]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/migration.json
qapi: Tidy up a slightly awkward TODO comment
[mirror_qemu.git] / qapi / migration.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4
5 ##
6 # = Migration
7 ##
8
9 { 'include': 'common.json' }
10 { 'include': 'sockets.json' }
11
12 ##
13 # @MigrationStats:
14 #
15 # Detailed migration status.
16 #
17 # @transferred: amount of bytes already transferred to the target VM
18 #
19 # @remaining: amount of bytes remaining to be transferred to the target VM
20 #
21 # @total: total amount of bytes involved in the migration process
22 #
23 # @duplicate: number of duplicate (zero) pages (since 1.2)
24 #
25 # @skipped: number of skipped zero pages (since 1.5)
26 #
27 # @normal: number of normal pages (since 1.2)
28 #
29 # @normal-bytes: number of normal bytes sent (since 1.2)
30 #
31 # @dirty-pages-rate: number of pages dirtied by second by the
32 # guest (since 1.3)
33 #
34 # @mbps: throughput in megabits/sec. (since 1.6)
35 #
36 # @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
37 #
38 # @postcopy-requests: The number of page requests received from the destination
39 # (since 2.7)
40 #
41 # @page-size: The number of bytes per page for the various page-based
42 # statistics (since 2.10)
43 #
44 # @multifd-bytes: The number of bytes sent through multifd (since 3.0)
45 #
46 # @pages-per-second: the number of memory pages transferred per second
47 # (Since 4.0)
48 #
49 # @precopy-bytes: The number of bytes sent in the pre-copy phase
50 # (since 7.0).
51 #
52 # @downtime-bytes: The number of bytes sent while the guest is paused
53 # (since 7.0).
54 #
55 # @postcopy-bytes: The number of bytes sent during the post-copy phase
56 # (since 7.0).
57 #
58 # @dirty-sync-missed-zero-copy: Number of times dirty RAM synchronization could
59 # not avoid copying dirty pages. This is between
60 # 0 and @dirty-sync-count * @multifd-channels.
61 # (since 7.1)
62 # Since: 0.14
63 ##
64 { 'struct': 'MigrationStats',
65 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
66 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
67 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
68 'mbps' : 'number', 'dirty-sync-count' : 'int',
69 'postcopy-requests' : 'int', 'page-size' : 'int',
70 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64',
71 'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64',
72 'postcopy-bytes' : 'uint64',
73 'dirty-sync-missed-zero-copy' : 'uint64' } }
74
75 ##
76 # @XBZRLECacheStats:
77 #
78 # Detailed XBZRLE migration cache statistics
79 #
80 # @cache-size: XBZRLE cache size
81 #
82 # @bytes: amount of bytes already transferred to the target VM
83 #
84 # @pages: amount of pages transferred to the target VM
85 #
86 # @cache-miss: number of cache miss
87 #
88 # @cache-miss-rate: rate of cache miss (since 2.1)
89 #
90 # @encoding-rate: rate of encoded bytes (since 5.1)
91 #
92 # @overflow: number of overflows
93 #
94 # Since: 1.2
95 ##
96 { 'struct': 'XBZRLECacheStats',
97 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
98 'cache-miss': 'int', 'cache-miss-rate': 'number',
99 'encoding-rate': 'number', 'overflow': 'int' } }
100
101 ##
102 # @CompressionStats:
103 #
104 # Detailed migration compression statistics
105 #
106 # @pages: amount of pages compressed and transferred to the target VM
107 #
108 # @busy: count of times that no free thread was available to compress data
109 #
110 # @busy-rate: rate of thread busy
111 #
112 # @compressed-size: amount of bytes after compression
113 #
114 # @compression-rate: rate of compressed size
115 #
116 # Since: 3.1
117 ##
118 { 'struct': 'CompressionStats',
119 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
120 'compressed-size': 'int', 'compression-rate': 'number' } }
121
122 ##
123 # @MigrationStatus:
124 #
125 # An enumeration of migration status.
126 #
127 # @none: no migration has ever happened.
128 #
129 # @setup: migration process has been initiated.
130 #
131 # @cancelling: in the process of cancelling migration.
132 #
133 # @cancelled: cancelling migration is finished.
134 #
135 # @active: in the process of doing migration.
136 #
137 # @postcopy-active: like active, but now in postcopy mode. (since 2.5)
138 #
139 # @postcopy-paused: during postcopy but paused. (since 3.0)
140 #
141 # @postcopy-recover: trying to recover from a paused postcopy. (since 3.0)
142 #
143 # @completed: migration is finished.
144 #
145 # @failed: some error occurred during migration process.
146 #
147 # @colo: VM is in the process of fault tolerance, VM can not get into this
148 # state unless colo capability is enabled for migration. (since 2.8)
149 #
150 # @pre-switchover: Paused before device serialisation. (since 2.11)
151 #
152 # @device: During device serialisation when pause-before-switchover is enabled
153 # (since 2.11)
154 #
155 # @wait-unplug: wait for device unplug request by guest OS to be completed.
156 # (since 4.2)
157 #
158 # Since: 2.3
159 ##
160 { 'enum': 'MigrationStatus',
161 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
162 'active', 'postcopy-active', 'postcopy-paused',
163 'postcopy-recover', 'completed', 'failed', 'colo',
164 'pre-switchover', 'device', 'wait-unplug' ] }
165 ##
166 # @VfioStats:
167 #
168 # Detailed VFIO devices migration statistics
169 #
170 # @transferred: amount of bytes transferred to the target VM by VFIO devices
171 #
172 # Since: 5.2
173 ##
174 { 'struct': 'VfioStats',
175 'data': {'transferred': 'int' } }
176
177 ##
178 # @MigrationInfo:
179 #
180 # Information about current migration process.
181 #
182 # @status: @MigrationStatus describing the current migration status.
183 # If this field is not returned, no migration process
184 # has been initiated
185 #
186 # @ram: @MigrationStats containing detailed migration
187 # status, only returned if status is 'active' or
188 # 'completed'(since 1.2)
189 #
190 # @disk: @MigrationStats containing detailed disk migration
191 # status, only returned if status is 'active' and it is a block
192 # migration
193 #
194 # @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
195 # migration statistics, only returned if XBZRLE feature is on and
196 # status is 'active' or 'completed' (since 1.2)
197 #
198 # @total-time: total amount of milliseconds since migration started.
199 # If migration has ended, it returns the total migration
200 # time. (since 1.2)
201 #
202 # @downtime: only present when migration finishes correctly
203 # total downtime in milliseconds for the guest.
204 # (since 1.3)
205 #
206 # @expected-downtime: only present while migration is active
207 # expected downtime in milliseconds for the guest in last walk
208 # of the dirty bitmap. (since 1.3)
209 #
210 # @setup-time: amount of setup time in milliseconds *before* the
211 # iterations begin but *after* the QMP command is issued. This is designed
212 # to provide an accounting of any activities (such as RDMA pinning) which
213 # may be expensive, but do not actually occur during the iterative
214 # migration rounds themselves. (since 1.6)
215 #
216 # @cpu-throttle-percentage: percentage of time guest cpus are being
217 # throttled during auto-converge. This is only present when auto-converge
218 # has started throttling guest cpus. (Since 2.7)
219 #
220 # @error-desc: the human readable error description string, when
221 # @status is 'failed'. Clients should not attempt to parse the
222 # error strings. (Since 2.7)
223 #
224 # @postcopy-blocktime: total time when all vCPU were blocked during postcopy
225 # live migration. This is only present when the postcopy-blocktime
226 # migration capability is enabled. (Since 3.0)
227 #
228 # @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is
229 # only present when the postcopy-blocktime migration capability
230 # is enabled. (Since 3.0)
231 #
232 # @compression: migration compression statistics, only returned if compression
233 # feature is on and status is 'active' or 'completed' (Since 3.1)
234 #
235 # @socket-address: Only used for tcp, to know what the real port is (Since 4.0)
236 #
237 # @vfio: @VfioStats containing detailed VFIO devices migration statistics,
238 # only returned if VFIO device is present, migration is supported by all
239 # VFIO devices and status is 'active' or 'completed' (since 5.2)
240 #
241 # @blocked-reasons: A list of reasons an outgoing migration is blocked.
242 # Present and non-empty when migration is blocked.
243 # (since 6.0)
244 #
245 # Since: 0.14
246 ##
247 { 'struct': 'MigrationInfo',
248 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
249 '*disk': 'MigrationStats',
250 '*vfio': 'VfioStats',
251 '*xbzrle-cache': 'XBZRLECacheStats',
252 '*total-time': 'int',
253 '*expected-downtime': 'int',
254 '*downtime': 'int',
255 '*setup-time': 'int',
256 '*cpu-throttle-percentage': 'int',
257 '*error-desc': 'str',
258 '*blocked-reasons': ['str'],
259 '*postcopy-blocktime' : 'uint32',
260 '*postcopy-vcpu-blocktime': ['uint32'],
261 '*compression': 'CompressionStats',
262 '*socket-address': ['SocketAddress'] } }
263
264 ##
265 # @query-migrate:
266 #
267 # Returns information about current migration process. If migration
268 # is active there will be another json-object with RAM migration
269 # status and if block migration is active another one with block
270 # migration status.
271 #
272 # Returns: @MigrationInfo
273 #
274 # Since: 0.14
275 #
276 # Examples:
277 #
278 # 1. Before the first migration
279 #
280 # -> { "execute": "query-migrate" }
281 # <- { "return": {} }
282 #
283 # 2. Migration is done and has succeeded
284 #
285 # -> { "execute": "query-migrate" }
286 # <- { "return": {
287 # "status": "completed",
288 # "total-time":12345,
289 # "setup-time":12345,
290 # "downtime":12345,
291 # "ram":{
292 # "transferred":123,
293 # "remaining":123,
294 # "total":246,
295 # "duplicate":123,
296 # "normal":123,
297 # "normal-bytes":123456,
298 # "dirty-sync-count":15
299 # }
300 # }
301 # }
302 #
303 # 3. Migration is done and has failed
304 #
305 # -> { "execute": "query-migrate" }
306 # <- { "return": { "status": "failed" } }
307 #
308 # 4. Migration is being performed and is not a block migration:
309 #
310 # -> { "execute": "query-migrate" }
311 # <- {
312 # "return":{
313 # "status":"active",
314 # "total-time":12345,
315 # "setup-time":12345,
316 # "expected-downtime":12345,
317 # "ram":{
318 # "transferred":123,
319 # "remaining":123,
320 # "total":246,
321 # "duplicate":123,
322 # "normal":123,
323 # "normal-bytes":123456,
324 # "dirty-sync-count":15
325 # }
326 # }
327 # }
328 #
329 # 5. Migration is being performed and is a block migration:
330 #
331 # -> { "execute": "query-migrate" }
332 # <- {
333 # "return":{
334 # "status":"active",
335 # "total-time":12345,
336 # "setup-time":12345,
337 # "expected-downtime":12345,
338 # "ram":{
339 # "total":1057024,
340 # "remaining":1053304,
341 # "transferred":3720,
342 # "duplicate":123,
343 # "normal":123,
344 # "normal-bytes":123456,
345 # "dirty-sync-count":15
346 # },
347 # "disk":{
348 # "total":20971520,
349 # "remaining":20880384,
350 # "transferred":91136
351 # }
352 # }
353 # }
354 #
355 # 6. Migration is being performed and XBZRLE is active:
356 #
357 # -> { "execute": "query-migrate" }
358 # <- {
359 # "return":{
360 # "status":"active",
361 # "total-time":12345,
362 # "setup-time":12345,
363 # "expected-downtime":12345,
364 # "ram":{
365 # "total":1057024,
366 # "remaining":1053304,
367 # "transferred":3720,
368 # "duplicate":10,
369 # "normal":3333,
370 # "normal-bytes":3412992,
371 # "dirty-sync-count":15
372 # },
373 # "xbzrle-cache":{
374 # "cache-size":67108864,
375 # "bytes":20971520,
376 # "pages":2444343,
377 # "cache-miss":2244,
378 # "cache-miss-rate":0.123,
379 # "encoding-rate":80.1,
380 # "overflow":34434
381 # }
382 # }
383 # }
384 #
385 ##
386 { 'command': 'query-migrate', 'returns': 'MigrationInfo' }
387
388 ##
389 # @MigrationCapability:
390 #
391 # Migration capabilities enumeration
392 #
393 # @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
394 # This feature allows us to minimize migration traffic for certain work
395 # loads, by sending compressed difference of the pages
396 #
397 # @rdma-pin-all: Controls whether or not the entire VM memory footprint is
398 # mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
399 # Disabled by default. (since 2.0)
400 #
401 # @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
402 # essentially saves 1MB of zeroes per block on the wire. Enabling requires
403 # source and target VM to support this feature. To enable it is sufficient
404 # to enable the capability on the source VM. The feature is disabled by
405 # default. (since 1.6)
406 #
407 # @compress: Use multiple compression threads to accelerate live migration.
408 # This feature can help to reduce the migration traffic, by sending
409 # compressed pages. Please note that if compress and xbzrle are both
410 # on, compress only takes effect in the ram bulk stage, after that,
411 # it will be disabled and only xbzrle takes effect, this can help to
412 # minimize migration traffic. The feature is disabled by default.
413 # (since 2.4 )
414 #
415 # @events: generate events for each migration state change
416 # (since 2.4 )
417 #
418 # @auto-converge: If enabled, QEMU will automatically throttle down the guest
419 # to speed up convergence of RAM migration. (since 1.6)
420 #
421 # @postcopy-ram: Start executing on the migration target before all of RAM has
422 # been migrated, pulling the remaining pages along as needed. The
423 # capacity must have the same setting on both source and target
424 # or migration will not even start. NOTE: If the migration fails during
425 # postcopy the VM will fail. (since 2.6)
426 #
427 # @x-colo: If enabled, migration will never end, and the state of the VM on the
428 # primary side will be migrated continuously to the VM on secondary
429 # side, this process is called COarse-Grain LOck Stepping (COLO) for
430 # Non-stop Service. (since 2.8)
431 #
432 # @release-ram: if enabled, qemu will free the migrated ram pages on the source
433 # during postcopy-ram migration. (since 2.9)
434 #
435 # @block: If enabled, QEMU will also migrate the contents of all block
436 # devices. Default is disabled. A possible alternative uses
437 # mirror jobs to a builtin NBD server on the destination, which
438 # offers more flexibility.
439 # (Since 2.10)
440 #
441 # @return-path: If enabled, migration will use the return path even
442 # for precopy. (since 2.10)
443 #
444 # @pause-before-switchover: Pause outgoing migration before serialising device
445 # state and before disabling block IO (since 2.11)
446 #
447 # @multifd: Use more than one fd for migration (since 4.0)
448 #
449 # @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
450 # (since 2.12)
451 #
452 # @postcopy-blocktime: Calculate downtime for postcopy live migration
453 # (since 3.0)
454 #
455 # @late-block-activate: If enabled, the destination will not activate block
456 # devices (and thus take locks) immediately at the end of migration.
457 # (since 3.0)
458 #
459 # @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0)
460 #
461 # @validate-uuid: Send the UUID of the source to allow the destination
462 # to ensure it is the same. (since 4.2)
463 #
464 # @background-snapshot: If enabled, the migration stream will be a snapshot
465 # of the VM exactly at the point when the migration
466 # procedure starts. The VM RAM is saved with running VM.
467 # (since 6.0)
468 #
469 # @zero-copy-send: Controls behavior on sending memory pages on migration.
470 # When true, enables a zero-copy mechanism for sending
471 # memory pages, if host supports it.
472 # Requires that QEMU be permitted to use locked memory
473 # for guest RAM pages.
474 # (since 7.1)
475 # @postcopy-preempt: If enabled, the migration process will allow postcopy
476 # requests to preempt precopy stream, so postcopy requests
477 # will be handled faster. This is a performance feature and
478 # should not affect the correctness of postcopy migration.
479 # (since 7.1)
480 #
481 # Features:
482 # @unstable: Members @x-colo and @x-ignore-shared are experimental.
483 #
484 # Since: 1.2
485 ##
486 { 'enum': 'MigrationCapability',
487 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
488 'compress', 'events', 'postcopy-ram',
489 { 'name': 'x-colo', 'features': [ 'unstable' ] },
490 'release-ram',
491 'block', 'return-path', 'pause-before-switchover', 'multifd',
492 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
493 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
494 'validate-uuid', 'background-snapshot',
495 'zero-copy-send', 'postcopy-preempt'] }
496
497 ##
498 # @MigrationCapabilityStatus:
499 #
500 # Migration capability information
501 #
502 # @capability: capability enum
503 #
504 # @state: capability state bool
505 #
506 # Since: 1.2
507 ##
508 { 'struct': 'MigrationCapabilityStatus',
509 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
510
511 ##
512 # @migrate-set-capabilities:
513 #
514 # Enable/Disable the following migration capabilities (like xbzrle)
515 #
516 # @capabilities: json array of capability modifications to make
517 #
518 # Since: 1.2
519 #
520 # Example:
521 #
522 # -> { "execute": "migrate-set-capabilities" , "arguments":
523 # { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
524 # <- { "return": {} }
525 #
526 ##
527 { 'command': 'migrate-set-capabilities',
528 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
529
530 ##
531 # @query-migrate-capabilities:
532 #
533 # Returns information about the current migration capabilities status
534 #
535 # Returns: @MigrationCapabilityStatus
536 #
537 # Since: 1.2
538 #
539 # Example:
540 #
541 # -> { "execute": "query-migrate-capabilities" }
542 # <- { "return": [
543 # {"state": false, "capability": "xbzrle"},
544 # {"state": false, "capability": "rdma-pin-all"},
545 # {"state": false, "capability": "auto-converge"},
546 # {"state": false, "capability": "zero-blocks"},
547 # {"state": false, "capability": "compress"},
548 # {"state": true, "capability": "events"},
549 # {"state": false, "capability": "postcopy-ram"},
550 # {"state": false, "capability": "x-colo"}
551 # ]}
552 #
553 ##
554 { 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
555
556 ##
557 # @MultiFDCompression:
558 #
559 # An enumeration of multifd compression methods.
560 #
561 # @none: no compression.
562 # @zlib: use zlib compression method.
563 # @zstd: use zstd compression method.
564 #
565 # Since: 5.0
566 ##
567 { 'enum': 'MultiFDCompression',
568 'data': [ 'none', 'zlib',
569 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
570
571 ##
572 # @BitmapMigrationBitmapAliasTransform:
573 #
574 # @persistent: If present, the bitmap will be made persistent
575 # or transient depending on this parameter.
576 #
577 # Since: 6.0
578 ##
579 { 'struct': 'BitmapMigrationBitmapAliasTransform',
580 'data': {
581 '*persistent': 'bool'
582 } }
583
584 ##
585 # @BitmapMigrationBitmapAlias:
586 #
587 # @name: The name of the bitmap.
588 #
589 # @alias: An alias name for migration (for example the bitmap name on
590 # the opposite site).
591 #
592 # @transform: Allows the modification of the migrated bitmap.
593 # (since 6.0)
594 #
595 # Since: 5.2
596 ##
597 { 'struct': 'BitmapMigrationBitmapAlias',
598 'data': {
599 'name': 'str',
600 'alias': 'str',
601 '*transform': 'BitmapMigrationBitmapAliasTransform'
602 } }
603
604 ##
605 # @BitmapMigrationNodeAlias:
606 #
607 # Maps a block node name and the bitmaps it has to aliases for dirty
608 # bitmap migration.
609 #
610 # @node-name: A block node name.
611 #
612 # @alias: An alias block node name for migration (for example the
613 # node name on the opposite site).
614 #
615 # @bitmaps: Mappings for the bitmaps on this node.
616 #
617 # Since: 5.2
618 ##
619 { 'struct': 'BitmapMigrationNodeAlias',
620 'data': {
621 'node-name': 'str',
622 'alias': 'str',
623 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
624 } }
625
626 ##
627 # @MigrationParameter:
628 #
629 # Migration parameters enumeration
630 #
631 # @announce-initial: Initial delay (in milliseconds) before sending the first
632 # announce (Since 4.0)
633 #
634 # @announce-max: Maximum delay (in milliseconds) between packets in the
635 # announcement (Since 4.0)
636 #
637 # @announce-rounds: Number of self-announce packets sent after migration
638 # (Since 4.0)
639 #
640 # @announce-step: Increase in delay (in milliseconds) between subsequent
641 # packets in the announcement (Since 4.0)
642 #
643 # @compress-level: Set the compression level to be used in live migration,
644 # the compression level is an integer between 0 and 9, where 0 means
645 # no compression, 1 means the best compression speed, and 9 means best
646 # compression ratio which will consume more CPU.
647 #
648 # @compress-threads: Set compression thread count to be used in live migration,
649 # the compression thread count is an integer between 1 and 255.
650 #
651 # @compress-wait-thread: Controls behavior when all compression threads are
652 # currently busy. If true (default), wait for a free
653 # compression thread to become available; otherwise,
654 # send the page uncompressed. (Since 3.1)
655 #
656 # @decompress-threads: Set decompression thread count to be used in live
657 # migration, the decompression thread count is an integer between 1
658 # and 255. Usually, decompression is at least 4 times as fast as
659 # compression, so set the decompress-threads to the number about 1/4
660 # of compress-threads is adequate.
661 #
662 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
663 # to trigger throttling. It is expressed as percentage.
664 # The default value is 50. (Since 5.0)
665 #
666 # @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
667 # when migration auto-converge is activated. The
668 # default value is 20. (Since 2.7)
669 #
670 # @cpu-throttle-increment: throttle percentage increase each time
671 # auto-converge detects that migration is not making
672 # progress. The default value is 10. (Since 2.7)
673 #
674 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
675 # At the tail stage of throttling, the Guest is very
676 # sensitive to CPU percentage while the @cpu-throttle
677 # -increment is excessive usually at tail stage.
678 # If this parameter is true, we will compute the ideal
679 # CPU percentage used by the Guest, which may exactly make
680 # the dirty rate match the dirty rate threshold. Then we
681 # will choose a smaller throttle increment between the
682 # one specified by @cpu-throttle-increment and the one
683 # generated by ideal CPU percentage.
684 # Therefore, it is compatible to traditional throttling,
685 # meanwhile the throttle increment won't be excessive
686 # at tail stage.
687 # The default value is false. (Since 5.1)
688 #
689 # @tls-creds: ID of the 'tls-creds' object that provides credentials for
690 # establishing a TLS connection over the migration data channel.
691 # On the outgoing side of the migration, the credentials must
692 # be for a 'client' endpoint, while for the incoming side the
693 # credentials must be for a 'server' endpoint. Setting this
694 # will enable TLS for all migrations. The default is unset,
695 # resulting in unsecured migration at the QEMU level. (Since 2.7)
696 #
697 # @tls-hostname: hostname of the target host for the migration. This is
698 # required when using x509 based TLS credentials and the
699 # migration URI does not already include a hostname. For
700 # example if using fd: or exec: based migration, the
701 # hostname must be provided so that the server's x509
702 # certificate identity can be validated. (Since 2.7)
703 #
704 # @tls-authz: ID of the 'authz' object subclass that provides access control
705 # checking of the TLS x509 certificate distinguished name.
706 # This object is only resolved at time of use, so can be deleted
707 # and recreated on the fly while the migration server is active.
708 # If missing, it will default to denying access (Since 4.0)
709 #
710 # @max-bandwidth: to set maximum speed for migration. maximum speed in
711 # bytes per second. (Since 2.8)
712 #
713 # @downtime-limit: set maximum tolerated downtime for migration. maximum
714 # downtime in milliseconds (Since 2.8)
715 #
716 # @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
717 # periodic mode. (Since 2.8)
718 #
719 # @block-incremental: Affects how much storage is migrated when the
720 # block migration capability is enabled. When false, the entire
721 # storage backing chain is migrated into a flattened image at
722 # the destination; when true, only the active qcow2 layer is
723 # migrated and the destination must already have access to the
724 # same backing chain as was used on the source. (since 2.10)
725 #
726 # @multifd-channels: Number of channels used to migrate data in
727 # parallel. This is the same number that the
728 # number of sockets used for migration. The
729 # default value is 2 (since 4.0)
730 #
731 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
732 # needs to be a multiple of the target page size
733 # and a power of 2
734 # (Since 2.11)
735 #
736 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
737 # Defaults to 0 (unlimited). In bytes per second.
738 # (Since 3.0)
739 #
740 # @max-cpu-throttle: maximum cpu throttle percentage.
741 # Defaults to 99. (Since 3.1)
742 #
743 # @multifd-compression: Which compression method to use.
744 # Defaults to none. (Since 5.0)
745 #
746 # @multifd-zlib-level: Set the compression level to be used in live
747 # migration, the compression level is an integer between 0
748 # and 9, where 0 means no compression, 1 means the best
749 # compression speed, and 9 means best compression ratio which
750 # will consume more CPU.
751 # Defaults to 1. (Since 5.0)
752 #
753 # @multifd-zstd-level: Set the compression level to be used in live
754 # migration, the compression level is an integer between 0
755 # and 20, where 0 means no compression, 1 means the best
756 # compression speed, and 20 means best compression ratio which
757 # will consume more CPU.
758 # Defaults to 1. (Since 5.0)
759 #
760 #
761 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
762 # aliases for the purpose of dirty bitmap migration. Such
763 # aliases may for example be the corresponding names on the
764 # opposite site.
765 # The mapping must be one-to-one, but not necessarily
766 # complete: On the source, unmapped bitmaps and all bitmaps
767 # on unmapped nodes will be ignored. On the destination,
768 # encountering an unmapped alias in the incoming migration
769 # stream will result in a report, and all further bitmap
770 # migration data will then be discarded.
771 # Note that the destination does not know about bitmaps it
772 # does not receive, so there is no limitation or requirement
773 # regarding the number of bitmaps received, or how they are
774 # named, or on which nodes they are placed.
775 # By default (when this parameter has never been set), bitmap
776 # names are mapped to themselves. Nodes are mapped to their
777 # block device name if there is one, and to their node name
778 # otherwise. (Since 5.2)
779 #
780 # Features:
781 # @unstable: Member @x-checkpoint-delay is experimental.
782 #
783 # Since: 2.4
784 ##
785 { 'enum': 'MigrationParameter',
786 'data': ['announce-initial', 'announce-max',
787 'announce-rounds', 'announce-step',
788 'compress-level', 'compress-threads', 'decompress-threads',
789 'compress-wait-thread', 'throttle-trigger-threshold',
790 'cpu-throttle-initial', 'cpu-throttle-increment',
791 'cpu-throttle-tailslow',
792 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
793 'downtime-limit',
794 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
795 'block-incremental',
796 'multifd-channels',
797 'xbzrle-cache-size', 'max-postcopy-bandwidth',
798 'max-cpu-throttle', 'multifd-compression',
799 'multifd-zlib-level' ,'multifd-zstd-level',
800 'block-bitmap-mapping' ] }
801
802 ##
803 # @MigrateSetParameters:
804 #
805 # @announce-initial: Initial delay (in milliseconds) before sending the first
806 # announce (Since 4.0)
807 #
808 # @announce-max: Maximum delay (in milliseconds) between packets in the
809 # announcement (Since 4.0)
810 #
811 # @announce-rounds: Number of self-announce packets sent after migration
812 # (Since 4.0)
813 #
814 # @announce-step: Increase in delay (in milliseconds) between subsequent
815 # packets in the announcement (Since 4.0)
816 #
817 # @compress-level: compression level
818 #
819 # @compress-threads: compression thread count
820 #
821 # @compress-wait-thread: Controls behavior when all compression threads are
822 # currently busy. If true (default), wait for a free
823 # compression thread to become available; otherwise,
824 # send the page uncompressed. (Since 3.1)
825 #
826 # @decompress-threads: decompression thread count
827 #
828 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
829 # to trigger throttling. It is expressed as percentage.
830 # The default value is 50. (Since 5.0)
831 #
832 # @cpu-throttle-initial: Initial percentage of time guest cpus are
833 # throttled when migration auto-converge is activated.
834 # The default value is 20. (Since 2.7)
835 #
836 # @cpu-throttle-increment: throttle percentage increase each time
837 # auto-converge detects that migration is not making
838 # progress. The default value is 10. (Since 2.7)
839 #
840 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
841 # At the tail stage of throttling, the Guest is very
842 # sensitive to CPU percentage while the @cpu-throttle
843 # -increment is excessive usually at tail stage.
844 # If this parameter is true, we will compute the ideal
845 # CPU percentage used by the Guest, which may exactly make
846 # the dirty rate match the dirty rate threshold. Then we
847 # will choose a smaller throttle increment between the
848 # one specified by @cpu-throttle-increment and the one
849 # generated by ideal CPU percentage.
850 # Therefore, it is compatible to traditional throttling,
851 # meanwhile the throttle increment won't be excessive
852 # at tail stage.
853 # The default value is false. (Since 5.1)
854 #
855 # @tls-creds: ID of the 'tls-creds' object that provides credentials
856 # for establishing a TLS connection over the migration data
857 # channel. On the outgoing side of the migration, the credentials
858 # must be for a 'client' endpoint, while for the incoming side the
859 # credentials must be for a 'server' endpoint. Setting this
860 # to a non-empty string enables TLS for all migrations.
861 # An empty string means that QEMU will use plain text mode for
862 # migration, rather than TLS (Since 2.9)
863 # Previously (since 2.7), this was reported by omitting
864 # tls-creds instead.
865 #
866 # @tls-hostname: hostname of the target host for the migration. This
867 # is required when using x509 based TLS credentials and the
868 # migration URI does not already include a hostname. For
869 # example if using fd: or exec: based migration, the
870 # hostname must be provided so that the server's x509
871 # certificate identity can be validated. (Since 2.7)
872 # An empty string means that QEMU will use the hostname
873 # associated with the migration URI, if any. (Since 2.9)
874 # Previously (since 2.7), this was reported by omitting
875 # tls-hostname instead.
876 #
877 # @max-bandwidth: to set maximum speed for migration. maximum speed in
878 # bytes per second. (Since 2.8)
879 #
880 # @downtime-limit: set maximum tolerated downtime for migration. maximum
881 # downtime in milliseconds (Since 2.8)
882 #
883 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
884 #
885 # @block-incremental: Affects how much storage is migrated when the
886 # block migration capability is enabled. When false, the entire
887 # storage backing chain is migrated into a flattened image at
888 # the destination; when true, only the active qcow2 layer is
889 # migrated and the destination must already have access to the
890 # same backing chain as was used on the source. (since 2.10)
891 #
892 # @multifd-channels: Number of channels used to migrate data in
893 # parallel. This is the same number that the
894 # number of sockets used for migration. The
895 # default value is 2 (since 4.0)
896 #
897 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
898 # needs to be a multiple of the target page size
899 # and a power of 2
900 # (Since 2.11)
901 #
902 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
903 # Defaults to 0 (unlimited). In bytes per second.
904 # (Since 3.0)
905 #
906 # @max-cpu-throttle: maximum cpu throttle percentage.
907 # The default value is 99. (Since 3.1)
908 #
909 # @multifd-compression: Which compression method to use.
910 # Defaults to none. (Since 5.0)
911 #
912 # @multifd-zlib-level: Set the compression level to be used in live
913 # migration, the compression level is an integer between 0
914 # and 9, where 0 means no compression, 1 means the best
915 # compression speed, and 9 means best compression ratio which
916 # will consume more CPU.
917 # Defaults to 1. (Since 5.0)
918 #
919 # @multifd-zstd-level: Set the compression level to be used in live
920 # migration, the compression level is an integer between 0
921 # and 20, where 0 means no compression, 1 means the best
922 # compression speed, and 20 means best compression ratio which
923 # will consume more CPU.
924 # Defaults to 1. (Since 5.0)
925 #
926 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
927 # aliases for the purpose of dirty bitmap migration. Such
928 # aliases may for example be the corresponding names on the
929 # opposite site.
930 # The mapping must be one-to-one, but not necessarily
931 # complete: On the source, unmapped bitmaps and all bitmaps
932 # on unmapped nodes will be ignored. On the destination,
933 # encountering an unmapped alias in the incoming migration
934 # stream will result in a report, and all further bitmap
935 # migration data will then be discarded.
936 # Note that the destination does not know about bitmaps it
937 # does not receive, so there is no limitation or requirement
938 # regarding the number of bitmaps received, or how they are
939 # named, or on which nodes they are placed.
940 # By default (when this parameter has never been set), bitmap
941 # names are mapped to themselves. Nodes are mapped to their
942 # block device name if there is one, and to their node name
943 # otherwise. (Since 5.2)
944 #
945 # Features:
946 # @unstable: Member @x-checkpoint-delay is experimental.
947 #
948 # TODO: either fuse back into MigrationParameters, or make
949 # MigrationParameters members mandatory
950 #
951 # Since: 2.4
952 ##
953 { 'struct': 'MigrateSetParameters',
954 'data': { '*announce-initial': 'size',
955 '*announce-max': 'size',
956 '*announce-rounds': 'size',
957 '*announce-step': 'size',
958 '*compress-level': 'uint8',
959 '*compress-threads': 'uint8',
960 '*compress-wait-thread': 'bool',
961 '*decompress-threads': 'uint8',
962 '*throttle-trigger-threshold': 'uint8',
963 '*cpu-throttle-initial': 'uint8',
964 '*cpu-throttle-increment': 'uint8',
965 '*cpu-throttle-tailslow': 'bool',
966 '*tls-creds': 'StrOrNull',
967 '*tls-hostname': 'StrOrNull',
968 '*tls-authz': 'StrOrNull',
969 '*max-bandwidth': 'size',
970 '*downtime-limit': 'uint64',
971 '*x-checkpoint-delay': { 'type': 'uint32',
972 'features': [ 'unstable' ] },
973 '*block-incremental': 'bool',
974 '*multifd-channels': 'uint8',
975 '*xbzrle-cache-size': 'size',
976 '*max-postcopy-bandwidth': 'size',
977 '*max-cpu-throttle': 'uint8',
978 '*multifd-compression': 'MultiFDCompression',
979 '*multifd-zlib-level': 'uint8',
980 '*multifd-zstd-level': 'uint8',
981 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
982
983 ##
984 # @migrate-set-parameters:
985 #
986 # Set various migration parameters.
987 #
988 # Since: 2.4
989 #
990 # Example:
991 #
992 # -> { "execute": "migrate-set-parameters" ,
993 # "arguments": { "compress-level": 1 } }
994 # <- { "return": {} }
995 #
996 ##
997 { 'command': 'migrate-set-parameters', 'boxed': true,
998 'data': 'MigrateSetParameters' }
999
1000 ##
1001 # @MigrationParameters:
1002 #
1003 # The optional members aren't actually optional.
1004 #
1005 # @announce-initial: Initial delay (in milliseconds) before sending the
1006 # first announce (Since 4.0)
1007 #
1008 # @announce-max: Maximum delay (in milliseconds) between packets in the
1009 # announcement (Since 4.0)
1010 #
1011 # @announce-rounds: Number of self-announce packets sent after migration
1012 # (Since 4.0)
1013 #
1014 # @announce-step: Increase in delay (in milliseconds) between subsequent
1015 # packets in the announcement (Since 4.0)
1016 #
1017 # @compress-level: compression level
1018 #
1019 # @compress-threads: compression thread count
1020 #
1021 # @compress-wait-thread: Controls behavior when all compression threads are
1022 # currently busy. If true (default), wait for a free
1023 # compression thread to become available; otherwise,
1024 # send the page uncompressed. (Since 3.1)
1025 #
1026 # @decompress-threads: decompression thread count
1027 #
1028 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
1029 # to trigger throttling. It is expressed as percentage.
1030 # The default value is 50. (Since 5.0)
1031 #
1032 # @cpu-throttle-initial: Initial percentage of time guest cpus are
1033 # throttled when migration auto-converge is activated.
1034 # (Since 2.7)
1035 #
1036 # @cpu-throttle-increment: throttle percentage increase each time
1037 # auto-converge detects that migration is not making
1038 # progress. (Since 2.7)
1039 #
1040 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
1041 # At the tail stage of throttling, the Guest is very
1042 # sensitive to CPU percentage while the @cpu-throttle
1043 # -increment is excessive usually at tail stage.
1044 # If this parameter is true, we will compute the ideal
1045 # CPU percentage used by the Guest, which may exactly make
1046 # the dirty rate match the dirty rate threshold. Then we
1047 # will choose a smaller throttle increment between the
1048 # one specified by @cpu-throttle-increment and the one
1049 # generated by ideal CPU percentage.
1050 # Therefore, it is compatible to traditional throttling,
1051 # meanwhile the throttle increment won't be excessive
1052 # at tail stage.
1053 # The default value is false. (Since 5.1)
1054 #
1055 # @tls-creds: ID of the 'tls-creds' object that provides credentials
1056 # for establishing a TLS connection over the migration data
1057 # channel. On the outgoing side of the migration, the credentials
1058 # must be for a 'client' endpoint, while for the incoming side the
1059 # credentials must be for a 'server' endpoint.
1060 # An empty string means that QEMU will use plain text mode for
1061 # migration, rather than TLS (Since 2.7)
1062 # Note: 2.8 reports this by omitting tls-creds instead.
1063 #
1064 # @tls-hostname: hostname of the target host for the migration. This
1065 # is required when using x509 based TLS credentials and the
1066 # migration URI does not already include a hostname. For
1067 # example if using fd: or exec: based migration, the
1068 # hostname must be provided so that the server's x509
1069 # certificate identity can be validated. (Since 2.7)
1070 # An empty string means that QEMU will use the hostname
1071 # associated with the migration URI, if any. (Since 2.9)
1072 # Note: 2.8 reports this by omitting tls-hostname instead.
1073 #
1074 # @tls-authz: ID of the 'authz' object subclass that provides access control
1075 # checking of the TLS x509 certificate distinguished name. (Since
1076 # 4.0)
1077 #
1078 # @max-bandwidth: to set maximum speed for migration. maximum speed in
1079 # bytes per second. (Since 2.8)
1080 #
1081 # @downtime-limit: set maximum tolerated downtime for migration. maximum
1082 # downtime in milliseconds (Since 2.8)
1083 #
1084 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1085 #
1086 # @block-incremental: Affects how much storage is migrated when the
1087 # block migration capability is enabled. When false, the entire
1088 # storage backing chain is migrated into a flattened image at
1089 # the destination; when true, only the active qcow2 layer is
1090 # migrated and the destination must already have access to the
1091 # same backing chain as was used on the source. (since 2.10)
1092 #
1093 # @multifd-channels: Number of channels used to migrate data in
1094 # parallel. This is the same number that the
1095 # number of sockets used for migration.
1096 # The default value is 2 (since 4.0)
1097 #
1098 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1099 # needs to be a multiple of the target page size
1100 # and a power of 2
1101 # (Since 2.11)
1102 #
1103 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
1104 # Defaults to 0 (unlimited). In bytes per second.
1105 # (Since 3.0)
1106 #
1107 # @max-cpu-throttle: maximum cpu throttle percentage.
1108 # Defaults to 99.
1109 # (Since 3.1)
1110 #
1111 # @multifd-compression: Which compression method to use.
1112 # Defaults to none. (Since 5.0)
1113 #
1114 # @multifd-zlib-level: Set the compression level to be used in live
1115 # migration, the compression level is an integer between 0
1116 # and 9, where 0 means no compression, 1 means the best
1117 # compression speed, and 9 means best compression ratio which
1118 # will consume more CPU.
1119 # Defaults to 1. (Since 5.0)
1120 #
1121 # @multifd-zstd-level: Set the compression level to be used in live
1122 # migration, the compression level is an integer between 0
1123 # and 20, where 0 means no compression, 1 means the best
1124 # compression speed, and 20 means best compression ratio which
1125 # will consume more CPU.
1126 # Defaults to 1. (Since 5.0)
1127 #
1128 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1129 # aliases for the purpose of dirty bitmap migration. Such
1130 # aliases may for example be the corresponding names on the
1131 # opposite site.
1132 # The mapping must be one-to-one, but not necessarily
1133 # complete: On the source, unmapped bitmaps and all bitmaps
1134 # on unmapped nodes will be ignored. On the destination,
1135 # encountering an unmapped alias in the incoming migration
1136 # stream will result in a report, and all further bitmap
1137 # migration data will then be discarded.
1138 # Note that the destination does not know about bitmaps it
1139 # does not receive, so there is no limitation or requirement
1140 # regarding the number of bitmaps received, or how they are
1141 # named, or on which nodes they are placed.
1142 # By default (when this parameter has never been set), bitmap
1143 # names are mapped to themselves. Nodes are mapped to their
1144 # block device name if there is one, and to their node name
1145 # otherwise. (Since 5.2)
1146 #
1147 # Features:
1148 # @unstable: Member @x-checkpoint-delay is experimental.
1149 #
1150 # Since: 2.4
1151 ##
1152 { 'struct': 'MigrationParameters',
1153 'data': { '*announce-initial': 'size',
1154 '*announce-max': 'size',
1155 '*announce-rounds': 'size',
1156 '*announce-step': 'size',
1157 '*compress-level': 'uint8',
1158 '*compress-threads': 'uint8',
1159 '*compress-wait-thread': 'bool',
1160 '*decompress-threads': 'uint8',
1161 '*throttle-trigger-threshold': 'uint8',
1162 '*cpu-throttle-initial': 'uint8',
1163 '*cpu-throttle-increment': 'uint8',
1164 '*cpu-throttle-tailslow': 'bool',
1165 '*tls-creds': 'str',
1166 '*tls-hostname': 'str',
1167 '*tls-authz': 'str',
1168 '*max-bandwidth': 'size',
1169 '*downtime-limit': 'uint64',
1170 '*x-checkpoint-delay': { 'type': 'uint32',
1171 'features': [ 'unstable' ] },
1172 '*block-incremental': 'bool',
1173 '*multifd-channels': 'uint8',
1174 '*xbzrle-cache-size': 'size',
1175 '*max-postcopy-bandwidth': 'size',
1176 '*max-cpu-throttle': 'uint8',
1177 '*multifd-compression': 'MultiFDCompression',
1178 '*multifd-zlib-level': 'uint8',
1179 '*multifd-zstd-level': 'uint8',
1180 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
1181
1182 ##
1183 # @query-migrate-parameters:
1184 #
1185 # Returns information about the current migration parameters
1186 #
1187 # Returns: @MigrationParameters
1188 #
1189 # Since: 2.4
1190 #
1191 # Example:
1192 #
1193 # -> { "execute": "query-migrate-parameters" }
1194 # <- { "return": {
1195 # "decompress-threads": 2,
1196 # "cpu-throttle-increment": 10,
1197 # "compress-threads": 8,
1198 # "compress-level": 1,
1199 # "cpu-throttle-initial": 20,
1200 # "max-bandwidth": 33554432,
1201 # "downtime-limit": 300
1202 # }
1203 # }
1204 #
1205 ##
1206 { 'command': 'query-migrate-parameters',
1207 'returns': 'MigrationParameters' }
1208
1209 ##
1210 # @migrate-start-postcopy:
1211 #
1212 # Followup to a migration command to switch the migration to postcopy mode.
1213 # The postcopy-ram capability must be set on both source and destination
1214 # before the original migration command.
1215 #
1216 # Since: 2.5
1217 #
1218 # Example:
1219 #
1220 # -> { "execute": "migrate-start-postcopy" }
1221 # <- { "return": {} }
1222 #
1223 ##
1224 { 'command': 'migrate-start-postcopy' }
1225
1226 ##
1227 # @MIGRATION:
1228 #
1229 # Emitted when a migration event happens
1230 #
1231 # @status: @MigrationStatus describing the current migration status.
1232 #
1233 # Since: 2.4
1234 #
1235 # Example:
1236 #
1237 # <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1238 # "event": "MIGRATION",
1239 # "data": {"status": "completed"} }
1240 #
1241 ##
1242 { 'event': 'MIGRATION',
1243 'data': {'status': 'MigrationStatus'}}
1244
1245 ##
1246 # @MIGRATION_PASS:
1247 #
1248 # Emitted from the source side of a migration at the start of each pass
1249 # (when it syncs the dirty bitmap)
1250 #
1251 # @pass: An incrementing count (starting at 1 on the first pass)
1252 #
1253 # Since: 2.6
1254 #
1255 # Example:
1256 #
1257 # <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1258 # "event": "MIGRATION_PASS", "data": {"pass": 2} }
1259 #
1260 ##
1261 { 'event': 'MIGRATION_PASS',
1262 'data': { 'pass': 'int' } }
1263
1264 ##
1265 # @COLOMessage:
1266 #
1267 # The message transmission between Primary side and Secondary side.
1268 #
1269 # @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1270 #
1271 # @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1272 #
1273 # @checkpoint-reply: SVM gets PVM's checkpoint request
1274 #
1275 # @vmstate-send: VM's state will be sent by PVM.
1276 #
1277 # @vmstate-size: The total size of VMstate.
1278 #
1279 # @vmstate-received: VM's state has been received by SVM.
1280 #
1281 # @vmstate-loaded: VM's state has been loaded by SVM.
1282 #
1283 # Since: 2.8
1284 ##
1285 { 'enum': 'COLOMessage',
1286 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1287 'vmstate-send', 'vmstate-size', 'vmstate-received',
1288 'vmstate-loaded' ] }
1289
1290 ##
1291 # @COLOMode:
1292 #
1293 # The COLO current mode.
1294 #
1295 # @none: COLO is disabled.
1296 #
1297 # @primary: COLO node in primary side.
1298 #
1299 # @secondary: COLO node in slave side.
1300 #
1301 # Since: 2.8
1302 ##
1303 { 'enum': 'COLOMode',
1304 'data': [ 'none', 'primary', 'secondary'] }
1305
1306 ##
1307 # @FailoverStatus:
1308 #
1309 # An enumeration of COLO failover status
1310 #
1311 # @none: no failover has ever happened
1312 #
1313 # @require: got failover requirement but not handled
1314 #
1315 # @active: in the process of doing failover
1316 #
1317 # @completed: finish the process of failover
1318 #
1319 # @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1320 #
1321 # Since: 2.8
1322 ##
1323 { 'enum': 'FailoverStatus',
1324 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1325
1326 ##
1327 # @COLO_EXIT:
1328 #
1329 # Emitted when VM finishes COLO mode due to some errors happening or
1330 # at the request of users.
1331 #
1332 # @mode: report COLO mode when COLO exited.
1333 #
1334 # @reason: describes the reason for the COLO exit.
1335 #
1336 # Since: 3.1
1337 #
1338 # Example:
1339 #
1340 # <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1341 # "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1342 #
1343 ##
1344 { 'event': 'COLO_EXIT',
1345 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1346
1347 ##
1348 # @COLOExitReason:
1349 #
1350 # The reason for a COLO exit.
1351 #
1352 # @none: failover has never happened. This state does not occur
1353 # in the COLO_EXIT event, and is only visible in the result of
1354 # query-colo-status.
1355 #
1356 # @request: COLO exit is due to an external request.
1357 #
1358 # @error: COLO exit is due to an internal error.
1359 #
1360 # @processing: COLO is currently handling a failover (since 4.0).
1361 #
1362 # Since: 3.1
1363 ##
1364 { 'enum': 'COLOExitReason',
1365 'data': [ 'none', 'request', 'error' , 'processing' ] }
1366
1367 ##
1368 # @x-colo-lost-heartbeat:
1369 #
1370 # Tell qemu that heartbeat is lost, request it to do takeover procedures.
1371 # If this command is sent to the PVM, the Primary side will exit COLO mode.
1372 # If sent to the Secondary, the Secondary side will run failover work,
1373 # then takes over server operation to become the service VM.
1374 #
1375 # Features:
1376 # @unstable: This command is experimental.
1377 #
1378 # Since: 2.8
1379 #
1380 # Example:
1381 #
1382 # -> { "execute": "x-colo-lost-heartbeat" }
1383 # <- { "return": {} }
1384 #
1385 ##
1386 { 'command': 'x-colo-lost-heartbeat',
1387 'features': [ 'unstable' ] }
1388
1389 ##
1390 # @migrate_cancel:
1391 #
1392 # Cancel the current executing migration process.
1393 #
1394 # Returns: nothing on success
1395 #
1396 # Notes: This command succeeds even if there is no migration process running.
1397 #
1398 # Since: 0.14
1399 #
1400 # Example:
1401 #
1402 # -> { "execute": "migrate_cancel" }
1403 # <- { "return": {} }
1404 #
1405 ##
1406 { 'command': 'migrate_cancel' }
1407
1408 ##
1409 # @migrate-continue:
1410 #
1411 # Continue migration when it's in a paused state.
1412 #
1413 # @state: The state the migration is currently expected to be in
1414 #
1415 # Returns: nothing on success
1416 #
1417 # Since: 2.11
1418 #
1419 # Example:
1420 #
1421 # -> { "execute": "migrate-continue" , "arguments":
1422 # { "state": "pre-switchover" } }
1423 # <- { "return": {} }
1424 ##
1425 { 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1426
1427 ##
1428 # @migrate:
1429 #
1430 # Migrates the current running guest to another Virtual Machine.
1431 #
1432 # @uri: the Uniform Resource Identifier of the destination VM
1433 #
1434 # @blk: do block migration (full disk copy)
1435 #
1436 # @inc: incremental disk copy migration
1437 #
1438 # @detach: this argument exists only for compatibility reasons and
1439 # is ignored by QEMU
1440 #
1441 # @resume: resume one paused migration, default "off". (since 3.0)
1442 #
1443 # Returns: nothing on success
1444 #
1445 # Since: 0.14
1446 #
1447 # Notes:
1448 #
1449 # 1. The 'query-migrate' command should be used to check migration's progress
1450 # and final result (this information is provided by the 'status' member)
1451 #
1452 # 2. All boolean arguments default to false
1453 #
1454 # 3. The user Monitor's "detach" argument is invalid in QMP and should not
1455 # be used
1456 #
1457 # Example:
1458 #
1459 # -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1460 # <- { "return": {} }
1461 #
1462 ##
1463 { 'command': 'migrate',
1464 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1465 '*detach': 'bool', '*resume': 'bool' } }
1466
1467 ##
1468 # @migrate-incoming:
1469 #
1470 # Start an incoming migration, the qemu must have been started
1471 # with -incoming defer
1472 #
1473 # @uri: The Uniform Resource Identifier identifying the source or
1474 # address to listen on
1475 #
1476 # Returns: nothing on success
1477 #
1478 # Since: 2.3
1479 #
1480 # Notes:
1481 #
1482 # 1. It's a bad idea to use a string for the uri, but it needs to stay
1483 # compatible with -incoming and the format of the uri is already exposed
1484 # above libvirt.
1485 #
1486 # 2. QEMU must be started with -incoming defer to allow migrate-incoming to
1487 # be used.
1488 #
1489 # 3. The uri format is the same as for -incoming
1490 #
1491 # Example:
1492 #
1493 # -> { "execute": "migrate-incoming",
1494 # "arguments": { "uri": "tcp::4446" } }
1495 # <- { "return": {} }
1496 #
1497 ##
1498 { 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1499
1500 ##
1501 # @xen-save-devices-state:
1502 #
1503 # Save the state of all devices to file. The RAM and the block devices
1504 # of the VM are not saved by this command.
1505 #
1506 # @filename: the file to save the state of the devices to as binary
1507 # data. See xen-save-devices-state.txt for a description of the binary
1508 # format.
1509 #
1510 # @live: Optional argument to ask QEMU to treat this command as part of a live
1511 # migration. Default to true. (since 2.11)
1512 #
1513 # Returns: Nothing on success
1514 #
1515 # Since: 1.1
1516 #
1517 # Example:
1518 #
1519 # -> { "execute": "xen-save-devices-state",
1520 # "arguments": { "filename": "/tmp/save" } }
1521 # <- { "return": {} }
1522 #
1523 ##
1524 { 'command': 'xen-save-devices-state',
1525 'data': {'filename': 'str', '*live':'bool' } }
1526
1527 ##
1528 # @xen-set-global-dirty-log:
1529 #
1530 # Enable or disable the global dirty log mode.
1531 #
1532 # @enable: true to enable, false to disable.
1533 #
1534 # Returns: nothing
1535 #
1536 # Since: 1.3
1537 #
1538 # Example:
1539 #
1540 # -> { "execute": "xen-set-global-dirty-log",
1541 # "arguments": { "enable": true } }
1542 # <- { "return": {} }
1543 #
1544 ##
1545 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1546
1547 ##
1548 # @xen-load-devices-state:
1549 #
1550 # Load the state of all devices from file. The RAM and the block devices
1551 # of the VM are not loaded by this command.
1552 #
1553 # @filename: the file to load the state of the devices from as binary
1554 # data. See xen-save-devices-state.txt for a description of the binary
1555 # format.
1556 #
1557 # Since: 2.7
1558 #
1559 # Example:
1560 #
1561 # -> { "execute": "xen-load-devices-state",
1562 # "arguments": { "filename": "/tmp/resume" } }
1563 # <- { "return": {} }
1564 #
1565 ##
1566 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1567
1568 ##
1569 # @xen-set-replication:
1570 #
1571 # Enable or disable replication.
1572 #
1573 # @enable: true to enable, false to disable.
1574 #
1575 # @primary: true for primary or false for secondary.
1576 #
1577 # @failover: true to do failover, false to stop. but cannot be
1578 # specified if 'enable' is true. default value is false.
1579 #
1580 # Returns: nothing.
1581 #
1582 # Example:
1583 #
1584 # -> { "execute": "xen-set-replication",
1585 # "arguments": {"enable": true, "primary": false} }
1586 # <- { "return": {} }
1587 #
1588 # Since: 2.9
1589 ##
1590 { 'command': 'xen-set-replication',
1591 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' },
1592 'if': 'CONFIG_REPLICATION' }
1593
1594 ##
1595 # @ReplicationStatus:
1596 #
1597 # The result format for 'query-xen-replication-status'.
1598 #
1599 # @error: true if an error happened, false if replication is normal.
1600 #
1601 # @desc: the human readable error description string, when
1602 # @error is 'true'.
1603 #
1604 # Since: 2.9
1605 ##
1606 { 'struct': 'ReplicationStatus',
1607 'data': { 'error': 'bool', '*desc': 'str' },
1608 'if': 'CONFIG_REPLICATION' }
1609
1610 ##
1611 # @query-xen-replication-status:
1612 #
1613 # Query replication status while the vm is running.
1614 #
1615 # Returns: A @ReplicationStatus object showing the status.
1616 #
1617 # Example:
1618 #
1619 # -> { "execute": "query-xen-replication-status" }
1620 # <- { "return": { "error": false } }
1621 #
1622 # Since: 2.9
1623 ##
1624 { 'command': 'query-xen-replication-status',
1625 'returns': 'ReplicationStatus',
1626 'if': 'CONFIG_REPLICATION' }
1627
1628 ##
1629 # @xen-colo-do-checkpoint:
1630 #
1631 # Xen uses this command to notify replication to trigger a checkpoint.
1632 #
1633 # Returns: nothing.
1634 #
1635 # Example:
1636 #
1637 # -> { "execute": "xen-colo-do-checkpoint" }
1638 # <- { "return": {} }
1639 #
1640 # Since: 2.9
1641 ##
1642 { 'command': 'xen-colo-do-checkpoint',
1643 'if': 'CONFIG_REPLICATION' }
1644
1645 ##
1646 # @COLOStatus:
1647 #
1648 # The result format for 'query-colo-status'.
1649 #
1650 # @mode: COLO running mode. If COLO is running, this field will return
1651 # 'primary' or 'secondary'.
1652 #
1653 # @last-mode: COLO last running mode. If COLO is running, this field
1654 # will return same like mode field, after failover we can
1655 # use this field to get last colo mode. (since 4.0)
1656 #
1657 # @reason: describes the reason for the COLO exit.
1658 #
1659 # Since: 3.1
1660 ##
1661 { 'struct': 'COLOStatus',
1662 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1663 'reason': 'COLOExitReason' } }
1664
1665 ##
1666 # @query-colo-status:
1667 #
1668 # Query COLO status while the vm is running.
1669 #
1670 # Returns: A @COLOStatus object showing the status.
1671 #
1672 # Example:
1673 #
1674 # -> { "execute": "query-colo-status" }
1675 # <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1676 #
1677 # Since: 3.1
1678 ##
1679 { 'command': 'query-colo-status',
1680 'returns': 'COLOStatus' }
1681
1682 ##
1683 # @migrate-recover:
1684 #
1685 # Provide a recovery migration stream URI.
1686 #
1687 # @uri: the URI to be used for the recovery of migration stream.
1688 #
1689 # Returns: nothing.
1690 #
1691 # Example:
1692 #
1693 # -> { "execute": "migrate-recover",
1694 # "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1695 # <- { "return": {} }
1696 #
1697 # Since: 3.0
1698 ##
1699 { 'command': 'migrate-recover',
1700 'data': { 'uri': 'str' },
1701 'allow-oob': true }
1702
1703 ##
1704 # @migrate-pause:
1705 #
1706 # Pause a migration. Currently it only supports postcopy.
1707 #
1708 # Returns: nothing.
1709 #
1710 # Example:
1711 #
1712 # -> { "execute": "migrate-pause" }
1713 # <- { "return": {} }
1714 #
1715 # Since: 3.0
1716 ##
1717 { 'command': 'migrate-pause', 'allow-oob': true }
1718
1719 ##
1720 # @UNPLUG_PRIMARY:
1721 #
1722 # Emitted from source side of a migration when migration state is
1723 # WAIT_UNPLUG. Device was unplugged by guest operating system.
1724 # Device resources in QEMU are kept on standby to be able to re-plug it in case
1725 # of migration failure.
1726 #
1727 # @device-id: QEMU device id of the unplugged device
1728 #
1729 # Since: 4.2
1730 #
1731 # Example:
1732 #
1733 # <- { "event": "UNPLUG_PRIMARY",
1734 # "data": { "device-id": "hostdev0" },
1735 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1736 #
1737 ##
1738 { 'event': 'UNPLUG_PRIMARY',
1739 'data': { 'device-id': 'str' } }
1740
1741 ##
1742 # @DirtyRateVcpu:
1743 #
1744 # Dirty rate of vcpu.
1745 #
1746 # @id: vcpu index.
1747 #
1748 # @dirty-rate: dirty rate.
1749 #
1750 # Since: 6.2
1751 ##
1752 { 'struct': 'DirtyRateVcpu',
1753 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1754
1755 ##
1756 # @DirtyRateStatus:
1757 #
1758 # An enumeration of dirtyrate status.
1759 #
1760 # @unstarted: the dirtyrate thread has not been started.
1761 #
1762 # @measuring: the dirtyrate thread is measuring.
1763 #
1764 # @measured: the dirtyrate thread has measured and results are available.
1765 #
1766 # Since: 5.2
1767 ##
1768 { 'enum': 'DirtyRateStatus',
1769 'data': [ 'unstarted', 'measuring', 'measured'] }
1770
1771 ##
1772 # @DirtyRateMeasureMode:
1773 #
1774 # An enumeration of mode of measuring dirtyrate.
1775 #
1776 # @page-sampling: calculate dirtyrate by sampling pages.
1777 #
1778 # @dirty-ring: calculate dirtyrate by dirty ring.
1779 #
1780 # @dirty-bitmap: calculate dirtyrate by dirty bitmap.
1781 #
1782 # Since: 6.2
1783 ##
1784 { 'enum': 'DirtyRateMeasureMode',
1785 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1786
1787 ##
1788 # @DirtyRateInfo:
1789 #
1790 # Information about current dirty page rate of vm.
1791 #
1792 # @dirty-rate: an estimate of the dirty page rate of the VM in units of
1793 # MB/s, present only when estimating the rate has completed.
1794 #
1795 # @status: status containing dirtyrate query status includes
1796 # 'unstarted' or 'measuring' or 'measured'
1797 #
1798 # @start-time: start time in units of second for calculation
1799 #
1800 # @calc-time: time in units of second for sample dirty pages
1801 #
1802 # @sample-pages: page count per GB for sample dirty pages
1803 # the default value is 512 (since 6.1)
1804 #
1805 # @mode: mode containing method of calculate dirtyrate includes
1806 # 'page-sampling' and 'dirty-ring' (Since 6.2)
1807 #
1808 # @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring
1809 # mode specified (Since 6.2)
1810 #
1811 # Since: 5.2
1812 ##
1813 { 'struct': 'DirtyRateInfo',
1814 'data': {'*dirty-rate': 'int64',
1815 'status': 'DirtyRateStatus',
1816 'start-time': 'int64',
1817 'calc-time': 'int64',
1818 'sample-pages': 'uint64',
1819 'mode': 'DirtyRateMeasureMode',
1820 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1821
1822 ##
1823 # @calc-dirty-rate:
1824 #
1825 # start calculating dirty page rate for vm
1826 #
1827 # @calc-time: time in units of second for sample dirty pages
1828 #
1829 # @sample-pages: page count per GB for sample dirty pages
1830 # the default value is 512 (since 6.1)
1831 #
1832 # @mode: mechanism of calculating dirtyrate includes
1833 # 'page-sampling' and 'dirty-ring' (Since 6.1)
1834 #
1835 # Since: 5.2
1836 #
1837 # Example:
1838 #
1839 # -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1840 # 'sample-pages': 512} }
1841 # <- { "return": {} }
1842 #
1843 ##
1844 { 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
1845 '*sample-pages': 'int',
1846 '*mode': 'DirtyRateMeasureMode'} }
1847
1848 ##
1849 # @query-dirty-rate:
1850 #
1851 # query dirty page rate in units of MB/s for vm
1852 #
1853 # Since: 5.2
1854 ##
1855 { 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
1856
1857 ##
1858 # @DirtyLimitInfo:
1859 #
1860 # Dirty page rate limit information of a virtual CPU.
1861 #
1862 # @cpu-index: index of a virtual CPU.
1863 #
1864 # @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1865 # CPU, 0 means unlimited.
1866 #
1867 # @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1868 #
1869 # Since: 7.1
1870 #
1871 ##
1872 { 'struct': 'DirtyLimitInfo',
1873 'data': { 'cpu-index': 'int',
1874 'limit-rate': 'uint64',
1875 'current-rate': 'uint64' } }
1876
1877 ##
1878 # @set-vcpu-dirty-limit:
1879 #
1880 # Set the upper limit of dirty page rate for virtual CPUs.
1881 #
1882 # Requires KVM with accelerator property "dirty-ring-size" set.
1883 # A virtual CPU's dirty page rate is a measure of its memory load.
1884 # To observe dirty page rates, use @calc-dirty-rate.
1885 #
1886 # @cpu-index: index of a virtual CPU, default is all.
1887 #
1888 # @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1889 #
1890 # Since: 7.1
1891 #
1892 # Example:
1893 #
1894 # -> {"execute": "set-vcpu-dirty-limit"}
1895 # "arguments": { "dirty-rate": 200,
1896 # "cpu-index": 1 } }
1897 # <- { "return": {} }
1898 #
1899 ##
1900 { 'command': 'set-vcpu-dirty-limit',
1901 'data': { '*cpu-index': 'int',
1902 'dirty-rate': 'uint64' } }
1903
1904 ##
1905 # @cancel-vcpu-dirty-limit:
1906 #
1907 # Cancel the upper limit of dirty page rate for virtual CPUs.
1908 #
1909 # Cancel the dirty page limit for the vCPU which has been set with
1910 # set-vcpu-dirty-limit command. Note that this command requires
1911 # support from dirty ring, same as the "set-vcpu-dirty-limit".
1912 #
1913 # @cpu-index: index of a virtual CPU, default is all.
1914 #
1915 # Since: 7.1
1916 #
1917 # Example:
1918 #
1919 # -> {"execute": "cancel-vcpu-dirty-limit"},
1920 # "arguments": { "cpu-index": 1 } }
1921 # <- { "return": {} }
1922 #
1923 ##
1924 { 'command': 'cancel-vcpu-dirty-limit',
1925 'data': { '*cpu-index': 'int'} }
1926
1927 ##
1928 # @query-vcpu-dirty-limit:
1929 #
1930 # Returns information about virtual CPU dirty page rate limits, if any.
1931 #
1932 # Since: 7.1
1933 #
1934 # Example:
1935 #
1936 # -> {"execute": "query-vcpu-dirty-limit"}
1937 # <- {"return": [
1938 # { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
1939 # { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
1940 #
1941 ##
1942 { 'command': 'query-vcpu-dirty-limit',
1943 'returns': [ 'DirtyLimitInfo' ] }
1944
1945 ##
1946 # @MigrationThreadInfo:
1947 #
1948 # Information about migrationthreads
1949 #
1950 # @name: the name of migration thread
1951 #
1952 # @thread-id: ID of the underlying host thread
1953 #
1954 # Since: 7.2
1955 ##
1956 { 'struct': 'MigrationThreadInfo',
1957 'data': {'name': 'str',
1958 'thread-id': 'int'} }
1959
1960 ##
1961 # @query-migrationthreads:
1962 #
1963 # Returns information of migration threads
1964 #
1965 # data: migration thread name
1966 #
1967 # Returns: information about migration threads
1968 #
1969 # Since: 7.2
1970 ##
1971 { 'command': 'query-migrationthreads',
1972 'returns': ['MigrationThreadInfo'] }
1973
1974 ##
1975 # @snapshot-save:
1976 #
1977 # Save a VM snapshot
1978 #
1979 # @job-id: identifier for the newly created job
1980 # @tag: name of the snapshot to create
1981 # @vmstate: block device node name to save vmstate to
1982 # @devices: list of block device node names to save a snapshot to
1983 #
1984 # Applications should not assume that the snapshot save is complete
1985 # when this command returns. The job commands / events must be used
1986 # to determine completion and to fetch details of any errors that arise.
1987 #
1988 # Note that execution of the guest CPUs may be stopped during the
1989 # time it takes to save the snapshot. A future version of QEMU
1990 # may ensure CPUs are executing continuously.
1991 #
1992 # It is strongly recommended that @devices contain all writable
1993 # block device nodes if a consistent snapshot is required.
1994 #
1995 # If @tag already exists, an error will be reported
1996 #
1997 # Returns: nothing
1998 #
1999 # Example:
2000 #
2001 # -> { "execute": "snapshot-save",
2002 # "arguments": {
2003 # "job-id": "snapsave0",
2004 # "tag": "my-snap",
2005 # "vmstate": "disk0",
2006 # "devices": ["disk0", "disk1"]
2007 # }
2008 # }
2009 # <- { "return": { } }
2010 # <- {"event": "JOB_STATUS_CHANGE",
2011 # "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2012 # "data": {"status": "created", "id": "snapsave0"}}
2013 # <- {"event": "JOB_STATUS_CHANGE",
2014 # "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2015 # "data": {"status": "running", "id": "snapsave0"}}
2016 # <- {"event": "STOP",
2017 # "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2018 # <- {"event": "RESUME",
2019 # "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2020 # <- {"event": "JOB_STATUS_CHANGE",
2021 # "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2022 # "data": {"status": "waiting", "id": "snapsave0"}}
2023 # <- {"event": "JOB_STATUS_CHANGE",
2024 # "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2025 # "data": {"status": "pending", "id": "snapsave0"}}
2026 # <- {"event": "JOB_STATUS_CHANGE",
2027 # "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2028 # "data": {"status": "concluded", "id": "snapsave0"}}
2029 # -> {"execute": "query-jobs"}
2030 # <- {"return": [{"current-progress": 1,
2031 # "status": "concluded",
2032 # "total-progress": 1,
2033 # "type": "snapshot-save",
2034 # "id": "snapsave0"}]}
2035 #
2036 # Since: 6.0
2037 ##
2038 { 'command': 'snapshot-save',
2039 'data': { 'job-id': 'str',
2040 'tag': 'str',
2041 'vmstate': 'str',
2042 'devices': ['str'] } }
2043
2044 ##
2045 # @snapshot-load:
2046 #
2047 # Load a VM snapshot
2048 #
2049 # @job-id: identifier for the newly created job
2050 # @tag: name of the snapshot to load.
2051 # @vmstate: block device node name to load vmstate from
2052 # @devices: list of block device node names to load a snapshot from
2053 #
2054 # Applications should not assume that the snapshot load is complete
2055 # when this command returns. The job commands / events must be used
2056 # to determine completion and to fetch details of any errors that arise.
2057 #
2058 # Note that execution of the guest CPUs will be stopped during the
2059 # time it takes to load the snapshot.
2060 #
2061 # It is strongly recommended that @devices contain all writable
2062 # block device nodes that can have changed since the original
2063 # @snapshot-save command execution.
2064 #
2065 # Returns: nothing
2066 #
2067 # Example:
2068 #
2069 # -> { "execute": "snapshot-load",
2070 # "arguments": {
2071 # "job-id": "snapload0",
2072 # "tag": "my-snap",
2073 # "vmstate": "disk0",
2074 # "devices": ["disk0", "disk1"]
2075 # }
2076 # }
2077 # <- { "return": { } }
2078 # <- {"event": "JOB_STATUS_CHANGE",
2079 # "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2080 # "data": {"status": "created", "id": "snapload0"}}
2081 # <- {"event": "JOB_STATUS_CHANGE",
2082 # "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2083 # "data": {"status": "running", "id": "snapload0"}}
2084 # <- {"event": "STOP",
2085 # "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2086 # <- {"event": "RESUME",
2087 # "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2088 # <- {"event": "JOB_STATUS_CHANGE",
2089 # "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2090 # "data": {"status": "waiting", "id": "snapload0"}}
2091 # <- {"event": "JOB_STATUS_CHANGE",
2092 # "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2093 # "data": {"status": "pending", "id": "snapload0"}}
2094 # <- {"event": "JOB_STATUS_CHANGE",
2095 # "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2096 # "data": {"status": "concluded", "id": "snapload0"}}
2097 # -> {"execute": "query-jobs"}
2098 # <- {"return": [{"current-progress": 1,
2099 # "status": "concluded",
2100 # "total-progress": 1,
2101 # "type": "snapshot-load",
2102 # "id": "snapload0"}]}
2103 #
2104 # Since: 6.0
2105 ##
2106 { 'command': 'snapshot-load',
2107 'data': { 'job-id': 'str',
2108 'tag': 'str',
2109 'vmstate': 'str',
2110 'devices': ['str'] } }
2111
2112 ##
2113 # @snapshot-delete:
2114 #
2115 # Delete a VM snapshot
2116 #
2117 # @job-id: identifier for the newly created job
2118 # @tag: name of the snapshot to delete.
2119 # @devices: list of block device node names to delete a snapshot from
2120 #
2121 # Applications should not assume that the snapshot delete is complete
2122 # when this command returns. The job commands / events must be used
2123 # to determine completion and to fetch details of any errors that arise.
2124 #
2125 # Returns: nothing
2126 #
2127 # Example:
2128 #
2129 # -> { "execute": "snapshot-delete",
2130 # "arguments": {
2131 # "job-id": "snapdelete0",
2132 # "tag": "my-snap",
2133 # "devices": ["disk0", "disk1"]
2134 # }
2135 # }
2136 # <- { "return": { } }
2137 # <- {"event": "JOB_STATUS_CHANGE",
2138 # "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2139 # "data": {"status": "created", "id": "snapdelete0"}}
2140 # <- {"event": "JOB_STATUS_CHANGE",
2141 # "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2142 # "data": {"status": "running", "id": "snapdelete0"}}
2143 # <- {"event": "JOB_STATUS_CHANGE",
2144 # "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2145 # "data": {"status": "waiting", "id": "snapdelete0"}}
2146 # <- {"event": "JOB_STATUS_CHANGE",
2147 # "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2148 # "data": {"status": "pending", "id": "snapdelete0"}}
2149 # <- {"event": "JOB_STATUS_CHANGE",
2150 # "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2151 # "data": {"status": "concluded", "id": "snapdelete0"}}
2152 # -> {"execute": "query-jobs"}
2153 # <- {"return": [{"current-progress": 1,
2154 # "status": "concluded",
2155 # "total-progress": 1,
2156 # "type": "snapshot-delete",
2157 # "id": "snapdelete0"}]}
2158 #
2159 # Since: 6.0
2160 ##
2161 { 'command': 'snapshot-delete',
2162 'data': { 'job-id': 'str',
2163 'tag': 'str',
2164 'devices': ['str'] } }