]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/migration.json
qapi/migration: Introduce x-vcpu-dirty-limit-period parameter
[mirror_qemu.git] / qapi / migration.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4
5 ##
6 # = Migration
7 ##
8
9 { 'include': 'common.json' }
10 { 'include': 'sockets.json' }
11
12 ##
13 # @MigrationStats:
14 #
15 # Detailed migration status.
16 #
17 # @transferred: amount of bytes already transferred to the target VM
18 #
19 # @remaining: amount of bytes remaining to be transferred to the
20 # target VM
21 #
22 # @total: total amount of bytes involved in the migration process
23 #
24 # @duplicate: number of duplicate (zero) pages (since 1.2)
25 #
26 # @skipped: number of skipped zero pages (since 1.5)
27 #
28 # @normal: number of normal pages (since 1.2)
29 #
30 # @normal-bytes: number of normal bytes sent (since 1.2)
31 #
32 # @dirty-pages-rate: number of pages dirtied by second by the guest
33 # (since 1.3)
34 #
35 # @mbps: throughput in megabits/sec. (since 1.6)
36 #
37 # @dirty-sync-count: number of times that dirty ram was synchronized
38 # (since 2.1)
39 #
40 # @postcopy-requests: The number of page requests received from the
41 # destination (since 2.7)
42 #
43 # @page-size: The number of bytes per page for the various page-based
44 # statistics (since 2.10)
45 #
46 # @multifd-bytes: The number of bytes sent through multifd (since 3.0)
47 #
48 # @pages-per-second: the number of memory pages transferred per second
49 # (Since 4.0)
50 #
51 # @precopy-bytes: The number of bytes sent in the pre-copy phase
52 # (since 7.0).
53 #
54 # @downtime-bytes: The number of bytes sent while the guest is paused
55 # (since 7.0).
56 #
57 # @postcopy-bytes: The number of bytes sent during the post-copy phase
58 # (since 7.0).
59 #
60 # @dirty-sync-missed-zero-copy: Number of times dirty RAM
61 # synchronization could not avoid copying dirty pages. This is
62 # between 0 and @dirty-sync-count * @multifd-channels. (since
63 # 7.1)
64 #
65 # Since: 0.14
66 ##
67 { 'struct': 'MigrationStats',
68 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
69 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
70 'normal-bytes': 'int', 'dirty-pages-rate': 'int',
71 'mbps': 'number', 'dirty-sync-count': 'int',
72 'postcopy-requests': 'int', 'page-size': 'int',
73 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
74 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
75 'postcopy-bytes': 'uint64',
76 'dirty-sync-missed-zero-copy': 'uint64' } }
77
78 ##
79 # @XBZRLECacheStats:
80 #
81 # Detailed XBZRLE migration cache statistics
82 #
83 # @cache-size: XBZRLE cache size
84 #
85 # @bytes: amount of bytes already transferred to the target VM
86 #
87 # @pages: amount of pages transferred to the target VM
88 #
89 # @cache-miss: number of cache miss
90 #
91 # @cache-miss-rate: rate of cache miss (since 2.1)
92 #
93 # @encoding-rate: rate of encoded bytes (since 5.1)
94 #
95 # @overflow: number of overflows
96 #
97 # Since: 1.2
98 ##
99 { 'struct': 'XBZRLECacheStats',
100 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
101 'cache-miss': 'int', 'cache-miss-rate': 'number',
102 'encoding-rate': 'number', 'overflow': 'int' } }
103
104 ##
105 # @CompressionStats:
106 #
107 # Detailed migration compression statistics
108 #
109 # @pages: amount of pages compressed and transferred to the target VM
110 #
111 # @busy: count of times that no free thread was available to compress
112 # data
113 #
114 # @busy-rate: rate of thread busy
115 #
116 # @compressed-size: amount of bytes after compression
117 #
118 # @compression-rate: rate of compressed size
119 #
120 # Since: 3.1
121 ##
122 { 'struct': 'CompressionStats',
123 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
124 'compressed-size': 'int', 'compression-rate': 'number' } }
125
126 ##
127 # @MigrationStatus:
128 #
129 # An enumeration of migration status.
130 #
131 # @none: no migration has ever happened.
132 #
133 # @setup: migration process has been initiated.
134 #
135 # @cancelling: in the process of cancelling migration.
136 #
137 # @cancelled: cancelling migration is finished.
138 #
139 # @active: in the process of doing migration.
140 #
141 # @postcopy-active: like active, but now in postcopy mode. (since
142 # 2.5)
143 #
144 # @postcopy-paused: during postcopy but paused. (since 3.0)
145 #
146 # @postcopy-recover: trying to recover from a paused postcopy. (since
147 # 3.0)
148 #
149 # @completed: migration is finished.
150 #
151 # @failed: some error occurred during migration process.
152 #
153 # @colo: VM is in the process of fault tolerance, VM can not get into
154 # this state unless colo capability is enabled for migration.
155 # (since 2.8)
156 #
157 # @pre-switchover: Paused before device serialisation. (since 2.11)
158 #
159 # @device: During device serialisation when pause-before-switchover is
160 # enabled (since 2.11)
161 #
162 # @wait-unplug: wait for device unplug request by guest OS to be
163 # completed. (since 4.2)
164 #
165 # Since: 2.3
166 ##
167 { 'enum': 'MigrationStatus',
168 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
169 'active', 'postcopy-active', 'postcopy-paused',
170 'postcopy-recover', 'completed', 'failed', 'colo',
171 'pre-switchover', 'device', 'wait-unplug' ] }
172 ##
173 # @VfioStats:
174 #
175 # Detailed VFIO devices migration statistics
176 #
177 # @transferred: amount of bytes transferred to the target VM by VFIO
178 # devices
179 #
180 # Since: 5.2
181 ##
182 { 'struct': 'VfioStats',
183 'data': {'transferred': 'int' } }
184
185 ##
186 # @MigrationInfo:
187 #
188 # Information about current migration process.
189 #
190 # @status: @MigrationStatus describing the current migration status.
191 # If this field is not returned, no migration process has been
192 # initiated
193 #
194 # @ram: @MigrationStats containing detailed migration status, only
195 # returned if status is 'active' or 'completed'(since 1.2)
196 #
197 # @disk: @MigrationStats containing detailed disk migration status,
198 # only returned if status is 'active' and it is a block migration
199 #
200 # @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
201 # migration statistics, only returned if XBZRLE feature is on and
202 # status is 'active' or 'completed' (since 1.2)
203 #
204 # @total-time: total amount of milliseconds since migration started.
205 # If migration has ended, it returns the total migration time.
206 # (since 1.2)
207 #
208 # @downtime: only present when migration finishes correctly total
209 # downtime in milliseconds for the guest. (since 1.3)
210 #
211 # @expected-downtime: only present while migration is active expected
212 # downtime in milliseconds for the guest in last walk of the dirty
213 # bitmap. (since 1.3)
214 #
215 # @setup-time: amount of setup time in milliseconds *before* the
216 # iterations begin but *after* the QMP command is issued. This is
217 # designed to provide an accounting of any activities (such as
218 # RDMA pinning) which may be expensive, but do not actually occur
219 # during the iterative migration rounds themselves. (since 1.6)
220 #
221 # @cpu-throttle-percentage: percentage of time guest cpus are being
222 # throttled during auto-converge. This is only present when
223 # auto-converge has started throttling guest cpus. (Since 2.7)
224 #
225 # @error-desc: the human readable error description string, when
226 # @status is 'failed'. Clients should not attempt to parse the
227 # error strings. (Since 2.7)
228 #
229 # @postcopy-blocktime: total time when all vCPU were blocked during
230 # postcopy live migration. This is only present when the
231 # postcopy-blocktime migration capability is enabled. (Since 3.0)
232 #
233 # @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
234 # This is only present when the postcopy-blocktime migration
235 # capability is enabled. (Since 3.0)
236 #
237 # @compression: migration compression statistics, only returned if
238 # compression feature is on and status is 'active' or 'completed'
239 # (Since 3.1)
240 #
241 # @socket-address: Only used for tcp, to know what the real port is
242 # (Since 4.0)
243 #
244 # @vfio: @VfioStats containing detailed VFIO devices migration
245 # statistics, only returned if VFIO device is present, migration
246 # is supported by all VFIO devices and status is 'active' or
247 # 'completed' (since 5.2)
248 #
249 # @blocked-reasons: A list of reasons an outgoing migration is
250 # blocked. Present and non-empty when migration is blocked.
251 # (since 6.0)
252 #
253 # Since: 0.14
254 ##
255 { 'struct': 'MigrationInfo',
256 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
257 '*disk': 'MigrationStats',
258 '*vfio': 'VfioStats',
259 '*xbzrle-cache': 'XBZRLECacheStats',
260 '*total-time': 'int',
261 '*expected-downtime': 'int',
262 '*downtime': 'int',
263 '*setup-time': 'int',
264 '*cpu-throttle-percentage': 'int',
265 '*error-desc': 'str',
266 '*blocked-reasons': ['str'],
267 '*postcopy-blocktime': 'uint32',
268 '*postcopy-vcpu-blocktime': ['uint32'],
269 '*compression': 'CompressionStats',
270 '*socket-address': ['SocketAddress'] } }
271
272 ##
273 # @query-migrate:
274 #
275 # Returns information about current migration process. If migration
276 # is active there will be another json-object with RAM migration
277 # status and if block migration is active another one with block
278 # migration status.
279 #
280 # Returns: @MigrationInfo
281 #
282 # Since: 0.14
283 #
284 # Examples:
285 #
286 # 1. Before the first migration
287 #
288 # -> { "execute": "query-migrate" }
289 # <- { "return": {} }
290 #
291 # 2. Migration is done and has succeeded
292 #
293 # -> { "execute": "query-migrate" }
294 # <- { "return": {
295 # "status": "completed",
296 # "total-time":12345,
297 # "setup-time":12345,
298 # "downtime":12345,
299 # "ram":{
300 # "transferred":123,
301 # "remaining":123,
302 # "total":246,
303 # "duplicate":123,
304 # "normal":123,
305 # "normal-bytes":123456,
306 # "dirty-sync-count":15
307 # }
308 # }
309 # }
310 #
311 # 3. Migration is done and has failed
312 #
313 # -> { "execute": "query-migrate" }
314 # <- { "return": { "status": "failed" } }
315 #
316 # 4. Migration is being performed and is not a block migration:
317 #
318 # -> { "execute": "query-migrate" }
319 # <- {
320 # "return":{
321 # "status":"active",
322 # "total-time":12345,
323 # "setup-time":12345,
324 # "expected-downtime":12345,
325 # "ram":{
326 # "transferred":123,
327 # "remaining":123,
328 # "total":246,
329 # "duplicate":123,
330 # "normal":123,
331 # "normal-bytes":123456,
332 # "dirty-sync-count":15
333 # }
334 # }
335 # }
336 #
337 # 5. Migration is being performed and is a block migration:
338 #
339 # -> { "execute": "query-migrate" }
340 # <- {
341 # "return":{
342 # "status":"active",
343 # "total-time":12345,
344 # "setup-time":12345,
345 # "expected-downtime":12345,
346 # "ram":{
347 # "total":1057024,
348 # "remaining":1053304,
349 # "transferred":3720,
350 # "duplicate":123,
351 # "normal":123,
352 # "normal-bytes":123456,
353 # "dirty-sync-count":15
354 # },
355 # "disk":{
356 # "total":20971520,
357 # "remaining":20880384,
358 # "transferred":91136
359 # }
360 # }
361 # }
362 #
363 # 6. Migration is being performed and XBZRLE is active:
364 #
365 # -> { "execute": "query-migrate" }
366 # <- {
367 # "return":{
368 # "status":"active",
369 # "total-time":12345,
370 # "setup-time":12345,
371 # "expected-downtime":12345,
372 # "ram":{
373 # "total":1057024,
374 # "remaining":1053304,
375 # "transferred":3720,
376 # "duplicate":10,
377 # "normal":3333,
378 # "normal-bytes":3412992,
379 # "dirty-sync-count":15
380 # },
381 # "xbzrle-cache":{
382 # "cache-size":67108864,
383 # "bytes":20971520,
384 # "pages":2444343,
385 # "cache-miss":2244,
386 # "cache-miss-rate":0.123,
387 # "encoding-rate":80.1,
388 # "overflow":34434
389 # }
390 # }
391 # }
392 ##
393 { 'command': 'query-migrate', 'returns': 'MigrationInfo' }
394
395 ##
396 # @MigrationCapability:
397 #
398 # Migration capabilities enumeration
399 #
400 # @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
401 # Encoding). This feature allows us to minimize migration traffic
402 # for certain work loads, by sending compressed difference of the
403 # pages
404 #
405 # @rdma-pin-all: Controls whether or not the entire VM memory
406 # footprint is mlock()'d on demand or all at once. Refer to
407 # docs/rdma.txt for usage. Disabled by default. (since 2.0)
408 #
409 # @zero-blocks: During storage migration encode blocks of zeroes
410 # efficiently. This essentially saves 1MB of zeroes per block on
411 # the wire. Enabling requires source and target VM to support
412 # this feature. To enable it is sufficient to enable the
413 # capability on the source VM. The feature is disabled by default.
414 # (since 1.6)
415 #
416 # @compress: Use multiple compression threads to accelerate live
417 # migration. This feature can help to reduce the migration
418 # traffic, by sending compressed pages. Please note that if
419 # compress and xbzrle are both on, compress only takes effect in
420 # the ram bulk stage, after that, it will be disabled and only
421 # xbzrle takes effect, this can help to minimize migration
422 # traffic. The feature is disabled by default. (since 2.4 )
423 #
424 # @events: generate events for each migration state change (since 2.4
425 # )
426 #
427 # @auto-converge: If enabled, QEMU will automatically throttle down
428 # the guest to speed up convergence of RAM migration. (since 1.6)
429 #
430 # @postcopy-ram: Start executing on the migration target before all of
431 # RAM has been migrated, pulling the remaining pages along as
432 # needed. The capacity must have the same setting on both source
433 # and target or migration will not even start. NOTE: If the
434 # migration fails during postcopy the VM will fail. (since 2.6)
435 #
436 # @x-colo: If enabled, migration will never end, and the state of the
437 # VM on the primary side will be migrated continuously to the VM
438 # on secondary side, this process is called COarse-Grain LOck
439 # Stepping (COLO) for Non-stop Service. (since 2.8)
440 #
441 # @release-ram: if enabled, qemu will free the migrated ram pages on
442 # the source during postcopy-ram migration. (since 2.9)
443 #
444 # @block: If enabled, QEMU will also migrate the contents of all block
445 # devices. Default is disabled. A possible alternative uses
446 # mirror jobs to a builtin NBD server on the destination, which
447 # offers more flexibility. (Since 2.10)
448 #
449 # @return-path: If enabled, migration will use the return path even
450 # for precopy. (since 2.10)
451 #
452 # @pause-before-switchover: Pause outgoing migration before
453 # serialising device state and before disabling block IO (since
454 # 2.11)
455 #
456 # @multifd: Use more than one fd for migration (since 4.0)
457 #
458 # @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
459 # (since 2.12)
460 #
461 # @postcopy-blocktime: Calculate downtime for postcopy live migration
462 # (since 3.0)
463 #
464 # @late-block-activate: If enabled, the destination will not activate
465 # block devices (and thus take locks) immediately at the end of
466 # migration. (since 3.0)
467 #
468 # @x-ignore-shared: If enabled, QEMU will not migrate shared memory that is
469 # accessible on the destination machine. (since 4.0)
470 #
471 # @validate-uuid: Send the UUID of the source to allow the destination
472 # to ensure it is the same. (since 4.2)
473 #
474 # @background-snapshot: If enabled, the migration stream will be a
475 # snapshot of the VM exactly at the point when the migration
476 # procedure starts. The VM RAM is saved with running VM. (since
477 # 6.0)
478 #
479 # @zero-copy-send: Controls behavior on sending memory pages on
480 # migration. When true, enables a zero-copy mechanism for sending
481 # memory pages, if host supports it. Requires that QEMU be
482 # permitted to use locked memory for guest RAM pages. (since 7.1)
483 #
484 # @postcopy-preempt: If enabled, the migration process will allow
485 # postcopy requests to preempt precopy stream, so postcopy
486 # requests will be handled faster. This is a performance feature
487 # and should not affect the correctness of postcopy migration.
488 # (since 7.1)
489 #
490 # @switchover-ack: If enabled, migration will not stop the source VM
491 # and complete the migration until an ACK is received from the
492 # destination that it's OK to do so. Exactly when this ACK is
493 # sent depends on the migrated devices that use this feature.
494 # For example, a device can use it to make sure some of its data
495 # is sent and loaded in the destination before doing switchover.
496 # This can reduce downtime if devices that support this capability
497 # are present. 'return-path' capability must be enabled to use
498 # it. (since 8.1)
499 #
500 # Features:
501 #
502 # @unstable: Members @x-colo and @x-ignore-shared are experimental.
503 #
504 # Since: 1.2
505 ##
506 { 'enum': 'MigrationCapability',
507 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
508 'compress', 'events', 'postcopy-ram',
509 { 'name': 'x-colo', 'features': [ 'unstable' ] },
510 'release-ram',
511 'block', 'return-path', 'pause-before-switchover', 'multifd',
512 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
513 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
514 'validate-uuid', 'background-snapshot',
515 'zero-copy-send', 'postcopy-preempt', 'switchover-ack'] }
516
517 ##
518 # @MigrationCapabilityStatus:
519 #
520 # Migration capability information
521 #
522 # @capability: capability enum
523 #
524 # @state: capability state bool
525 #
526 # Since: 1.2
527 ##
528 { 'struct': 'MigrationCapabilityStatus',
529 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
530
531 ##
532 # @migrate-set-capabilities:
533 #
534 # Enable/Disable the following migration capabilities (like xbzrle)
535 #
536 # @capabilities: json array of capability modifications to make
537 #
538 # Since: 1.2
539 #
540 # Example:
541 #
542 # -> { "execute": "migrate-set-capabilities" , "arguments":
543 # { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
544 # <- { "return": {} }
545 ##
546 { 'command': 'migrate-set-capabilities',
547 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
548
549 ##
550 # @query-migrate-capabilities:
551 #
552 # Returns information about the current migration capabilities status
553 #
554 # Returns: @MigrationCapabilityStatus
555 #
556 # Since: 1.2
557 #
558 # Example:
559 #
560 # -> { "execute": "query-migrate-capabilities" }
561 # <- { "return": [
562 # {"state": false, "capability": "xbzrle"},
563 # {"state": false, "capability": "rdma-pin-all"},
564 # {"state": false, "capability": "auto-converge"},
565 # {"state": false, "capability": "zero-blocks"},
566 # {"state": false, "capability": "compress"},
567 # {"state": true, "capability": "events"},
568 # {"state": false, "capability": "postcopy-ram"},
569 # {"state": false, "capability": "x-colo"}
570 # ]}
571 ##
572 { 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
573
574 ##
575 # @MultiFDCompression:
576 #
577 # An enumeration of multifd compression methods.
578 #
579 # @none: no compression.
580 #
581 # @zlib: use zlib compression method.
582 #
583 # @zstd: use zstd compression method.
584 #
585 # Since: 5.0
586 ##
587 { 'enum': 'MultiFDCompression',
588 'data': [ 'none', 'zlib',
589 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
590
591 ##
592 # @BitmapMigrationBitmapAliasTransform:
593 #
594 # @persistent: If present, the bitmap will be made persistent or
595 # transient depending on this parameter.
596 #
597 # Since: 6.0
598 ##
599 { 'struct': 'BitmapMigrationBitmapAliasTransform',
600 'data': {
601 '*persistent': 'bool'
602 } }
603
604 ##
605 # @BitmapMigrationBitmapAlias:
606 #
607 # @name: The name of the bitmap.
608 #
609 # @alias: An alias name for migration (for example the bitmap name on
610 # the opposite site).
611 #
612 # @transform: Allows the modification of the migrated bitmap. (since
613 # 6.0)
614 #
615 # Since: 5.2
616 ##
617 { 'struct': 'BitmapMigrationBitmapAlias',
618 'data': {
619 'name': 'str',
620 'alias': 'str',
621 '*transform': 'BitmapMigrationBitmapAliasTransform'
622 } }
623
624 ##
625 # @BitmapMigrationNodeAlias:
626 #
627 # Maps a block node name and the bitmaps it has to aliases for dirty
628 # bitmap migration.
629 #
630 # @node-name: A block node name.
631 #
632 # @alias: An alias block node name for migration (for example the node
633 # name on the opposite site).
634 #
635 # @bitmaps: Mappings for the bitmaps on this node.
636 #
637 # Since: 5.2
638 ##
639 { 'struct': 'BitmapMigrationNodeAlias',
640 'data': {
641 'node-name': 'str',
642 'alias': 'str',
643 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
644 } }
645
646 ##
647 # @MigrationParameter:
648 #
649 # Migration parameters enumeration
650 #
651 # @announce-initial: Initial delay (in milliseconds) before sending
652 # the first announce (Since 4.0)
653 #
654 # @announce-max: Maximum delay (in milliseconds) between packets in
655 # the announcement (Since 4.0)
656 #
657 # @announce-rounds: Number of self-announce packets sent after
658 # migration (Since 4.0)
659 #
660 # @announce-step: Increase in delay (in milliseconds) between
661 # subsequent packets in the announcement (Since 4.0)
662 #
663 # @compress-level: Set the compression level to be used in live
664 # migration, the compression level is an integer between 0 and 9,
665 # where 0 means no compression, 1 means the best compression
666 # speed, and 9 means best compression ratio which will consume
667 # more CPU.
668 #
669 # @compress-threads: Set compression thread count to be used in live
670 # migration, the compression thread count is an integer between 1
671 # and 255.
672 #
673 # @compress-wait-thread: Controls behavior when all compression
674 # threads are currently busy. If true (default), wait for a free
675 # compression thread to become available; otherwise, send the page
676 # uncompressed. (Since 3.1)
677 #
678 # @decompress-threads: Set decompression thread count to be used in
679 # live migration, the decompression thread count is an integer
680 # between 1 and 255. Usually, decompression is at least 4 times as
681 # fast as compression, so set the decompress-threads to the number
682 # about 1/4 of compress-threads is adequate.
683 #
684 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and
685 # bytes_xfer_period to trigger throttling. It is expressed as
686 # percentage. The default value is 50. (Since 5.0)
687 #
688 # @cpu-throttle-initial: Initial percentage of time guest cpus are
689 # throttled when migration auto-converge is activated. The
690 # default value is 20. (Since 2.7)
691 #
692 # @cpu-throttle-increment: throttle percentage increase each time
693 # auto-converge detects that migration is not making progress.
694 # The default value is 10. (Since 2.7)
695 #
696 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
697 # the tail stage of throttling, the Guest is very sensitive to CPU
698 # percentage while the @cpu-throttle -increment is excessive
699 # usually at tail stage. If this parameter is true, we will
700 # compute the ideal CPU percentage used by the Guest, which may
701 # exactly make the dirty rate match the dirty rate threshold.
702 # Then we will choose a smaller throttle increment between the one
703 # specified by @cpu-throttle-increment and the one generated by
704 # ideal CPU percentage. Therefore, it is compatible to
705 # traditional throttling, meanwhile the throttle increment won't
706 # be excessive at tail stage. The default value is false. (Since
707 # 5.1)
708 #
709 # @tls-creds: ID of the 'tls-creds' object that provides credentials
710 # for establishing a TLS connection over the migration data
711 # channel. On the outgoing side of the migration, the credentials
712 # must be for a 'client' endpoint, while for the incoming side the
713 # credentials must be for a 'server' endpoint. Setting this will
714 # enable TLS for all migrations. The default is unset, resulting
715 # in unsecured migration at the QEMU level. (Since 2.7)
716 #
717 # @tls-hostname: hostname of the target host for the migration. This
718 # is required when using x509 based TLS credentials and the
719 # migration URI does not already include a hostname. For example
720 # if using fd: or exec: based migration, the hostname must be
721 # provided so that the server's x509 certificate identity can be
722 # validated. (Since 2.7)
723 #
724 # @tls-authz: ID of the 'authz' object subclass that provides access
725 # control checking of the TLS x509 certificate distinguished name.
726 # This object is only resolved at time of use, so can be deleted
727 # and recreated on the fly while the migration server is active.
728 # If missing, it will default to denying access (Since 4.0)
729 #
730 # @max-bandwidth: to set maximum speed for migration. maximum speed
731 # in bytes per second. (Since 2.8)
732 #
733 # @downtime-limit: set maximum tolerated downtime for migration.
734 # maximum downtime in milliseconds (Since 2.8)
735 #
736 # @x-checkpoint-delay: The delay time (in ms) between two COLO
737 # checkpoints in periodic mode. (Since 2.8)
738 #
739 # @block-incremental: Affects how much storage is migrated when the
740 # block migration capability is enabled. When false, the entire
741 # storage backing chain is migrated into a flattened image at the
742 # destination; when true, only the active qcow2 layer is migrated
743 # and the destination must already have access to the same backing
744 # chain as was used on the source. (since 2.10)
745 #
746 # @multifd-channels: Number of channels used to migrate data in
747 # parallel. This is the same number that the number of sockets
748 # used for migration. The default value is 2 (since 4.0)
749 #
750 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
751 # needs to be a multiple of the target page size and a power of 2
752 # (Since 2.11)
753 #
754 # @max-postcopy-bandwidth: Background transfer bandwidth during
755 # postcopy. Defaults to 0 (unlimited). In bytes per second.
756 # (Since 3.0)
757 #
758 # @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
759 # (Since 3.1)
760 #
761 # @multifd-compression: Which compression method to use. Defaults to
762 # none. (Since 5.0)
763 #
764 # @multifd-zlib-level: Set the compression level to be used in live
765 # migration, the compression level is an integer between 0 and 9,
766 # where 0 means no compression, 1 means the best compression
767 # speed, and 9 means best compression ratio which will consume
768 # more CPU. Defaults to 1. (Since 5.0)
769 #
770 # @multifd-zstd-level: Set the compression level to be used in live
771 # migration, the compression level is an integer between 0 and 20,
772 # where 0 means no compression, 1 means the best compression
773 # speed, and 20 means best compression ratio which will consume
774 # more CPU. Defaults to 1. (Since 5.0)
775 #
776 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
777 # aliases for the purpose of dirty bitmap migration. Such aliases
778 # may for example be the corresponding names on the opposite site.
779 # The mapping must be one-to-one, but not necessarily complete: On
780 # the source, unmapped bitmaps and all bitmaps on unmapped nodes
781 # will be ignored. On the destination, encountering an unmapped
782 # alias in the incoming migration stream will result in a report,
783 # and all further bitmap migration data will then be discarded.
784 # Note that the destination does not know about bitmaps it does
785 # not receive, so there is no limitation or requirement regarding
786 # the number of bitmaps received, or how they are named, or on
787 # which nodes they are placed. By default (when this parameter
788 # has never been set), bitmap names are mapped to themselves.
789 # Nodes are mapped to their block device name if there is one, and
790 # to their node name otherwise. (Since 5.2)
791 #
792 # @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty limit during
793 # live migration. Should be in the range 1 to 1000ms,
794 # defaults to 1000ms. (Since 8.1)
795 #
796 # Features:
797 #
798 # @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
799 # are experimental.
800 #
801 # Since: 2.4
802 ##
803 { 'enum': 'MigrationParameter',
804 'data': ['announce-initial', 'announce-max',
805 'announce-rounds', 'announce-step',
806 'compress-level', 'compress-threads', 'decompress-threads',
807 'compress-wait-thread', 'throttle-trigger-threshold',
808 'cpu-throttle-initial', 'cpu-throttle-increment',
809 'cpu-throttle-tailslow',
810 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
811 'downtime-limit',
812 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
813 'block-incremental',
814 'multifd-channels',
815 'xbzrle-cache-size', 'max-postcopy-bandwidth',
816 'max-cpu-throttle', 'multifd-compression',
817 'multifd-zlib-level', 'multifd-zstd-level',
818 'block-bitmap-mapping',
819 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] } ] }
820
821 ##
822 # @MigrateSetParameters:
823 #
824 # @announce-initial: Initial delay (in milliseconds) before sending
825 # the first announce (Since 4.0)
826 #
827 # @announce-max: Maximum delay (in milliseconds) between packets in
828 # the announcement (Since 4.0)
829 #
830 # @announce-rounds: Number of self-announce packets sent after
831 # migration (Since 4.0)
832 #
833 # @announce-step: Increase in delay (in milliseconds) between
834 # subsequent packets in the announcement (Since 4.0)
835 #
836 # @compress-level: compression level
837 #
838 # @compress-threads: compression thread count
839 #
840 # @compress-wait-thread: Controls behavior when all compression
841 # threads are currently busy. If true (default), wait for a free
842 # compression thread to become available; otherwise, send the page
843 # uncompressed. (Since 3.1)
844 #
845 # @decompress-threads: decompression thread count
846 #
847 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and
848 # bytes_xfer_period to trigger throttling. It is expressed as
849 # percentage. The default value is 50. (Since 5.0)
850 #
851 # @cpu-throttle-initial: Initial percentage of time guest cpus are
852 # throttled when migration auto-converge is activated. The
853 # default value is 20. (Since 2.7)
854 #
855 # @cpu-throttle-increment: throttle percentage increase each time
856 # auto-converge detects that migration is not making progress.
857 # The default value is 10. (Since 2.7)
858 #
859 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
860 # the tail stage of throttling, the Guest is very sensitive to CPU
861 # percentage while the @cpu-throttle -increment is excessive
862 # usually at tail stage. If this parameter is true, we will
863 # compute the ideal CPU percentage used by the Guest, which may
864 # exactly make the dirty rate match the dirty rate threshold.
865 # Then we will choose a smaller throttle increment between the one
866 # specified by @cpu-throttle-increment and the one generated by
867 # ideal CPU percentage. Therefore, it is compatible to
868 # traditional throttling, meanwhile the throttle increment won't
869 # be excessive at tail stage. The default value is false. (Since
870 # 5.1)
871 #
872 # @tls-creds: ID of the 'tls-creds' object that provides credentials
873 # for establishing a TLS connection over the migration data
874 # channel. On the outgoing side of the migration, the credentials
875 # must be for a 'client' endpoint, while for the incoming side the
876 # credentials must be for a 'server' endpoint. Setting this to a
877 # non-empty string enables TLS for all migrations. An empty
878 # string means that QEMU will use plain text mode for migration,
879 # rather than TLS (Since 2.9) Previously (since 2.7), this was
880 # reported by omitting tls-creds instead.
881 #
882 # @tls-hostname: hostname of the target host for the migration. This
883 # is required when using x509 based TLS credentials and the
884 # migration URI does not already include a hostname. For example
885 # if using fd: or exec: based migration, the hostname must be
886 # provided so that the server's x509 certificate identity can be
887 # validated. (Since 2.7) An empty string means that QEMU will use
888 # the hostname associated with the migration URI, if any. (Since
889 # 2.9) Previously (since 2.7), this was reported by omitting
890 # tls-hostname instead.
891 #
892 # @max-bandwidth: to set maximum speed for migration. maximum speed
893 # in bytes per second. (Since 2.8)
894 #
895 # @downtime-limit: set maximum tolerated downtime for migration.
896 # maximum downtime in milliseconds (Since 2.8)
897 #
898 # @x-checkpoint-delay: the delay time between two COLO checkpoints.
899 # (Since 2.8)
900 #
901 # @block-incremental: Affects how much storage is migrated when the
902 # block migration capability is enabled. When false, the entire
903 # storage backing chain is migrated into a flattened image at the
904 # destination; when true, only the active qcow2 layer is migrated
905 # and the destination must already have access to the same backing
906 # chain as was used on the source. (since 2.10)
907 #
908 # @multifd-channels: Number of channels used to migrate data in
909 # parallel. This is the same number that the number of sockets
910 # used for migration. The default value is 2 (since 4.0)
911 #
912 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
913 # needs to be a multiple of the target page size and a power of 2
914 # (Since 2.11)
915 #
916 # @max-postcopy-bandwidth: Background transfer bandwidth during
917 # postcopy. Defaults to 0 (unlimited). In bytes per second.
918 # (Since 3.0)
919 #
920 # @max-cpu-throttle: maximum cpu throttle percentage. The default
921 # value is 99. (Since 3.1)
922 #
923 # @multifd-compression: Which compression method to use. Defaults to
924 # none. (Since 5.0)
925 #
926 # @multifd-zlib-level: Set the compression level to be used in live
927 # migration, the compression level is an integer between 0 and 9,
928 # where 0 means no compression, 1 means the best compression
929 # speed, and 9 means best compression ratio which will consume
930 # more CPU. Defaults to 1. (Since 5.0)
931 #
932 # @multifd-zstd-level: Set the compression level to be used in live
933 # migration, the compression level is an integer between 0 and 20,
934 # where 0 means no compression, 1 means the best compression
935 # speed, and 20 means best compression ratio which will consume
936 # more CPU. Defaults to 1. (Since 5.0)
937 #
938 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
939 # aliases for the purpose of dirty bitmap migration. Such aliases
940 # may for example be the corresponding names on the opposite site.
941 # The mapping must be one-to-one, but not necessarily complete: On
942 # the source, unmapped bitmaps and all bitmaps on unmapped nodes
943 # will be ignored. On the destination, encountering an unmapped
944 # alias in the incoming migration stream will result in a report,
945 # and all further bitmap migration data will then be discarded.
946 # Note that the destination does not know about bitmaps it does
947 # not receive, so there is no limitation or requirement regarding
948 # the number of bitmaps received, or how they are named, or on
949 # which nodes they are placed. By default (when this parameter
950 # has never been set), bitmap names are mapped to themselves.
951 # Nodes are mapped to their block device name if there is one, and
952 # to their node name otherwise. (Since 5.2)
953 #
954 # @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty limit during
955 # live migration. Should be in the range 1 to 1000ms,
956 # defaults to 1000ms. (Since 8.1)
957 #
958 # Features:
959 #
960 # @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
961 # are experimental.
962 #
963 # TODO: either fuse back into MigrationParameters, or make
964 # MigrationParameters members mandatory
965 #
966 # Since: 2.4
967 ##
968 { 'struct': 'MigrateSetParameters',
969 'data': { '*announce-initial': 'size',
970 '*announce-max': 'size',
971 '*announce-rounds': 'size',
972 '*announce-step': 'size',
973 '*compress-level': 'uint8',
974 '*compress-threads': 'uint8',
975 '*compress-wait-thread': 'bool',
976 '*decompress-threads': 'uint8',
977 '*throttle-trigger-threshold': 'uint8',
978 '*cpu-throttle-initial': 'uint8',
979 '*cpu-throttle-increment': 'uint8',
980 '*cpu-throttle-tailslow': 'bool',
981 '*tls-creds': 'StrOrNull',
982 '*tls-hostname': 'StrOrNull',
983 '*tls-authz': 'StrOrNull',
984 '*max-bandwidth': 'size',
985 '*downtime-limit': 'uint64',
986 '*x-checkpoint-delay': { 'type': 'uint32',
987 'features': [ 'unstable' ] },
988 '*block-incremental': 'bool',
989 '*multifd-channels': 'uint8',
990 '*xbzrle-cache-size': 'size',
991 '*max-postcopy-bandwidth': 'size',
992 '*max-cpu-throttle': 'uint8',
993 '*multifd-compression': 'MultiFDCompression',
994 '*multifd-zlib-level': 'uint8',
995 '*multifd-zstd-level': 'uint8',
996 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
997 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
998 'features': [ 'unstable' ] } } }
999
1000 ##
1001 # @migrate-set-parameters:
1002 #
1003 # Set various migration parameters.
1004 #
1005 # Since: 2.4
1006 #
1007 # Example:
1008 #
1009 # -> { "execute": "migrate-set-parameters" ,
1010 # "arguments": { "compress-level": 1 } }
1011 # <- { "return": {} }
1012 ##
1013 { 'command': 'migrate-set-parameters', 'boxed': true,
1014 'data': 'MigrateSetParameters' }
1015
1016 ##
1017 # @MigrationParameters:
1018 #
1019 # The optional members aren't actually optional.
1020 #
1021 # @announce-initial: Initial delay (in milliseconds) before sending
1022 # the first announce (Since 4.0)
1023 #
1024 # @announce-max: Maximum delay (in milliseconds) between packets in
1025 # the announcement (Since 4.0)
1026 #
1027 # @announce-rounds: Number of self-announce packets sent after
1028 # migration (Since 4.0)
1029 #
1030 # @announce-step: Increase in delay (in milliseconds) between
1031 # subsequent packets in the announcement (Since 4.0)
1032 #
1033 # @compress-level: compression level
1034 #
1035 # @compress-threads: compression thread count
1036 #
1037 # @compress-wait-thread: Controls behavior when all compression
1038 # threads are currently busy. If true (default), wait for a free
1039 # compression thread to become available; otherwise, send the page
1040 # uncompressed. (Since 3.1)
1041 #
1042 # @decompress-threads: decompression thread count
1043 #
1044 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1045 # bytes_xfer_period to trigger throttling. It is expressed as
1046 # percentage. The default value is 50. (Since 5.0)
1047 #
1048 # @cpu-throttle-initial: Initial percentage of time guest cpus are
1049 # throttled when migration auto-converge is activated. (Since
1050 # 2.7)
1051 #
1052 # @cpu-throttle-increment: throttle percentage increase each time
1053 # auto-converge detects that migration is not making progress.
1054 # (Since 2.7)
1055 #
1056 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1057 # the tail stage of throttling, the Guest is very sensitive to CPU
1058 # percentage while the @cpu-throttle -increment is excessive
1059 # usually at tail stage. If this parameter is true, we will
1060 # compute the ideal CPU percentage used by the Guest, which may
1061 # exactly make the dirty rate match the dirty rate threshold.
1062 # Then we will choose a smaller throttle increment between the one
1063 # specified by @cpu-throttle-increment and the one generated by
1064 # ideal CPU percentage. Therefore, it is compatible to
1065 # traditional throttling, meanwhile the throttle increment won't
1066 # be excessive at tail stage. The default value is false. (Since
1067 # 5.1)
1068 #
1069 # @tls-creds: ID of the 'tls-creds' object that provides credentials
1070 # for establishing a TLS connection over the migration data
1071 # channel. On the outgoing side of the migration, the credentials
1072 # must be for a 'client' endpoint, while for the incoming side the
1073 # credentials must be for a 'server' endpoint. An empty string
1074 # means that QEMU will use plain text mode for migration, rather
1075 # than TLS (Since 2.7) Note: 2.8 reports this by omitting
1076 # tls-creds instead.
1077 #
1078 # @tls-hostname: hostname of the target host for the migration. This
1079 # is required when using x509 based TLS credentials and the
1080 # migration URI does not already include a hostname. For example
1081 # if using fd: or exec: based migration, the hostname must be
1082 # provided so that the server's x509 certificate identity can be
1083 # validated. (Since 2.7) An empty string means that QEMU will use
1084 # the hostname associated with the migration URI, if any. (Since
1085 # 2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1086 #
1087 # @tls-authz: ID of the 'authz' object subclass that provides access
1088 # control checking of the TLS x509 certificate distinguished name.
1089 # (Since 4.0)
1090 #
1091 # @max-bandwidth: to set maximum speed for migration. maximum speed
1092 # in bytes per second. (Since 2.8)
1093 #
1094 # @downtime-limit: set maximum tolerated downtime for migration.
1095 # maximum downtime in milliseconds (Since 2.8)
1096 #
1097 # @x-checkpoint-delay: the delay time between two COLO checkpoints.
1098 # (Since 2.8)
1099 #
1100 # @block-incremental: Affects how much storage is migrated when the
1101 # block migration capability is enabled. When false, the entire
1102 # storage backing chain is migrated into a flattened image at the
1103 # destination; when true, only the active qcow2 layer is migrated
1104 # and the destination must already have access to the same backing
1105 # chain as was used on the source. (since 2.10)
1106 #
1107 # @multifd-channels: Number of channels used to migrate data in
1108 # parallel. This is the same number that the number of sockets
1109 # used for migration. The default value is 2 (since 4.0)
1110 #
1111 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1112 # needs to be a multiple of the target page size and a power of 2
1113 # (Since 2.11)
1114 #
1115 # @max-postcopy-bandwidth: Background transfer bandwidth during
1116 # postcopy. Defaults to 0 (unlimited). In bytes per second.
1117 # (Since 3.0)
1118 #
1119 # @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
1120 # (Since 3.1)
1121 #
1122 # @multifd-compression: Which compression method to use. Defaults to
1123 # none. (Since 5.0)
1124 #
1125 # @multifd-zlib-level: Set the compression level to be used in live
1126 # migration, the compression level is an integer between 0 and 9,
1127 # where 0 means no compression, 1 means the best compression
1128 # speed, and 9 means best compression ratio which will consume
1129 # more CPU. Defaults to 1. (Since 5.0)
1130 #
1131 # @multifd-zstd-level: Set the compression level to be used in live
1132 # migration, the compression level is an integer between 0 and 20,
1133 # where 0 means no compression, 1 means the best compression
1134 # speed, and 20 means best compression ratio which will consume
1135 # more CPU. Defaults to 1. (Since 5.0)
1136 #
1137 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1138 # aliases for the purpose of dirty bitmap migration. Such aliases
1139 # may for example be the corresponding names on the opposite site.
1140 # The mapping must be one-to-one, but not necessarily complete: On
1141 # the source, unmapped bitmaps and all bitmaps on unmapped nodes
1142 # will be ignored. On the destination, encountering an unmapped
1143 # alias in the incoming migration stream will result in a report,
1144 # and all further bitmap migration data will then be discarded.
1145 # Note that the destination does not know about bitmaps it does
1146 # not receive, so there is no limitation or requirement regarding
1147 # the number of bitmaps received, or how they are named, or on
1148 # which nodes they are placed. By default (when this parameter
1149 # has never been set), bitmap names are mapped to themselves.
1150 # Nodes are mapped to their block device name if there is one, and
1151 # to their node name otherwise. (Since 5.2)
1152 #
1153 # @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty limit during
1154 # live migration. Should be in the range 1 to 1000ms,
1155 # defaults to 1000ms. (Since 8.1)
1156 #
1157 # Features:
1158 #
1159 # @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1160 # are experimental.
1161 #
1162 # Since: 2.4
1163 ##
1164 { 'struct': 'MigrationParameters',
1165 'data': { '*announce-initial': 'size',
1166 '*announce-max': 'size',
1167 '*announce-rounds': 'size',
1168 '*announce-step': 'size',
1169 '*compress-level': 'uint8',
1170 '*compress-threads': 'uint8',
1171 '*compress-wait-thread': 'bool',
1172 '*decompress-threads': 'uint8',
1173 '*throttle-trigger-threshold': 'uint8',
1174 '*cpu-throttle-initial': 'uint8',
1175 '*cpu-throttle-increment': 'uint8',
1176 '*cpu-throttle-tailslow': 'bool',
1177 '*tls-creds': 'str',
1178 '*tls-hostname': 'str',
1179 '*tls-authz': 'str',
1180 '*max-bandwidth': 'size',
1181 '*downtime-limit': 'uint64',
1182 '*x-checkpoint-delay': { 'type': 'uint32',
1183 'features': [ 'unstable' ] },
1184 '*block-incremental': 'bool',
1185 '*multifd-channels': 'uint8',
1186 '*xbzrle-cache-size': 'size',
1187 '*max-postcopy-bandwidth': 'size',
1188 '*max-cpu-throttle': 'uint8',
1189 '*multifd-compression': 'MultiFDCompression',
1190 '*multifd-zlib-level': 'uint8',
1191 '*multifd-zstd-level': 'uint8',
1192 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1193 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1194 'features': [ 'unstable' ] } } }
1195
1196 ##
1197 # @query-migrate-parameters:
1198 #
1199 # Returns information about the current migration parameters
1200 #
1201 # Returns: @MigrationParameters
1202 #
1203 # Since: 2.4
1204 #
1205 # Example:
1206 #
1207 # -> { "execute": "query-migrate-parameters" }
1208 # <- { "return": {
1209 # "decompress-threads": 2,
1210 # "cpu-throttle-increment": 10,
1211 # "compress-threads": 8,
1212 # "compress-level": 1,
1213 # "cpu-throttle-initial": 20,
1214 # "max-bandwidth": 33554432,
1215 # "downtime-limit": 300
1216 # }
1217 # }
1218 ##
1219 { 'command': 'query-migrate-parameters',
1220 'returns': 'MigrationParameters' }
1221
1222 ##
1223 # @migrate-start-postcopy:
1224 #
1225 # Followup to a migration command to switch the migration to postcopy
1226 # mode. The postcopy-ram capability must be set on both source and
1227 # destination before the original migration command.
1228 #
1229 # Since: 2.5
1230 #
1231 # Example:
1232 #
1233 # -> { "execute": "migrate-start-postcopy" }
1234 # <- { "return": {} }
1235 ##
1236 { 'command': 'migrate-start-postcopy' }
1237
1238 ##
1239 # @MIGRATION:
1240 #
1241 # Emitted when a migration event happens
1242 #
1243 # @status: @MigrationStatus describing the current migration status.
1244 #
1245 # Since: 2.4
1246 #
1247 # Example:
1248 #
1249 # <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1250 # "event": "MIGRATION",
1251 # "data": {"status": "completed"} }
1252 ##
1253 { 'event': 'MIGRATION',
1254 'data': {'status': 'MigrationStatus'}}
1255
1256 ##
1257 # @MIGRATION_PASS:
1258 #
1259 # Emitted from the source side of a migration at the start of each
1260 # pass (when it syncs the dirty bitmap)
1261 #
1262 # @pass: An incrementing count (starting at 1 on the first pass)
1263 #
1264 # Since: 2.6
1265 #
1266 # Example:
1267 #
1268 # <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1269 # "event": "MIGRATION_PASS", "data": {"pass": 2} }
1270 ##
1271 { 'event': 'MIGRATION_PASS',
1272 'data': { 'pass': 'int' } }
1273
1274 ##
1275 # @COLOMessage:
1276 #
1277 # The message transmission between Primary side and Secondary side.
1278 #
1279 # @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1280 #
1281 # @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1282 # checkpointing
1283 #
1284 # @checkpoint-reply: SVM gets PVM's checkpoint request
1285 #
1286 # @vmstate-send: VM's state will be sent by PVM.
1287 #
1288 # @vmstate-size: The total size of VMstate.
1289 #
1290 # @vmstate-received: VM's state has been received by SVM.
1291 #
1292 # @vmstate-loaded: VM's state has been loaded by SVM.
1293 #
1294 # Since: 2.8
1295 ##
1296 { 'enum': 'COLOMessage',
1297 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1298 'vmstate-send', 'vmstate-size', 'vmstate-received',
1299 'vmstate-loaded' ] }
1300
1301 ##
1302 # @COLOMode:
1303 #
1304 # The COLO current mode.
1305 #
1306 # @none: COLO is disabled.
1307 #
1308 # @primary: COLO node in primary side.
1309 #
1310 # @secondary: COLO node in slave side.
1311 #
1312 # Since: 2.8
1313 ##
1314 { 'enum': 'COLOMode',
1315 'data': [ 'none', 'primary', 'secondary'] }
1316
1317 ##
1318 # @FailoverStatus:
1319 #
1320 # An enumeration of COLO failover status
1321 #
1322 # @none: no failover has ever happened
1323 #
1324 # @require: got failover requirement but not handled
1325 #
1326 # @active: in the process of doing failover
1327 #
1328 # @completed: finish the process of failover
1329 #
1330 # @relaunch: restart the failover process, from 'none' -> 'completed'
1331 # (Since 2.9)
1332 #
1333 # Since: 2.8
1334 ##
1335 { 'enum': 'FailoverStatus',
1336 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1337
1338 ##
1339 # @COLO_EXIT:
1340 #
1341 # Emitted when VM finishes COLO mode due to some errors happening or
1342 # at the request of users.
1343 #
1344 # @mode: report COLO mode when COLO exited.
1345 #
1346 # @reason: describes the reason for the COLO exit.
1347 #
1348 # Since: 3.1
1349 #
1350 # Example:
1351 #
1352 # <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1353 # "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1354 ##
1355 { 'event': 'COLO_EXIT',
1356 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1357
1358 ##
1359 # @COLOExitReason:
1360 #
1361 # The reason for a COLO exit.
1362 #
1363 # @none: failover has never happened. This state does not occur in
1364 # the COLO_EXIT event, and is only visible in the result of
1365 # query-colo-status.
1366 #
1367 # @request: COLO exit is due to an external request.
1368 #
1369 # @error: COLO exit is due to an internal error.
1370 #
1371 # @processing: COLO is currently handling a failover (since 4.0).
1372 #
1373 # Since: 3.1
1374 ##
1375 { 'enum': 'COLOExitReason',
1376 'data': [ 'none', 'request', 'error' , 'processing' ] }
1377
1378 ##
1379 # @x-colo-lost-heartbeat:
1380 #
1381 # Tell qemu that heartbeat is lost, request it to do takeover
1382 # procedures. If this command is sent to the PVM, the Primary side
1383 # will exit COLO mode. If sent to the Secondary, the Secondary side
1384 # will run failover work, then takes over server operation to become
1385 # the service VM.
1386 #
1387 # Features:
1388 #
1389 # @unstable: This command is experimental.
1390 #
1391 # Since: 2.8
1392 #
1393 # Example:
1394 #
1395 # -> { "execute": "x-colo-lost-heartbeat" }
1396 # <- { "return": {} }
1397 ##
1398 { 'command': 'x-colo-lost-heartbeat',
1399 'features': [ 'unstable' ],
1400 'if': 'CONFIG_REPLICATION' }
1401
1402 ##
1403 # @migrate_cancel:
1404 #
1405 # Cancel the current executing migration process.
1406 #
1407 # Returns: nothing on success
1408 #
1409 # Notes: This command succeeds even if there is no migration process
1410 # running.
1411 #
1412 # Since: 0.14
1413 #
1414 # Example:
1415 #
1416 # -> { "execute": "migrate_cancel" }
1417 # <- { "return": {} }
1418 ##
1419 { 'command': 'migrate_cancel' }
1420
1421 ##
1422 # @migrate-continue:
1423 #
1424 # Continue migration when it's in a paused state.
1425 #
1426 # @state: The state the migration is currently expected to be in
1427 #
1428 # Returns: nothing on success
1429 #
1430 # Since: 2.11
1431 #
1432 # Example:
1433 #
1434 # -> { "execute": "migrate-continue" , "arguments":
1435 # { "state": "pre-switchover" } }
1436 # <- { "return": {} }
1437 ##
1438 { 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1439
1440 ##
1441 # @migrate:
1442 #
1443 # Migrates the current running guest to another Virtual Machine.
1444 #
1445 # @uri: the Uniform Resource Identifier of the destination VM
1446 #
1447 # @blk: do block migration (full disk copy)
1448 #
1449 # @inc: incremental disk copy migration
1450 #
1451 # @detach: this argument exists only for compatibility reasons and is
1452 # ignored by QEMU
1453 #
1454 # @resume: resume one paused migration, default "off". (since 3.0)
1455 #
1456 # Returns: nothing on success
1457 #
1458 # Since: 0.14
1459 #
1460 # Notes:
1461 #
1462 # 1. The 'query-migrate' command should be used to check migration's
1463 # progress and final result (this information is provided by the
1464 # 'status' member)
1465 #
1466 # 2. All boolean arguments default to false
1467 #
1468 # 3. The user Monitor's "detach" argument is invalid in QMP and should
1469 # not be used
1470 #
1471 # Example:
1472 #
1473 # -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1474 # <- { "return": {} }
1475 ##
1476 { 'command': 'migrate',
1477 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1478 '*detach': 'bool', '*resume': 'bool' } }
1479
1480 ##
1481 # @migrate-incoming:
1482 #
1483 # Start an incoming migration, the qemu must have been started with
1484 # -incoming defer
1485 #
1486 # @uri: The Uniform Resource Identifier identifying the source or
1487 # address to listen on
1488 #
1489 # Returns: nothing on success
1490 #
1491 # Since: 2.3
1492 #
1493 # Notes:
1494 #
1495 # 1. It's a bad idea to use a string for the uri, but it needs
1496 # to stay compatible with -incoming and the format of the uri
1497 # is already exposed above libvirt.
1498 #
1499 # 2. QEMU must be started with -incoming defer to allow
1500 # migrate-incoming to be used.
1501 #
1502 # 3. The uri format is the same as for -incoming
1503 #
1504 # Example:
1505 #
1506 # -> { "execute": "migrate-incoming",
1507 # "arguments": { "uri": "tcp::4446" } }
1508 # <- { "return": {} }
1509 ##
1510 { 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1511
1512 ##
1513 # @xen-save-devices-state:
1514 #
1515 # Save the state of all devices to file. The RAM and the block
1516 # devices of the VM are not saved by this command.
1517 #
1518 # @filename: the file to save the state of the devices to as binary
1519 # data. See xen-save-devices-state.txt for a description of the
1520 # binary format.
1521 #
1522 # @live: Optional argument to ask QEMU to treat this command as part
1523 # of a live migration. Default to true. (since 2.11)
1524 #
1525 # Returns: Nothing on success
1526 #
1527 # Since: 1.1
1528 #
1529 # Example:
1530 #
1531 # -> { "execute": "xen-save-devices-state",
1532 # "arguments": { "filename": "/tmp/save" } }
1533 # <- { "return": {} }
1534 ##
1535 { 'command': 'xen-save-devices-state',
1536 'data': {'filename': 'str', '*live':'bool' } }
1537
1538 ##
1539 # @xen-set-global-dirty-log:
1540 #
1541 # Enable or disable the global dirty log mode.
1542 #
1543 # @enable: true to enable, false to disable.
1544 #
1545 # Returns: nothing
1546 #
1547 # Since: 1.3
1548 #
1549 # Example:
1550 #
1551 # -> { "execute": "xen-set-global-dirty-log",
1552 # "arguments": { "enable": true } }
1553 # <- { "return": {} }
1554 ##
1555 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1556
1557 ##
1558 # @xen-load-devices-state:
1559 #
1560 # Load the state of all devices from file. The RAM and the block
1561 # devices of the VM are not loaded by this command.
1562 #
1563 # @filename: the file to load the state of the devices from as binary
1564 # data. See xen-save-devices-state.txt for a description of the
1565 # binary format.
1566 #
1567 # Since: 2.7
1568 #
1569 # Example:
1570 #
1571 # -> { "execute": "xen-load-devices-state",
1572 # "arguments": { "filename": "/tmp/resume" } }
1573 # <- { "return": {} }
1574 ##
1575 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1576
1577 ##
1578 # @xen-set-replication:
1579 #
1580 # Enable or disable replication.
1581 #
1582 # @enable: true to enable, false to disable.
1583 #
1584 # @primary: true for primary or false for secondary.
1585 #
1586 # @failover: true to do failover, false to stop. but cannot be
1587 # specified if 'enable' is true. default value is false.
1588 #
1589 # Returns: nothing.
1590 #
1591 # Example:
1592 #
1593 # -> { "execute": "xen-set-replication",
1594 # "arguments": {"enable": true, "primary": false} }
1595 # <- { "return": {} }
1596 #
1597 # Since: 2.9
1598 ##
1599 { 'command': 'xen-set-replication',
1600 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1601 'if': 'CONFIG_REPLICATION' }
1602
1603 ##
1604 # @ReplicationStatus:
1605 #
1606 # The result format for 'query-xen-replication-status'.
1607 #
1608 # @error: true if an error happened, false if replication is normal.
1609 #
1610 # @desc: the human readable error description string, when @error is
1611 # 'true'.
1612 #
1613 # Since: 2.9
1614 ##
1615 { 'struct': 'ReplicationStatus',
1616 'data': { 'error': 'bool', '*desc': 'str' },
1617 'if': 'CONFIG_REPLICATION' }
1618
1619 ##
1620 # @query-xen-replication-status:
1621 #
1622 # Query replication status while the vm is running.
1623 #
1624 # Returns: A @ReplicationStatus object showing the status.
1625 #
1626 # Example:
1627 #
1628 # -> { "execute": "query-xen-replication-status" }
1629 # <- { "return": { "error": false } }
1630 #
1631 # Since: 2.9
1632 ##
1633 { 'command': 'query-xen-replication-status',
1634 'returns': 'ReplicationStatus',
1635 'if': 'CONFIG_REPLICATION' }
1636
1637 ##
1638 # @xen-colo-do-checkpoint:
1639 #
1640 # Xen uses this command to notify replication to trigger a checkpoint.
1641 #
1642 # Returns: nothing.
1643 #
1644 # Example:
1645 #
1646 # -> { "execute": "xen-colo-do-checkpoint" }
1647 # <- { "return": {} }
1648 #
1649 # Since: 2.9
1650 ##
1651 { 'command': 'xen-colo-do-checkpoint',
1652 'if': 'CONFIG_REPLICATION' }
1653
1654 ##
1655 # @COLOStatus:
1656 #
1657 # The result format for 'query-colo-status'.
1658 #
1659 # @mode: COLO running mode. If COLO is running, this field will
1660 # return 'primary' or 'secondary'.
1661 #
1662 # @last-mode: COLO last running mode. If COLO is running, this field
1663 # will return same like mode field, after failover we can use this
1664 # field to get last colo mode. (since 4.0)
1665 #
1666 # @reason: describes the reason for the COLO exit.
1667 #
1668 # Since: 3.1
1669 ##
1670 { 'struct': 'COLOStatus',
1671 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1672 'reason': 'COLOExitReason' },
1673 'if': 'CONFIG_REPLICATION' }
1674
1675 ##
1676 # @query-colo-status:
1677 #
1678 # Query COLO status while the vm is running.
1679 #
1680 # Returns: A @COLOStatus object showing the status.
1681 #
1682 # Example:
1683 #
1684 # -> { "execute": "query-colo-status" }
1685 # <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1686 #
1687 # Since: 3.1
1688 ##
1689 { 'command': 'query-colo-status',
1690 'returns': 'COLOStatus',
1691 'if': 'CONFIG_REPLICATION' }
1692
1693 ##
1694 # @migrate-recover:
1695 #
1696 # Provide a recovery migration stream URI.
1697 #
1698 # @uri: the URI to be used for the recovery of migration stream.
1699 #
1700 # Returns: nothing.
1701 #
1702 # Example:
1703 #
1704 # -> { "execute": "migrate-recover",
1705 # "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1706 # <- { "return": {} }
1707 #
1708 # Since: 3.0
1709 ##
1710 { 'command': 'migrate-recover',
1711 'data': { 'uri': 'str' },
1712 'allow-oob': true }
1713
1714 ##
1715 # @migrate-pause:
1716 #
1717 # Pause a migration. Currently it only supports postcopy.
1718 #
1719 # Returns: nothing.
1720 #
1721 # Example:
1722 #
1723 # -> { "execute": "migrate-pause" }
1724 # <- { "return": {} }
1725 #
1726 # Since: 3.0
1727 ##
1728 { 'command': 'migrate-pause', 'allow-oob': true }
1729
1730 ##
1731 # @UNPLUG_PRIMARY:
1732 #
1733 # Emitted from source side of a migration when migration state is
1734 # WAIT_UNPLUG. Device was unplugged by guest operating system. Device
1735 # resources in QEMU are kept on standby to be able to re-plug it in
1736 # case of migration failure.
1737 #
1738 # @device-id: QEMU device id of the unplugged device
1739 #
1740 # Since: 4.2
1741 #
1742 # Example:
1743 #
1744 # <- { "event": "UNPLUG_PRIMARY",
1745 # "data": { "device-id": "hostdev0" },
1746 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1747 ##
1748 { 'event': 'UNPLUG_PRIMARY',
1749 'data': { 'device-id': 'str' } }
1750
1751 ##
1752 # @DirtyRateVcpu:
1753 #
1754 # Dirty rate of vcpu.
1755 #
1756 # @id: vcpu index.
1757 #
1758 # @dirty-rate: dirty rate.
1759 #
1760 # Since: 6.2
1761 ##
1762 { 'struct': 'DirtyRateVcpu',
1763 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1764
1765 ##
1766 # @DirtyRateStatus:
1767 #
1768 # Dirty page rate measurement status.
1769 #
1770 # @unstarted: measuring thread has not been started yet
1771 #
1772 # @measuring: measuring thread is running
1773 #
1774 # @measured: dirty page rate is measured and the results are available
1775 #
1776 # Since: 5.2
1777 ##
1778 { 'enum': 'DirtyRateStatus',
1779 'data': [ 'unstarted', 'measuring', 'measured'] }
1780
1781 ##
1782 # @DirtyRateMeasureMode:
1783 #
1784 # Method used to measure dirty page rate. Differences between
1785 # available methods are explained in @calc-dirty-rate.
1786 #
1787 # @page-sampling: use page sampling
1788 #
1789 # @dirty-ring: use dirty ring
1790 #
1791 # @dirty-bitmap: use dirty bitmap
1792 #
1793 # Since: 6.2
1794 ##
1795 { 'enum': 'DirtyRateMeasureMode',
1796 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1797
1798 ##
1799 # @DirtyRateInfo:
1800 #
1801 # Information about measured dirty page rate.
1802 #
1803 # @dirty-rate: an estimate of the dirty page rate of the VM in units
1804 # of MiB/s. Value is present only when @status is 'measured'.
1805 #
1806 # @status: current status of dirty page rate measurements
1807 #
1808 # @start-time: start time in units of second for calculation
1809 #
1810 # @calc-time: time period for which dirty page rate was measured
1811 # (in seconds)
1812 #
1813 # @sample-pages: number of sampled pages per GiB of guest memory.
1814 # Valid only in page-sampling mode (Since 6.1)
1815 #
1816 # @mode: mode that was used to measure dirty page rate (Since 6.2)
1817 #
1818 # @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
1819 # specified (Since 6.2)
1820 #
1821 # Since: 5.2
1822 ##
1823 { 'struct': 'DirtyRateInfo',
1824 'data': {'*dirty-rate': 'int64',
1825 'status': 'DirtyRateStatus',
1826 'start-time': 'int64',
1827 'calc-time': 'int64',
1828 'sample-pages': 'uint64',
1829 'mode': 'DirtyRateMeasureMode',
1830 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1831
1832 ##
1833 # @calc-dirty-rate:
1834 #
1835 # Start measuring dirty page rate of the VM. Results can be retrieved
1836 # with @query-dirty-rate after measurements are completed.
1837 #
1838 # Dirty page rate is the number of pages changed in a given time
1839 # period expressed in MiB/s. The following methods of calculation are
1840 # available:
1841 #
1842 # 1. In page sampling mode, a random subset of pages are selected and
1843 # hashed twice: once at the beginning of measurement time period,
1844 # and once again at the end. If two hashes for some page are
1845 # different, the page is counted as changed. Since this method
1846 # relies on sampling and hashing, calculated dirty page rate is
1847 # only an estimate of its true value. Increasing @sample-pages
1848 # improves estimation quality at the cost of higher computational
1849 # overhead.
1850 #
1851 # 2. Dirty bitmap mode captures writes to memory (for example by
1852 # temporarily revoking write access to all pages) and counting page
1853 # faults. Information about modified pages is collected into a
1854 # bitmap, where each bit corresponds to one guest page. This mode
1855 # requires that KVM accelerator property "dirty-ring-size" is *not*
1856 # set.
1857 #
1858 # 3. Dirty ring mode is similar to dirty bitmap mode, but the
1859 # information about modified pages is collected into ring buffer.
1860 # This mode tracks page modification per each vCPU separately. It
1861 # requires that KVM accelerator property "dirty-ring-size" is set.
1862 #
1863 # @calc-time: time period in units of second for which dirty page rate
1864 # is calculated. Note that larger @calc-time values will
1865 # typically result in smaller dirty page rates because page
1866 # dirtying is a one-time event. Once some page is counted as
1867 # dirty during @calc-time period, further writes to this page will
1868 # not increase dirty page rate anymore.
1869 #
1870 # @sample-pages: number of sampled pages per each GiB of guest memory.
1871 # Default value is 512. For 4KiB guest pages this corresponds to
1872 # sampling ratio of 0.2%. This argument is used only in page
1873 # sampling mode. (Since 6.1)
1874 #
1875 # @mode: mechanism for tracking dirty pages. Default value is
1876 # 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'.
1877 # (Since 6.1)
1878 #
1879 # Since: 5.2
1880 #
1881 # Example:
1882 #
1883 # -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1884 # 'sample-pages': 512} }
1885 # <- { "return": {} }
1886 ##
1887 { 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
1888 '*sample-pages': 'int',
1889 '*mode': 'DirtyRateMeasureMode'} }
1890
1891 ##
1892 # @query-dirty-rate:
1893 #
1894 # Query results of the most recent invocation of @calc-dirty-rate.
1895 #
1896 # Since: 5.2
1897 #
1898 # Examples:
1899 #
1900 # 1. Measurement is in progress:
1901 #
1902 # <- {"status": "measuring", "sample-pages": 512,
1903 # "mode": "page-sampling", "start-time": 3665220, "calc-time": 10}
1904 #
1905 # 2. Measurement has been completed:
1906 #
1907 # <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
1908 # "mode": "page-sampling", "start-time": 3665220, "calc-time": 10}
1909 ##
1910 { 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
1911
1912 ##
1913 # @DirtyLimitInfo:
1914 #
1915 # Dirty page rate limit information of a virtual CPU.
1916 #
1917 # @cpu-index: index of a virtual CPU.
1918 #
1919 # @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1920 # CPU, 0 means unlimited.
1921 #
1922 # @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1923 #
1924 # Since: 7.1
1925 ##
1926 { 'struct': 'DirtyLimitInfo',
1927 'data': { 'cpu-index': 'int',
1928 'limit-rate': 'uint64',
1929 'current-rate': 'uint64' } }
1930
1931 ##
1932 # @set-vcpu-dirty-limit:
1933 #
1934 # Set the upper limit of dirty page rate for virtual CPUs.
1935 #
1936 # Requires KVM with accelerator property "dirty-ring-size" set. A
1937 # virtual CPU's dirty page rate is a measure of its memory load. To
1938 # observe dirty page rates, use @calc-dirty-rate.
1939 #
1940 # @cpu-index: index of a virtual CPU, default is all.
1941 #
1942 # @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1943 #
1944 # Since: 7.1
1945 #
1946 # Example:
1947 #
1948 # -> {"execute": "set-vcpu-dirty-limit"}
1949 # "arguments": { "dirty-rate": 200,
1950 # "cpu-index": 1 } }
1951 # <- { "return": {} }
1952 ##
1953 { 'command': 'set-vcpu-dirty-limit',
1954 'data': { '*cpu-index': 'int',
1955 'dirty-rate': 'uint64' } }
1956
1957 ##
1958 # @cancel-vcpu-dirty-limit:
1959 #
1960 # Cancel the upper limit of dirty page rate for virtual CPUs.
1961 #
1962 # Cancel the dirty page limit for the vCPU which has been set with
1963 # set-vcpu-dirty-limit command. Note that this command requires
1964 # support from dirty ring, same as the "set-vcpu-dirty-limit".
1965 #
1966 # @cpu-index: index of a virtual CPU, default is all.
1967 #
1968 # Since: 7.1
1969 #
1970 # Example:
1971 #
1972 # -> {"execute": "cancel-vcpu-dirty-limit"},
1973 # "arguments": { "cpu-index": 1 } }
1974 # <- { "return": {} }
1975 ##
1976 { 'command': 'cancel-vcpu-dirty-limit',
1977 'data': { '*cpu-index': 'int'} }
1978
1979 ##
1980 # @query-vcpu-dirty-limit:
1981 #
1982 # Returns information about virtual CPU dirty page rate limits, if
1983 # any.
1984 #
1985 # Since: 7.1
1986 #
1987 # Example:
1988 #
1989 # -> {"execute": "query-vcpu-dirty-limit"}
1990 # <- {"return": [
1991 # { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
1992 # { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
1993 ##
1994 { 'command': 'query-vcpu-dirty-limit',
1995 'returns': [ 'DirtyLimitInfo' ] }
1996
1997 ##
1998 # @MigrationThreadInfo:
1999 #
2000 # Information about migrationthreads
2001 #
2002 # @name: the name of migration thread
2003 #
2004 # @thread-id: ID of the underlying host thread
2005 #
2006 # Since: 7.2
2007 ##
2008 { 'struct': 'MigrationThreadInfo',
2009 'data': {'name': 'str',
2010 'thread-id': 'int'} }
2011
2012 ##
2013 # @query-migrationthreads:
2014 #
2015 # Returns information of migration threads
2016 #
2017 # data: migration thread name
2018 #
2019 # Returns: information about migration threads
2020 #
2021 # Since: 7.2
2022 ##
2023 { 'command': 'query-migrationthreads',
2024 'returns': ['MigrationThreadInfo'] }
2025
2026 ##
2027 # @snapshot-save:
2028 #
2029 # Save a VM snapshot
2030 #
2031 # @job-id: identifier for the newly created job
2032 #
2033 # @tag: name of the snapshot to create
2034 #
2035 # @vmstate: block device node name to save vmstate to
2036 #
2037 # @devices: list of block device node names to save a snapshot to
2038 #
2039 # Applications should not assume that the snapshot save is complete
2040 # when this command returns. The job commands / events must be used
2041 # to determine completion and to fetch details of any errors that
2042 # arise.
2043 #
2044 # Note that execution of the guest CPUs may be stopped during the time
2045 # it takes to save the snapshot. A future version of QEMU may ensure
2046 # CPUs are executing continuously.
2047 #
2048 # It is strongly recommended that @devices contain all writable block
2049 # device nodes if a consistent snapshot is required.
2050 #
2051 # If @tag already exists, an error will be reported
2052 #
2053 # Returns: nothing
2054 #
2055 # Example:
2056 #
2057 # -> { "execute": "snapshot-save",
2058 # "arguments": {
2059 # "job-id": "snapsave0",
2060 # "tag": "my-snap",
2061 # "vmstate": "disk0",
2062 # "devices": ["disk0", "disk1"]
2063 # }
2064 # }
2065 # <- { "return": { } }
2066 # <- {"event": "JOB_STATUS_CHANGE",
2067 # "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2068 # "data": {"status": "created", "id": "snapsave0"}}
2069 # <- {"event": "JOB_STATUS_CHANGE",
2070 # "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2071 # "data": {"status": "running", "id": "snapsave0"}}
2072 # <- {"event": "STOP",
2073 # "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2074 # <- {"event": "RESUME",
2075 # "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2076 # <- {"event": "JOB_STATUS_CHANGE",
2077 # "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2078 # "data": {"status": "waiting", "id": "snapsave0"}}
2079 # <- {"event": "JOB_STATUS_CHANGE",
2080 # "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2081 # "data": {"status": "pending", "id": "snapsave0"}}
2082 # <- {"event": "JOB_STATUS_CHANGE",
2083 # "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2084 # "data": {"status": "concluded", "id": "snapsave0"}}
2085 # -> {"execute": "query-jobs"}
2086 # <- {"return": [{"current-progress": 1,
2087 # "status": "concluded",
2088 # "total-progress": 1,
2089 # "type": "snapshot-save",
2090 # "id": "snapsave0"}]}
2091 #
2092 # Since: 6.0
2093 ##
2094 { 'command': 'snapshot-save',
2095 'data': { 'job-id': 'str',
2096 'tag': 'str',
2097 'vmstate': 'str',
2098 'devices': ['str'] } }
2099
2100 ##
2101 # @snapshot-load:
2102 #
2103 # Load a VM snapshot
2104 #
2105 # @job-id: identifier for the newly created job
2106 #
2107 # @tag: name of the snapshot to load.
2108 #
2109 # @vmstate: block device node name to load vmstate from
2110 #
2111 # @devices: list of block device node names to load a snapshot from
2112 #
2113 # Applications should not assume that the snapshot load is complete
2114 # when this command returns. The job commands / events must be used
2115 # to determine completion and to fetch details of any errors that
2116 # arise.
2117 #
2118 # Note that execution of the guest CPUs will be stopped during the
2119 # time it takes to load the snapshot.
2120 #
2121 # It is strongly recommended that @devices contain all writable block
2122 # device nodes that can have changed since the original @snapshot-save
2123 # command execution.
2124 #
2125 # Returns: nothing
2126 #
2127 # Example:
2128 #
2129 # -> { "execute": "snapshot-load",
2130 # "arguments": {
2131 # "job-id": "snapload0",
2132 # "tag": "my-snap",
2133 # "vmstate": "disk0",
2134 # "devices": ["disk0", "disk1"]
2135 # }
2136 # }
2137 # <- { "return": { } }
2138 # <- {"event": "JOB_STATUS_CHANGE",
2139 # "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2140 # "data": {"status": "created", "id": "snapload0"}}
2141 # <- {"event": "JOB_STATUS_CHANGE",
2142 # "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2143 # "data": {"status": "running", "id": "snapload0"}}
2144 # <- {"event": "STOP",
2145 # "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2146 # <- {"event": "RESUME",
2147 # "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2148 # <- {"event": "JOB_STATUS_CHANGE",
2149 # "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2150 # "data": {"status": "waiting", "id": "snapload0"}}
2151 # <- {"event": "JOB_STATUS_CHANGE",
2152 # "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2153 # "data": {"status": "pending", "id": "snapload0"}}
2154 # <- {"event": "JOB_STATUS_CHANGE",
2155 # "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2156 # "data": {"status": "concluded", "id": "snapload0"}}
2157 # -> {"execute": "query-jobs"}
2158 # <- {"return": [{"current-progress": 1,
2159 # "status": "concluded",
2160 # "total-progress": 1,
2161 # "type": "snapshot-load",
2162 # "id": "snapload0"}]}
2163 #
2164 # Since: 6.0
2165 ##
2166 { 'command': 'snapshot-load',
2167 'data': { 'job-id': 'str',
2168 'tag': 'str',
2169 'vmstate': 'str',
2170 'devices': ['str'] } }
2171
2172 ##
2173 # @snapshot-delete:
2174 #
2175 # Delete a VM snapshot
2176 #
2177 # @job-id: identifier for the newly created job
2178 #
2179 # @tag: name of the snapshot to delete.
2180 #
2181 # @devices: list of block device node names to delete a snapshot from
2182 #
2183 # Applications should not assume that the snapshot delete is complete
2184 # when this command returns. The job commands / events must be used
2185 # to determine completion and to fetch details of any errors that
2186 # arise.
2187 #
2188 # Returns: nothing
2189 #
2190 # Example:
2191 #
2192 # -> { "execute": "snapshot-delete",
2193 # "arguments": {
2194 # "job-id": "snapdelete0",
2195 # "tag": "my-snap",
2196 # "devices": ["disk0", "disk1"]
2197 # }
2198 # }
2199 # <- { "return": { } }
2200 # <- {"event": "JOB_STATUS_CHANGE",
2201 # "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2202 # "data": {"status": "created", "id": "snapdelete0"}}
2203 # <- {"event": "JOB_STATUS_CHANGE",
2204 # "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2205 # "data": {"status": "running", "id": "snapdelete0"}}
2206 # <- {"event": "JOB_STATUS_CHANGE",
2207 # "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2208 # "data": {"status": "waiting", "id": "snapdelete0"}}
2209 # <- {"event": "JOB_STATUS_CHANGE",
2210 # "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2211 # "data": {"status": "pending", "id": "snapdelete0"}}
2212 # <- {"event": "JOB_STATUS_CHANGE",
2213 # "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2214 # "data": {"status": "concluded", "id": "snapdelete0"}}
2215 # -> {"execute": "query-jobs"}
2216 # <- {"return": [{"current-progress": 1,
2217 # "status": "concluded",
2218 # "total-progress": 1,
2219 # "type": "snapshot-delete",
2220 # "id": "snapdelete0"}]}
2221 #
2222 # Since: 6.0
2223 ##
2224 { 'command': 'snapshot-delete',
2225 'data': { 'job-id': 'str',
2226 'tag': 'str',
2227 'devices': ['str'] } }