]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/machine.json
machine: use QAPI struct for boot configuration
[mirror_qemu.git] / qapi / machine.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
6
7 ##
8 # = Machines
9 ##
10
11 { 'include': 'common.json' }
12
13 ##
14 # @SysEmuTarget:
15 #
16 # The comprehensive enumeration of QEMU system emulation ("softmmu")
17 # targets. Run "./configure --help" in the project root directory, and
18 # look for the \*-softmmu targets near the "--target-list" option. The
19 # individual target constants are not documented here, for the time
20 # being.
21 #
22 # @rx: since 5.0
23 # @avr: since 5.1
24 #
25 # Notes: The resulting QMP strings can be appended to the "qemu-system-"
26 # prefix to produce the corresponding QEMU executable name. This
27 # is true even for "qemu-system-x86_64".
28 #
29 # Since: 3.0
30 ##
31 { 'enum' : 'SysEmuTarget',
32 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
33 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
34 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
35 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
36 'sh4eb', 'sparc', 'sparc64', 'tricore',
37 'x86_64', 'xtensa', 'xtensaeb' ] }
38
39 ##
40 # @CpuS390State:
41 #
42 # An enumeration of cpu states that can be assumed by a virtual
43 # S390 CPU
44 #
45 # Since: 2.12
46 ##
47 { 'enum': 'CpuS390State',
48 'prefix': 'S390_CPU_STATE',
49 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
50
51 ##
52 # @CpuInfoS390:
53 #
54 # Additional information about a virtual S390 CPU
55 #
56 # @cpu-state: the virtual CPU's state
57 #
58 # Since: 2.12
59 ##
60 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
61
62 ##
63 # @CpuInfoFast:
64 #
65 # Information about a virtual CPU
66 #
67 # @cpu-index: index of the virtual CPU
68 #
69 # @qom-path: path to the CPU object in the QOM tree
70 #
71 # @thread-id: ID of the underlying host thread
72 #
73 # @props: properties describing to which node/socket/core/thread
74 # virtual CPU belongs to, provided if supported by board
75 #
76 # @target: the QEMU system emulation target, which determines which
77 # additional fields will be listed (since 3.0)
78 #
79 # Since: 2.12
80 #
81 ##
82 { 'union' : 'CpuInfoFast',
83 'base' : { 'cpu-index' : 'int',
84 'qom-path' : 'str',
85 'thread-id' : 'int',
86 '*props' : 'CpuInstanceProperties',
87 'target' : 'SysEmuTarget' },
88 'discriminator' : 'target',
89 'data' : { 's390x' : 'CpuInfoS390' } }
90
91 ##
92 # @query-cpus-fast:
93 #
94 # Returns information about all virtual CPUs.
95 #
96 # Returns: list of @CpuInfoFast
97 #
98 # Since: 2.12
99 #
100 # Example:
101 #
102 # -> { "execute": "query-cpus-fast" }
103 # <- { "return": [
104 # {
105 # "thread-id": 25627,
106 # "props": {
107 # "core-id": 0,
108 # "thread-id": 0,
109 # "socket-id": 0
110 # },
111 # "qom-path": "/machine/unattached/device[0]",
112 # "target":"x86_64",
113 # "cpu-index": 0
114 # },
115 # {
116 # "thread-id": 25628,
117 # "props": {
118 # "core-id": 0,
119 # "thread-id": 0,
120 # "socket-id": 1
121 # },
122 # "qom-path": "/machine/unattached/device[2]",
123 # "target":"x86_64",
124 # "cpu-index": 1
125 # }
126 # ]
127 # }
128 ##
129 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
130
131 ##
132 # @MachineInfo:
133 #
134 # Information describing a machine.
135 #
136 # @name: the name of the machine
137 #
138 # @alias: an alias for the machine name
139 #
140 # @is-default: whether the machine is default
141 #
142 # @cpu-max: maximum number of CPUs supported by the machine type
143 # (since 1.5)
144 #
145 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
146 #
147 # @numa-mem-supported: true if '-numa node,mem' option is supported by
148 # the machine type and false otherwise (since 4.1)
149 #
150 # @deprecated: if true, the machine type is deprecated and may be removed
151 # in future versions of QEMU according to the QEMU deprecation
152 # policy (since 4.1)
153 #
154 # @default-cpu-type: default CPU model typename if none is requested via
155 # the -cpu argument. (since 4.2)
156 #
157 # @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
158 #
159 # Since: 1.2
160 ##
161 { 'struct': 'MachineInfo',
162 'data': { 'name': 'str', '*alias': 'str',
163 '*is-default': 'bool', 'cpu-max': 'int',
164 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
165 'deprecated': 'bool', '*default-cpu-type': 'str',
166 '*default-ram-id': 'str' } }
167
168 ##
169 # @query-machines:
170 #
171 # Return a list of supported machines
172 #
173 # Returns: a list of MachineInfo
174 #
175 # Since: 1.2
176 ##
177 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
178
179 ##
180 # @CurrentMachineParams:
181 #
182 # Information describing the running machine parameters.
183 #
184 # @wakeup-suspend-support: true if the machine supports wake up from
185 # suspend
186 #
187 # Since: 4.0
188 ##
189 { 'struct': 'CurrentMachineParams',
190 'data': { 'wakeup-suspend-support': 'bool'} }
191
192 ##
193 # @query-current-machine:
194 #
195 # Return information on the current virtual machine.
196 #
197 # Returns: CurrentMachineParams
198 #
199 # Since: 4.0
200 ##
201 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
202
203 ##
204 # @TargetInfo:
205 #
206 # Information describing the QEMU target.
207 #
208 # @arch: the target architecture
209 #
210 # Since: 1.2
211 ##
212 { 'struct': 'TargetInfo',
213 'data': { 'arch': 'SysEmuTarget' } }
214
215 ##
216 # @query-target:
217 #
218 # Return information about the target for this QEMU
219 #
220 # Returns: TargetInfo
221 #
222 # Since: 1.2
223 ##
224 { 'command': 'query-target', 'returns': 'TargetInfo' }
225
226 ##
227 # @UuidInfo:
228 #
229 # Guest UUID information (Universally Unique Identifier).
230 #
231 # @UUID: the UUID of the guest
232 #
233 # Since: 0.14
234 #
235 # Notes: If no UUID was specified for the guest, a null UUID is returned.
236 ##
237 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
238
239 ##
240 # @query-uuid:
241 #
242 # Query the guest UUID information.
243 #
244 # Returns: The @UuidInfo for the guest
245 #
246 # Since: 0.14
247 #
248 # Example:
249 #
250 # -> { "execute": "query-uuid" }
251 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
252 #
253 ##
254 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
255
256 ##
257 # @GuidInfo:
258 #
259 # GUID information.
260 #
261 # @guid: the globally unique identifier
262 #
263 # Since: 2.9
264 ##
265 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
266
267 ##
268 # @query-vm-generation-id:
269 #
270 # Show Virtual Machine Generation ID
271 #
272 # Since: 2.9
273 ##
274 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
275
276 ##
277 # @system_reset:
278 #
279 # Performs a hard reset of a guest.
280 #
281 # Since: 0.14
282 #
283 # Example:
284 #
285 # -> { "execute": "system_reset" }
286 # <- { "return": {} }
287 #
288 ##
289 { 'command': 'system_reset' }
290
291 ##
292 # @system_powerdown:
293 #
294 # Requests that a guest perform a powerdown operation.
295 #
296 # Since: 0.14
297 #
298 # Notes: A guest may or may not respond to this command. This command
299 # returning does not indicate that a guest has accepted the request or
300 # that it has shut down. Many guests will respond to this command by
301 # prompting the user in some way.
302 # Example:
303 #
304 # -> { "execute": "system_powerdown" }
305 # <- { "return": {} }
306 #
307 ##
308 { 'command': 'system_powerdown' }
309
310 ##
311 # @system_wakeup:
312 #
313 # Wake up guest from suspend. If the guest has wake-up from suspend
314 # support enabled (wakeup-suspend-support flag from
315 # query-current-machine), wake-up guest from suspend if the guest is
316 # in SUSPENDED state. Return an error otherwise.
317 #
318 # Since: 1.1
319 #
320 # Returns: nothing.
321 #
322 # Note: prior to 4.0, this command does nothing in case the guest
323 # isn't suspended.
324 #
325 # Example:
326 #
327 # -> { "execute": "system_wakeup" }
328 # <- { "return": {} }
329 #
330 ##
331 { 'command': 'system_wakeup' }
332
333 ##
334 # @LostTickPolicy:
335 #
336 # Policy for handling lost ticks in timer devices. Ticks end up getting
337 # lost when, for example, the guest is paused.
338 #
339 # @discard: throw away the missed ticks and continue with future injection
340 # normally. The guest OS will see the timer jump ahead by a
341 # potentially quite significant amount all at once, as if the
342 # intervening chunk of time had simply not existed; needless to
343 # say, such a sudden jump can easily confuse a guest OS which is
344 # not specifically prepared to deal with it. Assuming the guest
345 # OS can deal correctly with the time jump, the time in the guest
346 # and in the host should now match.
347 #
348 # @delay: continue to deliver ticks at the normal rate. The guest OS will
349 # not notice anything is amiss, as from its point of view time will
350 # have continued to flow normally. The time in the guest should now
351 # be behind the time in the host by exactly the amount of time during
352 # which ticks have been missed.
353 #
354 # @slew: deliver ticks at a higher rate to catch up with the missed ticks.
355 # The guest OS will not notice anything is amiss, as from its point
356 # of view time will have continued to flow normally. Once the timer
357 # has managed to catch up with all the missing ticks, the time in
358 # the guest and in the host should match.
359 #
360 # Since: 2.0
361 ##
362 { 'enum': 'LostTickPolicy',
363 'data': ['discard', 'delay', 'slew' ] }
364
365 ##
366 # @inject-nmi:
367 #
368 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
369 # The command fails when the guest doesn't support injecting.
370 #
371 # Returns: If successful, nothing
372 #
373 # Since: 0.14
374 #
375 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
376 #
377 # Example:
378 #
379 # -> { "execute": "inject-nmi" }
380 # <- { "return": {} }
381 #
382 ##
383 { 'command': 'inject-nmi' }
384
385 ##
386 # @KvmInfo:
387 #
388 # Information about support for KVM acceleration
389 #
390 # @enabled: true if KVM acceleration is active
391 #
392 # @present: true if KVM acceleration is built into this executable
393 #
394 # Since: 0.14
395 ##
396 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
397
398 ##
399 # @query-kvm:
400 #
401 # Returns information about KVM acceleration
402 #
403 # Returns: @KvmInfo
404 #
405 # Since: 0.14
406 #
407 # Example:
408 #
409 # -> { "execute": "query-kvm" }
410 # <- { "return": { "enabled": true, "present": true } }
411 #
412 ##
413 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
414
415 ##
416 # @NumaOptionsType:
417 #
418 # @node: NUMA nodes configuration
419 #
420 # @dist: NUMA distance configuration (since 2.10)
421 #
422 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
423 #
424 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
425 #
426 # @hmat-cache: memory side cache information (Since: 5.0)
427 #
428 # Since: 2.1
429 ##
430 { 'enum': 'NumaOptionsType',
431 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
432
433 ##
434 # @NumaOptions:
435 #
436 # A discriminated record of NUMA options. (for OptsVisitor)
437 #
438 # Since: 2.1
439 ##
440 { 'union': 'NumaOptions',
441 'base': { 'type': 'NumaOptionsType' },
442 'discriminator': 'type',
443 'data': {
444 'node': 'NumaNodeOptions',
445 'dist': 'NumaDistOptions',
446 'cpu': 'NumaCpuOptions',
447 'hmat-lb': 'NumaHmatLBOptions',
448 'hmat-cache': 'NumaHmatCacheOptions' }}
449
450 ##
451 # @NumaNodeOptions:
452 #
453 # Create a guest NUMA node. (for OptsVisitor)
454 #
455 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
456 #
457 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
458 # if omitted)
459 #
460 # @mem: memory size of this node; mutually exclusive with @memdev.
461 # Equally divide total memory among nodes if both @mem and @memdev are
462 # omitted.
463 #
464 # @memdev: memory backend object. If specified for one node,
465 # it must be specified for all nodes.
466 #
467 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
468 # points to the nodeid which has the memory controller
469 # responsible for this NUMA node. This field provides
470 # additional information as to the initiator node that
471 # is closest (as in directly attached) to this node, and
472 # therefore has the best performance (since 5.0)
473 #
474 # Since: 2.1
475 ##
476 { 'struct': 'NumaNodeOptions',
477 'data': {
478 '*nodeid': 'uint16',
479 '*cpus': ['uint16'],
480 '*mem': 'size',
481 '*memdev': 'str',
482 '*initiator': 'uint16' }}
483
484 ##
485 # @NumaDistOptions:
486 #
487 # Set the distance between 2 NUMA nodes.
488 #
489 # @src: source NUMA node.
490 #
491 # @dst: destination NUMA node.
492 #
493 # @val: NUMA distance from source node to destination node.
494 # When a node is unreachable from another node, set the distance
495 # between them to 255.
496 #
497 # Since: 2.10
498 ##
499 { 'struct': 'NumaDistOptions',
500 'data': {
501 'src': 'uint16',
502 'dst': 'uint16',
503 'val': 'uint8' }}
504
505 ##
506 # @X86CPURegister32:
507 #
508 # A X86 32-bit register
509 #
510 # Since: 1.5
511 ##
512 { 'enum': 'X86CPURegister32',
513 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
514
515 ##
516 # @X86CPUFeatureWordInfo:
517 #
518 # Information about a X86 CPU feature word
519 #
520 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
521 #
522 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
523 # feature word
524 #
525 # @cpuid-register: Output register containing the feature bits
526 #
527 # @features: value of output register, containing the feature bits
528 #
529 # Since: 1.5
530 ##
531 { 'struct': 'X86CPUFeatureWordInfo',
532 'data': { 'cpuid-input-eax': 'int',
533 '*cpuid-input-ecx': 'int',
534 'cpuid-register': 'X86CPURegister32',
535 'features': 'int' } }
536
537 ##
538 # @DummyForceArrays:
539 #
540 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
541 #
542 # Since: 2.5
543 ##
544 { 'struct': 'DummyForceArrays',
545 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
546
547 ##
548 # @NumaCpuOptions:
549 #
550 # Option "-numa cpu" overrides default cpu to node mapping.
551 # It accepts the same set of cpu properties as returned by
552 # query-hotpluggable-cpus[].props, where node-id could be used to
553 # override default node mapping.
554 #
555 # Since: 2.10
556 ##
557 { 'struct': 'NumaCpuOptions',
558 'base': 'CpuInstanceProperties',
559 'data' : {} }
560
561 ##
562 # @HmatLBMemoryHierarchy:
563 #
564 # The memory hierarchy in the System Locality Latency and Bandwidth
565 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
566 #
567 # For more information about @HmatLBMemoryHierarchy, see chapter
568 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
569 #
570 # @memory: the structure represents the memory performance
571 #
572 # @first-level: first level of memory side cache
573 #
574 # @second-level: second level of memory side cache
575 #
576 # @third-level: third level of memory side cache
577 #
578 # Since: 5.0
579 ##
580 { 'enum': 'HmatLBMemoryHierarchy',
581 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
582
583 ##
584 # @HmatLBDataType:
585 #
586 # Data type in the System Locality Latency and Bandwidth
587 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
588 #
589 # For more information about @HmatLBDataType, see chapter
590 # 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec.
591 #
592 # @access-latency: access latency (nanoseconds)
593 #
594 # @read-latency: read latency (nanoseconds)
595 #
596 # @write-latency: write latency (nanoseconds)
597 #
598 # @access-bandwidth: access bandwidth (Bytes per second)
599 #
600 # @read-bandwidth: read bandwidth (Bytes per second)
601 #
602 # @write-bandwidth: write bandwidth (Bytes per second)
603 #
604 # Since: 5.0
605 ##
606 { 'enum': 'HmatLBDataType',
607 'data': [ 'access-latency', 'read-latency', 'write-latency',
608 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
609
610 ##
611 # @NumaHmatLBOptions:
612 #
613 # Set the system locality latency and bandwidth information
614 # between Initiator and Target proximity Domains.
615 #
616 # For more information about @NumaHmatLBOptions, see chapter
617 # 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
618 #
619 # @initiator: the Initiator Proximity Domain.
620 #
621 # @target: the Target Proximity Domain.
622 #
623 # @hierarchy: the Memory Hierarchy. Indicates the performance
624 # of memory or side cache.
625 #
626 # @data-type: presents the type of data, access/read/write
627 # latency or hit latency.
628 #
629 # @latency: the value of latency from @initiator to @target
630 # proximity domain, the latency unit is "ns(nanosecond)".
631 #
632 # @bandwidth: the value of bandwidth between @initiator and @target
633 # proximity domain, the bandwidth unit is
634 # "Bytes per second".
635 #
636 # Since: 5.0
637 ##
638 { 'struct': 'NumaHmatLBOptions',
639 'data': {
640 'initiator': 'uint16',
641 'target': 'uint16',
642 'hierarchy': 'HmatLBMemoryHierarchy',
643 'data-type': 'HmatLBDataType',
644 '*latency': 'uint64',
645 '*bandwidth': 'size' }}
646
647 ##
648 # @HmatCacheAssociativity:
649 #
650 # Cache associativity in the Memory Side Cache Information Structure
651 # of HMAT
652 #
653 # For more information of @HmatCacheAssociativity, see chapter
654 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
655 #
656 # @none: None (no memory side cache in this proximity domain,
657 # or cache associativity unknown)
658 #
659 # @direct: Direct Mapped
660 #
661 # @complex: Complex Cache Indexing (implementation specific)
662 #
663 # Since: 5.0
664 ##
665 { 'enum': 'HmatCacheAssociativity',
666 'data': [ 'none', 'direct', 'complex' ] }
667
668 ##
669 # @HmatCacheWritePolicy:
670 #
671 # Cache write policy in the Memory Side Cache Information Structure
672 # of HMAT
673 #
674 # For more information of @HmatCacheWritePolicy, see chapter
675 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
676 #
677 # @none: None (no memory side cache in this proximity domain,
678 # or cache write policy unknown)
679 #
680 # @write-back: Write Back (WB)
681 #
682 # @write-through: Write Through (WT)
683 #
684 # Since: 5.0
685 ##
686 { 'enum': 'HmatCacheWritePolicy',
687 'data': [ 'none', 'write-back', 'write-through' ] }
688
689 ##
690 # @NumaHmatCacheOptions:
691 #
692 # Set the memory side cache information for a given memory domain.
693 #
694 # For more information of @NumaHmatCacheOptions, see chapter
695 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
696 #
697 # @node-id: the memory proximity domain to which the memory belongs.
698 #
699 # @size: the size of memory side cache in bytes.
700 #
701 # @level: the cache level described in this structure.
702 #
703 # @associativity: the cache associativity,
704 # none/direct-mapped/complex(complex cache indexing).
705 #
706 # @policy: the write policy, none/write-back/write-through.
707 #
708 # @line: the cache Line size in bytes.
709 #
710 # Since: 5.0
711 ##
712 { 'struct': 'NumaHmatCacheOptions',
713 'data': {
714 'node-id': 'uint32',
715 'size': 'size',
716 'level': 'uint8',
717 'associativity': 'HmatCacheAssociativity',
718 'policy': 'HmatCacheWritePolicy',
719 'line': 'uint16' }}
720
721 ##
722 # @memsave:
723 #
724 # Save a portion of guest memory to a file.
725 #
726 # @val: the virtual address of the guest to start from
727 #
728 # @size: the size of memory region to save
729 #
730 # @filename: the file to save the memory to as binary data
731 #
732 # @cpu-index: the index of the virtual CPU to use for translating the
733 # virtual address (defaults to CPU 0)
734 #
735 # Returns: Nothing on success
736 #
737 # Since: 0.14
738 #
739 # Notes: Errors were not reliably returned until 1.1
740 #
741 # Example:
742 #
743 # -> { "execute": "memsave",
744 # "arguments": { "val": 10,
745 # "size": 100,
746 # "filename": "/tmp/virtual-mem-dump" } }
747 # <- { "return": {} }
748 #
749 ##
750 { 'command': 'memsave',
751 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
752
753 ##
754 # @pmemsave:
755 #
756 # Save a portion of guest physical memory to a file.
757 #
758 # @val: the physical address of the guest to start from
759 #
760 # @size: the size of memory region to save
761 #
762 # @filename: the file to save the memory to as binary data
763 #
764 # Returns: Nothing on success
765 #
766 # Since: 0.14
767 #
768 # Notes: Errors were not reliably returned until 1.1
769 #
770 # Example:
771 #
772 # -> { "execute": "pmemsave",
773 # "arguments": { "val": 10,
774 # "size": 100,
775 # "filename": "/tmp/physical-mem-dump" } }
776 # <- { "return": {} }
777 #
778 ##
779 { 'command': 'pmemsave',
780 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
781
782 ##
783 # @Memdev:
784 #
785 # Information about memory backend
786 #
787 # @id: backend's ID if backend has 'id' property (since 2.9)
788 #
789 # @size: memory backend size
790 #
791 # @merge: whether memory merge support is enabled
792 #
793 # @dump: whether memory backend's memory is included in a core dump
794 #
795 # @prealloc: whether memory was preallocated
796 #
797 # @share: whether memory is private to QEMU or shared (since 6.1)
798 #
799 # @reserve: whether swap space (or huge pages) was reserved if applicable.
800 # This corresponds to the user configuration and not the actual
801 # behavior implemented in the OS to perform the reservation.
802 # For example, Linux will never reserve swap space for shared
803 # file mappings. (since 6.1)
804 #
805 # @host-nodes: host nodes for its memory policy
806 #
807 # @policy: memory policy of memory backend
808 #
809 # Since: 2.1
810 ##
811 { 'struct': 'Memdev',
812 'data': {
813 '*id': 'str',
814 'size': 'size',
815 'merge': 'bool',
816 'dump': 'bool',
817 'prealloc': 'bool',
818 'share': 'bool',
819 '*reserve': 'bool',
820 'host-nodes': ['uint16'],
821 'policy': 'HostMemPolicy' }}
822
823 ##
824 # @query-memdev:
825 #
826 # Returns information for all memory backends.
827 #
828 # Returns: a list of @Memdev.
829 #
830 # Since: 2.1
831 #
832 # Example:
833 #
834 # -> { "execute": "query-memdev" }
835 # <- { "return": [
836 # {
837 # "id": "mem1",
838 # "size": 536870912,
839 # "merge": false,
840 # "dump": true,
841 # "prealloc": false,
842 # "share": false,
843 # "host-nodes": [0, 1],
844 # "policy": "bind"
845 # },
846 # {
847 # "size": 536870912,
848 # "merge": false,
849 # "dump": true,
850 # "prealloc": true,
851 # "share": false,
852 # "host-nodes": [2, 3],
853 # "policy": "preferred"
854 # }
855 # ]
856 # }
857 #
858 ##
859 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
860
861 ##
862 # @CpuInstanceProperties:
863 #
864 # List of properties to be used for hotplugging a CPU instance,
865 # it should be passed by management with device_add command when
866 # a CPU is being hotplugged.
867 #
868 # @node-id: NUMA node ID the CPU belongs to
869 # @socket-id: socket number within node/board the CPU belongs to
870 # @die-id: die number within socket the CPU belongs to (since 4.1)
871 # @cluster-id: cluster number within die the CPU belongs to (since 7.1)
872 # @core-id: core number within cluster the CPU belongs to
873 # @thread-id: thread number within core the CPU belongs to
874 #
875 # Note: currently there are 6 properties that could be present
876 # but management should be prepared to pass through other
877 # properties with device_add command to allow for future
878 # interface extension. This also requires the filed names to be kept in
879 # sync with the properties passed to -device/device_add.
880 #
881 # Since: 2.7
882 ##
883 { 'struct': 'CpuInstanceProperties',
884 'data': { '*node-id': 'int',
885 '*socket-id': 'int',
886 '*die-id': 'int',
887 '*cluster-id': 'int',
888 '*core-id': 'int',
889 '*thread-id': 'int'
890 }
891 }
892
893 ##
894 # @HotpluggableCPU:
895 #
896 # @type: CPU object type for usage with device_add command
897 # @props: list of properties to be used for hotplugging CPU
898 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
899 # @qom-path: link to existing CPU object if CPU is present or
900 # omitted if CPU is not present.
901 #
902 # Since: 2.7
903 ##
904 { 'struct': 'HotpluggableCPU',
905 'data': { 'type': 'str',
906 'vcpus-count': 'int',
907 'props': 'CpuInstanceProperties',
908 '*qom-path': 'str'
909 }
910 }
911
912 ##
913 # @query-hotpluggable-cpus:
914 #
915 # TODO: Better documentation; currently there is none.
916 #
917 # Returns: a list of HotpluggableCPU objects.
918 #
919 # Since: 2.7
920 #
921 # Example:
922 #
923 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
924 #
925 # -> { "execute": "query-hotpluggable-cpus" }
926 # <- {"return": [
927 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
928 # "vcpus-count": 1 },
929 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
930 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
931 # ]}'
932 #
933 # For pc machine type started with -smp 1,maxcpus=2:
934 #
935 # -> { "execute": "query-hotpluggable-cpus" }
936 # <- {"return": [
937 # {
938 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
939 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
940 # },
941 # {
942 # "qom-path": "/machine/unattached/device[0]",
943 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
944 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
945 # }
946 # ]}
947 #
948 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
949 # (Since: 2.11):
950 #
951 # -> { "execute": "query-hotpluggable-cpus" }
952 # <- {"return": [
953 # {
954 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
955 # "props": { "core-id": 1 }
956 # },
957 # {
958 # "qom-path": "/machine/unattached/device[0]",
959 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
960 # "props": { "core-id": 0 }
961 # }
962 # ]}
963 #
964 ##
965 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
966 'allow-preconfig': true }
967
968 ##
969 # @set-numa-node:
970 #
971 # Runtime equivalent of '-numa' CLI option, available at
972 # preconfigure stage to configure numa mapping before initializing
973 # machine.
974 #
975 # Since 3.0
976 ##
977 { 'command': 'set-numa-node', 'boxed': true,
978 'data': 'NumaOptions',
979 'allow-preconfig': true
980 }
981
982 ##
983 # @balloon:
984 #
985 # Request the balloon driver to change its balloon size.
986 #
987 # @value: the target logical size of the VM in bytes.
988 # We can deduce the size of the balloon using this formula:
989 #
990 # logical_vm_size = vm_ram_size - balloon_size
991 #
992 # From it we have: balloon_size = vm_ram_size - @value
993 #
994 # Returns: - Nothing on success
995 # - If the balloon driver is enabled but not functional because the KVM
996 # kernel module cannot support it, KvmMissingCap
997 # - If no balloon device is present, DeviceNotActive
998 #
999 # Notes: This command just issues a request to the guest. When it returns,
1000 # the balloon size may not have changed. A guest can change the balloon
1001 # size independent of this command.
1002 #
1003 # Since: 0.14
1004 #
1005 # Example:
1006 #
1007 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1008 # <- { "return": {} }
1009 #
1010 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1011 #
1012 ##
1013 { 'command': 'balloon', 'data': {'value': 'int'} }
1014
1015 ##
1016 # @BalloonInfo:
1017 #
1018 # Information about the guest balloon device.
1019 #
1020 # @actual: the logical size of the VM in bytes
1021 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1022 #
1023 # Since: 0.14
1024 #
1025 ##
1026 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1027
1028 ##
1029 # @query-balloon:
1030 #
1031 # Return information about the balloon device.
1032 #
1033 # Returns: - @BalloonInfo on success
1034 # - If the balloon driver is enabled but not functional because the KVM
1035 # kernel module cannot support it, KvmMissingCap
1036 # - If no balloon device is present, DeviceNotActive
1037 #
1038 # Since: 0.14
1039 #
1040 # Example:
1041 #
1042 # -> { "execute": "query-balloon" }
1043 # <- { "return": {
1044 # "actual": 1073741824,
1045 # }
1046 # }
1047 #
1048 ##
1049 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1050
1051 ##
1052 # @BALLOON_CHANGE:
1053 #
1054 # Emitted when the guest changes the actual BALLOON level. This value is
1055 # equivalent to the @actual field return by the 'query-balloon' command
1056 #
1057 # @actual: the logical size of the VM in bytes
1058 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1059 #
1060 # Note: this event is rate-limited.
1061 #
1062 # Since: 1.2
1063 #
1064 # Example:
1065 #
1066 # <- { "event": "BALLOON_CHANGE",
1067 # "data": { "actual": 944766976 },
1068 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1069 #
1070 ##
1071 { 'event': 'BALLOON_CHANGE',
1072 'data': { 'actual': 'int' } }
1073
1074 ##
1075 # @MemoryInfo:
1076 #
1077 # Actual memory information in bytes.
1078 #
1079 # @base-memory: size of "base" memory specified with command line
1080 # option -m.
1081 #
1082 # @plugged-memory: size of memory that can be hot-unplugged. This field
1083 # is omitted if target doesn't support memory hotplug
1084 # (i.e. CONFIG_MEM_DEVICE not defined at build time).
1085 #
1086 # Since: 2.11
1087 ##
1088 { 'struct': 'MemoryInfo',
1089 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1090
1091 ##
1092 # @query-memory-size-summary:
1093 #
1094 # Return the amount of initially allocated and present hotpluggable (if
1095 # enabled) memory in bytes.
1096 #
1097 # Example:
1098 #
1099 # -> { "execute": "query-memory-size-summary" }
1100 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1101 #
1102 # Since: 2.11
1103 ##
1104 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1105
1106 ##
1107 # @PCDIMMDeviceInfo:
1108 #
1109 # PCDIMMDevice state information
1110 #
1111 # @id: device's ID
1112 #
1113 # @addr: physical address, where device is mapped
1114 #
1115 # @size: size of memory that the device provides
1116 #
1117 # @slot: slot number at which device is plugged in
1118 #
1119 # @node: NUMA node number where device is plugged in
1120 #
1121 # @memdev: memory backend linked with device
1122 #
1123 # @hotplugged: true if device was hotplugged
1124 #
1125 # @hotpluggable: true if device if could be added/removed while machine is running
1126 #
1127 # Since: 2.1
1128 ##
1129 { 'struct': 'PCDIMMDeviceInfo',
1130 'data': { '*id': 'str',
1131 'addr': 'int',
1132 'size': 'int',
1133 'slot': 'int',
1134 'node': 'int',
1135 'memdev': 'str',
1136 'hotplugged': 'bool',
1137 'hotpluggable': 'bool'
1138 }
1139 }
1140
1141 ##
1142 # @VirtioPMEMDeviceInfo:
1143 #
1144 # VirtioPMEM state information
1145 #
1146 # @id: device's ID
1147 #
1148 # @memaddr: physical address in memory, where device is mapped
1149 #
1150 # @size: size of memory that the device provides
1151 #
1152 # @memdev: memory backend linked with device
1153 #
1154 # Since: 4.1
1155 ##
1156 { 'struct': 'VirtioPMEMDeviceInfo',
1157 'data': { '*id': 'str',
1158 'memaddr': 'size',
1159 'size': 'size',
1160 'memdev': 'str'
1161 }
1162 }
1163
1164 ##
1165 # @VirtioMEMDeviceInfo:
1166 #
1167 # VirtioMEMDevice state information
1168 #
1169 # @id: device's ID
1170 #
1171 # @memaddr: physical address in memory, where device is mapped
1172 #
1173 # @requested-size: the user requested size of the device
1174 #
1175 # @size: the (current) size of memory that the device provides
1176 #
1177 # @max-size: the maximum size of memory that the device can provide
1178 #
1179 # @block-size: the block size of memory that the device provides
1180 #
1181 # @node: NUMA node number where device is assigned to
1182 #
1183 # @memdev: memory backend linked with the region
1184 #
1185 # Since: 5.1
1186 ##
1187 { 'struct': 'VirtioMEMDeviceInfo',
1188 'data': { '*id': 'str',
1189 'memaddr': 'size',
1190 'requested-size': 'size',
1191 'size': 'size',
1192 'max-size': 'size',
1193 'block-size': 'size',
1194 'node': 'int',
1195 'memdev': 'str'
1196 }
1197 }
1198
1199 ##
1200 # @SgxEPCDeviceInfo:
1201 #
1202 # Sgx EPC state information
1203 #
1204 # @id: device's ID
1205 #
1206 # @memaddr: physical address in memory, where device is mapped
1207 #
1208 # @size: size of memory that the device provides
1209 #
1210 # @memdev: memory backend linked with device
1211 #
1212 # @node: the numa node (Since: 7.0)
1213 #
1214 # Since: 6.2
1215 ##
1216 { 'struct': 'SgxEPCDeviceInfo',
1217 'data': { '*id': 'str',
1218 'memaddr': 'size',
1219 'size': 'size',
1220 'node': 'int',
1221 'memdev': 'str'
1222 }
1223 }
1224
1225 ##
1226 # @MemoryDeviceInfoKind:
1227 #
1228 # Since: 2.1
1229 ##
1230 { 'enum': 'MemoryDeviceInfoKind',
1231 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1232
1233 ##
1234 # @PCDIMMDeviceInfoWrapper:
1235 #
1236 # Since: 2.1
1237 ##
1238 { 'struct': 'PCDIMMDeviceInfoWrapper',
1239 'data': { 'data': 'PCDIMMDeviceInfo' } }
1240
1241 ##
1242 # @VirtioPMEMDeviceInfoWrapper:
1243 #
1244 # Since: 2.1
1245 ##
1246 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
1247 'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1248
1249 ##
1250 # @VirtioMEMDeviceInfoWrapper:
1251 #
1252 # Since: 2.1
1253 ##
1254 { 'struct': 'VirtioMEMDeviceInfoWrapper',
1255 'data': { 'data': 'VirtioMEMDeviceInfo' } }
1256
1257 ##
1258 # @SgxEPCDeviceInfoWrapper:
1259 #
1260 # Since: 6.2
1261 ##
1262 { 'struct': 'SgxEPCDeviceInfoWrapper',
1263 'data': { 'data': 'SgxEPCDeviceInfo' } }
1264
1265 ##
1266 # @MemoryDeviceInfo:
1267 #
1268 # Union containing information about a memory device
1269 #
1270 # nvdimm is included since 2.12. virtio-pmem is included since 4.1.
1271 # virtio-mem is included since 5.1. sgx-epc is included since 6.2.
1272 #
1273 # Since: 2.1
1274 ##
1275 { 'union': 'MemoryDeviceInfo',
1276 'base': { 'type': 'MemoryDeviceInfoKind' },
1277 'discriminator': 'type',
1278 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1279 'nvdimm': 'PCDIMMDeviceInfoWrapper',
1280 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1281 'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1282 'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1283 }
1284 }
1285
1286 ##
1287 # @SgxEPC:
1288 #
1289 # Sgx EPC cmdline information
1290 #
1291 # @memdev: memory backend linked with device
1292 #
1293 # @node: the numa node (Since: 7.0)
1294 #
1295 # Since: 6.2
1296 ##
1297 { 'struct': 'SgxEPC',
1298 'data': { 'memdev': 'str',
1299 'node': 'int'
1300 }
1301 }
1302
1303 ##
1304 # @SgxEPCProperties:
1305 #
1306 # SGX properties of machine types.
1307 #
1308 # @sgx-epc: list of ids of memory-backend-epc objects.
1309 #
1310 # Since: 6.2
1311 ##
1312 { 'struct': 'SgxEPCProperties',
1313 'data': { 'sgx-epc': ['SgxEPC'] }
1314 }
1315
1316 ##
1317 # @query-memory-devices:
1318 #
1319 # Lists available memory devices and their state
1320 #
1321 # Since: 2.1
1322 #
1323 # Example:
1324 #
1325 # -> { "execute": "query-memory-devices" }
1326 # <- { "return": [ { "data":
1327 # { "addr": 5368709120,
1328 # "hotpluggable": true,
1329 # "hotplugged": true,
1330 # "id": "d1",
1331 # "memdev": "/objects/memX",
1332 # "node": 0,
1333 # "size": 1073741824,
1334 # "slot": 0},
1335 # "type": "dimm"
1336 # } ] }
1337 #
1338 ##
1339 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1340
1341 ##
1342 # @MEMORY_DEVICE_SIZE_CHANGE:
1343 #
1344 # Emitted when the size of a memory device changes. Only emitted for memory
1345 # devices that can actually change the size (e.g., virtio-mem due to guest
1346 # action).
1347 #
1348 # @id: device's ID
1349 #
1350 # @size: the new size of memory that the device provides
1351 #
1352 # @qom-path: path to the device object in the QOM tree (since 6.2)
1353 #
1354 # Note: this event is rate-limited.
1355 #
1356 # Since: 5.1
1357 #
1358 # Example:
1359 #
1360 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1361 # "data": { "id": "vm0", "size": 1073741824,
1362 # "qom-path": "/machine/unattached/device[2]" },
1363 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1364 #
1365 ##
1366 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1367 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1368
1369
1370 ##
1371 # @MEM_UNPLUG_ERROR:
1372 #
1373 # Emitted when memory hot unplug error occurs.
1374 #
1375 # @device: device name
1376 #
1377 # @msg: Informative message
1378 #
1379 # Features:
1380 # @deprecated: This event is deprecated. Use @DEVICE_UNPLUG_GUEST_ERROR
1381 # instead.
1382 #
1383 # Since: 2.4
1384 #
1385 # Example:
1386 #
1387 # <- { "event": "MEM_UNPLUG_ERROR"
1388 # "data": { "device": "dimm1",
1389 # "msg": "acpi: device unplug for unsupported device"
1390 # },
1391 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1392 #
1393 ##
1394 { 'event': 'MEM_UNPLUG_ERROR',
1395 'data': { 'device': 'str', 'msg': 'str' },
1396 'features': ['deprecated'] }
1397
1398 ##
1399 # @BootConfiguration:
1400 #
1401 # Schema for virtual machine boot configuration.
1402 #
1403 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1404 #
1405 # @once: Boot order to apply on first boot
1406 #
1407 # @menu: Whether to show a boot menu
1408 #
1409 # @splash: The name of the file to be passed to the firmware as logo picture, if @menu is true.
1410 #
1411 # @splash-time: How long to show the logo picture, in milliseconds
1412 #
1413 # @reboot-timeout: Timeout before guest reboots after boot fails
1414 #
1415 # @strict: Whether to attempt booting from devices not included in the boot order
1416 #
1417 # Since: 7.1
1418 ##
1419 { 'struct': 'BootConfiguration', 'data': {
1420 '*order': 'str',
1421 '*once': 'str',
1422 '*menu': 'bool',
1423 '*splash': 'str',
1424 '*splash-time': 'int',
1425 '*reboot-timeout': 'int',
1426 '*strict': 'bool' } }
1427
1428 ##
1429 # @SMPConfiguration:
1430 #
1431 # Schema for CPU topology configuration. A missing value lets
1432 # QEMU figure out a suitable value based on the ones that are provided.
1433 #
1434 # @cpus: number of virtual CPUs in the virtual machine
1435 #
1436 # @sockets: number of sockets in the CPU topology
1437 #
1438 # @dies: number of dies per socket in the CPU topology
1439 #
1440 # @clusters: number of clusters per die in the CPU topology (since 7.0)
1441 #
1442 # @cores: number of cores per cluster in the CPU topology
1443 #
1444 # @threads: number of threads per core in the CPU topology
1445 #
1446 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine
1447 #
1448 # Since: 6.1
1449 ##
1450 { 'struct': 'SMPConfiguration', 'data': {
1451 '*cpus': 'int',
1452 '*sockets': 'int',
1453 '*dies': 'int',
1454 '*clusters': 'int',
1455 '*cores': 'int',
1456 '*threads': 'int',
1457 '*maxcpus': 'int' } }
1458
1459 ##
1460 # @x-query-irq:
1461 #
1462 # Query interrupt statistics
1463 #
1464 # Features:
1465 # @unstable: This command is meant for debugging.
1466 #
1467 # Returns: interrupt statistics
1468 #
1469 # Since: 6.2
1470 ##
1471 { 'command': 'x-query-irq',
1472 'returns': 'HumanReadableText',
1473 'features': [ 'unstable' ] }
1474
1475 ##
1476 # @x-query-jit:
1477 #
1478 # Query TCG compiler statistics
1479 #
1480 # Features:
1481 # @unstable: This command is meant for debugging.
1482 #
1483 # Returns: TCG compiler statistics
1484 #
1485 # Since: 6.2
1486 ##
1487 { 'command': 'x-query-jit',
1488 'returns': 'HumanReadableText',
1489 'if': 'CONFIG_TCG',
1490 'features': [ 'unstable' ] }
1491
1492 ##
1493 # @x-query-numa:
1494 #
1495 # Query NUMA topology information
1496 #
1497 # Features:
1498 # @unstable: This command is meant for debugging.
1499 #
1500 # Returns: topology information
1501 #
1502 # Since: 6.2
1503 ##
1504 { 'command': 'x-query-numa',
1505 'returns': 'HumanReadableText',
1506 'features': [ 'unstable' ] }
1507
1508 ##
1509 # @x-query-opcount:
1510 #
1511 # Query TCG opcode counters
1512 #
1513 # Features:
1514 # @unstable: This command is meant for debugging.
1515 #
1516 # Returns: TCG opcode counters
1517 #
1518 # Since: 6.2
1519 ##
1520 { 'command': 'x-query-opcount',
1521 'returns': 'HumanReadableText',
1522 'if': 'CONFIG_TCG',
1523 'features': [ 'unstable' ] }
1524
1525 ##
1526 # @x-query-profile:
1527 #
1528 # Query TCG profiling information
1529 #
1530 # Features:
1531 # @unstable: This command is meant for debugging.
1532 #
1533 # Returns: profile information
1534 #
1535 # Since: 6.2
1536 ##
1537 { 'command': 'x-query-profile',
1538 'returns': 'HumanReadableText',
1539 'if': 'CONFIG_TCG',
1540 'features': [ 'unstable' ] }
1541
1542 ##
1543 # @x-query-ramblock:
1544 #
1545 # Query system ramblock information
1546 #
1547 # Features:
1548 # @unstable: This command is meant for debugging.
1549 #
1550 # Returns: system ramblock information
1551 #
1552 # Since: 6.2
1553 ##
1554 { 'command': 'x-query-ramblock',
1555 'returns': 'HumanReadableText',
1556 'features': [ 'unstable' ] }
1557
1558 ##
1559 # @x-query-rdma:
1560 #
1561 # Query RDMA state
1562 #
1563 # Features:
1564 # @unstable: This command is meant for debugging.
1565 #
1566 # Returns: RDMA state
1567 #
1568 # Since: 6.2
1569 ##
1570 { 'command': 'x-query-rdma',
1571 'returns': 'HumanReadableText',
1572 'features': [ 'unstable' ] }
1573
1574 ##
1575 # @x-query-roms:
1576 #
1577 # Query information on the registered ROMS
1578 #
1579 # Features:
1580 # @unstable: This command is meant for debugging.
1581 #
1582 # Returns: registered ROMs
1583 #
1584 # Since: 6.2
1585 ##
1586 { 'command': 'x-query-roms',
1587 'returns': 'HumanReadableText',
1588 'features': [ 'unstable' ] }
1589
1590 ##
1591 # @x-query-usb:
1592 #
1593 # Query information on the USB devices
1594 #
1595 # Features:
1596 # @unstable: This command is meant for debugging.
1597 #
1598 # Returns: USB device information
1599 #
1600 # Since: 6.2
1601 ##
1602 { 'command': 'x-query-usb',
1603 'returns': 'HumanReadableText',
1604 'features': [ 'unstable' ] }
1605
1606 ##
1607 # @SmbiosEntryPointType:
1608 #
1609 # @32: SMBIOS version 2.1 (32-bit) Entry Point
1610 #
1611 # @64: SMBIOS version 3.0 (64-bit) Entry Point
1612 #
1613 # Since: 7.0
1614 ##
1615 { 'enum': 'SmbiosEntryPointType',
1616 'data': [ '32', '64' ] }