]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/machine.json
Merge tag 'pull-maintainer-may24-160524-2' of https://gitlab.com/stsquad/qemu into...
[mirror_qemu.git] / qapi / machine.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
6
7 ##
8 # = Machines
9 ##
10
11 { 'include': 'common.json' }
12 { 'include': 'machine-common.json' }
13
14 ##
15 # @SysEmuTarget:
16 #
17 # The comprehensive enumeration of QEMU system emulation ("softmmu")
18 # targets. Run "./configure --help" in the project root directory,
19 # and look for the \*-softmmu targets near the "--target-list" option.
20 # The individual target constants are not documented here, for the
21 # time being.
22 #
23 # @rx: since 5.0
24 #
25 # @avr: since 5.1
26 #
27 # Notes: The resulting QMP strings can be appended to the
28 # "qemu-system-" prefix to produce the corresponding QEMU
29 # executable name. This is true even for "qemu-system-x86_64".
30 #
31 # Since: 3.0
32 ##
33 { 'enum' : 'SysEmuTarget',
34 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
35 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
36 'mips64el', 'mipsel', 'or1k', 'ppc',
37 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
38 'sh4eb', 'sparc', 'sparc64', 'tricore',
39 'x86_64', 'xtensa', 'xtensaeb' ] }
40
41 ##
42 # @CpuS390State:
43 #
44 # An enumeration of cpu states that can be assumed by a virtual S390
45 # CPU
46 #
47 # Since: 2.12
48 ##
49 { 'enum': 'CpuS390State',
50 'prefix': 'S390_CPU_STATE',
51 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
52
53 ##
54 # @CpuInfoS390:
55 #
56 # Additional information about a virtual S390 CPU
57 #
58 # @cpu-state: the virtual CPU's state
59 #
60 # @dedicated: the virtual CPU's dedication (since 8.2)
61 #
62 # @entitlement: the virtual CPU's entitlement (since 8.2)
63 #
64 # Since: 2.12
65 ##
66 { 'struct': 'CpuInfoS390',
67 'data': { 'cpu-state': 'CpuS390State',
68 '*dedicated': 'bool',
69 '*entitlement': 'CpuS390Entitlement' } }
70
71 ##
72 # @CpuInfoFast:
73 #
74 # Information about a virtual CPU
75 #
76 # @cpu-index: index of the virtual CPU
77 #
78 # @qom-path: path to the CPU object in the QOM tree
79 #
80 # @thread-id: ID of the underlying host thread
81 #
82 # @props: properties associated with a virtual CPU, e.g. the socket id
83 #
84 # @target: the QEMU system emulation target, which determines which
85 # additional fields will be listed (since 3.0)
86 #
87 # Since: 2.12
88 ##
89 { 'union' : 'CpuInfoFast',
90 'base' : { 'cpu-index' : 'int',
91 'qom-path' : 'str',
92 'thread-id' : 'int',
93 '*props' : 'CpuInstanceProperties',
94 'target' : 'SysEmuTarget' },
95 'discriminator' : 'target',
96 'data' : { 's390x' : 'CpuInfoS390' } }
97
98 ##
99 # @query-cpus-fast:
100 #
101 # Returns information about all virtual CPUs.
102 #
103 # Returns: list of @CpuInfoFast
104 #
105 # Since: 2.12
106 #
107 # Example:
108 #
109 # -> { "execute": "query-cpus-fast" }
110 # <- { "return": [
111 # {
112 # "thread-id": 25627,
113 # "props": {
114 # "core-id": 0,
115 # "thread-id": 0,
116 # "socket-id": 0
117 # },
118 # "qom-path": "/machine/unattached/device[0]",
119 # "target":"x86_64",
120 # "cpu-index": 0
121 # },
122 # {
123 # "thread-id": 25628,
124 # "props": {
125 # "core-id": 0,
126 # "thread-id": 0,
127 # "socket-id": 1
128 # },
129 # "qom-path": "/machine/unattached/device[2]",
130 # "target":"x86_64",
131 # "cpu-index": 1
132 # }
133 # ]
134 # }
135 ##
136 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
137
138 ##
139 # @CompatProperty:
140 #
141 # Property default values specific to a machine type, for use by
142 # scripts/compare-machine-types.
143 #
144 # @qom-type: name of the QOM type to which the default applies
145 #
146 # @property: name of its property to which the default applies
147 #
148 # @value: the default value (machine-specific default can overwrite
149 # the "default" default, to avoid this use -machine none)
150 #
151 # Since: 9.1
152 ##
153 { 'struct': 'CompatProperty',
154 'data': { 'qom-type': 'str',
155 'property': 'str',
156 'value': 'str' } }
157
158 ##
159 # @MachineInfo:
160 #
161 # Information describing a machine.
162 #
163 # @name: the name of the machine
164 #
165 # @alias: an alias for the machine name
166 #
167 # @is-default: whether the machine is default
168 #
169 # @cpu-max: maximum number of CPUs supported by the machine type
170 # (since 1.5)
171 #
172 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
173 #
174 # @numa-mem-supported: true if '-numa node,mem' option is supported by
175 # the machine type and false otherwise (since 4.1)
176 #
177 # @deprecated: if true, the machine type is deprecated and may be
178 # removed in future versions of QEMU according to the QEMU
179 # deprecation policy (since 4.1)
180 #
181 # @default-cpu-type: default CPU model typename if none is requested
182 # via the -cpu argument. (since 4.2)
183 #
184 # @default-ram-id: the default ID of initial RAM memory backend (since
185 # 5.2)
186 #
187 # @acpi: machine type supports ACPI (since 8.0)
188 #
189 # @compat-props: The machine type's compatibility properties. Only
190 # present when query-machines argument @compat-props is true.
191 # (since 9.1)
192 #
193 # Features:
194 #
195 # @unstable: Member @compat-props is experimental.
196 #
197 # Since: 1.2
198 ##
199 { 'struct': 'MachineInfo',
200 'data': { 'name': 'str', '*alias': 'str',
201 '*is-default': 'bool', 'cpu-max': 'int',
202 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
203 'deprecated': 'bool', '*default-cpu-type': 'str',
204 '*default-ram-id': 'str', 'acpi': 'bool',
205 '*compat-props': { 'type': ['CompatProperty'],
206 'features': ['unstable'] } } }
207
208 ##
209 # @query-machines:
210 #
211 # Return a list of supported machines
212 #
213 # @compat-props: if true, also return compatibility properties.
214 # (default: false) (since 9.1)
215 #
216 # Features:
217 #
218 # @unstable: Argument @compat-props is experimental.
219 #
220 # Returns: a list of MachineInfo
221 #
222 # Since: 1.2
223 #
224 # Example:
225 #
226 # -> { "execute": "query-machines", "arguments": { "compat-props": true } }
227 # <- { "return": [
228 # {
229 # "hotpluggable-cpus": true,
230 # "name": "pc-q35-6.2",
231 # "compat-props": [
232 # {
233 # "qom-type": "virtio-mem",
234 # "property": "unplugged-inaccessible",
235 # "value": "off"
236 # }
237 # ],
238 # "numa-mem-supported": false,
239 # "default-cpu-type": "qemu64-x86_64-cpu",
240 # "cpu-max": 288,
241 # "deprecated": false,
242 # "default-ram-id": "pc.ram"
243 # },
244 # ...
245 # }
246 ##
247 { 'command': 'query-machines',
248 'data': { '*compat-props': { 'type': 'bool',
249 'features': [ 'unstable' ] } },
250 'returns': ['MachineInfo'] }
251
252 ##
253 # @CurrentMachineParams:
254 #
255 # Information describing the running machine parameters.
256 #
257 # @wakeup-suspend-support: true if the machine supports wake up from
258 # suspend
259 #
260 # Since: 4.0
261 ##
262 { 'struct': 'CurrentMachineParams',
263 'data': { 'wakeup-suspend-support': 'bool'} }
264
265 ##
266 # @query-current-machine:
267 #
268 # Return information on the current virtual machine.
269 #
270 # Returns: CurrentMachineParams
271 #
272 # Since: 4.0
273 ##
274 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
275
276 ##
277 # @TargetInfo:
278 #
279 # Information describing the QEMU target.
280 #
281 # @arch: the target architecture
282 #
283 # Since: 1.2
284 ##
285 { 'struct': 'TargetInfo',
286 'data': { 'arch': 'SysEmuTarget' } }
287
288 ##
289 # @query-target:
290 #
291 # Return information about the target for this QEMU
292 #
293 # Returns: TargetInfo
294 #
295 # Since: 1.2
296 ##
297 { 'command': 'query-target', 'returns': 'TargetInfo' }
298
299 ##
300 # @UuidInfo:
301 #
302 # Guest UUID information (Universally Unique Identifier).
303 #
304 # @UUID: the UUID of the guest
305 #
306 # Since: 0.14
307 #
308 # Notes: If no UUID was specified for the guest, a null UUID is
309 # returned.
310 ##
311 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
312
313 ##
314 # @query-uuid:
315 #
316 # Query the guest UUID information.
317 #
318 # Returns: The @UuidInfo for the guest
319 #
320 # Since: 0.14
321 #
322 # Example:
323 #
324 # -> { "execute": "query-uuid" }
325 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
326 ##
327 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
328
329 ##
330 # @GuidInfo:
331 #
332 # GUID information.
333 #
334 # @guid: the globally unique identifier
335 #
336 # Since: 2.9
337 ##
338 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
339
340 ##
341 # @query-vm-generation-id:
342 #
343 # Show Virtual Machine Generation ID
344 #
345 # Since: 2.9
346 ##
347 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
348
349 ##
350 # @system_reset:
351 #
352 # Performs a hard reset of a guest.
353 #
354 # Since: 0.14
355 #
356 # Example:
357 #
358 # -> { "execute": "system_reset" }
359 # <- { "return": {} }
360 ##
361 { 'command': 'system_reset' }
362
363 ##
364 # @system_powerdown:
365 #
366 # Requests that a guest perform a powerdown operation.
367 #
368 # Since: 0.14
369 #
370 # Notes: A guest may or may not respond to this command. This command
371 # returning does not indicate that a guest has accepted the
372 # request or that it has shut down. Many guests will respond to
373 # this command by prompting the user in some way.
374 #
375 # Example:
376 #
377 # -> { "execute": "system_powerdown" }
378 # <- { "return": {} }
379 ##
380 { 'command': 'system_powerdown' }
381
382 ##
383 # @system_wakeup:
384 #
385 # Wake up guest from suspend. If the guest has wake-up from suspend
386 # support enabled (wakeup-suspend-support flag from
387 # query-current-machine), wake-up guest from suspend if the guest is
388 # in SUSPENDED state. Return an error otherwise.
389 #
390 # Since: 1.1
391 #
392 # Note: prior to 4.0, this command does nothing in case the guest
393 # isn't suspended.
394 #
395 # Example:
396 #
397 # -> { "execute": "system_wakeup" }
398 # <- { "return": {} }
399 ##
400 { 'command': 'system_wakeup' }
401
402 ##
403 # @LostTickPolicy:
404 #
405 # Policy for handling lost ticks in timer devices. Ticks end up
406 # getting lost when, for example, the guest is paused.
407 #
408 # @discard: throw away the missed ticks and continue with future
409 # injection normally. The guest OS will see the timer jump ahead
410 # by a potentially quite significant amount all at once, as if the
411 # intervening chunk of time had simply not existed; needless to
412 # say, such a sudden jump can easily confuse a guest OS which is
413 # not specifically prepared to deal with it. Assuming the guest
414 # OS can deal correctly with the time jump, the time in the guest
415 # and in the host should now match.
416 #
417 # @delay: continue to deliver ticks at the normal rate. The guest OS
418 # will not notice anything is amiss, as from its point of view
419 # time will have continued to flow normally. The time in the
420 # guest should now be behind the time in the host by exactly the
421 # amount of time during which ticks have been missed.
422 #
423 # @slew: deliver ticks at a higher rate to catch up with the missed
424 # ticks. The guest OS will not notice anything is amiss, as from
425 # its point of view time will have continued to flow normally.
426 # Once the timer has managed to catch up with all the missing
427 # ticks, the time in the guest and in the host should match.
428 #
429 # Since: 2.0
430 ##
431 { 'enum': 'LostTickPolicy',
432 'data': ['discard', 'delay', 'slew' ] }
433
434 ##
435 # @inject-nmi:
436 #
437 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
438 # all CPUs (ppc64). The command fails when the guest doesn't support
439 # injecting.
440 #
441 # Since: 0.14
442 #
443 # Note: prior to 2.1, this command was only supported for x86 and s390
444 # VMs
445 #
446 # Example:
447 #
448 # -> { "execute": "inject-nmi" }
449 # <- { "return": {} }
450 ##
451 { 'command': 'inject-nmi' }
452
453 ##
454 # @KvmInfo:
455 #
456 # Information about support for KVM acceleration
457 #
458 # @enabled: true if KVM acceleration is active
459 #
460 # @present: true if KVM acceleration is built into this executable
461 #
462 # Since: 0.14
463 ##
464 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
465
466 ##
467 # @query-kvm:
468 #
469 # Returns information about KVM acceleration
470 #
471 # Returns: @KvmInfo
472 #
473 # Since: 0.14
474 #
475 # Example:
476 #
477 # -> { "execute": "query-kvm" }
478 # <- { "return": { "enabled": true, "present": true } }
479 ##
480 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
481
482 ##
483 # @NumaOptionsType:
484 #
485 # @node: NUMA nodes configuration
486 #
487 # @dist: NUMA distance configuration (since 2.10)
488 #
489 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
490 #
491 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
492 #
493 # @hmat-cache: memory side cache information (Since: 5.0)
494 #
495 # Since: 2.1
496 ##
497 { 'enum': 'NumaOptionsType',
498 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
499
500 ##
501 # @NumaOptions:
502 #
503 # A discriminated record of NUMA options. (for OptsVisitor)
504 #
505 # @type: NUMA option type
506 #
507 # Since: 2.1
508 ##
509 { 'union': 'NumaOptions',
510 'base': { 'type': 'NumaOptionsType' },
511 'discriminator': 'type',
512 'data': {
513 'node': 'NumaNodeOptions',
514 'dist': 'NumaDistOptions',
515 'cpu': 'NumaCpuOptions',
516 'hmat-lb': 'NumaHmatLBOptions',
517 'hmat-cache': 'NumaHmatCacheOptions' }}
518
519 ##
520 # @NumaNodeOptions:
521 #
522 # Create a guest NUMA node. (for OptsVisitor)
523 #
524 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
525 #
526 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
527 # omitted)
528 #
529 # @mem: memory size of this node; mutually exclusive with @memdev.
530 # Equally divide total memory among nodes if both @mem and @memdev
531 # are omitted.
532 #
533 # @memdev: memory backend object. If specified for one node, it must
534 # be specified for all nodes.
535 #
536 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
537 # to the nodeid which has the memory controller responsible for
538 # this NUMA node. This field provides additional information as
539 # to the initiator node that is closest (as in directly attached)
540 # to this node, and therefore has the best performance (since 5.0)
541 #
542 # Since: 2.1
543 ##
544 { 'struct': 'NumaNodeOptions',
545 'data': {
546 '*nodeid': 'uint16',
547 '*cpus': ['uint16'],
548 '*mem': 'size',
549 '*memdev': 'str',
550 '*initiator': 'uint16' }}
551
552 ##
553 # @NumaDistOptions:
554 #
555 # Set the distance between 2 NUMA nodes.
556 #
557 # @src: source NUMA node.
558 #
559 # @dst: destination NUMA node.
560 #
561 # @val: NUMA distance from source node to destination node. When a
562 # node is unreachable from another node, set the distance between
563 # them to 255.
564 #
565 # Since: 2.10
566 ##
567 { 'struct': 'NumaDistOptions',
568 'data': {
569 'src': 'uint16',
570 'dst': 'uint16',
571 'val': 'uint8' }}
572
573 ##
574 # @CXLFixedMemoryWindowOptions:
575 #
576 # Create a CXL Fixed Memory Window
577 #
578 # @size: Size of the Fixed Memory Window in bytes. Must be a multiple
579 # of 256MiB.
580 #
581 # @interleave-granularity: Number of contiguous bytes for which
582 # accesses will go to a given interleave target. Accepted values
583 # [256, 512, 1k, 2k, 4k, 8k, 16k]
584 #
585 # @targets: Target root bridge IDs from -device ...,id=<ID> for each
586 # root bridge.
587 #
588 # Since: 7.1
589 ##
590 { 'struct': 'CXLFixedMemoryWindowOptions',
591 'data': {
592 'size': 'size',
593 '*interleave-granularity': 'size',
594 'targets': ['str'] }}
595
596 ##
597 # @CXLFMWProperties:
598 #
599 # List of CXL Fixed Memory Windows.
600 #
601 # @cxl-fmw: List of CXLFixedMemoryWindowOptions
602 #
603 # Since: 7.1
604 ##
605 { 'struct' : 'CXLFMWProperties',
606 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
607 }
608
609 ##
610 # @X86CPURegister32:
611 #
612 # A X86 32-bit register
613 #
614 # Since: 1.5
615 ##
616 { 'enum': 'X86CPURegister32',
617 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
618
619 ##
620 # @X86CPUFeatureWordInfo:
621 #
622 # Information about a X86 CPU feature word
623 #
624 # @cpuid-input-eax: Input EAX value for CPUID instruction for that
625 # feature word
626 #
627 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
628 # feature word
629 #
630 # @cpuid-register: Output register containing the feature bits
631 #
632 # @features: value of output register, containing the feature bits
633 #
634 # Since: 1.5
635 ##
636 { 'struct': 'X86CPUFeatureWordInfo',
637 'data': { 'cpuid-input-eax': 'int',
638 '*cpuid-input-ecx': 'int',
639 'cpuid-register': 'X86CPURegister32',
640 'features': 'int' } }
641
642 ##
643 # @DummyForceArrays:
644 #
645 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
646 # internally
647 #
648 # Since: 2.5
649 ##
650 { 'struct': 'DummyForceArrays',
651 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
652
653 ##
654 # @NumaCpuOptions:
655 #
656 # Option "-numa cpu" overrides default cpu to node mapping. It
657 # accepts the same set of cpu properties as returned by
658 # query-hotpluggable-cpus[].props, where node-id could be used to
659 # override default node mapping.
660 #
661 # Since: 2.10
662 ##
663 { 'struct': 'NumaCpuOptions',
664 'base': 'CpuInstanceProperties',
665 'data' : {} }
666
667 ##
668 # @HmatLBMemoryHierarchy:
669 #
670 # The memory hierarchy in the System Locality Latency and Bandwidth
671 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
672 #
673 # For more information about @HmatLBMemoryHierarchy, see chapter
674 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
675 #
676 # @memory: the structure represents the memory performance
677 #
678 # @first-level: first level of memory side cache
679 #
680 # @second-level: second level of memory side cache
681 #
682 # @third-level: third level of memory side cache
683 #
684 # Since: 5.0
685 ##
686 { 'enum': 'HmatLBMemoryHierarchy',
687 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
688
689 ##
690 # @HmatLBDataType:
691 #
692 # Data type in the System Locality Latency and Bandwidth Information
693 # Structure of HMAT (Heterogeneous Memory Attribute Table)
694 #
695 # For more information about @HmatLBDataType, see chapter 5.2.27.4:
696 # Table 5-146: Field "Data Type" of ACPI 6.3 spec.
697 #
698 # @access-latency: access latency (nanoseconds)
699 #
700 # @read-latency: read latency (nanoseconds)
701 #
702 # @write-latency: write latency (nanoseconds)
703 #
704 # @access-bandwidth: access bandwidth (Bytes per second)
705 #
706 # @read-bandwidth: read bandwidth (Bytes per second)
707 #
708 # @write-bandwidth: write bandwidth (Bytes per second)
709 #
710 # Since: 5.0
711 ##
712 { 'enum': 'HmatLBDataType',
713 'data': [ 'access-latency', 'read-latency', 'write-latency',
714 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
715
716 ##
717 # @NumaHmatLBOptions:
718 #
719 # Set the system locality latency and bandwidth information between
720 # Initiator and Target proximity Domains.
721 #
722 # For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
723 # Table 5-146 of ACPI 6.3 spec.
724 #
725 # @initiator: the Initiator Proximity Domain.
726 #
727 # @target: the Target Proximity Domain.
728 #
729 # @hierarchy: the Memory Hierarchy. Indicates the performance of
730 # memory or side cache.
731 #
732 # @data-type: presents the type of data, access/read/write latency or
733 # hit latency.
734 #
735 # @latency: the value of latency from @initiator to @target proximity
736 # domain, the latency unit is "ns(nanosecond)".
737 #
738 # @bandwidth: the value of bandwidth between @initiator and @target
739 # proximity domain, the bandwidth unit is "Bytes per second".
740 #
741 # Since: 5.0
742 ##
743 { 'struct': 'NumaHmatLBOptions',
744 'data': {
745 'initiator': 'uint16',
746 'target': 'uint16',
747 'hierarchy': 'HmatLBMemoryHierarchy',
748 'data-type': 'HmatLBDataType',
749 '*latency': 'uint64',
750 '*bandwidth': 'size' }}
751
752 ##
753 # @HmatCacheAssociativity:
754 #
755 # Cache associativity in the Memory Side Cache Information Structure
756 # of HMAT
757 #
758 # For more information of @HmatCacheAssociativity, see chapter
759 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
760 #
761 # @none: None (no memory side cache in this proximity domain, or cache
762 # associativity unknown)
763 #
764 # @direct: Direct Mapped
765 #
766 # @complex: Complex Cache Indexing (implementation specific)
767 #
768 # Since: 5.0
769 ##
770 { 'enum': 'HmatCacheAssociativity',
771 'data': [ 'none', 'direct', 'complex' ] }
772
773 ##
774 # @HmatCacheWritePolicy:
775 #
776 # Cache write policy in the Memory Side Cache Information Structure of
777 # HMAT
778 #
779 # For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
780 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
781 #
782 # @none: None (no memory side cache in this proximity domain, or cache
783 # write policy unknown)
784 #
785 # @write-back: Write Back (WB)
786 #
787 # @write-through: Write Through (WT)
788 #
789 # Since: 5.0
790 ##
791 { 'enum': 'HmatCacheWritePolicy',
792 'data': [ 'none', 'write-back', 'write-through' ] }
793
794 ##
795 # @NumaHmatCacheOptions:
796 #
797 # Set the memory side cache information for a given memory domain.
798 #
799 # For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
800 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
801 #
802 # @node-id: the memory proximity domain to which the memory belongs.
803 #
804 # @size: the size of memory side cache in bytes.
805 #
806 # @level: the cache level described in this structure.
807 #
808 # @associativity: the cache associativity,
809 # none/direct-mapped/complex(complex cache indexing).
810 #
811 # @policy: the write policy, none/write-back/write-through.
812 #
813 # @line: the cache Line size in bytes.
814 #
815 # Since: 5.0
816 ##
817 { 'struct': 'NumaHmatCacheOptions',
818 'data': {
819 'node-id': 'uint32',
820 'size': 'size',
821 'level': 'uint8',
822 'associativity': 'HmatCacheAssociativity',
823 'policy': 'HmatCacheWritePolicy',
824 'line': 'uint16' }}
825
826 ##
827 # @memsave:
828 #
829 # Save a portion of guest memory to a file.
830 #
831 # @val: the virtual address of the guest to start from
832 #
833 # @size: the size of memory region to save
834 #
835 # @filename: the file to save the memory to as binary data
836 #
837 # @cpu-index: the index of the virtual CPU to use for translating the
838 # virtual address (defaults to CPU 0)
839 #
840 # Since: 0.14
841 #
842 # Notes: Errors were not reliably returned until 1.1
843 #
844 # Example:
845 #
846 # -> { "execute": "memsave",
847 # "arguments": { "val": 10,
848 # "size": 100,
849 # "filename": "/tmp/virtual-mem-dump" } }
850 # <- { "return": {} }
851 ##
852 { 'command': 'memsave',
853 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
854
855 ##
856 # @pmemsave:
857 #
858 # Save a portion of guest physical memory to a file.
859 #
860 # @val: the physical address of the guest to start from
861 #
862 # @size: the size of memory region to save
863 #
864 # @filename: the file to save the memory to as binary data
865 #
866 # Since: 0.14
867 #
868 # Notes: Errors were not reliably returned until 1.1
869 #
870 # Example:
871 #
872 # -> { "execute": "pmemsave",
873 # "arguments": { "val": 10,
874 # "size": 100,
875 # "filename": "/tmp/physical-mem-dump" } }
876 # <- { "return": {} }
877 ##
878 { 'command': 'pmemsave',
879 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
880
881 ##
882 # @Memdev:
883 #
884 # Information about memory backend
885 #
886 # @id: backend's ID if backend has 'id' property (since 2.9)
887 #
888 # @size: memory backend size
889 #
890 # @merge: whether memory merge support is enabled
891 #
892 # @dump: whether memory backend's memory is included in a core dump
893 #
894 # @prealloc: whether memory was preallocated
895 #
896 # @share: whether memory is private to QEMU or shared (since 6.1)
897 #
898 # @reserve: whether swap space (or huge pages) was reserved if
899 # applicable. This corresponds to the user configuration and not
900 # the actual behavior implemented in the OS to perform the
901 # reservation. For example, Linux will never reserve swap space
902 # for shared file mappings. (since 6.1)
903 #
904 # @host-nodes: host nodes for its memory policy
905 #
906 # @policy: memory policy of memory backend
907 #
908 # Since: 2.1
909 ##
910 { 'struct': 'Memdev',
911 'data': {
912 '*id': 'str',
913 'size': 'size',
914 'merge': 'bool',
915 'dump': 'bool',
916 'prealloc': 'bool',
917 'share': 'bool',
918 '*reserve': 'bool',
919 'host-nodes': ['uint16'],
920 'policy': 'HostMemPolicy' }}
921
922 ##
923 # @query-memdev:
924 #
925 # Returns information for all memory backends.
926 #
927 # Returns: a list of @Memdev.
928 #
929 # Since: 2.1
930 #
931 # Example:
932 #
933 # -> { "execute": "query-memdev" }
934 # <- { "return": [
935 # {
936 # "id": "mem1",
937 # "size": 536870912,
938 # "merge": false,
939 # "dump": true,
940 # "prealloc": false,
941 # "share": false,
942 # "host-nodes": [0, 1],
943 # "policy": "bind"
944 # },
945 # {
946 # "size": 536870912,
947 # "merge": false,
948 # "dump": true,
949 # "prealloc": true,
950 # "share": false,
951 # "host-nodes": [2, 3],
952 # "policy": "preferred"
953 # }
954 # ]
955 # }
956 ##
957 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
958
959 ##
960 # @CpuInstanceProperties:
961 #
962 # List of properties to be used for hotplugging a CPU instance, it
963 # should be passed by management with device_add command when a CPU is
964 # being hotplugged.
965 #
966 # Which members are optional and which mandatory depends on the
967 # architecture and board.
968 #
969 # For s390x see :ref:`cpu-topology-s390x`.
970 #
971 # The ids other than the node-id specify the position of the CPU
972 # within the CPU topology (as defined by the machine property "smp",
973 # thus see also type @SMPConfiguration)
974 #
975 # @node-id: NUMA node ID the CPU belongs to
976 #
977 # @drawer-id: drawer number within CPU topology the CPU belongs to
978 # (since 8.2)
979 #
980 # @book-id: book number within parent container the CPU belongs to
981 # (since 8.2)
982 #
983 # @socket-id: socket number within parent container the CPU belongs to
984 #
985 # @die-id: die number within the parent container the CPU belongs to
986 # (since 4.1)
987 #
988 # @cluster-id: cluster number within the parent container the CPU
989 # belongs to (since 7.1)
990 #
991 # @module-id: module number within the parent container the CPU belongs
992 # to (since 9.1)
993 #
994 # @core-id: core number within the parent container the CPU belongs to
995 #
996 # @thread-id: thread number within the core the CPU belongs to
997 #
998 # Note: management should be prepared to pass through additional
999 # properties with device_add.
1000 #
1001 # Since: 2.7
1002 ##
1003 { 'struct': 'CpuInstanceProperties',
1004 # Keep these in sync with the properties device_add accepts
1005 'data': { '*node-id': 'int',
1006 '*drawer-id': 'int',
1007 '*book-id': 'int',
1008 '*socket-id': 'int',
1009 '*die-id': 'int',
1010 '*cluster-id': 'int',
1011 '*module-id': 'int',
1012 '*core-id': 'int',
1013 '*thread-id': 'int'
1014 }
1015 }
1016
1017 ##
1018 # @HotpluggableCPU:
1019 #
1020 # @type: CPU object type for usage with device_add command
1021 #
1022 # @props: list of properties to be used for hotplugging CPU
1023 #
1024 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU
1025 # provides
1026 #
1027 # @qom-path: link to existing CPU object if CPU is present or omitted
1028 # if CPU is not present.
1029 #
1030 # Since: 2.7
1031 ##
1032 { 'struct': 'HotpluggableCPU',
1033 'data': { 'type': 'str',
1034 'vcpus-count': 'int',
1035 'props': 'CpuInstanceProperties',
1036 '*qom-path': 'str'
1037 }
1038 }
1039
1040 ##
1041 # @query-hotpluggable-cpus:
1042 #
1043 # TODO: Better documentation; currently there is none.
1044 #
1045 # Returns: a list of HotpluggableCPU objects.
1046 #
1047 # Since: 2.7
1048 #
1049 # Examples:
1050 #
1051 # For pseries machine type started with -smp 2,cores=2,maxcpus=4
1052 # -cpu POWER8:
1053 #
1054 # -> { "execute": "query-hotpluggable-cpus" }
1055 # <- {"return": [
1056 # { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
1057 # "vcpus-count": 1 },
1058 # { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
1059 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
1060 # ]}'
1061 #
1062 # For pc machine type started with -smp 1,maxcpus=2:
1063 #
1064 # -> { "execute": "query-hotpluggable-cpus" }
1065 # <- {"return": [
1066 # {
1067 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1068 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1069 # },
1070 # {
1071 # "qom-path": "/machine/unattached/device[0]",
1072 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1073 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1074 # }
1075 # ]}
1076 #
1077 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2
1078 # -cpu qemu (Since: 2.11):
1079 #
1080 # -> { "execute": "query-hotpluggable-cpus" }
1081 # <- {"return": [
1082 # {
1083 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1084 # "props": { "core-id": 1 }
1085 # },
1086 # {
1087 # "qom-path": "/machine/unattached/device[0]",
1088 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1089 # "props": { "core-id": 0 }
1090 # }
1091 # ]}
1092 ##
1093 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1094 'allow-preconfig': true }
1095
1096 ##
1097 # @set-numa-node:
1098 #
1099 # Runtime equivalent of '-numa' CLI option, available at preconfigure
1100 # stage to configure numa mapping before initializing machine.
1101 #
1102 # Since: 3.0
1103 ##
1104 { 'command': 'set-numa-node', 'boxed': true,
1105 'data': 'NumaOptions',
1106 'allow-preconfig': true
1107 }
1108
1109 ##
1110 # @balloon:
1111 #
1112 # Request the balloon driver to change its balloon size.
1113 #
1114 # @value: the target logical size of the VM in bytes. We can deduce
1115 # the size of the balloon using this formula:
1116 #
1117 # logical_vm_size = vm_ram_size - balloon_size
1118 #
1119 # From it we have: balloon_size = vm_ram_size - @value
1120 #
1121 # Errors:
1122 # - If the balloon driver is enabled but not functional because
1123 # the KVM kernel module cannot support it, KVMMissingCap
1124 # - If no balloon device is present, DeviceNotActive
1125 #
1126 # Notes: This command just issues a request to the guest. When it
1127 # returns, the balloon size may not have changed. A guest can
1128 # change the balloon size independent of this command.
1129 #
1130 # Since: 0.14
1131 #
1132 # Example:
1133 #
1134 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1135 # <- { "return": {} }
1136 #
1137 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1138 ##
1139 { 'command': 'balloon', 'data': {'value': 'int'} }
1140
1141 ##
1142 # @BalloonInfo:
1143 #
1144 # Information about the guest balloon device.
1145 #
1146 # @actual: the logical size of the VM in bytes Formula used:
1147 # logical_vm_size = vm_ram_size - balloon_size
1148 #
1149 # Since: 0.14
1150 ##
1151 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1152
1153 ##
1154 # @query-balloon:
1155 #
1156 # Return information about the balloon device.
1157 #
1158 # Returns:
1159 # @BalloonInfo
1160 #
1161 # Errors:
1162 # - If the balloon driver is enabled but not functional because
1163 # the KVM kernel module cannot support it, KVMMissingCap
1164 # - If no balloon device is present, DeviceNotActive
1165 #
1166 # Since: 0.14
1167 #
1168 # Example:
1169 #
1170 # -> { "execute": "query-balloon" }
1171 # <- { "return": {
1172 # "actual": 1073741824
1173 # }
1174 # }
1175 ##
1176 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1177
1178 ##
1179 # @BALLOON_CHANGE:
1180 #
1181 # Emitted when the guest changes the actual BALLOON level. This value
1182 # is equivalent to the @actual field return by the 'query-balloon'
1183 # command
1184 #
1185 # @actual: the logical size of the VM in bytes Formula used:
1186 # logical_vm_size = vm_ram_size - balloon_size
1187 #
1188 # Note: this event is rate-limited.
1189 #
1190 # Since: 1.2
1191 #
1192 # Example:
1193 #
1194 # <- { "event": "BALLOON_CHANGE",
1195 # "data": { "actual": 944766976 },
1196 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1197 ##
1198 { 'event': 'BALLOON_CHANGE',
1199 'data': { 'actual': 'int' } }
1200
1201 ##
1202 # @HvBalloonInfo:
1203 #
1204 # hv-balloon guest-provided memory status information.
1205 #
1206 # @committed: the amount of memory in use inside the guest plus the
1207 # amount of the memory unusable inside the guest (ballooned out,
1208 # offline, etc.)
1209 #
1210 # @available: the amount of the memory inside the guest available for
1211 # new allocations ("free")
1212 #
1213 # Since: 8.2
1214 ##
1215 { 'struct': 'HvBalloonInfo',
1216 'data': { 'committed': 'size', 'available': 'size' } }
1217
1218 ##
1219 # @query-hv-balloon-status-report:
1220 #
1221 # Returns the hv-balloon driver data contained in the last received
1222 # "STATUS" message from the guest.
1223 #
1224 # Returns:
1225 # @HvBalloonInfo
1226 #
1227 # Errors:
1228 # - If no hv-balloon device is present, guest memory status
1229 # reporting is not enabled or no guest memory status report
1230 # received yet, GenericError
1231 #
1232 # Since: 8.2
1233 #
1234 # Example:
1235 #
1236 # -> { "execute": "query-hv-balloon-status-report" }
1237 # <- { "return": {
1238 # "committed": 816640000,
1239 # "available": 3333054464
1240 # }
1241 # }
1242 ##
1243 { 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' }
1244
1245 ##
1246 # @HV_BALLOON_STATUS_REPORT:
1247 #
1248 # Emitted when the hv-balloon driver receives a "STATUS" message from
1249 # the guest.
1250 #
1251 # Note: this event is rate-limited.
1252 #
1253 # Since: 8.2
1254 #
1255 # Example:
1256 #
1257 # <- { "event": "HV_BALLOON_STATUS_REPORT",
1258 # "data": { "committed": 816640000, "available": 3333054464 },
1259 # "timestamp": { "seconds": 1600295492, "microseconds": 661044 } }
1260 ##
1261 { 'event': 'HV_BALLOON_STATUS_REPORT',
1262 'data': 'HvBalloonInfo' }
1263
1264 ##
1265 # @MemoryInfo:
1266 #
1267 # Actual memory information in bytes.
1268 #
1269 # @base-memory: size of "base" memory specified with command line
1270 # option -m.
1271 #
1272 # @plugged-memory: size of memory that can be hot-unplugged. This
1273 # field is omitted if target doesn't support memory hotplug (i.e.
1274 # CONFIG_MEM_DEVICE not defined at build time).
1275 #
1276 # Since: 2.11
1277 ##
1278 { 'struct': 'MemoryInfo',
1279 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1280
1281 ##
1282 # @query-memory-size-summary:
1283 #
1284 # Return the amount of initially allocated and present hotpluggable
1285 # (if enabled) memory in bytes.
1286 #
1287 # Example:
1288 #
1289 # -> { "execute": "query-memory-size-summary" }
1290 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1291 #
1292 # Since: 2.11
1293 ##
1294 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1295
1296 ##
1297 # @PCDIMMDeviceInfo:
1298 #
1299 # PCDIMMDevice state information
1300 #
1301 # @id: device's ID
1302 #
1303 # @addr: physical address, where device is mapped
1304 #
1305 # @size: size of memory that the device provides
1306 #
1307 # @slot: slot number at which device is plugged in
1308 #
1309 # @node: NUMA node number where device is plugged in
1310 #
1311 # @memdev: memory backend linked with device
1312 #
1313 # @hotplugged: true if device was hotplugged
1314 #
1315 # @hotpluggable: true if device if could be added/removed while
1316 # machine is running
1317 #
1318 # Since: 2.1
1319 ##
1320 { 'struct': 'PCDIMMDeviceInfo',
1321 'data': { '*id': 'str',
1322 'addr': 'int',
1323 'size': 'int',
1324 'slot': 'int',
1325 'node': 'int',
1326 'memdev': 'str',
1327 'hotplugged': 'bool',
1328 'hotpluggable': 'bool'
1329 }
1330 }
1331
1332 ##
1333 # @VirtioPMEMDeviceInfo:
1334 #
1335 # VirtioPMEM state information
1336 #
1337 # @id: device's ID
1338 #
1339 # @memaddr: physical address in memory, where device is mapped
1340 #
1341 # @size: size of memory that the device provides
1342 #
1343 # @memdev: memory backend linked with device
1344 #
1345 # Since: 4.1
1346 ##
1347 { 'struct': 'VirtioPMEMDeviceInfo',
1348 'data': { '*id': 'str',
1349 'memaddr': 'size',
1350 'size': 'size',
1351 'memdev': 'str'
1352 }
1353 }
1354
1355 ##
1356 # @VirtioMEMDeviceInfo:
1357 #
1358 # VirtioMEMDevice state information
1359 #
1360 # @id: device's ID
1361 #
1362 # @memaddr: physical address in memory, where device is mapped
1363 #
1364 # @requested-size: the user requested size of the device
1365 #
1366 # @size: the (current) size of memory that the device provides
1367 #
1368 # @max-size: the maximum size of memory that the device can provide
1369 #
1370 # @block-size: the block size of memory that the device provides
1371 #
1372 # @node: NUMA node number where device is assigned to
1373 #
1374 # @memdev: memory backend linked with the region
1375 #
1376 # Since: 5.1
1377 ##
1378 { 'struct': 'VirtioMEMDeviceInfo',
1379 'data': { '*id': 'str',
1380 'memaddr': 'size',
1381 'requested-size': 'size',
1382 'size': 'size',
1383 'max-size': 'size',
1384 'block-size': 'size',
1385 'node': 'int',
1386 'memdev': 'str'
1387 }
1388 }
1389
1390 ##
1391 # @SgxEPCDeviceInfo:
1392 #
1393 # Sgx EPC state information
1394 #
1395 # @id: device's ID
1396 #
1397 # @memaddr: physical address in memory, where device is mapped
1398 #
1399 # @size: size of memory that the device provides
1400 #
1401 # @memdev: memory backend linked with device
1402 #
1403 # @node: the numa node (Since: 7.0)
1404 #
1405 # Since: 6.2
1406 ##
1407 { 'struct': 'SgxEPCDeviceInfo',
1408 'data': { '*id': 'str',
1409 'memaddr': 'size',
1410 'size': 'size',
1411 'node': 'int',
1412 'memdev': 'str'
1413 }
1414 }
1415
1416 ##
1417 # @HvBalloonDeviceInfo:
1418 #
1419 # hv-balloon provided memory state information
1420 #
1421 # @id: device's ID
1422 #
1423 # @memaddr: physical address in memory, where device is mapped
1424 #
1425 # @max-size: the maximum size of memory that the device can provide
1426 #
1427 # @memdev: memory backend linked with device
1428 #
1429 # Since: 8.2
1430 ##
1431 { 'struct': 'HvBalloonDeviceInfo',
1432 'data': { '*id': 'str',
1433 '*memaddr': 'size',
1434 'max-size': 'size',
1435 '*memdev': 'str'
1436 }
1437 }
1438
1439 ##
1440 # @MemoryDeviceInfoKind:
1441 #
1442 # @nvdimm: since 2.12
1443 #
1444 # @virtio-pmem: since 4.1
1445 #
1446 # @virtio-mem: since 5.1
1447 #
1448 # @sgx-epc: since 6.2.
1449 #
1450 # @hv-balloon: since 8.2.
1451 #
1452 # Since: 2.1
1453 ##
1454 { 'enum': 'MemoryDeviceInfoKind',
1455 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc',
1456 'hv-balloon' ] }
1457
1458 ##
1459 # @PCDIMMDeviceInfoWrapper:
1460 #
1461 # @data: PCDIMMDevice state information
1462 #
1463 # Since: 2.1
1464 ##
1465 { 'struct': 'PCDIMMDeviceInfoWrapper',
1466 'data': { 'data': 'PCDIMMDeviceInfo' } }
1467
1468 ##
1469 # @VirtioPMEMDeviceInfoWrapper:
1470 #
1471 # @data: VirtioPMEM state information
1472 #
1473 # Since: 2.1
1474 ##
1475 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
1476 'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1477
1478 ##
1479 # @VirtioMEMDeviceInfoWrapper:
1480 #
1481 # @data: VirtioMEMDevice state information
1482 #
1483 # Since: 2.1
1484 ##
1485 { 'struct': 'VirtioMEMDeviceInfoWrapper',
1486 'data': { 'data': 'VirtioMEMDeviceInfo' } }
1487
1488 ##
1489 # @SgxEPCDeviceInfoWrapper:
1490 #
1491 # @data: Sgx EPC state information
1492 #
1493 # Since: 6.2
1494 ##
1495 { 'struct': 'SgxEPCDeviceInfoWrapper',
1496 'data': { 'data': 'SgxEPCDeviceInfo' } }
1497
1498 ##
1499 # @HvBalloonDeviceInfoWrapper:
1500 #
1501 # @data: hv-balloon provided memory state information
1502 #
1503 # Since: 8.2
1504 ##
1505 { 'struct': 'HvBalloonDeviceInfoWrapper',
1506 'data': { 'data': 'HvBalloonDeviceInfo' } }
1507
1508 ##
1509 # @MemoryDeviceInfo:
1510 #
1511 # Union containing information about a memory device
1512 #
1513 # @type: memory device type
1514 #
1515 # Since: 2.1
1516 ##
1517 { 'union': 'MemoryDeviceInfo',
1518 'base': { 'type': 'MemoryDeviceInfoKind' },
1519 'discriminator': 'type',
1520 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1521 'nvdimm': 'PCDIMMDeviceInfoWrapper',
1522 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1523 'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1524 'sgx-epc': 'SgxEPCDeviceInfoWrapper',
1525 'hv-balloon': 'HvBalloonDeviceInfoWrapper'
1526 }
1527 }
1528
1529 ##
1530 # @SgxEPC:
1531 #
1532 # Sgx EPC cmdline information
1533 #
1534 # @memdev: memory backend linked with device
1535 #
1536 # @node: the numa node (Since: 7.0)
1537 #
1538 # Since: 6.2
1539 ##
1540 { 'struct': 'SgxEPC',
1541 'data': { 'memdev': 'str',
1542 'node': 'int'
1543 }
1544 }
1545
1546 ##
1547 # @SgxEPCProperties:
1548 #
1549 # SGX properties of machine types.
1550 #
1551 # @sgx-epc: list of ids of memory-backend-epc objects.
1552 #
1553 # Since: 6.2
1554 ##
1555 { 'struct': 'SgxEPCProperties',
1556 'data': { 'sgx-epc': ['SgxEPC'] }
1557 }
1558
1559 ##
1560 # @query-memory-devices:
1561 #
1562 # Lists available memory devices and their state
1563 #
1564 # Since: 2.1
1565 #
1566 # Example:
1567 #
1568 # -> { "execute": "query-memory-devices" }
1569 # <- { "return": [ { "data":
1570 # { "addr": 5368709120,
1571 # "hotpluggable": true,
1572 # "hotplugged": true,
1573 # "id": "d1",
1574 # "memdev": "/objects/memX",
1575 # "node": 0,
1576 # "size": 1073741824,
1577 # "slot": 0},
1578 # "type": "dimm"
1579 # } ] }
1580 ##
1581 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1582
1583 ##
1584 # @MEMORY_DEVICE_SIZE_CHANGE:
1585 #
1586 # Emitted when the size of a memory device changes. Only emitted for
1587 # memory devices that can actually change the size (e.g., virtio-mem
1588 # due to guest action).
1589 #
1590 # @id: device's ID
1591 #
1592 # @size: the new size of memory that the device provides
1593 #
1594 # @qom-path: path to the device object in the QOM tree (since 6.2)
1595 #
1596 # Note: this event is rate-limited.
1597 #
1598 # Since: 5.1
1599 #
1600 # Example:
1601 #
1602 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1603 # "data": { "id": "vm0", "size": 1073741824,
1604 # "qom-path": "/machine/unattached/device[2]" },
1605 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1606 ##
1607 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1608 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1609
1610 ##
1611 # @MEM_UNPLUG_ERROR:
1612 #
1613 # Emitted when memory hot unplug error occurs.
1614 #
1615 # @device: device name
1616 #
1617 # @msg: Informative message
1618 #
1619 # Features:
1620 #
1621 # @deprecated: This event is deprecated. Use
1622 # @DEVICE_UNPLUG_GUEST_ERROR instead.
1623 #
1624 # Since: 2.4
1625 #
1626 # Example:
1627 #
1628 # <- { "event": "MEM_UNPLUG_ERROR",
1629 # "data": { "device": "dimm1",
1630 # "msg": "acpi: device unplug for unsupported device"
1631 # },
1632 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1633 ##
1634 { 'event': 'MEM_UNPLUG_ERROR',
1635 'data': { 'device': 'str', 'msg': 'str' },
1636 'features': ['deprecated'] }
1637
1638 ##
1639 # @BootConfiguration:
1640 #
1641 # Schema for virtual machine boot configuration.
1642 #
1643 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1644 #
1645 # @once: Boot order to apply on first boot
1646 #
1647 # @menu: Whether to show a boot menu
1648 #
1649 # @splash: The name of the file to be passed to the firmware as logo
1650 # picture, if @menu is true.
1651 #
1652 # @splash-time: How long to show the logo picture, in milliseconds
1653 #
1654 # @reboot-timeout: Timeout before guest reboots after boot fails
1655 #
1656 # @strict: Whether to attempt booting from devices not included in the
1657 # boot order
1658 #
1659 # Since: 7.1
1660 ##
1661 { 'struct': 'BootConfiguration', 'data': {
1662 '*order': 'str',
1663 '*once': 'str',
1664 '*menu': 'bool',
1665 '*splash': 'str',
1666 '*splash-time': 'int',
1667 '*reboot-timeout': 'int',
1668 '*strict': 'bool' } }
1669
1670 ##
1671 # @SMPConfiguration:
1672 #
1673 # Schema for CPU topology configuration. A missing value lets QEMU
1674 # figure out a suitable value based on the ones that are provided.
1675 #
1676 # The members other than @cpus and @maxcpus define a topology of
1677 # containers.
1678 #
1679 # The ordering from highest/coarsest to lowest/finest is:
1680 # @drawers, @books, @sockets, @dies, @clusters, @cores, @threads.
1681 #
1682 # Different architectures support different subsets of topology
1683 # containers.
1684 #
1685 # For example, s390x does not have clusters and dies, and the socket
1686 # is the parent container of cores.
1687 #
1688 # @cpus: number of virtual CPUs in the virtual machine
1689 #
1690 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1691 # machine
1692 #
1693 # @drawers: number of drawers in the CPU topology (since 8.2)
1694 #
1695 # @books: number of books in the CPU topology (since 8.2)
1696 #
1697 # @sockets: number of sockets per parent container
1698 #
1699 # @dies: number of dies per parent container
1700 #
1701 # @clusters: number of clusters per parent container (since 7.0)
1702 #
1703 # @modules: number of modules per parent container (since 9.1)
1704 #
1705 # @cores: number of cores per parent container
1706 #
1707 # @threads: number of threads per core
1708 #
1709 # Since: 6.1
1710 ##
1711 { 'struct': 'SMPConfiguration', 'data': {
1712 '*cpus': 'int',
1713 '*drawers': 'int',
1714 '*books': 'int',
1715 '*sockets': 'int',
1716 '*dies': 'int',
1717 '*clusters': 'int',
1718 '*modules': 'int',
1719 '*cores': 'int',
1720 '*threads': 'int',
1721 '*maxcpus': 'int' } }
1722
1723 ##
1724 # @x-query-irq:
1725 #
1726 # Query interrupt statistics
1727 #
1728 # Features:
1729 #
1730 # @unstable: This command is meant for debugging.
1731 #
1732 # Returns: interrupt statistics
1733 #
1734 # Since: 6.2
1735 ##
1736 { 'command': 'x-query-irq',
1737 'returns': 'HumanReadableText',
1738 'features': [ 'unstable' ] }
1739
1740 ##
1741 # @x-query-jit:
1742 #
1743 # Query TCG compiler statistics
1744 #
1745 # Features:
1746 #
1747 # @unstable: This command is meant for debugging.
1748 #
1749 # Returns: TCG compiler statistics
1750 #
1751 # Since: 6.2
1752 ##
1753 { 'command': 'x-query-jit',
1754 'returns': 'HumanReadableText',
1755 'if': 'CONFIG_TCG',
1756 'features': [ 'unstable' ] }
1757
1758 ##
1759 # @x-query-numa:
1760 #
1761 # Query NUMA topology information
1762 #
1763 # Features:
1764 #
1765 # @unstable: This command is meant for debugging.
1766 #
1767 # Returns: topology information
1768 #
1769 # Since: 6.2
1770 ##
1771 { 'command': 'x-query-numa',
1772 'returns': 'HumanReadableText',
1773 'features': [ 'unstable' ] }
1774
1775 ##
1776 # @x-query-opcount:
1777 #
1778 # Query TCG opcode counters
1779 #
1780 # Features:
1781 #
1782 # @unstable: This command is meant for debugging.
1783 #
1784 # Returns: TCG opcode counters
1785 #
1786 # Since: 6.2
1787 ##
1788 { 'command': 'x-query-opcount',
1789 'returns': 'HumanReadableText',
1790 'if': 'CONFIG_TCG',
1791 'features': [ 'unstable' ] }
1792
1793 ##
1794 # @x-query-ramblock:
1795 #
1796 # Query system ramblock information
1797 #
1798 # Features:
1799 #
1800 # @unstable: This command is meant for debugging.
1801 #
1802 # Returns: system ramblock information
1803 #
1804 # Since: 6.2
1805 ##
1806 { 'command': 'x-query-ramblock',
1807 'returns': 'HumanReadableText',
1808 'features': [ 'unstable' ] }
1809
1810 ##
1811 # @x-query-roms:
1812 #
1813 # Query information on the registered ROMS
1814 #
1815 # Features:
1816 #
1817 # @unstable: This command is meant for debugging.
1818 #
1819 # Returns: registered ROMs
1820 #
1821 # Since: 6.2
1822 ##
1823 { 'command': 'x-query-roms',
1824 'returns': 'HumanReadableText',
1825 'features': [ 'unstable' ] }
1826
1827 ##
1828 # @x-query-usb:
1829 #
1830 # Query information on the USB devices
1831 #
1832 # Features:
1833 #
1834 # @unstable: This command is meant for debugging.
1835 #
1836 # Returns: USB device information
1837 #
1838 # Since: 6.2
1839 ##
1840 { 'command': 'x-query-usb',
1841 'returns': 'HumanReadableText',
1842 'features': [ 'unstable' ] }
1843
1844 ##
1845 # @SmbiosEntryPointType:
1846 #
1847 # @32: SMBIOS version 2.1 (32-bit) Entry Point
1848 #
1849 # @64: SMBIOS version 3.0 (64-bit) Entry Point
1850 #
1851 # @auto: Either 2.x or 3.x SMBIOS version, 2.x if configuration can be
1852 # described by it and 3.x otherwise (since: 9.0)
1853 #
1854 # Since: 7.0
1855 ##
1856 { 'enum': 'SmbiosEntryPointType',
1857 'data': [ '32', '64', 'auto' ] }
1858
1859 ##
1860 # @MemorySizeConfiguration:
1861 #
1862 # Schema for memory size configuration.
1863 #
1864 # @size: memory size in bytes
1865 #
1866 # @max-size: maximum hotpluggable memory size in bytes
1867 #
1868 # @slots: number of available memory slots for hotplug
1869 #
1870 # Since: 7.1
1871 ##
1872 { 'struct': 'MemorySizeConfiguration', 'data': {
1873 '*size': 'size',
1874 '*max-size': 'size',
1875 '*slots': 'uint64' } }
1876
1877 ##
1878 # @dumpdtb:
1879 #
1880 # Save the FDT in dtb format.
1881 #
1882 # @filename: name of the dtb file to be created
1883 #
1884 # Since: 7.2
1885 #
1886 # Example:
1887 #
1888 # -> { "execute": "dumpdtb" }
1889 # "arguments": { "filename": "fdt.dtb" } }
1890 # <- { "return": {} }
1891 ##
1892 { 'command': 'dumpdtb',
1893 'data': { 'filename': 'str' },
1894 'if': 'CONFIG_FDT' }