]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/misc.json
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / qapi / misc.json
1 # -*- Mode: Python -*-
2 #
3
4 ##
5 # = Miscellanea
6 ##
7
8 { 'include': 'common.json' }
9
10 ##
11 # @qmp_capabilities:
12 #
13 # Enable QMP capabilities.
14 #
15 # Arguments:
16 #
17 # @enable: An optional list of QMPCapability values to enable. The
18 # client must not enable any capability that is not
19 # mentioned in the QMP greeting message. If the field is not
20 # provided, it means no QMP capabilities will be enabled.
21 # (since 2.12)
22 #
23 # Example:
24 #
25 # -> { "execute": "qmp_capabilities",
26 # "arguments": { "enable": [ "oob" ] } }
27 # <- { "return": {} }
28 #
29 # Notes: This command is valid exactly when first connecting: it must be
30 # issued before any other command will be accepted, and will fail once the
31 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32 #
33 # The QMP client needs to explicitly enable QMP capabilities, otherwise
34 # all the QMP capabilities will be turned off by default.
35 #
36 # Since: 0.13
37 #
38 ##
39 { 'command': 'qmp_capabilities',
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
42
43 ##
44 # @QMPCapability:
45 #
46 # Enumeration of capabilities to be advertised during initial client
47 # connection, used for agreeing on particular QMP extension behaviors.
48 #
49 # @oob: QMP ability to support Out-Of-Band requests.
50 # (Please refer to qmp-spec.txt for more information on OOB)
51 #
52 # Since: 2.12
53 #
54 ##
55 { 'enum': 'QMPCapability',
56 'data': [ 'oob' ] }
57
58 ##
59 # @VersionTriple:
60 #
61 # A three-part version number.
62 #
63 # @major: The major version number.
64 #
65 # @minor: The minor version number.
66 #
67 # @micro: The micro version number.
68 #
69 # Since: 2.4
70 ##
71 { 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75 ##
76 # @VersionInfo:
77 #
78 # A description of QEMU's version.
79 #
80 # @qemu: The version of QEMU. By current convention, a micro
81 # version of 50 signifies a development branch. A micro version
82 # greater than or equal to 90 signifies a release candidate for
83 # the next minor version. A micro version of less than 50
84 # signifies a stable release.
85 #
86 # @package: QEMU will always set this field to an empty string. Downstream
87 # versions of QEMU should set this to a non-empty string. The
88 # exact format depends on the downstream however it highly
89 # recommended that a unique name is used.
90 #
91 # Since: 0.14.0
92 ##
93 { 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96 ##
97 # @query-version:
98 #
99 # Returns the current version of QEMU.
100 #
101 # Returns: A @VersionInfo object describing the current version of QEMU.
102 #
103 # Since: 0.14.0
104 #
105 # Example:
106 #
107 # -> { "execute": "query-version" }
108 # <- {
109 # "return":{
110 # "qemu":{
111 # "major":0,
112 # "minor":11,
113 # "micro":5
114 # },
115 # "package":""
116 # }
117 # }
118 #
119 ##
120 { 'command': 'query-version', 'returns': 'VersionInfo',
121 'allow-preconfig': true }
122
123 ##
124 # @CommandInfo:
125 #
126 # Information about a QMP command
127 #
128 # @name: The command name
129 #
130 # Since: 0.14.0
131 ##
132 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134 ##
135 # @query-commands:
136 #
137 # Return a list of supported QMP commands by this server
138 #
139 # Returns: A list of @CommandInfo for all supported commands
140 #
141 # Since: 0.14.0
142 #
143 # Example:
144 #
145 # -> { "execute": "query-commands" }
146 # <- {
147 # "return":[
148 # {
149 # "name":"query-balloon"
150 # },
151 # {
152 # "name":"system_powerdown"
153 # }
154 # ]
155 # }
156 #
157 # Note: This example has been shortened as the real response is too long.
158 #
159 ##
160 { 'command': 'query-commands', 'returns': ['CommandInfo'],
161 'allow-preconfig': true }
162
163 ##
164 # @LostTickPolicy:
165 #
166 # Policy for handling lost ticks in timer devices.
167 #
168 # @discard: throw away the missed tick(s) and continue with future injection
169 # normally. Guest time may be delayed, unless the OS has explicit
170 # handling of lost ticks
171 #
172 # @delay: continue to deliver ticks at the normal rate. Guest time will be
173 # delayed due to the late tick
174 #
175 # @merge: merge the missed tick(s) into one tick and inject. Guest time
176 # may be delayed, depending on how the OS reacts to the merging
177 # of ticks
178 #
179 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
180 # guest time should not be delayed once catchup is complete.
181 #
182 # Since: 2.0
183 ##
184 { 'enum': 'LostTickPolicy',
185 'data': ['discard', 'delay', 'merge', 'slew' ] }
186
187 ##
188 # @add_client:
189 #
190 # Allow client connections for VNC, Spice and socket based
191 # character devices to be passed in to QEMU via SCM_RIGHTS.
192 #
193 # @protocol: protocol name. Valid names are "vnc", "spice" or the
194 # name of a character device (eg. from -chardev id=XXXX)
195 #
196 # @fdname: file descriptor name previously passed via 'getfd' command
197 #
198 # @skipauth: whether to skip authentication. Only applies
199 # to "vnc" and "spice" protocols
200 #
201 # @tls: whether to perform TLS. Only applies to the "spice"
202 # protocol
203 #
204 # Returns: nothing on success.
205 #
206 # Since: 0.14.0
207 #
208 # Example:
209 #
210 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
211 # "fdname": "myclient" } }
212 # <- { "return": {} }
213 #
214 ##
215 { 'command': 'add_client',
216 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
217 '*tls': 'bool' } }
218
219 ##
220 # @NameInfo:
221 #
222 # Guest name information.
223 #
224 # @name: The name of the guest
225 #
226 # Since: 0.14.0
227 ##
228 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
229
230 ##
231 # @query-name:
232 #
233 # Return the name information of a guest.
234 #
235 # Returns: @NameInfo of the guest
236 #
237 # Since: 0.14.0
238 #
239 # Example:
240 #
241 # -> { "execute": "query-name" }
242 # <- { "return": { "name": "qemu-name" } }
243 #
244 ##
245 { 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
246
247 ##
248 # @KvmInfo:
249 #
250 # Information about support for KVM acceleration
251 #
252 # @enabled: true if KVM acceleration is active
253 #
254 # @present: true if KVM acceleration is built into this executable
255 #
256 # Since: 0.14.0
257 ##
258 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
259
260 ##
261 # @query-kvm:
262 #
263 # Returns information about KVM acceleration
264 #
265 # Returns: @KvmInfo
266 #
267 # Since: 0.14.0
268 #
269 # Example:
270 #
271 # -> { "execute": "query-kvm" }
272 # <- { "return": { "enabled": true, "present": true } }
273 #
274 ##
275 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
276
277 ##
278 # @UuidInfo:
279 #
280 # Guest UUID information (Universally Unique Identifier).
281 #
282 # @UUID: the UUID of the guest
283 #
284 # Since: 0.14.0
285 #
286 # Notes: If no UUID was specified for the guest, a null UUID is returned.
287 ##
288 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
289
290 ##
291 # @query-uuid:
292 #
293 # Query the guest UUID information.
294 #
295 # Returns: The @UuidInfo for the guest
296 #
297 # Since: 0.14.0
298 #
299 # Example:
300 #
301 # -> { "execute": "query-uuid" }
302 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
303 #
304 ##
305 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
306
307 ##
308 # @EventInfo:
309 #
310 # Information about a QMP event
311 #
312 # @name: The event name
313 #
314 # Since: 1.2.0
315 ##
316 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
317
318 ##
319 # @query-events:
320 #
321 # Return a list of supported QMP events by this server
322 #
323 # Returns: A list of @EventInfo for all supported events
324 #
325 # Since: 1.2.0
326 #
327 # Example:
328 #
329 # -> { "execute": "query-events" }
330 # <- {
331 # "return": [
332 # {
333 # "name":"SHUTDOWN"
334 # },
335 # {
336 # "name":"RESET"
337 # }
338 # ]
339 # }
340 #
341 # Note: This example has been shortened as the real response is too long.
342 #
343 ##
344 { 'command': 'query-events', 'returns': ['EventInfo'] }
345
346 ##
347 # @CpuInfoArch:
348 #
349 # An enumeration of cpu types that enable additional information during
350 # @query-cpus and @query-cpus-fast.
351 #
352 # @s390: since 2.12
353 #
354 # @riscv: since 2.12
355 #
356 # Since: 2.6
357 ##
358 { 'enum': 'CpuInfoArch',
359 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
360
361 ##
362 # @CpuInfo:
363 #
364 # Information about a virtual CPU
365 #
366 # @CPU: the index of the virtual CPU
367 #
368 # @current: this only exists for backwards compatibility and should be ignored
369 #
370 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
371 # to a processor specific low power mode.
372 #
373 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
374 #
375 # @thread_id: ID of the underlying host thread
376 #
377 # @props: properties describing to which node/socket/core/thread
378 # virtual CPU belongs to, provided if supported by board (since 2.10)
379 #
380 # @arch: architecture of the cpu, which determines which additional fields
381 # will be listed (since 2.6)
382 #
383 # Since: 0.14.0
384 #
385 # Notes: @halted is a transient state that changes frequently. By the time the
386 # data is sent to the client, the guest may no longer be halted.
387 ##
388 { 'union': 'CpuInfo',
389 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
390 'qom_path': 'str', 'thread_id': 'int',
391 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
392 'discriminator': 'arch',
393 'data': { 'x86': 'CpuInfoX86',
394 'sparc': 'CpuInfoSPARC',
395 'ppc': 'CpuInfoPPC',
396 'mips': 'CpuInfoMIPS',
397 'tricore': 'CpuInfoTricore',
398 's390': 'CpuInfoS390',
399 'riscv': 'CpuInfoRISCV' } }
400
401 ##
402 # @CpuInfoX86:
403 #
404 # Additional information about a virtual i386 or x86_64 CPU
405 #
406 # @pc: the 64-bit instruction pointer
407 #
408 # Since: 2.6
409 ##
410 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411
412 ##
413 # @CpuInfoSPARC:
414 #
415 # Additional information about a virtual SPARC CPU
416 #
417 # @pc: the PC component of the instruction pointer
418 #
419 # @npc: the NPC component of the instruction pointer
420 #
421 # Since: 2.6
422 ##
423 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424
425 ##
426 # @CpuInfoPPC:
427 #
428 # Additional information about a virtual PPC CPU
429 #
430 # @nip: the instruction pointer
431 #
432 # Since: 2.6
433 ##
434 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435
436 ##
437 # @CpuInfoMIPS:
438 #
439 # Additional information about a virtual MIPS CPU
440 #
441 # @PC: the instruction pointer
442 #
443 # Since: 2.6
444 ##
445 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446
447 ##
448 # @CpuInfoTricore:
449 #
450 # Additional information about a virtual Tricore CPU
451 #
452 # @PC: the instruction pointer
453 #
454 # Since: 2.6
455 ##
456 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457
458 ##
459 # @CpuInfoRISCV:
460 #
461 # Additional information about a virtual RISCV CPU
462 #
463 # @pc: the instruction pointer
464 #
465 # Since 2.12
466 ##
467 { 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468
469 ##
470 # @CpuS390State:
471 #
472 # An enumeration of cpu states that can be assumed by a virtual
473 # S390 CPU
474 #
475 # Since: 2.12
476 ##
477 { 'enum': 'CpuS390State',
478 'prefix': 'S390_CPU_STATE',
479 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
480
481 ##
482 # @CpuInfoS390:
483 #
484 # Additional information about a virtual S390 CPU
485 #
486 # @cpu-state: the virtual CPU's state
487 #
488 # Since: 2.12
489 ##
490 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
491
492 ##
493 # @query-cpus:
494 #
495 # Returns a list of information about each virtual CPU.
496 #
497 # This command causes vCPU threads to exit to userspace, which causes
498 # a small interruption to guest CPU execution. This will have a negative
499 # impact on realtime guests and other latency sensitive guest workloads.
500 # It is recommended to use @query-cpus-fast instead of this command to
501 # avoid the vCPU interruption.
502 #
503 # Returns: a list of @CpuInfo for each virtual CPU
504 #
505 # Since: 0.14.0
506 #
507 # Example:
508 #
509 # -> { "execute": "query-cpus" }
510 # <- { "return": [
511 # {
512 # "CPU":0,
513 # "current":true,
514 # "halted":false,
515 # "qom_path":"/machine/unattached/device[0]",
516 # "arch":"x86",
517 # "pc":3227107138,
518 # "thread_id":3134
519 # },
520 # {
521 # "CPU":1,
522 # "current":false,
523 # "halted":true,
524 # "qom_path":"/machine/unattached/device[2]",
525 # "arch":"x86",
526 # "pc":7108165,
527 # "thread_id":3135
528 # }
529 # ]
530 # }
531 #
532 # Notes: This interface is deprecated (since 2.12.0), and it is strongly
533 # recommended that you avoid using it. Use @query-cpus-fast to
534 # obtain information about virtual CPUs.
535 #
536 ##
537 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
538
539 ##
540 # @CpuInfoFast:
541 #
542 # Information about a virtual CPU
543 #
544 # @cpu-index: index of the virtual CPU
545 #
546 # @qom-path: path to the CPU object in the QOM tree
547 #
548 # @thread-id: ID of the underlying host thread
549 #
550 # @props: properties describing to which node/socket/core/thread
551 # virtual CPU belongs to, provided if supported by board
552 #
553 # @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
554 # of @target
555 #
556 # @target: the QEMU system emulation target, which determines which
557 # additional fields will be listed (since 3.0)
558 #
559 # Since: 2.12
560 #
561 ##
562 { 'union' : 'CpuInfoFast',
563 'base' : { 'cpu-index' : 'int',
564 'qom-path' : 'str',
565 'thread-id' : 'int',
566 '*props' : 'CpuInstanceProperties',
567 'arch' : 'CpuInfoArch',
568 'target' : 'SysEmuTarget' },
569 'discriminator' : 'target',
570 'data' : { 's390x' : 'CpuInfoS390' } }
571
572 ##
573 # @query-cpus-fast:
574 #
575 # Returns information about all virtual CPUs. This command does not
576 # incur a performance penalty and should be used in production
577 # instead of query-cpus.
578 #
579 # Returns: list of @CpuInfoFast
580 #
581 # Since: 2.12
582 #
583 # Example:
584 #
585 # -> { "execute": "query-cpus-fast" }
586 # <- { "return": [
587 # {
588 # "thread-id": 25627,
589 # "props": {
590 # "core-id": 0,
591 # "thread-id": 0,
592 # "socket-id": 0
593 # },
594 # "qom-path": "/machine/unattached/device[0]",
595 # "arch":"x86",
596 # "target":"x86_64",
597 # "cpu-index": 0
598 # },
599 # {
600 # "thread-id": 25628,
601 # "props": {
602 # "core-id": 0,
603 # "thread-id": 0,
604 # "socket-id": 1
605 # },
606 # "qom-path": "/machine/unattached/device[2]",
607 # "arch":"x86",
608 # "target":"x86_64",
609 # "cpu-index": 1
610 # }
611 # ]
612 # }
613 ##
614 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
615
616 ##
617 # @IOThreadInfo:
618 #
619 # Information about an iothread
620 #
621 # @id: the identifier of the iothread
622 #
623 # @thread-id: ID of the underlying host thread
624 #
625 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
626 # (since 2.9)
627 #
628 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
629 # configured (since 2.9)
630 #
631 # @poll-shrink: how many ns will be removed from polling time, 0 means that
632 # it's not configured (since 2.9)
633 #
634 # Since: 2.0
635 ##
636 { 'struct': 'IOThreadInfo',
637 'data': {'id': 'str',
638 'thread-id': 'int',
639 'poll-max-ns': 'int',
640 'poll-grow': 'int',
641 'poll-shrink': 'int' } }
642
643 ##
644 # @query-iothreads:
645 #
646 # Returns a list of information about each iothread.
647 #
648 # Note: this list excludes the QEMU main loop thread, which is not declared
649 # using the -object iothread command-line option. It is always the main thread
650 # of the process.
651 #
652 # Returns: a list of @IOThreadInfo for each iothread
653 #
654 # Since: 2.0
655 #
656 # Example:
657 #
658 # -> { "execute": "query-iothreads" }
659 # <- { "return": [
660 # {
661 # "id":"iothread0",
662 # "thread-id":3134
663 # },
664 # {
665 # "id":"iothread1",
666 # "thread-id":3135
667 # }
668 # ]
669 # }
670 #
671 ##
672 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
673 'allow-preconfig': true }
674
675 ##
676 # @BalloonInfo:
677 #
678 # Information about the guest balloon device.
679 #
680 # @actual: the number of bytes the balloon currently contains
681 #
682 # Since: 0.14.0
683 #
684 ##
685 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
686
687 ##
688 # @query-balloon:
689 #
690 # Return information about the balloon device.
691 #
692 # Returns: @BalloonInfo on success
693 #
694 # If the balloon driver is enabled but not functional because the KVM
695 # kernel module cannot support it, KvmMissingCap
696 #
697 # If no balloon device is present, DeviceNotActive
698 #
699 # Since: 0.14.0
700 #
701 # Example:
702 #
703 # -> { "execute": "query-balloon" }
704 # <- { "return": {
705 # "actual": 1073741824,
706 # }
707 # }
708 #
709 ##
710 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
711
712 ##
713 # @BALLOON_CHANGE:
714 #
715 # Emitted when the guest changes the actual BALLOON level. This value is
716 # equivalent to the @actual field return by the 'query-balloon' command
717 #
718 # @actual: actual level of the guest memory balloon in bytes
719 #
720 # Note: this event is rate-limited.
721 #
722 # Since: 1.2
723 #
724 # Example:
725 #
726 # <- { "event": "BALLOON_CHANGE",
727 # "data": { "actual": 944766976 },
728 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
729 #
730 ##
731 { 'event': 'BALLOON_CHANGE',
732 'data': { 'actual': 'int' } }
733
734 ##
735 # @PciMemoryRange:
736 #
737 # A PCI device memory region
738 #
739 # @base: the starting address (guest physical)
740 #
741 # @limit: the ending address (guest physical)
742 #
743 # Since: 0.14.0
744 ##
745 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
746
747 ##
748 # @PciMemoryRegion:
749 #
750 # Information about a PCI device I/O region.
751 #
752 # @bar: the index of the Base Address Register for this region
753 #
754 # @type: 'io' if the region is a PIO region
755 # 'memory' if the region is a MMIO region
756 #
757 # @size: memory size
758 #
759 # @prefetch: if @type is 'memory', true if the memory is prefetchable
760 #
761 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
762 #
763 # Since: 0.14.0
764 ##
765 { 'struct': 'PciMemoryRegion',
766 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
767 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
768
769 ##
770 # @PciBusInfo:
771 #
772 # Information about a bus of a PCI Bridge device
773 #
774 # @number: primary bus interface number. This should be the number of the
775 # bus the device resides on.
776 #
777 # @secondary: secondary bus interface number. This is the number of the
778 # main bus for the bridge
779 #
780 # @subordinate: This is the highest number bus that resides below the
781 # bridge.
782 #
783 # @io_range: The PIO range for all devices on this bridge
784 #
785 # @memory_range: The MMIO range for all devices on this bridge
786 #
787 # @prefetchable_range: The range of prefetchable MMIO for all devices on
788 # this bridge
789 #
790 # Since: 2.4
791 ##
792 { 'struct': 'PciBusInfo',
793 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
794 'io_range': 'PciMemoryRange',
795 'memory_range': 'PciMemoryRange',
796 'prefetchable_range': 'PciMemoryRange' } }
797
798 ##
799 # @PciBridgeInfo:
800 #
801 # Information about a PCI Bridge device
802 #
803 # @bus: information about the bus the device resides on
804 #
805 # @devices: a list of @PciDeviceInfo for each device on this bridge
806 #
807 # Since: 0.14.0
808 ##
809 { 'struct': 'PciBridgeInfo',
810 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
811
812 ##
813 # @PciDeviceClass:
814 #
815 # Information about the Class of a PCI device
816 #
817 # @desc: a string description of the device's class
818 #
819 # @class: the class code of the device
820 #
821 # Since: 2.4
822 ##
823 { 'struct': 'PciDeviceClass',
824 'data': {'*desc': 'str', 'class': 'int'} }
825
826 ##
827 # @PciDeviceId:
828 #
829 # Information about the Id of a PCI device
830 #
831 # @device: the PCI device id
832 #
833 # @vendor: the PCI vendor id
834 #
835 # Since: 2.4
836 ##
837 { 'struct': 'PciDeviceId',
838 'data': {'device': 'int', 'vendor': 'int'} }
839
840 ##
841 # @PciDeviceInfo:
842 #
843 # Information about a PCI device
844 #
845 # @bus: the bus number of the device
846 #
847 # @slot: the slot the device is located in
848 #
849 # @function: the function of the slot used by the device
850 #
851 # @class_info: the class of the device
852 #
853 # @id: the PCI device id
854 #
855 # @irq: if an IRQ is assigned to the device, the IRQ number
856 #
857 # @qdev_id: the device name of the PCI device
858 #
859 # @pci_bridge: if the device is a PCI bridge, the bridge information
860 #
861 # @regions: a list of the PCI I/O regions associated with the device
862 #
863 # Notes: the contents of @class_info.desc are not stable and should only be
864 # treated as informational.
865 #
866 # Since: 0.14.0
867 ##
868 { 'struct': 'PciDeviceInfo',
869 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
870 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
871 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
872 'regions': ['PciMemoryRegion']} }
873
874 ##
875 # @PciInfo:
876 #
877 # Information about a PCI bus
878 #
879 # @bus: the bus index
880 #
881 # @devices: a list of devices on this bus
882 #
883 # Since: 0.14.0
884 ##
885 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
886
887 ##
888 # @query-pci:
889 #
890 # Return information about the PCI bus topology of the guest.
891 #
892 # Returns: a list of @PciInfo for each PCI bus. Each bus is
893 # represented by a json-object, which has a key with a json-array of
894 # all PCI devices attached to it. Each device is represented by a
895 # json-object.
896 #
897 # Since: 0.14.0
898 #
899 # Example:
900 #
901 # -> { "execute": "query-pci" }
902 # <- { "return": [
903 # {
904 # "bus": 0,
905 # "devices": [
906 # {
907 # "bus": 0,
908 # "qdev_id": "",
909 # "slot": 0,
910 # "class_info": {
911 # "class": 1536,
912 # "desc": "Host bridge"
913 # },
914 # "id": {
915 # "device": 32902,
916 # "vendor": 4663
917 # },
918 # "function": 0,
919 # "regions": [
920 # ]
921 # },
922 # {
923 # "bus": 0,
924 # "qdev_id": "",
925 # "slot": 1,
926 # "class_info": {
927 # "class": 1537,
928 # "desc": "ISA bridge"
929 # },
930 # "id": {
931 # "device": 32902,
932 # "vendor": 28672
933 # },
934 # "function": 0,
935 # "regions": [
936 # ]
937 # },
938 # {
939 # "bus": 0,
940 # "qdev_id": "",
941 # "slot": 1,
942 # "class_info": {
943 # "class": 257,
944 # "desc": "IDE controller"
945 # },
946 # "id": {
947 # "device": 32902,
948 # "vendor": 28688
949 # },
950 # "function": 1,
951 # "regions": [
952 # {
953 # "bar": 4,
954 # "size": 16,
955 # "address": 49152,
956 # "type": "io"
957 # }
958 # ]
959 # },
960 # {
961 # "bus": 0,
962 # "qdev_id": "",
963 # "slot": 2,
964 # "class_info": {
965 # "class": 768,
966 # "desc": "VGA controller"
967 # },
968 # "id": {
969 # "device": 4115,
970 # "vendor": 184
971 # },
972 # "function": 0,
973 # "regions": [
974 # {
975 # "prefetch": true,
976 # "mem_type_64": false,
977 # "bar": 0,
978 # "size": 33554432,
979 # "address": 4026531840,
980 # "type": "memory"
981 # },
982 # {
983 # "prefetch": false,
984 # "mem_type_64": false,
985 # "bar": 1,
986 # "size": 4096,
987 # "address": 4060086272,
988 # "type": "memory"
989 # },
990 # {
991 # "prefetch": false,
992 # "mem_type_64": false,
993 # "bar": 6,
994 # "size": 65536,
995 # "address": -1,
996 # "type": "memory"
997 # }
998 # ]
999 # },
1000 # {
1001 # "bus": 0,
1002 # "qdev_id": "",
1003 # "irq": 11,
1004 # "slot": 4,
1005 # "class_info": {
1006 # "class": 1280,
1007 # "desc": "RAM controller"
1008 # },
1009 # "id": {
1010 # "device": 6900,
1011 # "vendor": 4098
1012 # },
1013 # "function": 0,
1014 # "regions": [
1015 # {
1016 # "bar": 0,
1017 # "size": 32,
1018 # "address": 49280,
1019 # "type": "io"
1020 # }
1021 # ]
1022 # }
1023 # ]
1024 # }
1025 # ]
1026 # }
1027 #
1028 # Note: This example has been shortened as the real response is too long.
1029 #
1030 ##
1031 { 'command': 'query-pci', 'returns': ['PciInfo'] }
1032
1033 ##
1034 # @quit:
1035 #
1036 # This command will cause the QEMU process to exit gracefully. While every
1037 # attempt is made to send the QMP response before terminating, this is not
1038 # guaranteed. When using this interface, a premature EOF would not be
1039 # unexpected.
1040 #
1041 # Since: 0.14.0
1042 #
1043 # Example:
1044 #
1045 # -> { "execute": "quit" }
1046 # <- { "return": {} }
1047 ##
1048 { 'command': 'quit' }
1049
1050 ##
1051 # @stop:
1052 #
1053 # Stop all guest VCPU execution.
1054 #
1055 # Since: 0.14.0
1056 #
1057 # Notes: This function will succeed even if the guest is already in the stopped
1058 # state. In "inmigrate" state, it will ensure that the guest
1059 # remains paused once migration finishes, as if the -S option was
1060 # passed on the command line.
1061 #
1062 # Example:
1063 #
1064 # -> { "execute": "stop" }
1065 # <- { "return": {} }
1066 #
1067 ##
1068 { 'command': 'stop' }
1069
1070 ##
1071 # @system_reset:
1072 #
1073 # Performs a hard reset of a guest.
1074 #
1075 # Since: 0.14.0
1076 #
1077 # Example:
1078 #
1079 # -> { "execute": "system_reset" }
1080 # <- { "return": {} }
1081 #
1082 ##
1083 { 'command': 'system_reset' }
1084
1085 ##
1086 # @system_powerdown:
1087 #
1088 # Requests that a guest perform a powerdown operation.
1089 #
1090 # Since: 0.14.0
1091 #
1092 # Notes: A guest may or may not respond to this command. This command
1093 # returning does not indicate that a guest has accepted the request or
1094 # that it has shut down. Many guests will respond to this command by
1095 # prompting the user in some way.
1096 # Example:
1097 #
1098 # -> { "execute": "system_powerdown" }
1099 # <- { "return": {} }
1100 #
1101 ##
1102 { 'command': 'system_powerdown' }
1103
1104 ##
1105 # @cpu-add:
1106 #
1107 # Adds CPU with specified ID
1108 #
1109 # @id: ID of CPU to be created, valid values [0..max_cpus)
1110 #
1111 # Returns: Nothing on success
1112 #
1113 # Since: 1.5
1114 #
1115 # Example:
1116 #
1117 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1118 # <- { "return": {} }
1119 #
1120 ##
1121 { 'command': 'cpu-add', 'data': {'id': 'int'} }
1122
1123 ##
1124 # @memsave:
1125 #
1126 # Save a portion of guest memory to a file.
1127 #
1128 # @val: the virtual address of the guest to start from
1129 #
1130 # @size: the size of memory region to save
1131 #
1132 # @filename: the file to save the memory to as binary data
1133 #
1134 # @cpu-index: the index of the virtual CPU to use for translating the
1135 # virtual address (defaults to CPU 0)
1136 #
1137 # Returns: Nothing on success
1138 #
1139 # Since: 0.14.0
1140 #
1141 # Notes: Errors were not reliably returned until 1.1
1142 #
1143 # Example:
1144 #
1145 # -> { "execute": "memsave",
1146 # "arguments": { "val": 10,
1147 # "size": 100,
1148 # "filename": "/tmp/virtual-mem-dump" } }
1149 # <- { "return": {} }
1150 #
1151 ##
1152 { 'command': 'memsave',
1153 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1154
1155 ##
1156 # @pmemsave:
1157 #
1158 # Save a portion of guest physical memory to a file.
1159 #
1160 # @val: the physical address of the guest to start from
1161 #
1162 # @size: the size of memory region to save
1163 #
1164 # @filename: the file to save the memory to as binary data
1165 #
1166 # Returns: Nothing on success
1167 #
1168 # Since: 0.14.0
1169 #
1170 # Notes: Errors were not reliably returned until 1.1
1171 #
1172 # Example:
1173 #
1174 # -> { "execute": "pmemsave",
1175 # "arguments": { "val": 10,
1176 # "size": 100,
1177 # "filename": "/tmp/physical-mem-dump" } }
1178 # <- { "return": {} }
1179 #
1180 ##
1181 { 'command': 'pmemsave',
1182 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1183
1184 ##
1185 # @cont:
1186 #
1187 # Resume guest VCPU execution.
1188 #
1189 # Since: 0.14.0
1190 #
1191 # Returns: If successful, nothing
1192 #
1193 # Notes: This command will succeed if the guest is currently running. It
1194 # will also succeed if the guest is in the "inmigrate" state; in
1195 # this case, the effect of the command is to make sure the guest
1196 # starts once migration finishes, removing the effect of the -S
1197 # command line option if it was passed.
1198 #
1199 # Example:
1200 #
1201 # -> { "execute": "cont" }
1202 # <- { "return": {} }
1203 #
1204 ##
1205 { 'command': 'cont' }
1206
1207 ##
1208 # @exit-preconfig:
1209 #
1210 # Exit from "preconfig" state
1211 #
1212 # This command makes QEMU exit the preconfig state and proceed with
1213 # VM initialization using configuration data provided on the command line
1214 # and via the QMP monitor during the preconfig state. The command is only
1215 # available during the preconfig state (i.e. when the --preconfig command
1216 # line option was in use).
1217 #
1218 # Since 3.0
1219 #
1220 # Returns: nothing
1221 #
1222 # Example:
1223 #
1224 # -> { "execute": "exit-preconfig" }
1225 # <- { "return": {} }
1226 #
1227 ##
1228 { 'command': 'exit-preconfig', 'allow-preconfig': true }
1229
1230 ##
1231 # @system_wakeup:
1232 #
1233 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1234 #
1235 # Since: 1.1
1236 #
1237 # Returns: nothing.
1238 #
1239 # Example:
1240 #
1241 # -> { "execute": "system_wakeup" }
1242 # <- { "return": {} }
1243 #
1244 ##
1245 { 'command': 'system_wakeup' }
1246
1247 ##
1248 # @inject-nmi:
1249 #
1250 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1251 # The command fails when the guest doesn't support injecting.
1252 #
1253 # Returns: If successful, nothing
1254 #
1255 # Since: 0.14.0
1256 #
1257 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1258 #
1259 # Example:
1260 #
1261 # -> { "execute": "inject-nmi" }
1262 # <- { "return": {} }
1263 #
1264 ##
1265 { 'command': 'inject-nmi' }
1266
1267 ##
1268 # @balloon:
1269 #
1270 # Request the balloon driver to change its balloon size.
1271 #
1272 # @value: the target size of the balloon in bytes
1273 #
1274 # Returns: Nothing on success
1275 # If the balloon driver is enabled but not functional because the KVM
1276 # kernel module cannot support it, KvmMissingCap
1277 # If no balloon device is present, DeviceNotActive
1278 #
1279 # Notes: This command just issues a request to the guest. When it returns,
1280 # the balloon size may not have changed. A guest can change the balloon
1281 # size independent of this command.
1282 #
1283 # Since: 0.14.0
1284 #
1285 # Example:
1286 #
1287 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1288 # <- { "return": {} }
1289 #
1290 ##
1291 { 'command': 'balloon', 'data': {'value': 'int'} }
1292
1293 ##
1294 # @human-monitor-command:
1295 #
1296 # Execute a command on the human monitor and return the output.
1297 #
1298 # @command-line: the command to execute in the human monitor
1299 #
1300 # @cpu-index: The CPU to use for commands that require an implicit CPU
1301 #
1302 # Returns: the output of the command as a string
1303 #
1304 # Since: 0.14.0
1305 #
1306 # Notes: This command only exists as a stop-gap. Its use is highly
1307 # discouraged. The semantics of this command are not
1308 # guaranteed: this means that command names, arguments and
1309 # responses can change or be removed at ANY time. Applications
1310 # that rely on long term stability guarantees should NOT
1311 # use this command.
1312 #
1313 # Known limitations:
1314 #
1315 # * This command is stateless, this means that commands that depend
1316 # on state information (such as getfd) might not work
1317 #
1318 # * Commands that prompt the user for data don't currently work
1319 #
1320 # Example:
1321 #
1322 # -> { "execute": "human-monitor-command",
1323 # "arguments": { "command-line": "info kvm" } }
1324 # <- { "return": "kvm support: enabled\r\n" }
1325 #
1326 ##
1327 { 'command': 'human-monitor-command',
1328 'data': {'command-line': 'str', '*cpu-index': 'int'},
1329 'returns': 'str' }
1330
1331 ##
1332 # @ObjectPropertyInfo:
1333 #
1334 # @name: the name of the property
1335 #
1336 # @type: the type of the property. This will typically come in one of four
1337 # forms:
1338 #
1339 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1340 # These types are mapped to the appropriate JSON type.
1341 #
1342 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
1343 # device type name. Child properties create the composition tree.
1344 #
1345 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
1346 # device type name. Link properties form the device model graph.
1347 #
1348 # @description: if specified, the description of the property.
1349 #
1350 # Since: 1.2
1351 ##
1352 { 'struct': 'ObjectPropertyInfo',
1353 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1354
1355 ##
1356 # @qom-list:
1357 #
1358 # This command will list any properties of a object given a path in the object
1359 # model.
1360 #
1361 # @path: the path within the object model. See @qom-get for a description of
1362 # this parameter.
1363 #
1364 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
1365 # object.
1366 #
1367 # Since: 1.2
1368 ##
1369 { 'command': 'qom-list',
1370 'data': { 'path': 'str' },
1371 'returns': [ 'ObjectPropertyInfo' ],
1372 'allow-preconfig': true }
1373
1374 ##
1375 # @qom-get:
1376 #
1377 # This command will get a property from a object model path and return the
1378 # value.
1379 #
1380 # @path: The path within the object model. There are two forms of supported
1381 # paths--absolute and partial paths.
1382 #
1383 # Absolute paths are derived from the root object and can follow child<>
1384 # or link<> properties. Since they can follow link<> properties, they
1385 # can be arbitrarily long. Absolute paths look like absolute filenames
1386 # and are prefixed with a leading slash.
1387 #
1388 # Partial paths look like relative filenames. They do not begin
1389 # with a prefix. The matching rules for partial paths are subtle but
1390 # designed to make specifying objects easy. At each level of the
1391 # composition tree, the partial path is matched as an absolute path.
1392 # The first match is not returned. At least two matches are searched
1393 # for. A successful result is only returned if only one match is
1394 # found. If more than one match is found, a flag is return to
1395 # indicate that the match was ambiguous.
1396 #
1397 # @property: The property name to read
1398 #
1399 # Returns: The property value. The type depends on the property
1400 # type. child<> and link<> properties are returned as #str
1401 # pathnames. All integer property types (u8, u16, etc) are
1402 # returned as #int.
1403 #
1404 # Since: 1.2
1405 ##
1406 { 'command': 'qom-get',
1407 'data': { 'path': 'str', 'property': 'str' },
1408 'returns': 'any',
1409 'allow-preconfig': true }
1410
1411 ##
1412 # @qom-set:
1413 #
1414 # This command will set a property from a object model path.
1415 #
1416 # @path: see @qom-get for a description of this parameter
1417 #
1418 # @property: the property name to set
1419 #
1420 # @value: a value who's type is appropriate for the property type. See @qom-get
1421 # for a description of type mapping.
1422 #
1423 # Since: 1.2
1424 ##
1425 { 'command': 'qom-set',
1426 'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1427 'allow-preconfig': true }
1428
1429 ##
1430 # @change:
1431 #
1432 # This command is multiple commands multiplexed together.
1433 #
1434 # @device: This is normally the name of a block device but it may also be 'vnc'.
1435 # when it's 'vnc', then sub command depends on @target
1436 #
1437 # @target: If @device is a block device, then this is the new filename.
1438 # If @device is 'vnc', then if the value 'password' selects the vnc
1439 # change password command. Otherwise, this specifies a new server URI
1440 # address to listen to for VNC connections.
1441 #
1442 # @arg: If @device is a block device, then this is an optional format to open
1443 # the device with.
1444 # If @device is 'vnc' and @target is 'password', this is the new VNC
1445 # password to set. See change-vnc-password for additional notes.
1446 #
1447 # Returns: Nothing on success.
1448 # If @device is not a valid block device, DeviceNotFound
1449 #
1450 # Notes: This interface is deprecated, and it is strongly recommended that you
1451 # avoid using it. For changing block devices, use
1452 # blockdev-change-medium; for changing VNC parameters, use
1453 # change-vnc-password.
1454 #
1455 # Since: 0.14.0
1456 #
1457 # Example:
1458 #
1459 # 1. Change a removable medium
1460 #
1461 # -> { "execute": "change",
1462 # "arguments": { "device": "ide1-cd0",
1463 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1464 # <- { "return": {} }
1465 #
1466 # 2. Change VNC password
1467 #
1468 # -> { "execute": "change",
1469 # "arguments": { "device": "vnc", "target": "password",
1470 # "arg": "foobar1" } }
1471 # <- { "return": {} }
1472 #
1473 ##
1474 { 'command': 'change',
1475 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1476
1477 ##
1478 # @ObjectTypeInfo:
1479 #
1480 # This structure describes a search result from @qom-list-types
1481 #
1482 # @name: the type name found in the search
1483 #
1484 # @abstract: the type is abstract and can't be directly instantiated.
1485 # Omitted if false. (since 2.10)
1486 #
1487 # @parent: Name of parent type, if any (since 2.10)
1488 #
1489 # Since: 1.1
1490 ##
1491 { 'struct': 'ObjectTypeInfo',
1492 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1493
1494 ##
1495 # @qom-list-types:
1496 #
1497 # This command will return a list of types given search parameters
1498 #
1499 # @implements: if specified, only return types that implement this type name
1500 #
1501 # @abstract: if true, include abstract types in the results
1502 #
1503 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1504 #
1505 # Since: 1.1
1506 ##
1507 { 'command': 'qom-list-types',
1508 'data': { '*implements': 'str', '*abstract': 'bool' },
1509 'returns': [ 'ObjectTypeInfo' ],
1510 'allow-preconfig': true }
1511
1512 ##
1513 # @device-list-properties:
1514 #
1515 # List properties associated with a device.
1516 #
1517 # @typename: the type name of a device
1518 #
1519 # Returns: a list of ObjectPropertyInfo describing a devices properties
1520 #
1521 # Note: objects can create properties at runtime, for example to describe
1522 # links between different devices and/or objects. These properties
1523 # are not included in the output of this command.
1524 #
1525 # Since: 1.2
1526 ##
1527 { 'command': 'device-list-properties',
1528 'data': { 'typename': 'str'},
1529 'returns': [ 'ObjectPropertyInfo' ] }
1530
1531 ##
1532 # @qom-list-properties:
1533 #
1534 # List properties associated with a QOM object.
1535 #
1536 # @typename: the type name of an object
1537 #
1538 # Note: objects can create properties at runtime, for example to describe
1539 # links between different devices and/or objects. These properties
1540 # are not included in the output of this command.
1541 #
1542 # Returns: a list of ObjectPropertyInfo describing object properties
1543 #
1544 # Since: 2.12
1545 ##
1546 { 'command': 'qom-list-properties',
1547 'data': { 'typename': 'str'},
1548 'returns': [ 'ObjectPropertyInfo' ],
1549 'allow-preconfig': true }
1550
1551 ##
1552 # @xen-set-global-dirty-log:
1553 #
1554 # Enable or disable the global dirty log mode.
1555 #
1556 # @enable: true to enable, false to disable.
1557 #
1558 # Returns: nothing
1559 #
1560 # Since: 1.3
1561 #
1562 # Example:
1563 #
1564 # -> { "execute": "xen-set-global-dirty-log",
1565 # "arguments": { "enable": true } }
1566 # <- { "return": {} }
1567 #
1568 ##
1569 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1570
1571 ##
1572 # @device_add:
1573 #
1574 # @driver: the name of the new device's driver
1575 #
1576 # @bus: the device's parent bus (device tree path)
1577 #
1578 # @id: the device's ID, must be unique
1579 #
1580 # Additional arguments depend on the type.
1581 #
1582 # Add a device.
1583 #
1584 # Notes:
1585 # 1. For detailed information about this command, please refer to the
1586 # 'docs/qdev-device-use.txt' file.
1587 #
1588 # 2. It's possible to list device properties by running QEMU with the
1589 # "-device DEVICE,help" command-line argument, where DEVICE is the
1590 # device's name
1591 #
1592 # Example:
1593 #
1594 # -> { "execute": "device_add",
1595 # "arguments": { "driver": "e1000", "id": "net1",
1596 # "bus": "pci.0",
1597 # "mac": "52:54:00:12:34:56" } }
1598 # <- { "return": {} }
1599 #
1600 # TODO: This command effectively bypasses QAPI completely due to its
1601 # "additional arguments" business. It shouldn't have been added to
1602 # the schema in this form. It should be qapified properly, or
1603 # replaced by a properly qapified command.
1604 #
1605 # Since: 0.13
1606 ##
1607 { 'command': 'device_add',
1608 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1609 'gen': false } # so we can get the additional arguments
1610
1611 ##
1612 # @device_del:
1613 #
1614 # Remove a device from a guest
1615 #
1616 # @id: the device's ID or QOM path
1617 #
1618 # Returns: Nothing on success
1619 # If @id is not a valid device, DeviceNotFound
1620 #
1621 # Notes: When this command completes, the device may not be removed from the
1622 # guest. Hot removal is an operation that requires guest cooperation.
1623 # This command merely requests that the guest begin the hot removal
1624 # process. Completion of the device removal process is signaled with a
1625 # DEVICE_DELETED event. Guest reset will automatically complete removal
1626 # for all devices.
1627 #
1628 # Since: 0.14.0
1629 #
1630 # Example:
1631 #
1632 # -> { "execute": "device_del",
1633 # "arguments": { "id": "net1" } }
1634 # <- { "return": {} }
1635 #
1636 # -> { "execute": "device_del",
1637 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1638 # <- { "return": {} }
1639 #
1640 ##
1641 { 'command': 'device_del', 'data': {'id': 'str'} }
1642
1643 ##
1644 # @DEVICE_DELETED:
1645 #
1646 # Emitted whenever the device removal completion is acknowledged by the guest.
1647 # At this point, it's safe to reuse the specified device ID. Device removal can
1648 # be initiated by the guest or by HMP/QMP commands.
1649 #
1650 # @device: device name
1651 #
1652 # @path: device path
1653 #
1654 # Since: 1.5
1655 #
1656 # Example:
1657 #
1658 # <- { "event": "DEVICE_DELETED",
1659 # "data": { "device": "virtio-net-pci-0",
1660 # "path": "/machine/peripheral/virtio-net-pci-0" },
1661 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1662 #
1663 ##
1664 { 'event': 'DEVICE_DELETED',
1665 'data': { '*device': 'str', 'path': 'str' } }
1666
1667 ##
1668 # @DumpGuestMemoryFormat:
1669 #
1670 # An enumeration of guest-memory-dump's format.
1671 #
1672 # @elf: elf format
1673 #
1674 # @kdump-zlib: kdump-compressed format with zlib-compressed
1675 #
1676 # @kdump-lzo: kdump-compressed format with lzo-compressed
1677 #
1678 # @kdump-snappy: kdump-compressed format with snappy-compressed
1679 #
1680 # @win-dmp: Windows full crashdump format,
1681 # can be used instead of ELF converting (since 2.13)
1682 #
1683 # Since: 2.0
1684 ##
1685 { 'enum': 'DumpGuestMemoryFormat',
1686 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
1687
1688 ##
1689 # @dump-guest-memory:
1690 #
1691 # Dump guest's memory to vmcore. It is a synchronous operation that can take
1692 # very long depending on the amount of guest memory.
1693 #
1694 # @paging: if true, do paging to get guest's memory mapping. This allows
1695 # using gdb to process the core file.
1696 #
1697 # IMPORTANT: this option can make QEMU allocate several gigabytes
1698 # of RAM. This can happen for a large guest, or a
1699 # malicious guest pretending to be large.
1700 #
1701 # Also, paging=true has the following limitations:
1702 #
1703 # 1. The guest may be in a catastrophic state or can have corrupted
1704 # memory, which cannot be trusted
1705 # 2. The guest can be in real-mode even if paging is enabled. For
1706 # example, the guest uses ACPI to sleep, and ACPI sleep state
1707 # goes in real-mode
1708 # 3. Currently only supported on i386 and x86_64.
1709 #
1710 # @protocol: the filename or file descriptor of the vmcore. The supported
1711 # protocols are:
1712 #
1713 # 1. file: the protocol starts with "file:", and the following
1714 # string is the file's path.
1715 # 2. fd: the protocol starts with "fd:", and the following string
1716 # is the fd's name.
1717 #
1718 # @detach: if true, QMP will return immediately rather than
1719 # waiting for the dump to finish. The user can track progress
1720 # using "query-dump". (since 2.6).
1721 #
1722 # @begin: if specified, the starting physical address.
1723 #
1724 # @length: if specified, the memory size, in bytes. If you don't
1725 # want to dump all guest's memory, please specify the start @begin
1726 # and @length
1727 #
1728 # @format: if specified, the format of guest memory dump. But non-elf
1729 # format is conflict with paging and filter, ie. @paging, @begin and
1730 # @length is not allowed to be specified with non-elf @format at the
1731 # same time (since 2.0)
1732 #
1733 # Note: All boolean arguments default to false
1734 #
1735 # Returns: nothing on success
1736 #
1737 # Since: 1.2
1738 #
1739 # Example:
1740 #
1741 # -> { "execute": "dump-guest-memory",
1742 # "arguments": { "protocol": "fd:dump" } }
1743 # <- { "return": {} }
1744 #
1745 ##
1746 { 'command': 'dump-guest-memory',
1747 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1748 '*begin': 'int', '*length': 'int',
1749 '*format': 'DumpGuestMemoryFormat'} }
1750
1751 ##
1752 # @DumpStatus:
1753 #
1754 # Describe the status of a long-running background guest memory dump.
1755 #
1756 # @none: no dump-guest-memory has started yet.
1757 #
1758 # @active: there is one dump running in background.
1759 #
1760 # @completed: the last dump has finished successfully.
1761 #
1762 # @failed: the last dump has failed.
1763 #
1764 # Since: 2.6
1765 ##
1766 { 'enum': 'DumpStatus',
1767 'data': [ 'none', 'active', 'completed', 'failed' ] }
1768
1769 ##
1770 # @DumpQueryResult:
1771 #
1772 # The result format for 'query-dump'.
1773 #
1774 # @status: enum of @DumpStatus, which shows current dump status
1775 #
1776 # @completed: bytes written in latest dump (uncompressed)
1777 #
1778 # @total: total bytes to be written in latest dump (uncompressed)
1779 #
1780 # Since: 2.6
1781 ##
1782 { 'struct': 'DumpQueryResult',
1783 'data': { 'status': 'DumpStatus',
1784 'completed': 'int',
1785 'total': 'int' } }
1786
1787 ##
1788 # @query-dump:
1789 #
1790 # Query latest dump status.
1791 #
1792 # Returns: A @DumpStatus object showing the dump status.
1793 #
1794 # Since: 2.6
1795 #
1796 # Example:
1797 #
1798 # -> { "execute": "query-dump" }
1799 # <- { "return": { "status": "active", "completed": 1024000,
1800 # "total": 2048000 } }
1801 #
1802 ##
1803 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1804
1805 ##
1806 # @DUMP_COMPLETED:
1807 #
1808 # Emitted when background dump has completed
1809 #
1810 # @result: final dump status
1811 #
1812 # @error: human-readable error string that provides
1813 # hint on why dump failed. Only presents on failure. The
1814 # user should not try to interpret the error string.
1815 #
1816 # Since: 2.6
1817 #
1818 # Example:
1819 #
1820 # { "event": "DUMP_COMPLETED",
1821 # "data": {"result": {"total": 1090650112, "status": "completed",
1822 # "completed": 1090650112} } }
1823 #
1824 ##
1825 { 'event': 'DUMP_COMPLETED' ,
1826 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1827
1828 ##
1829 # @DumpGuestMemoryCapability:
1830 #
1831 # A list of the available formats for dump-guest-memory
1832 #
1833 # Since: 2.0
1834 ##
1835 { 'struct': 'DumpGuestMemoryCapability',
1836 'data': {
1837 'formats': ['DumpGuestMemoryFormat'] } }
1838
1839 ##
1840 # @query-dump-guest-memory-capability:
1841 #
1842 # Returns the available formats for dump-guest-memory
1843 #
1844 # Returns: A @DumpGuestMemoryCapability object listing available formats for
1845 # dump-guest-memory
1846 #
1847 # Since: 2.0
1848 #
1849 # Example:
1850 #
1851 # -> { "execute": "query-dump-guest-memory-capability" }
1852 # <- { "return": { "formats":
1853 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1854 #
1855 ##
1856 { 'command': 'query-dump-guest-memory-capability',
1857 'returns': 'DumpGuestMemoryCapability' }
1858
1859 ##
1860 # @dump-skeys:
1861 #
1862 # Dump guest's storage keys
1863 #
1864 # @filename: the path to the file to dump to
1865 #
1866 # This command is only supported on s390 architecture.
1867 #
1868 # Since: 2.5
1869 #
1870 # Example:
1871 #
1872 # -> { "execute": "dump-skeys",
1873 # "arguments": { "filename": "/tmp/skeys" } }
1874 # <- { "return": {} }
1875 #
1876 ##
1877 { 'command': 'dump-skeys',
1878 'data': { 'filename': 'str' } }
1879
1880 ##
1881 # @object-add:
1882 #
1883 # Create a QOM object.
1884 #
1885 # @qom-type: the class name for the object to be created
1886 #
1887 # @id: the name of the new object
1888 #
1889 # @props: a dictionary of properties to be passed to the backend
1890 #
1891 # Returns: Nothing on success
1892 # Error if @qom-type is not a valid class name
1893 #
1894 # Since: 2.0
1895 #
1896 # Example:
1897 #
1898 # -> { "execute": "object-add",
1899 # "arguments": { "qom-type": "rng-random", "id": "rng1",
1900 # "props": { "filename": "/dev/hwrng" } } }
1901 # <- { "return": {} }
1902 #
1903 ##
1904 { 'command': 'object-add',
1905 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1906
1907 ##
1908 # @object-del:
1909 #
1910 # Remove a QOM object.
1911 #
1912 # @id: the name of the QOM object to remove
1913 #
1914 # Returns: Nothing on success
1915 # Error if @id is not a valid id for a QOM object
1916 #
1917 # Since: 2.0
1918 #
1919 # Example:
1920 #
1921 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1922 # <- { "return": {} }
1923 #
1924 ##
1925 { 'command': 'object-del', 'data': {'id': 'str'} }
1926
1927 ##
1928 # @getfd:
1929 #
1930 # Receive a file descriptor via SCM rights and assign it a name
1931 #
1932 # @fdname: file descriptor name
1933 #
1934 # Returns: Nothing on success
1935 #
1936 # Since: 0.14.0
1937 #
1938 # Notes: If @fdname already exists, the file descriptor assigned to
1939 # it will be closed and replaced by the received file
1940 # descriptor.
1941 #
1942 # The 'closefd' command can be used to explicitly close the
1943 # file descriptor when it is no longer needed.
1944 #
1945 # Example:
1946 #
1947 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1948 # <- { "return": {} }
1949 #
1950 ##
1951 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1952
1953 ##
1954 # @closefd:
1955 #
1956 # Close a file descriptor previously passed via SCM rights
1957 #
1958 # @fdname: file descriptor name
1959 #
1960 # Returns: Nothing on success
1961 #
1962 # Since: 0.14.0
1963 #
1964 # Example:
1965 #
1966 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1967 # <- { "return": {} }
1968 #
1969 ##
1970 { 'command': 'closefd', 'data': {'fdname': 'str'} }
1971
1972 ##
1973 # @MachineInfo:
1974 #
1975 # Information describing a machine.
1976 #
1977 # @name: the name of the machine
1978 #
1979 # @alias: an alias for the machine name
1980 #
1981 # @is-default: whether the machine is default
1982 #
1983 # @cpu-max: maximum number of CPUs supported by the machine type
1984 # (since 1.5.0)
1985 #
1986 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1987 #
1988 # Since: 1.2.0
1989 ##
1990 { 'struct': 'MachineInfo',
1991 'data': { 'name': 'str', '*alias': 'str',
1992 '*is-default': 'bool', 'cpu-max': 'int',
1993 'hotpluggable-cpus': 'bool'} }
1994
1995 ##
1996 # @query-machines:
1997 #
1998 # Return a list of supported machines
1999 #
2000 # Returns: a list of MachineInfo
2001 #
2002 # Since: 1.2.0
2003 ##
2004 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
2005
2006 ##
2007 # @CpuDefinitionInfo:
2008 #
2009 # Virtual CPU definition.
2010 #
2011 # @name: the name of the CPU definition
2012 #
2013 # @migration-safe: whether a CPU definition can be safely used for
2014 # migration in combination with a QEMU compatibility machine
2015 # when migrating between different QMU versions and between
2016 # hosts with different sets of (hardware or software)
2017 # capabilities. If not provided, information is not available
2018 # and callers should not assume the CPU definition to be
2019 # migration-safe. (since 2.8)
2020 #
2021 # @static: whether a CPU definition is static and will not change depending on
2022 # QEMU version, machine type, machine options and accelerator options.
2023 # A static model is always migration-safe. (since 2.8)
2024 #
2025 # @unavailable-features: List of properties that prevent
2026 # the CPU model from running in the current
2027 # host. (since 2.8)
2028 # @typename: Type name that can be used as argument to @device-list-properties,
2029 # to introspect properties configurable using -cpu or -global.
2030 # (since 2.9)
2031 #
2032 # @unavailable-features is a list of QOM property names that
2033 # represent CPU model attributes that prevent the CPU from running.
2034 # If the QOM property is read-only, that means there's no known
2035 # way to make the CPU model run in the current host. Implementations
2036 # that choose not to provide specific information return the
2037 # property name "type".
2038 # If the property is read-write, it means that it MAY be possible
2039 # to run the CPU model in the current host if that property is
2040 # changed. Management software can use it as hints to suggest or
2041 # choose an alternative for the user, or just to generate meaningful
2042 # error messages explaining why the CPU model can't be used.
2043 # If @unavailable-features is an empty list, the CPU model is
2044 # runnable using the current host and machine-type.
2045 # If @unavailable-features is not present, runnability
2046 # information for the CPU is not available.
2047 #
2048 # Since: 1.2.0
2049 ##
2050 { 'struct': 'CpuDefinitionInfo',
2051 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2052 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2053
2054 ##
2055 # @MemoryInfo:
2056 #
2057 # Actual memory information in bytes.
2058 #
2059 # @base-memory: size of "base" memory specified with command line
2060 # option -m.
2061 #
2062 # @plugged-memory: size of memory that can be hot-unplugged. This field
2063 # is omitted if target doesn't support memory hotplug
2064 # (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2065 #
2066 # Since: 2.11.0
2067 ##
2068 { 'struct': 'MemoryInfo',
2069 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2070
2071 ##
2072 # @query-memory-size-summary:
2073 #
2074 # Return the amount of initially allocated and present hotpluggable (if
2075 # enabled) memory in bytes.
2076 #
2077 # Example:
2078 #
2079 # -> { "execute": "query-memory-size-summary" }
2080 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2081 #
2082 # Since: 2.11.0
2083 ##
2084 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2085
2086 ##
2087 # @query-cpu-definitions:
2088 #
2089 # Return a list of supported virtual CPU definitions
2090 #
2091 # Returns: a list of CpuDefInfo
2092 #
2093 # Since: 1.2.0
2094 ##
2095 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2096
2097 ##
2098 # @CpuModelInfo:
2099 #
2100 # Virtual CPU model.
2101 #
2102 # A CPU model consists of the name of a CPU definition, to which
2103 # delta changes are applied (e.g. features added/removed). Most magic values
2104 # that an architecture might require should be hidden behind the name.
2105 # However, if required, architectures can expose relevant properties.
2106 #
2107 # @name: the name of the CPU definition the model is based on
2108 # @props: a dictionary of QOM properties to be applied
2109 #
2110 # Since: 2.8.0
2111 ##
2112 { 'struct': 'CpuModelInfo',
2113 'data': { 'name': 'str',
2114 '*props': 'any' } }
2115
2116 ##
2117 # @CpuModelExpansionType:
2118 #
2119 # An enumeration of CPU model expansion types.
2120 #
2121 # @static: Expand to a static CPU model, a combination of a static base
2122 # model name and property delta changes. As the static base model will
2123 # never change, the expanded CPU model will be the same, independent of
2124 # independent of QEMU version, machine type, machine options, and
2125 # accelerator options. Therefore, the resulting model can be used by
2126 # tooling without having to specify a compatibility machine - e.g. when
2127 # displaying the "host" model. static CPU models are migration-safe.
2128 #
2129 # @full: Expand all properties. The produced model is not guaranteed to be
2130 # migration-safe, but allows tooling to get an insight and work with
2131 # model details.
2132 #
2133 # Note: When a non-migration-safe CPU model is expanded in static mode, some
2134 # features enabled by the CPU model may be omitted, because they can't be
2135 # implemented by a static CPU model definition (e.g. cache info passthrough and
2136 # PMU passthrough in x86). If you need an accurate representation of the
2137 # features enabled by a non-migration-safe CPU model, use @full. If you need a
2138 # static representation that will keep ABI compatibility even when changing QEMU
2139 # version or machine-type, use @static (but keep in mind that some features may
2140 # be omitted).
2141 #
2142 # Since: 2.8.0
2143 ##
2144 { 'enum': 'CpuModelExpansionType',
2145 'data': [ 'static', 'full' ] }
2146
2147
2148 ##
2149 # @CpuModelExpansionInfo:
2150 #
2151 # The result of a cpu model expansion.
2152 #
2153 # @model: the expanded CpuModelInfo.
2154 #
2155 # Since: 2.8.0
2156 ##
2157 { 'struct': 'CpuModelExpansionInfo',
2158 'data': { 'model': 'CpuModelInfo' } }
2159
2160
2161 ##
2162 # @query-cpu-model-expansion:
2163 #
2164 # Expands a given CPU model (or a combination of CPU model + additional options)
2165 # to different granularities, allowing tooling to get an understanding what a
2166 # specific CPU model looks like in QEMU under a certain configuration.
2167 #
2168 # This interface can be used to query the "host" CPU model.
2169 #
2170 # The data returned by this command may be affected by:
2171 #
2172 # * QEMU version: CPU models may look different depending on the QEMU version.
2173 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2174 # * machine-type: CPU model may look different depending on the machine-type.
2175 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2176 # * machine options (including accelerator): in some architectures, CPU models
2177 # may look different depending on machine and accelerator options. (Except for
2178 # CPU models reported as "static" in query-cpu-definitions.)
2179 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2180 # global properties may affect expansion of CPU models. Using
2181 # query-cpu-model-expansion while using these is not advised.
2182 #
2183 # Some architectures may not support all expansion types. s390x supports
2184 # "full" and "static".
2185 #
2186 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2187 # not supported, if the model cannot be expanded, if the model contains
2188 # an unknown CPU definition name, unknown properties or properties
2189 # with a wrong type. Also returns an error if an expansion type is
2190 # not supported.
2191 #
2192 # Since: 2.8.0
2193 ##
2194 { 'command': 'query-cpu-model-expansion',
2195 'data': { 'type': 'CpuModelExpansionType',
2196 'model': 'CpuModelInfo' },
2197 'returns': 'CpuModelExpansionInfo' }
2198
2199 ##
2200 # @CpuModelCompareResult:
2201 #
2202 # An enumeration of CPU model comparison results. The result is usually
2203 # calculated using e.g. CPU features or CPU generations.
2204 #
2205 # @incompatible: If model A is incompatible to model B, model A is not
2206 # guaranteed to run where model B runs and the other way around.
2207 #
2208 # @identical: If model A is identical to model B, model A is guaranteed to run
2209 # where model B runs and the other way around.
2210 #
2211 # @superset: If model A is a superset of model B, model B is guaranteed to run
2212 # where model A runs. There are no guarantees about the other way.
2213 #
2214 # @subset: If model A is a subset of model B, model A is guaranteed to run
2215 # where model B runs. There are no guarantees about the other way.
2216 #
2217 # Since: 2.8.0
2218 ##
2219 { 'enum': 'CpuModelCompareResult',
2220 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2221
2222 ##
2223 # @CpuModelCompareInfo:
2224 #
2225 # The result of a CPU model comparison.
2226 #
2227 # @result: The result of the compare operation.
2228 # @responsible-properties: List of properties that led to the comparison result
2229 # not being identical.
2230 #
2231 # @responsible-properties is a list of QOM property names that led to
2232 # both CPUs not being detected as identical. For identical models, this
2233 # list is empty.
2234 # If a QOM property is read-only, that means there's no known way to make the
2235 # CPU models identical. If the special property name "type" is included, the
2236 # models are by definition not identical and cannot be made identical.
2237 #
2238 # Since: 2.8.0
2239 ##
2240 { 'struct': 'CpuModelCompareInfo',
2241 'data': {'result': 'CpuModelCompareResult',
2242 'responsible-properties': ['str']
2243 }
2244 }
2245
2246 ##
2247 # @query-cpu-model-comparison:
2248 #
2249 # Compares two CPU models, returning how they compare in a specific
2250 # configuration. The results indicates how both models compare regarding
2251 # runnability. This result can be used by tooling to make decisions if a
2252 # certain CPU model will run in a certain configuration or if a compatible
2253 # CPU model has to be created by baselining.
2254 #
2255 # Usually, a CPU model is compared against the maximum possible CPU model
2256 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
2257 # model is identical or a subset, it will run in that configuration.
2258 #
2259 # The result returned by this command may be affected by:
2260 #
2261 # * QEMU version: CPU models may look different depending on the QEMU version.
2262 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2263 # * machine-type: CPU model may look different depending on the machine-type.
2264 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2265 # * machine options (including accelerator): in some architectures, CPU models
2266 # may look different depending on machine and accelerator options. (Except for
2267 # CPU models reported as "static" in query-cpu-definitions.)
2268 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2269 # global properties may affect expansion of CPU models. Using
2270 # query-cpu-model-expansion while using these is not advised.
2271 #
2272 # Some architectures may not support comparing CPU models. s390x supports
2273 # comparing CPU models.
2274 #
2275 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2276 # not supported, if a model cannot be used, if a model contains
2277 # an unknown cpu definition name, unknown properties or properties
2278 # with wrong types.
2279 #
2280 # Since: 2.8.0
2281 ##
2282 { 'command': 'query-cpu-model-comparison',
2283 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2284 'returns': 'CpuModelCompareInfo' }
2285
2286 ##
2287 # @CpuModelBaselineInfo:
2288 #
2289 # The result of a CPU model baseline.
2290 #
2291 # @model: the baselined CpuModelInfo.
2292 #
2293 # Since: 2.8.0
2294 ##
2295 { 'struct': 'CpuModelBaselineInfo',
2296 'data': { 'model': 'CpuModelInfo' } }
2297
2298 ##
2299 # @query-cpu-model-baseline:
2300 #
2301 # Baseline two CPU models, creating a compatible third model. The created
2302 # model will always be a static, migration-safe CPU model (see "static"
2303 # CPU model expansion for details).
2304 #
2305 # This interface can be used by tooling to create a compatible CPU model out
2306 # two CPU models. The created CPU model will be identical to or a subset of
2307 # both CPU models when comparing them. Therefore, the created CPU model is
2308 # guaranteed to run where the given CPU models run.
2309 #
2310 # The result returned by this command may be affected by:
2311 #
2312 # * QEMU version: CPU models may look different depending on the QEMU version.
2313 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2314 # * machine-type: CPU model may look different depending on the machine-type.
2315 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2316 # * machine options (including accelerator): in some architectures, CPU models
2317 # may look different depending on machine and accelerator options. (Except for
2318 # CPU models reported as "static" in query-cpu-definitions.)
2319 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2320 # global properties may affect expansion of CPU models. Using
2321 # query-cpu-model-expansion while using these is not advised.
2322 #
2323 # Some architectures may not support baselining CPU models. s390x supports
2324 # baselining CPU models.
2325 #
2326 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2327 # not supported, if a model cannot be used, if a model contains
2328 # an unknown cpu definition name, unknown properties or properties
2329 # with wrong types.
2330 #
2331 # Since: 2.8.0
2332 ##
2333 { 'command': 'query-cpu-model-baseline',
2334 'data': { 'modela': 'CpuModelInfo',
2335 'modelb': 'CpuModelInfo' },
2336 'returns': 'CpuModelBaselineInfo' }
2337
2338 ##
2339 # @AddfdInfo:
2340 #
2341 # Information about a file descriptor that was added to an fd set.
2342 #
2343 # @fdset-id: The ID of the fd set that @fd was added to.
2344 #
2345 # @fd: The file descriptor that was received via SCM rights and
2346 # added to the fd set.
2347 #
2348 # Since: 1.2.0
2349 ##
2350 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2351
2352 ##
2353 # @add-fd:
2354 #
2355 # Add a file descriptor, that was passed via SCM rights, to an fd set.
2356 #
2357 # @fdset-id: The ID of the fd set to add the file descriptor to.
2358 #
2359 # @opaque: A free-form string that can be used to describe the fd.
2360 #
2361 # Returns: @AddfdInfo on success
2362 #
2363 # If file descriptor was not received, FdNotSupplied
2364 #
2365 # If @fdset-id is a negative value, InvalidParameterValue
2366 #
2367 # Notes: The list of fd sets is shared by all monitor connections.
2368 #
2369 # If @fdset-id is not specified, a new fd set will be created.
2370 #
2371 # Since: 1.2.0
2372 #
2373 # Example:
2374 #
2375 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2376 # <- { "return": { "fdset-id": 1, "fd": 3 } }
2377 #
2378 ##
2379 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2380 'returns': 'AddfdInfo' }
2381
2382 ##
2383 # @remove-fd:
2384 #
2385 # Remove a file descriptor from an fd set.
2386 #
2387 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
2388 #
2389 # @fd: The file descriptor that is to be removed.
2390 #
2391 # Returns: Nothing on success
2392 # If @fdset-id or @fd is not found, FdNotFound
2393 #
2394 # Since: 1.2.0
2395 #
2396 # Notes: The list of fd sets is shared by all monitor connections.
2397 #
2398 # If @fd is not specified, all file descriptors in @fdset-id
2399 # will be removed.
2400 #
2401 # Example:
2402 #
2403 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2404 # <- { "return": {} }
2405 #
2406 ##
2407 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2408
2409 ##
2410 # @FdsetFdInfo:
2411 #
2412 # Information about a file descriptor that belongs to an fd set.
2413 #
2414 # @fd: The file descriptor value.
2415 #
2416 # @opaque: A free-form string that can be used to describe the fd.
2417 #
2418 # Since: 1.2.0
2419 ##
2420 { 'struct': 'FdsetFdInfo',
2421 'data': {'fd': 'int', '*opaque': 'str'} }
2422
2423 ##
2424 # @FdsetInfo:
2425 #
2426 # Information about an fd set.
2427 #
2428 # @fdset-id: The ID of the fd set.
2429 #
2430 # @fds: A list of file descriptors that belong to this fd set.
2431 #
2432 # Since: 1.2.0
2433 ##
2434 { 'struct': 'FdsetInfo',
2435 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2436
2437 ##
2438 # @query-fdsets:
2439 #
2440 # Return information describing all fd sets.
2441 #
2442 # Returns: A list of @FdsetInfo
2443 #
2444 # Since: 1.2.0
2445 #
2446 # Note: The list of fd sets is shared by all monitor connections.
2447 #
2448 # Example:
2449 #
2450 # -> { "execute": "query-fdsets" }
2451 # <- { "return": [
2452 # {
2453 # "fds": [
2454 # {
2455 # "fd": 30,
2456 # "opaque": "rdonly:/path/to/file"
2457 # },
2458 # {
2459 # "fd": 24,
2460 # "opaque": "rdwr:/path/to/file"
2461 # }
2462 # ],
2463 # "fdset-id": 1
2464 # },
2465 # {
2466 # "fds": [
2467 # {
2468 # "fd": 28
2469 # },
2470 # {
2471 # "fd": 29
2472 # }
2473 # ],
2474 # "fdset-id": 0
2475 # }
2476 # ]
2477 # }
2478 #
2479 ##
2480 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2481
2482 ##
2483 # @TargetInfo:
2484 #
2485 # Information describing the QEMU target.
2486 #
2487 # @arch: the target architecture
2488 #
2489 # Since: 1.2.0
2490 ##
2491 { 'struct': 'TargetInfo',
2492 'data': { 'arch': 'SysEmuTarget' } }
2493
2494 ##
2495 # @query-target:
2496 #
2497 # Return information about the target for this QEMU
2498 #
2499 # Returns: TargetInfo
2500 #
2501 # Since: 1.2.0
2502 ##
2503 { 'command': 'query-target', 'returns': 'TargetInfo' }
2504
2505 ##
2506 # @AcpiTableOptions:
2507 #
2508 # Specify an ACPI table on the command line to load.
2509 #
2510 # At most one of @file and @data can be specified. The list of files specified
2511 # by any one of them is loaded and concatenated in order. If both are omitted,
2512 # @data is implied.
2513 #
2514 # Other fields / optargs can be used to override fields of the generic ACPI
2515 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
2516 # Description Table Header. If a header field is not overridden, then the
2517 # corresponding value from the concatenated blob is used (in case of @file), or
2518 # it is filled in with a hard-coded value (in case of @data).
2519 #
2520 # String fields are copied into the matching ACPI member from lowest address
2521 # upwards, and silently truncated / NUL-padded to length.
2522 #
2523 # @sig: table signature / identifier (4 bytes)
2524 #
2525 # @rev: table revision number (dependent on signature, 1 byte)
2526 #
2527 # @oem_id: OEM identifier (6 bytes)
2528 #
2529 # @oem_table_id: OEM table identifier (8 bytes)
2530 #
2531 # @oem_rev: OEM-supplied revision number (4 bytes)
2532 #
2533 # @asl_compiler_id: identifier of the utility that created the table
2534 # (4 bytes)
2535 #
2536 # @asl_compiler_rev: revision number of the utility that created the
2537 # table (4 bytes)
2538 #
2539 # @file: colon (:) separated list of pathnames to load and
2540 # concatenate as table data. The resultant binary blob is expected to
2541 # have an ACPI table header. At least one file is required. This field
2542 # excludes @data.
2543 #
2544 # @data: colon (:) separated list of pathnames to load and
2545 # concatenate as table data. The resultant binary blob must not have an
2546 # ACPI table header. At least one file is required. This field excludes
2547 # @file.
2548 #
2549 # Since: 1.5
2550 ##
2551 { 'struct': 'AcpiTableOptions',
2552 'data': {
2553 '*sig': 'str',
2554 '*rev': 'uint8',
2555 '*oem_id': 'str',
2556 '*oem_table_id': 'str',
2557 '*oem_rev': 'uint32',
2558 '*asl_compiler_id': 'str',
2559 '*asl_compiler_rev': 'uint32',
2560 '*file': 'str',
2561 '*data': 'str' }}
2562
2563 ##
2564 # @CommandLineParameterType:
2565 #
2566 # Possible types for an option parameter.
2567 #
2568 # @string: accepts a character string
2569 #
2570 # @boolean: accepts "on" or "off"
2571 #
2572 # @number: accepts a number
2573 #
2574 # @size: accepts a number followed by an optional suffix (K)ilo,
2575 # (M)ega, (G)iga, (T)era
2576 #
2577 # Since: 1.5
2578 ##
2579 { 'enum': 'CommandLineParameterType',
2580 'data': ['string', 'boolean', 'number', 'size'] }
2581
2582 ##
2583 # @CommandLineParameterInfo:
2584 #
2585 # Details about a single parameter of a command line option.
2586 #
2587 # @name: parameter name
2588 #
2589 # @type: parameter @CommandLineParameterType
2590 #
2591 # @help: human readable text string, not suitable for parsing.
2592 #
2593 # @default: default value string (since 2.1)
2594 #
2595 # Since: 1.5
2596 ##
2597 { 'struct': 'CommandLineParameterInfo',
2598 'data': { 'name': 'str',
2599 'type': 'CommandLineParameterType',
2600 '*help': 'str',
2601 '*default': 'str' } }
2602
2603 ##
2604 # @CommandLineOptionInfo:
2605 #
2606 # Details about a command line option, including its list of parameter details
2607 #
2608 # @option: option name
2609 #
2610 # @parameters: an array of @CommandLineParameterInfo
2611 #
2612 # Since: 1.5
2613 ##
2614 { 'struct': 'CommandLineOptionInfo',
2615 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2616
2617 ##
2618 # @query-command-line-options:
2619 #
2620 # Query command line option schema.
2621 #
2622 # @option: option name
2623 #
2624 # Returns: list of @CommandLineOptionInfo for all options (or for the given
2625 # @option). Returns an error if the given @option doesn't exist.
2626 #
2627 # Since: 1.5
2628 #
2629 # Example:
2630 #
2631 # -> { "execute": "query-command-line-options",
2632 # "arguments": { "option": "option-rom" } }
2633 # <- { "return": [
2634 # {
2635 # "parameters": [
2636 # {
2637 # "name": "romfile",
2638 # "type": "string"
2639 # },
2640 # {
2641 # "name": "bootindex",
2642 # "type": "number"
2643 # }
2644 # ],
2645 # "option": "option-rom"
2646 # }
2647 # ]
2648 # }
2649 #
2650 ##
2651 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
2652 'returns': ['CommandLineOptionInfo'],
2653 'allow-preconfig': true }
2654
2655 ##
2656 # @X86CPURegister32:
2657 #
2658 # A X86 32-bit register
2659 #
2660 # Since: 1.5
2661 ##
2662 { 'enum': 'X86CPURegister32',
2663 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2664
2665 ##
2666 # @X86CPUFeatureWordInfo:
2667 #
2668 # Information about a X86 CPU feature word
2669 #
2670 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2671 #
2672 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2673 # feature word
2674 #
2675 # @cpuid-register: Output register containing the feature bits
2676 #
2677 # @features: value of output register, containing the feature bits
2678 #
2679 # Since: 1.5
2680 ##
2681 { 'struct': 'X86CPUFeatureWordInfo',
2682 'data': { 'cpuid-input-eax': 'int',
2683 '*cpuid-input-ecx': 'int',
2684 'cpuid-register': 'X86CPURegister32',
2685 'features': 'int' } }
2686
2687 ##
2688 # @DummyForceArrays:
2689 #
2690 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2691 #
2692 # Since: 2.5
2693 ##
2694 { 'struct': 'DummyForceArrays',
2695 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2696
2697
2698 ##
2699 # @NumaOptionsType:
2700 #
2701 # @node: NUMA nodes configuration
2702 #
2703 # @dist: NUMA distance configuration (since 2.10)
2704 #
2705 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
2706 #
2707 # Since: 2.1
2708 ##
2709 { 'enum': 'NumaOptionsType',
2710 'data': [ 'node', 'dist', 'cpu' ] }
2711
2712 ##
2713 # @NumaOptions:
2714 #
2715 # A discriminated record of NUMA options. (for OptsVisitor)
2716 #
2717 # Since: 2.1
2718 ##
2719 { 'union': 'NumaOptions',
2720 'base': { 'type': 'NumaOptionsType' },
2721 'discriminator': 'type',
2722 'data': {
2723 'node': 'NumaNodeOptions',
2724 'dist': 'NumaDistOptions',
2725 'cpu': 'NumaCpuOptions' }}
2726
2727 ##
2728 # @NumaNodeOptions:
2729 #
2730 # Create a guest NUMA node. (for OptsVisitor)
2731 #
2732 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2733 #
2734 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2735 # if omitted)
2736 #
2737 # @mem: memory size of this node; mutually exclusive with @memdev.
2738 # Equally divide total memory among nodes if both @mem and @memdev are
2739 # omitted.
2740 #
2741 # @memdev: memory backend object. If specified for one node,
2742 # it must be specified for all nodes.
2743 #
2744 # Since: 2.1
2745 ##
2746 { 'struct': 'NumaNodeOptions',
2747 'data': {
2748 '*nodeid': 'uint16',
2749 '*cpus': ['uint16'],
2750 '*mem': 'size',
2751 '*memdev': 'str' }}
2752
2753 ##
2754 # @NumaDistOptions:
2755 #
2756 # Set the distance between 2 NUMA nodes.
2757 #
2758 # @src: source NUMA node.
2759 #
2760 # @dst: destination NUMA node.
2761 #
2762 # @val: NUMA distance from source node to destination node.
2763 # When a node is unreachable from another node, set the distance
2764 # between them to 255.
2765 #
2766 # Since: 2.10
2767 ##
2768 { 'struct': 'NumaDistOptions',
2769 'data': {
2770 'src': 'uint16',
2771 'dst': 'uint16',
2772 'val': 'uint8' }}
2773
2774 ##
2775 # @NumaCpuOptions:
2776 #
2777 # Option "-numa cpu" overrides default cpu to node mapping.
2778 # It accepts the same set of cpu properties as returned by
2779 # query-hotpluggable-cpus[].props, where node-id could be used to
2780 # override default node mapping.
2781 #
2782 # Since: 2.10
2783 ##
2784 { 'struct': 'NumaCpuOptions',
2785 'base': 'CpuInstanceProperties',
2786 'data' : {} }
2787
2788 ##
2789 # @HostMemPolicy:
2790 #
2791 # Host memory policy types
2792 #
2793 # @default: restore default policy, remove any nondefault policy
2794 #
2795 # @preferred: set the preferred host nodes for allocation
2796 #
2797 # @bind: a strict policy that restricts memory allocation to the
2798 # host nodes specified
2799 #
2800 # @interleave: memory allocations are interleaved across the set
2801 # of host nodes specified
2802 #
2803 # Since: 2.1
2804 ##
2805 { 'enum': 'HostMemPolicy',
2806 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2807
2808 ##
2809 # @Memdev:
2810 #
2811 # Information about memory backend
2812 #
2813 # @id: backend's ID if backend has 'id' property (since 2.9)
2814 #
2815 # @size: memory backend size
2816 #
2817 # @merge: enables or disables memory merge support
2818 #
2819 # @dump: includes memory backend's memory in a core dump or not
2820 #
2821 # @prealloc: enables or disables memory preallocation
2822 #
2823 # @host-nodes: host nodes for its memory policy
2824 #
2825 # @policy: memory policy of memory backend
2826 #
2827 # Since: 2.1
2828 ##
2829 { 'struct': 'Memdev',
2830 'data': {
2831 '*id': 'str',
2832 'size': 'size',
2833 'merge': 'bool',
2834 'dump': 'bool',
2835 'prealloc': 'bool',
2836 'host-nodes': ['uint16'],
2837 'policy': 'HostMemPolicy' }}
2838
2839 ##
2840 # @query-memdev:
2841 #
2842 # Returns information for all memory backends.
2843 #
2844 # Returns: a list of @Memdev.
2845 #
2846 # Since: 2.1
2847 #
2848 # Example:
2849 #
2850 # -> { "execute": "query-memdev" }
2851 # <- { "return": [
2852 # {
2853 # "id": "mem1",
2854 # "size": 536870912,
2855 # "merge": false,
2856 # "dump": true,
2857 # "prealloc": false,
2858 # "host-nodes": [0, 1],
2859 # "policy": "bind"
2860 # },
2861 # {
2862 # "size": 536870912,
2863 # "merge": false,
2864 # "dump": true,
2865 # "prealloc": true,
2866 # "host-nodes": [2, 3],
2867 # "policy": "preferred"
2868 # }
2869 # ]
2870 # }
2871 #
2872 ##
2873 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
2874
2875 ##
2876 # @PCDIMMDeviceInfo:
2877 #
2878 # PCDIMMDevice state information
2879 #
2880 # @id: device's ID
2881 #
2882 # @addr: physical address, where device is mapped
2883 #
2884 # @size: size of memory that the device provides
2885 #
2886 # @slot: slot number at which device is plugged in
2887 #
2888 # @node: NUMA node number where device is plugged in
2889 #
2890 # @memdev: memory backend linked with device
2891 #
2892 # @hotplugged: true if device was hotplugged
2893 #
2894 # @hotpluggable: true if device if could be added/removed while machine is running
2895 #
2896 # Since: 2.1
2897 ##
2898 { 'struct': 'PCDIMMDeviceInfo',
2899 'data': { '*id': 'str',
2900 'addr': 'int',
2901 'size': 'int',
2902 'slot': 'int',
2903 'node': 'int',
2904 'memdev': 'str',
2905 'hotplugged': 'bool',
2906 'hotpluggable': 'bool'
2907 }
2908 }
2909
2910 ##
2911 # @MemoryDeviceInfo:
2912 #
2913 # Union containing information about a memory device
2914 #
2915 # Since: 2.1
2916 ##
2917 { 'union': 'MemoryDeviceInfo',
2918 'data': { 'dimm': 'PCDIMMDeviceInfo',
2919 'nvdimm': 'PCDIMMDeviceInfo'
2920 }
2921 }
2922
2923 ##
2924 # @query-memory-devices:
2925 #
2926 # Lists available memory devices and their state
2927 #
2928 # Since: 2.1
2929 #
2930 # Example:
2931 #
2932 # -> { "execute": "query-memory-devices" }
2933 # <- { "return": [ { "data":
2934 # { "addr": 5368709120,
2935 # "hotpluggable": true,
2936 # "hotplugged": true,
2937 # "id": "d1",
2938 # "memdev": "/objects/memX",
2939 # "node": 0,
2940 # "size": 1073741824,
2941 # "slot": 0},
2942 # "type": "dimm"
2943 # } ] }
2944 #
2945 ##
2946 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2947
2948 ##
2949 # @MEM_UNPLUG_ERROR:
2950 #
2951 # Emitted when memory hot unplug error occurs.
2952 #
2953 # @device: device name
2954 #
2955 # @msg: Informative message
2956 #
2957 # Since: 2.4
2958 #
2959 # Example:
2960 #
2961 # <- { "event": "MEM_UNPLUG_ERROR"
2962 # "data": { "device": "dimm1",
2963 # "msg": "acpi: device unplug for unsupported device"
2964 # },
2965 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2966 #
2967 ##
2968 { 'event': 'MEM_UNPLUG_ERROR',
2969 'data': { 'device': 'str', 'msg': 'str' } }
2970
2971 ##
2972 # @ACPISlotType:
2973 #
2974 # @DIMM: memory slot
2975 # @CPU: logical CPU slot (since 2.7)
2976 ##
2977 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2978
2979 ##
2980 # @ACPIOSTInfo:
2981 #
2982 # OSPM Status Indication for a device
2983 # For description of possible values of @source and @status fields
2984 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2985 #
2986 # @device: device ID associated with slot
2987 #
2988 # @slot: slot ID, unique per slot of a given @slot-type
2989 #
2990 # @slot-type: type of the slot
2991 #
2992 # @source: an integer containing the source event
2993 #
2994 # @status: an integer containing the status code
2995 #
2996 # Since: 2.1
2997 ##
2998 { 'struct': 'ACPIOSTInfo',
2999 'data' : { '*device': 'str',
3000 'slot': 'str',
3001 'slot-type': 'ACPISlotType',
3002 'source': 'int',
3003 'status': 'int' } }
3004
3005 ##
3006 # @query-acpi-ospm-status:
3007 #
3008 # Return a list of ACPIOSTInfo for devices that support status
3009 # reporting via ACPI _OST method.
3010 #
3011 # Since: 2.1
3012 #
3013 # Example:
3014 #
3015 # -> { "execute": "query-acpi-ospm-status" }
3016 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3017 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3018 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3019 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3020 # ]}
3021 #
3022 ##
3023 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3024
3025 ##
3026 # @ACPI_DEVICE_OST:
3027 #
3028 # Emitted when guest executes ACPI _OST method.
3029 #
3030 # @info: OSPM Status Indication
3031 #
3032 # Since: 2.1
3033 #
3034 # Example:
3035 #
3036 # <- { "event": "ACPI_DEVICE_OST",
3037 # "data": { "device": "d1", "slot": "0",
3038 # "slot-type": "DIMM", "source": 1, "status": 0 } }
3039 #
3040 ##
3041 { 'event': 'ACPI_DEVICE_OST',
3042 'data': { 'info': 'ACPIOSTInfo' } }
3043
3044 ##
3045 # @rtc-reset-reinjection:
3046 #
3047 # This command will reset the RTC interrupt reinjection backlog.
3048 # Can be used if another mechanism to synchronize guest time
3049 # is in effect, for example QEMU guest agent's guest-set-time
3050 # command.
3051 #
3052 # Since: 2.1
3053 #
3054 # Example:
3055 #
3056 # -> { "execute": "rtc-reset-reinjection" }
3057 # <- { "return": {} }
3058 #
3059 ##
3060 { 'command': 'rtc-reset-reinjection' }
3061
3062 ##
3063 # @RTC_CHANGE:
3064 #
3065 # Emitted when the guest changes the RTC time.
3066 #
3067 # @offset: offset between base RTC clock (as specified by -rtc base), and
3068 # new RTC clock value
3069 #
3070 # Note: This event is rate-limited.
3071 #
3072 # Since: 0.13.0
3073 #
3074 # Example:
3075 #
3076 # <- { "event": "RTC_CHANGE",
3077 # "data": { "offset": 78 },
3078 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3079 #
3080 ##
3081 { 'event': 'RTC_CHANGE',
3082 'data': { 'offset': 'int' } }
3083
3084 ##
3085 # @ReplayMode:
3086 #
3087 # Mode of the replay subsystem.
3088 #
3089 # @none: normal execution mode. Replay or record are not enabled.
3090 #
3091 # @record: record mode. All non-deterministic data is written into the
3092 # replay log.
3093 #
3094 # @play: replay mode. Non-deterministic data required for system execution
3095 # is read from the log.
3096 #
3097 # Since: 2.5
3098 ##
3099 { 'enum': 'ReplayMode',
3100 'data': [ 'none', 'record', 'play' ] }
3101
3102 ##
3103 # @xen-load-devices-state:
3104 #
3105 # Load the state of all devices from file. The RAM and the block devices
3106 # of the VM are not loaded by this command.
3107 #
3108 # @filename: the file to load the state of the devices from as binary
3109 # data. See xen-save-devices-state.txt for a description of the binary
3110 # format.
3111 #
3112 # Since: 2.7
3113 #
3114 # Example:
3115 #
3116 # -> { "execute": "xen-load-devices-state",
3117 # "arguments": { "filename": "/tmp/resume" } }
3118 # <- { "return": {} }
3119 #
3120 ##
3121 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3122
3123 ##
3124 # @GICCapability:
3125 #
3126 # The struct describes capability for a specific GIC (Generic
3127 # Interrupt Controller) version. These bits are not only decided by
3128 # QEMU/KVM software version, but also decided by the hardware that
3129 # the program is running upon.
3130 #
3131 # @version: version of GIC to be described. Currently, only 2 and 3
3132 # are supported.
3133 #
3134 # @emulated: whether current QEMU/hardware supports emulated GIC
3135 # device in user space.
3136 #
3137 # @kernel: whether current QEMU/hardware supports hardware
3138 # accelerated GIC device in kernel.
3139 #
3140 # Since: 2.6
3141 ##
3142 { 'struct': 'GICCapability',
3143 'data': { 'version': 'int',
3144 'emulated': 'bool',
3145 'kernel': 'bool' } }
3146
3147 ##
3148 # @query-gic-capabilities:
3149 #
3150 # This command is ARM-only. It will return a list of GICCapability
3151 # objects that describe its capability bits.
3152 #
3153 # Returns: a list of GICCapability objects.
3154 #
3155 # Since: 2.6
3156 #
3157 # Example:
3158 #
3159 # -> { "execute": "query-gic-capabilities" }
3160 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3161 # { "version": 3, "emulated": false, "kernel": true } ] }
3162 #
3163 ##
3164 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3165
3166 ##
3167 # @CpuInstanceProperties:
3168 #
3169 # List of properties to be used for hotplugging a CPU instance,
3170 # it should be passed by management with device_add command when
3171 # a CPU is being hotplugged.
3172 #
3173 # @node-id: NUMA node ID the CPU belongs to
3174 # @socket-id: socket number within node/board the CPU belongs to
3175 # @core-id: core number within socket the CPU belongs to
3176 # @thread-id: thread number within core the CPU belongs to
3177 #
3178 # Note: currently there are 4 properties that could be present
3179 # but management should be prepared to pass through other
3180 # properties with device_add command to allow for future
3181 # interface extension. This also requires the filed names to be kept in
3182 # sync with the properties passed to -device/device_add.
3183 #
3184 # Since: 2.7
3185 ##
3186 { 'struct': 'CpuInstanceProperties',
3187 'data': { '*node-id': 'int',
3188 '*socket-id': 'int',
3189 '*core-id': 'int',
3190 '*thread-id': 'int'
3191 }
3192 }
3193
3194 ##
3195 # @HotpluggableCPU:
3196 #
3197 # @type: CPU object type for usage with device_add command
3198 # @props: list of properties to be used for hotplugging CPU
3199 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3200 # @qom-path: link to existing CPU object if CPU is present or
3201 # omitted if CPU is not present.
3202 #
3203 # Since: 2.7
3204 ##
3205 { 'struct': 'HotpluggableCPU',
3206 'data': { 'type': 'str',
3207 'vcpus-count': 'int',
3208 'props': 'CpuInstanceProperties',
3209 '*qom-path': 'str'
3210 }
3211 }
3212
3213 ##
3214 # @query-hotpluggable-cpus:
3215 #
3216 # Returns: a list of HotpluggableCPU objects.
3217 #
3218 # Since: 2.7
3219 #
3220 # Example:
3221 #
3222 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3223 #
3224 # -> { "execute": "query-hotpluggable-cpus" }
3225 # <- {"return": [
3226 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3227 # "vcpus-count": 1 },
3228 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3229 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3230 # ]}'
3231 #
3232 # For pc machine type started with -smp 1,maxcpus=2:
3233 #
3234 # -> { "execute": "query-hotpluggable-cpus" }
3235 # <- {"return": [
3236 # {
3237 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3238 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3239 # },
3240 # {
3241 # "qom-path": "/machine/unattached/device[0]",
3242 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3243 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3244 # }
3245 # ]}
3246 #
3247 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3248 # (Since: 2.11):
3249 #
3250 # -> { "execute": "query-hotpluggable-cpus" }
3251 # <- {"return": [
3252 # {
3253 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3254 # "props": { "core-id": 1 }
3255 # },
3256 # {
3257 # "qom-path": "/machine/unattached/device[0]",
3258 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3259 # "props": { "core-id": 0 }
3260 # }
3261 # ]}
3262 #
3263 ##
3264 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3265 'allow-preconfig': true }
3266
3267 ##
3268 # @GuidInfo:
3269 #
3270 # GUID information.
3271 #
3272 # @guid: the globally unique identifier
3273 #
3274 # Since: 2.9
3275 ##
3276 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3277
3278 ##
3279 # @query-vm-generation-id:
3280 #
3281 # Show Virtual Machine Generation ID
3282 #
3283 # Since: 2.9
3284 ##
3285 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3286
3287
3288 ##
3289 # @SevState:
3290 #
3291 # An enumeration of SEV state information used during @query-sev.
3292 #
3293 # @uninit: The guest is uninitialized.
3294 #
3295 # @launch-update: The guest is currently being launched; plaintext data and
3296 # register state is being imported.
3297 #
3298 # @launch-secret: The guest is currently being launched; ciphertext data
3299 # is being imported.
3300 #
3301 # @running: The guest is fully launched or migrated in.
3302 #
3303 # @send-update: The guest is currently being migrated out to another machine.
3304 #
3305 # @receive-update: The guest is currently being migrated from another machine.
3306 #
3307 # Since: 2.12
3308 ##
3309 { 'enum': 'SevState',
3310 'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3311 'send-update', 'receive-update' ] }
3312
3313 ##
3314 # @SevInfo:
3315 #
3316 # Information about Secure Encrypted Virtualization (SEV) support
3317 #
3318 # @enabled: true if SEV is active
3319 #
3320 # @api-major: SEV API major version
3321 #
3322 # @api-minor: SEV API minor version
3323 #
3324 # @build-id: SEV FW build id
3325 #
3326 # @policy: SEV policy value
3327 #
3328 # @state: SEV guest state
3329 #
3330 # @handle: SEV firmware handle
3331 #
3332 # Since: 2.12
3333 ##
3334 { 'struct': 'SevInfo',
3335 'data': { 'enabled': 'bool',
3336 'api-major': 'uint8',
3337 'api-minor' : 'uint8',
3338 'build-id' : 'uint8',
3339 'policy' : 'uint32',
3340 'state' : 'SevState',
3341 'handle' : 'uint32'
3342 }
3343 }
3344
3345 ##
3346 # @query-sev:
3347 #
3348 # Returns information about SEV
3349 #
3350 # Returns: @SevInfo
3351 #
3352 # Since: 2.12
3353 #
3354 # Example:
3355 #
3356 # -> { "execute": "query-sev" }
3357 # <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3358 # "build-id" : 0, "policy" : 0, "state" : "running",
3359 # "handle" : 1 } }
3360 #
3361 ##
3362 { 'command': 'query-sev', 'returns': 'SevInfo' }
3363
3364 ##
3365 # @SevLaunchMeasureInfo:
3366 #
3367 # SEV Guest Launch measurement information
3368 #
3369 # @data: the measurement value encoded in base64
3370 #
3371 # Since: 2.12
3372 #
3373 ##
3374 { 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3375
3376 ##
3377 # @query-sev-launch-measure:
3378 #
3379 # Query the SEV guest launch information.
3380 #
3381 # Returns: The @SevLaunchMeasureInfo for the guest
3382 #
3383 # Since: 2.12
3384 #
3385 # Example:
3386 #
3387 # -> { "execute": "query-sev-launch-measure" }
3388 # <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3389 #
3390 ##
3391 { 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
3392
3393 ##
3394 # @SevCapability:
3395 #
3396 # The struct describes capability for a Secure Encrypted Virtualization
3397 # feature.
3398 #
3399 # @pdh: Platform Diffie-Hellman key (base64 encoded)
3400 #
3401 # @cert-chain: PDH certificate chain (base64 encoded)
3402 #
3403 # @cbitpos: C-bit location in page table entry
3404 #
3405 # @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3406 # enabled
3407 #
3408 # Since: 2.12
3409 ##
3410 { 'struct': 'SevCapability',
3411 'data': { 'pdh': 'str',
3412 'cert-chain': 'str',
3413 'cbitpos': 'int',
3414 'reduced-phys-bits': 'int'} }
3415
3416 ##
3417 # @query-sev-capabilities:
3418 #
3419 # This command is used to get the SEV capabilities, and is supported on AMD
3420 # X86 platforms only.
3421 #
3422 # Returns: SevCapability objects.
3423 #
3424 # Since: 2.12
3425 #
3426 # Example:
3427 #
3428 # -> { "execute": "query-sev-capabilities" }
3429 # <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3430 # "cbitpos": 47, "reduced-phys-bits": 5}}
3431 #
3432 ##
3433 { 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
3434
3435 ##
3436 # @CommandDropReason:
3437 #
3438 # Reasons that caused one command to be dropped.
3439 #
3440 # @queue-full: the command queue is full. This can only occur when
3441 # the client sends a new non-oob command before the
3442 # response to the previous non-oob command has been
3443 # received.
3444 #
3445 # Since: 2.12
3446 ##
3447 { 'enum': 'CommandDropReason',
3448 'data': [ 'queue-full' ] }
3449
3450 ##
3451 # @COMMAND_DROPPED:
3452 #
3453 # Emitted when a command is dropped due to some reason. Commands can
3454 # only be dropped when the oob capability is enabled.
3455 #
3456 # @id: The dropped command's "id" field.
3457 #
3458 # @reason: The reason why the command is dropped.
3459 #
3460 # Since: 2.12
3461 #
3462 # Example:
3463 #
3464 # { "event": "COMMAND_DROPPED",
3465 # "data": {"result": {"id": "libvirt-102",
3466 # "reason": "queue-full" } } }
3467 #
3468 ##
3469 { 'event': 'COMMAND_DROPPED' ,
3470 'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
3471
3472 ##
3473 # @x-oob-test:
3474 #
3475 # Test OOB functionality. When sending this command with lock=true,
3476 # it'll try to hang the dispatcher. When sending it with lock=false,
3477 # it'll try to notify the locked thread to continue. Note: it should
3478 # only be used by QMP test program rather than anything else.
3479 #
3480 # Since: 2.12
3481 #
3482 # Example:
3483 #
3484 # { "execute": "x-oob-test",
3485 # "arguments": { "lock": true } }
3486 ##
3487 { 'command': 'x-oob-test', 'data' : { 'lock': 'bool' },
3488 'allow-oob': true }
3489
3490 ##
3491 # @set-numa-node:
3492 #
3493 # Runtime equivalent of '-numa' CLI option, available at
3494 # preconfigure stage to configure numa mapping before initializing
3495 # machine.
3496 #
3497 # Since 3.0
3498 ##
3499 { 'command': 'set-numa-node', 'boxed': true,
3500 'data': 'NumaOptions',
3501 'allow-preconfig': true
3502 }