]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/misc.json
monitor: Create MonitorHMP with readline state
[mirror_qemu.git] / qapi / misc.json
1 # -*- Mode: Python -*-
2 #
3
4 ##
5 # = Miscellanea
6 ##
7
8 { 'include': 'common.json' }
9
10 ##
11 # @qmp_capabilities:
12 #
13 # Enable QMP capabilities.
14 #
15 # Arguments:
16 #
17 # @enable: An optional list of QMPCapability values to enable. The
18 # client must not enable any capability that is not
19 # mentioned in the QMP greeting message. If the field is not
20 # provided, it means no QMP capabilities will be enabled.
21 # (since 2.12)
22 #
23 # Example:
24 #
25 # -> { "execute": "qmp_capabilities",
26 # "arguments": { "enable": [ "oob" ] } }
27 # <- { "return": {} }
28 #
29 # Notes: This command is valid exactly when first connecting: it must be
30 # issued before any other command will be accepted, and will fail once the
31 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32 #
33 # The QMP client needs to explicitly enable QMP capabilities, otherwise
34 # all the QMP capabilities will be turned off by default.
35 #
36 # Since: 0.13
37 #
38 ##
39 { 'command': 'qmp_capabilities',
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
42
43 ##
44 # @QMPCapability:
45 #
46 # Enumeration of capabilities to be advertised during initial client
47 # connection, used for agreeing on particular QMP extension behaviors.
48 #
49 # @oob: QMP ability to support out-of-band requests.
50 # (Please refer to qmp-spec.txt for more information on OOB)
51 #
52 # Since: 2.12
53 #
54 ##
55 { 'enum': 'QMPCapability',
56 'data': [ 'oob' ] }
57
58 ##
59 # @VersionTriple:
60 #
61 # A three-part version number.
62 #
63 # @major: The major version number.
64 #
65 # @minor: The minor version number.
66 #
67 # @micro: The micro version number.
68 #
69 # Since: 2.4
70 ##
71 { 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75 ##
76 # @VersionInfo:
77 #
78 # A description of QEMU's version.
79 #
80 # @qemu: The version of QEMU. By current convention, a micro
81 # version of 50 signifies a development branch. A micro version
82 # greater than or equal to 90 signifies a release candidate for
83 # the next minor version. A micro version of less than 50
84 # signifies a stable release.
85 #
86 # @package: QEMU will always set this field to an empty string. Downstream
87 # versions of QEMU should set this to a non-empty string. The
88 # exact format depends on the downstream however it highly
89 # recommended that a unique name is used.
90 #
91 # Since: 0.14.0
92 ##
93 { 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96 ##
97 # @query-version:
98 #
99 # Returns the current version of QEMU.
100 #
101 # Returns: A @VersionInfo object describing the current version of QEMU.
102 #
103 # Since: 0.14.0
104 #
105 # Example:
106 #
107 # -> { "execute": "query-version" }
108 # <- {
109 # "return":{
110 # "qemu":{
111 # "major":0,
112 # "minor":11,
113 # "micro":5
114 # },
115 # "package":""
116 # }
117 # }
118 #
119 ##
120 { 'command': 'query-version', 'returns': 'VersionInfo',
121 'allow-preconfig': true }
122
123 ##
124 # @CommandInfo:
125 #
126 # Information about a QMP command
127 #
128 # @name: The command name
129 #
130 # Since: 0.14.0
131 ##
132 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134 ##
135 # @query-commands:
136 #
137 # Return a list of supported QMP commands by this server
138 #
139 # Returns: A list of @CommandInfo for all supported commands
140 #
141 # Since: 0.14.0
142 #
143 # Example:
144 #
145 # -> { "execute": "query-commands" }
146 # <- {
147 # "return":[
148 # {
149 # "name":"query-balloon"
150 # },
151 # {
152 # "name":"system_powerdown"
153 # }
154 # ]
155 # }
156 #
157 # Note: This example has been shortened as the real response is too long.
158 #
159 ##
160 { 'command': 'query-commands', 'returns': ['CommandInfo'],
161 'allow-preconfig': true }
162
163 ##
164 # @LostTickPolicy:
165 #
166 # Policy for handling lost ticks in timer devices.
167 #
168 # @discard: throw away the missed tick(s) and continue with future injection
169 # normally. Guest time may be delayed, unless the OS has explicit
170 # handling of lost ticks
171 #
172 # @delay: continue to deliver ticks at the normal rate. Guest time will be
173 # delayed due to the late tick
174 #
175 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
176 # guest time should not be delayed once catchup is complete.
177 #
178 # Since: 2.0
179 ##
180 { 'enum': 'LostTickPolicy',
181 'data': ['discard', 'delay', 'slew' ] }
182
183 ##
184 # @add_client:
185 #
186 # Allow client connections for VNC, Spice and socket based
187 # character devices to be passed in to QEMU via SCM_RIGHTS.
188 #
189 # @protocol: protocol name. Valid names are "vnc", "spice" or the
190 # name of a character device (eg. from -chardev id=XXXX)
191 #
192 # @fdname: file descriptor name previously passed via 'getfd' command
193 #
194 # @skipauth: whether to skip authentication. Only applies
195 # to "vnc" and "spice" protocols
196 #
197 # @tls: whether to perform TLS. Only applies to the "spice"
198 # protocol
199 #
200 # Returns: nothing on success.
201 #
202 # Since: 0.14.0
203 #
204 # Example:
205 #
206 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
207 # "fdname": "myclient" } }
208 # <- { "return": {} }
209 #
210 ##
211 { 'command': 'add_client',
212 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
213 '*tls': 'bool' } }
214
215 ##
216 # @NameInfo:
217 #
218 # Guest name information.
219 #
220 # @name: The name of the guest
221 #
222 # Since: 0.14.0
223 ##
224 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
225
226 ##
227 # @query-name:
228 #
229 # Return the name information of a guest.
230 #
231 # Returns: @NameInfo of the guest
232 #
233 # Since: 0.14.0
234 #
235 # Example:
236 #
237 # -> { "execute": "query-name" }
238 # <- { "return": { "name": "qemu-name" } }
239 #
240 ##
241 { 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
242
243 ##
244 # @KvmInfo:
245 #
246 # Information about support for KVM acceleration
247 #
248 # @enabled: true if KVM acceleration is active
249 #
250 # @present: true if KVM acceleration is built into this executable
251 #
252 # Since: 0.14.0
253 ##
254 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
255
256 ##
257 # @query-kvm:
258 #
259 # Returns information about KVM acceleration
260 #
261 # Returns: @KvmInfo
262 #
263 # Since: 0.14.0
264 #
265 # Example:
266 #
267 # -> { "execute": "query-kvm" }
268 # <- { "return": { "enabled": true, "present": true } }
269 #
270 ##
271 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
272
273 ##
274 # @UuidInfo:
275 #
276 # Guest UUID information (Universally Unique Identifier).
277 #
278 # @UUID: the UUID of the guest
279 #
280 # Since: 0.14.0
281 #
282 # Notes: If no UUID was specified for the guest, a null UUID is returned.
283 ##
284 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
285
286 ##
287 # @query-uuid:
288 #
289 # Query the guest UUID information.
290 #
291 # Returns: The @UuidInfo for the guest
292 #
293 # Since: 0.14.0
294 #
295 # Example:
296 #
297 # -> { "execute": "query-uuid" }
298 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
299 #
300 ##
301 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
302
303 ##
304 # @EventInfo:
305 #
306 # Information about a QMP event
307 #
308 # @name: The event name
309 #
310 # Since: 1.2.0
311 ##
312 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
313
314 ##
315 # @query-events:
316 #
317 # Return information on QMP events.
318 #
319 # Returns: A list of @EventInfo.
320 #
321 # Since: 1.2.0
322 #
323 # Note: This command is deprecated, because its output doesn't reflect
324 # compile-time configuration. Use query-qmp-schema instead.
325 #
326 # Example:
327 #
328 # -> { "execute": "query-events" }
329 # <- {
330 # "return": [
331 # {
332 # "name":"SHUTDOWN"
333 # },
334 # {
335 # "name":"RESET"
336 # }
337 # ]
338 # }
339 #
340 # Note: This example has been shortened as the real response is too long.
341 #
342 ##
343 { 'command': 'query-events', 'returns': ['EventInfo'] }
344
345 ##
346 # @CpuInfoArch:
347 #
348 # An enumeration of cpu types that enable additional information during
349 # @query-cpus and @query-cpus-fast.
350 #
351 # @s390: since 2.12
352 #
353 # @riscv: since 2.12
354 #
355 # Since: 2.6
356 ##
357 { 'enum': 'CpuInfoArch',
358 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
359
360 ##
361 # @CpuInfo:
362 #
363 # Information about a virtual CPU
364 #
365 # @CPU: the index of the virtual CPU
366 #
367 # @current: this only exists for backwards compatibility and should be ignored
368 #
369 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
370 # to a processor specific low power mode.
371 #
372 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
373 #
374 # @thread_id: ID of the underlying host thread
375 #
376 # @props: properties describing to which node/socket/core/thread
377 # virtual CPU belongs to, provided if supported by board (since 2.10)
378 #
379 # @arch: architecture of the cpu, which determines which additional fields
380 # will be listed (since 2.6)
381 #
382 # Since: 0.14.0
383 #
384 # Notes: @halted is a transient state that changes frequently. By the time the
385 # data is sent to the client, the guest may no longer be halted.
386 ##
387 { 'union': 'CpuInfo',
388 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
389 'qom_path': 'str', 'thread_id': 'int',
390 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
391 'discriminator': 'arch',
392 'data': { 'x86': 'CpuInfoX86',
393 'sparc': 'CpuInfoSPARC',
394 'ppc': 'CpuInfoPPC',
395 'mips': 'CpuInfoMIPS',
396 'tricore': 'CpuInfoTricore',
397 's390': 'CpuInfoS390',
398 'riscv': 'CpuInfoRISCV' } }
399
400 ##
401 # @CpuInfoX86:
402 #
403 # Additional information about a virtual i386 or x86_64 CPU
404 #
405 # @pc: the 64-bit instruction pointer
406 #
407 # Since: 2.6
408 ##
409 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
410
411 ##
412 # @CpuInfoSPARC:
413 #
414 # Additional information about a virtual SPARC CPU
415 #
416 # @pc: the PC component of the instruction pointer
417 #
418 # @npc: the NPC component of the instruction pointer
419 #
420 # Since: 2.6
421 ##
422 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
423
424 ##
425 # @CpuInfoPPC:
426 #
427 # Additional information about a virtual PPC CPU
428 #
429 # @nip: the instruction pointer
430 #
431 # Since: 2.6
432 ##
433 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
434
435 ##
436 # @CpuInfoMIPS:
437 #
438 # Additional information about a virtual MIPS CPU
439 #
440 # @PC: the instruction pointer
441 #
442 # Since: 2.6
443 ##
444 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
445
446 ##
447 # @CpuInfoTricore:
448 #
449 # Additional information about a virtual Tricore CPU
450 #
451 # @PC: the instruction pointer
452 #
453 # Since: 2.6
454 ##
455 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
456
457 ##
458 # @CpuInfoRISCV:
459 #
460 # Additional information about a virtual RISCV CPU
461 #
462 # @pc: the instruction pointer
463 #
464 # Since 2.12
465 ##
466 { 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
467
468 ##
469 # @CpuS390State:
470 #
471 # An enumeration of cpu states that can be assumed by a virtual
472 # S390 CPU
473 #
474 # Since: 2.12
475 ##
476 { 'enum': 'CpuS390State',
477 'prefix': 'S390_CPU_STATE',
478 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
479
480 ##
481 # @CpuInfoS390:
482 #
483 # Additional information about a virtual S390 CPU
484 #
485 # @cpu-state: the virtual CPU's state
486 #
487 # Since: 2.12
488 ##
489 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
490
491 ##
492 # @query-cpus:
493 #
494 # Returns a list of information about each virtual CPU.
495 #
496 # This command causes vCPU threads to exit to userspace, which causes
497 # a small interruption to guest CPU execution. This will have a negative
498 # impact on realtime guests and other latency sensitive guest workloads.
499 # It is recommended to use @query-cpus-fast instead of this command to
500 # avoid the vCPU interruption.
501 #
502 # Returns: a list of @CpuInfo for each virtual CPU
503 #
504 # Since: 0.14.0
505 #
506 # Example:
507 #
508 # -> { "execute": "query-cpus" }
509 # <- { "return": [
510 # {
511 # "CPU":0,
512 # "current":true,
513 # "halted":false,
514 # "qom_path":"/machine/unattached/device[0]",
515 # "arch":"x86",
516 # "pc":3227107138,
517 # "thread_id":3134
518 # },
519 # {
520 # "CPU":1,
521 # "current":false,
522 # "halted":true,
523 # "qom_path":"/machine/unattached/device[2]",
524 # "arch":"x86",
525 # "pc":7108165,
526 # "thread_id":3135
527 # }
528 # ]
529 # }
530 #
531 # Notes: This interface is deprecated (since 2.12.0), and it is strongly
532 # recommended that you avoid using it. Use @query-cpus-fast to
533 # obtain information about virtual CPUs.
534 #
535 ##
536 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
537
538 ##
539 # @CpuInfoFast:
540 #
541 # Information about a virtual CPU
542 #
543 # @cpu-index: index of the virtual CPU
544 #
545 # @qom-path: path to the CPU object in the QOM tree
546 #
547 # @thread-id: ID of the underlying host thread
548 #
549 # @props: properties describing to which node/socket/core/thread
550 # virtual CPU belongs to, provided if supported by board
551 #
552 # @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
553 # of @target
554 #
555 # @target: the QEMU system emulation target, which determines which
556 # additional fields will be listed (since 3.0)
557 #
558 # Since: 2.12
559 #
560 ##
561 { 'union' : 'CpuInfoFast',
562 'base' : { 'cpu-index' : 'int',
563 'qom-path' : 'str',
564 'thread-id' : 'int',
565 '*props' : 'CpuInstanceProperties',
566 'arch' : 'CpuInfoArch',
567 'target' : 'SysEmuTarget' },
568 'discriminator' : 'target',
569 'data' : { 's390x' : 'CpuInfoS390' } }
570
571 ##
572 # @query-cpus-fast:
573 #
574 # Returns information about all virtual CPUs. This command does not
575 # incur a performance penalty and should be used in production
576 # instead of query-cpus.
577 #
578 # Returns: list of @CpuInfoFast
579 #
580 # Since: 2.12
581 #
582 # Example:
583 #
584 # -> { "execute": "query-cpus-fast" }
585 # <- { "return": [
586 # {
587 # "thread-id": 25627,
588 # "props": {
589 # "core-id": 0,
590 # "thread-id": 0,
591 # "socket-id": 0
592 # },
593 # "qom-path": "/machine/unattached/device[0]",
594 # "arch":"x86",
595 # "target":"x86_64",
596 # "cpu-index": 0
597 # },
598 # {
599 # "thread-id": 25628,
600 # "props": {
601 # "core-id": 0,
602 # "thread-id": 0,
603 # "socket-id": 1
604 # },
605 # "qom-path": "/machine/unattached/device[2]",
606 # "arch":"x86",
607 # "target":"x86_64",
608 # "cpu-index": 1
609 # }
610 # ]
611 # }
612 ##
613 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
614
615 ##
616 # @IOThreadInfo:
617 #
618 # Information about an iothread
619 #
620 # @id: the identifier of the iothread
621 #
622 # @thread-id: ID of the underlying host thread
623 #
624 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
625 # (since 2.9)
626 #
627 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
628 # configured (since 2.9)
629 #
630 # @poll-shrink: how many ns will be removed from polling time, 0 means that
631 # it's not configured (since 2.9)
632 #
633 # Since: 2.0
634 ##
635 { 'struct': 'IOThreadInfo',
636 'data': {'id': 'str',
637 'thread-id': 'int',
638 'poll-max-ns': 'int',
639 'poll-grow': 'int',
640 'poll-shrink': 'int' } }
641
642 ##
643 # @query-iothreads:
644 #
645 # Returns a list of information about each iothread.
646 #
647 # Note: this list excludes the QEMU main loop thread, which is not declared
648 # using the -object iothread command-line option. It is always the main thread
649 # of the process.
650 #
651 # Returns: a list of @IOThreadInfo for each iothread
652 #
653 # Since: 2.0
654 #
655 # Example:
656 #
657 # -> { "execute": "query-iothreads" }
658 # <- { "return": [
659 # {
660 # "id":"iothread0",
661 # "thread-id":3134
662 # },
663 # {
664 # "id":"iothread1",
665 # "thread-id":3135
666 # }
667 # ]
668 # }
669 #
670 ##
671 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
672 'allow-preconfig': true }
673
674 ##
675 # @BalloonInfo:
676 #
677 # Information about the guest balloon device.
678 #
679 # @actual: the number of bytes the balloon currently contains
680 #
681 # Since: 0.14.0
682 #
683 ##
684 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
685
686 ##
687 # @query-balloon:
688 #
689 # Return information about the balloon device.
690 #
691 # Returns: @BalloonInfo on success
692 #
693 # If the balloon driver is enabled but not functional because the KVM
694 # kernel module cannot support it, KvmMissingCap
695 #
696 # If no balloon device is present, DeviceNotActive
697 #
698 # Since: 0.14.0
699 #
700 # Example:
701 #
702 # -> { "execute": "query-balloon" }
703 # <- { "return": {
704 # "actual": 1073741824,
705 # }
706 # }
707 #
708 ##
709 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
710
711 ##
712 # @BALLOON_CHANGE:
713 #
714 # Emitted when the guest changes the actual BALLOON level. This value is
715 # equivalent to the @actual field return by the 'query-balloon' command
716 #
717 # @actual: actual level of the guest memory balloon in bytes
718 #
719 # Note: this event is rate-limited.
720 #
721 # Since: 1.2
722 #
723 # Example:
724 #
725 # <- { "event": "BALLOON_CHANGE",
726 # "data": { "actual": 944766976 },
727 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
728 #
729 ##
730 { 'event': 'BALLOON_CHANGE',
731 'data': { 'actual': 'int' } }
732
733 ##
734 # @PciMemoryRange:
735 #
736 # A PCI device memory region
737 #
738 # @base: the starting address (guest physical)
739 #
740 # @limit: the ending address (guest physical)
741 #
742 # Since: 0.14.0
743 ##
744 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
745
746 ##
747 # @PciMemoryRegion:
748 #
749 # Information about a PCI device I/O region.
750 #
751 # @bar: the index of the Base Address Register for this region
752 #
753 # @type: 'io' if the region is a PIO region
754 # 'memory' if the region is a MMIO region
755 #
756 # @size: memory size
757 #
758 # @prefetch: if @type is 'memory', true if the memory is prefetchable
759 #
760 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
761 #
762 # Since: 0.14.0
763 ##
764 { 'struct': 'PciMemoryRegion',
765 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
766 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
767
768 ##
769 # @PciBusInfo:
770 #
771 # Information about a bus of a PCI Bridge device
772 #
773 # @number: primary bus interface number. This should be the number of the
774 # bus the device resides on.
775 #
776 # @secondary: secondary bus interface number. This is the number of the
777 # main bus for the bridge
778 #
779 # @subordinate: This is the highest number bus that resides below the
780 # bridge.
781 #
782 # @io_range: The PIO range for all devices on this bridge
783 #
784 # @memory_range: The MMIO range for all devices on this bridge
785 #
786 # @prefetchable_range: The range of prefetchable MMIO for all devices on
787 # this bridge
788 #
789 # Since: 2.4
790 ##
791 { 'struct': 'PciBusInfo',
792 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
793 'io_range': 'PciMemoryRange',
794 'memory_range': 'PciMemoryRange',
795 'prefetchable_range': 'PciMemoryRange' } }
796
797 ##
798 # @PciBridgeInfo:
799 #
800 # Information about a PCI Bridge device
801 #
802 # @bus: information about the bus the device resides on
803 #
804 # @devices: a list of @PciDeviceInfo for each device on this bridge
805 #
806 # Since: 0.14.0
807 ##
808 { 'struct': 'PciBridgeInfo',
809 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
810
811 ##
812 # @PciDeviceClass:
813 #
814 # Information about the Class of a PCI device
815 #
816 # @desc: a string description of the device's class
817 #
818 # @class: the class code of the device
819 #
820 # Since: 2.4
821 ##
822 { 'struct': 'PciDeviceClass',
823 'data': {'*desc': 'str', 'class': 'int'} }
824
825 ##
826 # @PciDeviceId:
827 #
828 # Information about the Id of a PCI device
829 #
830 # @device: the PCI device id
831 #
832 # @vendor: the PCI vendor id
833 #
834 # @subsystem: the PCI subsystem id (since 3.1)
835 #
836 # @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
837 #
838 # Since: 2.4
839 ##
840 { 'struct': 'PciDeviceId',
841 'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int',
842 '*subsystem-vendor': 'int'} }
843
844 ##
845 # @PciDeviceInfo:
846 #
847 # Information about a PCI device
848 #
849 # @bus: the bus number of the device
850 #
851 # @slot: the slot the device is located in
852 #
853 # @function: the function of the slot used by the device
854 #
855 # @class_info: the class of the device
856 #
857 # @id: the PCI device id
858 #
859 # @irq: if an IRQ is assigned to the device, the IRQ number
860 #
861 # @qdev_id: the device name of the PCI device
862 #
863 # @pci_bridge: if the device is a PCI bridge, the bridge information
864 #
865 # @regions: a list of the PCI I/O regions associated with the device
866 #
867 # Notes: the contents of @class_info.desc are not stable and should only be
868 # treated as informational.
869 #
870 # Since: 0.14.0
871 ##
872 { 'struct': 'PciDeviceInfo',
873 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
874 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
875 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
876 'regions': ['PciMemoryRegion']} }
877
878 ##
879 # @PciInfo:
880 #
881 # Information about a PCI bus
882 #
883 # @bus: the bus index
884 #
885 # @devices: a list of devices on this bus
886 #
887 # Since: 0.14.0
888 ##
889 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
890
891 ##
892 # @query-pci:
893 #
894 # Return information about the PCI bus topology of the guest.
895 #
896 # Returns: a list of @PciInfo for each PCI bus. Each bus is
897 # represented by a json-object, which has a key with a json-array of
898 # all PCI devices attached to it. Each device is represented by a
899 # json-object.
900 #
901 # Since: 0.14.0
902 #
903 # Example:
904 #
905 # -> { "execute": "query-pci" }
906 # <- { "return": [
907 # {
908 # "bus": 0,
909 # "devices": [
910 # {
911 # "bus": 0,
912 # "qdev_id": "",
913 # "slot": 0,
914 # "class_info": {
915 # "class": 1536,
916 # "desc": "Host bridge"
917 # },
918 # "id": {
919 # "device": 32902,
920 # "vendor": 4663
921 # },
922 # "function": 0,
923 # "regions": [
924 # ]
925 # },
926 # {
927 # "bus": 0,
928 # "qdev_id": "",
929 # "slot": 1,
930 # "class_info": {
931 # "class": 1537,
932 # "desc": "ISA bridge"
933 # },
934 # "id": {
935 # "device": 32902,
936 # "vendor": 28672
937 # },
938 # "function": 0,
939 # "regions": [
940 # ]
941 # },
942 # {
943 # "bus": 0,
944 # "qdev_id": "",
945 # "slot": 1,
946 # "class_info": {
947 # "class": 257,
948 # "desc": "IDE controller"
949 # },
950 # "id": {
951 # "device": 32902,
952 # "vendor": 28688
953 # },
954 # "function": 1,
955 # "regions": [
956 # {
957 # "bar": 4,
958 # "size": 16,
959 # "address": 49152,
960 # "type": "io"
961 # }
962 # ]
963 # },
964 # {
965 # "bus": 0,
966 # "qdev_id": "",
967 # "slot": 2,
968 # "class_info": {
969 # "class": 768,
970 # "desc": "VGA controller"
971 # },
972 # "id": {
973 # "device": 4115,
974 # "vendor": 184
975 # },
976 # "function": 0,
977 # "regions": [
978 # {
979 # "prefetch": true,
980 # "mem_type_64": false,
981 # "bar": 0,
982 # "size": 33554432,
983 # "address": 4026531840,
984 # "type": "memory"
985 # },
986 # {
987 # "prefetch": false,
988 # "mem_type_64": false,
989 # "bar": 1,
990 # "size": 4096,
991 # "address": 4060086272,
992 # "type": "memory"
993 # },
994 # {
995 # "prefetch": false,
996 # "mem_type_64": false,
997 # "bar": 6,
998 # "size": 65536,
999 # "address": -1,
1000 # "type": "memory"
1001 # }
1002 # ]
1003 # },
1004 # {
1005 # "bus": 0,
1006 # "qdev_id": "",
1007 # "irq": 11,
1008 # "slot": 4,
1009 # "class_info": {
1010 # "class": 1280,
1011 # "desc": "RAM controller"
1012 # },
1013 # "id": {
1014 # "device": 6900,
1015 # "vendor": 4098
1016 # },
1017 # "function": 0,
1018 # "regions": [
1019 # {
1020 # "bar": 0,
1021 # "size": 32,
1022 # "address": 49280,
1023 # "type": "io"
1024 # }
1025 # ]
1026 # }
1027 # ]
1028 # }
1029 # ]
1030 # }
1031 #
1032 # Note: This example has been shortened as the real response is too long.
1033 #
1034 ##
1035 { 'command': 'query-pci', 'returns': ['PciInfo'] }
1036
1037 ##
1038 # @quit:
1039 #
1040 # This command will cause the QEMU process to exit gracefully. While every
1041 # attempt is made to send the QMP response before terminating, this is not
1042 # guaranteed. When using this interface, a premature EOF would not be
1043 # unexpected.
1044 #
1045 # Since: 0.14.0
1046 #
1047 # Example:
1048 #
1049 # -> { "execute": "quit" }
1050 # <- { "return": {} }
1051 ##
1052 { 'command': 'quit' }
1053
1054 ##
1055 # @stop:
1056 #
1057 # Stop all guest VCPU execution.
1058 #
1059 # Since: 0.14.0
1060 #
1061 # Notes: This function will succeed even if the guest is already in the stopped
1062 # state. In "inmigrate" state, it will ensure that the guest
1063 # remains paused once migration finishes, as if the -S option was
1064 # passed on the command line.
1065 #
1066 # Example:
1067 #
1068 # -> { "execute": "stop" }
1069 # <- { "return": {} }
1070 #
1071 ##
1072 { 'command': 'stop' }
1073
1074 ##
1075 # @system_reset:
1076 #
1077 # Performs a hard reset of a guest.
1078 #
1079 # Since: 0.14.0
1080 #
1081 # Example:
1082 #
1083 # -> { "execute": "system_reset" }
1084 # <- { "return": {} }
1085 #
1086 ##
1087 { 'command': 'system_reset' }
1088
1089 ##
1090 # @system_powerdown:
1091 #
1092 # Requests that a guest perform a powerdown operation.
1093 #
1094 # Since: 0.14.0
1095 #
1096 # Notes: A guest may or may not respond to this command. This command
1097 # returning does not indicate that a guest has accepted the request or
1098 # that it has shut down. Many guests will respond to this command by
1099 # prompting the user in some way.
1100 # Example:
1101 #
1102 # -> { "execute": "system_powerdown" }
1103 # <- { "return": {} }
1104 #
1105 ##
1106 { 'command': 'system_powerdown' }
1107
1108 ##
1109 # @cpu-add:
1110 #
1111 # Adds CPU with specified ID.
1112 #
1113 # @id: ID of CPU to be created, valid values [0..max_cpus)
1114 #
1115 # Returns: Nothing on success
1116 #
1117 # Since: 1.5
1118 #
1119 # Note: This command is deprecated. The `device_add` command should be
1120 # used instead. See the `query-hotpluggable-cpus` command for
1121 # details.
1122 #
1123 # Example:
1124 #
1125 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1126 # <- { "return": {} }
1127 #
1128 ##
1129 { 'command': 'cpu-add', 'data': {'id': 'int'} }
1130
1131 ##
1132 # @memsave:
1133 #
1134 # Save a portion of guest memory to a file.
1135 #
1136 # @val: the virtual address of the guest to start from
1137 #
1138 # @size: the size of memory region to save
1139 #
1140 # @filename: the file to save the memory to as binary data
1141 #
1142 # @cpu-index: the index of the virtual CPU to use for translating the
1143 # virtual address (defaults to CPU 0)
1144 #
1145 # Returns: Nothing on success
1146 #
1147 # Since: 0.14.0
1148 #
1149 # Notes: Errors were not reliably returned until 1.1
1150 #
1151 # Example:
1152 #
1153 # -> { "execute": "memsave",
1154 # "arguments": { "val": 10,
1155 # "size": 100,
1156 # "filename": "/tmp/virtual-mem-dump" } }
1157 # <- { "return": {} }
1158 #
1159 ##
1160 { 'command': 'memsave',
1161 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1162
1163 ##
1164 # @pmemsave:
1165 #
1166 # Save a portion of guest physical memory to a file.
1167 #
1168 # @val: the physical address of the guest to start from
1169 #
1170 # @size: the size of memory region to save
1171 #
1172 # @filename: the file to save the memory to as binary data
1173 #
1174 # Returns: Nothing on success
1175 #
1176 # Since: 0.14.0
1177 #
1178 # Notes: Errors were not reliably returned until 1.1
1179 #
1180 # Example:
1181 #
1182 # -> { "execute": "pmemsave",
1183 # "arguments": { "val": 10,
1184 # "size": 100,
1185 # "filename": "/tmp/physical-mem-dump" } }
1186 # <- { "return": {} }
1187 #
1188 ##
1189 { 'command': 'pmemsave',
1190 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1191
1192 ##
1193 # @cont:
1194 #
1195 # Resume guest VCPU execution.
1196 #
1197 # Since: 0.14.0
1198 #
1199 # Returns: If successful, nothing
1200 #
1201 # Notes: This command will succeed if the guest is currently running. It
1202 # will also succeed if the guest is in the "inmigrate" state; in
1203 # this case, the effect of the command is to make sure the guest
1204 # starts once migration finishes, removing the effect of the -S
1205 # command line option if it was passed.
1206 #
1207 # Example:
1208 #
1209 # -> { "execute": "cont" }
1210 # <- { "return": {} }
1211 #
1212 ##
1213 { 'command': 'cont' }
1214
1215 ##
1216 # @x-exit-preconfig:
1217 #
1218 # Exit from "preconfig" state
1219 #
1220 # This command makes QEMU exit the preconfig state and proceed with
1221 # VM initialization using configuration data provided on the command line
1222 # and via the QMP monitor during the preconfig state. The command is only
1223 # available during the preconfig state (i.e. when the --preconfig command
1224 # line option was in use).
1225 #
1226 # Since 3.0
1227 #
1228 # Returns: nothing
1229 #
1230 # Example:
1231 #
1232 # -> { "execute": "x-exit-preconfig" }
1233 # <- { "return": {} }
1234 #
1235 ##
1236 { 'command': 'x-exit-preconfig', 'allow-preconfig': true }
1237
1238 ##
1239 # @system_wakeup:
1240 #
1241 # Wake up guest from suspend. If the guest has wake-up from suspend
1242 # support enabled (wakeup-suspend-support flag from
1243 # query-current-machine), wake-up guest from suspend if the guest is
1244 # in SUSPENDED state. Return an error otherwise.
1245 #
1246 # Since: 1.1
1247 #
1248 # Returns: nothing.
1249 #
1250 # Note: prior to 4.0, this command does nothing in case the guest
1251 # isn't suspended.
1252 #
1253 # Example:
1254 #
1255 # -> { "execute": "system_wakeup" }
1256 # <- { "return": {} }
1257 #
1258 ##
1259 { 'command': 'system_wakeup' }
1260
1261 ##
1262 # @inject-nmi:
1263 #
1264 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1265 # The command fails when the guest doesn't support injecting.
1266 #
1267 # Returns: If successful, nothing
1268 #
1269 # Since: 0.14.0
1270 #
1271 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1272 #
1273 # Example:
1274 #
1275 # -> { "execute": "inject-nmi" }
1276 # <- { "return": {} }
1277 #
1278 ##
1279 { 'command': 'inject-nmi' }
1280
1281 ##
1282 # @balloon:
1283 #
1284 # Request the balloon driver to change its balloon size.
1285 #
1286 # @value: the target size of the balloon in bytes
1287 #
1288 # Returns: Nothing on success
1289 # If the balloon driver is enabled but not functional because the KVM
1290 # kernel module cannot support it, KvmMissingCap
1291 # If no balloon device is present, DeviceNotActive
1292 #
1293 # Notes: This command just issues a request to the guest. When it returns,
1294 # the balloon size may not have changed. A guest can change the balloon
1295 # size independent of this command.
1296 #
1297 # Since: 0.14.0
1298 #
1299 # Example:
1300 #
1301 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1302 # <- { "return": {} }
1303 #
1304 ##
1305 { 'command': 'balloon', 'data': {'value': 'int'} }
1306
1307 ##
1308 # @human-monitor-command:
1309 #
1310 # Execute a command on the human monitor and return the output.
1311 #
1312 # @command-line: the command to execute in the human monitor
1313 #
1314 # @cpu-index: The CPU to use for commands that require an implicit CPU
1315 #
1316 # Returns: the output of the command as a string
1317 #
1318 # Since: 0.14.0
1319 #
1320 # Notes: This command only exists as a stop-gap. Its use is highly
1321 # discouraged. The semantics of this command are not
1322 # guaranteed: this means that command names, arguments and
1323 # responses can change or be removed at ANY time. Applications
1324 # that rely on long term stability guarantees should NOT
1325 # use this command.
1326 #
1327 # Known limitations:
1328 #
1329 # * This command is stateless, this means that commands that depend
1330 # on state information (such as getfd) might not work
1331 #
1332 # * Commands that prompt the user for data don't currently work
1333 #
1334 # Example:
1335 #
1336 # -> { "execute": "human-monitor-command",
1337 # "arguments": { "command-line": "info kvm" } }
1338 # <- { "return": "kvm support: enabled\r\n" }
1339 #
1340 ##
1341 { 'command': 'human-monitor-command',
1342 'data': {'command-line': 'str', '*cpu-index': 'int'},
1343 'returns': 'str' }
1344
1345 ##
1346 # @ObjectPropertyInfo:
1347 #
1348 # @name: the name of the property
1349 #
1350 # @type: the type of the property. This will typically come in one of four
1351 # forms:
1352 #
1353 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1354 # These types are mapped to the appropriate JSON type.
1355 #
1356 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
1357 # device type name. Child properties create the composition tree.
1358 #
1359 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
1360 # device type name. Link properties form the device model graph.
1361 #
1362 # @description: if specified, the description of the property.
1363 #
1364 # Since: 1.2
1365 ##
1366 { 'struct': 'ObjectPropertyInfo',
1367 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1368
1369 ##
1370 # @qom-list:
1371 #
1372 # This command will list any properties of a object given a path in the object
1373 # model.
1374 #
1375 # @path: the path within the object model. See @qom-get for a description of
1376 # this parameter.
1377 #
1378 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
1379 # object.
1380 #
1381 # Since: 1.2
1382 #
1383 # Example:
1384 #
1385 # -> { "execute": "qom-list",
1386 # "arguments": { "path": "/chardevs" } }
1387 # <- { "return": [ { "name": "type", "type": "string" },
1388 # { "name": "parallel0", "type": "child<chardev-vc>" },
1389 # { "name": "serial0", "type": "child<chardev-vc>" },
1390 # { "name": "mon0", "type": "child<chardev-stdio>" } ] }
1391 #
1392 ##
1393 { 'command': 'qom-list',
1394 'data': { 'path': 'str' },
1395 'returns': [ 'ObjectPropertyInfo' ],
1396 'allow-preconfig': true }
1397
1398 ##
1399 # @qom-get:
1400 #
1401 # This command will get a property from a object model path and return the
1402 # value.
1403 #
1404 # @path: The path within the object model. There are two forms of supported
1405 # paths--absolute and partial paths.
1406 #
1407 # Absolute paths are derived from the root object and can follow child<>
1408 # or link<> properties. Since they can follow link<> properties, they
1409 # can be arbitrarily long. Absolute paths look like absolute filenames
1410 # and are prefixed with a leading slash.
1411 #
1412 # Partial paths look like relative filenames. They do not begin
1413 # with a prefix. The matching rules for partial paths are subtle but
1414 # designed to make specifying objects easy. At each level of the
1415 # composition tree, the partial path is matched as an absolute path.
1416 # The first match is not returned. At least two matches are searched
1417 # for. A successful result is only returned if only one match is
1418 # found. If more than one match is found, a flag is return to
1419 # indicate that the match was ambiguous.
1420 #
1421 # @property: The property name to read
1422 #
1423 # Returns: The property value. The type depends on the property
1424 # type. child<> and link<> properties are returned as #str
1425 # pathnames. All integer property types (u8, u16, etc) are
1426 # returned as #int.
1427 #
1428 # Since: 1.2
1429 #
1430 # Example:
1431 #
1432 # 1. Use absolute path
1433 #
1434 # -> { "execute": "qom-get",
1435 # "arguments": { "path": "/machine/unattached/device[0]",
1436 # "property": "hotplugged" } }
1437 # <- { "return": false }
1438 #
1439 # 2. Use partial path
1440 #
1441 # -> { "execute": "qom-get",
1442 # "arguments": { "path": "unattached/sysbus",
1443 # "property": "type" } }
1444 # <- { "return": "System" }
1445 #
1446 ##
1447 { 'command': 'qom-get',
1448 'data': { 'path': 'str', 'property': 'str' },
1449 'returns': 'any',
1450 'allow-preconfig': true }
1451
1452 ##
1453 # @qom-set:
1454 #
1455 # This command will set a property from a object model path.
1456 #
1457 # @path: see @qom-get for a description of this parameter
1458 #
1459 # @property: the property name to set
1460 #
1461 # @value: a value who's type is appropriate for the property type. See @qom-get
1462 # for a description of type mapping.
1463 #
1464 # Since: 1.2
1465 #
1466 # Example:
1467 #
1468 # -> { "execute": "qom-set",
1469 # "arguments": { "path": "/machine",
1470 # "property": "graphics",
1471 # "value": false } }
1472 # <- { "return": {} }
1473 #
1474 ##
1475 { 'command': 'qom-set',
1476 'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1477 'allow-preconfig': true }
1478
1479 ##
1480 # @change:
1481 #
1482 # This command is multiple commands multiplexed together.
1483 #
1484 # @device: This is normally the name of a block device but it may also be 'vnc'.
1485 # when it's 'vnc', then sub command depends on @target
1486 #
1487 # @target: If @device is a block device, then this is the new filename.
1488 # If @device is 'vnc', then if the value 'password' selects the vnc
1489 # change password command. Otherwise, this specifies a new server URI
1490 # address to listen to for VNC connections.
1491 #
1492 # @arg: If @device is a block device, then this is an optional format to open
1493 # the device with.
1494 # If @device is 'vnc' and @target is 'password', this is the new VNC
1495 # password to set. See change-vnc-password for additional notes.
1496 #
1497 # Returns: Nothing on success.
1498 # If @device is not a valid block device, DeviceNotFound
1499 #
1500 # Notes: This interface is deprecated, and it is strongly recommended that you
1501 # avoid using it. For changing block devices, use
1502 # blockdev-change-medium; for changing VNC parameters, use
1503 # change-vnc-password.
1504 #
1505 # Since: 0.14.0
1506 #
1507 # Example:
1508 #
1509 # 1. Change a removable medium
1510 #
1511 # -> { "execute": "change",
1512 # "arguments": { "device": "ide1-cd0",
1513 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1514 # <- { "return": {} }
1515 #
1516 # 2. Change VNC password
1517 #
1518 # -> { "execute": "change",
1519 # "arguments": { "device": "vnc", "target": "password",
1520 # "arg": "foobar1" } }
1521 # <- { "return": {} }
1522 #
1523 ##
1524 { 'command': 'change',
1525 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1526
1527 ##
1528 # @ObjectTypeInfo:
1529 #
1530 # This structure describes a search result from @qom-list-types
1531 #
1532 # @name: the type name found in the search
1533 #
1534 # @abstract: the type is abstract and can't be directly instantiated.
1535 # Omitted if false. (since 2.10)
1536 #
1537 # @parent: Name of parent type, if any (since 2.10)
1538 #
1539 # Since: 1.1
1540 ##
1541 { 'struct': 'ObjectTypeInfo',
1542 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1543
1544 ##
1545 # @qom-list-types:
1546 #
1547 # This command will return a list of types given search parameters
1548 #
1549 # @implements: if specified, only return types that implement this type name
1550 #
1551 # @abstract: if true, include abstract types in the results
1552 #
1553 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1554 #
1555 # Since: 1.1
1556 ##
1557 { 'command': 'qom-list-types',
1558 'data': { '*implements': 'str', '*abstract': 'bool' },
1559 'returns': [ 'ObjectTypeInfo' ],
1560 'allow-preconfig': true }
1561
1562 ##
1563 # @device-list-properties:
1564 #
1565 # List properties associated with a device.
1566 #
1567 # @typename: the type name of a device
1568 #
1569 # Returns: a list of ObjectPropertyInfo describing a devices properties
1570 #
1571 # Note: objects can create properties at runtime, for example to describe
1572 # links between different devices and/or objects. These properties
1573 # are not included in the output of this command.
1574 #
1575 # Since: 1.2
1576 ##
1577 { 'command': 'device-list-properties',
1578 'data': { 'typename': 'str'},
1579 'returns': [ 'ObjectPropertyInfo' ] }
1580
1581 ##
1582 # @qom-list-properties:
1583 #
1584 # List properties associated with a QOM object.
1585 #
1586 # @typename: the type name of an object
1587 #
1588 # Note: objects can create properties at runtime, for example to describe
1589 # links between different devices and/or objects. These properties
1590 # are not included in the output of this command.
1591 #
1592 # Returns: a list of ObjectPropertyInfo describing object properties
1593 #
1594 # Since: 2.12
1595 ##
1596 { 'command': 'qom-list-properties',
1597 'data': { 'typename': 'str'},
1598 'returns': [ 'ObjectPropertyInfo' ],
1599 'allow-preconfig': true }
1600
1601 ##
1602 # @xen-set-global-dirty-log:
1603 #
1604 # Enable or disable the global dirty log mode.
1605 #
1606 # @enable: true to enable, false to disable.
1607 #
1608 # Returns: nothing
1609 #
1610 # Since: 1.3
1611 #
1612 # Example:
1613 #
1614 # -> { "execute": "xen-set-global-dirty-log",
1615 # "arguments": { "enable": true } }
1616 # <- { "return": {} }
1617 #
1618 ##
1619 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1620
1621 ##
1622 # @device_add:
1623 #
1624 # @driver: the name of the new device's driver
1625 #
1626 # @bus: the device's parent bus (device tree path)
1627 #
1628 # @id: the device's ID, must be unique
1629 #
1630 # Additional arguments depend on the type.
1631 #
1632 # Add a device.
1633 #
1634 # Notes:
1635 # 1. For detailed information about this command, please refer to the
1636 # 'docs/qdev-device-use.txt' file.
1637 #
1638 # 2. It's possible to list device properties by running QEMU with the
1639 # "-device DEVICE,help" command-line argument, where DEVICE is the
1640 # device's name
1641 #
1642 # Example:
1643 #
1644 # -> { "execute": "device_add",
1645 # "arguments": { "driver": "e1000", "id": "net1",
1646 # "bus": "pci.0",
1647 # "mac": "52:54:00:12:34:56" } }
1648 # <- { "return": {} }
1649 #
1650 # TODO: This command effectively bypasses QAPI completely due to its
1651 # "additional arguments" business. It shouldn't have been added to
1652 # the schema in this form. It should be qapified properly, or
1653 # replaced by a properly qapified command.
1654 #
1655 # Since: 0.13
1656 ##
1657 { 'command': 'device_add',
1658 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1659 'gen': false } # so we can get the additional arguments
1660
1661 ##
1662 # @device_del:
1663 #
1664 # Remove a device from a guest
1665 #
1666 # @id: the device's ID or QOM path
1667 #
1668 # Returns: Nothing on success
1669 # If @id is not a valid device, DeviceNotFound
1670 #
1671 # Notes: When this command completes, the device may not be removed from the
1672 # guest. Hot removal is an operation that requires guest cooperation.
1673 # This command merely requests that the guest begin the hot removal
1674 # process. Completion of the device removal process is signaled with a
1675 # DEVICE_DELETED event. Guest reset will automatically complete removal
1676 # for all devices.
1677 #
1678 # Since: 0.14.0
1679 #
1680 # Example:
1681 #
1682 # -> { "execute": "device_del",
1683 # "arguments": { "id": "net1" } }
1684 # <- { "return": {} }
1685 #
1686 # -> { "execute": "device_del",
1687 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1688 # <- { "return": {} }
1689 #
1690 ##
1691 { 'command': 'device_del', 'data': {'id': 'str'} }
1692
1693 ##
1694 # @DEVICE_DELETED:
1695 #
1696 # Emitted whenever the device removal completion is acknowledged by the guest.
1697 # At this point, it's safe to reuse the specified device ID. Device removal can
1698 # be initiated by the guest or by HMP/QMP commands.
1699 #
1700 # @device: device name
1701 #
1702 # @path: device path
1703 #
1704 # Since: 1.5
1705 #
1706 # Example:
1707 #
1708 # <- { "event": "DEVICE_DELETED",
1709 # "data": { "device": "virtio-net-pci-0",
1710 # "path": "/machine/peripheral/virtio-net-pci-0" },
1711 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1712 #
1713 ##
1714 { 'event': 'DEVICE_DELETED',
1715 'data': { '*device': 'str', 'path': 'str' } }
1716
1717 ##
1718 # @DumpGuestMemoryFormat:
1719 #
1720 # An enumeration of guest-memory-dump's format.
1721 #
1722 # @elf: elf format
1723 #
1724 # @kdump-zlib: kdump-compressed format with zlib-compressed
1725 #
1726 # @kdump-lzo: kdump-compressed format with lzo-compressed
1727 #
1728 # @kdump-snappy: kdump-compressed format with snappy-compressed
1729 #
1730 # @win-dmp: Windows full crashdump format,
1731 # can be used instead of ELF converting (since 2.13)
1732 #
1733 # Since: 2.0
1734 ##
1735 { 'enum': 'DumpGuestMemoryFormat',
1736 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
1737
1738 ##
1739 # @dump-guest-memory:
1740 #
1741 # Dump guest's memory to vmcore. It is a synchronous operation that can take
1742 # very long depending on the amount of guest memory.
1743 #
1744 # @paging: if true, do paging to get guest's memory mapping. This allows
1745 # using gdb to process the core file.
1746 #
1747 # IMPORTANT: this option can make QEMU allocate several gigabytes
1748 # of RAM. This can happen for a large guest, or a
1749 # malicious guest pretending to be large.
1750 #
1751 # Also, paging=true has the following limitations:
1752 #
1753 # 1. The guest may be in a catastrophic state or can have corrupted
1754 # memory, which cannot be trusted
1755 # 2. The guest can be in real-mode even if paging is enabled. For
1756 # example, the guest uses ACPI to sleep, and ACPI sleep state
1757 # goes in real-mode
1758 # 3. Currently only supported on i386 and x86_64.
1759 #
1760 # @protocol: the filename or file descriptor of the vmcore. The supported
1761 # protocols are:
1762 #
1763 # 1. file: the protocol starts with "file:", and the following
1764 # string is the file's path.
1765 # 2. fd: the protocol starts with "fd:", and the following string
1766 # is the fd's name.
1767 #
1768 # @detach: if true, QMP will return immediately rather than
1769 # waiting for the dump to finish. The user can track progress
1770 # using "query-dump". (since 2.6).
1771 #
1772 # @begin: if specified, the starting physical address.
1773 #
1774 # @length: if specified, the memory size, in bytes. If you don't
1775 # want to dump all guest's memory, please specify the start @begin
1776 # and @length
1777 #
1778 # @format: if specified, the format of guest memory dump. But non-elf
1779 # format is conflict with paging and filter, ie. @paging, @begin and
1780 # @length is not allowed to be specified with non-elf @format at the
1781 # same time (since 2.0)
1782 #
1783 # Note: All boolean arguments default to false
1784 #
1785 # Returns: nothing on success
1786 #
1787 # Since: 1.2
1788 #
1789 # Example:
1790 #
1791 # -> { "execute": "dump-guest-memory",
1792 # "arguments": { "protocol": "fd:dump" } }
1793 # <- { "return": {} }
1794 #
1795 ##
1796 { 'command': 'dump-guest-memory',
1797 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1798 '*begin': 'int', '*length': 'int',
1799 '*format': 'DumpGuestMemoryFormat'} }
1800
1801 ##
1802 # @DumpStatus:
1803 #
1804 # Describe the status of a long-running background guest memory dump.
1805 #
1806 # @none: no dump-guest-memory has started yet.
1807 #
1808 # @active: there is one dump running in background.
1809 #
1810 # @completed: the last dump has finished successfully.
1811 #
1812 # @failed: the last dump has failed.
1813 #
1814 # Since: 2.6
1815 ##
1816 { 'enum': 'DumpStatus',
1817 'data': [ 'none', 'active', 'completed', 'failed' ] }
1818
1819 ##
1820 # @DumpQueryResult:
1821 #
1822 # The result format for 'query-dump'.
1823 #
1824 # @status: enum of @DumpStatus, which shows current dump status
1825 #
1826 # @completed: bytes written in latest dump (uncompressed)
1827 #
1828 # @total: total bytes to be written in latest dump (uncompressed)
1829 #
1830 # Since: 2.6
1831 ##
1832 { 'struct': 'DumpQueryResult',
1833 'data': { 'status': 'DumpStatus',
1834 'completed': 'int',
1835 'total': 'int' } }
1836
1837 ##
1838 # @query-dump:
1839 #
1840 # Query latest dump status.
1841 #
1842 # Returns: A @DumpStatus object showing the dump status.
1843 #
1844 # Since: 2.6
1845 #
1846 # Example:
1847 #
1848 # -> { "execute": "query-dump" }
1849 # <- { "return": { "status": "active", "completed": 1024000,
1850 # "total": 2048000 } }
1851 #
1852 ##
1853 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1854
1855 ##
1856 # @DUMP_COMPLETED:
1857 #
1858 # Emitted when background dump has completed
1859 #
1860 # @result: final dump status
1861 #
1862 # @error: human-readable error string that provides
1863 # hint on why dump failed. Only presents on failure. The
1864 # user should not try to interpret the error string.
1865 #
1866 # Since: 2.6
1867 #
1868 # Example:
1869 #
1870 # { "event": "DUMP_COMPLETED",
1871 # "data": {"result": {"total": 1090650112, "status": "completed",
1872 # "completed": 1090650112} } }
1873 #
1874 ##
1875 { 'event': 'DUMP_COMPLETED' ,
1876 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1877
1878 ##
1879 # @DumpGuestMemoryCapability:
1880 #
1881 # A list of the available formats for dump-guest-memory
1882 #
1883 # Since: 2.0
1884 ##
1885 { 'struct': 'DumpGuestMemoryCapability',
1886 'data': {
1887 'formats': ['DumpGuestMemoryFormat'] } }
1888
1889 ##
1890 # @query-dump-guest-memory-capability:
1891 #
1892 # Returns the available formats for dump-guest-memory
1893 #
1894 # Returns: A @DumpGuestMemoryCapability object listing available formats for
1895 # dump-guest-memory
1896 #
1897 # Since: 2.0
1898 #
1899 # Example:
1900 #
1901 # -> { "execute": "query-dump-guest-memory-capability" }
1902 # <- { "return": { "formats":
1903 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1904 #
1905 ##
1906 { 'command': 'query-dump-guest-memory-capability',
1907 'returns': 'DumpGuestMemoryCapability' }
1908
1909 ##
1910 # @object-add:
1911 #
1912 # Create a QOM object.
1913 #
1914 # @qom-type: the class name for the object to be created
1915 #
1916 # @id: the name of the new object
1917 #
1918 # @props: a dictionary of properties to be passed to the backend
1919 #
1920 # Returns: Nothing on success
1921 # Error if @qom-type is not a valid class name
1922 #
1923 # Since: 2.0
1924 #
1925 # Example:
1926 #
1927 # -> { "execute": "object-add",
1928 # "arguments": { "qom-type": "rng-random", "id": "rng1",
1929 # "props": { "filename": "/dev/hwrng" } } }
1930 # <- { "return": {} }
1931 #
1932 ##
1933 { 'command': 'object-add',
1934 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1935
1936 ##
1937 # @object-del:
1938 #
1939 # Remove a QOM object.
1940 #
1941 # @id: the name of the QOM object to remove
1942 #
1943 # Returns: Nothing on success
1944 # Error if @id is not a valid id for a QOM object
1945 #
1946 # Since: 2.0
1947 #
1948 # Example:
1949 #
1950 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1951 # <- { "return": {} }
1952 #
1953 ##
1954 { 'command': 'object-del', 'data': {'id': 'str'} }
1955
1956 ##
1957 # @getfd:
1958 #
1959 # Receive a file descriptor via SCM rights and assign it a name
1960 #
1961 # @fdname: file descriptor name
1962 #
1963 # Returns: Nothing on success
1964 #
1965 # Since: 0.14.0
1966 #
1967 # Notes: If @fdname already exists, the file descriptor assigned to
1968 # it will be closed and replaced by the received file
1969 # descriptor.
1970 #
1971 # The 'closefd' command can be used to explicitly close the
1972 # file descriptor when it is no longer needed.
1973 #
1974 # Example:
1975 #
1976 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1977 # <- { "return": {} }
1978 #
1979 ##
1980 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1981
1982 ##
1983 # @closefd:
1984 #
1985 # Close a file descriptor previously passed via SCM rights
1986 #
1987 # @fdname: file descriptor name
1988 #
1989 # Returns: Nothing on success
1990 #
1991 # Since: 0.14.0
1992 #
1993 # Example:
1994 #
1995 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1996 # <- { "return": {} }
1997 #
1998 ##
1999 { 'command': 'closefd', 'data': {'fdname': 'str'} }
2000
2001 ##
2002 # @MachineInfo:
2003 #
2004 # Information describing a machine.
2005 #
2006 # @name: the name of the machine
2007 #
2008 # @alias: an alias for the machine name
2009 #
2010 # @is-default: whether the machine is default
2011 #
2012 # @cpu-max: maximum number of CPUs supported by the machine type
2013 # (since 1.5.0)
2014 #
2015 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
2016 #
2017 # Since: 1.2.0
2018 ##
2019 { 'struct': 'MachineInfo',
2020 'data': { 'name': 'str', '*alias': 'str',
2021 '*is-default': 'bool', 'cpu-max': 'int',
2022 'hotpluggable-cpus': 'bool'} }
2023
2024 ##
2025 # @query-machines:
2026 #
2027 # Return a list of supported machines
2028 #
2029 # Returns: a list of MachineInfo
2030 #
2031 # Since: 1.2.0
2032 ##
2033 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
2034
2035 ##
2036 # @CurrentMachineParams:
2037 #
2038 # Information describing the running machine parameters.
2039 #
2040 # @wakeup-suspend-support: true if the machine supports wake up from
2041 # suspend
2042 #
2043 # Since: 4.0
2044 ##
2045 { 'struct': 'CurrentMachineParams',
2046 'data': { 'wakeup-suspend-support': 'bool'} }
2047
2048 ##
2049 # @query-current-machine:
2050 #
2051 # Return information on the current virtual machine.
2052 #
2053 # Returns: CurrentMachineParams
2054 #
2055 # Since: 4.0
2056 ##
2057 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
2058
2059 ##
2060 # @MemoryInfo:
2061 #
2062 # Actual memory information in bytes.
2063 #
2064 # @base-memory: size of "base" memory specified with command line
2065 # option -m.
2066 #
2067 # @plugged-memory: size of memory that can be hot-unplugged. This field
2068 # is omitted if target doesn't support memory hotplug
2069 # (i.e. CONFIG_MEM_DEVICE not defined at build time).
2070 #
2071 # Since: 2.11.0
2072 ##
2073 { 'struct': 'MemoryInfo',
2074 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2075
2076 ##
2077 # @query-memory-size-summary:
2078 #
2079 # Return the amount of initially allocated and present hotpluggable (if
2080 # enabled) memory in bytes.
2081 #
2082 # Example:
2083 #
2084 # -> { "execute": "query-memory-size-summary" }
2085 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2086 #
2087 # Since: 2.11.0
2088 ##
2089 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2090
2091
2092 ##
2093 # @CpuModelInfo:
2094 #
2095 # Virtual CPU model.
2096 #
2097 # A CPU model consists of the name of a CPU definition, to which
2098 # delta changes are applied (e.g. features added/removed). Most magic values
2099 # that an architecture might require should be hidden behind the name.
2100 # However, if required, architectures can expose relevant properties.
2101 #
2102 # @name: the name of the CPU definition the model is based on
2103 # @props: a dictionary of QOM properties to be applied
2104 #
2105 # Since: 2.8.0
2106 ##
2107 { 'struct': 'CpuModelInfo',
2108 'data': { 'name': 'str',
2109 '*props': 'any' } }
2110
2111 ##
2112 # @CpuModelExpansionType:
2113 #
2114 # An enumeration of CPU model expansion types.
2115 #
2116 # @static: Expand to a static CPU model, a combination of a static base
2117 # model name and property delta changes. As the static base model will
2118 # never change, the expanded CPU model will be the same, independent of
2119 # QEMU version, machine type, machine options, and accelerator options.
2120 # Therefore, the resulting model can be used by tooling without having
2121 # to specify a compatibility machine - e.g. when displaying the "host"
2122 # model. The @static CPU models are migration-safe.
2123
2124 # @full: Expand all properties. The produced model is not guaranteed to be
2125 # migration-safe, but allows tooling to get an insight and work with
2126 # model details.
2127 #
2128 # Note: When a non-migration-safe CPU model is expanded in static mode, some
2129 # features enabled by the CPU model may be omitted, because they can't be
2130 # implemented by a static CPU model definition (e.g. cache info passthrough and
2131 # PMU passthrough in x86). If you need an accurate representation of the
2132 # features enabled by a non-migration-safe CPU model, use @full. If you need a
2133 # static representation that will keep ABI compatibility even when changing QEMU
2134 # version or machine-type, use @static (but keep in mind that some features may
2135 # be omitted).
2136 #
2137 # Since: 2.8.0
2138 ##
2139 { 'enum': 'CpuModelExpansionType',
2140 'data': [ 'static', 'full' ] }
2141
2142
2143 ##
2144 # @CpuModelCompareResult:
2145 #
2146 # An enumeration of CPU model comparison results. The result is usually
2147 # calculated using e.g. CPU features or CPU generations.
2148 #
2149 # @incompatible: If model A is incompatible to model B, model A is not
2150 # guaranteed to run where model B runs and the other way around.
2151 #
2152 # @identical: If model A is identical to model B, model A is guaranteed to run
2153 # where model B runs and the other way around.
2154 #
2155 # @superset: If model A is a superset of model B, model B is guaranteed to run
2156 # where model A runs. There are no guarantees about the other way.
2157 #
2158 # @subset: If model A is a subset of model B, model A is guaranteed to run
2159 # where model B runs. There are no guarantees about the other way.
2160 #
2161 # Since: 2.8.0
2162 ##
2163 { 'enum': 'CpuModelCompareResult',
2164 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2165
2166 ##
2167 # @AddfdInfo:
2168 #
2169 # Information about a file descriptor that was added to an fd set.
2170 #
2171 # @fdset-id: The ID of the fd set that @fd was added to.
2172 #
2173 # @fd: The file descriptor that was received via SCM rights and
2174 # added to the fd set.
2175 #
2176 # Since: 1.2.0
2177 ##
2178 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2179
2180 ##
2181 # @add-fd:
2182 #
2183 # Add a file descriptor, that was passed via SCM rights, to an fd set.
2184 #
2185 # @fdset-id: The ID of the fd set to add the file descriptor to.
2186 #
2187 # @opaque: A free-form string that can be used to describe the fd.
2188 #
2189 # Returns: @AddfdInfo on success
2190 #
2191 # If file descriptor was not received, FdNotSupplied
2192 #
2193 # If @fdset-id is a negative value, InvalidParameterValue
2194 #
2195 # Notes: The list of fd sets is shared by all monitor connections.
2196 #
2197 # If @fdset-id is not specified, a new fd set will be created.
2198 #
2199 # Since: 1.2.0
2200 #
2201 # Example:
2202 #
2203 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2204 # <- { "return": { "fdset-id": 1, "fd": 3 } }
2205 #
2206 ##
2207 { 'command': 'add-fd',
2208 'data': { '*fdset-id': 'int',
2209 '*opaque': 'str' },
2210 'returns': 'AddfdInfo' }
2211
2212 ##
2213 # @remove-fd:
2214 #
2215 # Remove a file descriptor from an fd set.
2216 #
2217 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
2218 #
2219 # @fd: The file descriptor that is to be removed.
2220 #
2221 # Returns: Nothing on success
2222 # If @fdset-id or @fd is not found, FdNotFound
2223 #
2224 # Since: 1.2.0
2225 #
2226 # Notes: The list of fd sets is shared by all monitor connections.
2227 #
2228 # If @fd is not specified, all file descriptors in @fdset-id
2229 # will be removed.
2230 #
2231 # Example:
2232 #
2233 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2234 # <- { "return": {} }
2235 #
2236 ##
2237 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2238
2239 ##
2240 # @FdsetFdInfo:
2241 #
2242 # Information about a file descriptor that belongs to an fd set.
2243 #
2244 # @fd: The file descriptor value.
2245 #
2246 # @opaque: A free-form string that can be used to describe the fd.
2247 #
2248 # Since: 1.2.0
2249 ##
2250 { 'struct': 'FdsetFdInfo',
2251 'data': {'fd': 'int', '*opaque': 'str'} }
2252
2253 ##
2254 # @FdsetInfo:
2255 #
2256 # Information about an fd set.
2257 #
2258 # @fdset-id: The ID of the fd set.
2259 #
2260 # @fds: A list of file descriptors that belong to this fd set.
2261 #
2262 # Since: 1.2.0
2263 ##
2264 { 'struct': 'FdsetInfo',
2265 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2266
2267 ##
2268 # @query-fdsets:
2269 #
2270 # Return information describing all fd sets.
2271 #
2272 # Returns: A list of @FdsetInfo
2273 #
2274 # Since: 1.2.0
2275 #
2276 # Note: The list of fd sets is shared by all monitor connections.
2277 #
2278 # Example:
2279 #
2280 # -> { "execute": "query-fdsets" }
2281 # <- { "return": [
2282 # {
2283 # "fds": [
2284 # {
2285 # "fd": 30,
2286 # "opaque": "rdonly:/path/to/file"
2287 # },
2288 # {
2289 # "fd": 24,
2290 # "opaque": "rdwr:/path/to/file"
2291 # }
2292 # ],
2293 # "fdset-id": 1
2294 # },
2295 # {
2296 # "fds": [
2297 # {
2298 # "fd": 28
2299 # },
2300 # {
2301 # "fd": 29
2302 # }
2303 # ],
2304 # "fdset-id": 0
2305 # }
2306 # ]
2307 # }
2308 #
2309 ##
2310 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2311
2312 ##
2313 # @TargetInfo:
2314 #
2315 # Information describing the QEMU target.
2316 #
2317 # @arch: the target architecture
2318 #
2319 # Since: 1.2.0
2320 ##
2321 { 'struct': 'TargetInfo',
2322 'data': { 'arch': 'SysEmuTarget' } }
2323
2324 ##
2325 # @query-target:
2326 #
2327 # Return information about the target for this QEMU
2328 #
2329 # Returns: TargetInfo
2330 #
2331 # Since: 1.2.0
2332 ##
2333 { 'command': 'query-target', 'returns': 'TargetInfo' }
2334
2335 ##
2336 # @AcpiTableOptions:
2337 #
2338 # Specify an ACPI table on the command line to load.
2339 #
2340 # At most one of @file and @data can be specified. The list of files specified
2341 # by any one of them is loaded and concatenated in order. If both are omitted,
2342 # @data is implied.
2343 #
2344 # Other fields / optargs can be used to override fields of the generic ACPI
2345 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
2346 # Description Table Header. If a header field is not overridden, then the
2347 # corresponding value from the concatenated blob is used (in case of @file), or
2348 # it is filled in with a hard-coded value (in case of @data).
2349 #
2350 # String fields are copied into the matching ACPI member from lowest address
2351 # upwards, and silently truncated / NUL-padded to length.
2352 #
2353 # @sig: table signature / identifier (4 bytes)
2354 #
2355 # @rev: table revision number (dependent on signature, 1 byte)
2356 #
2357 # @oem_id: OEM identifier (6 bytes)
2358 #
2359 # @oem_table_id: OEM table identifier (8 bytes)
2360 #
2361 # @oem_rev: OEM-supplied revision number (4 bytes)
2362 #
2363 # @asl_compiler_id: identifier of the utility that created the table
2364 # (4 bytes)
2365 #
2366 # @asl_compiler_rev: revision number of the utility that created the
2367 # table (4 bytes)
2368 #
2369 # @file: colon (:) separated list of pathnames to load and
2370 # concatenate as table data. The resultant binary blob is expected to
2371 # have an ACPI table header. At least one file is required. This field
2372 # excludes @data.
2373 #
2374 # @data: colon (:) separated list of pathnames to load and
2375 # concatenate as table data. The resultant binary blob must not have an
2376 # ACPI table header. At least one file is required. This field excludes
2377 # @file.
2378 #
2379 # Since: 1.5
2380 ##
2381 { 'struct': 'AcpiTableOptions',
2382 'data': {
2383 '*sig': 'str',
2384 '*rev': 'uint8',
2385 '*oem_id': 'str',
2386 '*oem_table_id': 'str',
2387 '*oem_rev': 'uint32',
2388 '*asl_compiler_id': 'str',
2389 '*asl_compiler_rev': 'uint32',
2390 '*file': 'str',
2391 '*data': 'str' }}
2392
2393 ##
2394 # @CommandLineParameterType:
2395 #
2396 # Possible types for an option parameter.
2397 #
2398 # @string: accepts a character string
2399 #
2400 # @boolean: accepts "on" or "off"
2401 #
2402 # @number: accepts a number
2403 #
2404 # @size: accepts a number followed by an optional suffix (K)ilo,
2405 # (M)ega, (G)iga, (T)era
2406 #
2407 # Since: 1.5
2408 ##
2409 { 'enum': 'CommandLineParameterType',
2410 'data': ['string', 'boolean', 'number', 'size'] }
2411
2412 ##
2413 # @CommandLineParameterInfo:
2414 #
2415 # Details about a single parameter of a command line option.
2416 #
2417 # @name: parameter name
2418 #
2419 # @type: parameter @CommandLineParameterType
2420 #
2421 # @help: human readable text string, not suitable for parsing.
2422 #
2423 # @default: default value string (since 2.1)
2424 #
2425 # Since: 1.5
2426 ##
2427 { 'struct': 'CommandLineParameterInfo',
2428 'data': { 'name': 'str',
2429 'type': 'CommandLineParameterType',
2430 '*help': 'str',
2431 '*default': 'str' } }
2432
2433 ##
2434 # @CommandLineOptionInfo:
2435 #
2436 # Details about a command line option, including its list of parameter details
2437 #
2438 # @option: option name
2439 #
2440 # @parameters: an array of @CommandLineParameterInfo
2441 #
2442 # Since: 1.5
2443 ##
2444 { 'struct': 'CommandLineOptionInfo',
2445 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2446
2447 ##
2448 # @query-command-line-options:
2449 #
2450 # Query command line option schema.
2451 #
2452 # @option: option name
2453 #
2454 # Returns: list of @CommandLineOptionInfo for all options (or for the given
2455 # @option). Returns an error if the given @option doesn't exist.
2456 #
2457 # Since: 1.5
2458 #
2459 # Example:
2460 #
2461 # -> { "execute": "query-command-line-options",
2462 # "arguments": { "option": "option-rom" } }
2463 # <- { "return": [
2464 # {
2465 # "parameters": [
2466 # {
2467 # "name": "romfile",
2468 # "type": "string"
2469 # },
2470 # {
2471 # "name": "bootindex",
2472 # "type": "number"
2473 # }
2474 # ],
2475 # "option": "option-rom"
2476 # }
2477 # ]
2478 # }
2479 #
2480 ##
2481 {'command': 'query-command-line-options',
2482 'data': { '*option': 'str' },
2483 'returns': ['CommandLineOptionInfo'],
2484 'allow-preconfig': true }
2485
2486 ##
2487 # @X86CPURegister32:
2488 #
2489 # A X86 32-bit register
2490 #
2491 # Since: 1.5
2492 ##
2493 { 'enum': 'X86CPURegister32',
2494 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2495
2496 ##
2497 # @X86CPUFeatureWordInfo:
2498 #
2499 # Information about a X86 CPU feature word
2500 #
2501 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2502 #
2503 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2504 # feature word
2505 #
2506 # @cpuid-register: Output register containing the feature bits
2507 #
2508 # @features: value of output register, containing the feature bits
2509 #
2510 # Since: 1.5
2511 ##
2512 { 'struct': 'X86CPUFeatureWordInfo',
2513 'data': { 'cpuid-input-eax': 'int',
2514 '*cpuid-input-ecx': 'int',
2515 'cpuid-register': 'X86CPURegister32',
2516 'features': 'int' } }
2517
2518 ##
2519 # @DummyForceArrays:
2520 #
2521 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2522 #
2523 # Since: 2.5
2524 ##
2525 { 'struct': 'DummyForceArrays',
2526 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2527
2528
2529 ##
2530 # @NumaOptionsType:
2531 #
2532 # @node: NUMA nodes configuration
2533 #
2534 # @dist: NUMA distance configuration (since 2.10)
2535 #
2536 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
2537 #
2538 # Since: 2.1
2539 ##
2540 { 'enum': 'NumaOptionsType',
2541 'data': [ 'node', 'dist', 'cpu' ] }
2542
2543 ##
2544 # @NumaOptions:
2545 #
2546 # A discriminated record of NUMA options. (for OptsVisitor)
2547 #
2548 # Since: 2.1
2549 ##
2550 { 'union': 'NumaOptions',
2551 'base': { 'type': 'NumaOptionsType' },
2552 'discriminator': 'type',
2553 'data': {
2554 'node': 'NumaNodeOptions',
2555 'dist': 'NumaDistOptions',
2556 'cpu': 'NumaCpuOptions' }}
2557
2558 ##
2559 # @NumaNodeOptions:
2560 #
2561 # Create a guest NUMA node. (for OptsVisitor)
2562 #
2563 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2564 #
2565 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2566 # if omitted)
2567 #
2568 # @mem: memory size of this node; mutually exclusive with @memdev.
2569 # Equally divide total memory among nodes if both @mem and @memdev are
2570 # omitted.
2571 #
2572 # @memdev: memory backend object. If specified for one node,
2573 # it must be specified for all nodes.
2574 #
2575 # Since: 2.1
2576 ##
2577 { 'struct': 'NumaNodeOptions',
2578 'data': {
2579 '*nodeid': 'uint16',
2580 '*cpus': ['uint16'],
2581 '*mem': 'size',
2582 '*memdev': 'str' }}
2583
2584 ##
2585 # @NumaDistOptions:
2586 #
2587 # Set the distance between 2 NUMA nodes.
2588 #
2589 # @src: source NUMA node.
2590 #
2591 # @dst: destination NUMA node.
2592 #
2593 # @val: NUMA distance from source node to destination node.
2594 # When a node is unreachable from another node, set the distance
2595 # between them to 255.
2596 #
2597 # Since: 2.10
2598 ##
2599 { 'struct': 'NumaDistOptions',
2600 'data': {
2601 'src': 'uint16',
2602 'dst': 'uint16',
2603 'val': 'uint8' }}
2604
2605 ##
2606 # @NumaCpuOptions:
2607 #
2608 # Option "-numa cpu" overrides default cpu to node mapping.
2609 # It accepts the same set of cpu properties as returned by
2610 # query-hotpluggable-cpus[].props, where node-id could be used to
2611 # override default node mapping.
2612 #
2613 # Since: 2.10
2614 ##
2615 { 'struct': 'NumaCpuOptions',
2616 'base': 'CpuInstanceProperties',
2617 'data' : {} }
2618
2619 ##
2620 # @HostMemPolicy:
2621 #
2622 # Host memory policy types
2623 #
2624 # @default: restore default policy, remove any nondefault policy
2625 #
2626 # @preferred: set the preferred host nodes for allocation
2627 #
2628 # @bind: a strict policy that restricts memory allocation to the
2629 # host nodes specified
2630 #
2631 # @interleave: memory allocations are interleaved across the set
2632 # of host nodes specified
2633 #
2634 # Since: 2.1
2635 ##
2636 { 'enum': 'HostMemPolicy',
2637 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2638
2639 ##
2640 # @Memdev:
2641 #
2642 # Information about memory backend
2643 #
2644 # @id: backend's ID if backend has 'id' property (since 2.9)
2645 #
2646 # @size: memory backend size
2647 #
2648 # @merge: enables or disables memory merge support
2649 #
2650 # @dump: includes memory backend's memory in a core dump or not
2651 #
2652 # @prealloc: enables or disables memory preallocation
2653 #
2654 # @host-nodes: host nodes for its memory policy
2655 #
2656 # @policy: memory policy of memory backend
2657 #
2658 # Since: 2.1
2659 ##
2660 { 'struct': 'Memdev',
2661 'data': {
2662 '*id': 'str',
2663 'size': 'size',
2664 'merge': 'bool',
2665 'dump': 'bool',
2666 'prealloc': 'bool',
2667 'host-nodes': ['uint16'],
2668 'policy': 'HostMemPolicy' }}
2669
2670 ##
2671 # @query-memdev:
2672 #
2673 # Returns information for all memory backends.
2674 #
2675 # Returns: a list of @Memdev.
2676 #
2677 # Since: 2.1
2678 #
2679 # Example:
2680 #
2681 # -> { "execute": "query-memdev" }
2682 # <- { "return": [
2683 # {
2684 # "id": "mem1",
2685 # "size": 536870912,
2686 # "merge": false,
2687 # "dump": true,
2688 # "prealloc": false,
2689 # "host-nodes": [0, 1],
2690 # "policy": "bind"
2691 # },
2692 # {
2693 # "size": 536870912,
2694 # "merge": false,
2695 # "dump": true,
2696 # "prealloc": true,
2697 # "host-nodes": [2, 3],
2698 # "policy": "preferred"
2699 # }
2700 # ]
2701 # }
2702 #
2703 ##
2704 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
2705
2706 ##
2707 # @PCDIMMDeviceInfo:
2708 #
2709 # PCDIMMDevice state information
2710 #
2711 # @id: device's ID
2712 #
2713 # @addr: physical address, where device is mapped
2714 #
2715 # @size: size of memory that the device provides
2716 #
2717 # @slot: slot number at which device is plugged in
2718 #
2719 # @node: NUMA node number where device is plugged in
2720 #
2721 # @memdev: memory backend linked with device
2722 #
2723 # @hotplugged: true if device was hotplugged
2724 #
2725 # @hotpluggable: true if device if could be added/removed while machine is running
2726 #
2727 # Since: 2.1
2728 ##
2729 { 'struct': 'PCDIMMDeviceInfo',
2730 'data': { '*id': 'str',
2731 'addr': 'int',
2732 'size': 'int',
2733 'slot': 'int',
2734 'node': 'int',
2735 'memdev': 'str',
2736 'hotplugged': 'bool',
2737 'hotpluggable': 'bool'
2738 }
2739 }
2740
2741 ##
2742 # @MemoryDeviceInfo:
2743 #
2744 # Union containing information about a memory device
2745 #
2746 # Since: 2.1
2747 ##
2748 { 'union': 'MemoryDeviceInfo',
2749 'data': { 'dimm': 'PCDIMMDeviceInfo',
2750 'nvdimm': 'PCDIMMDeviceInfo'
2751 }
2752 }
2753
2754 ##
2755 # @query-memory-devices:
2756 #
2757 # Lists available memory devices and their state
2758 #
2759 # Since: 2.1
2760 #
2761 # Example:
2762 #
2763 # -> { "execute": "query-memory-devices" }
2764 # <- { "return": [ { "data":
2765 # { "addr": 5368709120,
2766 # "hotpluggable": true,
2767 # "hotplugged": true,
2768 # "id": "d1",
2769 # "memdev": "/objects/memX",
2770 # "node": 0,
2771 # "size": 1073741824,
2772 # "slot": 0},
2773 # "type": "dimm"
2774 # } ] }
2775 #
2776 ##
2777 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2778
2779 ##
2780 # @MEM_UNPLUG_ERROR:
2781 #
2782 # Emitted when memory hot unplug error occurs.
2783 #
2784 # @device: device name
2785 #
2786 # @msg: Informative message
2787 #
2788 # Since: 2.4
2789 #
2790 # Example:
2791 #
2792 # <- { "event": "MEM_UNPLUG_ERROR"
2793 # "data": { "device": "dimm1",
2794 # "msg": "acpi: device unplug for unsupported device"
2795 # },
2796 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2797 #
2798 ##
2799 { 'event': 'MEM_UNPLUG_ERROR',
2800 'data': { 'device': 'str', 'msg': 'str' } }
2801
2802 ##
2803 # @ACPISlotType:
2804 #
2805 # @DIMM: memory slot
2806 # @CPU: logical CPU slot (since 2.7)
2807 ##
2808 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2809
2810 ##
2811 # @ACPIOSTInfo:
2812 #
2813 # OSPM Status Indication for a device
2814 # For description of possible values of @source and @status fields
2815 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2816 #
2817 # @device: device ID associated with slot
2818 #
2819 # @slot: slot ID, unique per slot of a given @slot-type
2820 #
2821 # @slot-type: type of the slot
2822 #
2823 # @source: an integer containing the source event
2824 #
2825 # @status: an integer containing the status code
2826 #
2827 # Since: 2.1
2828 ##
2829 { 'struct': 'ACPIOSTInfo',
2830 'data' : { '*device': 'str',
2831 'slot': 'str',
2832 'slot-type': 'ACPISlotType',
2833 'source': 'int',
2834 'status': 'int' } }
2835
2836 ##
2837 # @query-acpi-ospm-status:
2838 #
2839 # Return a list of ACPIOSTInfo for devices that support status
2840 # reporting via ACPI _OST method.
2841 #
2842 # Since: 2.1
2843 #
2844 # Example:
2845 #
2846 # -> { "execute": "query-acpi-ospm-status" }
2847 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
2848 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
2849 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
2850 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
2851 # ]}
2852 #
2853 ##
2854 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
2855
2856 ##
2857 # @ACPI_DEVICE_OST:
2858 #
2859 # Emitted when guest executes ACPI _OST method.
2860 #
2861 # @info: OSPM Status Indication
2862 #
2863 # Since: 2.1
2864 #
2865 # Example:
2866 #
2867 # <- { "event": "ACPI_DEVICE_OST",
2868 # "data": { "device": "d1", "slot": "0",
2869 # "slot-type": "DIMM", "source": 1, "status": 0 } }
2870 #
2871 ##
2872 { 'event': 'ACPI_DEVICE_OST',
2873 'data': { 'info': 'ACPIOSTInfo' } }
2874
2875 ##
2876 # @ReplayMode:
2877 #
2878 # Mode of the replay subsystem.
2879 #
2880 # @none: normal execution mode. Replay or record are not enabled.
2881 #
2882 # @record: record mode. All non-deterministic data is written into the
2883 # replay log.
2884 #
2885 # @play: replay mode. Non-deterministic data required for system execution
2886 # is read from the log.
2887 #
2888 # Since: 2.5
2889 ##
2890 { 'enum': 'ReplayMode',
2891 'data': [ 'none', 'record', 'play' ] }
2892
2893 ##
2894 # @xen-load-devices-state:
2895 #
2896 # Load the state of all devices from file. The RAM and the block devices
2897 # of the VM are not loaded by this command.
2898 #
2899 # @filename: the file to load the state of the devices from as binary
2900 # data. See xen-save-devices-state.txt for a description of the binary
2901 # format.
2902 #
2903 # Since: 2.7
2904 #
2905 # Example:
2906 #
2907 # -> { "execute": "xen-load-devices-state",
2908 # "arguments": { "filename": "/tmp/resume" } }
2909 # <- { "return": {} }
2910 #
2911 ##
2912 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
2913
2914 ##
2915 # @CpuInstanceProperties:
2916 #
2917 # List of properties to be used for hotplugging a CPU instance,
2918 # it should be passed by management with device_add command when
2919 # a CPU is being hotplugged.
2920 #
2921 # @node-id: NUMA node ID the CPU belongs to
2922 # @socket-id: socket number within node/board the CPU belongs to
2923 # @core-id: core number within socket the CPU belongs to
2924 # @thread-id: thread number within core the CPU belongs to
2925 #
2926 # Note: currently there are 4 properties that could be present
2927 # but management should be prepared to pass through other
2928 # properties with device_add command to allow for future
2929 # interface extension. This also requires the filed names to be kept in
2930 # sync with the properties passed to -device/device_add.
2931 #
2932 # Since: 2.7
2933 ##
2934 { 'struct': 'CpuInstanceProperties',
2935 'data': { '*node-id': 'int',
2936 '*socket-id': 'int',
2937 '*core-id': 'int',
2938 '*thread-id': 'int'
2939 }
2940 }
2941
2942 ##
2943 # @HotpluggableCPU:
2944 #
2945 # @type: CPU object type for usage with device_add command
2946 # @props: list of properties to be used for hotplugging CPU
2947 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
2948 # @qom-path: link to existing CPU object if CPU is present or
2949 # omitted if CPU is not present.
2950 #
2951 # Since: 2.7
2952 ##
2953 { 'struct': 'HotpluggableCPU',
2954 'data': { 'type': 'str',
2955 'vcpus-count': 'int',
2956 'props': 'CpuInstanceProperties',
2957 '*qom-path': 'str'
2958 }
2959 }
2960
2961 ##
2962 # @query-hotpluggable-cpus:
2963 #
2964 # TODO: Better documentation; currently there is none.
2965 #
2966 # Returns: a list of HotpluggableCPU objects.
2967 #
2968 # Since: 2.7
2969 #
2970 # Example:
2971 #
2972 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
2973 #
2974 # -> { "execute": "query-hotpluggable-cpus" }
2975 # <- {"return": [
2976 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
2977 # "vcpus-count": 1 },
2978 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
2979 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
2980 # ]}'
2981 #
2982 # For pc machine type started with -smp 1,maxcpus=2:
2983 #
2984 # -> { "execute": "query-hotpluggable-cpus" }
2985 # <- {"return": [
2986 # {
2987 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
2988 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
2989 # },
2990 # {
2991 # "qom-path": "/machine/unattached/device[0]",
2992 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
2993 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
2994 # }
2995 # ]}
2996 #
2997 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
2998 # (Since: 2.11):
2999 #
3000 # -> { "execute": "query-hotpluggable-cpus" }
3001 # <- {"return": [
3002 # {
3003 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3004 # "props": { "core-id": 1 }
3005 # },
3006 # {
3007 # "qom-path": "/machine/unattached/device[0]",
3008 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3009 # "props": { "core-id": 0 }
3010 # }
3011 # ]}
3012 #
3013 ##
3014 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3015 'allow-preconfig': true }
3016
3017 ##
3018 # @GuidInfo:
3019 #
3020 # GUID information.
3021 #
3022 # @guid: the globally unique identifier
3023 #
3024 # Since: 2.9
3025 ##
3026 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3027
3028 ##
3029 # @query-vm-generation-id:
3030 #
3031 # Show Virtual Machine Generation ID
3032 #
3033 # Since: 2.9
3034 ##
3035 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3036
3037 ##
3038 # @set-numa-node:
3039 #
3040 # Runtime equivalent of '-numa' CLI option, available at
3041 # preconfigure stage to configure numa mapping before initializing
3042 # machine.
3043 #
3044 # Since 3.0
3045 ##
3046 { 'command': 'set-numa-node', 'boxed': true,
3047 'data': 'NumaOptions',
3048 'allow-preconfig': true
3049 }