]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/machine.json
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / qapi / machine.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
6
7 ##
8 # = Machines
9 ##
10
11 { 'include': 'common.json' }
12
13 ##
14 # @SysEmuTarget:
15 #
16 # The comprehensive enumeration of QEMU system emulation ("softmmu")
17 # targets. Run "./configure --help" in the project root directory, and
18 # look for the \*-softmmu targets near the "--target-list" option. The
19 # individual target constants are not documented here, for the time
20 # being.
21 #
22 # @rx: since 5.0
23 # @avr: since 5.1
24 #
25 # Notes: The resulting QMP strings can be appended to the "qemu-system-"
26 # prefix to produce the corresponding QEMU executable name. This
27 # is true even for "qemu-system-x86_64".
28 #
29 # Since: 3.0
30 ##
31 { 'enum' : 'SysEmuTarget',
32 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
33 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
34 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
35 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
36 'sh4eb', 'sparc', 'sparc64', 'tricore',
37 'x86_64', 'xtensa', 'xtensaeb' ] }
38
39 ##
40 # @CpuS390State:
41 #
42 # An enumeration of cpu states that can be assumed by a virtual
43 # S390 CPU
44 #
45 # Since: 2.12
46 ##
47 { 'enum': 'CpuS390State',
48 'prefix': 'S390_CPU_STATE',
49 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
50
51 ##
52 # @CpuInfoS390:
53 #
54 # Additional information about a virtual S390 CPU
55 #
56 # @cpu-state: the virtual CPU's state
57 #
58 # Since: 2.12
59 ##
60 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
61
62 ##
63 # @CpuInfoFast:
64 #
65 # Information about a virtual CPU
66 #
67 # @cpu-index: index of the virtual CPU
68 #
69 # @qom-path: path to the CPU object in the QOM tree
70 #
71 # @thread-id: ID of the underlying host thread
72 #
73 # @props: properties describing to which node/socket/core/thread
74 # virtual CPU belongs to, provided if supported by board
75 #
76 # @target: the QEMU system emulation target, which determines which
77 # additional fields will be listed (since 3.0)
78 #
79 # Since: 2.12
80 ##
81 { 'union' : 'CpuInfoFast',
82 'base' : { 'cpu-index' : 'int',
83 'qom-path' : 'str',
84 'thread-id' : 'int',
85 '*props' : 'CpuInstanceProperties',
86 'target' : 'SysEmuTarget' },
87 'discriminator' : 'target',
88 'data' : { 's390x' : 'CpuInfoS390' } }
89
90 ##
91 # @query-cpus-fast:
92 #
93 # Returns information about all virtual CPUs.
94 #
95 # Returns: list of @CpuInfoFast
96 #
97 # Since: 2.12
98 #
99 # Example:
100 #
101 # -> { "execute": "query-cpus-fast" }
102 # <- { "return": [
103 # {
104 # "thread-id": 25627,
105 # "props": {
106 # "core-id": 0,
107 # "thread-id": 0,
108 # "socket-id": 0
109 # },
110 # "qom-path": "/machine/unattached/device[0]",
111 # "target":"x86_64",
112 # "cpu-index": 0
113 # },
114 # {
115 # "thread-id": 25628,
116 # "props": {
117 # "core-id": 0,
118 # "thread-id": 0,
119 # "socket-id": 1
120 # },
121 # "qom-path": "/machine/unattached/device[2]",
122 # "target":"x86_64",
123 # "cpu-index": 1
124 # }
125 # ]
126 # }
127 ##
128 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
129
130 ##
131 # @MachineInfo:
132 #
133 # Information describing a machine.
134 #
135 # @name: the name of the machine
136 #
137 # @alias: an alias for the machine name
138 #
139 # @is-default: whether the machine is default
140 #
141 # @cpu-max: maximum number of CPUs supported by the machine type
142 # (since 1.5)
143 #
144 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
145 #
146 # @numa-mem-supported: true if '-numa node,mem' option is supported by
147 # the machine type and false otherwise (since 4.1)
148 #
149 # @deprecated: if true, the machine type is deprecated and may be removed
150 # in future versions of QEMU according to the QEMU deprecation
151 # policy (since 4.1)
152 #
153 # @default-cpu-type: default CPU model typename if none is requested via
154 # the -cpu argument. (since 4.2)
155 #
156 # @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
157 #
158 # Since: 1.2
159 ##
160 { 'struct': 'MachineInfo',
161 'data': { 'name': 'str', '*alias': 'str',
162 '*is-default': 'bool', 'cpu-max': 'int',
163 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
164 'deprecated': 'bool', '*default-cpu-type': 'str',
165 '*default-ram-id': 'str' } }
166
167 ##
168 # @query-machines:
169 #
170 # Return a list of supported machines
171 #
172 # Returns: a list of MachineInfo
173 #
174 # Since: 1.2
175 ##
176 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
177
178 ##
179 # @CurrentMachineParams:
180 #
181 # Information describing the running machine parameters.
182 #
183 # @wakeup-suspend-support: true if the machine supports wake up from
184 # suspend
185 #
186 # Since: 4.0
187 ##
188 { 'struct': 'CurrentMachineParams',
189 'data': { 'wakeup-suspend-support': 'bool'} }
190
191 ##
192 # @query-current-machine:
193 #
194 # Return information on the current virtual machine.
195 #
196 # Returns: CurrentMachineParams
197 #
198 # Since: 4.0
199 ##
200 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
201
202 ##
203 # @TargetInfo:
204 #
205 # Information describing the QEMU target.
206 #
207 # @arch: the target architecture
208 #
209 # Since: 1.2
210 ##
211 { 'struct': 'TargetInfo',
212 'data': { 'arch': 'SysEmuTarget' } }
213
214 ##
215 # @query-target:
216 #
217 # Return information about the target for this QEMU
218 #
219 # Returns: TargetInfo
220 #
221 # Since: 1.2
222 ##
223 { 'command': 'query-target', 'returns': 'TargetInfo' }
224
225 ##
226 # @UuidInfo:
227 #
228 # Guest UUID information (Universally Unique Identifier).
229 #
230 # @UUID: the UUID of the guest
231 #
232 # Since: 0.14
233 #
234 # Notes: If no UUID was specified for the guest, a null UUID is returned.
235 ##
236 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
237
238 ##
239 # @query-uuid:
240 #
241 # Query the guest UUID information.
242 #
243 # Returns: The @UuidInfo for the guest
244 #
245 # Since: 0.14
246 #
247 # Example:
248 #
249 # -> { "execute": "query-uuid" }
250 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
251 #
252 ##
253 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
254
255 ##
256 # @GuidInfo:
257 #
258 # GUID information.
259 #
260 # @guid: the globally unique identifier
261 #
262 # Since: 2.9
263 ##
264 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
265
266 ##
267 # @query-vm-generation-id:
268 #
269 # Show Virtual Machine Generation ID
270 #
271 # Since: 2.9
272 ##
273 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
274
275 ##
276 # @system_reset:
277 #
278 # Performs a hard reset of a guest.
279 #
280 # Since: 0.14
281 #
282 # Example:
283 #
284 # -> { "execute": "system_reset" }
285 # <- { "return": {} }
286 #
287 ##
288 { 'command': 'system_reset' }
289
290 ##
291 # @system_powerdown:
292 #
293 # Requests that a guest perform a powerdown operation.
294 #
295 # Since: 0.14
296 #
297 # Notes: A guest may or may not respond to this command. This command
298 # returning does not indicate that a guest has accepted the request or
299 # that it has shut down. Many guests will respond to this command by
300 # prompting the user in some way.
301 #
302 # Example:
303 #
304 # -> { "execute": "system_powerdown" }
305 # <- { "return": {} }
306 #
307 ##
308 { 'command': 'system_powerdown' }
309
310 ##
311 # @system_wakeup:
312 #
313 # Wake up guest from suspend. If the guest has wake-up from suspend
314 # support enabled (wakeup-suspend-support flag from
315 # query-current-machine), wake-up guest from suspend if the guest is
316 # in SUSPENDED state. Return an error otherwise.
317 #
318 # Since: 1.1
319 #
320 # Returns: nothing.
321 #
322 # Note: prior to 4.0, this command does nothing in case the guest
323 # isn't suspended.
324 #
325 # Example:
326 #
327 # -> { "execute": "system_wakeup" }
328 # <- { "return": {} }
329 #
330 ##
331 { 'command': 'system_wakeup' }
332
333 ##
334 # @LostTickPolicy:
335 #
336 # Policy for handling lost ticks in timer devices. Ticks end up getting
337 # lost when, for example, the guest is paused.
338 #
339 # @discard: throw away the missed ticks and continue with future injection
340 # normally. The guest OS will see the timer jump ahead by a
341 # potentially quite significant amount all at once, as if the
342 # intervening chunk of time had simply not existed; needless to
343 # say, such a sudden jump can easily confuse a guest OS which is
344 # not specifically prepared to deal with it. Assuming the guest
345 # OS can deal correctly with the time jump, the time in the guest
346 # and in the host should now match.
347 #
348 # @delay: continue to deliver ticks at the normal rate. The guest OS will
349 # not notice anything is amiss, as from its point of view time will
350 # have continued to flow normally. The time in the guest should now
351 # be behind the time in the host by exactly the amount of time during
352 # which ticks have been missed.
353 #
354 # @slew: deliver ticks at a higher rate to catch up with the missed ticks.
355 # The guest OS will not notice anything is amiss, as from its point
356 # of view time will have continued to flow normally. Once the timer
357 # has managed to catch up with all the missing ticks, the time in
358 # the guest and in the host should match.
359 #
360 # Since: 2.0
361 ##
362 { 'enum': 'LostTickPolicy',
363 'data': ['discard', 'delay', 'slew' ] }
364
365 ##
366 # @inject-nmi:
367 #
368 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
369 # The command fails when the guest doesn't support injecting.
370 #
371 # Returns: If successful, nothing
372 #
373 # Since: 0.14
374 #
375 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
376 #
377 # Example:
378 #
379 # -> { "execute": "inject-nmi" }
380 # <- { "return": {} }
381 #
382 ##
383 { 'command': 'inject-nmi' }
384
385 ##
386 # @KvmInfo:
387 #
388 # Information about support for KVM acceleration
389 #
390 # @enabled: true if KVM acceleration is active
391 #
392 # @present: true if KVM acceleration is built into this executable
393 #
394 # Since: 0.14
395 ##
396 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
397
398 ##
399 # @query-kvm:
400 #
401 # Returns information about KVM acceleration
402 #
403 # Returns: @KvmInfo
404 #
405 # Since: 0.14
406 #
407 # Example:
408 #
409 # -> { "execute": "query-kvm" }
410 # <- { "return": { "enabled": true, "present": true } }
411 #
412 ##
413 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
414
415 ##
416 # @NumaOptionsType:
417 #
418 # @node: NUMA nodes configuration
419 #
420 # @dist: NUMA distance configuration (since 2.10)
421 #
422 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
423 #
424 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
425 #
426 # @hmat-cache: memory side cache information (Since: 5.0)
427 #
428 # Since: 2.1
429 ##
430 { 'enum': 'NumaOptionsType',
431 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
432
433 ##
434 # @NumaOptions:
435 #
436 # A discriminated record of NUMA options. (for OptsVisitor)
437 #
438 # Since: 2.1
439 ##
440 { 'union': 'NumaOptions',
441 'base': { 'type': 'NumaOptionsType' },
442 'discriminator': 'type',
443 'data': {
444 'node': 'NumaNodeOptions',
445 'dist': 'NumaDistOptions',
446 'cpu': 'NumaCpuOptions',
447 'hmat-lb': 'NumaHmatLBOptions',
448 'hmat-cache': 'NumaHmatCacheOptions' }}
449
450 ##
451 # @NumaNodeOptions:
452 #
453 # Create a guest NUMA node. (for OptsVisitor)
454 #
455 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
456 #
457 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
458 # if omitted)
459 #
460 # @mem: memory size of this node; mutually exclusive with @memdev.
461 # Equally divide total memory among nodes if both @mem and @memdev are
462 # omitted.
463 #
464 # @memdev: memory backend object. If specified for one node,
465 # it must be specified for all nodes.
466 #
467 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
468 # points to the nodeid which has the memory controller
469 # responsible for this NUMA node. This field provides
470 # additional information as to the initiator node that
471 # is closest (as in directly attached) to this node, and
472 # therefore has the best performance (since 5.0)
473 #
474 # Since: 2.1
475 ##
476 { 'struct': 'NumaNodeOptions',
477 'data': {
478 '*nodeid': 'uint16',
479 '*cpus': ['uint16'],
480 '*mem': 'size',
481 '*memdev': 'str',
482 '*initiator': 'uint16' }}
483
484 ##
485 # @NumaDistOptions:
486 #
487 # Set the distance between 2 NUMA nodes.
488 #
489 # @src: source NUMA node.
490 #
491 # @dst: destination NUMA node.
492 #
493 # @val: NUMA distance from source node to destination node.
494 # When a node is unreachable from another node, set the distance
495 # between them to 255.
496 #
497 # Since: 2.10
498 ##
499 { 'struct': 'NumaDistOptions',
500 'data': {
501 'src': 'uint16',
502 'dst': 'uint16',
503 'val': 'uint8' }}
504
505 ##
506 # @X86CPURegister32:
507 #
508 # A X86 32-bit register
509 #
510 # Since: 1.5
511 ##
512 { 'enum': 'X86CPURegister32',
513 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
514
515 ##
516 # @X86CPUFeatureWordInfo:
517 #
518 # Information about a X86 CPU feature word
519 #
520 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
521 #
522 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
523 # feature word
524 #
525 # @cpuid-register: Output register containing the feature bits
526 #
527 # @features: value of output register, containing the feature bits
528 #
529 # Since: 1.5
530 ##
531 { 'struct': 'X86CPUFeatureWordInfo',
532 'data': { 'cpuid-input-eax': 'int',
533 '*cpuid-input-ecx': 'int',
534 'cpuid-register': 'X86CPURegister32',
535 'features': 'int' } }
536
537 ##
538 # @DummyForceArrays:
539 #
540 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
541 #
542 # Since: 2.5
543 ##
544 { 'struct': 'DummyForceArrays',
545 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
546
547 ##
548 # @NumaCpuOptions:
549 #
550 # Option "-numa cpu" overrides default cpu to node mapping.
551 # It accepts the same set of cpu properties as returned by
552 # query-hotpluggable-cpus[].props, where node-id could be used to
553 # override default node mapping.
554 #
555 # Since: 2.10
556 ##
557 { 'struct': 'NumaCpuOptions',
558 'base': 'CpuInstanceProperties',
559 'data' : {} }
560
561 ##
562 # @HmatLBMemoryHierarchy:
563 #
564 # The memory hierarchy in the System Locality Latency and Bandwidth
565 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
566 #
567 # For more information about @HmatLBMemoryHierarchy, see chapter
568 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
569 #
570 # @memory: the structure represents the memory performance
571 #
572 # @first-level: first level of memory side cache
573 #
574 # @second-level: second level of memory side cache
575 #
576 # @third-level: third level of memory side cache
577 #
578 # Since: 5.0
579 ##
580 { 'enum': 'HmatLBMemoryHierarchy',
581 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
582
583 ##
584 # @HmatLBDataType:
585 #
586 # Data type in the System Locality Latency and Bandwidth
587 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
588 #
589 # For more information about @HmatLBDataType, see chapter
590 # 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec.
591 #
592 # @access-latency: access latency (nanoseconds)
593 #
594 # @read-latency: read latency (nanoseconds)
595 #
596 # @write-latency: write latency (nanoseconds)
597 #
598 # @access-bandwidth: access bandwidth (Bytes per second)
599 #
600 # @read-bandwidth: read bandwidth (Bytes per second)
601 #
602 # @write-bandwidth: write bandwidth (Bytes per second)
603 #
604 # Since: 5.0
605 ##
606 { 'enum': 'HmatLBDataType',
607 'data': [ 'access-latency', 'read-latency', 'write-latency',
608 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
609
610 ##
611 # @NumaHmatLBOptions:
612 #
613 # Set the system locality latency and bandwidth information
614 # between Initiator and Target proximity Domains.
615 #
616 # For more information about @NumaHmatLBOptions, see chapter
617 # 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
618 #
619 # @initiator: the Initiator Proximity Domain.
620 #
621 # @target: the Target Proximity Domain.
622 #
623 # @hierarchy: the Memory Hierarchy. Indicates the performance
624 # of memory or side cache.
625 #
626 # @data-type: presents the type of data, access/read/write
627 # latency or hit latency.
628 #
629 # @latency: the value of latency from @initiator to @target
630 # proximity domain, the latency unit is "ns(nanosecond)".
631 #
632 # @bandwidth: the value of bandwidth between @initiator and @target
633 # proximity domain, the bandwidth unit is
634 # "Bytes per second".
635 #
636 # Since: 5.0
637 ##
638 { 'struct': 'NumaHmatLBOptions',
639 'data': {
640 'initiator': 'uint16',
641 'target': 'uint16',
642 'hierarchy': 'HmatLBMemoryHierarchy',
643 'data-type': 'HmatLBDataType',
644 '*latency': 'uint64',
645 '*bandwidth': 'size' }}
646
647 ##
648 # @HmatCacheAssociativity:
649 #
650 # Cache associativity in the Memory Side Cache Information Structure
651 # of HMAT
652 #
653 # For more information of @HmatCacheAssociativity, see chapter
654 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
655 #
656 # @none: None (no memory side cache in this proximity domain,
657 # or cache associativity unknown)
658 #
659 # @direct: Direct Mapped
660 #
661 # @complex: Complex Cache Indexing (implementation specific)
662 #
663 # Since: 5.0
664 ##
665 { 'enum': 'HmatCacheAssociativity',
666 'data': [ 'none', 'direct', 'complex' ] }
667
668 ##
669 # @HmatCacheWritePolicy:
670 #
671 # Cache write policy in the Memory Side Cache Information Structure
672 # of HMAT
673 #
674 # For more information of @HmatCacheWritePolicy, see chapter
675 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
676 #
677 # @none: None (no memory side cache in this proximity domain,
678 # or cache write policy unknown)
679 #
680 # @write-back: Write Back (WB)
681 #
682 # @write-through: Write Through (WT)
683 #
684 # Since: 5.0
685 ##
686 { 'enum': 'HmatCacheWritePolicy',
687 'data': [ 'none', 'write-back', 'write-through' ] }
688
689 ##
690 # @NumaHmatCacheOptions:
691 #
692 # Set the memory side cache information for a given memory domain.
693 #
694 # For more information of @NumaHmatCacheOptions, see chapter
695 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
696 #
697 # @node-id: the memory proximity domain to which the memory belongs.
698 #
699 # @size: the size of memory side cache in bytes.
700 #
701 # @level: the cache level described in this structure.
702 #
703 # @associativity: the cache associativity,
704 # none/direct-mapped/complex(complex cache indexing).
705 #
706 # @policy: the write policy, none/write-back/write-through.
707 #
708 # @line: the cache Line size in bytes.
709 #
710 # Since: 5.0
711 ##
712 { 'struct': 'NumaHmatCacheOptions',
713 'data': {
714 'node-id': 'uint32',
715 'size': 'size',
716 'level': 'uint8',
717 'associativity': 'HmatCacheAssociativity',
718 'policy': 'HmatCacheWritePolicy',
719 'line': 'uint16' }}
720
721 ##
722 # @memsave:
723 #
724 # Save a portion of guest memory to a file.
725 #
726 # @val: the virtual address of the guest to start from
727 #
728 # @size: the size of memory region to save
729 #
730 # @filename: the file to save the memory to as binary data
731 #
732 # @cpu-index: the index of the virtual CPU to use for translating the
733 # virtual address (defaults to CPU 0)
734 #
735 # Returns: Nothing on success
736 #
737 # Since: 0.14
738 #
739 # Notes: Errors were not reliably returned until 1.1
740 #
741 # Example:
742 #
743 # -> { "execute": "memsave",
744 # "arguments": { "val": 10,
745 # "size": 100,
746 # "filename": "/tmp/virtual-mem-dump" } }
747 # <- { "return": {} }
748 #
749 ##
750 { 'command': 'memsave',
751 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
752
753 ##
754 # @pmemsave:
755 #
756 # Save a portion of guest physical memory to a file.
757 #
758 # @val: the physical address of the guest to start from
759 #
760 # @size: the size of memory region to save
761 #
762 # @filename: the file to save the memory to as binary data
763 #
764 # Returns: Nothing on success
765 #
766 # Since: 0.14
767 #
768 # Notes: Errors were not reliably returned until 1.1
769 #
770 # Example:
771 #
772 # -> { "execute": "pmemsave",
773 # "arguments": { "val": 10,
774 # "size": 100,
775 # "filename": "/tmp/physical-mem-dump" } }
776 # <- { "return": {} }
777 #
778 ##
779 { 'command': 'pmemsave',
780 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
781
782 ##
783 # @Memdev:
784 #
785 # Information about memory backend
786 #
787 # @id: backend's ID if backend has 'id' property (since 2.9)
788 #
789 # @size: memory backend size
790 #
791 # @merge: whether memory merge support is enabled
792 #
793 # @dump: whether memory backend's memory is included in a core dump
794 #
795 # @prealloc: whether memory was preallocated
796 #
797 # @share: whether memory is private to QEMU or shared (since 6.1)
798 #
799 # @reserve: whether swap space (or huge pages) was reserved if applicable.
800 # This corresponds to the user configuration and not the actual
801 # behavior implemented in the OS to perform the reservation.
802 # For example, Linux will never reserve swap space for shared
803 # file mappings. (since 6.1)
804 #
805 # @host-nodes: host nodes for its memory policy
806 #
807 # @policy: memory policy of memory backend
808 #
809 # Since: 2.1
810 ##
811 { 'struct': 'Memdev',
812 'data': {
813 '*id': 'str',
814 'size': 'size',
815 'merge': 'bool',
816 'dump': 'bool',
817 'prealloc': 'bool',
818 'share': 'bool',
819 '*reserve': 'bool',
820 'host-nodes': ['uint16'],
821 'policy': 'HostMemPolicy' }}
822
823 ##
824 # @query-memdev:
825 #
826 # Returns information for all memory backends.
827 #
828 # Returns: a list of @Memdev.
829 #
830 # Since: 2.1
831 #
832 # Example:
833 #
834 # -> { "execute": "query-memdev" }
835 # <- { "return": [
836 # {
837 # "id": "mem1",
838 # "size": 536870912,
839 # "merge": false,
840 # "dump": true,
841 # "prealloc": false,
842 # "share": false,
843 # "host-nodes": [0, 1],
844 # "policy": "bind"
845 # },
846 # {
847 # "size": 536870912,
848 # "merge": false,
849 # "dump": true,
850 # "prealloc": true,
851 # "share": false,
852 # "host-nodes": [2, 3],
853 # "policy": "preferred"
854 # }
855 # ]
856 # }
857 #
858 ##
859 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
860
861 ##
862 # @CpuInstanceProperties:
863 #
864 # List of properties to be used for hotplugging a CPU instance,
865 # it should be passed by management with device_add command when
866 # a CPU is being hotplugged.
867 #
868 # @node-id: NUMA node ID the CPU belongs to
869 # @socket-id: socket number within node/board the CPU belongs to
870 # @die-id: die number within socket the CPU belongs to (since 4.1)
871 # @cluster-id: cluster number within die the CPU belongs to (since 7.1)
872 # @core-id: core number within cluster the CPU belongs to
873 # @thread-id: thread number within core the CPU belongs to
874 #
875 # Note: currently there are 6 properties that could be present
876 # but management should be prepared to pass through other
877 # properties with device_add command to allow for future
878 # interface extension. This also requires the filed names to be kept in
879 # sync with the properties passed to -device/device_add.
880 #
881 # Since: 2.7
882 ##
883 { 'struct': 'CpuInstanceProperties',
884 'data': { '*node-id': 'int',
885 '*socket-id': 'int',
886 '*die-id': 'int',
887 '*cluster-id': 'int',
888 '*core-id': 'int',
889 '*thread-id': 'int'
890 }
891 }
892
893 ##
894 # @HotpluggableCPU:
895 #
896 # @type: CPU object type for usage with device_add command
897 # @props: list of properties to be used for hotplugging CPU
898 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
899 # @qom-path: link to existing CPU object if CPU is present or
900 # omitted if CPU is not present.
901 #
902 # Since: 2.7
903 ##
904 { 'struct': 'HotpluggableCPU',
905 'data': { 'type': 'str',
906 'vcpus-count': 'int',
907 'props': 'CpuInstanceProperties',
908 '*qom-path': 'str'
909 }
910 }
911
912 ##
913 # @query-hotpluggable-cpus:
914 #
915 # TODO: Better documentation; currently there is none.
916 #
917 # Returns: a list of HotpluggableCPU objects.
918 #
919 # Since: 2.7
920 #
921 # Example:
922 #
923 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
924 #
925 # -> { "execute": "query-hotpluggable-cpus" }
926 # <- {"return": [
927 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
928 # "vcpus-count": 1 },
929 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
930 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
931 # ]}'
932 #
933 # For pc machine type started with -smp 1,maxcpus=2:
934 #
935 # -> { "execute": "query-hotpluggable-cpus" }
936 # <- {"return": [
937 # {
938 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
939 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
940 # },
941 # {
942 # "qom-path": "/machine/unattached/device[0]",
943 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
944 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
945 # }
946 # ]}
947 #
948 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
949 # (Since: 2.11):
950 #
951 # -> { "execute": "query-hotpluggable-cpus" }
952 # <- {"return": [
953 # {
954 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
955 # "props": { "core-id": 1 }
956 # },
957 # {
958 # "qom-path": "/machine/unattached/device[0]",
959 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
960 # "props": { "core-id": 0 }
961 # }
962 # ]}
963 #
964 ##
965 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
966 'allow-preconfig': true }
967
968 ##
969 # @set-numa-node:
970 #
971 # Runtime equivalent of '-numa' CLI option, available at
972 # preconfigure stage to configure numa mapping before initializing
973 # machine.
974 #
975 # Since: 3.0
976 ##
977 { 'command': 'set-numa-node', 'boxed': true,
978 'data': 'NumaOptions',
979 'allow-preconfig': true
980 }
981
982 ##
983 # @balloon:
984 #
985 # Request the balloon driver to change its balloon size.
986 #
987 # @value: the target logical size of the VM in bytes.
988 # We can deduce the size of the balloon using this formula:
989 #
990 # logical_vm_size = vm_ram_size - balloon_size
991 #
992 # From it we have: balloon_size = vm_ram_size - @value
993 #
994 # Returns: - Nothing on success
995 # - If the balloon driver is enabled but not functional because the KVM
996 # kernel module cannot support it, KvmMissingCap
997 # - If no balloon device is present, DeviceNotActive
998 #
999 # Notes: This command just issues a request to the guest. When it returns,
1000 # the balloon size may not have changed. A guest can change the balloon
1001 # size independent of this command.
1002 #
1003 # Since: 0.14
1004 #
1005 # Example:
1006 #
1007 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1008 # <- { "return": {} }
1009 #
1010 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1011 #
1012 ##
1013 { 'command': 'balloon', 'data': {'value': 'int'} }
1014
1015 ##
1016 # @BalloonInfo:
1017 #
1018 # Information about the guest balloon device.
1019 #
1020 # @actual: the logical size of the VM in bytes
1021 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1022 #
1023 # Since: 0.14
1024 ##
1025 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1026
1027 ##
1028 # @query-balloon:
1029 #
1030 # Return information about the balloon device.
1031 #
1032 # Returns: - @BalloonInfo on success
1033 # - If the balloon driver is enabled but not functional because the KVM
1034 # kernel module cannot support it, KvmMissingCap
1035 # - If no balloon device is present, DeviceNotActive
1036 #
1037 # Since: 0.14
1038 #
1039 # Example:
1040 #
1041 # -> { "execute": "query-balloon" }
1042 # <- { "return": {
1043 # "actual": 1073741824,
1044 # }
1045 # }
1046 #
1047 ##
1048 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1049
1050 ##
1051 # @BALLOON_CHANGE:
1052 #
1053 # Emitted when the guest changes the actual BALLOON level. This value is
1054 # equivalent to the @actual field return by the 'query-balloon' command
1055 #
1056 # @actual: the logical size of the VM in bytes
1057 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1058 #
1059 # Note: this event is rate-limited.
1060 #
1061 # Since: 1.2
1062 #
1063 # Example:
1064 #
1065 # <- { "event": "BALLOON_CHANGE",
1066 # "data": { "actual": 944766976 },
1067 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1068 #
1069 ##
1070 { 'event': 'BALLOON_CHANGE',
1071 'data': { 'actual': 'int' } }
1072
1073 ##
1074 # @MemoryInfo:
1075 #
1076 # Actual memory information in bytes.
1077 #
1078 # @base-memory: size of "base" memory specified with command line
1079 # option -m.
1080 #
1081 # @plugged-memory: size of memory that can be hot-unplugged. This field
1082 # is omitted if target doesn't support memory hotplug
1083 # (i.e. CONFIG_MEM_DEVICE not defined at build time).
1084 #
1085 # Since: 2.11
1086 ##
1087 { 'struct': 'MemoryInfo',
1088 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1089
1090 ##
1091 # @query-memory-size-summary:
1092 #
1093 # Return the amount of initially allocated and present hotpluggable (if
1094 # enabled) memory in bytes.
1095 #
1096 # Example:
1097 #
1098 # -> { "execute": "query-memory-size-summary" }
1099 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1100 #
1101 # Since: 2.11
1102 ##
1103 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1104
1105 ##
1106 # @PCDIMMDeviceInfo:
1107 #
1108 # PCDIMMDevice state information
1109 #
1110 # @id: device's ID
1111 #
1112 # @addr: physical address, where device is mapped
1113 #
1114 # @size: size of memory that the device provides
1115 #
1116 # @slot: slot number at which device is plugged in
1117 #
1118 # @node: NUMA node number where device is plugged in
1119 #
1120 # @memdev: memory backend linked with device
1121 #
1122 # @hotplugged: true if device was hotplugged
1123 #
1124 # @hotpluggable: true if device if could be added/removed while machine is running
1125 #
1126 # Since: 2.1
1127 ##
1128 { 'struct': 'PCDIMMDeviceInfo',
1129 'data': { '*id': 'str',
1130 'addr': 'int',
1131 'size': 'int',
1132 'slot': 'int',
1133 'node': 'int',
1134 'memdev': 'str',
1135 'hotplugged': 'bool',
1136 'hotpluggable': 'bool'
1137 }
1138 }
1139
1140 ##
1141 # @VirtioPMEMDeviceInfo:
1142 #
1143 # VirtioPMEM state information
1144 #
1145 # @id: device's ID
1146 #
1147 # @memaddr: physical address in memory, where device is mapped
1148 #
1149 # @size: size of memory that the device provides
1150 #
1151 # @memdev: memory backend linked with device
1152 #
1153 # Since: 4.1
1154 ##
1155 { 'struct': 'VirtioPMEMDeviceInfo',
1156 'data': { '*id': 'str',
1157 'memaddr': 'size',
1158 'size': 'size',
1159 'memdev': 'str'
1160 }
1161 }
1162
1163 ##
1164 # @VirtioMEMDeviceInfo:
1165 #
1166 # VirtioMEMDevice state information
1167 #
1168 # @id: device's ID
1169 #
1170 # @memaddr: physical address in memory, where device is mapped
1171 #
1172 # @requested-size: the user requested size of the device
1173 #
1174 # @size: the (current) size of memory that the device provides
1175 #
1176 # @max-size: the maximum size of memory that the device can provide
1177 #
1178 # @block-size: the block size of memory that the device provides
1179 #
1180 # @node: NUMA node number where device is assigned to
1181 #
1182 # @memdev: memory backend linked with the region
1183 #
1184 # Since: 5.1
1185 ##
1186 { 'struct': 'VirtioMEMDeviceInfo',
1187 'data': { '*id': 'str',
1188 'memaddr': 'size',
1189 'requested-size': 'size',
1190 'size': 'size',
1191 'max-size': 'size',
1192 'block-size': 'size',
1193 'node': 'int',
1194 'memdev': 'str'
1195 }
1196 }
1197
1198 ##
1199 # @SgxEPCDeviceInfo:
1200 #
1201 # Sgx EPC state information
1202 #
1203 # @id: device's ID
1204 #
1205 # @memaddr: physical address in memory, where device is mapped
1206 #
1207 # @size: size of memory that the device provides
1208 #
1209 # @memdev: memory backend linked with device
1210 #
1211 # @node: the numa node (Since: 7.0)
1212 #
1213 # Since: 6.2
1214 ##
1215 { 'struct': 'SgxEPCDeviceInfo',
1216 'data': { '*id': 'str',
1217 'memaddr': 'size',
1218 'size': 'size',
1219 'node': 'int',
1220 'memdev': 'str'
1221 }
1222 }
1223
1224 ##
1225 # @MemoryDeviceInfoKind:
1226 #
1227 # Since: 2.1
1228 ##
1229 { 'enum': 'MemoryDeviceInfoKind',
1230 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1231
1232 ##
1233 # @PCDIMMDeviceInfoWrapper:
1234 #
1235 # Since: 2.1
1236 ##
1237 { 'struct': 'PCDIMMDeviceInfoWrapper',
1238 'data': { 'data': 'PCDIMMDeviceInfo' } }
1239
1240 ##
1241 # @VirtioPMEMDeviceInfoWrapper:
1242 #
1243 # Since: 2.1
1244 ##
1245 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
1246 'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1247
1248 ##
1249 # @VirtioMEMDeviceInfoWrapper:
1250 #
1251 # Since: 2.1
1252 ##
1253 { 'struct': 'VirtioMEMDeviceInfoWrapper',
1254 'data': { 'data': 'VirtioMEMDeviceInfo' } }
1255
1256 ##
1257 # @SgxEPCDeviceInfoWrapper:
1258 #
1259 # Since: 6.2
1260 ##
1261 { 'struct': 'SgxEPCDeviceInfoWrapper',
1262 'data': { 'data': 'SgxEPCDeviceInfo' } }
1263
1264 ##
1265 # @MemoryDeviceInfo:
1266 #
1267 # Union containing information about a memory device
1268 #
1269 # nvdimm is included since 2.12. virtio-pmem is included since 4.1.
1270 # virtio-mem is included since 5.1. sgx-epc is included since 6.2.
1271 #
1272 # Since: 2.1
1273 ##
1274 { 'union': 'MemoryDeviceInfo',
1275 'base': { 'type': 'MemoryDeviceInfoKind' },
1276 'discriminator': 'type',
1277 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1278 'nvdimm': 'PCDIMMDeviceInfoWrapper',
1279 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1280 'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1281 'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1282 }
1283 }
1284
1285 ##
1286 # @SgxEPC:
1287 #
1288 # Sgx EPC cmdline information
1289 #
1290 # @memdev: memory backend linked with device
1291 #
1292 # @node: the numa node (Since: 7.0)
1293 #
1294 # Since: 6.2
1295 ##
1296 { 'struct': 'SgxEPC',
1297 'data': { 'memdev': 'str',
1298 'node': 'int'
1299 }
1300 }
1301
1302 ##
1303 # @SgxEPCProperties:
1304 #
1305 # SGX properties of machine types.
1306 #
1307 # @sgx-epc: list of ids of memory-backend-epc objects.
1308 #
1309 # Since: 6.2
1310 ##
1311 { 'struct': 'SgxEPCProperties',
1312 'data': { 'sgx-epc': ['SgxEPC'] }
1313 }
1314
1315 ##
1316 # @query-memory-devices:
1317 #
1318 # Lists available memory devices and their state
1319 #
1320 # Since: 2.1
1321 #
1322 # Example:
1323 #
1324 # -> { "execute": "query-memory-devices" }
1325 # <- { "return": [ { "data":
1326 # { "addr": 5368709120,
1327 # "hotpluggable": true,
1328 # "hotplugged": true,
1329 # "id": "d1",
1330 # "memdev": "/objects/memX",
1331 # "node": 0,
1332 # "size": 1073741824,
1333 # "slot": 0},
1334 # "type": "dimm"
1335 # } ] }
1336 #
1337 ##
1338 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1339
1340 ##
1341 # @MEMORY_DEVICE_SIZE_CHANGE:
1342 #
1343 # Emitted when the size of a memory device changes. Only emitted for memory
1344 # devices that can actually change the size (e.g., virtio-mem due to guest
1345 # action).
1346 #
1347 # @id: device's ID
1348 #
1349 # @size: the new size of memory that the device provides
1350 #
1351 # @qom-path: path to the device object in the QOM tree (since 6.2)
1352 #
1353 # Note: this event is rate-limited.
1354 #
1355 # Since: 5.1
1356 #
1357 # Example:
1358 #
1359 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1360 # "data": { "id": "vm0", "size": 1073741824,
1361 # "qom-path": "/machine/unattached/device[2]" },
1362 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1363 #
1364 ##
1365 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1366 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1367
1368 ##
1369 # @MEM_UNPLUG_ERROR:
1370 #
1371 # Emitted when memory hot unplug error occurs.
1372 #
1373 # @device: device name
1374 #
1375 # @msg: Informative message
1376 #
1377 # Features:
1378 # @deprecated: This event is deprecated. Use @DEVICE_UNPLUG_GUEST_ERROR
1379 # instead.
1380 #
1381 # Since: 2.4
1382 #
1383 # Example:
1384 #
1385 # <- { "event": "MEM_UNPLUG_ERROR"
1386 # "data": { "device": "dimm1",
1387 # "msg": "acpi: device unplug for unsupported device"
1388 # },
1389 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1390 #
1391 ##
1392 { 'event': 'MEM_UNPLUG_ERROR',
1393 'data': { 'device': 'str', 'msg': 'str' },
1394 'features': ['deprecated'] }
1395
1396 ##
1397 # @BootConfiguration:
1398 #
1399 # Schema for virtual machine boot configuration.
1400 #
1401 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1402 #
1403 # @once: Boot order to apply on first boot
1404 #
1405 # @menu: Whether to show a boot menu
1406 #
1407 # @splash: The name of the file to be passed to the firmware as logo picture, if @menu is true.
1408 #
1409 # @splash-time: How long to show the logo picture, in milliseconds
1410 #
1411 # @reboot-timeout: Timeout before guest reboots after boot fails
1412 #
1413 # @strict: Whether to attempt booting from devices not included in the boot order
1414 #
1415 # Since: 7.1
1416 ##
1417 { 'struct': 'BootConfiguration', 'data': {
1418 '*order': 'str',
1419 '*once': 'str',
1420 '*menu': 'bool',
1421 '*splash': 'str',
1422 '*splash-time': 'int',
1423 '*reboot-timeout': 'int',
1424 '*strict': 'bool' } }
1425
1426 ##
1427 # @SMPConfiguration:
1428 #
1429 # Schema for CPU topology configuration. A missing value lets
1430 # QEMU figure out a suitable value based on the ones that are provided.
1431 #
1432 # @cpus: number of virtual CPUs in the virtual machine
1433 #
1434 # @sockets: number of sockets in the CPU topology
1435 #
1436 # @dies: number of dies per socket in the CPU topology
1437 #
1438 # @clusters: number of clusters per die in the CPU topology (since 7.0)
1439 #
1440 # @cores: number of cores per cluster in the CPU topology
1441 #
1442 # @threads: number of threads per core in the CPU topology
1443 #
1444 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine
1445 #
1446 # Since: 6.1
1447 ##
1448 { 'struct': 'SMPConfiguration', 'data': {
1449 '*cpus': 'int',
1450 '*sockets': 'int',
1451 '*dies': 'int',
1452 '*clusters': 'int',
1453 '*cores': 'int',
1454 '*threads': 'int',
1455 '*maxcpus': 'int' } }
1456
1457 ##
1458 # @x-query-irq:
1459 #
1460 # Query interrupt statistics
1461 #
1462 # Features:
1463 # @unstable: This command is meant for debugging.
1464 #
1465 # Returns: interrupt statistics
1466 #
1467 # Since: 6.2
1468 ##
1469 { 'command': 'x-query-irq',
1470 'returns': 'HumanReadableText',
1471 'features': [ 'unstable' ] }
1472
1473 ##
1474 # @x-query-jit:
1475 #
1476 # Query TCG compiler statistics
1477 #
1478 # Features:
1479 # @unstable: This command is meant for debugging.
1480 #
1481 # Returns: TCG compiler statistics
1482 #
1483 # Since: 6.2
1484 ##
1485 { 'command': 'x-query-jit',
1486 'returns': 'HumanReadableText',
1487 'if': 'CONFIG_TCG',
1488 'features': [ 'unstable' ] }
1489
1490 ##
1491 # @x-query-numa:
1492 #
1493 # Query NUMA topology information
1494 #
1495 # Features:
1496 # @unstable: This command is meant for debugging.
1497 #
1498 # Returns: topology information
1499 #
1500 # Since: 6.2
1501 ##
1502 { 'command': 'x-query-numa',
1503 'returns': 'HumanReadableText',
1504 'features': [ 'unstable' ] }
1505
1506 ##
1507 # @x-query-opcount:
1508 #
1509 # Query TCG opcode counters
1510 #
1511 # Features:
1512 # @unstable: This command is meant for debugging.
1513 #
1514 # Returns: TCG opcode counters
1515 #
1516 # Since: 6.2
1517 ##
1518 { 'command': 'x-query-opcount',
1519 'returns': 'HumanReadableText',
1520 'if': 'CONFIG_TCG',
1521 'features': [ 'unstable' ] }
1522
1523 ##
1524 # @x-query-profile:
1525 #
1526 # Query TCG profiling information
1527 #
1528 # Features:
1529 # @unstable: This command is meant for debugging.
1530 #
1531 # Returns: profile information
1532 #
1533 # Since: 6.2
1534 ##
1535 { 'command': 'x-query-profile',
1536 'returns': 'HumanReadableText',
1537 'if': 'CONFIG_TCG',
1538 'features': [ 'unstable' ] }
1539
1540 ##
1541 # @x-query-ramblock:
1542 #
1543 # Query system ramblock information
1544 #
1545 # Features:
1546 # @unstable: This command is meant for debugging.
1547 #
1548 # Returns: system ramblock information
1549 #
1550 # Since: 6.2
1551 ##
1552 { 'command': 'x-query-ramblock',
1553 'returns': 'HumanReadableText',
1554 'features': [ 'unstable' ] }
1555
1556 ##
1557 # @x-query-rdma:
1558 #
1559 # Query RDMA state
1560 #
1561 # Features:
1562 # @unstable: This command is meant for debugging.
1563 #
1564 # Returns: RDMA state
1565 #
1566 # Since: 6.2
1567 ##
1568 { 'command': 'x-query-rdma',
1569 'returns': 'HumanReadableText',
1570 'features': [ 'unstable' ] }
1571
1572 ##
1573 # @x-query-roms:
1574 #
1575 # Query information on the registered ROMS
1576 #
1577 # Features:
1578 # @unstable: This command is meant for debugging.
1579 #
1580 # Returns: registered ROMs
1581 #
1582 # Since: 6.2
1583 ##
1584 { 'command': 'x-query-roms',
1585 'returns': 'HumanReadableText',
1586 'features': [ 'unstable' ] }
1587
1588 ##
1589 # @x-query-usb:
1590 #
1591 # Query information on the USB devices
1592 #
1593 # Features:
1594 # @unstable: This command is meant for debugging.
1595 #
1596 # Returns: USB device information
1597 #
1598 # Since: 6.2
1599 ##
1600 { 'command': 'x-query-usb',
1601 'returns': 'HumanReadableText',
1602 'features': [ 'unstable' ] }
1603
1604 ##
1605 # @SmbiosEntryPointType:
1606 #
1607 # @32: SMBIOS version 2.1 (32-bit) Entry Point
1608 #
1609 # @64: SMBIOS version 3.0 (64-bit) Entry Point
1610 #
1611 # Since: 7.0
1612 ##
1613 { 'enum': 'SmbiosEntryPointType',
1614 'data': [ '32', '64' ] }
1615
1616 ##
1617 # @MemorySizeConfiguration:
1618 #
1619 # Schema for memory size configuration.
1620 #
1621 # @size: memory size in bytes
1622 #
1623 # @max-size: maximum hotpluggable memory size in bytes
1624 #
1625 # @slots: number of available memory slots for hotplug
1626 #
1627 # Since: 7.1
1628 ##
1629 { 'struct': 'MemorySizeConfiguration', 'data': {
1630 '*size': 'size',
1631 '*max-size': 'size',
1632 '*slots': 'uint64' } }