]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/migration.json
Merge tag 'pull-qapi-2023-04-26' of https://repo.or.cz/qemu/armbru into staging
[mirror_qemu.git] / qapi / migration.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4
5 ##
6 # = Migration
7 ##
8
9 { 'include': 'common.json' }
10 { 'include': 'sockets.json' }
11
12 ##
13 # @MigrationStats:
14 #
15 # Detailed migration status.
16 #
17 # @transferred: amount of bytes already transferred to the target VM
18 #
19 # @remaining: amount of bytes remaining to be transferred to the target VM
20 #
21 # @total: total amount of bytes involved in the migration process
22 #
23 # @duplicate: number of duplicate (zero) pages (since 1.2)
24 #
25 # @skipped: number of skipped zero pages (since 1.5)
26 #
27 # @normal: number of normal pages (since 1.2)
28 #
29 # @normal-bytes: number of normal bytes sent (since 1.2)
30 #
31 # @dirty-pages-rate: number of pages dirtied by second by the
32 # guest (since 1.3)
33 #
34 # @mbps: throughput in megabits/sec. (since 1.6)
35 #
36 # @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
37 #
38 # @postcopy-requests: The number of page requests received from the destination
39 # (since 2.7)
40 #
41 # @page-size: The number of bytes per page for the various page-based
42 # statistics (since 2.10)
43 #
44 # @multifd-bytes: The number of bytes sent through multifd (since 3.0)
45 #
46 # @pages-per-second: the number of memory pages transferred per second
47 # (Since 4.0)
48 #
49 # @precopy-bytes: The number of bytes sent in the pre-copy phase
50 # (since 7.0).
51 #
52 # @downtime-bytes: The number of bytes sent while the guest is paused
53 # (since 7.0).
54 #
55 # @postcopy-bytes: The number of bytes sent during the post-copy phase
56 # (since 7.0).
57 #
58 # @dirty-sync-missed-zero-copy: Number of times dirty RAM synchronization could
59 # not avoid copying dirty pages. This is between
60 # 0 and @dirty-sync-count * @multifd-channels.
61 # (since 7.1)
62 # Since: 0.14
63 ##
64 { 'struct': 'MigrationStats',
65 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
66 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
67 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
68 'mbps' : 'number', 'dirty-sync-count' : 'int',
69 'postcopy-requests' : 'int', 'page-size' : 'int',
70 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64',
71 'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64',
72 'postcopy-bytes' : 'uint64',
73 'dirty-sync-missed-zero-copy' : 'uint64' } }
74
75 ##
76 # @XBZRLECacheStats:
77 #
78 # Detailed XBZRLE migration cache statistics
79 #
80 # @cache-size: XBZRLE cache size
81 #
82 # @bytes: amount of bytes already transferred to the target VM
83 #
84 # @pages: amount of pages transferred to the target VM
85 #
86 # @cache-miss: number of cache miss
87 #
88 # @cache-miss-rate: rate of cache miss (since 2.1)
89 #
90 # @encoding-rate: rate of encoded bytes (since 5.1)
91 #
92 # @overflow: number of overflows
93 #
94 # Since: 1.2
95 ##
96 { 'struct': 'XBZRLECacheStats',
97 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
98 'cache-miss': 'int', 'cache-miss-rate': 'number',
99 'encoding-rate': 'number', 'overflow': 'int' } }
100
101 ##
102 # @CompressionStats:
103 #
104 # Detailed migration compression statistics
105 #
106 # @pages: amount of pages compressed and transferred to the target VM
107 #
108 # @busy: count of times that no free thread was available to compress data
109 #
110 # @busy-rate: rate of thread busy
111 #
112 # @compressed-size: amount of bytes after compression
113 #
114 # @compression-rate: rate of compressed size
115 #
116 # Since: 3.1
117 ##
118 { 'struct': 'CompressionStats',
119 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
120 'compressed-size': 'int', 'compression-rate': 'number' } }
121
122 ##
123 # @MigrationStatus:
124 #
125 # An enumeration of migration status.
126 #
127 # @none: no migration has ever happened.
128 #
129 # @setup: migration process has been initiated.
130 #
131 # @cancelling: in the process of cancelling migration.
132 #
133 # @cancelled: cancelling migration is finished.
134 #
135 # @active: in the process of doing migration.
136 #
137 # @postcopy-active: like active, but now in postcopy mode. (since 2.5)
138 #
139 # @postcopy-paused: during postcopy but paused. (since 3.0)
140 #
141 # @postcopy-recover: trying to recover from a paused postcopy. (since 3.0)
142 #
143 # @completed: migration is finished.
144 #
145 # @failed: some error occurred during migration process.
146 #
147 # @colo: VM is in the process of fault tolerance, VM can not get into this
148 # state unless colo capability is enabled for migration. (since 2.8)
149 #
150 # @pre-switchover: Paused before device serialisation. (since 2.11)
151 #
152 # @device: During device serialisation when pause-before-switchover is enabled
153 # (since 2.11)
154 #
155 # @wait-unplug: wait for device unplug request by guest OS to be completed.
156 # (since 4.2)
157 #
158 # Since: 2.3
159 ##
160 { 'enum': 'MigrationStatus',
161 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
162 'active', 'postcopy-active', 'postcopy-paused',
163 'postcopy-recover', 'completed', 'failed', 'colo',
164 'pre-switchover', 'device', 'wait-unplug' ] }
165 ##
166 # @VfioStats:
167 #
168 # Detailed VFIO devices migration statistics
169 #
170 # @transferred: amount of bytes transferred to the target VM by VFIO devices
171 #
172 # Since: 5.2
173 ##
174 { 'struct': 'VfioStats',
175 'data': {'transferred': 'int' } }
176
177 ##
178 # @MigrationInfo:
179 #
180 # Information about current migration process.
181 #
182 # @status: @MigrationStatus describing the current migration status.
183 # If this field is not returned, no migration process
184 # has been initiated
185 #
186 # @ram: @MigrationStats containing detailed migration
187 # status, only returned if status is 'active' or
188 # 'completed'(since 1.2)
189 #
190 # @disk: @MigrationStats containing detailed disk migration
191 # status, only returned if status is 'active' and it is a block
192 # migration
193 #
194 # @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
195 # migration statistics, only returned if XBZRLE feature is on and
196 # status is 'active' or 'completed' (since 1.2)
197 #
198 # @total-time: total amount of milliseconds since migration started.
199 # If migration has ended, it returns the total migration
200 # time. (since 1.2)
201 #
202 # @downtime: only present when migration finishes correctly
203 # total downtime in milliseconds for the guest.
204 # (since 1.3)
205 #
206 # @expected-downtime: only present while migration is active
207 # expected downtime in milliseconds for the guest in last walk
208 # of the dirty bitmap. (since 1.3)
209 #
210 # @setup-time: amount of setup time in milliseconds *before* the
211 # iterations begin but *after* the QMP command is issued. This is designed
212 # to provide an accounting of any activities (such as RDMA pinning) which
213 # may be expensive, but do not actually occur during the iterative
214 # migration rounds themselves. (since 1.6)
215 #
216 # @cpu-throttle-percentage: percentage of time guest cpus are being
217 # throttled during auto-converge. This is only present when auto-converge
218 # has started throttling guest cpus. (Since 2.7)
219 #
220 # @error-desc: the human readable error description string, when
221 # @status is 'failed'. Clients should not attempt to parse the
222 # error strings. (Since 2.7)
223 #
224 # @postcopy-blocktime: total time when all vCPU were blocked during postcopy
225 # live migration. This is only present when the postcopy-blocktime
226 # migration capability is enabled. (Since 3.0)
227 #
228 # @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is
229 # only present when the postcopy-blocktime migration capability
230 # is enabled. (Since 3.0)
231 #
232 # @compression: migration compression statistics, only returned if compression
233 # feature is on and status is 'active' or 'completed' (Since 3.1)
234 #
235 # @socket-address: Only used for tcp, to know what the real port is (Since 4.0)
236 #
237 # @vfio: @VfioStats containing detailed VFIO devices migration statistics,
238 # only returned if VFIO device is present, migration is supported by all
239 # VFIO devices and status is 'active' or 'completed' (since 5.2)
240 #
241 # @blocked-reasons: A list of reasons an outgoing migration is blocked.
242 # Present and non-empty when migration is blocked.
243 # (since 6.0)
244 #
245 # Since: 0.14
246 ##
247 { 'struct': 'MigrationInfo',
248 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
249 '*disk': 'MigrationStats',
250 '*vfio': 'VfioStats',
251 '*xbzrle-cache': 'XBZRLECacheStats',
252 '*total-time': 'int',
253 '*expected-downtime': 'int',
254 '*downtime': 'int',
255 '*setup-time': 'int',
256 '*cpu-throttle-percentage': 'int',
257 '*error-desc': 'str',
258 '*blocked-reasons': ['str'],
259 '*postcopy-blocktime' : 'uint32',
260 '*postcopy-vcpu-blocktime': ['uint32'],
261 '*compression': 'CompressionStats',
262 '*socket-address': ['SocketAddress'] } }
263
264 ##
265 # @query-migrate:
266 #
267 # Returns information about current migration process. If migration
268 # is active there will be another json-object with RAM migration
269 # status and if block migration is active another one with block
270 # migration status.
271 #
272 # Returns: @MigrationInfo
273 #
274 # Since: 0.14
275 #
276 # Example:
277 #
278 # 1. Before the first migration
279 #
280 # -> { "execute": "query-migrate" }
281 # <- { "return": {} }
282 #
283 # 2. Migration is done and has succeeded
284 #
285 # -> { "execute": "query-migrate" }
286 # <- { "return": {
287 # "status": "completed",
288 # "total-time":12345,
289 # "setup-time":12345,
290 # "downtime":12345,
291 # "ram":{
292 # "transferred":123,
293 # "remaining":123,
294 # "total":246,
295 # "duplicate":123,
296 # "normal":123,
297 # "normal-bytes":123456,
298 # "dirty-sync-count":15
299 # }
300 # }
301 # }
302 #
303 # 3. Migration is done and has failed
304 #
305 # -> { "execute": "query-migrate" }
306 # <- { "return": { "status": "failed" } }
307 #
308 # 4. Migration is being performed and is not a block migration:
309 #
310 # -> { "execute": "query-migrate" }
311 # <- {
312 # "return":{
313 # "status":"active",
314 # "total-time":12345,
315 # "setup-time":12345,
316 # "expected-downtime":12345,
317 # "ram":{
318 # "transferred":123,
319 # "remaining":123,
320 # "total":246,
321 # "duplicate":123,
322 # "normal":123,
323 # "normal-bytes":123456,
324 # "dirty-sync-count":15
325 # }
326 # }
327 # }
328 #
329 # 5. Migration is being performed and is a block migration:
330 #
331 # -> { "execute": "query-migrate" }
332 # <- {
333 # "return":{
334 # "status":"active",
335 # "total-time":12345,
336 # "setup-time":12345,
337 # "expected-downtime":12345,
338 # "ram":{
339 # "total":1057024,
340 # "remaining":1053304,
341 # "transferred":3720,
342 # "duplicate":123,
343 # "normal":123,
344 # "normal-bytes":123456,
345 # "dirty-sync-count":15
346 # },
347 # "disk":{
348 # "total":20971520,
349 # "remaining":20880384,
350 # "transferred":91136
351 # }
352 # }
353 # }
354 #
355 # 6. Migration is being performed and XBZRLE is active:
356 #
357 # -> { "execute": "query-migrate" }
358 # <- {
359 # "return":{
360 # "status":"active",
361 # "total-time":12345,
362 # "setup-time":12345,
363 # "expected-downtime":12345,
364 # "ram":{
365 # "total":1057024,
366 # "remaining":1053304,
367 # "transferred":3720,
368 # "duplicate":10,
369 # "normal":3333,
370 # "normal-bytes":3412992,
371 # "dirty-sync-count":15
372 # },
373 # "xbzrle-cache":{
374 # "cache-size":67108864,
375 # "bytes":20971520,
376 # "pages":2444343,
377 # "cache-miss":2244,
378 # "cache-miss-rate":0.123,
379 # "encoding-rate":80.1,
380 # "overflow":34434
381 # }
382 # }
383 # }
384 #
385 ##
386 { 'command': 'query-migrate', 'returns': 'MigrationInfo' }
387
388 ##
389 # @MigrationCapability:
390 #
391 # Migration capabilities enumeration
392 #
393 # @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
394 # This feature allows us to minimize migration traffic for certain work
395 # loads, by sending compressed difference of the pages
396 #
397 # @rdma-pin-all: Controls whether or not the entire VM memory footprint is
398 # mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
399 # Disabled by default. (since 2.0)
400 #
401 # @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
402 # essentially saves 1MB of zeroes per block on the wire. Enabling requires
403 # source and target VM to support this feature. To enable it is sufficient
404 # to enable the capability on the source VM. The feature is disabled by
405 # default. (since 1.6)
406 #
407 # @compress: Use multiple compression threads to accelerate live migration.
408 # This feature can help to reduce the migration traffic, by sending
409 # compressed pages. Please note that if compress and xbzrle are both
410 # on, compress only takes effect in the ram bulk stage, after that,
411 # it will be disabled and only xbzrle takes effect, this can help to
412 # minimize migration traffic. The feature is disabled by default.
413 # (since 2.4 )
414 #
415 # @events: generate events for each migration state change
416 # (since 2.4 )
417 #
418 # @auto-converge: If enabled, QEMU will automatically throttle down the guest
419 # to speed up convergence of RAM migration. (since 1.6)
420 #
421 # @postcopy-ram: Start executing on the migration target before all of RAM has
422 # been migrated, pulling the remaining pages along as needed. The
423 # capacity must have the same setting on both source and target
424 # or migration will not even start. NOTE: If the migration fails during
425 # postcopy the VM will fail. (since 2.6)
426 #
427 # @x-colo: If enabled, migration will never end, and the state of the VM on the
428 # primary side will be migrated continuously to the VM on secondary
429 # side, this process is called COarse-Grain LOck Stepping (COLO) for
430 # Non-stop Service. (since 2.8)
431 #
432 # @release-ram: if enabled, qemu will free the migrated ram pages on the source
433 # during postcopy-ram migration. (since 2.9)
434 #
435 # @block: If enabled, QEMU will also migrate the contents of all block
436 # devices. Default is disabled. A possible alternative uses
437 # mirror jobs to a builtin NBD server on the destination, which
438 # offers more flexibility.
439 # (Since 2.10)
440 #
441 # @return-path: If enabled, migration will use the return path even
442 # for precopy. (since 2.10)
443 #
444 # @pause-before-switchover: Pause outgoing migration before serialising device
445 # state and before disabling block IO (since 2.11)
446 #
447 # @multifd: Use more than one fd for migration (since 4.0)
448 #
449 # @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
450 # (since 2.12)
451 #
452 # @postcopy-blocktime: Calculate downtime for postcopy live migration
453 # (since 3.0)
454 #
455 # @late-block-activate: If enabled, the destination will not activate block
456 # devices (and thus take locks) immediately at the end of migration.
457 # (since 3.0)
458 #
459 # @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0)
460 #
461 # @validate-uuid: Send the UUID of the source to allow the destination
462 # to ensure it is the same. (since 4.2)
463 #
464 # @background-snapshot: If enabled, the migration stream will be a snapshot
465 # of the VM exactly at the point when the migration
466 # procedure starts. The VM RAM is saved with running VM.
467 # (since 6.0)
468 #
469 # @zero-copy-send: Controls behavior on sending memory pages on migration.
470 # When true, enables a zero-copy mechanism for sending
471 # memory pages, if host supports it.
472 # Requires that QEMU be permitted to use locked memory
473 # for guest RAM pages.
474 # (since 7.1)
475 # @postcopy-preempt: If enabled, the migration process will allow postcopy
476 # requests to preempt precopy stream, so postcopy requests
477 # will be handled faster. This is a performance feature and
478 # should not affect the correctness of postcopy migration.
479 # (since 7.1)
480 #
481 # Features:
482 # @unstable: Members @x-colo and @x-ignore-shared are experimental.
483 #
484 # Since: 1.2
485 ##
486 { 'enum': 'MigrationCapability',
487 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
488 'compress', 'events', 'postcopy-ram',
489 { 'name': 'x-colo', 'features': [ 'unstable' ] },
490 'release-ram',
491 'block', 'return-path', 'pause-before-switchover', 'multifd',
492 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
493 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
494 'validate-uuid', 'background-snapshot',
495 'zero-copy-send', 'postcopy-preempt'] }
496
497 ##
498 # @MigrationCapabilityStatus:
499 #
500 # Migration capability information
501 #
502 # @capability: capability enum
503 #
504 # @state: capability state bool
505 #
506 # Since: 1.2
507 ##
508 { 'struct': 'MigrationCapabilityStatus',
509 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
510
511 ##
512 # @migrate-set-capabilities:
513 #
514 # Enable/Disable the following migration capabilities (like xbzrle)
515 #
516 # @capabilities: json array of capability modifications to make
517 #
518 # Since: 1.2
519 #
520 # Example:
521 #
522 # -> { "execute": "migrate-set-capabilities" , "arguments":
523 # { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
524 #
525 ##
526 { 'command': 'migrate-set-capabilities',
527 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
528
529 ##
530 # @query-migrate-capabilities:
531 #
532 # Returns information about the current migration capabilities status
533 #
534 # Returns: @MigrationCapabilitiesStatus
535 #
536 # Since: 1.2
537 #
538 # Example:
539 #
540 # -> { "execute": "query-migrate-capabilities" }
541 # <- { "return": [
542 # {"state": false, "capability": "xbzrle"},
543 # {"state": false, "capability": "rdma-pin-all"},
544 # {"state": false, "capability": "auto-converge"},
545 # {"state": false, "capability": "zero-blocks"},
546 # {"state": false, "capability": "compress"},
547 # {"state": true, "capability": "events"},
548 # {"state": false, "capability": "postcopy-ram"},
549 # {"state": false, "capability": "x-colo"}
550 # ]}
551 #
552 ##
553 { 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
554
555 ##
556 # @MultiFDCompression:
557 #
558 # An enumeration of multifd compression methods.
559 #
560 # @none: no compression.
561 # @zlib: use zlib compression method.
562 # @zstd: use zstd compression method.
563 #
564 # Since: 5.0
565 ##
566 { 'enum': 'MultiFDCompression',
567 'data': [ 'none', 'zlib',
568 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
569
570 ##
571 # @BitmapMigrationBitmapAliasTransform:
572 #
573 # @persistent: If present, the bitmap will be made persistent
574 # or transient depending on this parameter.
575 #
576 # Since: 6.0
577 ##
578 { 'struct': 'BitmapMigrationBitmapAliasTransform',
579 'data': {
580 '*persistent': 'bool'
581 } }
582
583 ##
584 # @BitmapMigrationBitmapAlias:
585 #
586 # @name: The name of the bitmap.
587 #
588 # @alias: An alias name for migration (for example the bitmap name on
589 # the opposite site).
590 #
591 # @transform: Allows the modification of the migrated bitmap.
592 # (since 6.0)
593 #
594 # Since: 5.2
595 ##
596 { 'struct': 'BitmapMigrationBitmapAlias',
597 'data': {
598 'name': 'str',
599 'alias': 'str',
600 '*transform': 'BitmapMigrationBitmapAliasTransform'
601 } }
602
603 ##
604 # @BitmapMigrationNodeAlias:
605 #
606 # Maps a block node name and the bitmaps it has to aliases for dirty
607 # bitmap migration.
608 #
609 # @node-name: A block node name.
610 #
611 # @alias: An alias block node name for migration (for example the
612 # node name on the opposite site).
613 #
614 # @bitmaps: Mappings for the bitmaps on this node.
615 #
616 # Since: 5.2
617 ##
618 { 'struct': 'BitmapMigrationNodeAlias',
619 'data': {
620 'node-name': 'str',
621 'alias': 'str',
622 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
623 } }
624
625 ##
626 # @MigrationParameter:
627 #
628 # Migration parameters enumeration
629 #
630 # @announce-initial: Initial delay (in milliseconds) before sending the first
631 # announce (Since 4.0)
632 #
633 # @announce-max: Maximum delay (in milliseconds) between packets in the
634 # announcement (Since 4.0)
635 #
636 # @announce-rounds: Number of self-announce packets sent after migration
637 # (Since 4.0)
638 #
639 # @announce-step: Increase in delay (in milliseconds) between subsequent
640 # packets in the announcement (Since 4.0)
641 #
642 # @compress-level: Set the compression level to be used in live migration,
643 # the compression level is an integer between 0 and 9, where 0 means
644 # no compression, 1 means the best compression speed, and 9 means best
645 # compression ratio which will consume more CPU.
646 #
647 # @compress-threads: Set compression thread count to be used in live migration,
648 # the compression thread count is an integer between 1 and 255.
649 #
650 # @compress-wait-thread: Controls behavior when all compression threads are
651 # currently busy. If true (default), wait for a free
652 # compression thread to become available; otherwise,
653 # send the page uncompressed. (Since 3.1)
654 #
655 # @decompress-threads: Set decompression thread count to be used in live
656 # migration, the decompression thread count is an integer between 1
657 # and 255. Usually, decompression is at least 4 times as fast as
658 # compression, so set the decompress-threads to the number about 1/4
659 # of compress-threads is adequate.
660 #
661 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
662 # to trigger throttling. It is expressed as percentage.
663 # The default value is 50. (Since 5.0)
664 #
665 # @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
666 # when migration auto-converge is activated. The
667 # default value is 20. (Since 2.7)
668 #
669 # @cpu-throttle-increment: throttle percentage increase each time
670 # auto-converge detects that migration is not making
671 # progress. The default value is 10. (Since 2.7)
672 #
673 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
674 # At the tail stage of throttling, the Guest is very
675 # sensitive to CPU percentage while the @cpu-throttle
676 # -increment is excessive usually at tail stage.
677 # If this parameter is true, we will compute the ideal
678 # CPU percentage used by the Guest, which may exactly make
679 # the dirty rate match the dirty rate threshold. Then we
680 # will choose a smaller throttle increment between the
681 # one specified by @cpu-throttle-increment and the one
682 # generated by ideal CPU percentage.
683 # Therefore, it is compatible to traditional throttling,
684 # meanwhile the throttle increment won't be excessive
685 # at tail stage.
686 # The default value is false. (Since 5.1)
687 #
688 # @tls-creds: ID of the 'tls-creds' object that provides credentials for
689 # establishing a TLS connection over the migration data channel.
690 # On the outgoing side of the migration, the credentials must
691 # be for a 'client' endpoint, while for the incoming side the
692 # credentials must be for a 'server' endpoint. Setting this
693 # will enable TLS for all migrations. The default is unset,
694 # resulting in unsecured migration at the QEMU level. (Since 2.7)
695 #
696 # @tls-hostname: hostname of the target host for the migration. This is
697 # required when using x509 based TLS credentials and the
698 # migration URI does not already include a hostname. For
699 # example if using fd: or exec: based migration, the
700 # hostname must be provided so that the server's x509
701 # certificate identity can be validated. (Since 2.7)
702 #
703 # @tls-authz: ID of the 'authz' object subclass that provides access control
704 # checking of the TLS x509 certificate distinguished name.
705 # This object is only resolved at time of use, so can be deleted
706 # and recreated on the fly while the migration server is active.
707 # If missing, it will default to denying access (Since 4.0)
708 #
709 # @max-bandwidth: to set maximum speed for migration. maximum speed in
710 # bytes per second. (Since 2.8)
711 #
712 # @downtime-limit: set maximum tolerated downtime for migration. maximum
713 # downtime in milliseconds (Since 2.8)
714 #
715 # @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
716 # periodic mode. (Since 2.8)
717 #
718 # @block-incremental: Affects how much storage is migrated when the
719 # block migration capability is enabled. When false, the entire
720 # storage backing chain is migrated into a flattened image at
721 # the destination; when true, only the active qcow2 layer is
722 # migrated and the destination must already have access to the
723 # same backing chain as was used on the source. (since 2.10)
724 #
725 # @multifd-channels: Number of channels used to migrate data in
726 # parallel. This is the same number that the
727 # number of sockets used for migration. The
728 # default value is 2 (since 4.0)
729 #
730 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
731 # needs to be a multiple of the target page size
732 # and a power of 2
733 # (Since 2.11)
734 #
735 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
736 # Defaults to 0 (unlimited). In bytes per second.
737 # (Since 3.0)
738 #
739 # @max-cpu-throttle: maximum cpu throttle percentage.
740 # Defaults to 99. (Since 3.1)
741 #
742 # @multifd-compression: Which compression method to use.
743 # Defaults to none. (Since 5.0)
744 #
745 # @multifd-zlib-level: Set the compression level to be used in live
746 # migration, the compression level is an integer between 0
747 # and 9, where 0 means no compression, 1 means the best
748 # compression speed, and 9 means best compression ratio which
749 # will consume more CPU.
750 # Defaults to 1. (Since 5.0)
751 #
752 # @multifd-zstd-level: Set the compression level to be used in live
753 # migration, the compression level is an integer between 0
754 # and 20, where 0 means no compression, 1 means the best
755 # compression speed, and 20 means best compression ratio which
756 # will consume more CPU.
757 # Defaults to 1. (Since 5.0)
758 #
759 #
760 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
761 # aliases for the purpose of dirty bitmap migration. Such
762 # aliases may for example be the corresponding names on the
763 # opposite site.
764 # The mapping must be one-to-one, but not necessarily
765 # complete: On the source, unmapped bitmaps and all bitmaps
766 # on unmapped nodes will be ignored. On the destination,
767 # encountering an unmapped alias in the incoming migration
768 # stream will result in a report, and all further bitmap
769 # migration data will then be discarded.
770 # Note that the destination does not know about bitmaps it
771 # does not receive, so there is no limitation or requirement
772 # regarding the number of bitmaps received, or how they are
773 # named, or on which nodes they are placed.
774 # By default (when this parameter has never been set), bitmap
775 # names are mapped to themselves. Nodes are mapped to their
776 # block device name if there is one, and to their node name
777 # otherwise. (Since 5.2)
778 #
779 # Features:
780 # @unstable: Member @x-checkpoint-delay is experimental.
781 #
782 # Since: 2.4
783 ##
784 { 'enum': 'MigrationParameter',
785 'data': ['announce-initial', 'announce-max',
786 'announce-rounds', 'announce-step',
787 'compress-level', 'compress-threads', 'decompress-threads',
788 'compress-wait-thread', 'throttle-trigger-threshold',
789 'cpu-throttle-initial', 'cpu-throttle-increment',
790 'cpu-throttle-tailslow',
791 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
792 'downtime-limit',
793 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
794 'block-incremental',
795 'multifd-channels',
796 'xbzrle-cache-size', 'max-postcopy-bandwidth',
797 'max-cpu-throttle', 'multifd-compression',
798 'multifd-zlib-level' ,'multifd-zstd-level',
799 'block-bitmap-mapping' ] }
800
801 ##
802 # @MigrateSetParameters:
803 #
804 # @announce-initial: Initial delay (in milliseconds) before sending the first
805 # announce (Since 4.0)
806 #
807 # @announce-max: Maximum delay (in milliseconds) between packets in the
808 # announcement (Since 4.0)
809 #
810 # @announce-rounds: Number of self-announce packets sent after migration
811 # (Since 4.0)
812 #
813 # @announce-step: Increase in delay (in milliseconds) between subsequent
814 # packets in the announcement (Since 4.0)
815 #
816 # @compress-level: compression level
817 #
818 # @compress-threads: compression thread count
819 #
820 # @compress-wait-thread: Controls behavior when all compression threads are
821 # currently busy. If true (default), wait for a free
822 # compression thread to become available; otherwise,
823 # send the page uncompressed. (Since 3.1)
824 #
825 # @decompress-threads: decompression thread count
826 #
827 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
828 # to trigger throttling. It is expressed as percentage.
829 # The default value is 50. (Since 5.0)
830 #
831 # @cpu-throttle-initial: Initial percentage of time guest cpus are
832 # throttled when migration auto-converge is activated.
833 # The default value is 20. (Since 2.7)
834 #
835 # @cpu-throttle-increment: throttle percentage increase each time
836 # auto-converge detects that migration is not making
837 # progress. The default value is 10. (Since 2.7)
838 #
839 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
840 # At the tail stage of throttling, the Guest is very
841 # sensitive to CPU percentage while the @cpu-throttle
842 # -increment is excessive usually at tail stage.
843 # If this parameter is true, we will compute the ideal
844 # CPU percentage used by the Guest, which may exactly make
845 # the dirty rate match the dirty rate threshold. Then we
846 # will choose a smaller throttle increment between the
847 # one specified by @cpu-throttle-increment and the one
848 # generated by ideal CPU percentage.
849 # Therefore, it is compatible to traditional throttling,
850 # meanwhile the throttle increment won't be excessive
851 # at tail stage.
852 # The default value is false. (Since 5.1)
853 #
854 # @tls-creds: ID of the 'tls-creds' object that provides credentials
855 # for establishing a TLS connection over the migration data
856 # channel. On the outgoing side of the migration, the credentials
857 # must be for a 'client' endpoint, while for the incoming side the
858 # credentials must be for a 'server' endpoint. Setting this
859 # to a non-empty string enables TLS for all migrations.
860 # An empty string means that QEMU will use plain text mode for
861 # migration, rather than TLS (Since 2.9)
862 # Previously (since 2.7), this was reported by omitting
863 # tls-creds instead.
864 #
865 # @tls-hostname: hostname of the target host for the migration. This
866 # is required when using x509 based TLS credentials and the
867 # migration URI does not already include a hostname. For
868 # example if using fd: or exec: based migration, the
869 # hostname must be provided so that the server's x509
870 # certificate identity can be validated. (Since 2.7)
871 # An empty string means that QEMU will use the hostname
872 # associated with the migration URI, if any. (Since 2.9)
873 # Previously (since 2.7), this was reported by omitting
874 # tls-hostname instead.
875 #
876 # @max-bandwidth: to set maximum speed for migration. maximum speed in
877 # bytes per second. (Since 2.8)
878 #
879 # @downtime-limit: set maximum tolerated downtime for migration. maximum
880 # downtime in milliseconds (Since 2.8)
881 #
882 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
883 #
884 # @block-incremental: Affects how much storage is migrated when the
885 # block migration capability is enabled. When false, the entire
886 # storage backing chain is migrated into a flattened image at
887 # the destination; when true, only the active qcow2 layer is
888 # migrated and the destination must already have access to the
889 # same backing chain as was used on the source. (since 2.10)
890 #
891 # @multifd-channels: Number of channels used to migrate data in
892 # parallel. This is the same number that the
893 # number of sockets used for migration. The
894 # default value is 2 (since 4.0)
895 #
896 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
897 # needs to be a multiple of the target page size
898 # and a power of 2
899 # (Since 2.11)
900 #
901 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
902 # Defaults to 0 (unlimited). In bytes per second.
903 # (Since 3.0)
904 #
905 # @max-cpu-throttle: maximum cpu throttle percentage.
906 # The default value is 99. (Since 3.1)
907 #
908 # @multifd-compression: Which compression method to use.
909 # Defaults to none. (Since 5.0)
910 #
911 # @multifd-zlib-level: Set the compression level to be used in live
912 # migration, the compression level is an integer between 0
913 # and 9, where 0 means no compression, 1 means the best
914 # compression speed, and 9 means best compression ratio which
915 # will consume more CPU.
916 # Defaults to 1. (Since 5.0)
917 #
918 # @multifd-zstd-level: Set the compression level to be used in live
919 # migration, the compression level is an integer between 0
920 # and 20, where 0 means no compression, 1 means the best
921 # compression speed, and 20 means best compression ratio which
922 # will consume more CPU.
923 # Defaults to 1. (Since 5.0)
924 #
925 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
926 # aliases for the purpose of dirty bitmap migration. Such
927 # aliases may for example be the corresponding names on the
928 # opposite site.
929 # The mapping must be one-to-one, but not necessarily
930 # complete: On the source, unmapped bitmaps and all bitmaps
931 # on unmapped nodes will be ignored. On the destination,
932 # encountering an unmapped alias in the incoming migration
933 # stream will result in a report, and all further bitmap
934 # migration data will then be discarded.
935 # Note that the destination does not know about bitmaps it
936 # does not receive, so there is no limitation or requirement
937 # regarding the number of bitmaps received, or how they are
938 # named, or on which nodes they are placed.
939 # By default (when this parameter has never been set), bitmap
940 # names are mapped to themselves. Nodes are mapped to their
941 # block device name if there is one, and to their node name
942 # otherwise. (Since 5.2)
943 #
944 # Features:
945 # @unstable: Member @x-checkpoint-delay is experimental.
946 #
947 # Since: 2.4
948 ##
949 # TODO either fuse back into MigrationParameters, or make
950 # MigrationParameters members mandatory
951 { 'struct': 'MigrateSetParameters',
952 'data': { '*announce-initial': 'size',
953 '*announce-max': 'size',
954 '*announce-rounds': 'size',
955 '*announce-step': 'size',
956 '*compress-level': 'uint8',
957 '*compress-threads': 'uint8',
958 '*compress-wait-thread': 'bool',
959 '*decompress-threads': 'uint8',
960 '*throttle-trigger-threshold': 'uint8',
961 '*cpu-throttle-initial': 'uint8',
962 '*cpu-throttle-increment': 'uint8',
963 '*cpu-throttle-tailslow': 'bool',
964 '*tls-creds': 'StrOrNull',
965 '*tls-hostname': 'StrOrNull',
966 '*tls-authz': 'StrOrNull',
967 '*max-bandwidth': 'size',
968 '*downtime-limit': 'uint64',
969 '*x-checkpoint-delay': { 'type': 'uint32',
970 'features': [ 'unstable' ] },
971 '*block-incremental': 'bool',
972 '*multifd-channels': 'uint8',
973 '*xbzrle-cache-size': 'size',
974 '*max-postcopy-bandwidth': 'size',
975 '*max-cpu-throttle': 'uint8',
976 '*multifd-compression': 'MultiFDCompression',
977 '*multifd-zlib-level': 'uint8',
978 '*multifd-zstd-level': 'uint8',
979 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
980
981 ##
982 # @migrate-set-parameters:
983 #
984 # Set various migration parameters.
985 #
986 # Since: 2.4
987 #
988 # Example:
989 #
990 # -> { "execute": "migrate-set-parameters" ,
991 # "arguments": { "compress-level": 1 } }
992 #
993 ##
994 { 'command': 'migrate-set-parameters', 'boxed': true,
995 'data': 'MigrateSetParameters' }
996
997 ##
998 # @MigrationParameters:
999 #
1000 # The optional members aren't actually optional.
1001 #
1002 # @announce-initial: Initial delay (in milliseconds) before sending the
1003 # first announce (Since 4.0)
1004 #
1005 # @announce-max: Maximum delay (in milliseconds) between packets in the
1006 # announcement (Since 4.0)
1007 #
1008 # @announce-rounds: Number of self-announce packets sent after migration
1009 # (Since 4.0)
1010 #
1011 # @announce-step: Increase in delay (in milliseconds) between subsequent
1012 # packets in the announcement (Since 4.0)
1013 #
1014 # @compress-level: compression level
1015 #
1016 # @compress-threads: compression thread count
1017 #
1018 # @compress-wait-thread: Controls behavior when all compression threads are
1019 # currently busy. If true (default), wait for a free
1020 # compression thread to become available; otherwise,
1021 # send the page uncompressed. (Since 3.1)
1022 #
1023 # @decompress-threads: decompression thread count
1024 #
1025 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
1026 # to trigger throttling. It is expressed as percentage.
1027 # The default value is 50. (Since 5.0)
1028 #
1029 # @cpu-throttle-initial: Initial percentage of time guest cpus are
1030 # throttled when migration auto-converge is activated.
1031 # (Since 2.7)
1032 #
1033 # @cpu-throttle-increment: throttle percentage increase each time
1034 # auto-converge detects that migration is not making
1035 # progress. (Since 2.7)
1036 #
1037 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
1038 # At the tail stage of throttling, the Guest is very
1039 # sensitive to CPU percentage while the @cpu-throttle
1040 # -increment is excessive usually at tail stage.
1041 # If this parameter is true, we will compute the ideal
1042 # CPU percentage used by the Guest, which may exactly make
1043 # the dirty rate match the dirty rate threshold. Then we
1044 # will choose a smaller throttle increment between the
1045 # one specified by @cpu-throttle-increment and the one
1046 # generated by ideal CPU percentage.
1047 # Therefore, it is compatible to traditional throttling,
1048 # meanwhile the throttle increment won't be excessive
1049 # at tail stage.
1050 # The default value is false. (Since 5.1)
1051 #
1052 # @tls-creds: ID of the 'tls-creds' object that provides credentials
1053 # for establishing a TLS connection over the migration data
1054 # channel. On the outgoing side of the migration, the credentials
1055 # must be for a 'client' endpoint, while for the incoming side the
1056 # credentials must be for a 'server' endpoint.
1057 # An empty string means that QEMU will use plain text mode for
1058 # migration, rather than TLS (Since 2.7)
1059 # Note: 2.8 reports this by omitting tls-creds instead.
1060 #
1061 # @tls-hostname: hostname of the target host for the migration. This
1062 # is required when using x509 based TLS credentials and the
1063 # migration URI does not already include a hostname. For
1064 # example if using fd: or exec: based migration, the
1065 # hostname must be provided so that the server's x509
1066 # certificate identity can be validated. (Since 2.7)
1067 # An empty string means that QEMU will use the hostname
1068 # associated with the migration URI, if any. (Since 2.9)
1069 # Note: 2.8 reports this by omitting tls-hostname instead.
1070 #
1071 # @tls-authz: ID of the 'authz' object subclass that provides access control
1072 # checking of the TLS x509 certificate distinguished name. (Since
1073 # 4.0)
1074 #
1075 # @max-bandwidth: to set maximum speed for migration. maximum speed in
1076 # bytes per second. (Since 2.8)
1077 #
1078 # @downtime-limit: set maximum tolerated downtime for migration. maximum
1079 # downtime in milliseconds (Since 2.8)
1080 #
1081 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1082 #
1083 # @block-incremental: Affects how much storage is migrated when the
1084 # block migration capability is enabled. When false, the entire
1085 # storage backing chain is migrated into a flattened image at
1086 # the destination; when true, only the active qcow2 layer is
1087 # migrated and the destination must already have access to the
1088 # same backing chain as was used on the source. (since 2.10)
1089 #
1090 # @multifd-channels: Number of channels used to migrate data in
1091 # parallel. This is the same number that the
1092 # number of sockets used for migration.
1093 # The default value is 2 (since 4.0)
1094 #
1095 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1096 # needs to be a multiple of the target page size
1097 # and a power of 2
1098 # (Since 2.11)
1099 #
1100 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
1101 # Defaults to 0 (unlimited). In bytes per second.
1102 # (Since 3.0)
1103 #
1104 # @max-cpu-throttle: maximum cpu throttle percentage.
1105 # Defaults to 99.
1106 # (Since 3.1)
1107 #
1108 # @multifd-compression: Which compression method to use.
1109 # Defaults to none. (Since 5.0)
1110 #
1111 # @multifd-zlib-level: Set the compression level to be used in live
1112 # migration, the compression level is an integer between 0
1113 # and 9, where 0 means no compression, 1 means the best
1114 # compression speed, and 9 means best compression ratio which
1115 # will consume more CPU.
1116 # Defaults to 1. (Since 5.0)
1117 #
1118 # @multifd-zstd-level: Set the compression level to be used in live
1119 # migration, the compression level is an integer between 0
1120 # and 20, where 0 means no compression, 1 means the best
1121 # compression speed, and 20 means best compression ratio which
1122 # will consume more CPU.
1123 # Defaults to 1. (Since 5.0)
1124 #
1125 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1126 # aliases for the purpose of dirty bitmap migration. Such
1127 # aliases may for example be the corresponding names on the
1128 # opposite site.
1129 # The mapping must be one-to-one, but not necessarily
1130 # complete: On the source, unmapped bitmaps and all bitmaps
1131 # on unmapped nodes will be ignored. On the destination,
1132 # encountering an unmapped alias in the incoming migration
1133 # stream will result in a report, and all further bitmap
1134 # migration data will then be discarded.
1135 # Note that the destination does not know about bitmaps it
1136 # does not receive, so there is no limitation or requirement
1137 # regarding the number of bitmaps received, or how they are
1138 # named, or on which nodes they are placed.
1139 # By default (when this parameter has never been set), bitmap
1140 # names are mapped to themselves. Nodes are mapped to their
1141 # block device name if there is one, and to their node name
1142 # otherwise. (Since 5.2)
1143 #
1144 # Features:
1145 # @unstable: Member @x-checkpoint-delay is experimental.
1146 #
1147 # Since: 2.4
1148 ##
1149 { 'struct': 'MigrationParameters',
1150 'data': { '*announce-initial': 'size',
1151 '*announce-max': 'size',
1152 '*announce-rounds': 'size',
1153 '*announce-step': 'size',
1154 '*compress-level': 'uint8',
1155 '*compress-threads': 'uint8',
1156 '*compress-wait-thread': 'bool',
1157 '*decompress-threads': 'uint8',
1158 '*throttle-trigger-threshold': 'uint8',
1159 '*cpu-throttle-initial': 'uint8',
1160 '*cpu-throttle-increment': 'uint8',
1161 '*cpu-throttle-tailslow': 'bool',
1162 '*tls-creds': 'str',
1163 '*tls-hostname': 'str',
1164 '*tls-authz': 'str',
1165 '*max-bandwidth': 'size',
1166 '*downtime-limit': 'uint64',
1167 '*x-checkpoint-delay': { 'type': 'uint32',
1168 'features': [ 'unstable' ] },
1169 '*block-incremental': 'bool',
1170 '*multifd-channels': 'uint8',
1171 '*xbzrle-cache-size': 'size',
1172 '*max-postcopy-bandwidth': 'size',
1173 '*max-cpu-throttle': 'uint8',
1174 '*multifd-compression': 'MultiFDCompression',
1175 '*multifd-zlib-level': 'uint8',
1176 '*multifd-zstd-level': 'uint8',
1177 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
1178
1179 ##
1180 # @query-migrate-parameters:
1181 #
1182 # Returns information about the current migration parameters
1183 #
1184 # Returns: @MigrationParameters
1185 #
1186 # Since: 2.4
1187 #
1188 # Example:
1189 #
1190 # -> { "execute": "query-migrate-parameters" }
1191 # <- { "return": {
1192 # "decompress-threads": 2,
1193 # "cpu-throttle-increment": 10,
1194 # "compress-threads": 8,
1195 # "compress-level": 1,
1196 # "cpu-throttle-initial": 20,
1197 # "max-bandwidth": 33554432,
1198 # "downtime-limit": 300
1199 # }
1200 # }
1201 #
1202 ##
1203 { 'command': 'query-migrate-parameters',
1204 'returns': 'MigrationParameters' }
1205
1206 ##
1207 # @migrate-start-postcopy:
1208 #
1209 # Followup to a migration command to switch the migration to postcopy mode.
1210 # The postcopy-ram capability must be set on both source and destination
1211 # before the original migration command.
1212 #
1213 # Since: 2.5
1214 #
1215 # Example:
1216 #
1217 # -> { "execute": "migrate-start-postcopy" }
1218 # <- { "return": {} }
1219 #
1220 ##
1221 { 'command': 'migrate-start-postcopy' }
1222
1223 ##
1224 # @MIGRATION:
1225 #
1226 # Emitted when a migration event happens
1227 #
1228 # @status: @MigrationStatus describing the current migration status.
1229 #
1230 # Since: 2.4
1231 #
1232 # Example:
1233 #
1234 # <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1235 # "event": "MIGRATION",
1236 # "data": {"status": "completed"} }
1237 #
1238 ##
1239 { 'event': 'MIGRATION',
1240 'data': {'status': 'MigrationStatus'}}
1241
1242 ##
1243 # @MIGRATION_PASS:
1244 #
1245 # Emitted from the source side of a migration at the start of each pass
1246 # (when it syncs the dirty bitmap)
1247 #
1248 # @pass: An incrementing count (starting at 1 on the first pass)
1249 #
1250 # Since: 2.6
1251 #
1252 # Example:
1253 #
1254 # { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1255 # "event": "MIGRATION_PASS", "data": {"pass": 2} }
1256 #
1257 ##
1258 { 'event': 'MIGRATION_PASS',
1259 'data': { 'pass': 'int' } }
1260
1261 ##
1262 # @COLOMessage:
1263 #
1264 # The message transmission between Primary side and Secondary side.
1265 #
1266 # @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1267 #
1268 # @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1269 #
1270 # @checkpoint-reply: SVM gets PVM's checkpoint request
1271 #
1272 # @vmstate-send: VM's state will be sent by PVM.
1273 #
1274 # @vmstate-size: The total size of VMstate.
1275 #
1276 # @vmstate-received: VM's state has been received by SVM.
1277 #
1278 # @vmstate-loaded: VM's state has been loaded by SVM.
1279 #
1280 # Since: 2.8
1281 ##
1282 { 'enum': 'COLOMessage',
1283 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1284 'vmstate-send', 'vmstate-size', 'vmstate-received',
1285 'vmstate-loaded' ] }
1286
1287 ##
1288 # @COLOMode:
1289 #
1290 # The COLO current mode.
1291 #
1292 # @none: COLO is disabled.
1293 #
1294 # @primary: COLO node in primary side.
1295 #
1296 # @secondary: COLO node in slave side.
1297 #
1298 # Since: 2.8
1299 ##
1300 { 'enum': 'COLOMode',
1301 'data': [ 'none', 'primary', 'secondary'] }
1302
1303 ##
1304 # @FailoverStatus:
1305 #
1306 # An enumeration of COLO failover status
1307 #
1308 # @none: no failover has ever happened
1309 #
1310 # @require: got failover requirement but not handled
1311 #
1312 # @active: in the process of doing failover
1313 #
1314 # @completed: finish the process of failover
1315 #
1316 # @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1317 #
1318 # Since: 2.8
1319 ##
1320 { 'enum': 'FailoverStatus',
1321 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1322
1323 ##
1324 # @COLO_EXIT:
1325 #
1326 # Emitted when VM finishes COLO mode due to some errors happening or
1327 # at the request of users.
1328 #
1329 # @mode: report COLO mode when COLO exited.
1330 #
1331 # @reason: describes the reason for the COLO exit.
1332 #
1333 # Since: 3.1
1334 #
1335 # Example:
1336 #
1337 # <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1338 # "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1339 #
1340 ##
1341 { 'event': 'COLO_EXIT',
1342 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1343
1344 ##
1345 # @COLOExitReason:
1346 #
1347 # The reason for a COLO exit.
1348 #
1349 # @none: failover has never happened. This state does not occur
1350 # in the COLO_EXIT event, and is only visible in the result of
1351 # query-colo-status.
1352 #
1353 # @request: COLO exit is due to an external request.
1354 #
1355 # @error: COLO exit is due to an internal error.
1356 #
1357 # @processing: COLO is currently handling a failover (since 4.0).
1358 #
1359 # Since: 3.1
1360 ##
1361 { 'enum': 'COLOExitReason',
1362 'data': [ 'none', 'request', 'error' , 'processing' ] }
1363
1364 ##
1365 # @x-colo-lost-heartbeat:
1366 #
1367 # Tell qemu that heartbeat is lost, request it to do takeover procedures.
1368 # If this command is sent to the PVM, the Primary side will exit COLO mode.
1369 # If sent to the Secondary, the Secondary side will run failover work,
1370 # then takes over server operation to become the service VM.
1371 #
1372 # Features:
1373 # @unstable: This command is experimental.
1374 #
1375 # Since: 2.8
1376 #
1377 # Example:
1378 #
1379 # -> { "execute": "x-colo-lost-heartbeat" }
1380 # <- { "return": {} }
1381 #
1382 ##
1383 { 'command': 'x-colo-lost-heartbeat',
1384 'features': [ 'unstable' ] }
1385
1386 ##
1387 # @migrate_cancel:
1388 #
1389 # Cancel the current executing migration process.
1390 #
1391 # Returns: nothing on success
1392 #
1393 # Notes: This command succeeds even if there is no migration process running.
1394 #
1395 # Since: 0.14
1396 #
1397 # Example:
1398 #
1399 # -> { "execute": "migrate_cancel" }
1400 # <- { "return": {} }
1401 #
1402 ##
1403 { 'command': 'migrate_cancel' }
1404
1405 ##
1406 # @migrate-continue:
1407 #
1408 # Continue migration when it's in a paused state.
1409 #
1410 # @state: The state the migration is currently expected to be in
1411 #
1412 # Returns: nothing on success
1413 #
1414 # Since: 2.11
1415 #
1416 # Example:
1417 #
1418 # -> { "execute": "migrate-continue" , "arguments":
1419 # { "state": "pre-switchover" } }
1420 # <- { "return": {} }
1421 ##
1422 { 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1423
1424 ##
1425 # @migrate:
1426 #
1427 # Migrates the current running guest to another Virtual Machine.
1428 #
1429 # @uri: the Uniform Resource Identifier of the destination VM
1430 #
1431 # @blk: do block migration (full disk copy)
1432 #
1433 # @inc: incremental disk copy migration
1434 #
1435 # @detach: this argument exists only for compatibility reasons and
1436 # is ignored by QEMU
1437 #
1438 # @resume: resume one paused migration, default "off". (since 3.0)
1439 #
1440 # Returns: nothing on success
1441 #
1442 # Since: 0.14
1443 #
1444 # Notes:
1445 #
1446 # 1. The 'query-migrate' command should be used to check migration's progress
1447 # and final result (this information is provided by the 'status' member)
1448 #
1449 # 2. All boolean arguments default to false
1450 #
1451 # 3. The user Monitor's "detach" argument is invalid in QMP and should not
1452 # be used
1453 #
1454 # Example:
1455 #
1456 # -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1457 # <- { "return": {} }
1458 #
1459 ##
1460 { 'command': 'migrate',
1461 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1462 '*detach': 'bool', '*resume': 'bool' } }
1463
1464 ##
1465 # @migrate-incoming:
1466 #
1467 # Start an incoming migration, the qemu must have been started
1468 # with -incoming defer
1469 #
1470 # @uri: The Uniform Resource Identifier identifying the source or
1471 # address to listen on
1472 #
1473 # Returns: nothing on success
1474 #
1475 # Since: 2.3
1476 #
1477 # Notes:
1478 #
1479 # 1. It's a bad idea to use a string for the uri, but it needs to stay
1480 # compatible with -incoming and the format of the uri is already exposed
1481 # above libvirt.
1482 #
1483 # 2. QEMU must be started with -incoming defer to allow migrate-incoming to
1484 # be used.
1485 #
1486 # 3. The uri format is the same as for -incoming
1487 #
1488 # Example:
1489 #
1490 # -> { "execute": "migrate-incoming",
1491 # "arguments": { "uri": "tcp::4446" } }
1492 # <- { "return": {} }
1493 #
1494 ##
1495 { 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1496
1497 ##
1498 # @xen-save-devices-state:
1499 #
1500 # Save the state of all devices to file. The RAM and the block devices
1501 # of the VM are not saved by this command.
1502 #
1503 # @filename: the file to save the state of the devices to as binary
1504 # data. See xen-save-devices-state.txt for a description of the binary
1505 # format.
1506 #
1507 # @live: Optional argument to ask QEMU to treat this command as part of a live
1508 # migration. Default to true. (since 2.11)
1509 #
1510 # Returns: Nothing on success
1511 #
1512 # Since: 1.1
1513 #
1514 # Example:
1515 #
1516 # -> { "execute": "xen-save-devices-state",
1517 # "arguments": { "filename": "/tmp/save" } }
1518 # <- { "return": {} }
1519 #
1520 ##
1521 { 'command': 'xen-save-devices-state',
1522 'data': {'filename': 'str', '*live':'bool' } }
1523
1524 ##
1525 # @xen-set-global-dirty-log:
1526 #
1527 # Enable or disable the global dirty log mode.
1528 #
1529 # @enable: true to enable, false to disable.
1530 #
1531 # Returns: nothing
1532 #
1533 # Since: 1.3
1534 #
1535 # Example:
1536 #
1537 # -> { "execute": "xen-set-global-dirty-log",
1538 # "arguments": { "enable": true } }
1539 # <- { "return": {} }
1540 #
1541 ##
1542 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1543
1544 ##
1545 # @xen-load-devices-state:
1546 #
1547 # Load the state of all devices from file. The RAM and the block devices
1548 # of the VM are not loaded by this command.
1549 #
1550 # @filename: the file to load the state of the devices from as binary
1551 # data. See xen-save-devices-state.txt for a description of the binary
1552 # format.
1553 #
1554 # Since: 2.7
1555 #
1556 # Example:
1557 #
1558 # -> { "execute": "xen-load-devices-state",
1559 # "arguments": { "filename": "/tmp/resume" } }
1560 # <- { "return": {} }
1561 #
1562 ##
1563 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1564
1565 ##
1566 # @xen-set-replication:
1567 #
1568 # Enable or disable replication.
1569 #
1570 # @enable: true to enable, false to disable.
1571 #
1572 # @primary: true for primary or false for secondary.
1573 #
1574 # @failover: true to do failover, false to stop. but cannot be
1575 # specified if 'enable' is true. default value is false.
1576 #
1577 # Returns: nothing.
1578 #
1579 # Example:
1580 #
1581 # -> { "execute": "xen-set-replication",
1582 # "arguments": {"enable": true, "primary": false} }
1583 # <- { "return": {} }
1584 #
1585 # Since: 2.9
1586 ##
1587 { 'command': 'xen-set-replication',
1588 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' },
1589 'if': 'CONFIG_REPLICATION' }
1590
1591 ##
1592 # @ReplicationStatus:
1593 #
1594 # The result format for 'query-xen-replication-status'.
1595 #
1596 # @error: true if an error happened, false if replication is normal.
1597 #
1598 # @desc: the human readable error description string, when
1599 # @error is 'true'.
1600 #
1601 # Since: 2.9
1602 ##
1603 { 'struct': 'ReplicationStatus',
1604 'data': { 'error': 'bool', '*desc': 'str' },
1605 'if': 'CONFIG_REPLICATION' }
1606
1607 ##
1608 # @query-xen-replication-status:
1609 #
1610 # Query replication status while the vm is running.
1611 #
1612 # Returns: A @ReplicationStatus object showing the status.
1613 #
1614 # Example:
1615 #
1616 # -> { "execute": "query-xen-replication-status" }
1617 # <- { "return": { "error": false } }
1618 #
1619 # Since: 2.9
1620 ##
1621 { 'command': 'query-xen-replication-status',
1622 'returns': 'ReplicationStatus',
1623 'if': 'CONFIG_REPLICATION' }
1624
1625 ##
1626 # @xen-colo-do-checkpoint:
1627 #
1628 # Xen uses this command to notify replication to trigger a checkpoint.
1629 #
1630 # Returns: nothing.
1631 #
1632 # Example:
1633 #
1634 # -> { "execute": "xen-colo-do-checkpoint" }
1635 # <- { "return": {} }
1636 #
1637 # Since: 2.9
1638 ##
1639 { 'command': 'xen-colo-do-checkpoint',
1640 'if': 'CONFIG_REPLICATION' }
1641
1642 ##
1643 # @COLOStatus:
1644 #
1645 # The result format for 'query-colo-status'.
1646 #
1647 # @mode: COLO running mode. If COLO is running, this field will return
1648 # 'primary' or 'secondary'.
1649 #
1650 # @last-mode: COLO last running mode. If COLO is running, this field
1651 # will return same like mode field, after failover we can
1652 # use this field to get last colo mode. (since 4.0)
1653 #
1654 # @reason: describes the reason for the COLO exit.
1655 #
1656 # Since: 3.1
1657 ##
1658 { 'struct': 'COLOStatus',
1659 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1660 'reason': 'COLOExitReason' } }
1661
1662 ##
1663 # @query-colo-status:
1664 #
1665 # Query COLO status while the vm is running.
1666 #
1667 # Returns: A @COLOStatus object showing the status.
1668 #
1669 # Example:
1670 #
1671 # -> { "execute": "query-colo-status" }
1672 # <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1673 #
1674 # Since: 3.1
1675 ##
1676 { 'command': 'query-colo-status',
1677 'returns': 'COLOStatus' }
1678
1679 ##
1680 # @migrate-recover:
1681 #
1682 # Provide a recovery migration stream URI.
1683 #
1684 # @uri: the URI to be used for the recovery of migration stream.
1685 #
1686 # Returns: nothing.
1687 #
1688 # Example:
1689 #
1690 # -> { "execute": "migrate-recover",
1691 # "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1692 # <- { "return": {} }
1693 #
1694 # Since: 3.0
1695 ##
1696 { 'command': 'migrate-recover',
1697 'data': { 'uri': 'str' },
1698 'allow-oob': true }
1699
1700 ##
1701 # @migrate-pause:
1702 #
1703 # Pause a migration. Currently it only supports postcopy.
1704 #
1705 # Returns: nothing.
1706 #
1707 # Example:
1708 #
1709 # -> { "execute": "migrate-pause" }
1710 # <- { "return": {} }
1711 #
1712 # Since: 3.0
1713 ##
1714 { 'command': 'migrate-pause', 'allow-oob': true }
1715
1716 ##
1717 # @UNPLUG_PRIMARY:
1718 #
1719 # Emitted from source side of a migration when migration state is
1720 # WAIT_UNPLUG. Device was unplugged by guest operating system.
1721 # Device resources in QEMU are kept on standby to be able to re-plug it in case
1722 # of migration failure.
1723 #
1724 # @device-id: QEMU device id of the unplugged device
1725 #
1726 # Since: 4.2
1727 #
1728 # Example:
1729 #
1730 # <- { "event": "UNPLUG_PRIMARY",
1731 # "data": { "device-id": "hostdev0" },
1732 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1733 #
1734 ##
1735 { 'event': 'UNPLUG_PRIMARY',
1736 'data': { 'device-id': 'str' } }
1737
1738 ##
1739 # @DirtyRateVcpu:
1740 #
1741 # Dirty rate of vcpu.
1742 #
1743 # @id: vcpu index.
1744 #
1745 # @dirty-rate: dirty rate.
1746 #
1747 # Since: 6.2
1748 ##
1749 { 'struct': 'DirtyRateVcpu',
1750 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1751
1752 ##
1753 # @DirtyRateStatus:
1754 #
1755 # An enumeration of dirtyrate status.
1756 #
1757 # @unstarted: the dirtyrate thread has not been started.
1758 #
1759 # @measuring: the dirtyrate thread is measuring.
1760 #
1761 # @measured: the dirtyrate thread has measured and results are available.
1762 #
1763 # Since: 5.2
1764 ##
1765 { 'enum': 'DirtyRateStatus',
1766 'data': [ 'unstarted', 'measuring', 'measured'] }
1767
1768 ##
1769 # @DirtyRateMeasureMode:
1770 #
1771 # An enumeration of mode of measuring dirtyrate.
1772 #
1773 # @page-sampling: calculate dirtyrate by sampling pages.
1774 #
1775 # @dirty-ring: calculate dirtyrate by dirty ring.
1776 #
1777 # @dirty-bitmap: calculate dirtyrate by dirty bitmap.
1778 #
1779 # Since: 6.2
1780 ##
1781 { 'enum': 'DirtyRateMeasureMode',
1782 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1783
1784 ##
1785 # @DirtyRateInfo:
1786 #
1787 # Information about current dirty page rate of vm.
1788 #
1789 # @dirty-rate: an estimate of the dirty page rate of the VM in units of
1790 # MB/s, present only when estimating the rate has completed.
1791 #
1792 # @status: status containing dirtyrate query status includes
1793 # 'unstarted' or 'measuring' or 'measured'
1794 #
1795 # @start-time: start time in units of second for calculation
1796 #
1797 # @calc-time: time in units of second for sample dirty pages
1798 #
1799 # @sample-pages: page count per GB for sample dirty pages
1800 # the default value is 512 (since 6.1)
1801 #
1802 # @mode: mode containing method of calculate dirtyrate includes
1803 # 'page-sampling' and 'dirty-ring' (Since 6.2)
1804 #
1805 # @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring
1806 # mode specified (Since 6.2)
1807 #
1808 # Since: 5.2
1809 ##
1810 { 'struct': 'DirtyRateInfo',
1811 'data': {'*dirty-rate': 'int64',
1812 'status': 'DirtyRateStatus',
1813 'start-time': 'int64',
1814 'calc-time': 'int64',
1815 'sample-pages': 'uint64',
1816 'mode': 'DirtyRateMeasureMode',
1817 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1818
1819 ##
1820 # @calc-dirty-rate:
1821 #
1822 # start calculating dirty page rate for vm
1823 #
1824 # @calc-time: time in units of second for sample dirty pages
1825 #
1826 # @sample-pages: page count per GB for sample dirty pages
1827 # the default value is 512 (since 6.1)
1828 #
1829 # @mode: mechanism of calculating dirtyrate includes
1830 # 'page-sampling' and 'dirty-ring' (Since 6.1)
1831 #
1832 # Since: 5.2
1833 #
1834 # Example:
1835 #
1836 # {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1837 # 'sample-pages': 512} }
1838 #
1839 ##
1840 { 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
1841 '*sample-pages': 'int',
1842 '*mode': 'DirtyRateMeasureMode'} }
1843
1844 ##
1845 # @query-dirty-rate:
1846 #
1847 # query dirty page rate in units of MB/s for vm
1848 #
1849 # Since: 5.2
1850 ##
1851 { 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
1852
1853 ##
1854 # @DirtyLimitInfo:
1855 #
1856 # Dirty page rate limit information of a virtual CPU.
1857 #
1858 # @cpu-index: index of a virtual CPU.
1859 #
1860 # @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1861 # CPU, 0 means unlimited.
1862 #
1863 # @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1864 #
1865 # Since: 7.1
1866 #
1867 ##
1868 { 'struct': 'DirtyLimitInfo',
1869 'data': { 'cpu-index': 'int',
1870 'limit-rate': 'uint64',
1871 'current-rate': 'uint64' } }
1872
1873 ##
1874 # @set-vcpu-dirty-limit:
1875 #
1876 # Set the upper limit of dirty page rate for virtual CPUs.
1877 #
1878 # Requires KVM with accelerator property "dirty-ring-size" set.
1879 # A virtual CPU's dirty page rate is a measure of its memory load.
1880 # To observe dirty page rates, use @calc-dirty-rate.
1881 #
1882 # @cpu-index: index of a virtual CPU, default is all.
1883 #
1884 # @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1885 #
1886 # Since: 7.1
1887 #
1888 # Example:
1889 # {"execute": "set-vcpu-dirty-limit"}
1890 # "arguments": { "dirty-rate": 200,
1891 # "cpu-index": 1 } }
1892 #
1893 ##
1894 { 'command': 'set-vcpu-dirty-limit',
1895 'data': { '*cpu-index': 'int',
1896 'dirty-rate': 'uint64' } }
1897
1898 ##
1899 # @cancel-vcpu-dirty-limit:
1900 #
1901 # Cancel the upper limit of dirty page rate for virtual CPUs.
1902 #
1903 # Cancel the dirty page limit for the vCPU which has been set with
1904 # set-vcpu-dirty-limit command. Note that this command requires
1905 # support from dirty ring, same as the "set-vcpu-dirty-limit".
1906 #
1907 # @cpu-index: index of a virtual CPU, default is all.
1908 #
1909 # Since: 7.1
1910 #
1911 # Example:
1912 # {"execute": "cancel-vcpu-dirty-limit"}
1913 # "arguments": { "cpu-index": 1 } }
1914 #
1915 ##
1916 { 'command': 'cancel-vcpu-dirty-limit',
1917 'data': { '*cpu-index': 'int'} }
1918
1919 ##
1920 # @query-vcpu-dirty-limit:
1921 #
1922 # Returns information about virtual CPU dirty page rate limits, if any.
1923 #
1924 # Since: 7.1
1925 #
1926 # Example:
1927 # {"execute": "query-vcpu-dirty-limit"}
1928 #
1929 ##
1930 { 'command': 'query-vcpu-dirty-limit',
1931 'returns': [ 'DirtyLimitInfo' ] }
1932
1933 ##
1934 # @MigrationThreadInfo:
1935 #
1936 # Information about migrationthreads
1937 #
1938 # @name: the name of migration thread
1939 #
1940 # @thread-id: ID of the underlying host thread
1941 #
1942 # Since: 7.2
1943 ##
1944 { 'struct': 'MigrationThreadInfo',
1945 'data': {'name': 'str',
1946 'thread-id': 'int'} }
1947
1948 ##
1949 # @query-migrationthreads:
1950 #
1951 # Returns information of migration threads
1952 #
1953 # data: migration thread name
1954 #
1955 # returns: information about migration threads
1956 #
1957 # Since: 7.2
1958 ##
1959 { 'command': 'query-migrationthreads',
1960 'returns': ['MigrationThreadInfo'] }
1961
1962 ##
1963 # @snapshot-save:
1964 #
1965 # Save a VM snapshot
1966 #
1967 # @job-id: identifier for the newly created job
1968 # @tag: name of the snapshot to create
1969 # @vmstate: block device node name to save vmstate to
1970 # @devices: list of block device node names to save a snapshot to
1971 #
1972 # Applications should not assume that the snapshot save is complete
1973 # when this command returns. The job commands / events must be used
1974 # to determine completion and to fetch details of any errors that arise.
1975 #
1976 # Note that execution of the guest CPUs may be stopped during the
1977 # time it takes to save the snapshot. A future version of QEMU
1978 # may ensure CPUs are executing continuously.
1979 #
1980 # It is strongly recommended that @devices contain all writable
1981 # block device nodes if a consistent snapshot is required.
1982 #
1983 # If @tag already exists, an error will be reported
1984 #
1985 # Returns: nothing
1986 #
1987 # Example:
1988 #
1989 # -> { "execute": "snapshot-save",
1990 # "arguments": {
1991 # "job-id": "snapsave0",
1992 # "tag": "my-snap",
1993 # "vmstate": "disk0",
1994 # "devices": ["disk0", "disk1"]
1995 # }
1996 # }
1997 # <- { "return": { } }
1998 # <- {"event": "JOB_STATUS_CHANGE",
1999 # "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2000 # "data": {"status": "created", "id": "snapsave0"}}
2001 # <- {"event": "JOB_STATUS_CHANGE",
2002 # "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2003 # "data": {"status": "running", "id": "snapsave0"}}
2004 # <- {"event": "STOP",
2005 # "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2006 # <- {"event": "RESUME",
2007 # "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2008 # <- {"event": "JOB_STATUS_CHANGE",
2009 # "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2010 # "data": {"status": "waiting", "id": "snapsave0"}}
2011 # <- {"event": "JOB_STATUS_CHANGE",
2012 # "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2013 # "data": {"status": "pending", "id": "snapsave0"}}
2014 # <- {"event": "JOB_STATUS_CHANGE",
2015 # "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2016 # "data": {"status": "concluded", "id": "snapsave0"}}
2017 # -> {"execute": "query-jobs"}
2018 # <- {"return": [{"current-progress": 1,
2019 # "status": "concluded",
2020 # "total-progress": 1,
2021 # "type": "snapshot-save",
2022 # "id": "snapsave0"}]}
2023 #
2024 # Since: 6.0
2025 ##
2026 { 'command': 'snapshot-save',
2027 'data': { 'job-id': 'str',
2028 'tag': 'str',
2029 'vmstate': 'str',
2030 'devices': ['str'] } }
2031
2032 ##
2033 # @snapshot-load:
2034 #
2035 # Load a VM snapshot
2036 #
2037 # @job-id: identifier for the newly created job
2038 # @tag: name of the snapshot to load.
2039 # @vmstate: block device node name to load vmstate from
2040 # @devices: list of block device node names to load a snapshot from
2041 #
2042 # Applications should not assume that the snapshot load is complete
2043 # when this command returns. The job commands / events must be used
2044 # to determine completion and to fetch details of any errors that arise.
2045 #
2046 # Note that execution of the guest CPUs will be stopped during the
2047 # time it takes to load the snapshot.
2048 #
2049 # It is strongly recommended that @devices contain all writable
2050 # block device nodes that can have changed since the original
2051 # @snapshot-save command execution.
2052 #
2053 # Returns: nothing
2054 #
2055 # Example:
2056 #
2057 # -> { "execute": "snapshot-load",
2058 # "arguments": {
2059 # "job-id": "snapload0",
2060 # "tag": "my-snap",
2061 # "vmstate": "disk0",
2062 # "devices": ["disk0", "disk1"]
2063 # }
2064 # }
2065 # <- { "return": { } }
2066 # <- {"event": "JOB_STATUS_CHANGE",
2067 # "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2068 # "data": {"status": "created", "id": "snapload0"}}
2069 # <- {"event": "JOB_STATUS_CHANGE",
2070 # "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2071 # "data": {"status": "running", "id": "snapload0"}}
2072 # <- {"event": "STOP",
2073 # "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2074 # <- {"event": "RESUME",
2075 # "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2076 # <- {"event": "JOB_STATUS_CHANGE",
2077 # "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2078 # "data": {"status": "waiting", "id": "snapload0"}}
2079 # <- {"event": "JOB_STATUS_CHANGE",
2080 # "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2081 # "data": {"status": "pending", "id": "snapload0"}}
2082 # <- {"event": "JOB_STATUS_CHANGE",
2083 # "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2084 # "data": {"status": "concluded", "id": "snapload0"}}
2085 # -> {"execute": "query-jobs"}
2086 # <- {"return": [{"current-progress": 1,
2087 # "status": "concluded",
2088 # "total-progress": 1,
2089 # "type": "snapshot-load",
2090 # "id": "snapload0"}]}
2091 #
2092 # Since: 6.0
2093 ##
2094 { 'command': 'snapshot-load',
2095 'data': { 'job-id': 'str',
2096 'tag': 'str',
2097 'vmstate': 'str',
2098 'devices': ['str'] } }
2099
2100 ##
2101 # @snapshot-delete:
2102 #
2103 # Delete a VM snapshot
2104 #
2105 # @job-id: identifier for the newly created job
2106 # @tag: name of the snapshot to delete.
2107 # @devices: list of block device node names to delete a snapshot from
2108 #
2109 # Applications should not assume that the snapshot delete is complete
2110 # when this command returns. The job commands / events must be used
2111 # to determine completion and to fetch details of any errors that arise.
2112 #
2113 # Returns: nothing
2114 #
2115 # Example:
2116 #
2117 # -> { "execute": "snapshot-delete",
2118 # "arguments": {
2119 # "job-id": "snapdelete0",
2120 # "tag": "my-snap",
2121 # "devices": ["disk0", "disk1"]
2122 # }
2123 # }
2124 # <- { "return": { } }
2125 # <- {"event": "JOB_STATUS_CHANGE",
2126 # "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2127 # "data": {"status": "created", "id": "snapdelete0"}}
2128 # <- {"event": "JOB_STATUS_CHANGE",
2129 # "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2130 # "data": {"status": "running", "id": "snapdelete0"}}
2131 # <- {"event": "JOB_STATUS_CHANGE",
2132 # "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2133 # "data": {"status": "waiting", "id": "snapdelete0"}}
2134 # <- {"event": "JOB_STATUS_CHANGE",
2135 # "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2136 # "data": {"status": "pending", "id": "snapdelete0"}}
2137 # <- {"event": "JOB_STATUS_CHANGE",
2138 # "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2139 # "data": {"status": "concluded", "id": "snapdelete0"}}
2140 # -> {"execute": "query-jobs"}
2141 # <- {"return": [{"current-progress": 1,
2142 # "status": "concluded",
2143 # "total-progress": 1,
2144 # "type": "snapshot-delete",
2145 # "id": "snapdelete0"}]}
2146 #
2147 # Since: 6.0
2148 ##
2149 { 'command': 'snapshot-delete',
2150 'data': { 'job-id': 'str',
2151 'tag': 'str',
2152 'devices': ['str'] } }