]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/machine.json
Merge tag 'pull-vfio-20230630' of https://github.com/legoater/qemu into staging
[mirror_qemu.git] / qapi / machine.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
6
7 ##
8 # = Machines
9 ##
10
11 { 'include': 'common.json' }
12
13 ##
14 # @SysEmuTarget:
15 #
16 # The comprehensive enumeration of QEMU system emulation ("softmmu")
17 # targets. Run "./configure --help" in the project root directory,
18 # and look for the \*-softmmu targets near the "--target-list" option.
19 # The individual target constants are not documented here, for the
20 # time being.
21 #
22 # @rx: since 5.0
23 #
24 # @avr: since 5.1
25 #
26 # Notes: The resulting QMP strings can be appended to the
27 # "qemu-system-" prefix to produce the corresponding QEMU
28 # executable name. This is true even for "qemu-system-x86_64".
29 #
30 # Since: 3.0
31 ##
32 { 'enum' : 'SysEmuTarget',
33 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
34 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
35 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
36 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
37 'sh4eb', 'sparc', 'sparc64', 'tricore',
38 'x86_64', 'xtensa', 'xtensaeb' ] }
39
40 ##
41 # @CpuS390State:
42 #
43 # An enumeration of cpu states that can be assumed by a virtual S390
44 # CPU
45 #
46 # Since: 2.12
47 ##
48 { 'enum': 'CpuS390State',
49 'prefix': 'S390_CPU_STATE',
50 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
51
52 ##
53 # @CpuInfoS390:
54 #
55 # Additional information about a virtual S390 CPU
56 #
57 # @cpu-state: the virtual CPU's state
58 #
59 # Since: 2.12
60 ##
61 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
62
63 ##
64 # @CpuInfoFast:
65 #
66 # Information about a virtual CPU
67 #
68 # @cpu-index: index of the virtual CPU
69 #
70 # @qom-path: path to the CPU object in the QOM tree
71 #
72 # @thread-id: ID of the underlying host thread
73 #
74 # @props: properties describing to which node/socket/core/thread
75 # virtual CPU belongs to, provided if supported by board
76 #
77 # @target: the QEMU system emulation target, which determines which
78 # additional fields will be listed (since 3.0)
79 #
80 # Since: 2.12
81 ##
82 { 'union' : 'CpuInfoFast',
83 'base' : { 'cpu-index' : 'int',
84 'qom-path' : 'str',
85 'thread-id' : 'int',
86 '*props' : 'CpuInstanceProperties',
87 'target' : 'SysEmuTarget' },
88 'discriminator' : 'target',
89 'data' : { 's390x' : 'CpuInfoS390' } }
90
91 ##
92 # @query-cpus-fast:
93 #
94 # Returns information about all virtual CPUs.
95 #
96 # Returns: list of @CpuInfoFast
97 #
98 # Since: 2.12
99 #
100 # Example:
101 #
102 # -> { "execute": "query-cpus-fast" }
103 # <- { "return": [
104 # {
105 # "thread-id": 25627,
106 # "props": {
107 # "core-id": 0,
108 # "thread-id": 0,
109 # "socket-id": 0
110 # },
111 # "qom-path": "/machine/unattached/device[0]",
112 # "target":"x86_64",
113 # "cpu-index": 0
114 # },
115 # {
116 # "thread-id": 25628,
117 # "props": {
118 # "core-id": 0,
119 # "thread-id": 0,
120 # "socket-id": 1
121 # },
122 # "qom-path": "/machine/unattached/device[2]",
123 # "target":"x86_64",
124 # "cpu-index": 1
125 # }
126 # ]
127 # }
128 ##
129 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
130
131 ##
132 # @MachineInfo:
133 #
134 # Information describing a machine.
135 #
136 # @name: the name of the machine
137 #
138 # @alias: an alias for the machine name
139 #
140 # @is-default: whether the machine is default
141 #
142 # @cpu-max: maximum number of CPUs supported by the machine type
143 # (since 1.5)
144 #
145 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
146 #
147 # @numa-mem-supported: true if '-numa node,mem' option is supported by
148 # the machine type and false otherwise (since 4.1)
149 #
150 # @deprecated: if true, the machine type is deprecated and may be
151 # removed in future versions of QEMU according to the QEMU
152 # deprecation policy (since 4.1)
153 #
154 # @default-cpu-type: default CPU model typename if none is requested
155 # via the -cpu argument. (since 4.2)
156 #
157 # @default-ram-id: the default ID of initial RAM memory backend (since
158 # 5.2)
159 #
160 # @acpi: machine type supports ACPI (since 8.0)
161 #
162 # Since: 1.2
163 ##
164 { 'struct': 'MachineInfo',
165 'data': { 'name': 'str', '*alias': 'str',
166 '*is-default': 'bool', 'cpu-max': 'int',
167 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
168 'deprecated': 'bool', '*default-cpu-type': 'str',
169 '*default-ram-id': 'str', 'acpi': 'bool' } }
170
171 ##
172 # @query-machines:
173 #
174 # Return a list of supported machines
175 #
176 # Returns: a list of MachineInfo
177 #
178 # Since: 1.2
179 ##
180 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
181
182 ##
183 # @CurrentMachineParams:
184 #
185 # Information describing the running machine parameters.
186 #
187 # @wakeup-suspend-support: true if the machine supports wake up from
188 # suspend
189 #
190 # Since: 4.0
191 ##
192 { 'struct': 'CurrentMachineParams',
193 'data': { 'wakeup-suspend-support': 'bool'} }
194
195 ##
196 # @query-current-machine:
197 #
198 # Return information on the current virtual machine.
199 #
200 # Returns: CurrentMachineParams
201 #
202 # Since: 4.0
203 ##
204 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
205
206 ##
207 # @TargetInfo:
208 #
209 # Information describing the QEMU target.
210 #
211 # @arch: the target architecture
212 #
213 # Since: 1.2
214 ##
215 { 'struct': 'TargetInfo',
216 'data': { 'arch': 'SysEmuTarget' } }
217
218 ##
219 # @query-target:
220 #
221 # Return information about the target for this QEMU
222 #
223 # Returns: TargetInfo
224 #
225 # Since: 1.2
226 ##
227 { 'command': 'query-target', 'returns': 'TargetInfo' }
228
229 ##
230 # @UuidInfo:
231 #
232 # Guest UUID information (Universally Unique Identifier).
233 #
234 # @UUID: the UUID of the guest
235 #
236 # Since: 0.14
237 #
238 # Notes: If no UUID was specified for the guest, a null UUID is
239 # returned.
240 ##
241 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
242
243 ##
244 # @query-uuid:
245 #
246 # Query the guest UUID information.
247 #
248 # Returns: The @UuidInfo for the guest
249 #
250 # Since: 0.14
251 #
252 # Example:
253 #
254 # -> { "execute": "query-uuid" }
255 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
256 ##
257 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
258
259 ##
260 # @GuidInfo:
261 #
262 # GUID information.
263 #
264 # @guid: the globally unique identifier
265 #
266 # Since: 2.9
267 ##
268 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
269
270 ##
271 # @query-vm-generation-id:
272 #
273 # Show Virtual Machine Generation ID
274 #
275 # Since: 2.9
276 ##
277 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
278
279 ##
280 # @system_reset:
281 #
282 # Performs a hard reset of a guest.
283 #
284 # Since: 0.14
285 #
286 # Example:
287 #
288 # -> { "execute": "system_reset" }
289 # <- { "return": {} }
290 ##
291 { 'command': 'system_reset' }
292
293 ##
294 # @system_powerdown:
295 #
296 # Requests that a guest perform a powerdown operation.
297 #
298 # Since: 0.14
299 #
300 # Notes: A guest may or may not respond to this command. This command
301 # returning does not indicate that a guest has accepted the
302 # request or that it has shut down. Many guests will respond to
303 # this command by prompting the user in some way.
304 #
305 # Example:
306 #
307 # -> { "execute": "system_powerdown" }
308 # <- { "return": {} }
309 ##
310 { 'command': 'system_powerdown' }
311
312 ##
313 # @system_wakeup:
314 #
315 # Wake up guest from suspend. If the guest has wake-up from suspend
316 # support enabled (wakeup-suspend-support flag from
317 # query-current-machine), wake-up guest from suspend if the guest is
318 # in SUSPENDED state. Return an error otherwise.
319 #
320 # Since: 1.1
321 #
322 # Returns: nothing.
323 #
324 # Note: prior to 4.0, this command does nothing in case the guest
325 # isn't suspended.
326 #
327 # Example:
328 #
329 # -> { "execute": "system_wakeup" }
330 # <- { "return": {} }
331 ##
332 { 'command': 'system_wakeup' }
333
334 ##
335 # @LostTickPolicy:
336 #
337 # Policy for handling lost ticks in timer devices. Ticks end up
338 # getting lost when, for example, the guest is paused.
339 #
340 # @discard: throw away the missed ticks and continue with future
341 # injection normally. The guest OS will see the timer jump ahead
342 # by a potentially quite significant amount all at once, as if the
343 # intervening chunk of time had simply not existed; needless to
344 # say, such a sudden jump can easily confuse a guest OS which is
345 # not specifically prepared to deal with it. Assuming the guest
346 # OS can deal correctly with the time jump, the time in the guest
347 # and in the host should now match.
348 #
349 # @delay: continue to deliver ticks at the normal rate. The guest OS
350 # will not notice anything is amiss, as from its point of view
351 # time will have continued to flow normally. The time in the
352 # guest should now be behind the time in the host by exactly the
353 # amount of time during which ticks have been missed.
354 #
355 # @slew: deliver ticks at a higher rate to catch up with the missed
356 # ticks. The guest OS will not notice anything is amiss, as from
357 # its point of view time will have continued to flow normally.
358 # Once the timer has managed to catch up with all the missing
359 # ticks, the time in the guest and in the host should match.
360 #
361 # Since: 2.0
362 ##
363 { 'enum': 'LostTickPolicy',
364 'data': ['discard', 'delay', 'slew' ] }
365
366 ##
367 # @inject-nmi:
368 #
369 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
370 # all CPUs (ppc64). The command fails when the guest doesn't support
371 # injecting.
372 #
373 # Returns: If successful, nothing
374 #
375 # Since: 0.14
376 #
377 # Note: prior to 2.1, this command was only supported for x86 and s390
378 # VMs
379 #
380 # Example:
381 #
382 # -> { "execute": "inject-nmi" }
383 # <- { "return": {} }
384 ##
385 { 'command': 'inject-nmi' }
386
387 ##
388 # @KvmInfo:
389 #
390 # Information about support for KVM acceleration
391 #
392 # @enabled: true if KVM acceleration is active
393 #
394 # @present: true if KVM acceleration is built into this executable
395 #
396 # Since: 0.14
397 ##
398 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
399
400 ##
401 # @query-kvm:
402 #
403 # Returns information about KVM acceleration
404 #
405 # Returns: @KvmInfo
406 #
407 # Since: 0.14
408 #
409 # Example:
410 #
411 # -> { "execute": "query-kvm" }
412 # <- { "return": { "enabled": true, "present": true } }
413 ##
414 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
415
416 ##
417 # @NumaOptionsType:
418 #
419 # @node: NUMA nodes configuration
420 #
421 # @dist: NUMA distance configuration (since 2.10)
422 #
423 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
424 #
425 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
426 #
427 # @hmat-cache: memory side cache information (Since: 5.0)
428 #
429 # Since: 2.1
430 ##
431 { 'enum': 'NumaOptionsType',
432 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
433
434 ##
435 # @NumaOptions:
436 #
437 # A discriminated record of NUMA options. (for OptsVisitor)
438 #
439 # Since: 2.1
440 ##
441 { 'union': 'NumaOptions',
442 'base': { 'type': 'NumaOptionsType' },
443 'discriminator': 'type',
444 'data': {
445 'node': 'NumaNodeOptions',
446 'dist': 'NumaDistOptions',
447 'cpu': 'NumaCpuOptions',
448 'hmat-lb': 'NumaHmatLBOptions',
449 'hmat-cache': 'NumaHmatCacheOptions' }}
450
451 ##
452 # @NumaNodeOptions:
453 #
454 # Create a guest NUMA node. (for OptsVisitor)
455 #
456 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
457 #
458 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
459 # omitted)
460 #
461 # @mem: memory size of this node; mutually exclusive with @memdev.
462 # Equally divide total memory among nodes if both @mem and @memdev
463 # are omitted.
464 #
465 # @memdev: memory backend object. If specified for one node, it must
466 # be specified for all nodes.
467 #
468 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
469 # to the nodeid which has the memory controller responsible for
470 # this NUMA node. This field provides additional information as
471 # to the initiator node that is closest (as in directly attached)
472 # to this node, and therefore has the best performance (since 5.0)
473 #
474 # Since: 2.1
475 ##
476 { 'struct': 'NumaNodeOptions',
477 'data': {
478 '*nodeid': 'uint16',
479 '*cpus': ['uint16'],
480 '*mem': 'size',
481 '*memdev': 'str',
482 '*initiator': 'uint16' }}
483
484 ##
485 # @NumaDistOptions:
486 #
487 # Set the distance between 2 NUMA nodes.
488 #
489 # @src: source NUMA node.
490 #
491 # @dst: destination NUMA node.
492 #
493 # @val: NUMA distance from source node to destination node. When a
494 # node is unreachable from another node, set the distance between
495 # them to 255.
496 #
497 # Since: 2.10
498 ##
499 { 'struct': 'NumaDistOptions',
500 'data': {
501 'src': 'uint16',
502 'dst': 'uint16',
503 'val': 'uint8' }}
504
505 ##
506 # @CXLFixedMemoryWindowOptions:
507 #
508 # Create a CXL Fixed Memory Window
509 #
510 # @size: Size of the Fixed Memory Window in bytes. Must be a multiple
511 # of 256MiB.
512 #
513 # @interleave-granularity: Number of contiguous bytes for which
514 # accesses will go to a given interleave target. Accepted values
515 # [256, 512, 1k, 2k, 4k, 8k, 16k]
516 #
517 # @targets: Target root bridge IDs from -device ...,id=<ID> for each
518 # root bridge.
519 #
520 # Since: 7.1
521 ##
522 { 'struct': 'CXLFixedMemoryWindowOptions',
523 'data': {
524 'size': 'size',
525 '*interleave-granularity': 'size',
526 'targets': ['str'] }}
527
528 ##
529 # @CXLFMWProperties:
530 #
531 # List of CXL Fixed Memory Windows.
532 #
533 # @cxl-fmw: List of CXLFixedMemoryWindowOptions
534 #
535 # Since: 7.1
536 ##
537 { 'struct' : 'CXLFMWProperties',
538 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
539 }
540
541 ##
542 # @X86CPURegister32:
543 #
544 # A X86 32-bit register
545 #
546 # Since: 1.5
547 ##
548 { 'enum': 'X86CPURegister32',
549 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
550
551 ##
552 # @X86CPUFeatureWordInfo:
553 #
554 # Information about a X86 CPU feature word
555 #
556 # @cpuid-input-eax: Input EAX value for CPUID instruction for that
557 # feature word
558 #
559 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
560 # feature word
561 #
562 # @cpuid-register: Output register containing the feature bits
563 #
564 # @features: value of output register, containing the feature bits
565 #
566 # Since: 1.5
567 ##
568 { 'struct': 'X86CPUFeatureWordInfo',
569 'data': { 'cpuid-input-eax': 'int',
570 '*cpuid-input-ecx': 'int',
571 'cpuid-register': 'X86CPURegister32',
572 'features': 'int' } }
573
574 ##
575 # @DummyForceArrays:
576 #
577 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
578 # internally
579 #
580 # Since: 2.5
581 ##
582 { 'struct': 'DummyForceArrays',
583 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
584
585 ##
586 # @NumaCpuOptions:
587 #
588 # Option "-numa cpu" overrides default cpu to node mapping. It
589 # accepts the same set of cpu properties as returned by
590 # query-hotpluggable-cpus[].props, where node-id could be used to
591 # override default node mapping.
592 #
593 # Since: 2.10
594 ##
595 { 'struct': 'NumaCpuOptions',
596 'base': 'CpuInstanceProperties',
597 'data' : {} }
598
599 ##
600 # @HmatLBMemoryHierarchy:
601 #
602 # The memory hierarchy in the System Locality Latency and Bandwidth
603 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
604 #
605 # For more information about @HmatLBMemoryHierarchy, see chapter
606 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
607 #
608 # @memory: the structure represents the memory performance
609 #
610 # @first-level: first level of memory side cache
611 #
612 # @second-level: second level of memory side cache
613 #
614 # @third-level: third level of memory side cache
615 #
616 # Since: 5.0
617 ##
618 { 'enum': 'HmatLBMemoryHierarchy',
619 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
620
621 ##
622 # @HmatLBDataType:
623 #
624 # Data type in the System Locality Latency and Bandwidth Information
625 # Structure of HMAT (Heterogeneous Memory Attribute Table)
626 #
627 # For more information about @HmatLBDataType, see chapter 5.2.27.4:
628 # Table 5-146: Field "Data Type" of ACPI 6.3 spec.
629 #
630 # @access-latency: access latency (nanoseconds)
631 #
632 # @read-latency: read latency (nanoseconds)
633 #
634 # @write-latency: write latency (nanoseconds)
635 #
636 # @access-bandwidth: access bandwidth (Bytes per second)
637 #
638 # @read-bandwidth: read bandwidth (Bytes per second)
639 #
640 # @write-bandwidth: write bandwidth (Bytes per second)
641 #
642 # Since: 5.0
643 ##
644 { 'enum': 'HmatLBDataType',
645 'data': [ 'access-latency', 'read-latency', 'write-latency',
646 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
647
648 ##
649 # @NumaHmatLBOptions:
650 #
651 # Set the system locality latency and bandwidth information between
652 # Initiator and Target proximity Domains.
653 #
654 # For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
655 # Table 5-146 of ACPI 6.3 spec.
656 #
657 # @initiator: the Initiator Proximity Domain.
658 #
659 # @target: the Target Proximity Domain.
660 #
661 # @hierarchy: the Memory Hierarchy. Indicates the performance of
662 # memory or side cache.
663 #
664 # @data-type: presents the type of data, access/read/write latency or
665 # hit latency.
666 #
667 # @latency: the value of latency from @initiator to @target proximity
668 # domain, the latency unit is "ns(nanosecond)".
669 #
670 # @bandwidth: the value of bandwidth between @initiator and @target
671 # proximity domain, the bandwidth unit is "Bytes per second".
672 #
673 # Since: 5.0
674 ##
675 { 'struct': 'NumaHmatLBOptions',
676 'data': {
677 'initiator': 'uint16',
678 'target': 'uint16',
679 'hierarchy': 'HmatLBMemoryHierarchy',
680 'data-type': 'HmatLBDataType',
681 '*latency': 'uint64',
682 '*bandwidth': 'size' }}
683
684 ##
685 # @HmatCacheAssociativity:
686 #
687 # Cache associativity in the Memory Side Cache Information Structure
688 # of HMAT
689 #
690 # For more information of @HmatCacheAssociativity, see chapter
691 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
692 #
693 # @none: None (no memory side cache in this proximity domain, or cache
694 # associativity unknown)
695 #
696 # @direct: Direct Mapped
697 #
698 # @complex: Complex Cache Indexing (implementation specific)
699 #
700 # Since: 5.0
701 ##
702 { 'enum': 'HmatCacheAssociativity',
703 'data': [ 'none', 'direct', 'complex' ] }
704
705 ##
706 # @HmatCacheWritePolicy:
707 #
708 # Cache write policy in the Memory Side Cache Information Structure of
709 # HMAT
710 #
711 # For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
712 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
713 #
714 # @none: None (no memory side cache in this proximity domain, or cache
715 # write policy unknown)
716 #
717 # @write-back: Write Back (WB)
718 #
719 # @write-through: Write Through (WT)
720 #
721 # Since: 5.0
722 ##
723 { 'enum': 'HmatCacheWritePolicy',
724 'data': [ 'none', 'write-back', 'write-through' ] }
725
726 ##
727 # @NumaHmatCacheOptions:
728 #
729 # Set the memory side cache information for a given memory domain.
730 #
731 # For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
732 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
733 #
734 # @node-id: the memory proximity domain to which the memory belongs.
735 #
736 # @size: the size of memory side cache in bytes.
737 #
738 # @level: the cache level described in this structure.
739 #
740 # @associativity: the cache associativity,
741 # none/direct-mapped/complex(complex cache indexing).
742 #
743 # @policy: the write policy, none/write-back/write-through.
744 #
745 # @line: the cache Line size in bytes.
746 #
747 # Since: 5.0
748 ##
749 { 'struct': 'NumaHmatCacheOptions',
750 'data': {
751 'node-id': 'uint32',
752 'size': 'size',
753 'level': 'uint8',
754 'associativity': 'HmatCacheAssociativity',
755 'policy': 'HmatCacheWritePolicy',
756 'line': 'uint16' }}
757
758 ##
759 # @memsave:
760 #
761 # Save a portion of guest memory to a file.
762 #
763 # @val: the virtual address of the guest to start from
764 #
765 # @size: the size of memory region to save
766 #
767 # @filename: the file to save the memory to as binary data
768 #
769 # @cpu-index: the index of the virtual CPU to use for translating the
770 # virtual address (defaults to CPU 0)
771 #
772 # Returns: Nothing on success
773 #
774 # Since: 0.14
775 #
776 # Notes: Errors were not reliably returned until 1.1
777 #
778 # Example:
779 #
780 # -> { "execute": "memsave",
781 # "arguments": { "val": 10,
782 # "size": 100,
783 # "filename": "/tmp/virtual-mem-dump" } }
784 # <- { "return": {} }
785 ##
786 { 'command': 'memsave',
787 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
788
789 ##
790 # @pmemsave:
791 #
792 # Save a portion of guest physical memory to a file.
793 #
794 # @val: the physical address of the guest to start from
795 #
796 # @size: the size of memory region to save
797 #
798 # @filename: the file to save the memory to as binary data
799 #
800 # Returns: Nothing on success
801 #
802 # Since: 0.14
803 #
804 # Notes: Errors were not reliably returned until 1.1
805 #
806 # Example:
807 #
808 # -> { "execute": "pmemsave",
809 # "arguments": { "val": 10,
810 # "size": 100,
811 # "filename": "/tmp/physical-mem-dump" } }
812 # <- { "return": {} }
813 ##
814 { 'command': 'pmemsave',
815 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
816
817 ##
818 # @Memdev:
819 #
820 # Information about memory backend
821 #
822 # @id: backend's ID if backend has 'id' property (since 2.9)
823 #
824 # @size: memory backend size
825 #
826 # @merge: whether memory merge support is enabled
827 #
828 # @dump: whether memory backend's memory is included in a core dump
829 #
830 # @prealloc: whether memory was preallocated
831 #
832 # @share: whether memory is private to QEMU or shared (since 6.1)
833 #
834 # @reserve: whether swap space (or huge pages) was reserved if
835 # applicable. This corresponds to the user configuration and not
836 # the actual behavior implemented in the OS to perform the
837 # reservation. For example, Linux will never reserve swap space
838 # for shared file mappings. (since 6.1)
839 #
840 # @host-nodes: host nodes for its memory policy
841 #
842 # @policy: memory policy of memory backend
843 #
844 # Since: 2.1
845 ##
846 { 'struct': 'Memdev',
847 'data': {
848 '*id': 'str',
849 'size': 'size',
850 'merge': 'bool',
851 'dump': 'bool',
852 'prealloc': 'bool',
853 'share': 'bool',
854 '*reserve': 'bool',
855 'host-nodes': ['uint16'],
856 'policy': 'HostMemPolicy' }}
857
858 ##
859 # @query-memdev:
860 #
861 # Returns information for all memory backends.
862 #
863 # Returns: a list of @Memdev.
864 #
865 # Since: 2.1
866 #
867 # Example:
868 #
869 # -> { "execute": "query-memdev" }
870 # <- { "return": [
871 # {
872 # "id": "mem1",
873 # "size": 536870912,
874 # "merge": false,
875 # "dump": true,
876 # "prealloc": false,
877 # "share": false,
878 # "host-nodes": [0, 1],
879 # "policy": "bind"
880 # },
881 # {
882 # "size": 536870912,
883 # "merge": false,
884 # "dump": true,
885 # "prealloc": true,
886 # "share": false,
887 # "host-nodes": [2, 3],
888 # "policy": "preferred"
889 # }
890 # ]
891 # }
892 ##
893 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
894
895 ##
896 # @CpuInstanceProperties:
897 #
898 # List of properties to be used for hotplugging a CPU instance, it
899 # should be passed by management with device_add command when a CPU is
900 # being hotplugged.
901 #
902 # @node-id: NUMA node ID the CPU belongs to
903 #
904 # @socket-id: socket number within node/board the CPU belongs to
905 #
906 # @die-id: die number within socket the CPU belongs to (since 4.1)
907 #
908 # @cluster-id: cluster number within die the CPU belongs to (since
909 # 7.1)
910 #
911 # @core-id: core number within cluster the CPU belongs to
912 #
913 # @thread-id: thread number within core the CPU belongs to
914 #
915 # Note: currently there are 6 properties that could be present but
916 # management should be prepared to pass through other properties
917 # with device_add command to allow for future interface extension.
918 # This also requires the filed names to be kept in sync with the
919 # properties passed to -device/device_add.
920 #
921 # Since: 2.7
922 ##
923 { 'struct': 'CpuInstanceProperties',
924 'data': { '*node-id': 'int',
925 '*socket-id': 'int',
926 '*die-id': 'int',
927 '*cluster-id': 'int',
928 '*core-id': 'int',
929 '*thread-id': 'int'
930 }
931 }
932
933 ##
934 # @HotpluggableCPU:
935 #
936 # @type: CPU object type for usage with device_add command
937 #
938 # @props: list of properties to be used for hotplugging CPU
939 #
940 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU
941 # provides
942 #
943 # @qom-path: link to existing CPU object if CPU is present or omitted
944 # if CPU is not present.
945 #
946 # Since: 2.7
947 ##
948 { 'struct': 'HotpluggableCPU',
949 'data': { 'type': 'str',
950 'vcpus-count': 'int',
951 'props': 'CpuInstanceProperties',
952 '*qom-path': 'str'
953 }
954 }
955
956 ##
957 # @query-hotpluggable-cpus:
958 #
959 # TODO: Better documentation; currently there is none.
960 #
961 # Returns: a list of HotpluggableCPU objects.
962 #
963 # Since: 2.7
964 #
965 # Examples:
966 #
967 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu
968 # POWER8:
969 #
970 # -> { "execute": "query-hotpluggable-cpus" }
971 # <- {"return": [
972 # { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
973 # "vcpus-count": 1 },
974 # { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
975 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
976 # ]}'
977 #
978 # For pc machine type started with -smp 1,maxcpus=2:
979 #
980 # -> { "execute": "query-hotpluggable-cpus" }
981 # <- {"return": [
982 # {
983 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
984 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
985 # },
986 # {
987 # "qom-path": "/machine/unattached/device[0]",
988 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
989 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
990 # }
991 # ]}
992 #
993 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu
994 # qemu (Since: 2.11):
995 #
996 # -> { "execute": "query-hotpluggable-cpus" }
997 # <- {"return": [
998 # {
999 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1000 # "props": { "core-id": 1 }
1001 # },
1002 # {
1003 # "qom-path": "/machine/unattached/device[0]",
1004 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1005 # "props": { "core-id": 0 }
1006 # }
1007 # ]}
1008 ##
1009 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1010 'allow-preconfig': true }
1011
1012 ##
1013 # @set-numa-node:
1014 #
1015 # Runtime equivalent of '-numa' CLI option, available at preconfigure
1016 # stage to configure numa mapping before initializing machine.
1017 #
1018 # Since: 3.0
1019 ##
1020 { 'command': 'set-numa-node', 'boxed': true,
1021 'data': 'NumaOptions',
1022 'allow-preconfig': true
1023 }
1024
1025 ##
1026 # @balloon:
1027 #
1028 # Request the balloon driver to change its balloon size.
1029 #
1030 # @value: the target logical size of the VM in bytes. We can deduce
1031 # the size of the balloon using this formula:
1032 #
1033 # logical_vm_size = vm_ram_size - balloon_size
1034 #
1035 # From it we have: balloon_size = vm_ram_size - @value
1036 #
1037 # Returns:
1038 # - Nothing on success
1039 # - If the balloon driver is enabled but not functional because the
1040 # KVM kernel module cannot support it, KVMMissingCap
1041 # - If no balloon device is present, DeviceNotActive
1042 #
1043 # Notes: This command just issues a request to the guest. When it
1044 # returns, the balloon size may not have changed. A guest can
1045 # change the balloon size independent of this command.
1046 #
1047 # Since: 0.14
1048 #
1049 # Example:
1050 #
1051 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1052 # <- { "return": {} }
1053 #
1054 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1055 ##
1056 { 'command': 'balloon', 'data': {'value': 'int'} }
1057
1058 ##
1059 # @BalloonInfo:
1060 #
1061 # Information about the guest balloon device.
1062 #
1063 # @actual: the logical size of the VM in bytes Formula used:
1064 # logical_vm_size = vm_ram_size - balloon_size
1065 #
1066 # Since: 0.14
1067 ##
1068 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1069
1070 ##
1071 # @query-balloon:
1072 #
1073 # Return information about the balloon device.
1074 #
1075 # Returns:
1076 # - @BalloonInfo on success
1077 # - If the balloon driver is enabled but not functional because the
1078 # KVM kernel module cannot support it, KVMMissingCap
1079 # - If no balloon device is present, DeviceNotActive
1080 #
1081 # Since: 0.14
1082 #
1083 # Example:
1084 #
1085 # -> { "execute": "query-balloon" }
1086 # <- { "return": {
1087 # "actual": 1073741824
1088 # }
1089 # }
1090 ##
1091 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1092
1093 ##
1094 # @BALLOON_CHANGE:
1095 #
1096 # Emitted when the guest changes the actual BALLOON level. This value
1097 # is equivalent to the @actual field return by the 'query-balloon'
1098 # command
1099 #
1100 # @actual: the logical size of the VM in bytes Formula used:
1101 # logical_vm_size = vm_ram_size - balloon_size
1102 #
1103 # Note: this event is rate-limited.
1104 #
1105 # Since: 1.2
1106 #
1107 # Example:
1108 #
1109 # <- { "event": "BALLOON_CHANGE",
1110 # "data": { "actual": 944766976 },
1111 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1112 ##
1113 { 'event': 'BALLOON_CHANGE',
1114 'data': { 'actual': 'int' } }
1115
1116 ##
1117 # @MemoryInfo:
1118 #
1119 # Actual memory information in bytes.
1120 #
1121 # @base-memory: size of "base" memory specified with command line
1122 # option -m.
1123 #
1124 # @plugged-memory: size of memory that can be hot-unplugged. This
1125 # field is omitted if target doesn't support memory hotplug (i.e.
1126 # CONFIG_MEM_DEVICE not defined at build time).
1127 #
1128 # Since: 2.11
1129 ##
1130 { 'struct': 'MemoryInfo',
1131 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1132
1133 ##
1134 # @query-memory-size-summary:
1135 #
1136 # Return the amount of initially allocated and present hotpluggable
1137 # (if enabled) memory in bytes.
1138 #
1139 # Example:
1140 #
1141 # -> { "execute": "query-memory-size-summary" }
1142 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1143 #
1144 # Since: 2.11
1145 ##
1146 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1147
1148 ##
1149 # @PCDIMMDeviceInfo:
1150 #
1151 # PCDIMMDevice state information
1152 #
1153 # @id: device's ID
1154 #
1155 # @addr: physical address, where device is mapped
1156 #
1157 # @size: size of memory that the device provides
1158 #
1159 # @slot: slot number at which device is plugged in
1160 #
1161 # @node: NUMA node number where device is plugged in
1162 #
1163 # @memdev: memory backend linked with device
1164 #
1165 # @hotplugged: true if device was hotplugged
1166 #
1167 # @hotpluggable: true if device if could be added/removed while
1168 # machine is running
1169 #
1170 # Since: 2.1
1171 ##
1172 { 'struct': 'PCDIMMDeviceInfo',
1173 'data': { '*id': 'str',
1174 'addr': 'int',
1175 'size': 'int',
1176 'slot': 'int',
1177 'node': 'int',
1178 'memdev': 'str',
1179 'hotplugged': 'bool',
1180 'hotpluggable': 'bool'
1181 }
1182 }
1183
1184 ##
1185 # @VirtioPMEMDeviceInfo:
1186 #
1187 # VirtioPMEM state information
1188 #
1189 # @id: device's ID
1190 #
1191 # @memaddr: physical address in memory, where device is mapped
1192 #
1193 # @size: size of memory that the device provides
1194 #
1195 # @memdev: memory backend linked with device
1196 #
1197 # Since: 4.1
1198 ##
1199 { 'struct': 'VirtioPMEMDeviceInfo',
1200 'data': { '*id': 'str',
1201 'memaddr': 'size',
1202 'size': 'size',
1203 'memdev': 'str'
1204 }
1205 }
1206
1207 ##
1208 # @VirtioMEMDeviceInfo:
1209 #
1210 # VirtioMEMDevice state information
1211 #
1212 # @id: device's ID
1213 #
1214 # @memaddr: physical address in memory, where device is mapped
1215 #
1216 # @requested-size: the user requested size of the device
1217 #
1218 # @size: the (current) size of memory that the device provides
1219 #
1220 # @max-size: the maximum size of memory that the device can provide
1221 #
1222 # @block-size: the block size of memory that the device provides
1223 #
1224 # @node: NUMA node number where device is assigned to
1225 #
1226 # @memdev: memory backend linked with the region
1227 #
1228 # Since: 5.1
1229 ##
1230 { 'struct': 'VirtioMEMDeviceInfo',
1231 'data': { '*id': 'str',
1232 'memaddr': 'size',
1233 'requested-size': 'size',
1234 'size': 'size',
1235 'max-size': 'size',
1236 'block-size': 'size',
1237 'node': 'int',
1238 'memdev': 'str'
1239 }
1240 }
1241
1242 ##
1243 # @SgxEPCDeviceInfo:
1244 #
1245 # Sgx EPC state information
1246 #
1247 # @id: device's ID
1248 #
1249 # @memaddr: physical address in memory, where device is mapped
1250 #
1251 # @size: size of memory that the device provides
1252 #
1253 # @memdev: memory backend linked with device
1254 #
1255 # @node: the numa node (Since: 7.0)
1256 #
1257 # Since: 6.2
1258 ##
1259 { 'struct': 'SgxEPCDeviceInfo',
1260 'data': { '*id': 'str',
1261 'memaddr': 'size',
1262 'size': 'size',
1263 'node': 'int',
1264 'memdev': 'str'
1265 }
1266 }
1267
1268 ##
1269 # @MemoryDeviceInfoKind:
1270 #
1271 # @nvdimm: since 2.12
1272 #
1273 # @virtio-pmem: since 4.1
1274 #
1275 # @virtio-mem: since 5.1
1276 #
1277 # @sgx-epc: since 6.2.
1278 #
1279 # Since: 2.1
1280 ##
1281 { 'enum': 'MemoryDeviceInfoKind',
1282 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1283
1284 ##
1285 # @PCDIMMDeviceInfoWrapper:
1286 #
1287 # Since: 2.1
1288 ##
1289 { 'struct': 'PCDIMMDeviceInfoWrapper',
1290 'data': { 'data': 'PCDIMMDeviceInfo' } }
1291
1292 ##
1293 # @VirtioPMEMDeviceInfoWrapper:
1294 #
1295 # Since: 2.1
1296 ##
1297 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
1298 'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1299
1300 ##
1301 # @VirtioMEMDeviceInfoWrapper:
1302 #
1303 # Since: 2.1
1304 ##
1305 { 'struct': 'VirtioMEMDeviceInfoWrapper',
1306 'data': { 'data': 'VirtioMEMDeviceInfo' } }
1307
1308 ##
1309 # @SgxEPCDeviceInfoWrapper:
1310 #
1311 # Since: 6.2
1312 ##
1313 { 'struct': 'SgxEPCDeviceInfoWrapper',
1314 'data': { 'data': 'SgxEPCDeviceInfo' } }
1315
1316 ##
1317 # @MemoryDeviceInfo:
1318 #
1319 # Union containing information about a memory device
1320 #
1321 # Since: 2.1
1322 ##
1323 { 'union': 'MemoryDeviceInfo',
1324 'base': { 'type': 'MemoryDeviceInfoKind' },
1325 'discriminator': 'type',
1326 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1327 'nvdimm': 'PCDIMMDeviceInfoWrapper',
1328 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1329 'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1330 'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1331 }
1332 }
1333
1334 ##
1335 # @SgxEPC:
1336 #
1337 # Sgx EPC cmdline information
1338 #
1339 # @memdev: memory backend linked with device
1340 #
1341 # @node: the numa node (Since: 7.0)
1342 #
1343 # Since: 6.2
1344 ##
1345 { 'struct': 'SgxEPC',
1346 'data': { 'memdev': 'str',
1347 'node': 'int'
1348 }
1349 }
1350
1351 ##
1352 # @SgxEPCProperties:
1353 #
1354 # SGX properties of machine types.
1355 #
1356 # @sgx-epc: list of ids of memory-backend-epc objects.
1357 #
1358 # Since: 6.2
1359 ##
1360 { 'struct': 'SgxEPCProperties',
1361 'data': { 'sgx-epc': ['SgxEPC'] }
1362 }
1363
1364 ##
1365 # @query-memory-devices:
1366 #
1367 # Lists available memory devices and their state
1368 #
1369 # Since: 2.1
1370 #
1371 # Example:
1372 #
1373 # -> { "execute": "query-memory-devices" }
1374 # <- { "return": [ { "data":
1375 # { "addr": 5368709120,
1376 # "hotpluggable": true,
1377 # "hotplugged": true,
1378 # "id": "d1",
1379 # "memdev": "/objects/memX",
1380 # "node": 0,
1381 # "size": 1073741824,
1382 # "slot": 0},
1383 # "type": "dimm"
1384 # } ] }
1385 ##
1386 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1387
1388 ##
1389 # @MEMORY_DEVICE_SIZE_CHANGE:
1390 #
1391 # Emitted when the size of a memory device changes. Only emitted for
1392 # memory devices that can actually change the size (e.g., virtio-mem
1393 # due to guest action).
1394 #
1395 # @id: device's ID
1396 #
1397 # @size: the new size of memory that the device provides
1398 #
1399 # @qom-path: path to the device object in the QOM tree (since 6.2)
1400 #
1401 # Note: this event is rate-limited.
1402 #
1403 # Since: 5.1
1404 #
1405 # Example:
1406 #
1407 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1408 # "data": { "id": "vm0", "size": 1073741824,
1409 # "qom-path": "/machine/unattached/device[2]" },
1410 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1411 ##
1412 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1413 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1414
1415 ##
1416 # @MEM_UNPLUG_ERROR:
1417 #
1418 # Emitted when memory hot unplug error occurs.
1419 #
1420 # @device: device name
1421 #
1422 # @msg: Informative message
1423 #
1424 # Features:
1425 #
1426 # @deprecated: This event is deprecated. Use
1427 # @DEVICE_UNPLUG_GUEST_ERROR instead.
1428 #
1429 # Since: 2.4
1430 #
1431 # Example:
1432 #
1433 # <- { "event": "MEM_UNPLUG_ERROR",
1434 # "data": { "device": "dimm1",
1435 # "msg": "acpi: device unplug for unsupported device"
1436 # },
1437 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1438 ##
1439 { 'event': 'MEM_UNPLUG_ERROR',
1440 'data': { 'device': 'str', 'msg': 'str' },
1441 'features': ['deprecated'] }
1442
1443 ##
1444 # @BootConfiguration:
1445 #
1446 # Schema for virtual machine boot configuration.
1447 #
1448 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1449 #
1450 # @once: Boot order to apply on first boot
1451 #
1452 # @menu: Whether to show a boot menu
1453 #
1454 # @splash: The name of the file to be passed to the firmware as logo
1455 # picture, if @menu is true.
1456 #
1457 # @splash-time: How long to show the logo picture, in milliseconds
1458 #
1459 # @reboot-timeout: Timeout before guest reboots after boot fails
1460 #
1461 # @strict: Whether to attempt booting from devices not included in the
1462 # boot order
1463 #
1464 # Since: 7.1
1465 ##
1466 { 'struct': 'BootConfiguration', 'data': {
1467 '*order': 'str',
1468 '*once': 'str',
1469 '*menu': 'bool',
1470 '*splash': 'str',
1471 '*splash-time': 'int',
1472 '*reboot-timeout': 'int',
1473 '*strict': 'bool' } }
1474
1475 ##
1476 # @SMPConfiguration:
1477 #
1478 # Schema for CPU topology configuration. A missing value lets QEMU
1479 # figure out a suitable value based on the ones that are provided.
1480 #
1481 # @cpus: number of virtual CPUs in the virtual machine
1482 #
1483 # @sockets: number of sockets in the CPU topology
1484 #
1485 # @dies: number of dies per socket in the CPU topology
1486 #
1487 # @clusters: number of clusters per die in the CPU topology (since
1488 # 7.0)
1489 #
1490 # @cores: number of cores per cluster in the CPU topology
1491 #
1492 # @threads: number of threads per core in the CPU topology
1493 #
1494 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1495 # machine
1496 #
1497 # Since: 6.1
1498 ##
1499 { 'struct': 'SMPConfiguration', 'data': {
1500 '*cpus': 'int',
1501 '*sockets': 'int',
1502 '*dies': 'int',
1503 '*clusters': 'int',
1504 '*cores': 'int',
1505 '*threads': 'int',
1506 '*maxcpus': 'int' } }
1507
1508 ##
1509 # @x-query-irq:
1510 #
1511 # Query interrupt statistics
1512 #
1513 # Features:
1514 #
1515 # @unstable: This command is meant for debugging.
1516 #
1517 # Returns: interrupt statistics
1518 #
1519 # Since: 6.2
1520 ##
1521 { 'command': 'x-query-irq',
1522 'returns': 'HumanReadableText',
1523 'features': [ 'unstable' ] }
1524
1525 ##
1526 # @x-query-jit:
1527 #
1528 # Query TCG compiler statistics
1529 #
1530 # Features:
1531 #
1532 # @unstable: This command is meant for debugging.
1533 #
1534 # Returns: TCG compiler statistics
1535 #
1536 # Since: 6.2
1537 ##
1538 { 'command': 'x-query-jit',
1539 'returns': 'HumanReadableText',
1540 'if': 'CONFIG_TCG',
1541 'features': [ 'unstable' ] }
1542
1543 ##
1544 # @x-query-numa:
1545 #
1546 # Query NUMA topology information
1547 #
1548 # Features:
1549 #
1550 # @unstable: This command is meant for debugging.
1551 #
1552 # Returns: topology information
1553 #
1554 # Since: 6.2
1555 ##
1556 { 'command': 'x-query-numa',
1557 'returns': 'HumanReadableText',
1558 'features': [ 'unstable' ] }
1559
1560 ##
1561 # @x-query-opcount:
1562 #
1563 # Query TCG opcode counters
1564 #
1565 # Features:
1566 #
1567 # @unstable: This command is meant for debugging.
1568 #
1569 # Returns: TCG opcode counters
1570 #
1571 # Since: 6.2
1572 ##
1573 { 'command': 'x-query-opcount',
1574 'returns': 'HumanReadableText',
1575 'if': 'CONFIG_TCG',
1576 'features': [ 'unstable' ] }
1577
1578 ##
1579 # @x-query-ramblock:
1580 #
1581 # Query system ramblock information
1582 #
1583 # Features:
1584 #
1585 # @unstable: This command is meant for debugging.
1586 #
1587 # Returns: system ramblock information
1588 #
1589 # Since: 6.2
1590 ##
1591 { 'command': 'x-query-ramblock',
1592 'returns': 'HumanReadableText',
1593 'features': [ 'unstable' ] }
1594
1595 ##
1596 # @x-query-rdma:
1597 #
1598 # Query RDMA state
1599 #
1600 # Features:
1601 #
1602 # @unstable: This command is meant for debugging.
1603 #
1604 # Returns: RDMA state
1605 #
1606 # Since: 6.2
1607 ##
1608 { 'command': 'x-query-rdma',
1609 'returns': 'HumanReadableText',
1610 'features': [ 'unstable' ] }
1611
1612 ##
1613 # @x-query-roms:
1614 #
1615 # Query information on the registered ROMS
1616 #
1617 # Features:
1618 #
1619 # @unstable: This command is meant for debugging.
1620 #
1621 # Returns: registered ROMs
1622 #
1623 # Since: 6.2
1624 ##
1625 { 'command': 'x-query-roms',
1626 'returns': 'HumanReadableText',
1627 'features': [ 'unstable' ] }
1628
1629 ##
1630 # @x-query-usb:
1631 #
1632 # Query information on the USB devices
1633 #
1634 # Features:
1635 #
1636 # @unstable: This command is meant for debugging.
1637 #
1638 # Returns: USB device information
1639 #
1640 # Since: 6.2
1641 ##
1642 { 'command': 'x-query-usb',
1643 'returns': 'HumanReadableText',
1644 'features': [ 'unstable' ] }
1645
1646 ##
1647 # @SmbiosEntryPointType:
1648 #
1649 # @32: SMBIOS version 2.1 (32-bit) Entry Point
1650 #
1651 # @64: SMBIOS version 3.0 (64-bit) Entry Point
1652 #
1653 # Since: 7.0
1654 ##
1655 { 'enum': 'SmbiosEntryPointType',
1656 'data': [ '32', '64' ] }
1657
1658 ##
1659 # @MemorySizeConfiguration:
1660 #
1661 # Schema for memory size configuration.
1662 #
1663 # @size: memory size in bytes
1664 #
1665 # @max-size: maximum hotpluggable memory size in bytes
1666 #
1667 # @slots: number of available memory slots for hotplug
1668 #
1669 # Since: 7.1
1670 ##
1671 { 'struct': 'MemorySizeConfiguration', 'data': {
1672 '*size': 'size',
1673 '*max-size': 'size',
1674 '*slots': 'uint64' } }
1675
1676 ##
1677 # @dumpdtb:
1678 #
1679 # Save the FDT in dtb format.
1680 #
1681 # @filename: name of the dtb file to be created
1682 #
1683 # Since: 7.2
1684 #
1685 # Example:
1686 #
1687 # -> { "execute": "dumpdtb" }
1688 # "arguments": { "filename": "fdt.dtb" } }
1689 # <- { "return": {} }
1690 ##
1691 { 'command': 'dumpdtb',
1692 'data': { 'filename': 'str' },
1693 'if': 'CONFIG_FDT' }