420 #
421 # Query the guest UUID information.
422 #
423 # Returns: The @UuidInfo for the guest
424 #
425 # Since: 0.14.0
426 #
427 # Example:
428 #
429 # -> { "execute": "query-uuid" }
430 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
431 #
432 ##
433 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
434
435 ##
436 # @GuidInfo:
437 #
438 # GUID information.
439 #
440 # @guid: the globally unique identifier
441 #
442 # Since: 2.9
443 ##
444 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
445
446 ##
447 # @query-vm-generation-id:
448 #
449 # Show Virtual Machine Generation ID
450 #
451 # Since: 2.9
452 ##
453 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
454
455 ##
456 # @system_reset:
457 #
458 # Performs a hard reset of a guest.
459 #
460 # Since: 0.14.0
461 #
462 # Example:
463 #
464 # -> { "execute": "system_reset" }
465 # <- { "return": {} }
466 #
467 ##
468 { 'command': 'system_reset' }
469
470 ##
471 # @system_powerdown:
472 #
473 # Requests that a guest perform a powerdown operation.
474 #
475 # Since: 0.14.0
476 #
477 # Notes: A guest may or may not respond to this command. This command
478 # returning does not indicate that a guest has accepted the request or
479 # that it has shut down. Many guests will respond to this command by
480 # prompting the user in some way.
481 # Example:
482 #
483 # -> { "execute": "system_powerdown" }
484 # <- { "return": {} }
485 #
486 ##
487 { 'command': 'system_powerdown' }
488
489 ##
490 # @system_wakeup:
491 #
492 # Wake up guest from suspend. If the guest has wake-up from suspend
493 # support enabled (wakeup-suspend-support flag from
494 # query-current-machine), wake-up guest from suspend if the guest is
495 # in SUSPENDED state. Return an error otherwise.
496 #
497 # Since: 1.1
498 #
499 # Returns: nothing.
500 #
501 # Note: prior to 4.0, this command does nothing in case the guest
502 # isn't suspended.
503 #
504 # Example:
505 #
506 # -> { "execute": "system_wakeup" }
507 # <- { "return": {} }
508 #
509 ##
510 { 'command': 'system_wakeup' }
511
512 ##
513 # @LostTickPolicy:
514 #
515 # Policy for handling lost ticks in timer devices. Ticks end up getting
516 # lost when, for example, the guest is paused.
517 #
518 # @discard: throw away the missed ticks and continue with future injection
519 # normally. The guest OS will see the timer jump ahead by a
520 # potentially quite significant amount all at once, as if the
521 # intervening chunk of time had simply not existed; needless to
522 # say, such a sudden jump can easily confuse a guest OS which is
523 # not specifically prepared to deal with it. Assuming the guest
524 # OS can deal correctly with the time jump, the time in the guest
525 # and in the host should now match.
526 #
527 # @delay: continue to deliver ticks at the normal rate. The guest OS will
528 # not notice anything is amiss, as from its point of view time will
529 # have continued to flow normally. The time in the guest should now
530 # be behind the time in the host by exactly the amount of time during
531 # which ticks have been missed.
532 #
533 # @slew: deliver ticks at a higher rate to catch up with the missed ticks.
534 # The guest OS will not notice anything is amiss, as from its point
535 # of view time will have continued to flow normally. Once the timer
536 # has managed to catch up with all the missing ticks, the time in
537 # the guest and in the host should match.
538 #
539 # Since: 2.0
540 ##
541 { 'enum': 'LostTickPolicy',
542 'data': ['discard', 'delay', 'slew' ] }
543
544 ##
545 # @inject-nmi:
546 #
547 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
548 # The command fails when the guest doesn't support injecting.
549 #
550 # Returns: If successful, nothing
551 #
552 # Since: 0.14.0
553 #
554 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
555 #
556 # Example:
557 #
558 # -> { "execute": "inject-nmi" }
559 # <- { "return": {} }
560 #
561 ##
562 { 'command': 'inject-nmi' }
563
564 ##
565 # @KvmInfo:
566 #
567 # Information about support for KVM acceleration
568 #
569 # @enabled: true if KVM acceleration is active
570 #
571 # @present: true if KVM acceleration is built into this executable
572 #
573 # Since: 0.14.0
574 ##
575 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
576
577 ##
578 # @query-kvm:
579 #
580 # Returns information about KVM acceleration
581 #
582 # Returns: @KvmInfo
583 #
584 # Since: 0.14.0
585 #
586 # Example:
587 #
588 # -> { "execute": "query-kvm" }
589 # <- { "return": { "enabled": true, "present": true } }
590 #
591 ##
592 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
593
594 ##
595 # @NumaOptionsType:
596 #
597 # @node: NUMA nodes configuration
598 #
599 # @dist: NUMA distance configuration (since 2.10)
600 #
601 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
602 #
603 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
604 #
605 # @hmat-cache: memory side cache information (Since: 5.0)
606 #
607 # Since: 2.1
608 ##
609 { 'enum': 'NumaOptionsType',
610 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
611
612 ##
613 # @NumaOptions:
614 #
615 # A discriminated record of NUMA options. (for OptsVisitor)
616 #
617 # Since: 2.1
618 ##
619 { 'union': 'NumaOptions',
620 'base': { 'type': 'NumaOptionsType' },
621 'discriminator': 'type',
622 'data': {
623 'node': 'NumaNodeOptions',
624 'dist': 'NumaDistOptions',
625 'cpu': 'NumaCpuOptions',
626 'hmat-lb': 'NumaHmatLBOptions',
627 'hmat-cache': 'NumaHmatCacheOptions' }}
628
629 ##
630 # @NumaNodeOptions:
631 #
632 # Create a guest NUMA node. (for OptsVisitor)
633 #
634 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
635 #
636 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
637 # if omitted)
638 #
639 # @mem: memory size of this node; mutually exclusive with @memdev.
640 # Equally divide total memory among nodes if both @mem and @memdev are
641 # omitted.
642 #
643 # @memdev: memory backend object. If specified for one node,
644 # it must be specified for all nodes.
645 #
646 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
647 # points to the nodeid which has the memory controller
648 # responsible for this NUMA node. This field provides
649 # additional information as to the initiator node that
650 # is closest (as in directly attached) to this node, and
651 # therefore has the best performance (since 5.0)
652 #
653 # Since: 2.1
654 ##
655 { 'struct': 'NumaNodeOptions',
656 'data': {
657 '*nodeid': 'uint16',
658 '*cpus': ['uint16'],
659 '*mem': 'size',
660 '*memdev': 'str',
661 '*initiator': 'uint16' }}
662
663 ##
664 # @NumaDistOptions:
665 #
666 # Set the distance between 2 NUMA nodes.
667 #
668 # @src: source NUMA node.
669 #
670 # @dst: destination NUMA node.
671 #
672 # @val: NUMA distance from source node to destination node.
673 # When a node is unreachable from another node, set the distance
674 # between them to 255.
675 #
676 # Since: 2.10
677 ##
678 { 'struct': 'NumaDistOptions',
679 'data': {
680 'src': 'uint16',
681 'dst': 'uint16',
682 'val': 'uint8' }}
683
684 ##
685 # @X86CPURegister32:
686 #
687 # A X86 32-bit register
688 #
689 # Since: 1.5
690 ##
691 { 'enum': 'X86CPURegister32',
692 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
693
694 ##
695 # @X86CPUFeatureWordInfo:
696 #
697 # Information about a X86 CPU feature word
698 #
699 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
700 #
701 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
702 # feature word
703 #
704 # @cpuid-register: Output register containing the feature bits
705 #
706 # @features: value of output register, containing the feature bits
707 #
708 # Since: 1.5
709 ##
710 { 'struct': 'X86CPUFeatureWordInfo',
711 'data': { 'cpuid-input-eax': 'int',
712 '*cpuid-input-ecx': 'int',
713 'cpuid-register': 'X86CPURegister32',
714 'features': 'int' } }
715
716 ##
717 # @DummyForceArrays:
718 #
719 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
720 #
721 # Since: 2.5
722 ##
723 { 'struct': 'DummyForceArrays',
724 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
725
726 ##
727 # @NumaCpuOptions:
728 #
729 # Option "-numa cpu" overrides default cpu to node mapping.
730 # It accepts the same set of cpu properties as returned by
731 # query-hotpluggable-cpus[].props, where node-id could be used to
732 # override default node mapping.
733 #
734 # Since: 2.10
735 ##
736 { 'struct': 'NumaCpuOptions',
737 'base': 'CpuInstanceProperties',
738 'data' : {} }
739
740 ##
741 # @HmatLBMemoryHierarchy:
742 #
743 # The memory hierarchy in the System Locality Latency and Bandwidth
744 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
745 #
746 # For more information about @HmatLBMemoryHierarchy, see chapter
747 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
748 #
749 # @memory: the structure represents the memory performance
750 #
751 # @first-level: first level of memory side cache
752 #
753 # @second-level: second level of memory side cache
754 #
755 # @third-level: third level of memory side cache
756 #
757 # Since: 5.0
758 ##
759 { 'enum': 'HmatLBMemoryHierarchy',
760 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
761
762 ##
763 # @HmatLBDataType:
764 #
765 # Data type in the System Locality Latency and Bandwidth
766 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
767 #
768 # For more information about @HmatLBDataType, see chapter
769 # 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec.
770 #
771 # @access-latency: access latency (nanoseconds)
772 #
773 # @read-latency: read latency (nanoseconds)
774 #
775 # @write-latency: write latency (nanoseconds)
776 #
777 # @access-bandwidth: access bandwidth (Bytes per second)
778 #
779 # @read-bandwidth: read bandwidth (Bytes per second)
780 #
781 # @write-bandwidth: write bandwidth (Bytes per second)
782 #
783 # Since: 5.0
784 ##
785 { 'enum': 'HmatLBDataType',
786 'data': [ 'access-latency', 'read-latency', 'write-latency',
787 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
788
789 ##
790 # @NumaHmatLBOptions:
791 #
792 # Set the system locality latency and bandwidth information
793 # between Initiator and Target proximity Domains.
794 #
795 # For more information about @NumaHmatLBOptions, see chapter
796 # 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
797 #
798 # @initiator: the Initiator Proximity Domain.
799 #
800 # @target: the Target Proximity Domain.
801 #
802 # @hierarchy: the Memory Hierarchy. Indicates the performance
803 # of memory or side cache.
804 #
805 # @data-type: presents the type of data, access/read/write
806 # latency or hit latency.
807 #
808 # @latency: the value of latency from @initiator to @target
809 # proximity domain, the latency unit is "ns(nanosecond)".
810 #
811 # @bandwidth: the value of bandwidth between @initiator and @target
812 # proximity domain, the bandwidth unit is
813 # "Bytes per second".
814 #
815 # Since: 5.0
816 ##
817 { 'struct': 'NumaHmatLBOptions',
818 'data': {
819 'initiator': 'uint16',
820 'target': 'uint16',
821 'hierarchy': 'HmatLBMemoryHierarchy',
822 'data-type': 'HmatLBDataType',
823 '*latency': 'uint64',
824 '*bandwidth': 'size' }}
825
826 ##
827 # @HmatCacheAssociativity:
828 #
829 # Cache associativity in the Memory Side Cache Information Structure
830 # of HMAT
831 #
832 # For more information of @HmatCacheAssociativity, see chapter
833 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
834 #
835 # @none: None (no memory side cache in this proximity domain,
836 # or cache associativity unknown)
837 #
838 # @direct: Direct Mapped
839 #
840 # @complex: Complex Cache Indexing (implementation specific)
841 #
842 # Since: 5.0
843 ##
844 { 'enum': 'HmatCacheAssociativity',
845 'data': [ 'none', 'direct', 'complex' ] }
846
847 ##
848 # @HmatCacheWritePolicy:
849 #
850 # Cache write policy in the Memory Side Cache Information Structure
851 # of HMAT
852 #
853 # For more information of @HmatCacheWritePolicy, see chapter
854 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
855 #
856 # @none: None (no memory side cache in this proximity domain,
857 # or cache write policy unknown)
858 #
859 # @write-back: Write Back (WB)
860 #
861 # @write-through: Write Through (WT)
862 #
863 # Since: 5.0
864 ##
865 { 'enum': 'HmatCacheWritePolicy',
866 'data': [ 'none', 'write-back', 'write-through' ] }
867
868 ##
869 # @NumaHmatCacheOptions:
870 #
871 # Set the memory side cache information for a given memory domain.
872 #
873 # For more information of @NumaHmatCacheOptions, see chapter
874 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
875 #
876 # @node-id: the memory proximity domain to which the memory belongs.
877 #
878 # @size: the size of memory side cache in bytes.
879 #
880 # @level: the cache level described in this structure.
881 #
882 # @associativity: the cache associativity,
883 # none/direct-mapped/complex(complex cache indexing).
884 #
885 # @policy: the write policy, none/write-back/write-through.
886 #
887 # @line: the cache Line size in bytes.
888 #
889 # Since: 5.0
890 ##
891 { 'struct': 'NumaHmatCacheOptions',
892 'data': {
893 'node-id': 'uint32',
894 'size': 'size',
895 'level': 'uint8',
896 'associativity': 'HmatCacheAssociativity',
897 'policy': 'HmatCacheWritePolicy',
898 'line': 'uint16' }}
899
900 ##
901 # @HostMemPolicy:
902 #
903 # Host memory policy types
904 #
905 # @default: restore default policy, remove any nondefault policy
906 #
907 # @preferred: set the preferred host nodes for allocation
908 #
909 # @bind: a strict policy that restricts memory allocation to the
910 # host nodes specified
911 #
912 # @interleave: memory allocations are interleaved across the set
913 # of host nodes specified
914 #
915 # Since: 2.1
916 ##
917 { 'enum': 'HostMemPolicy',
918 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
919
920 ##
921 # @memsave:
922 #
923 # Save a portion of guest memory to a file.
924 #
925 # @val: the virtual address of the guest to start from
926 #
927 # @size: the size of memory region to save
928 #
929 # @filename: the file to save the memory to as binary data
930 #
931 # @cpu-index: the index of the virtual CPU to use for translating the
932 # virtual address (defaults to CPU 0)
933 #
934 # Returns: Nothing on success
935 #
936 # Since: 0.14.0
937 #
938 # Notes: Errors were not reliably returned until 1.1
939 #
940 # Example:
941 #
942 # -> { "execute": "memsave",
943 # "arguments": { "val": 10,
944 # "size": 100,
945 # "filename": "/tmp/virtual-mem-dump" } }
946 # <- { "return": {} }
947 #
948 ##
949 { 'command': 'memsave',
950 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
951
952 ##
953 # @pmemsave:
954 #
955 # Save a portion of guest physical memory to a file.
956 #
957 # @val: the physical address of the guest to start from
958 #
959 # @size: the size of memory region to save
960 #
961 # @filename: the file to save the memory to as binary data
962 #
963 # Returns: Nothing on success
964 #
965 # Since: 0.14.0
966 #
967 # Notes: Errors were not reliably returned until 1.1
968 #
969 # Example:
970 #
971 # -> { "execute": "pmemsave",
972 # "arguments": { "val": 10,
973 # "size": 100,
974 # "filename": "/tmp/physical-mem-dump" } }
975 # <- { "return": {} }
976 #
977 ##
978 { 'command': 'pmemsave',
979 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
980
981 ##
982 # @Memdev:
983 #
984 # Information about memory backend
985 #
986 # @id: backend's ID if backend has 'id' property (since 2.9)
987 #
988 # @size: memory backend size
989 #
990 # @merge: enables or disables memory merge support
991 #
992 # @dump: includes memory backend's memory in a core dump or not
993 #
994 # @prealloc: enables or disables memory preallocation
995 #
996 # @host-nodes: host nodes for its memory policy
997 #
998 # @policy: memory policy of memory backend
999 #
1000 # Since: 2.1
1001 ##
1002 { 'struct': 'Memdev',
1003 'data': {
1004 '*id': 'str',
1005 'size': 'size',
1006 'merge': 'bool',
1007 'dump': 'bool',
1008 'prealloc': 'bool',
1009 'host-nodes': ['uint16'],
1010 'policy': 'HostMemPolicy' }}
1011
1012 ##
1013 # @query-memdev:
1014 #
1015 # Returns information for all memory backends.
1016 #
1017 # Returns: a list of @Memdev.
1018 #
1019 # Since: 2.1
1020 #
1021 # Example:
1022 #
1023 # -> { "execute": "query-memdev" }
1024 # <- { "return": [
1025 # {
1026 # "id": "mem1",
1027 # "size": 536870912,
1028 # "merge": false,
1029 # "dump": true,
1030 # "prealloc": false,
1031 # "host-nodes": [0, 1],
1032 # "policy": "bind"
1033 # },
1034 # {
1035 # "size": 536870912,
1036 # "merge": false,
1037 # "dump": true,
1038 # "prealloc": true,
1039 # "host-nodes": [2, 3],
1040 # "policy": "preferred"
1041 # }
1042 # ]
1043 # }
1044 #
1045 ##
1046 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
1047
1048 ##
1049 # @CpuInstanceProperties:
1050 #
1051 # List of properties to be used for hotplugging a CPU instance,
1052 # it should be passed by management with device_add command when
1053 # a CPU is being hotplugged.
1054 #
1055 # @node-id: NUMA node ID the CPU belongs to
1056 # @socket-id: socket number within node/board the CPU belongs to
1057 # @die-id: die number within node/board the CPU belongs to (Since 4.1)
1058 # @core-id: core number within die the CPU belongs to
1059 # @thread-id: thread number within core the CPU belongs to
1060 #
1061 # Note: currently there are 5 properties that could be present
1062 # but management should be prepared to pass through other
1063 # properties with device_add command to allow for future
1064 # interface extension. This also requires the filed names to be kept in
1065 # sync with the properties passed to -device/device_add.
1066 #
1067 # Since: 2.7
1068 ##
1069 { 'struct': 'CpuInstanceProperties',
1070 'data': { '*node-id': 'int',
1071 '*socket-id': 'int',
1072 '*die-id': 'int',
1073 '*core-id': 'int',
1074 '*thread-id': 'int'
1075 }
1076 }
1077
1078 ##
1079 # @HotpluggableCPU:
1080 #
1081 # @type: CPU object type for usage with device_add command
1082 # @props: list of properties to be used for hotplugging CPU
1083 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
1084 # @qom-path: link to existing CPU object if CPU is present or
1085 # omitted if CPU is not present.
1086 #
1087 # Since: 2.7
1088 ##
1089 { 'struct': 'HotpluggableCPU',
1090 'data': { 'type': 'str',
1091 'vcpus-count': 'int',
1092 'props': 'CpuInstanceProperties',
1093 '*qom-path': 'str'
1094 }
1095 }
1096
1097 ##
1098 # @query-hotpluggable-cpus:
1099 #
1100 # TODO: Better documentation; currently there is none.
1101 #
1102 # Returns: a list of HotpluggableCPU objects.
1103 #
1104 # Since: 2.7
1105 #
1106 # Example:
1107 #
1108 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
1109 #
1110 # -> { "execute": "query-hotpluggable-cpus" }
1111 # <- {"return": [
1112 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
1113 # "vcpus-count": 1 },
1114 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
1115 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
1116 # ]}'
1117 #
1118 # For pc machine type started with -smp 1,maxcpus=2:
1119 #
1120 # -> { "execute": "query-hotpluggable-cpus" }
1121 # <- {"return": [
1122 # {
1123 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1124 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1125 # },
1126 # {
1127 # "qom-path": "/machine/unattached/device[0]",
1128 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1129 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1130 # }
1131 # ]}
1132 #
1133 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
1134 # (Since: 2.11):
1135 #
1136 # -> { "execute": "query-hotpluggable-cpus" }
1137 # <- {"return": [
1138 # {
1139 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1140 # "props": { "core-id": 1 }
1141 # },
1142 # {
1143 # "qom-path": "/machine/unattached/device[0]",
1144 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1145 # "props": { "core-id": 0 }
1146 # }
1147 # ]}
1148 #
1149 ##
1150 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1151 'allow-preconfig': true }
1152
1153 ##
1154 # @set-numa-node:
1155 #
1156 # Runtime equivalent of '-numa' CLI option, available at
1157 # preconfigure stage to configure numa mapping before initializing
1158 # machine.
1159 #
1160 # Since 3.0
1161 ##
1162 { 'command': 'set-numa-node', 'boxed': true,
1163 'data': 'NumaOptions',
1164 'allow-preconfig': true
1165 }
1166
1167 ##
1168 # @balloon:
1169 #
1170 # Request the balloon driver to change its balloon size.
1171 #
1172 # @value: the target logical size of the VM in bytes.
1173 # We can deduce the size of the balloon using this formula:
1174 #
1175 # logical_vm_size = vm_ram_size - balloon_size
1176 #
1177 # From it we have: balloon_size = vm_ram_size - @value
1178 #
1179 # Returns: - Nothing on success
1180 # - If the balloon driver is enabled but not functional because the KVM
1181 # kernel module cannot support it, KvmMissingCap
1182 # - If no balloon device is present, DeviceNotActive
1183 #
1184 # Notes: This command just issues a request to the guest. When it returns,
1185 # the balloon size may not have changed. A guest can change the balloon
1186 # size independent of this command.
1187 #
1188 # Since: 0.14.0
1189 #
1190 # Example:
1191 #
1192 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1193 # <- { "return": {} }
1194 #
1195 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1196 #
1197 ##
1198 { 'command': 'balloon', 'data': {'value': 'int'} }
1199
1200 ##
1201 # @BalloonInfo:
1202 #
1203 # Information about the guest balloon device.
1204 #
1205 # @actual: the logical size of the VM in bytes
1206 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1207 #
1208 # Since: 0.14.0
1209 #
1210 ##
1211 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1212
1213 ##
1214 # @query-balloon:
1215 #
1216 # Return information about the balloon device.
1217 #
1218 # Returns: - @BalloonInfo on success
1219 # - If the balloon driver is enabled but not functional because the KVM
1220 # kernel module cannot support it, KvmMissingCap
1221 # - If no balloon device is present, DeviceNotActive
1222 #
1223 # Since: 0.14.0
1224 #
1225 # Example:
1226 #
1227 # -> { "execute": "query-balloon" }
1228 # <- { "return": {
1229 # "actual": 1073741824,
1230 # }
1231 # }
1232 #
1233 ##
1234 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1235
1236 ##
1237 # @BALLOON_CHANGE:
1238 #
1239 # Emitted when the guest changes the actual BALLOON level. This value is
1240 # equivalent to the @actual field return by the 'query-balloon' command
1241 #
1242 # @actual: the logical size of the VM in bytes
1243 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1244 #
1245 # Note: this event is rate-limited.
1246 #
1247 # Since: 1.2
1248 #
1249 # Example:
1250 #
1251 # <- { "event": "BALLOON_CHANGE",
1252 # "data": { "actual": 944766976 },
1253 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1254 #
1255 ##
1256 { 'event': 'BALLOON_CHANGE',
1257 'data': { 'actual': 'int' } }
1258
1259 ##
1260 # @MemoryInfo:
1261 #
1262 # Actual memory information in bytes.
1263 #
1264 # @base-memory: size of "base" memory specified with command line
1265 # option -m.
1266 #
1267 # @plugged-memory: size of memory that can be hot-unplugged. This field
1268 # is omitted if target doesn't support memory hotplug
1269 # (i.e. CONFIG_MEM_DEVICE not defined at build time).
1270 #
1271 # Since: 2.11.0
1272 ##
1273 { 'struct': 'MemoryInfo',
1274 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1275
1276 ##
1277 # @query-memory-size-summary:
1278 #
1279 # Return the amount of initially allocated and present hotpluggable (if
1280 # enabled) memory in bytes.
1281 #
1282 # Example:
1283 #
1284 # -> { "execute": "query-memory-size-summary" }
1285 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1286 #
1287 # Since: 2.11.0
1288 ##
1289 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1290
1291 ##
1292 # @PCDIMMDeviceInfo:
1293 #
1294 # PCDIMMDevice state information
1295 #
1296 # @id: device's ID
1297 #
1298 # @addr: physical address, where device is mapped
1299 #
1300 # @size: size of memory that the device provides
1301 #
1302 # @slot: slot number at which device is plugged in
1303 #
1304 # @node: NUMA node number where device is plugged in
1305 #
1306 # @memdev: memory backend linked with device
1307 #
1308 # @hotplugged: true if device was hotplugged
1309 #
1310 # @hotpluggable: true if device if could be added/removed while machine is running
1311 #
1312 # Since: 2.1
1313 ##
1314 { 'struct': 'PCDIMMDeviceInfo',
1315 'data': { '*id': 'str',
1316 'addr': 'int',
1317 'size': 'int',
1318 'slot': 'int',
1319 'node': 'int',
1320 'memdev': 'str',
1321 'hotplugged': 'bool',
1322 'hotpluggable': 'bool'
1323 }
1324 }
1325
1326 ##
1327 # @VirtioPMEMDeviceInfo:
1328 #
1329 # VirtioPMEM state information
1330 #
1331 # @id: device's ID
1332 #
1333 # @memaddr: physical address in memory, where device is mapped
1334 #
1335 # @size: size of memory that the device provides
1336 #
1337 # @memdev: memory backend linked with device
1338 #
1339 # Since: 4.1
1340 ##
1341 { 'struct': 'VirtioPMEMDeviceInfo',
1342 'data': { '*id': 'str',
1343 'memaddr': 'size',
1344 'size': 'size',
1345 'memdev': 'str'
1346 }
1347 }
1348
1349 ##
1350 # @VirtioMEMDeviceInfo:
1351 #
1352 # VirtioMEMDevice state information
1353 #
1354 # @id: device's ID
1355 #
1356 # @memaddr: physical address in memory, where device is mapped
1357 #
1358 # @requested-size: the user requested size of the device
1359 #
1360 # @size: the (current) size of memory that the device provides
1361 #
1362 # @max-size: the maximum size of memory that the device can provide
1363 #
1364 # @block-size: the block size of memory that the device provides
1365 #
1366 # @node: NUMA node number where device is assigned to
1367 #
1368 # @memdev: memory backend linked with the region
1369 #
1370 # Since: 5.1
1371 ##
1372 { 'struct': 'VirtioMEMDeviceInfo',
1373 'data': { '*id': 'str',
1374 'memaddr': 'size',
1375 'requested-size': 'size',
1376 'size': 'size',
1377 'max-size': 'size',
1378 'block-size': 'size',
1379 'node': 'int',
1380 'memdev': 'str'
1381 }
1382 }
1383
1384 ##
1385 # @MemoryDeviceInfo:
1386 #
1387 # Union containing information about a memory device
1388 #
1389 # nvdimm is included since 2.12. virtio-pmem is included since 4.1.
1390 # virtio-mem is included since 5.1.
1391 #
1392 # Since: 2.1
1393 ##
1394 { 'union': 'MemoryDeviceInfo',
1395 'data': { 'dimm': 'PCDIMMDeviceInfo',
1396 'nvdimm': 'PCDIMMDeviceInfo',
1397 'virtio-pmem': 'VirtioPMEMDeviceInfo',
1398 'virtio-mem': 'VirtioMEMDeviceInfo'
1399 }
1400 }
1401
1402 ##
1403 # @query-memory-devices:
1404 #
1405 # Lists available memory devices and their state
1406 #
1407 # Since: 2.1
1408 #
1409 # Example:
1410 #
1411 # -> { "execute": "query-memory-devices" }
1412 # <- { "return": [ { "data":
1413 # { "addr": 5368709120,
1414 # "hotpluggable": true,
1415 # "hotplugged": true,
1416 # "id": "d1",
1417 # "memdev": "/objects/memX",
1418 # "node": 0,
1419 # "size": 1073741824,
1420 # "slot": 0},
1421 # "type": "dimm"
1422 # } ] }
1423 #
1424 ##
1425 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1426
1427 ##
1428 # @MEMORY_DEVICE_SIZE_CHANGE:
1429 #
1430 # Emitted when the size of a memory device changes. Only emitted for memory
1431 # devices that can actually change the size (e.g., virtio-mem due to guest
1432 # action).
1433 #
1434 # @id: device's ID
1435 # @size: the new size of memory that the device provides
1436 #
1437 # Note: this event is rate-limited.
1438 #
1439 # Since: 5.1
1440 #
1441 # Example:
1442 #
1443 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1444 # "data": { "id": "vm0", "size": 1073741824},
1445 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1446 #
1447 ##
1448 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1449 'data': { '*id': 'str', 'size': 'size' } }
1450
1451
1452 ##
1453 # @MEM_UNPLUG_ERROR:
1454 #
1455 # Emitted when memory hot unplug error occurs.
1456 #
1457 # @device: device name
1458 #
1459 # @msg: Informative message
1460 #
1461 # Since: 2.4
1462 #
1463 # Example:
1464 #
1465 # <- { "event": "MEM_UNPLUG_ERROR"
1466 # "data": { "device": "dimm1",
1467 # "msg": "acpi: device unplug for unsupported device"
1468 # },
1469 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1470 #
1471 ##
1472 { 'event': 'MEM_UNPLUG_ERROR',
1473 'data': { 'device': 'str', 'msg': 'str' } }