]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/misc.json
block: Drop bdrv_format_default_perms()
[mirror_qemu.git] / qapi / misc.json
1 # -*- Mode: Python -*-
2 #
3
4 ##
5 # = Miscellanea
6 ##
7
8 { 'include': 'common.json' }
9
10 ##
11 # @LostTickPolicy:
12 #
13 # Policy for handling lost ticks in timer devices. Ticks end up getting
14 # lost when, for example, the guest is paused.
15 #
16 # @discard: throw away the missed ticks and continue with future injection
17 # normally. The guest OS will see the timer jump ahead by a
18 # potentially quite significant amount all at once, as if the
19 # intervening chunk of time had simply not existed; needless to
20 # say, such a sudden jump can easily confuse a guest OS which is
21 # not specifically prepared to deal with it. Assuming the guest
22 # OS can deal correctly with the time jump, the time in the guest
23 # and in the host should now match.
24 #
25 # @delay: continue to deliver ticks at the normal rate. The guest OS will
26 # not notice anything is amiss, as from its point of view time will
27 # have continued to flow normally. The time in the guest should now
28 # be behind the time in the host by exactly the amount of time during
29 # which ticks have been missed.
30 #
31 # @slew: deliver ticks at a higher rate to catch up with the missed ticks.
32 # The guest OS will not notice anything is amiss, as from its point
33 # of view time will have continued to flow normally. Once the timer
34 # has managed to catch up with all the missing ticks, the time in
35 # the guest and in the host should match.
36 #
37 # Since: 2.0
38 ##
39 { 'enum': 'LostTickPolicy',
40 'data': ['discard', 'delay', 'slew' ] }
41
42 ##
43 # @add_client:
44 #
45 # Allow client connections for VNC, Spice and socket based
46 # character devices to be passed in to QEMU via SCM_RIGHTS.
47 #
48 # @protocol: protocol name. Valid names are "vnc", "spice" or the
49 # name of a character device (eg. from -chardev id=XXXX)
50 #
51 # @fdname: file descriptor name previously passed via 'getfd' command
52 #
53 # @skipauth: whether to skip authentication. Only applies
54 # to "vnc" and "spice" protocols
55 #
56 # @tls: whether to perform TLS. Only applies to the "spice"
57 # protocol
58 #
59 # Returns: nothing on success.
60 #
61 # Since: 0.14.0
62 #
63 # Example:
64 #
65 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
66 # "fdname": "myclient" } }
67 # <- { "return": {} }
68 #
69 ##
70 { 'command': 'add_client',
71 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
72 '*tls': 'bool' } }
73
74 ##
75 # @NameInfo:
76 #
77 # Guest name information.
78 #
79 # @name: The name of the guest
80 #
81 # Since: 0.14.0
82 ##
83 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
84
85 ##
86 # @query-name:
87 #
88 # Return the name information of a guest.
89 #
90 # Returns: @NameInfo of the guest
91 #
92 # Since: 0.14.0
93 #
94 # Example:
95 #
96 # -> { "execute": "query-name" }
97 # <- { "return": { "name": "qemu-name" } }
98 #
99 ##
100 { 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
101
102 ##
103 # @KvmInfo:
104 #
105 # Information about support for KVM acceleration
106 #
107 # @enabled: true if KVM acceleration is active
108 #
109 # @present: true if KVM acceleration is built into this executable
110 #
111 # Since: 0.14.0
112 ##
113 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
114
115 ##
116 # @query-kvm:
117 #
118 # Returns information about KVM acceleration
119 #
120 # Returns: @KvmInfo
121 #
122 # Since: 0.14.0
123 #
124 # Example:
125 #
126 # -> { "execute": "query-kvm" }
127 # <- { "return": { "enabled": true, "present": true } }
128 #
129 ##
130 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
131
132 ##
133 # @UuidInfo:
134 #
135 # Guest UUID information (Universally Unique Identifier).
136 #
137 # @UUID: the UUID of the guest
138 #
139 # Since: 0.14.0
140 #
141 # Notes: If no UUID was specified for the guest, a null UUID is returned.
142 ##
143 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
144
145 ##
146 # @query-uuid:
147 #
148 # Query the guest UUID information.
149 #
150 # Returns: The @UuidInfo for the guest
151 #
152 # Since: 0.14.0
153 #
154 # Example:
155 #
156 # -> { "execute": "query-uuid" }
157 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
158 #
159 ##
160 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
161
162 ##
163 # @IOThreadInfo:
164 #
165 # Information about an iothread
166 #
167 # @id: the identifier of the iothread
168 #
169 # @thread-id: ID of the underlying host thread
170 #
171 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
172 # (since 2.9)
173 #
174 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
175 # configured (since 2.9)
176 #
177 # @poll-shrink: how many ns will be removed from polling time, 0 means that
178 # it's not configured (since 2.9)
179 #
180 # Since: 2.0
181 ##
182 { 'struct': 'IOThreadInfo',
183 'data': {'id': 'str',
184 'thread-id': 'int',
185 'poll-max-ns': 'int',
186 'poll-grow': 'int',
187 'poll-shrink': 'int' } }
188
189 ##
190 # @query-iothreads:
191 #
192 # Returns a list of information about each iothread.
193 #
194 # Note: this list excludes the QEMU main loop thread, which is not declared
195 # using the -object iothread command-line option. It is always the main thread
196 # of the process.
197 #
198 # Returns: a list of @IOThreadInfo for each iothread
199 #
200 # Since: 2.0
201 #
202 # Example:
203 #
204 # -> { "execute": "query-iothreads" }
205 # <- { "return": [
206 # {
207 # "id":"iothread0",
208 # "thread-id":3134
209 # },
210 # {
211 # "id":"iothread1",
212 # "thread-id":3135
213 # }
214 # ]
215 # }
216 #
217 ##
218 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
219 'allow-preconfig': true }
220
221 ##
222 # @BalloonInfo:
223 #
224 # Information about the guest balloon device.
225 #
226 # @actual: the number of bytes the balloon currently contains
227 #
228 # Since: 0.14.0
229 #
230 ##
231 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
232
233 ##
234 # @query-balloon:
235 #
236 # Return information about the balloon device.
237 #
238 # Returns: - @BalloonInfo on success
239 # - If the balloon driver is enabled but not functional because the KVM
240 # kernel module cannot support it, KvmMissingCap
241 # - If no balloon device is present, DeviceNotActive
242 #
243 # Since: 0.14.0
244 #
245 # Example:
246 #
247 # -> { "execute": "query-balloon" }
248 # <- { "return": {
249 # "actual": 1073741824,
250 # }
251 # }
252 #
253 ##
254 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
255
256 ##
257 # @BALLOON_CHANGE:
258 #
259 # Emitted when the guest changes the actual BALLOON level. This value is
260 # equivalent to the @actual field return by the 'query-balloon' command
261 #
262 # @actual: actual level of the guest memory balloon in bytes
263 #
264 # Note: this event is rate-limited.
265 #
266 # Since: 1.2
267 #
268 # Example:
269 #
270 # <- { "event": "BALLOON_CHANGE",
271 # "data": { "actual": 944766976 },
272 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
273 #
274 ##
275 { 'event': 'BALLOON_CHANGE',
276 'data': { 'actual': 'int' } }
277
278 ##
279 # @PciMemoryRange:
280 #
281 # A PCI device memory region
282 #
283 # @base: the starting address (guest physical)
284 #
285 # @limit: the ending address (guest physical)
286 #
287 # Since: 0.14.0
288 ##
289 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
290
291 ##
292 # @PciMemoryRegion:
293 #
294 # Information about a PCI device I/O region.
295 #
296 # @bar: the index of the Base Address Register for this region
297 #
298 # @type: - 'io' if the region is a PIO region
299 # - 'memory' if the region is a MMIO region
300 #
301 # @size: memory size
302 #
303 # @prefetch: if @type is 'memory', true if the memory is prefetchable
304 #
305 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
306 #
307 # Since: 0.14.0
308 ##
309 { 'struct': 'PciMemoryRegion',
310 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
311 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
312
313 ##
314 # @PciBusInfo:
315 #
316 # Information about a bus of a PCI Bridge device
317 #
318 # @number: primary bus interface number. This should be the number of the
319 # bus the device resides on.
320 #
321 # @secondary: secondary bus interface number. This is the number of the
322 # main bus for the bridge
323 #
324 # @subordinate: This is the highest number bus that resides below the
325 # bridge.
326 #
327 # @io_range: The PIO range for all devices on this bridge
328 #
329 # @memory_range: The MMIO range for all devices on this bridge
330 #
331 # @prefetchable_range: The range of prefetchable MMIO for all devices on
332 # this bridge
333 #
334 # Since: 2.4
335 ##
336 { 'struct': 'PciBusInfo',
337 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
338 'io_range': 'PciMemoryRange',
339 'memory_range': 'PciMemoryRange',
340 'prefetchable_range': 'PciMemoryRange' } }
341
342 ##
343 # @PciBridgeInfo:
344 #
345 # Information about a PCI Bridge device
346 #
347 # @bus: information about the bus the device resides on
348 #
349 # @devices: a list of @PciDeviceInfo for each device on this bridge
350 #
351 # Since: 0.14.0
352 ##
353 { 'struct': 'PciBridgeInfo',
354 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
355
356 ##
357 # @PciDeviceClass:
358 #
359 # Information about the Class of a PCI device
360 #
361 # @desc: a string description of the device's class
362 #
363 # @class: the class code of the device
364 #
365 # Since: 2.4
366 ##
367 { 'struct': 'PciDeviceClass',
368 'data': {'*desc': 'str', 'class': 'int'} }
369
370 ##
371 # @PciDeviceId:
372 #
373 # Information about the Id of a PCI device
374 #
375 # @device: the PCI device id
376 #
377 # @vendor: the PCI vendor id
378 #
379 # @subsystem: the PCI subsystem id (since 3.1)
380 #
381 # @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
382 #
383 # Since: 2.4
384 ##
385 { 'struct': 'PciDeviceId',
386 'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int',
387 '*subsystem-vendor': 'int'} }
388
389 ##
390 # @PciDeviceInfo:
391 #
392 # Information about a PCI device
393 #
394 # @bus: the bus number of the device
395 #
396 # @slot: the slot the device is located in
397 #
398 # @function: the function of the slot used by the device
399 #
400 # @class_info: the class of the device
401 #
402 # @id: the PCI device id
403 #
404 # @irq: if an IRQ is assigned to the device, the IRQ number
405 #
406 # @qdev_id: the device name of the PCI device
407 #
408 # @pci_bridge: if the device is a PCI bridge, the bridge information
409 #
410 # @regions: a list of the PCI I/O regions associated with the device
411 #
412 # Notes: the contents of @class_info.desc are not stable and should only be
413 # treated as informational.
414 #
415 # Since: 0.14.0
416 ##
417 { 'struct': 'PciDeviceInfo',
418 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
419 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
420 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
421 'regions': ['PciMemoryRegion']} }
422
423 ##
424 # @PciInfo:
425 #
426 # Information about a PCI bus
427 #
428 # @bus: the bus index
429 #
430 # @devices: a list of devices on this bus
431 #
432 # Since: 0.14.0
433 ##
434 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
435
436 ##
437 # @query-pci:
438 #
439 # Return information about the PCI bus topology of the guest.
440 #
441 # Returns: a list of @PciInfo for each PCI bus. Each bus is
442 # represented by a json-object, which has a key with a json-array of
443 # all PCI devices attached to it. Each device is represented by a
444 # json-object.
445 #
446 # Since: 0.14.0
447 #
448 # Example:
449 #
450 # -> { "execute": "query-pci" }
451 # <- { "return": [
452 # {
453 # "bus": 0,
454 # "devices": [
455 # {
456 # "bus": 0,
457 # "qdev_id": "",
458 # "slot": 0,
459 # "class_info": {
460 # "class": 1536,
461 # "desc": "Host bridge"
462 # },
463 # "id": {
464 # "device": 32902,
465 # "vendor": 4663
466 # },
467 # "function": 0,
468 # "regions": [
469 # ]
470 # },
471 # {
472 # "bus": 0,
473 # "qdev_id": "",
474 # "slot": 1,
475 # "class_info": {
476 # "class": 1537,
477 # "desc": "ISA bridge"
478 # },
479 # "id": {
480 # "device": 32902,
481 # "vendor": 28672
482 # },
483 # "function": 0,
484 # "regions": [
485 # ]
486 # },
487 # {
488 # "bus": 0,
489 # "qdev_id": "",
490 # "slot": 1,
491 # "class_info": {
492 # "class": 257,
493 # "desc": "IDE controller"
494 # },
495 # "id": {
496 # "device": 32902,
497 # "vendor": 28688
498 # },
499 # "function": 1,
500 # "regions": [
501 # {
502 # "bar": 4,
503 # "size": 16,
504 # "address": 49152,
505 # "type": "io"
506 # }
507 # ]
508 # },
509 # {
510 # "bus": 0,
511 # "qdev_id": "",
512 # "slot": 2,
513 # "class_info": {
514 # "class": 768,
515 # "desc": "VGA controller"
516 # },
517 # "id": {
518 # "device": 4115,
519 # "vendor": 184
520 # },
521 # "function": 0,
522 # "regions": [
523 # {
524 # "prefetch": true,
525 # "mem_type_64": false,
526 # "bar": 0,
527 # "size": 33554432,
528 # "address": 4026531840,
529 # "type": "memory"
530 # },
531 # {
532 # "prefetch": false,
533 # "mem_type_64": false,
534 # "bar": 1,
535 # "size": 4096,
536 # "address": 4060086272,
537 # "type": "memory"
538 # },
539 # {
540 # "prefetch": false,
541 # "mem_type_64": false,
542 # "bar": 6,
543 # "size": 65536,
544 # "address": -1,
545 # "type": "memory"
546 # }
547 # ]
548 # },
549 # {
550 # "bus": 0,
551 # "qdev_id": "",
552 # "irq": 11,
553 # "slot": 4,
554 # "class_info": {
555 # "class": 1280,
556 # "desc": "RAM controller"
557 # },
558 # "id": {
559 # "device": 6900,
560 # "vendor": 4098
561 # },
562 # "function": 0,
563 # "regions": [
564 # {
565 # "bar": 0,
566 # "size": 32,
567 # "address": 49280,
568 # "type": "io"
569 # }
570 # ]
571 # }
572 # ]
573 # }
574 # ]
575 # }
576 #
577 # Note: This example has been shortened as the real response is too long.
578 #
579 ##
580 { 'command': 'query-pci', 'returns': ['PciInfo'] }
581
582 ##
583 # @stop:
584 #
585 # Stop all guest VCPU execution.
586 #
587 # Since: 0.14.0
588 #
589 # Notes: This function will succeed even if the guest is already in the stopped
590 # state. In "inmigrate" state, it will ensure that the guest
591 # remains paused once migration finishes, as if the -S option was
592 # passed on the command line.
593 #
594 # Example:
595 #
596 # -> { "execute": "stop" }
597 # <- { "return": {} }
598 #
599 ##
600 { 'command': 'stop' }
601
602 ##
603 # @system_reset:
604 #
605 # Performs a hard reset of a guest.
606 #
607 # Since: 0.14.0
608 #
609 # Example:
610 #
611 # -> { "execute": "system_reset" }
612 # <- { "return": {} }
613 #
614 ##
615 { 'command': 'system_reset' }
616
617 ##
618 # @system_powerdown:
619 #
620 # Requests that a guest perform a powerdown operation.
621 #
622 # Since: 0.14.0
623 #
624 # Notes: A guest may or may not respond to this command. This command
625 # returning does not indicate that a guest has accepted the request or
626 # that it has shut down. Many guests will respond to this command by
627 # prompting the user in some way.
628 # Example:
629 #
630 # -> { "execute": "system_powerdown" }
631 # <- { "return": {} }
632 #
633 ##
634 { 'command': 'system_powerdown' }
635
636 ##
637 # @memsave:
638 #
639 # Save a portion of guest memory to a file.
640 #
641 # @val: the virtual address of the guest to start from
642 #
643 # @size: the size of memory region to save
644 #
645 # @filename: the file to save the memory to as binary data
646 #
647 # @cpu-index: the index of the virtual CPU to use for translating the
648 # virtual address (defaults to CPU 0)
649 #
650 # Returns: Nothing on success
651 #
652 # Since: 0.14.0
653 #
654 # Notes: Errors were not reliably returned until 1.1
655 #
656 # Example:
657 #
658 # -> { "execute": "memsave",
659 # "arguments": { "val": 10,
660 # "size": 100,
661 # "filename": "/tmp/virtual-mem-dump" } }
662 # <- { "return": {} }
663 #
664 ##
665 { 'command': 'memsave',
666 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
667
668 ##
669 # @pmemsave:
670 #
671 # Save a portion of guest physical memory to a file.
672 #
673 # @val: the physical address of the guest to start from
674 #
675 # @size: the size of memory region to save
676 #
677 # @filename: the file to save the memory to as binary data
678 #
679 # Returns: Nothing on success
680 #
681 # Since: 0.14.0
682 #
683 # Notes: Errors were not reliably returned until 1.1
684 #
685 # Example:
686 #
687 # -> { "execute": "pmemsave",
688 # "arguments": { "val": 10,
689 # "size": 100,
690 # "filename": "/tmp/physical-mem-dump" } }
691 # <- { "return": {} }
692 #
693 ##
694 { 'command': 'pmemsave',
695 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
696
697 ##
698 # @cont:
699 #
700 # Resume guest VCPU execution.
701 #
702 # Since: 0.14.0
703 #
704 # Returns: If successful, nothing
705 #
706 # Notes: This command will succeed if the guest is currently running. It
707 # will also succeed if the guest is in the "inmigrate" state; in
708 # this case, the effect of the command is to make sure the guest
709 # starts once migration finishes, removing the effect of the -S
710 # command line option if it was passed.
711 #
712 # Example:
713 #
714 # -> { "execute": "cont" }
715 # <- { "return": {} }
716 #
717 ##
718 { 'command': 'cont' }
719
720 ##
721 # @x-exit-preconfig:
722 #
723 # Exit from "preconfig" state
724 #
725 # This command makes QEMU exit the preconfig state and proceed with
726 # VM initialization using configuration data provided on the command line
727 # and via the QMP monitor during the preconfig state. The command is only
728 # available during the preconfig state (i.e. when the --preconfig command
729 # line option was in use).
730 #
731 # Since 3.0
732 #
733 # Returns: nothing
734 #
735 # Example:
736 #
737 # -> { "execute": "x-exit-preconfig" }
738 # <- { "return": {} }
739 #
740 ##
741 { 'command': 'x-exit-preconfig', 'allow-preconfig': true }
742
743 ##
744 # @system_wakeup:
745 #
746 # Wake up guest from suspend. If the guest has wake-up from suspend
747 # support enabled (wakeup-suspend-support flag from
748 # query-current-machine), wake-up guest from suspend if the guest is
749 # in SUSPENDED state. Return an error otherwise.
750 #
751 # Since: 1.1
752 #
753 # Returns: nothing.
754 #
755 # Note: prior to 4.0, this command does nothing in case the guest
756 # isn't suspended.
757 #
758 # Example:
759 #
760 # -> { "execute": "system_wakeup" }
761 # <- { "return": {} }
762 #
763 ##
764 { 'command': 'system_wakeup' }
765
766 ##
767 # @inject-nmi:
768 #
769 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
770 # The command fails when the guest doesn't support injecting.
771 #
772 # Returns: If successful, nothing
773 #
774 # Since: 0.14.0
775 #
776 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
777 #
778 # Example:
779 #
780 # -> { "execute": "inject-nmi" }
781 # <- { "return": {} }
782 #
783 ##
784 { 'command': 'inject-nmi' }
785
786 ##
787 # @balloon:
788 #
789 # Request the balloon driver to change its balloon size.
790 #
791 # @value: the target size of the balloon in bytes
792 #
793 # Returns: - Nothing on success
794 # - If the balloon driver is enabled but not functional because the KVM
795 # kernel module cannot support it, KvmMissingCap
796 # - If no balloon device is present, DeviceNotActive
797 #
798 # Notes: This command just issues a request to the guest. When it returns,
799 # the balloon size may not have changed. A guest can change the balloon
800 # size independent of this command.
801 #
802 # Since: 0.14.0
803 #
804 # Example:
805 #
806 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
807 # <- { "return": {} }
808 #
809 ##
810 { 'command': 'balloon', 'data': {'value': 'int'} }
811
812 ##
813 # @human-monitor-command:
814 #
815 # Execute a command on the human monitor and return the output.
816 #
817 # @command-line: the command to execute in the human monitor
818 #
819 # @cpu-index: The CPU to use for commands that require an implicit CPU
820 #
821 # Features:
822 # @savevm-monitor-nodes: If present, HMP command savevm only snapshots
823 # monitor-owned nodes if they have no parents.
824 # This allows the use of 'savevm' with
825 # -blockdev. (since 4.2)
826 #
827 # Returns: the output of the command as a string
828 #
829 # Since: 0.14.0
830 #
831 # Notes: This command only exists as a stop-gap. Its use is highly
832 # discouraged. The semantics of this command are not
833 # guaranteed: this means that command names, arguments and
834 # responses can change or be removed at ANY time. Applications
835 # that rely on long term stability guarantees should NOT
836 # use this command.
837 #
838 # Known limitations:
839 #
840 # * This command is stateless, this means that commands that depend
841 # on state information (such as getfd) might not work
842 #
843 # * Commands that prompt the user for data don't currently work
844 #
845 # Example:
846 #
847 # -> { "execute": "human-monitor-command",
848 # "arguments": { "command-line": "info kvm" } }
849 # <- { "return": "kvm support: enabled\r\n" }
850 #
851 ##
852 { 'command': 'human-monitor-command',
853 'data': {'command-line': 'str', '*cpu-index': 'int'},
854 'returns': 'str',
855 'features': [ 'savevm-monitor-nodes' ] }
856
857 ##
858 # @change:
859 #
860 # This command is multiple commands multiplexed together.
861 #
862 # @device: This is normally the name of a block device but it may also be 'vnc'.
863 # when it's 'vnc', then sub command depends on @target
864 #
865 # @target: If @device is a block device, then this is the new filename.
866 # If @device is 'vnc', then if the value 'password' selects the vnc
867 # change password command. Otherwise, this specifies a new server URI
868 # address to listen to for VNC connections.
869 #
870 # @arg: If @device is a block device, then this is an optional format to open
871 # the device with.
872 # If @device is 'vnc' and @target is 'password', this is the new VNC
873 # password to set. See change-vnc-password for additional notes.
874 #
875 # Features:
876 # @deprecated: This command is deprecated. For changing block
877 # devices, use 'blockdev-change-medium' instead; for changing VNC
878 # parameters, use 'change-vnc-password' instead.
879 #
880 # Returns: - Nothing on success.
881 # - If @device is not a valid block device, DeviceNotFound
882 #
883 # Since: 0.14.0
884 #
885 # Example:
886 #
887 # 1. Change a removable medium
888 #
889 # -> { "execute": "change",
890 # "arguments": { "device": "ide1-cd0",
891 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
892 # <- { "return": {} }
893 #
894 # 2. Change VNC password
895 #
896 # -> { "execute": "change",
897 # "arguments": { "device": "vnc", "target": "password",
898 # "arg": "foobar1" } }
899 # <- { "return": {} }
900 #
901 ##
902 { 'command': 'change',
903 'data': {'device': 'str', 'target': 'str', '*arg': 'str'},
904 'features': [ 'deprecated' ] }
905
906 ##
907 # @xen-set-global-dirty-log:
908 #
909 # Enable or disable the global dirty log mode.
910 #
911 # @enable: true to enable, false to disable.
912 #
913 # Returns: nothing
914 #
915 # Since: 1.3
916 #
917 # Example:
918 #
919 # -> { "execute": "xen-set-global-dirty-log",
920 # "arguments": { "enable": true } }
921 # <- { "return": {} }
922 #
923 ##
924 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
925
926 ##
927 # @getfd:
928 #
929 # Receive a file descriptor via SCM rights and assign it a name
930 #
931 # @fdname: file descriptor name
932 #
933 # Returns: Nothing on success
934 #
935 # Since: 0.14.0
936 #
937 # Notes: If @fdname already exists, the file descriptor assigned to
938 # it will be closed and replaced by the received file
939 # descriptor.
940 #
941 # The 'closefd' command can be used to explicitly close the
942 # file descriptor when it is no longer needed.
943 #
944 # Example:
945 #
946 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
947 # <- { "return": {} }
948 #
949 ##
950 { 'command': 'getfd', 'data': {'fdname': 'str'} }
951
952 ##
953 # @closefd:
954 #
955 # Close a file descriptor previously passed via SCM rights
956 #
957 # @fdname: file descriptor name
958 #
959 # Returns: Nothing on success
960 #
961 # Since: 0.14.0
962 #
963 # Example:
964 #
965 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
966 # <- { "return": {} }
967 #
968 ##
969 { 'command': 'closefd', 'data': {'fdname': 'str'} }
970
971 ##
972 # @MemoryInfo:
973 #
974 # Actual memory information in bytes.
975 #
976 # @base-memory: size of "base" memory specified with command line
977 # option -m.
978 #
979 # @plugged-memory: size of memory that can be hot-unplugged. This field
980 # is omitted if target doesn't support memory hotplug
981 # (i.e. CONFIG_MEM_DEVICE not defined at build time).
982 #
983 # Since: 2.11.0
984 ##
985 { 'struct': 'MemoryInfo',
986 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
987
988 ##
989 # @query-memory-size-summary:
990 #
991 # Return the amount of initially allocated and present hotpluggable (if
992 # enabled) memory in bytes.
993 #
994 # Example:
995 #
996 # -> { "execute": "query-memory-size-summary" }
997 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
998 #
999 # Since: 2.11.0
1000 ##
1001 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1002
1003
1004 ##
1005 # @AddfdInfo:
1006 #
1007 # Information about a file descriptor that was added to an fd set.
1008 #
1009 # @fdset-id: The ID of the fd set that @fd was added to.
1010 #
1011 # @fd: The file descriptor that was received via SCM rights and
1012 # added to the fd set.
1013 #
1014 # Since: 1.2.0
1015 ##
1016 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
1017
1018 ##
1019 # @add-fd:
1020 #
1021 # Add a file descriptor, that was passed via SCM rights, to an fd set.
1022 #
1023 # @fdset-id: The ID of the fd set to add the file descriptor to.
1024 #
1025 # @opaque: A free-form string that can be used to describe the fd.
1026 #
1027 # Returns: - @AddfdInfo on success
1028 # - If file descriptor was not received, FdNotSupplied
1029 # - If @fdset-id is a negative value, InvalidParameterValue
1030 #
1031 # Notes: The list of fd sets is shared by all monitor connections.
1032 #
1033 # If @fdset-id is not specified, a new fd set will be created.
1034 #
1035 # Since: 1.2.0
1036 #
1037 # Example:
1038 #
1039 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
1040 # <- { "return": { "fdset-id": 1, "fd": 3 } }
1041 #
1042 ##
1043 { 'command': 'add-fd',
1044 'data': { '*fdset-id': 'int',
1045 '*opaque': 'str' },
1046 'returns': 'AddfdInfo' }
1047
1048 ##
1049 # @remove-fd:
1050 #
1051 # Remove a file descriptor from an fd set.
1052 #
1053 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
1054 #
1055 # @fd: The file descriptor that is to be removed.
1056 #
1057 # Returns: - Nothing on success
1058 # - If @fdset-id or @fd is not found, FdNotFound
1059 #
1060 # Since: 1.2.0
1061 #
1062 # Notes: The list of fd sets is shared by all monitor connections.
1063 #
1064 # If @fd is not specified, all file descriptors in @fdset-id
1065 # will be removed.
1066 #
1067 # Example:
1068 #
1069 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
1070 # <- { "return": {} }
1071 #
1072 ##
1073 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
1074
1075 ##
1076 # @FdsetFdInfo:
1077 #
1078 # Information about a file descriptor that belongs to an fd set.
1079 #
1080 # @fd: The file descriptor value.
1081 #
1082 # @opaque: A free-form string that can be used to describe the fd.
1083 #
1084 # Since: 1.2.0
1085 ##
1086 { 'struct': 'FdsetFdInfo',
1087 'data': {'fd': 'int', '*opaque': 'str'} }
1088
1089 ##
1090 # @FdsetInfo:
1091 #
1092 # Information about an fd set.
1093 #
1094 # @fdset-id: The ID of the fd set.
1095 #
1096 # @fds: A list of file descriptors that belong to this fd set.
1097 #
1098 # Since: 1.2.0
1099 ##
1100 { 'struct': 'FdsetInfo',
1101 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
1102
1103 ##
1104 # @query-fdsets:
1105 #
1106 # Return information describing all fd sets.
1107 #
1108 # Returns: A list of @FdsetInfo
1109 #
1110 # Since: 1.2.0
1111 #
1112 # Note: The list of fd sets is shared by all monitor connections.
1113 #
1114 # Example:
1115 #
1116 # -> { "execute": "query-fdsets" }
1117 # <- { "return": [
1118 # {
1119 # "fds": [
1120 # {
1121 # "fd": 30,
1122 # "opaque": "rdonly:/path/to/file"
1123 # },
1124 # {
1125 # "fd": 24,
1126 # "opaque": "rdwr:/path/to/file"
1127 # }
1128 # ],
1129 # "fdset-id": 1
1130 # },
1131 # {
1132 # "fds": [
1133 # {
1134 # "fd": 28
1135 # },
1136 # {
1137 # "fd": 29
1138 # }
1139 # ],
1140 # "fdset-id": 0
1141 # }
1142 # ]
1143 # }
1144 #
1145 ##
1146 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
1147
1148 ##
1149 # @AcpiTableOptions:
1150 #
1151 # Specify an ACPI table on the command line to load.
1152 #
1153 # At most one of @file and @data can be specified. The list of files specified
1154 # by any one of them is loaded and concatenated in order. If both are omitted,
1155 # @data is implied.
1156 #
1157 # Other fields / optargs can be used to override fields of the generic ACPI
1158 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
1159 # Description Table Header. If a header field is not overridden, then the
1160 # corresponding value from the concatenated blob is used (in case of @file), or
1161 # it is filled in with a hard-coded value (in case of @data).
1162 #
1163 # String fields are copied into the matching ACPI member from lowest address
1164 # upwards, and silently truncated / NUL-padded to length.
1165 #
1166 # @sig: table signature / identifier (4 bytes)
1167 #
1168 # @rev: table revision number (dependent on signature, 1 byte)
1169 #
1170 # @oem_id: OEM identifier (6 bytes)
1171 #
1172 # @oem_table_id: OEM table identifier (8 bytes)
1173 #
1174 # @oem_rev: OEM-supplied revision number (4 bytes)
1175 #
1176 # @asl_compiler_id: identifier of the utility that created the table
1177 # (4 bytes)
1178 #
1179 # @asl_compiler_rev: revision number of the utility that created the
1180 # table (4 bytes)
1181 #
1182 # @file: colon (:) separated list of pathnames to load and
1183 # concatenate as table data. The resultant binary blob is expected to
1184 # have an ACPI table header. At least one file is required. This field
1185 # excludes @data.
1186 #
1187 # @data: colon (:) separated list of pathnames to load and
1188 # concatenate as table data. The resultant binary blob must not have an
1189 # ACPI table header. At least one file is required. This field excludes
1190 # @file.
1191 #
1192 # Since: 1.5
1193 ##
1194 { 'struct': 'AcpiTableOptions',
1195 'data': {
1196 '*sig': 'str',
1197 '*rev': 'uint8',
1198 '*oem_id': 'str',
1199 '*oem_table_id': 'str',
1200 '*oem_rev': 'uint32',
1201 '*asl_compiler_id': 'str',
1202 '*asl_compiler_rev': 'uint32',
1203 '*file': 'str',
1204 '*data': 'str' }}
1205
1206 ##
1207 # @CommandLineParameterType:
1208 #
1209 # Possible types for an option parameter.
1210 #
1211 # @string: accepts a character string
1212 #
1213 # @boolean: accepts "on" or "off"
1214 #
1215 # @number: accepts a number
1216 #
1217 # @size: accepts a number followed by an optional suffix (K)ilo,
1218 # (M)ega, (G)iga, (T)era
1219 #
1220 # Since: 1.5
1221 ##
1222 { 'enum': 'CommandLineParameterType',
1223 'data': ['string', 'boolean', 'number', 'size'] }
1224
1225 ##
1226 # @CommandLineParameterInfo:
1227 #
1228 # Details about a single parameter of a command line option.
1229 #
1230 # @name: parameter name
1231 #
1232 # @type: parameter @CommandLineParameterType
1233 #
1234 # @help: human readable text string, not suitable for parsing.
1235 #
1236 # @default: default value string (since 2.1)
1237 #
1238 # Since: 1.5
1239 ##
1240 { 'struct': 'CommandLineParameterInfo',
1241 'data': { 'name': 'str',
1242 'type': 'CommandLineParameterType',
1243 '*help': 'str',
1244 '*default': 'str' } }
1245
1246 ##
1247 # @CommandLineOptionInfo:
1248 #
1249 # Details about a command line option, including its list of parameter details
1250 #
1251 # @option: option name
1252 #
1253 # @parameters: an array of @CommandLineParameterInfo
1254 #
1255 # Since: 1.5
1256 ##
1257 { 'struct': 'CommandLineOptionInfo',
1258 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
1259
1260 ##
1261 # @query-command-line-options:
1262 #
1263 # Query command line option schema.
1264 #
1265 # @option: option name
1266 #
1267 # Returns: list of @CommandLineOptionInfo for all options (or for the given
1268 # @option). Returns an error if the given @option doesn't exist.
1269 #
1270 # Since: 1.5
1271 #
1272 # Example:
1273 #
1274 # -> { "execute": "query-command-line-options",
1275 # "arguments": { "option": "option-rom" } }
1276 # <- { "return": [
1277 # {
1278 # "parameters": [
1279 # {
1280 # "name": "romfile",
1281 # "type": "string"
1282 # },
1283 # {
1284 # "name": "bootindex",
1285 # "type": "number"
1286 # }
1287 # ],
1288 # "option": "option-rom"
1289 # }
1290 # ]
1291 # }
1292 #
1293 ##
1294 {'command': 'query-command-line-options',
1295 'data': { '*option': 'str' },
1296 'returns': ['CommandLineOptionInfo'],
1297 'allow-preconfig': true }
1298
1299 ##
1300 # @PCDIMMDeviceInfo:
1301 #
1302 # PCDIMMDevice state information
1303 #
1304 # @id: device's ID
1305 #
1306 # @addr: physical address, where device is mapped
1307 #
1308 # @size: size of memory that the device provides
1309 #
1310 # @slot: slot number at which device is plugged in
1311 #
1312 # @node: NUMA node number where device is plugged in
1313 #
1314 # @memdev: memory backend linked with device
1315 #
1316 # @hotplugged: true if device was hotplugged
1317 #
1318 # @hotpluggable: true if device if could be added/removed while machine is running
1319 #
1320 # Since: 2.1
1321 ##
1322 { 'struct': 'PCDIMMDeviceInfo',
1323 'data': { '*id': 'str',
1324 'addr': 'int',
1325 'size': 'int',
1326 'slot': 'int',
1327 'node': 'int',
1328 'memdev': 'str',
1329 'hotplugged': 'bool',
1330 'hotpluggable': 'bool'
1331 }
1332 }
1333
1334 ##
1335 # @VirtioPMEMDeviceInfo:
1336 #
1337 # VirtioPMEM state information
1338 #
1339 # @id: device's ID
1340 #
1341 # @memaddr: physical address in memory, where device is mapped
1342 #
1343 # @size: size of memory that the device provides
1344 #
1345 # @memdev: memory backend linked with device
1346 #
1347 # Since: 4.1
1348 ##
1349 { 'struct': 'VirtioPMEMDeviceInfo',
1350 'data': { '*id': 'str',
1351 'memaddr': 'size',
1352 'size': 'size',
1353 'memdev': 'str'
1354 }
1355 }
1356
1357 ##
1358 # @MemoryDeviceInfo:
1359 #
1360 # Union containing information about a memory device
1361 #
1362 # nvdimm is included since 2.12. virtio-pmem is included since 4.1.
1363 #
1364 # Since: 2.1
1365 ##
1366 { 'union': 'MemoryDeviceInfo',
1367 'data': { 'dimm': 'PCDIMMDeviceInfo',
1368 'nvdimm': 'PCDIMMDeviceInfo',
1369 'virtio-pmem': 'VirtioPMEMDeviceInfo'
1370 }
1371 }
1372
1373 ##
1374 # @query-memory-devices:
1375 #
1376 # Lists available memory devices and their state
1377 #
1378 # Since: 2.1
1379 #
1380 # Example:
1381 #
1382 # -> { "execute": "query-memory-devices" }
1383 # <- { "return": [ { "data":
1384 # { "addr": 5368709120,
1385 # "hotpluggable": true,
1386 # "hotplugged": true,
1387 # "id": "d1",
1388 # "memdev": "/objects/memX",
1389 # "node": 0,
1390 # "size": 1073741824,
1391 # "slot": 0},
1392 # "type": "dimm"
1393 # } ] }
1394 #
1395 ##
1396 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1397
1398 ##
1399 # @MEM_UNPLUG_ERROR:
1400 #
1401 # Emitted when memory hot unplug error occurs.
1402 #
1403 # @device: device name
1404 #
1405 # @msg: Informative message
1406 #
1407 # Since: 2.4
1408 #
1409 # Example:
1410 #
1411 # <- { "event": "MEM_UNPLUG_ERROR"
1412 # "data": { "device": "dimm1",
1413 # "msg": "acpi: device unplug for unsupported device"
1414 # },
1415 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1416 #
1417 ##
1418 { 'event': 'MEM_UNPLUG_ERROR',
1419 'data': { 'device': 'str', 'msg': 'str' } }
1420
1421 ##
1422 # @ACPISlotType:
1423 #
1424 # @DIMM: memory slot
1425 # @CPU: logical CPU slot (since 2.7)
1426 ##
1427 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
1428
1429 ##
1430 # @ACPIOSTInfo:
1431 #
1432 # OSPM Status Indication for a device
1433 # For description of possible values of @source and @status fields
1434 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
1435 #
1436 # @device: device ID associated with slot
1437 #
1438 # @slot: slot ID, unique per slot of a given @slot-type
1439 #
1440 # @slot-type: type of the slot
1441 #
1442 # @source: an integer containing the source event
1443 #
1444 # @status: an integer containing the status code
1445 #
1446 # Since: 2.1
1447 ##
1448 { 'struct': 'ACPIOSTInfo',
1449 'data' : { '*device': 'str',
1450 'slot': 'str',
1451 'slot-type': 'ACPISlotType',
1452 'source': 'int',
1453 'status': 'int' } }
1454
1455 ##
1456 # @query-acpi-ospm-status:
1457 #
1458 # Return a list of ACPIOSTInfo for devices that support status
1459 # reporting via ACPI _OST method.
1460 #
1461 # Since: 2.1
1462 #
1463 # Example:
1464 #
1465 # -> { "execute": "query-acpi-ospm-status" }
1466 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
1467 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
1468 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
1469 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
1470 # ]}
1471 #
1472 ##
1473 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
1474
1475 ##
1476 # @ACPI_DEVICE_OST:
1477 #
1478 # Emitted when guest executes ACPI _OST method.
1479 #
1480 # @info: OSPM Status Indication
1481 #
1482 # Since: 2.1
1483 #
1484 # Example:
1485 #
1486 # <- { "event": "ACPI_DEVICE_OST",
1487 # "data": { "device": "d1", "slot": "0",
1488 # "slot-type": "DIMM", "source": 1, "status": 0 } }
1489 #
1490 ##
1491 { 'event': 'ACPI_DEVICE_OST',
1492 'data': { 'info': 'ACPIOSTInfo' } }
1493
1494 ##
1495 # @ReplayMode:
1496 #
1497 # Mode of the replay subsystem.
1498 #
1499 # @none: normal execution mode. Replay or record are not enabled.
1500 #
1501 # @record: record mode. All non-deterministic data is written into the
1502 # replay log.
1503 #
1504 # @play: replay mode. Non-deterministic data required for system execution
1505 # is read from the log.
1506 #
1507 # Since: 2.5
1508 ##
1509 { 'enum': 'ReplayMode',
1510 'data': [ 'none', 'record', 'play' ] }
1511
1512 ##
1513 # @xen-load-devices-state:
1514 #
1515 # Load the state of all devices from file. The RAM and the block devices
1516 # of the VM are not loaded by this command.
1517 #
1518 # @filename: the file to load the state of the devices from as binary
1519 # data. See xen-save-devices-state.txt for a description of the binary
1520 # format.
1521 #
1522 # Since: 2.7
1523 #
1524 # Example:
1525 #
1526 # -> { "execute": "xen-load-devices-state",
1527 # "arguments": { "filename": "/tmp/resume" } }
1528 # <- { "return": {} }
1529 #
1530 ##
1531 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1532
1533 ##
1534 # @GuidInfo:
1535 #
1536 # GUID information.
1537 #
1538 # @guid: the globally unique identifier
1539 #
1540 # Since: 2.9
1541 ##
1542 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
1543
1544 ##
1545 # @query-vm-generation-id:
1546 #
1547 # Show Virtual Machine Generation ID
1548 #
1549 # Since: 2.9
1550 ##
1551 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
1552