]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/machine.json
qapi: fix example of query-hotpluggable-cpus command
[mirror_qemu.git] / qapi / machine.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
6
7 ##
8 # = Machines
9 ##
10
11 { 'include': 'common.json' }
12
13 ##
14 # @SysEmuTarget:
15 #
16 # The comprehensive enumeration of QEMU system emulation ("softmmu")
17 # targets. Run "./configure --help" in the project root directory, and
18 # look for the \*-softmmu targets near the "--target-list" option. The
19 # individual target constants are not documented here, for the time
20 # being.
21 #
22 # @rx: since 5.0
23 # @avr: since 5.1
24 #
25 # Notes: The resulting QMP strings can be appended to the "qemu-system-"
26 # prefix to produce the corresponding QEMU executable name. This
27 # is true even for "qemu-system-x86_64".
28 #
29 # Since: 3.0
30 ##
31 { 'enum' : 'SysEmuTarget',
32 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
33 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
34 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
35 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
36 'sh4eb', 'sparc', 'sparc64', 'tricore',
37 'x86_64', 'xtensa', 'xtensaeb' ] }
38
39 ##
40 # @CpuS390State:
41 #
42 # An enumeration of cpu states that can be assumed by a virtual
43 # S390 CPU
44 #
45 # Since: 2.12
46 ##
47 { 'enum': 'CpuS390State',
48 'prefix': 'S390_CPU_STATE',
49 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
50
51 ##
52 # @CpuInfoS390:
53 #
54 # Additional information about a virtual S390 CPU
55 #
56 # @cpu-state: the virtual CPU's state
57 #
58 # Since: 2.12
59 ##
60 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
61
62 ##
63 # @CpuInfoFast:
64 #
65 # Information about a virtual CPU
66 #
67 # @cpu-index: index of the virtual CPU
68 #
69 # @qom-path: path to the CPU object in the QOM tree
70 #
71 # @thread-id: ID of the underlying host thread
72 #
73 # @props: properties describing to which node/socket/core/thread
74 # virtual CPU belongs to, provided if supported by board
75 #
76 # @target: the QEMU system emulation target, which determines which
77 # additional fields will be listed (since 3.0)
78 #
79 # Since: 2.12
80 ##
81 { 'union' : 'CpuInfoFast',
82 'base' : { 'cpu-index' : 'int',
83 'qom-path' : 'str',
84 'thread-id' : 'int',
85 '*props' : 'CpuInstanceProperties',
86 'target' : 'SysEmuTarget' },
87 'discriminator' : 'target',
88 'data' : { 's390x' : 'CpuInfoS390' } }
89
90 ##
91 # @query-cpus-fast:
92 #
93 # Returns information about all virtual CPUs.
94 #
95 # Returns: list of @CpuInfoFast
96 #
97 # Since: 2.12
98 #
99 # Example:
100 #
101 # -> { "execute": "query-cpus-fast" }
102 # <- { "return": [
103 # {
104 # "thread-id": 25627,
105 # "props": {
106 # "core-id": 0,
107 # "thread-id": 0,
108 # "socket-id": 0
109 # },
110 # "qom-path": "/machine/unattached/device[0]",
111 # "target":"x86_64",
112 # "cpu-index": 0
113 # },
114 # {
115 # "thread-id": 25628,
116 # "props": {
117 # "core-id": 0,
118 # "thread-id": 0,
119 # "socket-id": 1
120 # },
121 # "qom-path": "/machine/unattached/device[2]",
122 # "target":"x86_64",
123 # "cpu-index": 1
124 # }
125 # ]
126 # }
127 ##
128 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
129
130 ##
131 # @MachineInfo:
132 #
133 # Information describing a machine.
134 #
135 # @name: the name of the machine
136 #
137 # @alias: an alias for the machine name
138 #
139 # @is-default: whether the machine is default
140 #
141 # @cpu-max: maximum number of CPUs supported by the machine type
142 # (since 1.5)
143 #
144 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
145 #
146 # @numa-mem-supported: true if '-numa node,mem' option is supported by
147 # the machine type and false otherwise (since 4.1)
148 #
149 # @deprecated: if true, the machine type is deprecated and may be removed
150 # in future versions of QEMU according to the QEMU deprecation
151 # policy (since 4.1)
152 #
153 # @default-cpu-type: default CPU model typename if none is requested via
154 # the -cpu argument. (since 4.2)
155 #
156 # @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
157 #
158 # Since: 1.2
159 ##
160 { 'struct': 'MachineInfo',
161 'data': { 'name': 'str', '*alias': 'str',
162 '*is-default': 'bool', 'cpu-max': 'int',
163 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
164 'deprecated': 'bool', '*default-cpu-type': 'str',
165 '*default-ram-id': 'str' } }
166
167 ##
168 # @query-machines:
169 #
170 # Return a list of supported machines
171 #
172 # Returns: a list of MachineInfo
173 #
174 # Since: 1.2
175 ##
176 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
177
178 ##
179 # @CurrentMachineParams:
180 #
181 # Information describing the running machine parameters.
182 #
183 # @wakeup-suspend-support: true if the machine supports wake up from
184 # suspend
185 #
186 # Since: 4.0
187 ##
188 { 'struct': 'CurrentMachineParams',
189 'data': { 'wakeup-suspend-support': 'bool'} }
190
191 ##
192 # @query-current-machine:
193 #
194 # Return information on the current virtual machine.
195 #
196 # Returns: CurrentMachineParams
197 #
198 # Since: 4.0
199 ##
200 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
201
202 ##
203 # @TargetInfo:
204 #
205 # Information describing the QEMU target.
206 #
207 # @arch: the target architecture
208 #
209 # Since: 1.2
210 ##
211 { 'struct': 'TargetInfo',
212 'data': { 'arch': 'SysEmuTarget' } }
213
214 ##
215 # @query-target:
216 #
217 # Return information about the target for this QEMU
218 #
219 # Returns: TargetInfo
220 #
221 # Since: 1.2
222 ##
223 { 'command': 'query-target', 'returns': 'TargetInfo' }
224
225 ##
226 # @UuidInfo:
227 #
228 # Guest UUID information (Universally Unique Identifier).
229 #
230 # @UUID: the UUID of the guest
231 #
232 # Since: 0.14
233 #
234 # Notes: If no UUID was specified for the guest, a null UUID is returned.
235 ##
236 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
237
238 ##
239 # @query-uuid:
240 #
241 # Query the guest UUID information.
242 #
243 # Returns: The @UuidInfo for the guest
244 #
245 # Since: 0.14
246 #
247 # Example:
248 #
249 # -> { "execute": "query-uuid" }
250 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
251 #
252 ##
253 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
254
255 ##
256 # @GuidInfo:
257 #
258 # GUID information.
259 #
260 # @guid: the globally unique identifier
261 #
262 # Since: 2.9
263 ##
264 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
265
266 ##
267 # @query-vm-generation-id:
268 #
269 # Show Virtual Machine Generation ID
270 #
271 # Since: 2.9
272 ##
273 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
274
275 ##
276 # @system_reset:
277 #
278 # Performs a hard reset of a guest.
279 #
280 # Since: 0.14
281 #
282 # Example:
283 #
284 # -> { "execute": "system_reset" }
285 # <- { "return": {} }
286 #
287 ##
288 { 'command': 'system_reset' }
289
290 ##
291 # @system_powerdown:
292 #
293 # Requests that a guest perform a powerdown operation.
294 #
295 # Since: 0.14
296 #
297 # Notes: A guest may or may not respond to this command. This command
298 # returning does not indicate that a guest has accepted the request or
299 # that it has shut down. Many guests will respond to this command by
300 # prompting the user in some way.
301 #
302 # Example:
303 #
304 # -> { "execute": "system_powerdown" }
305 # <- { "return": {} }
306 #
307 ##
308 { 'command': 'system_powerdown' }
309
310 ##
311 # @system_wakeup:
312 #
313 # Wake up guest from suspend. If the guest has wake-up from suspend
314 # support enabled (wakeup-suspend-support flag from
315 # query-current-machine), wake-up guest from suspend if the guest is
316 # in SUSPENDED state. Return an error otherwise.
317 #
318 # Since: 1.1
319 #
320 # Returns: nothing.
321 #
322 # Note: prior to 4.0, this command does nothing in case the guest
323 # isn't suspended.
324 #
325 # Example:
326 #
327 # -> { "execute": "system_wakeup" }
328 # <- { "return": {} }
329 #
330 ##
331 { 'command': 'system_wakeup' }
332
333 ##
334 # @LostTickPolicy:
335 #
336 # Policy for handling lost ticks in timer devices. Ticks end up getting
337 # lost when, for example, the guest is paused.
338 #
339 # @discard: throw away the missed ticks and continue with future injection
340 # normally. The guest OS will see the timer jump ahead by a
341 # potentially quite significant amount all at once, as if the
342 # intervening chunk of time had simply not existed; needless to
343 # say, such a sudden jump can easily confuse a guest OS which is
344 # not specifically prepared to deal with it. Assuming the guest
345 # OS can deal correctly with the time jump, the time in the guest
346 # and in the host should now match.
347 #
348 # @delay: continue to deliver ticks at the normal rate. The guest OS will
349 # not notice anything is amiss, as from its point of view time will
350 # have continued to flow normally. The time in the guest should now
351 # be behind the time in the host by exactly the amount of time during
352 # which ticks have been missed.
353 #
354 # @slew: deliver ticks at a higher rate to catch up with the missed ticks.
355 # The guest OS will not notice anything is amiss, as from its point
356 # of view time will have continued to flow normally. Once the timer
357 # has managed to catch up with all the missing ticks, the time in
358 # the guest and in the host should match.
359 #
360 # Since: 2.0
361 ##
362 { 'enum': 'LostTickPolicy',
363 'data': ['discard', 'delay', 'slew' ] }
364
365 ##
366 # @inject-nmi:
367 #
368 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
369 # The command fails when the guest doesn't support injecting.
370 #
371 # Returns: If successful, nothing
372 #
373 # Since: 0.14
374 #
375 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
376 #
377 # Example:
378 #
379 # -> { "execute": "inject-nmi" }
380 # <- { "return": {} }
381 #
382 ##
383 { 'command': 'inject-nmi' }
384
385 ##
386 # @KvmInfo:
387 #
388 # Information about support for KVM acceleration
389 #
390 # @enabled: true if KVM acceleration is active
391 #
392 # @present: true if KVM acceleration is built into this executable
393 #
394 # Since: 0.14
395 ##
396 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
397
398 ##
399 # @query-kvm:
400 #
401 # Returns information about KVM acceleration
402 #
403 # Returns: @KvmInfo
404 #
405 # Since: 0.14
406 #
407 # Example:
408 #
409 # -> { "execute": "query-kvm" }
410 # <- { "return": { "enabled": true, "present": true } }
411 #
412 ##
413 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
414
415 ##
416 # @NumaOptionsType:
417 #
418 # @node: NUMA nodes configuration
419 #
420 # @dist: NUMA distance configuration (since 2.10)
421 #
422 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
423 #
424 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
425 #
426 # @hmat-cache: memory side cache information (Since: 5.0)
427 #
428 # Since: 2.1
429 ##
430 { 'enum': 'NumaOptionsType',
431 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
432
433 ##
434 # @NumaOptions:
435 #
436 # A discriminated record of NUMA options. (for OptsVisitor)
437 #
438 # Since: 2.1
439 ##
440 { 'union': 'NumaOptions',
441 'base': { 'type': 'NumaOptionsType' },
442 'discriminator': 'type',
443 'data': {
444 'node': 'NumaNodeOptions',
445 'dist': 'NumaDistOptions',
446 'cpu': 'NumaCpuOptions',
447 'hmat-lb': 'NumaHmatLBOptions',
448 'hmat-cache': 'NumaHmatCacheOptions' }}
449
450 ##
451 # @NumaNodeOptions:
452 #
453 # Create a guest NUMA node. (for OptsVisitor)
454 #
455 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
456 #
457 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
458 # if omitted)
459 #
460 # @mem: memory size of this node; mutually exclusive with @memdev.
461 # Equally divide total memory among nodes if both @mem and @memdev are
462 # omitted.
463 #
464 # @memdev: memory backend object. If specified for one node,
465 # it must be specified for all nodes.
466 #
467 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
468 # points to the nodeid which has the memory controller
469 # responsible for this NUMA node. This field provides
470 # additional information as to the initiator node that
471 # is closest (as in directly attached) to this node, and
472 # therefore has the best performance (since 5.0)
473 #
474 # Since: 2.1
475 ##
476 { 'struct': 'NumaNodeOptions',
477 'data': {
478 '*nodeid': 'uint16',
479 '*cpus': ['uint16'],
480 '*mem': 'size',
481 '*memdev': 'str',
482 '*initiator': 'uint16' }}
483
484 ##
485 # @NumaDistOptions:
486 #
487 # Set the distance between 2 NUMA nodes.
488 #
489 # @src: source NUMA node.
490 #
491 # @dst: destination NUMA node.
492 #
493 # @val: NUMA distance from source node to destination node.
494 # When a node is unreachable from another node, set the distance
495 # between them to 255.
496 #
497 # Since: 2.10
498 ##
499 { 'struct': 'NumaDistOptions',
500 'data': {
501 'src': 'uint16',
502 'dst': 'uint16',
503 'val': 'uint8' }}
504
505 ##
506 # @CXLFixedMemoryWindowOptions:
507 #
508 # Create a CXL Fixed Memory Window
509 #
510 # @size: Size of the Fixed Memory Window in bytes. Must be a multiple
511 # of 256MiB.
512 # @interleave-granularity: Number of contiguous bytes for which
513 # accesses will go to a given interleave target.
514 # Accepted values [256, 512, 1k, 2k, 4k, 8k, 16k]
515 # @targets: Target root bridge IDs from -device ...,id=<ID> for each root
516 # bridge.
517 #
518 # Since 7.1
519 ##
520 { 'struct': 'CXLFixedMemoryWindowOptions',
521 'data': {
522 'size': 'size',
523 '*interleave-granularity': 'size',
524 'targets': ['str'] }}
525
526 ##
527 # @CXLFMWProperties:
528 #
529 # List of CXL Fixed Memory Windows.
530 #
531 # @cxl-fmw: List of CXLFixedMemoryWindowOptions
532 #
533 # Since 7.1
534 ##
535 { 'struct' : 'CXLFMWProperties',
536 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
537 }
538
539 ##
540 # @X86CPURegister32:
541 #
542 # A X86 32-bit register
543 #
544 # Since: 1.5
545 ##
546 { 'enum': 'X86CPURegister32',
547 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
548
549 ##
550 # @X86CPUFeatureWordInfo:
551 #
552 # Information about a X86 CPU feature word
553 #
554 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
555 #
556 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
557 # feature word
558 #
559 # @cpuid-register: Output register containing the feature bits
560 #
561 # @features: value of output register, containing the feature bits
562 #
563 # Since: 1.5
564 ##
565 { 'struct': 'X86CPUFeatureWordInfo',
566 'data': { 'cpuid-input-eax': 'int',
567 '*cpuid-input-ecx': 'int',
568 'cpuid-register': 'X86CPURegister32',
569 'features': 'int' } }
570
571 ##
572 # @DummyForceArrays:
573 #
574 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
575 #
576 # Since: 2.5
577 ##
578 { 'struct': 'DummyForceArrays',
579 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
580
581 ##
582 # @NumaCpuOptions:
583 #
584 # Option "-numa cpu" overrides default cpu to node mapping.
585 # It accepts the same set of cpu properties as returned by
586 # query-hotpluggable-cpus[].props, where node-id could be used to
587 # override default node mapping.
588 #
589 # Since: 2.10
590 ##
591 { 'struct': 'NumaCpuOptions',
592 'base': 'CpuInstanceProperties',
593 'data' : {} }
594
595 ##
596 # @HmatLBMemoryHierarchy:
597 #
598 # The memory hierarchy in the System Locality Latency and Bandwidth
599 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
600 #
601 # For more information about @HmatLBMemoryHierarchy, see chapter
602 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
603 #
604 # @memory: the structure represents the memory performance
605 #
606 # @first-level: first level of memory side cache
607 #
608 # @second-level: second level of memory side cache
609 #
610 # @third-level: third level of memory side cache
611 #
612 # Since: 5.0
613 ##
614 { 'enum': 'HmatLBMemoryHierarchy',
615 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
616
617 ##
618 # @HmatLBDataType:
619 #
620 # Data type in the System Locality Latency and Bandwidth
621 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
622 #
623 # For more information about @HmatLBDataType, see chapter
624 # 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec.
625 #
626 # @access-latency: access latency (nanoseconds)
627 #
628 # @read-latency: read latency (nanoseconds)
629 #
630 # @write-latency: write latency (nanoseconds)
631 #
632 # @access-bandwidth: access bandwidth (Bytes per second)
633 #
634 # @read-bandwidth: read bandwidth (Bytes per second)
635 #
636 # @write-bandwidth: write bandwidth (Bytes per second)
637 #
638 # Since: 5.0
639 ##
640 { 'enum': 'HmatLBDataType',
641 'data': [ 'access-latency', 'read-latency', 'write-latency',
642 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
643
644 ##
645 # @NumaHmatLBOptions:
646 #
647 # Set the system locality latency and bandwidth information
648 # between Initiator and Target proximity Domains.
649 #
650 # For more information about @NumaHmatLBOptions, see chapter
651 # 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
652 #
653 # @initiator: the Initiator Proximity Domain.
654 #
655 # @target: the Target Proximity Domain.
656 #
657 # @hierarchy: the Memory Hierarchy. Indicates the performance
658 # of memory or side cache.
659 #
660 # @data-type: presents the type of data, access/read/write
661 # latency or hit latency.
662 #
663 # @latency: the value of latency from @initiator to @target
664 # proximity domain, the latency unit is "ns(nanosecond)".
665 #
666 # @bandwidth: the value of bandwidth between @initiator and @target
667 # proximity domain, the bandwidth unit is
668 # "Bytes per second".
669 #
670 # Since: 5.0
671 ##
672 { 'struct': 'NumaHmatLBOptions',
673 'data': {
674 'initiator': 'uint16',
675 'target': 'uint16',
676 'hierarchy': 'HmatLBMemoryHierarchy',
677 'data-type': 'HmatLBDataType',
678 '*latency': 'uint64',
679 '*bandwidth': 'size' }}
680
681 ##
682 # @HmatCacheAssociativity:
683 #
684 # Cache associativity in the Memory Side Cache Information Structure
685 # of HMAT
686 #
687 # For more information of @HmatCacheAssociativity, see chapter
688 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
689 #
690 # @none: None (no memory side cache in this proximity domain,
691 # or cache associativity unknown)
692 #
693 # @direct: Direct Mapped
694 #
695 # @complex: Complex Cache Indexing (implementation specific)
696 #
697 # Since: 5.0
698 ##
699 { 'enum': 'HmatCacheAssociativity',
700 'data': [ 'none', 'direct', 'complex' ] }
701
702 ##
703 # @HmatCacheWritePolicy:
704 #
705 # Cache write policy in the Memory Side Cache Information Structure
706 # of HMAT
707 #
708 # For more information of @HmatCacheWritePolicy, see chapter
709 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
710 #
711 # @none: None (no memory side cache in this proximity domain,
712 # or cache write policy unknown)
713 #
714 # @write-back: Write Back (WB)
715 #
716 # @write-through: Write Through (WT)
717 #
718 # Since: 5.0
719 ##
720 { 'enum': 'HmatCacheWritePolicy',
721 'data': [ 'none', 'write-back', 'write-through' ] }
722
723 ##
724 # @NumaHmatCacheOptions:
725 #
726 # Set the memory side cache information for a given memory domain.
727 #
728 # For more information of @NumaHmatCacheOptions, see chapter
729 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
730 #
731 # @node-id: the memory proximity domain to which the memory belongs.
732 #
733 # @size: the size of memory side cache in bytes.
734 #
735 # @level: the cache level described in this structure.
736 #
737 # @associativity: the cache associativity,
738 # none/direct-mapped/complex(complex cache indexing).
739 #
740 # @policy: the write policy, none/write-back/write-through.
741 #
742 # @line: the cache Line size in bytes.
743 #
744 # Since: 5.0
745 ##
746 { 'struct': 'NumaHmatCacheOptions',
747 'data': {
748 'node-id': 'uint32',
749 'size': 'size',
750 'level': 'uint8',
751 'associativity': 'HmatCacheAssociativity',
752 'policy': 'HmatCacheWritePolicy',
753 'line': 'uint16' }}
754
755 ##
756 # @memsave:
757 #
758 # Save a portion of guest memory to a file.
759 #
760 # @val: the virtual address of the guest to start from
761 #
762 # @size: the size of memory region to save
763 #
764 # @filename: the file to save the memory to as binary data
765 #
766 # @cpu-index: the index of the virtual CPU to use for translating the
767 # virtual address (defaults to CPU 0)
768 #
769 # Returns: Nothing on success
770 #
771 # Since: 0.14
772 #
773 # Notes: Errors were not reliably returned until 1.1
774 #
775 # Example:
776 #
777 # -> { "execute": "memsave",
778 # "arguments": { "val": 10,
779 # "size": 100,
780 # "filename": "/tmp/virtual-mem-dump" } }
781 # <- { "return": {} }
782 #
783 ##
784 { 'command': 'memsave',
785 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
786
787 ##
788 # @pmemsave:
789 #
790 # Save a portion of guest physical memory to a file.
791 #
792 # @val: the physical address of the guest to start from
793 #
794 # @size: the size of memory region to save
795 #
796 # @filename: the file to save the memory to as binary data
797 #
798 # Returns: Nothing on success
799 #
800 # Since: 0.14
801 #
802 # Notes: Errors were not reliably returned until 1.1
803 #
804 # Example:
805 #
806 # -> { "execute": "pmemsave",
807 # "arguments": { "val": 10,
808 # "size": 100,
809 # "filename": "/tmp/physical-mem-dump" } }
810 # <- { "return": {} }
811 #
812 ##
813 { 'command': 'pmemsave',
814 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
815
816 ##
817 # @Memdev:
818 #
819 # Information about memory backend
820 #
821 # @id: backend's ID if backend has 'id' property (since 2.9)
822 #
823 # @size: memory backend size
824 #
825 # @merge: whether memory merge support is enabled
826 #
827 # @dump: whether memory backend's memory is included in a core dump
828 #
829 # @prealloc: whether memory was preallocated
830 #
831 # @share: whether memory is private to QEMU or shared (since 6.1)
832 #
833 # @reserve: whether swap space (or huge pages) was reserved if applicable.
834 # This corresponds to the user configuration and not the actual
835 # behavior implemented in the OS to perform the reservation.
836 # For example, Linux will never reserve swap space for shared
837 # file mappings. (since 6.1)
838 #
839 # @host-nodes: host nodes for its memory policy
840 #
841 # @policy: memory policy of memory backend
842 #
843 # Since: 2.1
844 ##
845 { 'struct': 'Memdev',
846 'data': {
847 '*id': 'str',
848 'size': 'size',
849 'merge': 'bool',
850 'dump': 'bool',
851 'prealloc': 'bool',
852 'share': 'bool',
853 '*reserve': 'bool',
854 'host-nodes': ['uint16'],
855 'policy': 'HostMemPolicy' }}
856
857 ##
858 # @query-memdev:
859 #
860 # Returns information for all memory backends.
861 #
862 # Returns: a list of @Memdev.
863 #
864 # Since: 2.1
865 #
866 # Example:
867 #
868 # -> { "execute": "query-memdev" }
869 # <- { "return": [
870 # {
871 # "id": "mem1",
872 # "size": 536870912,
873 # "merge": false,
874 # "dump": true,
875 # "prealloc": false,
876 # "share": false,
877 # "host-nodes": [0, 1],
878 # "policy": "bind"
879 # },
880 # {
881 # "size": 536870912,
882 # "merge": false,
883 # "dump": true,
884 # "prealloc": true,
885 # "share": false,
886 # "host-nodes": [2, 3],
887 # "policy": "preferred"
888 # }
889 # ]
890 # }
891 #
892 ##
893 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
894
895 ##
896 # @CpuInstanceProperties:
897 #
898 # List of properties to be used for hotplugging a CPU instance,
899 # it should be passed by management with device_add command when
900 # a CPU is being hotplugged.
901 #
902 # @node-id: NUMA node ID the CPU belongs to
903 # @socket-id: socket number within node/board the CPU belongs to
904 # @die-id: die number within socket the CPU belongs to (since 4.1)
905 # @cluster-id: cluster number within die the CPU belongs to (since 7.1)
906 # @core-id: core number within cluster the CPU belongs to
907 # @thread-id: thread number within core the CPU belongs to
908 #
909 # Note: currently there are 6 properties that could be present
910 # but management should be prepared to pass through other
911 # properties with device_add command to allow for future
912 # interface extension. This also requires the filed names to be kept in
913 # sync with the properties passed to -device/device_add.
914 #
915 # Since: 2.7
916 ##
917 { 'struct': 'CpuInstanceProperties',
918 'data': { '*node-id': 'int',
919 '*socket-id': 'int',
920 '*die-id': 'int',
921 '*cluster-id': 'int',
922 '*core-id': 'int',
923 '*thread-id': 'int'
924 }
925 }
926
927 ##
928 # @HotpluggableCPU:
929 #
930 # @type: CPU object type for usage with device_add command
931 # @props: list of properties to be used for hotplugging CPU
932 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
933 # @qom-path: link to existing CPU object if CPU is present or
934 # omitted if CPU is not present.
935 #
936 # Since: 2.7
937 ##
938 { 'struct': 'HotpluggableCPU',
939 'data': { 'type': 'str',
940 'vcpus-count': 'int',
941 'props': 'CpuInstanceProperties',
942 '*qom-path': 'str'
943 }
944 }
945
946 ##
947 # @query-hotpluggable-cpus:
948 #
949 # TODO: Better documentation; currently there is none.
950 #
951 # Returns: a list of HotpluggableCPU objects.
952 #
953 # Since: 2.7
954 #
955 # Example:
956 #
957 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
958 #
959 # -> { "execute": "query-hotpluggable-cpus" }
960 # <- {"return": [
961 # { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
962 # "vcpus-count": 1 },
963 # { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
964 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
965 # ]}'
966 #
967 # For pc machine type started with -smp 1,maxcpus=2:
968 #
969 # -> { "execute": "query-hotpluggable-cpus" }
970 # <- {"return": [
971 # {
972 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
973 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
974 # },
975 # {
976 # "qom-path": "/machine/unattached/device[0]",
977 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
978 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
979 # }
980 # ]}
981 #
982 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
983 # (Since: 2.11):
984 #
985 # -> { "execute": "query-hotpluggable-cpus" }
986 # <- {"return": [
987 # {
988 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
989 # "props": { "core-id": 1 }
990 # },
991 # {
992 # "qom-path": "/machine/unattached/device[0]",
993 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
994 # "props": { "core-id": 0 }
995 # }
996 # ]}
997 #
998 ##
999 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1000 'allow-preconfig': true }
1001
1002 ##
1003 # @set-numa-node:
1004 #
1005 # Runtime equivalent of '-numa' CLI option, available at
1006 # preconfigure stage to configure numa mapping before initializing
1007 # machine.
1008 #
1009 # Since: 3.0
1010 ##
1011 { 'command': 'set-numa-node', 'boxed': true,
1012 'data': 'NumaOptions',
1013 'allow-preconfig': true
1014 }
1015
1016 ##
1017 # @balloon:
1018 #
1019 # Request the balloon driver to change its balloon size.
1020 #
1021 # @value: the target logical size of the VM in bytes.
1022 # We can deduce the size of the balloon using this formula:
1023 #
1024 # logical_vm_size = vm_ram_size - balloon_size
1025 #
1026 # From it we have: balloon_size = vm_ram_size - @value
1027 #
1028 # Returns: - Nothing on success
1029 # - If the balloon driver is enabled but not functional because the KVM
1030 # kernel module cannot support it, KvmMissingCap
1031 # - If no balloon device is present, DeviceNotActive
1032 #
1033 # Notes: This command just issues a request to the guest. When it returns,
1034 # the balloon size may not have changed. A guest can change the balloon
1035 # size independent of this command.
1036 #
1037 # Since: 0.14
1038 #
1039 # Example:
1040 #
1041 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1042 # <- { "return": {} }
1043 #
1044 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1045 #
1046 ##
1047 { 'command': 'balloon', 'data': {'value': 'int'} }
1048
1049 ##
1050 # @BalloonInfo:
1051 #
1052 # Information about the guest balloon device.
1053 #
1054 # @actual: the logical size of the VM in bytes
1055 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1056 #
1057 # Since: 0.14
1058 ##
1059 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1060
1061 ##
1062 # @query-balloon:
1063 #
1064 # Return information about the balloon device.
1065 #
1066 # Returns: - @BalloonInfo on success
1067 # - If the balloon driver is enabled but not functional because the KVM
1068 # kernel module cannot support it, KvmMissingCap
1069 # - If no balloon device is present, DeviceNotActive
1070 #
1071 # Since: 0.14
1072 #
1073 # Example:
1074 #
1075 # -> { "execute": "query-balloon" }
1076 # <- { "return": {
1077 # "actual": 1073741824
1078 # }
1079 # }
1080 #
1081 ##
1082 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1083
1084 ##
1085 # @BALLOON_CHANGE:
1086 #
1087 # Emitted when the guest changes the actual BALLOON level. This value is
1088 # equivalent to the @actual field return by the 'query-balloon' command
1089 #
1090 # @actual: the logical size of the VM in bytes
1091 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1092 #
1093 # Note: this event is rate-limited.
1094 #
1095 # Since: 1.2
1096 #
1097 # Example:
1098 #
1099 # <- { "event": "BALLOON_CHANGE",
1100 # "data": { "actual": 944766976 },
1101 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1102 #
1103 ##
1104 { 'event': 'BALLOON_CHANGE',
1105 'data': { 'actual': 'int' } }
1106
1107 ##
1108 # @MemoryInfo:
1109 #
1110 # Actual memory information in bytes.
1111 #
1112 # @base-memory: size of "base" memory specified with command line
1113 # option -m.
1114 #
1115 # @plugged-memory: size of memory that can be hot-unplugged. This field
1116 # is omitted if target doesn't support memory hotplug
1117 # (i.e. CONFIG_MEM_DEVICE not defined at build time).
1118 #
1119 # Since: 2.11
1120 ##
1121 { 'struct': 'MemoryInfo',
1122 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1123
1124 ##
1125 # @query-memory-size-summary:
1126 #
1127 # Return the amount of initially allocated and present hotpluggable (if
1128 # enabled) memory in bytes.
1129 #
1130 # Example:
1131 #
1132 # -> { "execute": "query-memory-size-summary" }
1133 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1134 #
1135 # Since: 2.11
1136 ##
1137 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1138
1139 ##
1140 # @PCDIMMDeviceInfo:
1141 #
1142 # PCDIMMDevice state information
1143 #
1144 # @id: device's ID
1145 #
1146 # @addr: physical address, where device is mapped
1147 #
1148 # @size: size of memory that the device provides
1149 #
1150 # @slot: slot number at which device is plugged in
1151 #
1152 # @node: NUMA node number where device is plugged in
1153 #
1154 # @memdev: memory backend linked with device
1155 #
1156 # @hotplugged: true if device was hotplugged
1157 #
1158 # @hotpluggable: true if device if could be added/removed while machine is running
1159 #
1160 # Since: 2.1
1161 ##
1162 { 'struct': 'PCDIMMDeviceInfo',
1163 'data': { '*id': 'str',
1164 'addr': 'int',
1165 'size': 'int',
1166 'slot': 'int',
1167 'node': 'int',
1168 'memdev': 'str',
1169 'hotplugged': 'bool',
1170 'hotpluggable': 'bool'
1171 }
1172 }
1173
1174 ##
1175 # @VirtioPMEMDeviceInfo:
1176 #
1177 # VirtioPMEM state information
1178 #
1179 # @id: device's ID
1180 #
1181 # @memaddr: physical address in memory, where device is mapped
1182 #
1183 # @size: size of memory that the device provides
1184 #
1185 # @memdev: memory backend linked with device
1186 #
1187 # Since: 4.1
1188 ##
1189 { 'struct': 'VirtioPMEMDeviceInfo',
1190 'data': { '*id': 'str',
1191 'memaddr': 'size',
1192 'size': 'size',
1193 'memdev': 'str'
1194 }
1195 }
1196
1197 ##
1198 # @VirtioMEMDeviceInfo:
1199 #
1200 # VirtioMEMDevice state information
1201 #
1202 # @id: device's ID
1203 #
1204 # @memaddr: physical address in memory, where device is mapped
1205 #
1206 # @requested-size: the user requested size of the device
1207 #
1208 # @size: the (current) size of memory that the device provides
1209 #
1210 # @max-size: the maximum size of memory that the device can provide
1211 #
1212 # @block-size: the block size of memory that the device provides
1213 #
1214 # @node: NUMA node number where device is assigned to
1215 #
1216 # @memdev: memory backend linked with the region
1217 #
1218 # Since: 5.1
1219 ##
1220 { 'struct': 'VirtioMEMDeviceInfo',
1221 'data': { '*id': 'str',
1222 'memaddr': 'size',
1223 'requested-size': 'size',
1224 'size': 'size',
1225 'max-size': 'size',
1226 'block-size': 'size',
1227 'node': 'int',
1228 'memdev': 'str'
1229 }
1230 }
1231
1232 ##
1233 # @SgxEPCDeviceInfo:
1234 #
1235 # Sgx EPC state information
1236 #
1237 # @id: device's ID
1238 #
1239 # @memaddr: physical address in memory, where device is mapped
1240 #
1241 # @size: size of memory that the device provides
1242 #
1243 # @memdev: memory backend linked with device
1244 #
1245 # @node: the numa node (Since: 7.0)
1246 #
1247 # Since: 6.2
1248 ##
1249 { 'struct': 'SgxEPCDeviceInfo',
1250 'data': { '*id': 'str',
1251 'memaddr': 'size',
1252 'size': 'size',
1253 'node': 'int',
1254 'memdev': 'str'
1255 }
1256 }
1257
1258 ##
1259 # @MemoryDeviceInfoKind:
1260 #
1261 # Since: 2.1
1262 ##
1263 { 'enum': 'MemoryDeviceInfoKind',
1264 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1265
1266 ##
1267 # @PCDIMMDeviceInfoWrapper:
1268 #
1269 # Since: 2.1
1270 ##
1271 { 'struct': 'PCDIMMDeviceInfoWrapper',
1272 'data': { 'data': 'PCDIMMDeviceInfo' } }
1273
1274 ##
1275 # @VirtioPMEMDeviceInfoWrapper:
1276 #
1277 # Since: 2.1
1278 ##
1279 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
1280 'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1281
1282 ##
1283 # @VirtioMEMDeviceInfoWrapper:
1284 #
1285 # Since: 2.1
1286 ##
1287 { 'struct': 'VirtioMEMDeviceInfoWrapper',
1288 'data': { 'data': 'VirtioMEMDeviceInfo' } }
1289
1290 ##
1291 # @SgxEPCDeviceInfoWrapper:
1292 #
1293 # Since: 6.2
1294 ##
1295 { 'struct': 'SgxEPCDeviceInfoWrapper',
1296 'data': { 'data': 'SgxEPCDeviceInfo' } }
1297
1298 ##
1299 # @MemoryDeviceInfo:
1300 #
1301 # Union containing information about a memory device
1302 #
1303 # nvdimm is included since 2.12. virtio-pmem is included since 4.1.
1304 # virtio-mem is included since 5.1. sgx-epc is included since 6.2.
1305 #
1306 # Since: 2.1
1307 ##
1308 { 'union': 'MemoryDeviceInfo',
1309 'base': { 'type': 'MemoryDeviceInfoKind' },
1310 'discriminator': 'type',
1311 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1312 'nvdimm': 'PCDIMMDeviceInfoWrapper',
1313 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1314 'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1315 'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1316 }
1317 }
1318
1319 ##
1320 # @SgxEPC:
1321 #
1322 # Sgx EPC cmdline information
1323 #
1324 # @memdev: memory backend linked with device
1325 #
1326 # @node: the numa node (Since: 7.0)
1327 #
1328 # Since: 6.2
1329 ##
1330 { 'struct': 'SgxEPC',
1331 'data': { 'memdev': 'str',
1332 'node': 'int'
1333 }
1334 }
1335
1336 ##
1337 # @SgxEPCProperties:
1338 #
1339 # SGX properties of machine types.
1340 #
1341 # @sgx-epc: list of ids of memory-backend-epc objects.
1342 #
1343 # Since: 6.2
1344 ##
1345 { 'struct': 'SgxEPCProperties',
1346 'data': { 'sgx-epc': ['SgxEPC'] }
1347 }
1348
1349 ##
1350 # @query-memory-devices:
1351 #
1352 # Lists available memory devices and their state
1353 #
1354 # Since: 2.1
1355 #
1356 # Example:
1357 #
1358 # -> { "execute": "query-memory-devices" }
1359 # <- { "return": [ { "data":
1360 # { "addr": 5368709120,
1361 # "hotpluggable": true,
1362 # "hotplugged": true,
1363 # "id": "d1",
1364 # "memdev": "/objects/memX",
1365 # "node": 0,
1366 # "size": 1073741824,
1367 # "slot": 0},
1368 # "type": "dimm"
1369 # } ] }
1370 #
1371 ##
1372 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1373
1374 ##
1375 # @MEMORY_DEVICE_SIZE_CHANGE:
1376 #
1377 # Emitted when the size of a memory device changes. Only emitted for memory
1378 # devices that can actually change the size (e.g., virtio-mem due to guest
1379 # action).
1380 #
1381 # @id: device's ID
1382 #
1383 # @size: the new size of memory that the device provides
1384 #
1385 # @qom-path: path to the device object in the QOM tree (since 6.2)
1386 #
1387 # Note: this event is rate-limited.
1388 #
1389 # Since: 5.1
1390 #
1391 # Example:
1392 #
1393 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1394 # "data": { "id": "vm0", "size": 1073741824,
1395 # "qom-path": "/machine/unattached/device[2]" },
1396 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1397 #
1398 ##
1399 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1400 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1401
1402 ##
1403 # @MEM_UNPLUG_ERROR:
1404 #
1405 # Emitted when memory hot unplug error occurs.
1406 #
1407 # @device: device name
1408 #
1409 # @msg: Informative message
1410 #
1411 # Features:
1412 # @deprecated: This event is deprecated. Use @DEVICE_UNPLUG_GUEST_ERROR
1413 # instead.
1414 #
1415 # Since: 2.4
1416 #
1417 # Example:
1418 #
1419 # <- { "event": "MEM_UNPLUG_ERROR",
1420 # "data": { "device": "dimm1",
1421 # "msg": "acpi: device unplug for unsupported device"
1422 # },
1423 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1424 #
1425 ##
1426 { 'event': 'MEM_UNPLUG_ERROR',
1427 'data': { 'device': 'str', 'msg': 'str' },
1428 'features': ['deprecated'] }
1429
1430 ##
1431 # @BootConfiguration:
1432 #
1433 # Schema for virtual machine boot configuration.
1434 #
1435 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1436 #
1437 # @once: Boot order to apply on first boot
1438 #
1439 # @menu: Whether to show a boot menu
1440 #
1441 # @splash: The name of the file to be passed to the firmware as logo picture, if @menu is true.
1442 #
1443 # @splash-time: How long to show the logo picture, in milliseconds
1444 #
1445 # @reboot-timeout: Timeout before guest reboots after boot fails
1446 #
1447 # @strict: Whether to attempt booting from devices not included in the boot order
1448 #
1449 # Since: 7.1
1450 ##
1451 { 'struct': 'BootConfiguration', 'data': {
1452 '*order': 'str',
1453 '*once': 'str',
1454 '*menu': 'bool',
1455 '*splash': 'str',
1456 '*splash-time': 'int',
1457 '*reboot-timeout': 'int',
1458 '*strict': 'bool' } }
1459
1460 ##
1461 # @SMPConfiguration:
1462 #
1463 # Schema for CPU topology configuration. A missing value lets
1464 # QEMU figure out a suitable value based on the ones that are provided.
1465 #
1466 # @cpus: number of virtual CPUs in the virtual machine
1467 #
1468 # @sockets: number of sockets in the CPU topology
1469 #
1470 # @dies: number of dies per socket in the CPU topology
1471 #
1472 # @clusters: number of clusters per die in the CPU topology (since 7.0)
1473 #
1474 # @cores: number of cores per cluster in the CPU topology
1475 #
1476 # @threads: number of threads per core in the CPU topology
1477 #
1478 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine
1479 #
1480 # Since: 6.1
1481 ##
1482 { 'struct': 'SMPConfiguration', 'data': {
1483 '*cpus': 'int',
1484 '*sockets': 'int',
1485 '*dies': 'int',
1486 '*clusters': 'int',
1487 '*cores': 'int',
1488 '*threads': 'int',
1489 '*maxcpus': 'int' } }
1490
1491 ##
1492 # @x-query-irq:
1493 #
1494 # Query interrupt statistics
1495 #
1496 # Features:
1497 # @unstable: This command is meant for debugging.
1498 #
1499 # Returns: interrupt statistics
1500 #
1501 # Since: 6.2
1502 ##
1503 { 'command': 'x-query-irq',
1504 'returns': 'HumanReadableText',
1505 'features': [ 'unstable' ] }
1506
1507 ##
1508 # @x-query-jit:
1509 #
1510 # Query TCG compiler statistics
1511 #
1512 # Features:
1513 # @unstable: This command is meant for debugging.
1514 #
1515 # Returns: TCG compiler statistics
1516 #
1517 # Since: 6.2
1518 ##
1519 { 'command': 'x-query-jit',
1520 'returns': 'HumanReadableText',
1521 'if': 'CONFIG_TCG',
1522 'features': [ 'unstable' ] }
1523
1524 ##
1525 # @x-query-numa:
1526 #
1527 # Query NUMA topology information
1528 #
1529 # Features:
1530 # @unstable: This command is meant for debugging.
1531 #
1532 # Returns: topology information
1533 #
1534 # Since: 6.2
1535 ##
1536 { 'command': 'x-query-numa',
1537 'returns': 'HumanReadableText',
1538 'features': [ 'unstable' ] }
1539
1540 ##
1541 # @x-query-opcount:
1542 #
1543 # Query TCG opcode counters
1544 #
1545 # Features:
1546 # @unstable: This command is meant for debugging.
1547 #
1548 # Returns: TCG opcode counters
1549 #
1550 # Since: 6.2
1551 ##
1552 { 'command': 'x-query-opcount',
1553 'returns': 'HumanReadableText',
1554 'if': 'CONFIG_TCG',
1555 'features': [ 'unstable' ] }
1556
1557 ##
1558 # @x-query-profile:
1559 #
1560 # Query TCG profiling information
1561 #
1562 # Features:
1563 # @unstable: This command is meant for debugging.
1564 #
1565 # Returns: profile information
1566 #
1567 # Since: 6.2
1568 ##
1569 { 'command': 'x-query-profile',
1570 'returns': 'HumanReadableText',
1571 'if': 'CONFIG_TCG',
1572 'features': [ 'unstable' ] }
1573
1574 ##
1575 # @x-query-ramblock:
1576 #
1577 # Query system ramblock information
1578 #
1579 # Features:
1580 # @unstable: This command is meant for debugging.
1581 #
1582 # Returns: system ramblock information
1583 #
1584 # Since: 6.2
1585 ##
1586 { 'command': 'x-query-ramblock',
1587 'returns': 'HumanReadableText',
1588 'features': [ 'unstable' ] }
1589
1590 ##
1591 # @x-query-rdma:
1592 #
1593 # Query RDMA state
1594 #
1595 # Features:
1596 # @unstable: This command is meant for debugging.
1597 #
1598 # Returns: RDMA state
1599 #
1600 # Since: 6.2
1601 ##
1602 { 'command': 'x-query-rdma',
1603 'returns': 'HumanReadableText',
1604 'features': [ 'unstable' ] }
1605
1606 ##
1607 # @x-query-roms:
1608 #
1609 # Query information on the registered ROMS
1610 #
1611 # Features:
1612 # @unstable: This command is meant for debugging.
1613 #
1614 # Returns: registered ROMs
1615 #
1616 # Since: 6.2
1617 ##
1618 { 'command': 'x-query-roms',
1619 'returns': 'HumanReadableText',
1620 'features': [ 'unstable' ] }
1621
1622 ##
1623 # @x-query-usb:
1624 #
1625 # Query information on the USB devices
1626 #
1627 # Features:
1628 # @unstable: This command is meant for debugging.
1629 #
1630 # Returns: USB device information
1631 #
1632 # Since: 6.2
1633 ##
1634 { 'command': 'x-query-usb',
1635 'returns': 'HumanReadableText',
1636 'features': [ 'unstable' ] }
1637
1638 ##
1639 # @SmbiosEntryPointType:
1640 #
1641 # @32: SMBIOS version 2.1 (32-bit) Entry Point
1642 #
1643 # @64: SMBIOS version 3.0 (64-bit) Entry Point
1644 #
1645 # Since: 7.0
1646 ##
1647 { 'enum': 'SmbiosEntryPointType',
1648 'data': [ '32', '64' ] }
1649
1650 ##
1651 # @MemorySizeConfiguration:
1652 #
1653 # Schema for memory size configuration.
1654 #
1655 # @size: memory size in bytes
1656 #
1657 # @max-size: maximum hotpluggable memory size in bytes
1658 #
1659 # @slots: number of available memory slots for hotplug
1660 #
1661 # Since: 7.1
1662 ##
1663 { 'struct': 'MemorySizeConfiguration', 'data': {
1664 '*size': 'size',
1665 '*max-size': 'size',
1666 '*slots': 'uint64' } }