]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/machine.json
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / qapi / machine.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
6
7 ##
8 # = Machines
9 ##
10
11 { 'include': 'common.json' }
12
13 ##
14 # @SysEmuTarget:
15 #
16 # The comprehensive enumeration of QEMU system emulation ("softmmu")
17 # targets. Run "./configure --help" in the project root directory, and
18 # look for the \*-softmmu targets near the "--target-list" option. The
19 # individual target constants are not documented here, for the time
20 # being.
21 #
22 # @rx: since 5.0
23 # @avr: since 5.1
24 #
25 # Notes: The resulting QMP strings can be appended to the "qemu-system-"
26 # prefix to produce the corresponding QEMU executable name. This
27 # is true even for "qemu-system-x86_64".
28 #
29 # Since: 3.0
30 ##
31 { 'enum' : 'SysEmuTarget',
32 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
33 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
34 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
35 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
36 'sh4eb', 'sparc', 'sparc64', 'tricore',
37 'x86_64', 'xtensa', 'xtensaeb' ] }
38
39 ##
40 # @CpuS390State:
41 #
42 # An enumeration of cpu states that can be assumed by a virtual
43 # S390 CPU
44 #
45 # Since: 2.12
46 ##
47 { 'enum': 'CpuS390State',
48 'prefix': 'S390_CPU_STATE',
49 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
50
51 ##
52 # @CpuInfoS390:
53 #
54 # Additional information about a virtual S390 CPU
55 #
56 # @cpu-state: the virtual CPU's state
57 #
58 # Since: 2.12
59 ##
60 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
61
62 ##
63 # @CpuInfoFast:
64 #
65 # Information about a virtual CPU
66 #
67 # @cpu-index: index of the virtual CPU
68 #
69 # @qom-path: path to the CPU object in the QOM tree
70 #
71 # @thread-id: ID of the underlying host thread
72 #
73 # @props: properties describing to which node/socket/core/thread
74 # virtual CPU belongs to, provided if supported by board
75 #
76 # @target: the QEMU system emulation target, which determines which
77 # additional fields will be listed (since 3.0)
78 #
79 # Since: 2.12
80 ##
81 { 'union' : 'CpuInfoFast',
82 'base' : { 'cpu-index' : 'int',
83 'qom-path' : 'str',
84 'thread-id' : 'int',
85 '*props' : 'CpuInstanceProperties',
86 'target' : 'SysEmuTarget' },
87 'discriminator' : 'target',
88 'data' : { 's390x' : 'CpuInfoS390' } }
89
90 ##
91 # @query-cpus-fast:
92 #
93 # Returns information about all virtual CPUs.
94 #
95 # Returns: list of @CpuInfoFast
96 #
97 # Since: 2.12
98 #
99 # Example:
100 #
101 # -> { "execute": "query-cpus-fast" }
102 # <- { "return": [
103 # {
104 # "thread-id": 25627,
105 # "props": {
106 # "core-id": 0,
107 # "thread-id": 0,
108 # "socket-id": 0
109 # },
110 # "qom-path": "/machine/unattached/device[0]",
111 # "target":"x86_64",
112 # "cpu-index": 0
113 # },
114 # {
115 # "thread-id": 25628,
116 # "props": {
117 # "core-id": 0,
118 # "thread-id": 0,
119 # "socket-id": 1
120 # },
121 # "qom-path": "/machine/unattached/device[2]",
122 # "target":"x86_64",
123 # "cpu-index": 1
124 # }
125 # ]
126 # }
127 ##
128 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
129
130 ##
131 # @MachineInfo:
132 #
133 # Information describing a machine.
134 #
135 # @name: the name of the machine
136 #
137 # @alias: an alias for the machine name
138 #
139 # @is-default: whether the machine is default
140 #
141 # @cpu-max: maximum number of CPUs supported by the machine type
142 # (since 1.5)
143 #
144 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
145 #
146 # @numa-mem-supported: true if '-numa node,mem' option is supported by
147 # the machine type and false otherwise (since 4.1)
148 #
149 # @deprecated: if true, the machine type is deprecated and may be removed
150 # in future versions of QEMU according to the QEMU deprecation
151 # policy (since 4.1)
152 #
153 # @default-cpu-type: default CPU model typename if none is requested via
154 # the -cpu argument. (since 4.2)
155 #
156 # @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
157 #
158 # @acpi: machine type supports ACPI (since 8.0)
159 #
160 # Since: 1.2
161 ##
162 { 'struct': 'MachineInfo',
163 'data': { 'name': 'str', '*alias': 'str',
164 '*is-default': 'bool', 'cpu-max': 'int',
165 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
166 'deprecated': 'bool', '*default-cpu-type': 'str',
167 '*default-ram-id': 'str', 'acpi': 'bool' } }
168
169 ##
170 # @query-machines:
171 #
172 # Return a list of supported machines
173 #
174 # Returns: a list of MachineInfo
175 #
176 # Since: 1.2
177 ##
178 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
179
180 ##
181 # @CurrentMachineParams:
182 #
183 # Information describing the running machine parameters.
184 #
185 # @wakeup-suspend-support: true if the machine supports wake up from
186 # suspend
187 #
188 # Since: 4.0
189 ##
190 { 'struct': 'CurrentMachineParams',
191 'data': { 'wakeup-suspend-support': 'bool'} }
192
193 ##
194 # @query-current-machine:
195 #
196 # Return information on the current virtual machine.
197 #
198 # Returns: CurrentMachineParams
199 #
200 # Since: 4.0
201 ##
202 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
203
204 ##
205 # @TargetInfo:
206 #
207 # Information describing the QEMU target.
208 #
209 # @arch: the target architecture
210 #
211 # Since: 1.2
212 ##
213 { 'struct': 'TargetInfo',
214 'data': { 'arch': 'SysEmuTarget' } }
215
216 ##
217 # @query-target:
218 #
219 # Return information about the target for this QEMU
220 #
221 # Returns: TargetInfo
222 #
223 # Since: 1.2
224 ##
225 { 'command': 'query-target', 'returns': 'TargetInfo' }
226
227 ##
228 # @UuidInfo:
229 #
230 # Guest UUID information (Universally Unique Identifier).
231 #
232 # @UUID: the UUID of the guest
233 #
234 # Since: 0.14
235 #
236 # Notes: If no UUID was specified for the guest, a null UUID is returned.
237 ##
238 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
239
240 ##
241 # @query-uuid:
242 #
243 # Query the guest UUID information.
244 #
245 # Returns: The @UuidInfo for the guest
246 #
247 # Since: 0.14
248 #
249 # Example:
250 #
251 # -> { "execute": "query-uuid" }
252 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
253 #
254 ##
255 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
256
257 ##
258 # @GuidInfo:
259 #
260 # GUID information.
261 #
262 # @guid: the globally unique identifier
263 #
264 # Since: 2.9
265 ##
266 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
267
268 ##
269 # @query-vm-generation-id:
270 #
271 # Show Virtual Machine Generation ID
272 #
273 # Since: 2.9
274 ##
275 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
276
277 ##
278 # @system_reset:
279 #
280 # Performs a hard reset of a guest.
281 #
282 # Since: 0.14
283 #
284 # Example:
285 #
286 # -> { "execute": "system_reset" }
287 # <- { "return": {} }
288 #
289 ##
290 { 'command': 'system_reset' }
291
292 ##
293 # @system_powerdown:
294 #
295 # Requests that a guest perform a powerdown operation.
296 #
297 # Since: 0.14
298 #
299 # Notes: A guest may or may not respond to this command. This command
300 # returning does not indicate that a guest has accepted the request or
301 # that it has shut down. Many guests will respond to this command by
302 # prompting the user in some way.
303 #
304 # Example:
305 #
306 # -> { "execute": "system_powerdown" }
307 # <- { "return": {} }
308 #
309 ##
310 { 'command': 'system_powerdown' }
311
312 ##
313 # @system_wakeup:
314 #
315 # Wake up guest from suspend. If the guest has wake-up from suspend
316 # support enabled (wakeup-suspend-support flag from
317 # query-current-machine), wake-up guest from suspend if the guest is
318 # in SUSPENDED state. Return an error otherwise.
319 #
320 # Since: 1.1
321 #
322 # Returns: nothing.
323 #
324 # Note: prior to 4.0, this command does nothing in case the guest
325 # isn't suspended.
326 #
327 # Example:
328 #
329 # -> { "execute": "system_wakeup" }
330 # <- { "return": {} }
331 #
332 ##
333 { 'command': 'system_wakeup' }
334
335 ##
336 # @LostTickPolicy:
337 #
338 # Policy for handling lost ticks in timer devices. Ticks end up getting
339 # lost when, for example, the guest is paused.
340 #
341 # @discard: throw away the missed ticks and continue with future injection
342 # normally. The guest OS will see the timer jump ahead by a
343 # potentially quite significant amount all at once, as if the
344 # intervening chunk of time had simply not existed; needless to
345 # say, such a sudden jump can easily confuse a guest OS which is
346 # not specifically prepared to deal with it. Assuming the guest
347 # OS can deal correctly with the time jump, the time in the guest
348 # and in the host should now match.
349 #
350 # @delay: continue to deliver ticks at the normal rate. The guest OS will
351 # not notice anything is amiss, as from its point of view time will
352 # have continued to flow normally. The time in the guest should now
353 # be behind the time in the host by exactly the amount of time during
354 # which ticks have been missed.
355 #
356 # @slew: deliver ticks at a higher rate to catch up with the missed ticks.
357 # The guest OS will not notice anything is amiss, as from its point
358 # of view time will have continued to flow normally. Once the timer
359 # has managed to catch up with all the missing ticks, the time in
360 # the guest and in the host should match.
361 #
362 # Since: 2.0
363 ##
364 { 'enum': 'LostTickPolicy',
365 'data': ['discard', 'delay', 'slew' ] }
366
367 ##
368 # @inject-nmi:
369 #
370 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
371 # The command fails when the guest doesn't support injecting.
372 #
373 # Returns: If successful, nothing
374 #
375 # Since: 0.14
376 #
377 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
378 #
379 # Example:
380 #
381 # -> { "execute": "inject-nmi" }
382 # <- { "return": {} }
383 #
384 ##
385 { 'command': 'inject-nmi' }
386
387 ##
388 # @KvmInfo:
389 #
390 # Information about support for KVM acceleration
391 #
392 # @enabled: true if KVM acceleration is active
393 #
394 # @present: true if KVM acceleration is built into this executable
395 #
396 # Since: 0.14
397 ##
398 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
399
400 ##
401 # @query-kvm:
402 #
403 # Returns information about KVM acceleration
404 #
405 # Returns: @KvmInfo
406 #
407 # Since: 0.14
408 #
409 # Example:
410 #
411 # -> { "execute": "query-kvm" }
412 # <- { "return": { "enabled": true, "present": true } }
413 #
414 ##
415 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
416
417 ##
418 # @NumaOptionsType:
419 #
420 # @node: NUMA nodes configuration
421 #
422 # @dist: NUMA distance configuration (since 2.10)
423 #
424 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
425 #
426 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
427 #
428 # @hmat-cache: memory side cache information (Since: 5.0)
429 #
430 # Since: 2.1
431 ##
432 { 'enum': 'NumaOptionsType',
433 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
434
435 ##
436 # @NumaOptions:
437 #
438 # A discriminated record of NUMA options. (for OptsVisitor)
439 #
440 # Since: 2.1
441 ##
442 { 'union': 'NumaOptions',
443 'base': { 'type': 'NumaOptionsType' },
444 'discriminator': 'type',
445 'data': {
446 'node': 'NumaNodeOptions',
447 'dist': 'NumaDistOptions',
448 'cpu': 'NumaCpuOptions',
449 'hmat-lb': 'NumaHmatLBOptions',
450 'hmat-cache': 'NumaHmatCacheOptions' }}
451
452 ##
453 # @NumaNodeOptions:
454 #
455 # Create a guest NUMA node. (for OptsVisitor)
456 #
457 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
458 #
459 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
460 # if omitted)
461 #
462 # @mem: memory size of this node; mutually exclusive with @memdev.
463 # Equally divide total memory among nodes if both @mem and @memdev are
464 # omitted.
465 #
466 # @memdev: memory backend object. If specified for one node,
467 # it must be specified for all nodes.
468 #
469 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
470 # points to the nodeid which has the memory controller
471 # responsible for this NUMA node. This field provides
472 # additional information as to the initiator node that
473 # is closest (as in directly attached) to this node, and
474 # therefore has the best performance (since 5.0)
475 #
476 # Since: 2.1
477 ##
478 { 'struct': 'NumaNodeOptions',
479 'data': {
480 '*nodeid': 'uint16',
481 '*cpus': ['uint16'],
482 '*mem': 'size',
483 '*memdev': 'str',
484 '*initiator': 'uint16' }}
485
486 ##
487 # @NumaDistOptions:
488 #
489 # Set the distance between 2 NUMA nodes.
490 #
491 # @src: source NUMA node.
492 #
493 # @dst: destination NUMA node.
494 #
495 # @val: NUMA distance from source node to destination node.
496 # When a node is unreachable from another node, set the distance
497 # between them to 255.
498 #
499 # Since: 2.10
500 ##
501 { 'struct': 'NumaDistOptions',
502 'data': {
503 'src': 'uint16',
504 'dst': 'uint16',
505 'val': 'uint8' }}
506
507 ##
508 # @CXLFixedMemoryWindowOptions:
509 #
510 # Create a CXL Fixed Memory Window
511 #
512 # @size: Size of the Fixed Memory Window in bytes. Must be a multiple
513 # of 256MiB.
514 # @interleave-granularity: Number of contiguous bytes for which
515 # accesses will go to a given interleave target.
516 # Accepted values [256, 512, 1k, 2k, 4k, 8k, 16k]
517 # @targets: Target root bridge IDs from -device ...,id=<ID> for each root
518 # bridge.
519 #
520 # Since 7.1
521 ##
522 { 'struct': 'CXLFixedMemoryWindowOptions',
523 'data': {
524 'size': 'size',
525 '*interleave-granularity': 'size',
526 'targets': ['str'] }}
527
528 ##
529 # @CXLFMWProperties:
530 #
531 # List of CXL Fixed Memory Windows.
532 #
533 # @cxl-fmw: List of CXLFixedMemoryWindowOptions
534 #
535 # Since 7.1
536 ##
537 { 'struct' : 'CXLFMWProperties',
538 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
539 }
540
541 ##
542 # @X86CPURegister32:
543 #
544 # A X86 32-bit register
545 #
546 # Since: 1.5
547 ##
548 { 'enum': 'X86CPURegister32',
549 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
550
551 ##
552 # @X86CPUFeatureWordInfo:
553 #
554 # Information about a X86 CPU feature word
555 #
556 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
557 #
558 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
559 # feature word
560 #
561 # @cpuid-register: Output register containing the feature bits
562 #
563 # @features: value of output register, containing the feature bits
564 #
565 # Since: 1.5
566 ##
567 { 'struct': 'X86CPUFeatureWordInfo',
568 'data': { 'cpuid-input-eax': 'int',
569 '*cpuid-input-ecx': 'int',
570 'cpuid-register': 'X86CPURegister32',
571 'features': 'int' } }
572
573 ##
574 # @DummyForceArrays:
575 #
576 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
577 #
578 # Since: 2.5
579 ##
580 { 'struct': 'DummyForceArrays',
581 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
582
583 ##
584 # @NumaCpuOptions:
585 #
586 # Option "-numa cpu" overrides default cpu to node mapping.
587 # It accepts the same set of cpu properties as returned by
588 # query-hotpluggable-cpus[].props, where node-id could be used to
589 # override default node mapping.
590 #
591 # Since: 2.10
592 ##
593 { 'struct': 'NumaCpuOptions',
594 'base': 'CpuInstanceProperties',
595 'data' : {} }
596
597 ##
598 # @HmatLBMemoryHierarchy:
599 #
600 # The memory hierarchy in the System Locality Latency and Bandwidth
601 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
602 #
603 # For more information about @HmatLBMemoryHierarchy, see chapter
604 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
605 #
606 # @memory: the structure represents the memory performance
607 #
608 # @first-level: first level of memory side cache
609 #
610 # @second-level: second level of memory side cache
611 #
612 # @third-level: third level of memory side cache
613 #
614 # Since: 5.0
615 ##
616 { 'enum': 'HmatLBMemoryHierarchy',
617 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
618
619 ##
620 # @HmatLBDataType:
621 #
622 # Data type in the System Locality Latency and Bandwidth
623 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
624 #
625 # For more information about @HmatLBDataType, see chapter
626 # 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec.
627 #
628 # @access-latency: access latency (nanoseconds)
629 #
630 # @read-latency: read latency (nanoseconds)
631 #
632 # @write-latency: write latency (nanoseconds)
633 #
634 # @access-bandwidth: access bandwidth (Bytes per second)
635 #
636 # @read-bandwidth: read bandwidth (Bytes per second)
637 #
638 # @write-bandwidth: write bandwidth (Bytes per second)
639 #
640 # Since: 5.0
641 ##
642 { 'enum': 'HmatLBDataType',
643 'data': [ 'access-latency', 'read-latency', 'write-latency',
644 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
645
646 ##
647 # @NumaHmatLBOptions:
648 #
649 # Set the system locality latency and bandwidth information
650 # between Initiator and Target proximity Domains.
651 #
652 # For more information about @NumaHmatLBOptions, see chapter
653 # 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
654 #
655 # @initiator: the Initiator Proximity Domain.
656 #
657 # @target: the Target Proximity Domain.
658 #
659 # @hierarchy: the Memory Hierarchy. Indicates the performance
660 # of memory or side cache.
661 #
662 # @data-type: presents the type of data, access/read/write
663 # latency or hit latency.
664 #
665 # @latency: the value of latency from @initiator to @target
666 # proximity domain, the latency unit is "ns(nanosecond)".
667 #
668 # @bandwidth: the value of bandwidth between @initiator and @target
669 # proximity domain, the bandwidth unit is
670 # "Bytes per second".
671 #
672 # Since: 5.0
673 ##
674 { 'struct': 'NumaHmatLBOptions',
675 'data': {
676 'initiator': 'uint16',
677 'target': 'uint16',
678 'hierarchy': 'HmatLBMemoryHierarchy',
679 'data-type': 'HmatLBDataType',
680 '*latency': 'uint64',
681 '*bandwidth': 'size' }}
682
683 ##
684 # @HmatCacheAssociativity:
685 #
686 # Cache associativity in the Memory Side Cache Information Structure
687 # of HMAT
688 #
689 # For more information of @HmatCacheAssociativity, see chapter
690 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
691 #
692 # @none: None (no memory side cache in this proximity domain,
693 # or cache associativity unknown)
694 #
695 # @direct: Direct Mapped
696 #
697 # @complex: Complex Cache Indexing (implementation specific)
698 #
699 # Since: 5.0
700 ##
701 { 'enum': 'HmatCacheAssociativity',
702 'data': [ 'none', 'direct', 'complex' ] }
703
704 ##
705 # @HmatCacheWritePolicy:
706 #
707 # Cache write policy in the Memory Side Cache Information Structure
708 # of HMAT
709 #
710 # For more information of @HmatCacheWritePolicy, see chapter
711 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
712 #
713 # @none: None (no memory side cache in this proximity domain,
714 # or cache write policy unknown)
715 #
716 # @write-back: Write Back (WB)
717 #
718 # @write-through: Write Through (WT)
719 #
720 # Since: 5.0
721 ##
722 { 'enum': 'HmatCacheWritePolicy',
723 'data': [ 'none', 'write-back', 'write-through' ] }
724
725 ##
726 # @NumaHmatCacheOptions:
727 #
728 # Set the memory side cache information for a given memory domain.
729 #
730 # For more information of @NumaHmatCacheOptions, see chapter
731 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
732 #
733 # @node-id: the memory proximity domain to which the memory belongs.
734 #
735 # @size: the size of memory side cache in bytes.
736 #
737 # @level: the cache level described in this structure.
738 #
739 # @associativity: the cache associativity,
740 # none/direct-mapped/complex(complex cache indexing).
741 #
742 # @policy: the write policy, none/write-back/write-through.
743 #
744 # @line: the cache Line size in bytes.
745 #
746 # Since: 5.0
747 ##
748 { 'struct': 'NumaHmatCacheOptions',
749 'data': {
750 'node-id': 'uint32',
751 'size': 'size',
752 'level': 'uint8',
753 'associativity': 'HmatCacheAssociativity',
754 'policy': 'HmatCacheWritePolicy',
755 'line': 'uint16' }}
756
757 ##
758 # @memsave:
759 #
760 # Save a portion of guest memory to a file.
761 #
762 # @val: the virtual address of the guest to start from
763 #
764 # @size: the size of memory region to save
765 #
766 # @filename: the file to save the memory to as binary data
767 #
768 # @cpu-index: the index of the virtual CPU to use for translating the
769 # virtual address (defaults to CPU 0)
770 #
771 # Returns: Nothing on success
772 #
773 # Since: 0.14
774 #
775 # Notes: Errors were not reliably returned until 1.1
776 #
777 # Example:
778 #
779 # -> { "execute": "memsave",
780 # "arguments": { "val": 10,
781 # "size": 100,
782 # "filename": "/tmp/virtual-mem-dump" } }
783 # <- { "return": {} }
784 #
785 ##
786 { 'command': 'memsave',
787 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
788
789 ##
790 # @pmemsave:
791 #
792 # Save a portion of guest physical memory to a file.
793 #
794 # @val: the physical address of the guest to start from
795 #
796 # @size: the size of memory region to save
797 #
798 # @filename: the file to save the memory to as binary data
799 #
800 # Returns: Nothing on success
801 #
802 # Since: 0.14
803 #
804 # Notes: Errors were not reliably returned until 1.1
805 #
806 # Example:
807 #
808 # -> { "execute": "pmemsave",
809 # "arguments": { "val": 10,
810 # "size": 100,
811 # "filename": "/tmp/physical-mem-dump" } }
812 # <- { "return": {} }
813 #
814 ##
815 { 'command': 'pmemsave',
816 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
817
818 ##
819 # @Memdev:
820 #
821 # Information about memory backend
822 #
823 # @id: backend's ID if backend has 'id' property (since 2.9)
824 #
825 # @size: memory backend size
826 #
827 # @merge: whether memory merge support is enabled
828 #
829 # @dump: whether memory backend's memory is included in a core dump
830 #
831 # @prealloc: whether memory was preallocated
832 #
833 # @share: whether memory is private to QEMU or shared (since 6.1)
834 #
835 # @reserve: whether swap space (or huge pages) was reserved if applicable.
836 # This corresponds to the user configuration and not the actual
837 # behavior implemented in the OS to perform the reservation.
838 # For example, Linux will never reserve swap space for shared
839 # file mappings. (since 6.1)
840 #
841 # @host-nodes: host nodes for its memory policy
842 #
843 # @policy: memory policy of memory backend
844 #
845 # Since: 2.1
846 ##
847 { 'struct': 'Memdev',
848 'data': {
849 '*id': 'str',
850 'size': 'size',
851 'merge': 'bool',
852 'dump': 'bool',
853 'prealloc': 'bool',
854 'share': 'bool',
855 '*reserve': 'bool',
856 'host-nodes': ['uint16'],
857 'policy': 'HostMemPolicy' }}
858
859 ##
860 # @query-memdev:
861 #
862 # Returns information for all memory backends.
863 #
864 # Returns: a list of @Memdev.
865 #
866 # Since: 2.1
867 #
868 # Example:
869 #
870 # -> { "execute": "query-memdev" }
871 # <- { "return": [
872 # {
873 # "id": "mem1",
874 # "size": 536870912,
875 # "merge": false,
876 # "dump": true,
877 # "prealloc": false,
878 # "share": false,
879 # "host-nodes": [0, 1],
880 # "policy": "bind"
881 # },
882 # {
883 # "size": 536870912,
884 # "merge": false,
885 # "dump": true,
886 # "prealloc": true,
887 # "share": false,
888 # "host-nodes": [2, 3],
889 # "policy": "preferred"
890 # }
891 # ]
892 # }
893 #
894 ##
895 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
896
897 ##
898 # @CpuInstanceProperties:
899 #
900 # List of properties to be used for hotplugging a CPU instance,
901 # it should be passed by management with device_add command when
902 # a CPU is being hotplugged.
903 #
904 # @node-id: NUMA node ID the CPU belongs to
905 # @socket-id: socket number within node/board the CPU belongs to
906 # @die-id: die number within socket the CPU belongs to (since 4.1)
907 # @cluster-id: cluster number within die the CPU belongs to (since 7.1)
908 # @core-id: core number within cluster the CPU belongs to
909 # @thread-id: thread number within core the CPU belongs to
910 #
911 # Note: currently there are 6 properties that could be present
912 # but management should be prepared to pass through other
913 # properties with device_add command to allow for future
914 # interface extension. This also requires the filed names to be kept in
915 # sync with the properties passed to -device/device_add.
916 #
917 # Since: 2.7
918 ##
919 { 'struct': 'CpuInstanceProperties',
920 'data': { '*node-id': 'int',
921 '*socket-id': 'int',
922 '*die-id': 'int',
923 '*cluster-id': 'int',
924 '*core-id': 'int',
925 '*thread-id': 'int'
926 }
927 }
928
929 ##
930 # @HotpluggableCPU:
931 #
932 # @type: CPU object type for usage with device_add command
933 # @props: list of properties to be used for hotplugging CPU
934 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
935 # @qom-path: link to existing CPU object if CPU is present or
936 # omitted if CPU is not present.
937 #
938 # Since: 2.7
939 ##
940 { 'struct': 'HotpluggableCPU',
941 'data': { 'type': 'str',
942 'vcpus-count': 'int',
943 'props': 'CpuInstanceProperties',
944 '*qom-path': 'str'
945 }
946 }
947
948 ##
949 # @query-hotpluggable-cpus:
950 #
951 # TODO: Better documentation; currently there is none.
952 #
953 # Returns: a list of HotpluggableCPU objects.
954 #
955 # Since: 2.7
956 #
957 # Example:
958 #
959 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
960 #
961 # -> { "execute": "query-hotpluggable-cpus" }
962 # <- {"return": [
963 # { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
964 # "vcpus-count": 1 },
965 # { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
966 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
967 # ]}'
968 #
969 # For pc machine type started with -smp 1,maxcpus=2:
970 #
971 # -> { "execute": "query-hotpluggable-cpus" }
972 # <- {"return": [
973 # {
974 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
975 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
976 # },
977 # {
978 # "qom-path": "/machine/unattached/device[0]",
979 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
980 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
981 # }
982 # ]}
983 #
984 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
985 # (Since: 2.11):
986 #
987 # -> { "execute": "query-hotpluggable-cpus" }
988 # <- {"return": [
989 # {
990 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
991 # "props": { "core-id": 1 }
992 # },
993 # {
994 # "qom-path": "/machine/unattached/device[0]",
995 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
996 # "props": { "core-id": 0 }
997 # }
998 # ]}
999 #
1000 ##
1001 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1002 'allow-preconfig': true }
1003
1004 ##
1005 # @set-numa-node:
1006 #
1007 # Runtime equivalent of '-numa' CLI option, available at
1008 # preconfigure stage to configure numa mapping before initializing
1009 # machine.
1010 #
1011 # Since: 3.0
1012 ##
1013 { 'command': 'set-numa-node', 'boxed': true,
1014 'data': 'NumaOptions',
1015 'allow-preconfig': true
1016 }
1017
1018 ##
1019 # @balloon:
1020 #
1021 # Request the balloon driver to change its balloon size.
1022 #
1023 # @value: the target logical size of the VM in bytes.
1024 # We can deduce the size of the balloon using this formula:
1025 #
1026 # logical_vm_size = vm_ram_size - balloon_size
1027 #
1028 # From it we have: balloon_size = vm_ram_size - @value
1029 #
1030 # Returns: - Nothing on success
1031 # - If the balloon driver is enabled but not functional because the KVM
1032 # kernel module cannot support it, KvmMissingCap
1033 # - If no balloon device is present, DeviceNotActive
1034 #
1035 # Notes: This command just issues a request to the guest. When it returns,
1036 # the balloon size may not have changed. A guest can change the balloon
1037 # size independent of this command.
1038 #
1039 # Since: 0.14
1040 #
1041 # Example:
1042 #
1043 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1044 # <- { "return": {} }
1045 #
1046 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1047 #
1048 ##
1049 { 'command': 'balloon', 'data': {'value': 'int'} }
1050
1051 ##
1052 # @BalloonInfo:
1053 #
1054 # Information about the guest balloon device.
1055 #
1056 # @actual: the logical size of the VM in bytes
1057 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1058 #
1059 # Since: 0.14
1060 ##
1061 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1062
1063 ##
1064 # @query-balloon:
1065 #
1066 # Return information about the balloon device.
1067 #
1068 # Returns: - @BalloonInfo on success
1069 # - If the balloon driver is enabled but not functional because the KVM
1070 # kernel module cannot support it, KvmMissingCap
1071 # - If no balloon device is present, DeviceNotActive
1072 #
1073 # Since: 0.14
1074 #
1075 # Example:
1076 #
1077 # -> { "execute": "query-balloon" }
1078 # <- { "return": {
1079 # "actual": 1073741824
1080 # }
1081 # }
1082 #
1083 ##
1084 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1085
1086 ##
1087 # @BALLOON_CHANGE:
1088 #
1089 # Emitted when the guest changes the actual BALLOON level. This value is
1090 # equivalent to the @actual field return by the 'query-balloon' command
1091 #
1092 # @actual: the logical size of the VM in bytes
1093 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1094 #
1095 # Note: this event is rate-limited.
1096 #
1097 # Since: 1.2
1098 #
1099 # Example:
1100 #
1101 # <- { "event": "BALLOON_CHANGE",
1102 # "data": { "actual": 944766976 },
1103 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1104 #
1105 ##
1106 { 'event': 'BALLOON_CHANGE',
1107 'data': { 'actual': 'int' } }
1108
1109 ##
1110 # @MemoryInfo:
1111 #
1112 # Actual memory information in bytes.
1113 #
1114 # @base-memory: size of "base" memory specified with command line
1115 # option -m.
1116 #
1117 # @plugged-memory: size of memory that can be hot-unplugged. This field
1118 # is omitted if target doesn't support memory hotplug
1119 # (i.e. CONFIG_MEM_DEVICE not defined at build time).
1120 #
1121 # Since: 2.11
1122 ##
1123 { 'struct': 'MemoryInfo',
1124 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1125
1126 ##
1127 # @query-memory-size-summary:
1128 #
1129 # Return the amount of initially allocated and present hotpluggable (if
1130 # enabled) memory in bytes.
1131 #
1132 # Example:
1133 #
1134 # -> { "execute": "query-memory-size-summary" }
1135 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1136 #
1137 # Since: 2.11
1138 ##
1139 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1140
1141 ##
1142 # @PCDIMMDeviceInfo:
1143 #
1144 # PCDIMMDevice state information
1145 #
1146 # @id: device's ID
1147 #
1148 # @addr: physical address, where device is mapped
1149 #
1150 # @size: size of memory that the device provides
1151 #
1152 # @slot: slot number at which device is plugged in
1153 #
1154 # @node: NUMA node number where device is plugged in
1155 #
1156 # @memdev: memory backend linked with device
1157 #
1158 # @hotplugged: true if device was hotplugged
1159 #
1160 # @hotpluggable: true if device if could be added/removed while machine is running
1161 #
1162 # Since: 2.1
1163 ##
1164 { 'struct': 'PCDIMMDeviceInfo',
1165 'data': { '*id': 'str',
1166 'addr': 'int',
1167 'size': 'int',
1168 'slot': 'int',
1169 'node': 'int',
1170 'memdev': 'str',
1171 'hotplugged': 'bool',
1172 'hotpluggable': 'bool'
1173 }
1174 }
1175
1176 ##
1177 # @VirtioPMEMDeviceInfo:
1178 #
1179 # VirtioPMEM state information
1180 #
1181 # @id: device's ID
1182 #
1183 # @memaddr: physical address in memory, where device is mapped
1184 #
1185 # @size: size of memory that the device provides
1186 #
1187 # @memdev: memory backend linked with device
1188 #
1189 # Since: 4.1
1190 ##
1191 { 'struct': 'VirtioPMEMDeviceInfo',
1192 'data': { '*id': 'str',
1193 'memaddr': 'size',
1194 'size': 'size',
1195 'memdev': 'str'
1196 }
1197 }
1198
1199 ##
1200 # @VirtioMEMDeviceInfo:
1201 #
1202 # VirtioMEMDevice state information
1203 #
1204 # @id: device's ID
1205 #
1206 # @memaddr: physical address in memory, where device is mapped
1207 #
1208 # @requested-size: the user requested size of the device
1209 #
1210 # @size: the (current) size of memory that the device provides
1211 #
1212 # @max-size: the maximum size of memory that the device can provide
1213 #
1214 # @block-size: the block size of memory that the device provides
1215 #
1216 # @node: NUMA node number where device is assigned to
1217 #
1218 # @memdev: memory backend linked with the region
1219 #
1220 # Since: 5.1
1221 ##
1222 { 'struct': 'VirtioMEMDeviceInfo',
1223 'data': { '*id': 'str',
1224 'memaddr': 'size',
1225 'requested-size': 'size',
1226 'size': 'size',
1227 'max-size': 'size',
1228 'block-size': 'size',
1229 'node': 'int',
1230 'memdev': 'str'
1231 }
1232 }
1233
1234 ##
1235 # @SgxEPCDeviceInfo:
1236 #
1237 # Sgx EPC state information
1238 #
1239 # @id: device's ID
1240 #
1241 # @memaddr: physical address in memory, where device is mapped
1242 #
1243 # @size: size of memory that the device provides
1244 #
1245 # @memdev: memory backend linked with device
1246 #
1247 # @node: the numa node (Since: 7.0)
1248 #
1249 # Since: 6.2
1250 ##
1251 { 'struct': 'SgxEPCDeviceInfo',
1252 'data': { '*id': 'str',
1253 'memaddr': 'size',
1254 'size': 'size',
1255 'node': 'int',
1256 'memdev': 'str'
1257 }
1258 }
1259
1260 ##
1261 # @MemoryDeviceInfoKind:
1262 #
1263 # Since: 2.1
1264 ##
1265 { 'enum': 'MemoryDeviceInfoKind',
1266 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1267
1268 ##
1269 # @PCDIMMDeviceInfoWrapper:
1270 #
1271 # Since: 2.1
1272 ##
1273 { 'struct': 'PCDIMMDeviceInfoWrapper',
1274 'data': { 'data': 'PCDIMMDeviceInfo' } }
1275
1276 ##
1277 # @VirtioPMEMDeviceInfoWrapper:
1278 #
1279 # Since: 2.1
1280 ##
1281 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
1282 'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1283
1284 ##
1285 # @VirtioMEMDeviceInfoWrapper:
1286 #
1287 # Since: 2.1
1288 ##
1289 { 'struct': 'VirtioMEMDeviceInfoWrapper',
1290 'data': { 'data': 'VirtioMEMDeviceInfo' } }
1291
1292 ##
1293 # @SgxEPCDeviceInfoWrapper:
1294 #
1295 # Since: 6.2
1296 ##
1297 { 'struct': 'SgxEPCDeviceInfoWrapper',
1298 'data': { 'data': 'SgxEPCDeviceInfo' } }
1299
1300 ##
1301 # @MemoryDeviceInfo:
1302 #
1303 # Union containing information about a memory device
1304 #
1305 # nvdimm is included since 2.12. virtio-pmem is included since 4.1.
1306 # virtio-mem is included since 5.1. sgx-epc is included since 6.2.
1307 #
1308 # Since: 2.1
1309 ##
1310 { 'union': 'MemoryDeviceInfo',
1311 'base': { 'type': 'MemoryDeviceInfoKind' },
1312 'discriminator': 'type',
1313 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1314 'nvdimm': 'PCDIMMDeviceInfoWrapper',
1315 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1316 'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1317 'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1318 }
1319 }
1320
1321 ##
1322 # @SgxEPC:
1323 #
1324 # Sgx EPC cmdline information
1325 #
1326 # @memdev: memory backend linked with device
1327 #
1328 # @node: the numa node (Since: 7.0)
1329 #
1330 # Since: 6.2
1331 ##
1332 { 'struct': 'SgxEPC',
1333 'data': { 'memdev': 'str',
1334 'node': 'int'
1335 }
1336 }
1337
1338 ##
1339 # @SgxEPCProperties:
1340 #
1341 # SGX properties of machine types.
1342 #
1343 # @sgx-epc: list of ids of memory-backend-epc objects.
1344 #
1345 # Since: 6.2
1346 ##
1347 { 'struct': 'SgxEPCProperties',
1348 'data': { 'sgx-epc': ['SgxEPC'] }
1349 }
1350
1351 ##
1352 # @query-memory-devices:
1353 #
1354 # Lists available memory devices and their state
1355 #
1356 # Since: 2.1
1357 #
1358 # Example:
1359 #
1360 # -> { "execute": "query-memory-devices" }
1361 # <- { "return": [ { "data":
1362 # { "addr": 5368709120,
1363 # "hotpluggable": true,
1364 # "hotplugged": true,
1365 # "id": "d1",
1366 # "memdev": "/objects/memX",
1367 # "node": 0,
1368 # "size": 1073741824,
1369 # "slot": 0},
1370 # "type": "dimm"
1371 # } ] }
1372 #
1373 ##
1374 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1375
1376 ##
1377 # @MEMORY_DEVICE_SIZE_CHANGE:
1378 #
1379 # Emitted when the size of a memory device changes. Only emitted for memory
1380 # devices that can actually change the size (e.g., virtio-mem due to guest
1381 # action).
1382 #
1383 # @id: device's ID
1384 #
1385 # @size: the new size of memory that the device provides
1386 #
1387 # @qom-path: path to the device object in the QOM tree (since 6.2)
1388 #
1389 # Note: this event is rate-limited.
1390 #
1391 # Since: 5.1
1392 #
1393 # Example:
1394 #
1395 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1396 # "data": { "id": "vm0", "size": 1073741824,
1397 # "qom-path": "/machine/unattached/device[2]" },
1398 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1399 #
1400 ##
1401 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1402 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1403
1404 ##
1405 # @MEM_UNPLUG_ERROR:
1406 #
1407 # Emitted when memory hot unplug error occurs.
1408 #
1409 # @device: device name
1410 #
1411 # @msg: Informative message
1412 #
1413 # Features:
1414 # @deprecated: This event is deprecated. Use @DEVICE_UNPLUG_GUEST_ERROR
1415 # instead.
1416 #
1417 # Since: 2.4
1418 #
1419 # Example:
1420 #
1421 # <- { "event": "MEM_UNPLUG_ERROR",
1422 # "data": { "device": "dimm1",
1423 # "msg": "acpi: device unplug for unsupported device"
1424 # },
1425 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1426 #
1427 ##
1428 { 'event': 'MEM_UNPLUG_ERROR',
1429 'data': { 'device': 'str', 'msg': 'str' },
1430 'features': ['deprecated'] }
1431
1432 ##
1433 # @BootConfiguration:
1434 #
1435 # Schema for virtual machine boot configuration.
1436 #
1437 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1438 #
1439 # @once: Boot order to apply on first boot
1440 #
1441 # @menu: Whether to show a boot menu
1442 #
1443 # @splash: The name of the file to be passed to the firmware as logo picture, if @menu is true.
1444 #
1445 # @splash-time: How long to show the logo picture, in milliseconds
1446 #
1447 # @reboot-timeout: Timeout before guest reboots after boot fails
1448 #
1449 # @strict: Whether to attempt booting from devices not included in the boot order
1450 #
1451 # Since: 7.1
1452 ##
1453 { 'struct': 'BootConfiguration', 'data': {
1454 '*order': 'str',
1455 '*once': 'str',
1456 '*menu': 'bool',
1457 '*splash': 'str',
1458 '*splash-time': 'int',
1459 '*reboot-timeout': 'int',
1460 '*strict': 'bool' } }
1461
1462 ##
1463 # @SMPConfiguration:
1464 #
1465 # Schema for CPU topology configuration. A missing value lets
1466 # QEMU figure out a suitable value based on the ones that are provided.
1467 #
1468 # @cpus: number of virtual CPUs in the virtual machine
1469 #
1470 # @sockets: number of sockets in the CPU topology
1471 #
1472 # @dies: number of dies per socket in the CPU topology
1473 #
1474 # @clusters: number of clusters per die in the CPU topology (since 7.0)
1475 #
1476 # @cores: number of cores per cluster in the CPU topology
1477 #
1478 # @threads: number of threads per core in the CPU topology
1479 #
1480 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine
1481 #
1482 # Since: 6.1
1483 ##
1484 { 'struct': 'SMPConfiguration', 'data': {
1485 '*cpus': 'int',
1486 '*sockets': 'int',
1487 '*dies': 'int',
1488 '*clusters': 'int',
1489 '*cores': 'int',
1490 '*threads': 'int',
1491 '*maxcpus': 'int' } }
1492
1493 ##
1494 # @x-query-irq:
1495 #
1496 # Query interrupt statistics
1497 #
1498 # Features:
1499 # @unstable: This command is meant for debugging.
1500 #
1501 # Returns: interrupt statistics
1502 #
1503 # Since: 6.2
1504 ##
1505 { 'command': 'x-query-irq',
1506 'returns': 'HumanReadableText',
1507 'features': [ 'unstable' ] }
1508
1509 ##
1510 # @x-query-jit:
1511 #
1512 # Query TCG compiler statistics
1513 #
1514 # Features:
1515 # @unstable: This command is meant for debugging.
1516 #
1517 # Returns: TCG compiler statistics
1518 #
1519 # Since: 6.2
1520 ##
1521 { 'command': 'x-query-jit',
1522 'returns': 'HumanReadableText',
1523 'if': 'CONFIG_TCG',
1524 'features': [ 'unstable' ] }
1525
1526 ##
1527 # @x-query-numa:
1528 #
1529 # Query NUMA topology information
1530 #
1531 # Features:
1532 # @unstable: This command is meant for debugging.
1533 #
1534 # Returns: topology information
1535 #
1536 # Since: 6.2
1537 ##
1538 { 'command': 'x-query-numa',
1539 'returns': 'HumanReadableText',
1540 'features': [ 'unstable' ] }
1541
1542 ##
1543 # @x-query-opcount:
1544 #
1545 # Query TCG opcode counters
1546 #
1547 # Features:
1548 # @unstable: This command is meant for debugging.
1549 #
1550 # Returns: TCG opcode counters
1551 #
1552 # Since: 6.2
1553 ##
1554 { 'command': 'x-query-opcount',
1555 'returns': 'HumanReadableText',
1556 'if': 'CONFIG_TCG',
1557 'features': [ 'unstable' ] }
1558
1559 ##
1560 # @x-query-profile:
1561 #
1562 # Query TCG profiling information
1563 #
1564 # Features:
1565 # @unstable: This command is meant for debugging.
1566 #
1567 # Returns: profile information
1568 #
1569 # Since: 6.2
1570 ##
1571 { 'command': 'x-query-profile',
1572 'returns': 'HumanReadableText',
1573 'if': 'CONFIG_TCG',
1574 'features': [ 'unstable' ] }
1575
1576 ##
1577 # @x-query-ramblock:
1578 #
1579 # Query system ramblock information
1580 #
1581 # Features:
1582 # @unstable: This command is meant for debugging.
1583 #
1584 # Returns: system ramblock information
1585 #
1586 # Since: 6.2
1587 ##
1588 { 'command': 'x-query-ramblock',
1589 'returns': 'HumanReadableText',
1590 'features': [ 'unstable' ] }
1591
1592 ##
1593 # @x-query-rdma:
1594 #
1595 # Query RDMA state
1596 #
1597 # Features:
1598 # @unstable: This command is meant for debugging.
1599 #
1600 # Returns: RDMA state
1601 #
1602 # Since: 6.2
1603 ##
1604 { 'command': 'x-query-rdma',
1605 'returns': 'HumanReadableText',
1606 'features': [ 'unstable' ] }
1607
1608 ##
1609 # @x-query-roms:
1610 #
1611 # Query information on the registered ROMS
1612 #
1613 # Features:
1614 # @unstable: This command is meant for debugging.
1615 #
1616 # Returns: registered ROMs
1617 #
1618 # Since: 6.2
1619 ##
1620 { 'command': 'x-query-roms',
1621 'returns': 'HumanReadableText',
1622 'features': [ 'unstable' ] }
1623
1624 ##
1625 # @x-query-usb:
1626 #
1627 # Query information on the USB devices
1628 #
1629 # Features:
1630 # @unstable: This command is meant for debugging.
1631 #
1632 # Returns: USB device information
1633 #
1634 # Since: 6.2
1635 ##
1636 { 'command': 'x-query-usb',
1637 'returns': 'HumanReadableText',
1638 'features': [ 'unstable' ] }
1639
1640 ##
1641 # @SmbiosEntryPointType:
1642 #
1643 # @32: SMBIOS version 2.1 (32-bit) Entry Point
1644 #
1645 # @64: SMBIOS version 3.0 (64-bit) Entry Point
1646 #
1647 # Since: 7.0
1648 ##
1649 { 'enum': 'SmbiosEntryPointType',
1650 'data': [ '32', '64' ] }
1651
1652 ##
1653 # @MemorySizeConfiguration:
1654 #
1655 # Schema for memory size configuration.
1656 #
1657 # @size: memory size in bytes
1658 #
1659 # @max-size: maximum hotpluggable memory size in bytes
1660 #
1661 # @slots: number of available memory slots for hotplug
1662 #
1663 # Since: 7.1
1664 ##
1665 { 'struct': 'MemorySizeConfiguration', 'data': {
1666 '*size': 'size',
1667 '*max-size': 'size',
1668 '*slots': 'uint64' } }
1669
1670 ##
1671 # @dumpdtb:
1672 #
1673 # Save the FDT in dtb format.
1674 #
1675 # @filename: name of the dtb file to be created
1676 #
1677 # Since: 7.2
1678 #
1679 # Example:
1680 # {"execute": "dumpdtb"}
1681 # "arguments": { "filename": "fdt.dtb" } }
1682 #
1683 ##
1684 { 'command': 'dumpdtb',
1685 'data': { 'filename': 'str' },
1686 'if': 'CONFIG_FDT' }