]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/misc.json
Merge remote-tracking branch 'remotes/kraxel/tags/ui-20180305-pull-request' into...
[mirror_qemu.git] / qapi / misc.json
1 # -*- Mode: Python -*-
2 #
3
4 ##
5 # = Miscellanea
6 ##
7
8 ##
9 # @qmp_capabilities:
10 #
11 # Enable QMP capabilities.
12 #
13 # Arguments: None.
14 #
15 # Example:
16 #
17 # -> { "execute": "qmp_capabilities" }
18 # <- { "return": {} }
19 #
20 # Notes: This command is valid exactly when first connecting: it must be
21 # issued before any other command will be accepted, and will fail once the
22 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
23 #
24 # Since: 0.13
25 #
26 ##
27 { 'command': 'qmp_capabilities' }
28
29 ##
30 # @VersionTriple:
31 #
32 # A three-part version number.
33 #
34 # @major: The major version number.
35 #
36 # @minor: The minor version number.
37 #
38 # @micro: The micro version number.
39 #
40 # Since: 2.4
41 ##
42 { 'struct': 'VersionTriple',
43 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
44
45
46 ##
47 # @VersionInfo:
48 #
49 # A description of QEMU's version.
50 #
51 # @qemu: The version of QEMU. By current convention, a micro
52 # version of 50 signifies a development branch. A micro version
53 # greater than or equal to 90 signifies a release candidate for
54 # the next minor version. A micro version of less than 50
55 # signifies a stable release.
56 #
57 # @package: QEMU will always set this field to an empty string. Downstream
58 # versions of QEMU should set this to a non-empty string. The
59 # exact format depends on the downstream however it highly
60 # recommended that a unique name is used.
61 #
62 # Since: 0.14.0
63 ##
64 { 'struct': 'VersionInfo',
65 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
66
67 ##
68 # @query-version:
69 #
70 # Returns the current version of QEMU.
71 #
72 # Returns: A @VersionInfo object describing the current version of QEMU.
73 #
74 # Since: 0.14.0
75 #
76 # Example:
77 #
78 # -> { "execute": "query-version" }
79 # <- {
80 # "return":{
81 # "qemu":{
82 # "major":0,
83 # "minor":11,
84 # "micro":5
85 # },
86 # "package":""
87 # }
88 # }
89 #
90 ##
91 { 'command': 'query-version', 'returns': 'VersionInfo' }
92
93 ##
94 # @CommandInfo:
95 #
96 # Information about a QMP command
97 #
98 # @name: The command name
99 #
100 # Since: 0.14.0
101 ##
102 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
103
104 ##
105 # @query-commands:
106 #
107 # Return a list of supported QMP commands by this server
108 #
109 # Returns: A list of @CommandInfo for all supported commands
110 #
111 # Since: 0.14.0
112 #
113 # Example:
114 #
115 # -> { "execute": "query-commands" }
116 # <- {
117 # "return":[
118 # {
119 # "name":"query-balloon"
120 # },
121 # {
122 # "name":"system_powerdown"
123 # }
124 # ]
125 # }
126 #
127 # Note: This example has been shortened as the real response is too long.
128 #
129 ##
130 { 'command': 'query-commands', 'returns': ['CommandInfo'] }
131
132 ##
133 # @LostTickPolicy:
134 #
135 # Policy for handling lost ticks in timer devices.
136 #
137 # @discard: throw away the missed tick(s) and continue with future injection
138 # normally. Guest time may be delayed, unless the OS has explicit
139 # handling of lost ticks
140 #
141 # @delay: continue to deliver ticks at the normal rate. Guest time will be
142 # delayed due to the late tick
143 #
144 # @merge: merge the missed tick(s) into one tick and inject. Guest time
145 # may be delayed, depending on how the OS reacts to the merging
146 # of ticks
147 #
148 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
149 # guest time should not be delayed once catchup is complete.
150 #
151 # Since: 2.0
152 ##
153 { 'enum': 'LostTickPolicy',
154 'data': ['discard', 'delay', 'merge', 'slew' ] }
155
156 ##
157 # @add_client:
158 #
159 # Allow client connections for VNC, Spice and socket based
160 # character devices to be passed in to QEMU via SCM_RIGHTS.
161 #
162 # @protocol: protocol name. Valid names are "vnc", "spice" or the
163 # name of a character device (eg. from -chardev id=XXXX)
164 #
165 # @fdname: file descriptor name previously passed via 'getfd' command
166 #
167 # @skipauth: whether to skip authentication. Only applies
168 # to "vnc" and "spice" protocols
169 #
170 # @tls: whether to perform TLS. Only applies to the "spice"
171 # protocol
172 #
173 # Returns: nothing on success.
174 #
175 # Since: 0.14.0
176 #
177 # Example:
178 #
179 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
180 # "fdname": "myclient" } }
181 # <- { "return": {} }
182 #
183 ##
184 { 'command': 'add_client',
185 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
186 '*tls': 'bool' } }
187
188 ##
189 # @NameInfo:
190 #
191 # Guest name information.
192 #
193 # @name: The name of the guest
194 #
195 # Since: 0.14.0
196 ##
197 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
198
199 ##
200 # @query-name:
201 #
202 # Return the name information of a guest.
203 #
204 # Returns: @NameInfo of the guest
205 #
206 # Since: 0.14.0
207 #
208 # Example:
209 #
210 # -> { "execute": "query-name" }
211 # <- { "return": { "name": "qemu-name" } }
212 #
213 ##
214 { 'command': 'query-name', 'returns': 'NameInfo' }
215
216 ##
217 # @KvmInfo:
218 #
219 # Information about support for KVM acceleration
220 #
221 # @enabled: true if KVM acceleration is active
222 #
223 # @present: true if KVM acceleration is built into this executable
224 #
225 # Since: 0.14.0
226 ##
227 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
228
229 ##
230 # @query-kvm:
231 #
232 # Returns information about KVM acceleration
233 #
234 # Returns: @KvmInfo
235 #
236 # Since: 0.14.0
237 #
238 # Example:
239 #
240 # -> { "execute": "query-kvm" }
241 # <- { "return": { "enabled": true, "present": true } }
242 #
243 ##
244 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
245
246 ##
247 # @UuidInfo:
248 #
249 # Guest UUID information (Universally Unique Identifier).
250 #
251 # @UUID: the UUID of the guest
252 #
253 # Since: 0.14.0
254 #
255 # Notes: If no UUID was specified for the guest, a null UUID is returned.
256 ##
257 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
258
259 ##
260 # @query-uuid:
261 #
262 # Query the guest UUID information.
263 #
264 # Returns: The @UuidInfo for the guest
265 #
266 # Since: 0.14.0
267 #
268 # Example:
269 #
270 # -> { "execute": "query-uuid" }
271 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
272 #
273 ##
274 { 'command': 'query-uuid', 'returns': 'UuidInfo' }
275
276 ##
277 # @EventInfo:
278 #
279 # Information about a QMP event
280 #
281 # @name: The event name
282 #
283 # Since: 1.2.0
284 ##
285 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
286
287 ##
288 # @query-events:
289 #
290 # Return a list of supported QMP events by this server
291 #
292 # Returns: A list of @EventInfo for all supported events
293 #
294 # Since: 1.2.0
295 #
296 # Example:
297 #
298 # -> { "execute": "query-events" }
299 # <- {
300 # "return": [
301 # {
302 # "name":"SHUTDOWN"
303 # },
304 # {
305 # "name":"RESET"
306 # }
307 # ]
308 # }
309 #
310 # Note: This example has been shortened as the real response is too long.
311 #
312 ##
313 { 'command': 'query-events', 'returns': ['EventInfo'] }
314
315 ##
316 # @CpuInfoArch:
317 #
318 # An enumeration of cpu types that enable additional information during
319 # @query-cpus and @query-cpus-fast.
320 #
321 # @s390: since 2.12
322 #
323 # Since: 2.6
324 ##
325 { 'enum': 'CpuInfoArch',
326 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'other' ] }
327
328 ##
329 # @CpuInfo:
330 #
331 # Information about a virtual CPU
332 #
333 # @CPU: the index of the virtual CPU
334 #
335 # @current: this only exists for backwards compatibility and should be ignored
336 #
337 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
338 # to a processor specific low power mode.
339 #
340 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
341 #
342 # @thread_id: ID of the underlying host thread
343 #
344 # @props: properties describing to which node/socket/core/thread
345 # virtual CPU belongs to, provided if supported by board (since 2.10)
346 #
347 # @arch: architecture of the cpu, which determines which additional fields
348 # will be listed (since 2.6)
349 #
350 # Since: 0.14.0
351 #
352 # Notes: @halted is a transient state that changes frequently. By the time the
353 # data is sent to the client, the guest may no longer be halted.
354 ##
355 { 'union': 'CpuInfo',
356 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
357 'qom_path': 'str', 'thread_id': 'int',
358 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
359 'discriminator': 'arch',
360 'data': { 'x86': 'CpuInfoX86',
361 'sparc': 'CpuInfoSPARC',
362 'ppc': 'CpuInfoPPC',
363 'mips': 'CpuInfoMIPS',
364 'tricore': 'CpuInfoTricore',
365 's390': 'CpuInfoS390',
366 'other': 'CpuInfoOther' } }
367
368 ##
369 # @CpuInfoX86:
370 #
371 # Additional information about a virtual i386 or x86_64 CPU
372 #
373 # @pc: the 64-bit instruction pointer
374 #
375 # Since: 2.6
376 ##
377 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
378
379 ##
380 # @CpuInfoSPARC:
381 #
382 # Additional information about a virtual SPARC CPU
383 #
384 # @pc: the PC component of the instruction pointer
385 #
386 # @npc: the NPC component of the instruction pointer
387 #
388 # Since: 2.6
389 ##
390 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
391
392 ##
393 # @CpuInfoPPC:
394 #
395 # Additional information about a virtual PPC CPU
396 #
397 # @nip: the instruction pointer
398 #
399 # Since: 2.6
400 ##
401 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
402
403 ##
404 # @CpuInfoMIPS:
405 #
406 # Additional information about a virtual MIPS CPU
407 #
408 # @PC: the instruction pointer
409 #
410 # Since: 2.6
411 ##
412 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
413
414 ##
415 # @CpuInfoTricore:
416 #
417 # Additional information about a virtual Tricore CPU
418 #
419 # @PC: the instruction pointer
420 #
421 # Since: 2.6
422 ##
423 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
424
425 ##
426 # @CpuInfoOther:
427 #
428 # No additional information is available about the virtual CPU
429 #
430 # Since: 2.6
431 #
432 ##
433 { 'struct': 'CpuInfoOther', 'data': { } }
434
435 ##
436 # @CpuS390State:
437 #
438 # An enumeration of cpu states that can be assumed by a virtual
439 # S390 CPU
440 #
441 # Since: 2.12
442 ##
443 { 'enum': 'CpuS390State',
444 'prefix': 'S390_CPU_STATE',
445 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
446
447 ##
448 # @CpuInfoS390:
449 #
450 # Additional information about a virtual S390 CPU
451 #
452 # @cpu-state: the virtual CPU's state
453 #
454 # Since: 2.12
455 ##
456 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
457
458 ##
459 # @query-cpus:
460 #
461 # Returns a list of information about each virtual CPU.
462 #
463 # This command causes vCPU threads to exit to userspace, which causes
464 # a small interruption to guest CPU execution. This will have a negative
465 # impact on realtime guests and other latency sensitive guest workloads.
466 # It is recommended to use @query-cpus-fast instead of this command to
467 # avoid the vCPU interruption.
468 #
469 # Returns: a list of @CpuInfo for each virtual CPU
470 #
471 # Since: 0.14.0
472 #
473 # Example:
474 #
475 # -> { "execute": "query-cpus" }
476 # <- { "return": [
477 # {
478 # "CPU":0,
479 # "current":true,
480 # "halted":false,
481 # "qom_path":"/machine/unattached/device[0]",
482 # "arch":"x86",
483 # "pc":3227107138,
484 # "thread_id":3134
485 # },
486 # {
487 # "CPU":1,
488 # "current":false,
489 # "halted":true,
490 # "qom_path":"/machine/unattached/device[2]",
491 # "arch":"x86",
492 # "pc":7108165,
493 # "thread_id":3135
494 # }
495 # ]
496 # }
497 #
498 # Notes: This interface is deprecated (since 2.12.0), and it is strongly
499 # recommended that you avoid using it. Use @query-cpus-fast to
500 # obtain information about virtual CPUs.
501 #
502 ##
503 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
504
505 ##
506 # @CpuInfoFast:
507 #
508 # Information about a virtual CPU
509 #
510 # @cpu-index: index of the virtual CPU
511 #
512 # @qom-path: path to the CPU object in the QOM tree
513 #
514 # @thread-id: ID of the underlying host thread
515 #
516 # @props: properties describing to which node/socket/core/thread
517 # virtual CPU belongs to, provided if supported by board
518 #
519 # @arch: architecture of the cpu, which determines which additional fields
520 # will be listed
521 #
522 # Since: 2.12
523 #
524 ##
525 { 'union': 'CpuInfoFast',
526 'base': {'cpu-index': 'int', 'qom-path': 'str',
527 'thread-id': 'int', '*props': 'CpuInstanceProperties',
528 'arch': 'CpuInfoArch' },
529 'discriminator': 'arch',
530 'data': { 'x86': 'CpuInfoOther',
531 'sparc': 'CpuInfoOther',
532 'ppc': 'CpuInfoOther',
533 'mips': 'CpuInfoOther',
534 'tricore': 'CpuInfoOther',
535 's390': 'CpuInfoS390',
536 'other': 'CpuInfoOther' } }
537
538 ##
539 # @query-cpus-fast:
540 #
541 # Returns information about all virtual CPUs. This command does not
542 # incur a performance penalty and should be used in production
543 # instead of query-cpus.
544 #
545 # Returns: list of @CpuInfoFast
546 #
547 # Since: 2.12
548 #
549 # Example:
550 #
551 # -> { "execute": "query-cpus-fast" }
552 # <- { "return": [
553 # {
554 # "thread-id": 25627,
555 # "props": {
556 # "core-id": 0,
557 # "thread-id": 0,
558 # "socket-id": 0
559 # },
560 # "qom-path": "/machine/unattached/device[0]",
561 # "arch":"x86",
562 # "cpu-index": 0
563 # },
564 # {
565 # "thread-id": 25628,
566 # "props": {
567 # "core-id": 0,
568 # "thread-id": 0,
569 # "socket-id": 1
570 # },
571 # "qom-path": "/machine/unattached/device[2]",
572 # "arch":"x86",
573 # "cpu-index": 1
574 # }
575 # ]
576 # }
577 ##
578 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
579
580 ##
581 # @IOThreadInfo:
582 #
583 # Information about an iothread
584 #
585 # @id: the identifier of the iothread
586 #
587 # @thread-id: ID of the underlying host thread
588 #
589 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
590 # (since 2.9)
591 #
592 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
593 # configured (since 2.9)
594 #
595 # @poll-shrink: how many ns will be removed from polling time, 0 means that
596 # it's not configured (since 2.9)
597 #
598 # Since: 2.0
599 ##
600 { 'struct': 'IOThreadInfo',
601 'data': {'id': 'str',
602 'thread-id': 'int',
603 'poll-max-ns': 'int',
604 'poll-grow': 'int',
605 'poll-shrink': 'int' } }
606
607 ##
608 # @query-iothreads:
609 #
610 # Returns a list of information about each iothread.
611 #
612 # Note: this list excludes the QEMU main loop thread, which is not declared
613 # using the -object iothread command-line option. It is always the main thread
614 # of the process.
615 #
616 # Returns: a list of @IOThreadInfo for each iothread
617 #
618 # Since: 2.0
619 #
620 # Example:
621 #
622 # -> { "execute": "query-iothreads" }
623 # <- { "return": [
624 # {
625 # "id":"iothread0",
626 # "thread-id":3134
627 # },
628 # {
629 # "id":"iothread1",
630 # "thread-id":3135
631 # }
632 # ]
633 # }
634 #
635 ##
636 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
637
638 ##
639 # @BalloonInfo:
640 #
641 # Information about the guest balloon device.
642 #
643 # @actual: the number of bytes the balloon currently contains
644 #
645 # Since: 0.14.0
646 #
647 ##
648 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
649
650 ##
651 # @query-balloon:
652 #
653 # Return information about the balloon device.
654 #
655 # Returns: @BalloonInfo on success
656 #
657 # If the balloon driver is enabled but not functional because the KVM
658 # kernel module cannot support it, KvmMissingCap
659 #
660 # If no balloon device is present, DeviceNotActive
661 #
662 # Since: 0.14.0
663 #
664 # Example:
665 #
666 # -> { "execute": "query-balloon" }
667 # <- { "return": {
668 # "actual": 1073741824,
669 # }
670 # }
671 #
672 ##
673 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
674
675 ##
676 # @BALLOON_CHANGE:
677 #
678 # Emitted when the guest changes the actual BALLOON level. This value is
679 # equivalent to the @actual field return by the 'query-balloon' command
680 #
681 # @actual: actual level of the guest memory balloon in bytes
682 #
683 # Note: this event is rate-limited.
684 #
685 # Since: 1.2
686 #
687 # Example:
688 #
689 # <- { "event": "BALLOON_CHANGE",
690 # "data": { "actual": 944766976 },
691 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
692 #
693 ##
694 { 'event': 'BALLOON_CHANGE',
695 'data': { 'actual': 'int' } }
696
697 ##
698 # @PciMemoryRange:
699 #
700 # A PCI device memory region
701 #
702 # @base: the starting address (guest physical)
703 #
704 # @limit: the ending address (guest physical)
705 #
706 # Since: 0.14.0
707 ##
708 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
709
710 ##
711 # @PciMemoryRegion:
712 #
713 # Information about a PCI device I/O region.
714 #
715 # @bar: the index of the Base Address Register for this region
716 #
717 # @type: 'io' if the region is a PIO region
718 # 'memory' if the region is a MMIO region
719 #
720 # @size: memory size
721 #
722 # @prefetch: if @type is 'memory', true if the memory is prefetchable
723 #
724 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
725 #
726 # Since: 0.14.0
727 ##
728 { 'struct': 'PciMemoryRegion',
729 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
730 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
731
732 ##
733 # @PciBusInfo:
734 #
735 # Information about a bus of a PCI Bridge device
736 #
737 # @number: primary bus interface number. This should be the number of the
738 # bus the device resides on.
739 #
740 # @secondary: secondary bus interface number. This is the number of the
741 # main bus for the bridge
742 #
743 # @subordinate: This is the highest number bus that resides below the
744 # bridge.
745 #
746 # @io_range: The PIO range for all devices on this bridge
747 #
748 # @memory_range: The MMIO range for all devices on this bridge
749 #
750 # @prefetchable_range: The range of prefetchable MMIO for all devices on
751 # this bridge
752 #
753 # Since: 2.4
754 ##
755 { 'struct': 'PciBusInfo',
756 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
757 'io_range': 'PciMemoryRange',
758 'memory_range': 'PciMemoryRange',
759 'prefetchable_range': 'PciMemoryRange' } }
760
761 ##
762 # @PciBridgeInfo:
763 #
764 # Information about a PCI Bridge device
765 #
766 # @bus: information about the bus the device resides on
767 #
768 # @devices: a list of @PciDeviceInfo for each device on this bridge
769 #
770 # Since: 0.14.0
771 ##
772 { 'struct': 'PciBridgeInfo',
773 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
774
775 ##
776 # @PciDeviceClass:
777 #
778 # Information about the Class of a PCI device
779 #
780 # @desc: a string description of the device's class
781 #
782 # @class: the class code of the device
783 #
784 # Since: 2.4
785 ##
786 { 'struct': 'PciDeviceClass',
787 'data': {'*desc': 'str', 'class': 'int'} }
788
789 ##
790 # @PciDeviceId:
791 #
792 # Information about the Id of a PCI device
793 #
794 # @device: the PCI device id
795 #
796 # @vendor: the PCI vendor id
797 #
798 # Since: 2.4
799 ##
800 { 'struct': 'PciDeviceId',
801 'data': {'device': 'int', 'vendor': 'int'} }
802
803 ##
804 # @PciDeviceInfo:
805 #
806 # Information about a PCI device
807 #
808 # @bus: the bus number of the device
809 #
810 # @slot: the slot the device is located in
811 #
812 # @function: the function of the slot used by the device
813 #
814 # @class_info: the class of the device
815 #
816 # @id: the PCI device id
817 #
818 # @irq: if an IRQ is assigned to the device, the IRQ number
819 #
820 # @qdev_id: the device name of the PCI device
821 #
822 # @pci_bridge: if the device is a PCI bridge, the bridge information
823 #
824 # @regions: a list of the PCI I/O regions associated with the device
825 #
826 # Notes: the contents of @class_info.desc are not stable and should only be
827 # treated as informational.
828 #
829 # Since: 0.14.0
830 ##
831 { 'struct': 'PciDeviceInfo',
832 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
833 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
834 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
835 'regions': ['PciMemoryRegion']} }
836
837 ##
838 # @PciInfo:
839 #
840 # Information about a PCI bus
841 #
842 # @bus: the bus index
843 #
844 # @devices: a list of devices on this bus
845 #
846 # Since: 0.14.0
847 ##
848 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
849
850 ##
851 # @query-pci:
852 #
853 # Return information about the PCI bus topology of the guest.
854 #
855 # Returns: a list of @PciInfo for each PCI bus. Each bus is
856 # represented by a json-object, which has a key with a json-array of
857 # all PCI devices attached to it. Each device is represented by a
858 # json-object.
859 #
860 # Since: 0.14.0
861 #
862 # Example:
863 #
864 # -> { "execute": "query-pci" }
865 # <- { "return": [
866 # {
867 # "bus": 0,
868 # "devices": [
869 # {
870 # "bus": 0,
871 # "qdev_id": "",
872 # "slot": 0,
873 # "class_info": {
874 # "class": 1536,
875 # "desc": "Host bridge"
876 # },
877 # "id": {
878 # "device": 32902,
879 # "vendor": 4663
880 # },
881 # "function": 0,
882 # "regions": [
883 # ]
884 # },
885 # {
886 # "bus": 0,
887 # "qdev_id": "",
888 # "slot": 1,
889 # "class_info": {
890 # "class": 1537,
891 # "desc": "ISA bridge"
892 # },
893 # "id": {
894 # "device": 32902,
895 # "vendor": 28672
896 # },
897 # "function": 0,
898 # "regions": [
899 # ]
900 # },
901 # {
902 # "bus": 0,
903 # "qdev_id": "",
904 # "slot": 1,
905 # "class_info": {
906 # "class": 257,
907 # "desc": "IDE controller"
908 # },
909 # "id": {
910 # "device": 32902,
911 # "vendor": 28688
912 # },
913 # "function": 1,
914 # "regions": [
915 # {
916 # "bar": 4,
917 # "size": 16,
918 # "address": 49152,
919 # "type": "io"
920 # }
921 # ]
922 # },
923 # {
924 # "bus": 0,
925 # "qdev_id": "",
926 # "slot": 2,
927 # "class_info": {
928 # "class": 768,
929 # "desc": "VGA controller"
930 # },
931 # "id": {
932 # "device": 4115,
933 # "vendor": 184
934 # },
935 # "function": 0,
936 # "regions": [
937 # {
938 # "prefetch": true,
939 # "mem_type_64": false,
940 # "bar": 0,
941 # "size": 33554432,
942 # "address": 4026531840,
943 # "type": "memory"
944 # },
945 # {
946 # "prefetch": false,
947 # "mem_type_64": false,
948 # "bar": 1,
949 # "size": 4096,
950 # "address": 4060086272,
951 # "type": "memory"
952 # },
953 # {
954 # "prefetch": false,
955 # "mem_type_64": false,
956 # "bar": 6,
957 # "size": 65536,
958 # "address": -1,
959 # "type": "memory"
960 # }
961 # ]
962 # },
963 # {
964 # "bus": 0,
965 # "qdev_id": "",
966 # "irq": 11,
967 # "slot": 4,
968 # "class_info": {
969 # "class": 1280,
970 # "desc": "RAM controller"
971 # },
972 # "id": {
973 # "device": 6900,
974 # "vendor": 4098
975 # },
976 # "function": 0,
977 # "regions": [
978 # {
979 # "bar": 0,
980 # "size": 32,
981 # "address": 49280,
982 # "type": "io"
983 # }
984 # ]
985 # }
986 # ]
987 # }
988 # ]
989 # }
990 #
991 # Note: This example has been shortened as the real response is too long.
992 #
993 ##
994 { 'command': 'query-pci', 'returns': ['PciInfo'] }
995
996 ##
997 # @quit:
998 #
999 # This command will cause the QEMU process to exit gracefully. While every
1000 # attempt is made to send the QMP response before terminating, this is not
1001 # guaranteed. When using this interface, a premature EOF would not be
1002 # unexpected.
1003 #
1004 # Since: 0.14.0
1005 #
1006 # Example:
1007 #
1008 # -> { "execute": "quit" }
1009 # <- { "return": {} }
1010 ##
1011 { 'command': 'quit' }
1012
1013 ##
1014 # @stop:
1015 #
1016 # Stop all guest VCPU execution.
1017 #
1018 # Since: 0.14.0
1019 #
1020 # Notes: This function will succeed even if the guest is already in the stopped
1021 # state. In "inmigrate" state, it will ensure that the guest
1022 # remains paused once migration finishes, as if the -S option was
1023 # passed on the command line.
1024 #
1025 # Example:
1026 #
1027 # -> { "execute": "stop" }
1028 # <- { "return": {} }
1029 #
1030 ##
1031 { 'command': 'stop' }
1032
1033 ##
1034 # @system_reset:
1035 #
1036 # Performs a hard reset of a guest.
1037 #
1038 # Since: 0.14.0
1039 #
1040 # Example:
1041 #
1042 # -> { "execute": "system_reset" }
1043 # <- { "return": {} }
1044 #
1045 ##
1046 { 'command': 'system_reset' }
1047
1048 ##
1049 # @system_powerdown:
1050 #
1051 # Requests that a guest perform a powerdown operation.
1052 #
1053 # Since: 0.14.0
1054 #
1055 # Notes: A guest may or may not respond to this command. This command
1056 # returning does not indicate that a guest has accepted the request or
1057 # that it has shut down. Many guests will respond to this command by
1058 # prompting the user in some way.
1059 # Example:
1060 #
1061 # -> { "execute": "system_powerdown" }
1062 # <- { "return": {} }
1063 #
1064 ##
1065 { 'command': 'system_powerdown' }
1066
1067 ##
1068 # @cpu-add:
1069 #
1070 # Adds CPU with specified ID
1071 #
1072 # @id: ID of CPU to be created, valid values [0..max_cpus)
1073 #
1074 # Returns: Nothing on success
1075 #
1076 # Since: 1.5
1077 #
1078 # Example:
1079 #
1080 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1081 # <- { "return": {} }
1082 #
1083 ##
1084 { 'command': 'cpu-add', 'data': {'id': 'int'} }
1085
1086 ##
1087 # @memsave:
1088 #
1089 # Save a portion of guest memory to a file.
1090 #
1091 # @val: the virtual address of the guest to start from
1092 #
1093 # @size: the size of memory region to save
1094 #
1095 # @filename: the file to save the memory to as binary data
1096 #
1097 # @cpu-index: the index of the virtual CPU to use for translating the
1098 # virtual address (defaults to CPU 0)
1099 #
1100 # Returns: Nothing on success
1101 #
1102 # Since: 0.14.0
1103 #
1104 # Notes: Errors were not reliably returned until 1.1
1105 #
1106 # Example:
1107 #
1108 # -> { "execute": "memsave",
1109 # "arguments": { "val": 10,
1110 # "size": 100,
1111 # "filename": "/tmp/virtual-mem-dump" } }
1112 # <- { "return": {} }
1113 #
1114 ##
1115 { 'command': 'memsave',
1116 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1117
1118 ##
1119 # @pmemsave:
1120 #
1121 # Save a portion of guest physical memory to a file.
1122 #
1123 # @val: the physical address of the guest to start from
1124 #
1125 # @size: the size of memory region to save
1126 #
1127 # @filename: the file to save the memory to as binary data
1128 #
1129 # Returns: Nothing on success
1130 #
1131 # Since: 0.14.0
1132 #
1133 # Notes: Errors were not reliably returned until 1.1
1134 #
1135 # Example:
1136 #
1137 # -> { "execute": "pmemsave",
1138 # "arguments": { "val": 10,
1139 # "size": 100,
1140 # "filename": "/tmp/physical-mem-dump" } }
1141 # <- { "return": {} }
1142 #
1143 ##
1144 { 'command': 'pmemsave',
1145 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1146
1147 ##
1148 # @cont:
1149 #
1150 # Resume guest VCPU execution.
1151 #
1152 # Since: 0.14.0
1153 #
1154 # Returns: If successful, nothing
1155 #
1156 # Notes: This command will succeed if the guest is currently running. It
1157 # will also succeed if the guest is in the "inmigrate" state; in
1158 # this case, the effect of the command is to make sure the guest
1159 # starts once migration finishes, removing the effect of the -S
1160 # command line option if it was passed.
1161 #
1162 # Example:
1163 #
1164 # -> { "execute": "cont" }
1165 # <- { "return": {} }
1166 #
1167 ##
1168 { 'command': 'cont' }
1169
1170 ##
1171 # @system_wakeup:
1172 #
1173 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1174 #
1175 # Since: 1.1
1176 #
1177 # Returns: nothing.
1178 #
1179 # Example:
1180 #
1181 # -> { "execute": "system_wakeup" }
1182 # <- { "return": {} }
1183 #
1184 ##
1185 { 'command': 'system_wakeup' }
1186
1187 ##
1188 # @inject-nmi:
1189 #
1190 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1191 # The command fails when the guest doesn't support injecting.
1192 #
1193 # Returns: If successful, nothing
1194 #
1195 # Since: 0.14.0
1196 #
1197 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1198 #
1199 # Example:
1200 #
1201 # -> { "execute": "inject-nmi" }
1202 # <- { "return": {} }
1203 #
1204 ##
1205 { 'command': 'inject-nmi' }
1206
1207 ##
1208 # @balloon:
1209 #
1210 # Request the balloon driver to change its balloon size.
1211 #
1212 # @value: the target size of the balloon in bytes
1213 #
1214 # Returns: Nothing on success
1215 # If the balloon driver is enabled but not functional because the KVM
1216 # kernel module cannot support it, KvmMissingCap
1217 # If no balloon device is present, DeviceNotActive
1218 #
1219 # Notes: This command just issues a request to the guest. When it returns,
1220 # the balloon size may not have changed. A guest can change the balloon
1221 # size independent of this command.
1222 #
1223 # Since: 0.14.0
1224 #
1225 # Example:
1226 #
1227 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1228 # <- { "return": {} }
1229 #
1230 ##
1231 { 'command': 'balloon', 'data': {'value': 'int'} }
1232
1233 ##
1234 # @human-monitor-command:
1235 #
1236 # Execute a command on the human monitor and return the output.
1237 #
1238 # @command-line: the command to execute in the human monitor
1239 #
1240 # @cpu-index: The CPU to use for commands that require an implicit CPU
1241 #
1242 # Returns: the output of the command as a string
1243 #
1244 # Since: 0.14.0
1245 #
1246 # Notes: This command only exists as a stop-gap. Its use is highly
1247 # discouraged. The semantics of this command are not
1248 # guaranteed: this means that command names, arguments and
1249 # responses can change or be removed at ANY time. Applications
1250 # that rely on long term stability guarantees should NOT
1251 # use this command.
1252 #
1253 # Known limitations:
1254 #
1255 # * This command is stateless, this means that commands that depend
1256 # on state information (such as getfd) might not work
1257 #
1258 # * Commands that prompt the user for data don't currently work
1259 #
1260 # Example:
1261 #
1262 # -> { "execute": "human-monitor-command",
1263 # "arguments": { "command-line": "info kvm" } }
1264 # <- { "return": "kvm support: enabled\r\n" }
1265 #
1266 ##
1267 { 'command': 'human-monitor-command',
1268 'data': {'command-line': 'str', '*cpu-index': 'int'},
1269 'returns': 'str' }
1270
1271 ##
1272 # @ObjectPropertyInfo:
1273 #
1274 # @name: the name of the property
1275 #
1276 # @type: the type of the property. This will typically come in one of four
1277 # forms:
1278 #
1279 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1280 # These types are mapped to the appropriate JSON type.
1281 #
1282 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
1283 # device type name. Child properties create the composition tree.
1284 #
1285 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
1286 # device type name. Link properties form the device model graph.
1287 #
1288 # Since: 1.2
1289 ##
1290 { 'struct': 'ObjectPropertyInfo',
1291 'data': { 'name': 'str', 'type': 'str' } }
1292
1293 ##
1294 # @qom-list:
1295 #
1296 # This command will list any properties of a object given a path in the object
1297 # model.
1298 #
1299 # @path: the path within the object model. See @qom-get for a description of
1300 # this parameter.
1301 #
1302 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
1303 # object.
1304 #
1305 # Since: 1.2
1306 ##
1307 { 'command': 'qom-list',
1308 'data': { 'path': 'str' },
1309 'returns': [ 'ObjectPropertyInfo' ] }
1310
1311 ##
1312 # @qom-get:
1313 #
1314 # This command will get a property from a object model path and return the
1315 # value.
1316 #
1317 # @path: The path within the object model. There are two forms of supported
1318 # paths--absolute and partial paths.
1319 #
1320 # Absolute paths are derived from the root object and can follow child<>
1321 # or link<> properties. Since they can follow link<> properties, they
1322 # can be arbitrarily long. Absolute paths look like absolute filenames
1323 # and are prefixed with a leading slash.
1324 #
1325 # Partial paths look like relative filenames. They do not begin
1326 # with a prefix. The matching rules for partial paths are subtle but
1327 # designed to make specifying objects easy. At each level of the
1328 # composition tree, the partial path is matched as an absolute path.
1329 # The first match is not returned. At least two matches are searched
1330 # for. A successful result is only returned if only one match is
1331 # found. If more than one match is found, a flag is return to
1332 # indicate that the match was ambiguous.
1333 #
1334 # @property: The property name to read
1335 #
1336 # Returns: The property value. The type depends on the property
1337 # type. child<> and link<> properties are returned as #str
1338 # pathnames. All integer property types (u8, u16, etc) are
1339 # returned as #int.
1340 #
1341 # Since: 1.2
1342 ##
1343 { 'command': 'qom-get',
1344 'data': { 'path': 'str', 'property': 'str' },
1345 'returns': 'any' }
1346
1347 ##
1348 # @qom-set:
1349 #
1350 # This command will set a property from a object model path.
1351 #
1352 # @path: see @qom-get for a description of this parameter
1353 #
1354 # @property: the property name to set
1355 #
1356 # @value: a value who's type is appropriate for the property type. See @qom-get
1357 # for a description of type mapping.
1358 #
1359 # Since: 1.2
1360 ##
1361 { 'command': 'qom-set',
1362 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
1363
1364 ##
1365 # @change:
1366 #
1367 # This command is multiple commands multiplexed together.
1368 #
1369 # @device: This is normally the name of a block device but it may also be 'vnc'.
1370 # when it's 'vnc', then sub command depends on @target
1371 #
1372 # @target: If @device is a block device, then this is the new filename.
1373 # If @device is 'vnc', then if the value 'password' selects the vnc
1374 # change password command. Otherwise, this specifies a new server URI
1375 # address to listen to for VNC connections.
1376 #
1377 # @arg: If @device is a block device, then this is an optional format to open
1378 # the device with.
1379 # If @device is 'vnc' and @target is 'password', this is the new VNC
1380 # password to set. See change-vnc-password for additional notes.
1381 #
1382 # Returns: Nothing on success.
1383 # If @device is not a valid block device, DeviceNotFound
1384 #
1385 # Notes: This interface is deprecated, and it is strongly recommended that you
1386 # avoid using it. For changing block devices, use
1387 # blockdev-change-medium; for changing VNC parameters, use
1388 # change-vnc-password.
1389 #
1390 # Since: 0.14.0
1391 #
1392 # Example:
1393 #
1394 # 1. Change a removable medium
1395 #
1396 # -> { "execute": "change",
1397 # "arguments": { "device": "ide1-cd0",
1398 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1399 # <- { "return": {} }
1400 #
1401 # 2. Change VNC password
1402 #
1403 # -> { "execute": "change",
1404 # "arguments": { "device": "vnc", "target": "password",
1405 # "arg": "foobar1" } }
1406 # <- { "return": {} }
1407 #
1408 ##
1409 { 'command': 'change',
1410 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1411
1412 ##
1413 # @ObjectTypeInfo:
1414 #
1415 # This structure describes a search result from @qom-list-types
1416 #
1417 # @name: the type name found in the search
1418 #
1419 # @abstract: the type is abstract and can't be directly instantiated.
1420 # Omitted if false. (since 2.10)
1421 #
1422 # @parent: Name of parent type, if any (since 2.10)
1423 #
1424 # Since: 1.1
1425 ##
1426 { 'struct': 'ObjectTypeInfo',
1427 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1428
1429 ##
1430 # @qom-list-types:
1431 #
1432 # This command will return a list of types given search parameters
1433 #
1434 # @implements: if specified, only return types that implement this type name
1435 #
1436 # @abstract: if true, include abstract types in the results
1437 #
1438 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1439 #
1440 # Since: 1.1
1441 ##
1442 { 'command': 'qom-list-types',
1443 'data': { '*implements': 'str', '*abstract': 'bool' },
1444 'returns': [ 'ObjectTypeInfo' ] }
1445
1446 ##
1447 # @DevicePropertyInfo:
1448 #
1449 # Information about device properties.
1450 #
1451 # @name: the name of the property
1452 # @type: the typename of the property
1453 # @description: if specified, the description of the property.
1454 # (since 2.2)
1455 #
1456 # Since: 1.2
1457 ##
1458 { 'struct': 'DevicePropertyInfo',
1459 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1460
1461 ##
1462 # @device-list-properties:
1463 #
1464 # List properties associated with a device.
1465 #
1466 # @typename: the type name of a device
1467 #
1468 # Returns: a list of DevicePropertyInfo describing a devices properties
1469 #
1470 # Since: 1.2
1471 ##
1472 { 'command': 'device-list-properties',
1473 'data': { 'typename': 'str'},
1474 'returns': [ 'DevicePropertyInfo' ] }
1475
1476 ##
1477 # @xen-set-global-dirty-log:
1478 #
1479 # Enable or disable the global dirty log mode.
1480 #
1481 # @enable: true to enable, false to disable.
1482 #
1483 # Returns: nothing
1484 #
1485 # Since: 1.3
1486 #
1487 # Example:
1488 #
1489 # -> { "execute": "xen-set-global-dirty-log",
1490 # "arguments": { "enable": true } }
1491 # <- { "return": {} }
1492 #
1493 ##
1494 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1495
1496 ##
1497 # @device_add:
1498 #
1499 # @driver: the name of the new device's driver
1500 #
1501 # @bus: the device's parent bus (device tree path)
1502 #
1503 # @id: the device's ID, must be unique
1504 #
1505 # Additional arguments depend on the type.
1506 #
1507 # Add a device.
1508 #
1509 # Notes:
1510 # 1. For detailed information about this command, please refer to the
1511 # 'docs/qdev-device-use.txt' file.
1512 #
1513 # 2. It's possible to list device properties by running QEMU with the
1514 # "-device DEVICE,help" command-line argument, where DEVICE is the
1515 # device's name
1516 #
1517 # Example:
1518 #
1519 # -> { "execute": "device_add",
1520 # "arguments": { "driver": "e1000", "id": "net1",
1521 # "bus": "pci.0",
1522 # "mac": "52:54:00:12:34:56" } }
1523 # <- { "return": {} }
1524 #
1525 # TODO: This command effectively bypasses QAPI completely due to its
1526 # "additional arguments" business. It shouldn't have been added to
1527 # the schema in this form. It should be qapified properly, or
1528 # replaced by a properly qapified command.
1529 #
1530 # Since: 0.13
1531 ##
1532 { 'command': 'device_add',
1533 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1534 'gen': false } # so we can get the additional arguments
1535
1536 ##
1537 # @device_del:
1538 #
1539 # Remove a device from a guest
1540 #
1541 # @id: the device's ID or QOM path
1542 #
1543 # Returns: Nothing on success
1544 # If @id is not a valid device, DeviceNotFound
1545 #
1546 # Notes: When this command completes, the device may not be removed from the
1547 # guest. Hot removal is an operation that requires guest cooperation.
1548 # This command merely requests that the guest begin the hot removal
1549 # process. Completion of the device removal process is signaled with a
1550 # DEVICE_DELETED event. Guest reset will automatically complete removal
1551 # for all devices.
1552 #
1553 # Since: 0.14.0
1554 #
1555 # Example:
1556 #
1557 # -> { "execute": "device_del",
1558 # "arguments": { "id": "net1" } }
1559 # <- { "return": {} }
1560 #
1561 # -> { "execute": "device_del",
1562 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1563 # <- { "return": {} }
1564 #
1565 ##
1566 { 'command': 'device_del', 'data': {'id': 'str'} }
1567
1568 ##
1569 # @DEVICE_DELETED:
1570 #
1571 # Emitted whenever the device removal completion is acknowledged by the guest.
1572 # At this point, it's safe to reuse the specified device ID. Device removal can
1573 # be initiated by the guest or by HMP/QMP commands.
1574 #
1575 # @device: device name
1576 #
1577 # @path: device path
1578 #
1579 # Since: 1.5
1580 #
1581 # Example:
1582 #
1583 # <- { "event": "DEVICE_DELETED",
1584 # "data": { "device": "virtio-net-pci-0",
1585 # "path": "/machine/peripheral/virtio-net-pci-0" },
1586 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1587 #
1588 ##
1589 { 'event': 'DEVICE_DELETED',
1590 'data': { '*device': 'str', 'path': 'str' } }
1591
1592 ##
1593 # @DumpGuestMemoryFormat:
1594 #
1595 # An enumeration of guest-memory-dump's format.
1596 #
1597 # @elf: elf format
1598 #
1599 # @kdump-zlib: kdump-compressed format with zlib-compressed
1600 #
1601 # @kdump-lzo: kdump-compressed format with lzo-compressed
1602 #
1603 # @kdump-snappy: kdump-compressed format with snappy-compressed
1604 #
1605 # Since: 2.0
1606 ##
1607 { 'enum': 'DumpGuestMemoryFormat',
1608 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
1609
1610 ##
1611 # @dump-guest-memory:
1612 #
1613 # Dump guest's memory to vmcore. It is a synchronous operation that can take
1614 # very long depending on the amount of guest memory.
1615 #
1616 # @paging: if true, do paging to get guest's memory mapping. This allows
1617 # using gdb to process the core file.
1618 #
1619 # IMPORTANT: this option can make QEMU allocate several gigabytes
1620 # of RAM. This can happen for a large guest, or a
1621 # malicious guest pretending to be large.
1622 #
1623 # Also, paging=true has the following limitations:
1624 #
1625 # 1. The guest may be in a catastrophic state or can have corrupted
1626 # memory, which cannot be trusted
1627 # 2. The guest can be in real-mode even if paging is enabled. For
1628 # example, the guest uses ACPI to sleep, and ACPI sleep state
1629 # goes in real-mode
1630 # 3. Currently only supported on i386 and x86_64.
1631 #
1632 # @protocol: the filename or file descriptor of the vmcore. The supported
1633 # protocols are:
1634 #
1635 # 1. file: the protocol starts with "file:", and the following
1636 # string is the file's path.
1637 # 2. fd: the protocol starts with "fd:", and the following string
1638 # is the fd's name.
1639 #
1640 # @detach: if true, QMP will return immediately rather than
1641 # waiting for the dump to finish. The user can track progress
1642 # using "query-dump". (since 2.6).
1643 #
1644 # @begin: if specified, the starting physical address.
1645 #
1646 # @length: if specified, the memory size, in bytes. If you don't
1647 # want to dump all guest's memory, please specify the start @begin
1648 # and @length
1649 #
1650 # @format: if specified, the format of guest memory dump. But non-elf
1651 # format is conflict with paging and filter, ie. @paging, @begin and
1652 # @length is not allowed to be specified with non-elf @format at the
1653 # same time (since 2.0)
1654 #
1655 # Note: All boolean arguments default to false
1656 #
1657 # Returns: nothing on success
1658 #
1659 # Since: 1.2
1660 #
1661 # Example:
1662 #
1663 # -> { "execute": "dump-guest-memory",
1664 # "arguments": { "protocol": "fd:dump" } }
1665 # <- { "return": {} }
1666 #
1667 ##
1668 { 'command': 'dump-guest-memory',
1669 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1670 '*begin': 'int', '*length': 'int',
1671 '*format': 'DumpGuestMemoryFormat'} }
1672
1673 ##
1674 # @DumpStatus:
1675 #
1676 # Describe the status of a long-running background guest memory dump.
1677 #
1678 # @none: no dump-guest-memory has started yet.
1679 #
1680 # @active: there is one dump running in background.
1681 #
1682 # @completed: the last dump has finished successfully.
1683 #
1684 # @failed: the last dump has failed.
1685 #
1686 # Since: 2.6
1687 ##
1688 { 'enum': 'DumpStatus',
1689 'data': [ 'none', 'active', 'completed', 'failed' ] }
1690
1691 ##
1692 # @DumpQueryResult:
1693 #
1694 # The result format for 'query-dump'.
1695 #
1696 # @status: enum of @DumpStatus, which shows current dump status
1697 #
1698 # @completed: bytes written in latest dump (uncompressed)
1699 #
1700 # @total: total bytes to be written in latest dump (uncompressed)
1701 #
1702 # Since: 2.6
1703 ##
1704 { 'struct': 'DumpQueryResult',
1705 'data': { 'status': 'DumpStatus',
1706 'completed': 'int',
1707 'total': 'int' } }
1708
1709 ##
1710 # @query-dump:
1711 #
1712 # Query latest dump status.
1713 #
1714 # Returns: A @DumpStatus object showing the dump status.
1715 #
1716 # Since: 2.6
1717 #
1718 # Example:
1719 #
1720 # -> { "execute": "query-dump" }
1721 # <- { "return": { "status": "active", "completed": 1024000,
1722 # "total": 2048000 } }
1723 #
1724 ##
1725 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1726
1727 ##
1728 # @DUMP_COMPLETED:
1729 #
1730 # Emitted when background dump has completed
1731 #
1732 # @result: final dump status
1733 #
1734 # @error: human-readable error string that provides
1735 # hint on why dump failed. Only presents on failure. The
1736 # user should not try to interpret the error string.
1737 #
1738 # Since: 2.6
1739 #
1740 # Example:
1741 #
1742 # { "event": "DUMP_COMPLETED",
1743 # "data": {"result": {"total": 1090650112, "status": "completed",
1744 # "completed": 1090650112} } }
1745 #
1746 ##
1747 { 'event': 'DUMP_COMPLETED' ,
1748 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1749
1750 ##
1751 # @DumpGuestMemoryCapability:
1752 #
1753 # A list of the available formats for dump-guest-memory
1754 #
1755 # Since: 2.0
1756 ##
1757 { 'struct': 'DumpGuestMemoryCapability',
1758 'data': {
1759 'formats': ['DumpGuestMemoryFormat'] } }
1760
1761 ##
1762 # @query-dump-guest-memory-capability:
1763 #
1764 # Returns the available formats for dump-guest-memory
1765 #
1766 # Returns: A @DumpGuestMemoryCapability object listing available formats for
1767 # dump-guest-memory
1768 #
1769 # Since: 2.0
1770 #
1771 # Example:
1772 #
1773 # -> { "execute": "query-dump-guest-memory-capability" }
1774 # <- { "return": { "formats":
1775 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1776 #
1777 ##
1778 { 'command': 'query-dump-guest-memory-capability',
1779 'returns': 'DumpGuestMemoryCapability' }
1780
1781 ##
1782 # @dump-skeys:
1783 #
1784 # Dump guest's storage keys
1785 #
1786 # @filename: the path to the file to dump to
1787 #
1788 # This command is only supported on s390 architecture.
1789 #
1790 # Since: 2.5
1791 #
1792 # Example:
1793 #
1794 # -> { "execute": "dump-skeys",
1795 # "arguments": { "filename": "/tmp/skeys" } }
1796 # <- { "return": {} }
1797 #
1798 ##
1799 { 'command': 'dump-skeys',
1800 'data': { 'filename': 'str' } }
1801
1802 ##
1803 # @object-add:
1804 #
1805 # Create a QOM object.
1806 #
1807 # @qom-type: the class name for the object to be created
1808 #
1809 # @id: the name of the new object
1810 #
1811 # @props: a dictionary of properties to be passed to the backend
1812 #
1813 # Returns: Nothing on success
1814 # Error if @qom-type is not a valid class name
1815 #
1816 # Since: 2.0
1817 #
1818 # Example:
1819 #
1820 # -> { "execute": "object-add",
1821 # "arguments": { "qom-type": "rng-random", "id": "rng1",
1822 # "props": { "filename": "/dev/hwrng" } } }
1823 # <- { "return": {} }
1824 #
1825 ##
1826 { 'command': 'object-add',
1827 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1828
1829 ##
1830 # @object-del:
1831 #
1832 # Remove a QOM object.
1833 #
1834 # @id: the name of the QOM object to remove
1835 #
1836 # Returns: Nothing on success
1837 # Error if @id is not a valid id for a QOM object
1838 #
1839 # Since: 2.0
1840 #
1841 # Example:
1842 #
1843 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1844 # <- { "return": {} }
1845 #
1846 ##
1847 { 'command': 'object-del', 'data': {'id': 'str'} }
1848
1849 ##
1850 # @getfd:
1851 #
1852 # Receive a file descriptor via SCM rights and assign it a name
1853 #
1854 # @fdname: file descriptor name
1855 #
1856 # Returns: Nothing on success
1857 #
1858 # Since: 0.14.0
1859 #
1860 # Notes: If @fdname already exists, the file descriptor assigned to
1861 # it will be closed and replaced by the received file
1862 # descriptor.
1863 #
1864 # The 'closefd' command can be used to explicitly close the
1865 # file descriptor when it is no longer needed.
1866 #
1867 # Example:
1868 #
1869 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1870 # <- { "return": {} }
1871 #
1872 ##
1873 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1874
1875 ##
1876 # @closefd:
1877 #
1878 # Close a file descriptor previously passed via SCM rights
1879 #
1880 # @fdname: file descriptor name
1881 #
1882 # Returns: Nothing on success
1883 #
1884 # Since: 0.14.0
1885 #
1886 # Example:
1887 #
1888 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1889 # <- { "return": {} }
1890 #
1891 ##
1892 { 'command': 'closefd', 'data': {'fdname': 'str'} }
1893
1894 ##
1895 # @MachineInfo:
1896 #
1897 # Information describing a machine.
1898 #
1899 # @name: the name of the machine
1900 #
1901 # @alias: an alias for the machine name
1902 #
1903 # @is-default: whether the machine is default
1904 #
1905 # @cpu-max: maximum number of CPUs supported by the machine type
1906 # (since 1.5.0)
1907 #
1908 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1909 #
1910 # Since: 1.2.0
1911 ##
1912 { 'struct': 'MachineInfo',
1913 'data': { 'name': 'str', '*alias': 'str',
1914 '*is-default': 'bool', 'cpu-max': 'int',
1915 'hotpluggable-cpus': 'bool'} }
1916
1917 ##
1918 # @query-machines:
1919 #
1920 # Return a list of supported machines
1921 #
1922 # Returns: a list of MachineInfo
1923 #
1924 # Since: 1.2.0
1925 ##
1926 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
1927
1928 ##
1929 # @CpuDefinitionInfo:
1930 #
1931 # Virtual CPU definition.
1932 #
1933 # @name: the name of the CPU definition
1934 #
1935 # @migration-safe: whether a CPU definition can be safely used for
1936 # migration in combination with a QEMU compatibility machine
1937 # when migrating between different QMU versions and between
1938 # hosts with different sets of (hardware or software)
1939 # capabilities. If not provided, information is not available
1940 # and callers should not assume the CPU definition to be
1941 # migration-safe. (since 2.8)
1942 #
1943 # @static: whether a CPU definition is static and will not change depending on
1944 # QEMU version, machine type, machine options and accelerator options.
1945 # A static model is always migration-safe. (since 2.8)
1946 #
1947 # @unavailable-features: List of properties that prevent
1948 # the CPU model from running in the current
1949 # host. (since 2.8)
1950 # @typename: Type name that can be used as argument to @device-list-properties,
1951 # to introspect properties configurable using -cpu or -global.
1952 # (since 2.9)
1953 #
1954 # @unavailable-features is a list of QOM property names that
1955 # represent CPU model attributes that prevent the CPU from running.
1956 # If the QOM property is read-only, that means there's no known
1957 # way to make the CPU model run in the current host. Implementations
1958 # that choose not to provide specific information return the
1959 # property name "type".
1960 # If the property is read-write, it means that it MAY be possible
1961 # to run the CPU model in the current host if that property is
1962 # changed. Management software can use it as hints to suggest or
1963 # choose an alternative for the user, or just to generate meaningful
1964 # error messages explaining why the CPU model can't be used.
1965 # If @unavailable-features is an empty list, the CPU model is
1966 # runnable using the current host and machine-type.
1967 # If @unavailable-features is not present, runnability
1968 # information for the CPU is not available.
1969 #
1970 # Since: 1.2.0
1971 ##
1972 { 'struct': 'CpuDefinitionInfo',
1973 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
1974 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
1975
1976 ##
1977 # @MemoryInfo:
1978 #
1979 # Actual memory information in bytes.
1980 #
1981 # @base-memory: size of "base" memory specified with command line
1982 # option -m.
1983 #
1984 # @plugged-memory: size of memory that can be hot-unplugged. This field
1985 # is omitted if target doesn't support memory hotplug
1986 # (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
1987 #
1988 # Since: 2.11.0
1989 ##
1990 { 'struct': 'MemoryInfo',
1991 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1992
1993 ##
1994 # @query-memory-size-summary:
1995 #
1996 # Return the amount of initially allocated and present hotpluggable (if
1997 # enabled) memory in bytes.
1998 #
1999 # Example:
2000 #
2001 # -> { "execute": "query-memory-size-summary" }
2002 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2003 #
2004 # Since: 2.11.0
2005 ##
2006 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2007
2008 ##
2009 # @query-cpu-definitions:
2010 #
2011 # Return a list of supported virtual CPU definitions
2012 #
2013 # Returns: a list of CpuDefInfo
2014 #
2015 # Since: 1.2.0
2016 ##
2017 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2018
2019 ##
2020 # @CpuModelInfo:
2021 #
2022 # Virtual CPU model.
2023 #
2024 # A CPU model consists of the name of a CPU definition, to which
2025 # delta changes are applied (e.g. features added/removed). Most magic values
2026 # that an architecture might require should be hidden behind the name.
2027 # However, if required, architectures can expose relevant properties.
2028 #
2029 # @name: the name of the CPU definition the model is based on
2030 # @props: a dictionary of QOM properties to be applied
2031 #
2032 # Since: 2.8.0
2033 ##
2034 { 'struct': 'CpuModelInfo',
2035 'data': { 'name': 'str',
2036 '*props': 'any' } }
2037
2038 ##
2039 # @CpuModelExpansionType:
2040 #
2041 # An enumeration of CPU model expansion types.
2042 #
2043 # @static: Expand to a static CPU model, a combination of a static base
2044 # model name and property delta changes. As the static base model will
2045 # never change, the expanded CPU model will be the same, independent of
2046 # independent of QEMU version, machine type, machine options, and
2047 # accelerator options. Therefore, the resulting model can be used by
2048 # tooling without having to specify a compatibility machine - e.g. when
2049 # displaying the "host" model. static CPU models are migration-safe.
2050 #
2051 # @full: Expand all properties. The produced model is not guaranteed to be
2052 # migration-safe, but allows tooling to get an insight and work with
2053 # model details.
2054 #
2055 # Note: When a non-migration-safe CPU model is expanded in static mode, some
2056 # features enabled by the CPU model may be omitted, because they can't be
2057 # implemented by a static CPU model definition (e.g. cache info passthrough and
2058 # PMU passthrough in x86). If you need an accurate representation of the
2059 # features enabled by a non-migration-safe CPU model, use @full. If you need a
2060 # static representation that will keep ABI compatibility even when changing QEMU
2061 # version or machine-type, use @static (but keep in mind that some features may
2062 # be omitted).
2063 #
2064 # Since: 2.8.0
2065 ##
2066 { 'enum': 'CpuModelExpansionType',
2067 'data': [ 'static', 'full' ] }
2068
2069
2070 ##
2071 # @CpuModelExpansionInfo:
2072 #
2073 # The result of a cpu model expansion.
2074 #
2075 # @model: the expanded CpuModelInfo.
2076 #
2077 # Since: 2.8.0
2078 ##
2079 { 'struct': 'CpuModelExpansionInfo',
2080 'data': { 'model': 'CpuModelInfo' } }
2081
2082
2083 ##
2084 # @query-cpu-model-expansion:
2085 #
2086 # Expands a given CPU model (or a combination of CPU model + additional options)
2087 # to different granularities, allowing tooling to get an understanding what a
2088 # specific CPU model looks like in QEMU under a certain configuration.
2089 #
2090 # This interface can be used to query the "host" CPU model.
2091 #
2092 # The data returned by this command may be affected by:
2093 #
2094 # * QEMU version: CPU models may look different depending on the QEMU version.
2095 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2096 # * machine-type: CPU model may look different depending on the machine-type.
2097 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2098 # * machine options (including accelerator): in some architectures, CPU models
2099 # may look different depending on machine and accelerator options. (Except for
2100 # CPU models reported as "static" in query-cpu-definitions.)
2101 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2102 # global properties may affect expansion of CPU models. Using
2103 # query-cpu-model-expansion while using these is not advised.
2104 #
2105 # Some architectures may not support all expansion types. s390x supports
2106 # "full" and "static".
2107 #
2108 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2109 # not supported, if the model cannot be expanded, if the model contains
2110 # an unknown CPU definition name, unknown properties or properties
2111 # with a wrong type. Also returns an error if an expansion type is
2112 # not supported.
2113 #
2114 # Since: 2.8.0
2115 ##
2116 { 'command': 'query-cpu-model-expansion',
2117 'data': { 'type': 'CpuModelExpansionType',
2118 'model': 'CpuModelInfo' },
2119 'returns': 'CpuModelExpansionInfo' }
2120
2121 ##
2122 # @CpuModelCompareResult:
2123 #
2124 # An enumeration of CPU model comparison results. The result is usually
2125 # calculated using e.g. CPU features or CPU generations.
2126 #
2127 # @incompatible: If model A is incompatible to model B, model A is not
2128 # guaranteed to run where model B runs and the other way around.
2129 #
2130 # @identical: If model A is identical to model B, model A is guaranteed to run
2131 # where model B runs and the other way around.
2132 #
2133 # @superset: If model A is a superset of model B, model B is guaranteed to run
2134 # where model A runs. There are no guarantees about the other way.
2135 #
2136 # @subset: If model A is a subset of model B, model A is guaranteed to run
2137 # where model B runs. There are no guarantees about the other way.
2138 #
2139 # Since: 2.8.0
2140 ##
2141 { 'enum': 'CpuModelCompareResult',
2142 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2143
2144 ##
2145 # @CpuModelCompareInfo:
2146 #
2147 # The result of a CPU model comparison.
2148 #
2149 # @result: The result of the compare operation.
2150 # @responsible-properties: List of properties that led to the comparison result
2151 # not being identical.
2152 #
2153 # @responsible-properties is a list of QOM property names that led to
2154 # both CPUs not being detected as identical. For identical models, this
2155 # list is empty.
2156 # If a QOM property is read-only, that means there's no known way to make the
2157 # CPU models identical. If the special property name "type" is included, the
2158 # models are by definition not identical and cannot be made identical.
2159 #
2160 # Since: 2.8.0
2161 ##
2162 { 'struct': 'CpuModelCompareInfo',
2163 'data': {'result': 'CpuModelCompareResult',
2164 'responsible-properties': ['str']
2165 }
2166 }
2167
2168 ##
2169 # @query-cpu-model-comparison:
2170 #
2171 # Compares two CPU models, returning how they compare in a specific
2172 # configuration. The results indicates how both models compare regarding
2173 # runnability. This result can be used by tooling to make decisions if a
2174 # certain CPU model will run in a certain configuration or if a compatible
2175 # CPU model has to be created by baselining.
2176 #
2177 # Usually, a CPU model is compared against the maximum possible CPU model
2178 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
2179 # model is identical or a subset, it will run in that configuration.
2180 #
2181 # The result returned by this command may be affected by:
2182 #
2183 # * QEMU version: CPU models may look different depending on the QEMU version.
2184 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2185 # * machine-type: CPU model may look different depending on the machine-type.
2186 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2187 # * machine options (including accelerator): in some architectures, CPU models
2188 # may look different depending on machine and accelerator options. (Except for
2189 # CPU models reported as "static" in query-cpu-definitions.)
2190 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2191 # global properties may affect expansion of CPU models. Using
2192 # query-cpu-model-expansion while using these is not advised.
2193 #
2194 # Some architectures may not support comparing CPU models. s390x supports
2195 # comparing CPU models.
2196 #
2197 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2198 # not supported, if a model cannot be used, if a model contains
2199 # an unknown cpu definition name, unknown properties or properties
2200 # with wrong types.
2201 #
2202 # Since: 2.8.0
2203 ##
2204 { 'command': 'query-cpu-model-comparison',
2205 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2206 'returns': 'CpuModelCompareInfo' }
2207
2208 ##
2209 # @CpuModelBaselineInfo:
2210 #
2211 # The result of a CPU model baseline.
2212 #
2213 # @model: the baselined CpuModelInfo.
2214 #
2215 # Since: 2.8.0
2216 ##
2217 { 'struct': 'CpuModelBaselineInfo',
2218 'data': { 'model': 'CpuModelInfo' } }
2219
2220 ##
2221 # @query-cpu-model-baseline:
2222 #
2223 # Baseline two CPU models, creating a compatible third model. The created
2224 # model will always be a static, migration-safe CPU model (see "static"
2225 # CPU model expansion for details).
2226 #
2227 # This interface can be used by tooling to create a compatible CPU model out
2228 # two CPU models. The created CPU model will be identical to or a subset of
2229 # both CPU models when comparing them. Therefore, the created CPU model is
2230 # guaranteed to run where the given CPU models run.
2231 #
2232 # The result returned by this command may be affected by:
2233 #
2234 # * QEMU version: CPU models may look different depending on the QEMU version.
2235 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2236 # * machine-type: CPU model may look different depending on the machine-type.
2237 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2238 # * machine options (including accelerator): in some architectures, CPU models
2239 # may look different depending on machine and accelerator options. (Except for
2240 # CPU models reported as "static" in query-cpu-definitions.)
2241 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2242 # global properties may affect expansion of CPU models. Using
2243 # query-cpu-model-expansion while using these is not advised.
2244 #
2245 # Some architectures may not support baselining CPU models. s390x supports
2246 # baselining CPU models.
2247 #
2248 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2249 # not supported, if a model cannot be used, if a model contains
2250 # an unknown cpu definition name, unknown properties or properties
2251 # with wrong types.
2252 #
2253 # Since: 2.8.0
2254 ##
2255 { 'command': 'query-cpu-model-baseline',
2256 'data': { 'modela': 'CpuModelInfo',
2257 'modelb': 'CpuModelInfo' },
2258 'returns': 'CpuModelBaselineInfo' }
2259
2260 ##
2261 # @AddfdInfo:
2262 #
2263 # Information about a file descriptor that was added to an fd set.
2264 #
2265 # @fdset-id: The ID of the fd set that @fd was added to.
2266 #
2267 # @fd: The file descriptor that was received via SCM rights and
2268 # added to the fd set.
2269 #
2270 # Since: 1.2.0
2271 ##
2272 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2273
2274 ##
2275 # @add-fd:
2276 #
2277 # Add a file descriptor, that was passed via SCM rights, to an fd set.
2278 #
2279 # @fdset-id: The ID of the fd set to add the file descriptor to.
2280 #
2281 # @opaque: A free-form string that can be used to describe the fd.
2282 #
2283 # Returns: @AddfdInfo on success
2284 #
2285 # If file descriptor was not received, FdNotSupplied
2286 #
2287 # If @fdset-id is a negative value, InvalidParameterValue
2288 #
2289 # Notes: The list of fd sets is shared by all monitor connections.
2290 #
2291 # If @fdset-id is not specified, a new fd set will be created.
2292 #
2293 # Since: 1.2.0
2294 #
2295 # Example:
2296 #
2297 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2298 # <- { "return": { "fdset-id": 1, "fd": 3 } }
2299 #
2300 ##
2301 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2302 'returns': 'AddfdInfo' }
2303
2304 ##
2305 # @remove-fd:
2306 #
2307 # Remove a file descriptor from an fd set.
2308 #
2309 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
2310 #
2311 # @fd: The file descriptor that is to be removed.
2312 #
2313 # Returns: Nothing on success
2314 # If @fdset-id or @fd is not found, FdNotFound
2315 #
2316 # Since: 1.2.0
2317 #
2318 # Notes: The list of fd sets is shared by all monitor connections.
2319 #
2320 # If @fd is not specified, all file descriptors in @fdset-id
2321 # will be removed.
2322 #
2323 # Example:
2324 #
2325 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2326 # <- { "return": {} }
2327 #
2328 ##
2329 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2330
2331 ##
2332 # @FdsetFdInfo:
2333 #
2334 # Information about a file descriptor that belongs to an fd set.
2335 #
2336 # @fd: The file descriptor value.
2337 #
2338 # @opaque: A free-form string that can be used to describe the fd.
2339 #
2340 # Since: 1.2.0
2341 ##
2342 { 'struct': 'FdsetFdInfo',
2343 'data': {'fd': 'int', '*opaque': 'str'} }
2344
2345 ##
2346 # @FdsetInfo:
2347 #
2348 # Information about an fd set.
2349 #
2350 # @fdset-id: The ID of the fd set.
2351 #
2352 # @fds: A list of file descriptors that belong to this fd set.
2353 #
2354 # Since: 1.2.0
2355 ##
2356 { 'struct': 'FdsetInfo',
2357 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2358
2359 ##
2360 # @query-fdsets:
2361 #
2362 # Return information describing all fd sets.
2363 #
2364 # Returns: A list of @FdsetInfo
2365 #
2366 # Since: 1.2.0
2367 #
2368 # Note: The list of fd sets is shared by all monitor connections.
2369 #
2370 # Example:
2371 #
2372 # -> { "execute": "query-fdsets" }
2373 # <- { "return": [
2374 # {
2375 # "fds": [
2376 # {
2377 # "fd": 30,
2378 # "opaque": "rdonly:/path/to/file"
2379 # },
2380 # {
2381 # "fd": 24,
2382 # "opaque": "rdwr:/path/to/file"
2383 # }
2384 # ],
2385 # "fdset-id": 1
2386 # },
2387 # {
2388 # "fds": [
2389 # {
2390 # "fd": 28
2391 # },
2392 # {
2393 # "fd": 29
2394 # }
2395 # ],
2396 # "fdset-id": 0
2397 # }
2398 # ]
2399 # }
2400 #
2401 ##
2402 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2403
2404 ##
2405 # @TargetInfo:
2406 #
2407 # Information describing the QEMU target.
2408 #
2409 # @arch: the target architecture (eg "x86_64", "i386", etc)
2410 #
2411 # Since: 1.2.0
2412 ##
2413 { 'struct': 'TargetInfo',
2414 'data': { 'arch': 'str' } }
2415
2416 ##
2417 # @query-target:
2418 #
2419 # Return information about the target for this QEMU
2420 #
2421 # Returns: TargetInfo
2422 #
2423 # Since: 1.2.0
2424 ##
2425 { 'command': 'query-target', 'returns': 'TargetInfo' }
2426
2427 ##
2428 # @AcpiTableOptions:
2429 #
2430 # Specify an ACPI table on the command line to load.
2431 #
2432 # At most one of @file and @data can be specified. The list of files specified
2433 # by any one of them is loaded and concatenated in order. If both are omitted,
2434 # @data is implied.
2435 #
2436 # Other fields / optargs can be used to override fields of the generic ACPI
2437 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
2438 # Description Table Header. If a header field is not overridden, then the
2439 # corresponding value from the concatenated blob is used (in case of @file), or
2440 # it is filled in with a hard-coded value (in case of @data).
2441 #
2442 # String fields are copied into the matching ACPI member from lowest address
2443 # upwards, and silently truncated / NUL-padded to length.
2444 #
2445 # @sig: table signature / identifier (4 bytes)
2446 #
2447 # @rev: table revision number (dependent on signature, 1 byte)
2448 #
2449 # @oem_id: OEM identifier (6 bytes)
2450 #
2451 # @oem_table_id: OEM table identifier (8 bytes)
2452 #
2453 # @oem_rev: OEM-supplied revision number (4 bytes)
2454 #
2455 # @asl_compiler_id: identifier of the utility that created the table
2456 # (4 bytes)
2457 #
2458 # @asl_compiler_rev: revision number of the utility that created the
2459 # table (4 bytes)
2460 #
2461 # @file: colon (:) separated list of pathnames to load and
2462 # concatenate as table data. The resultant binary blob is expected to
2463 # have an ACPI table header. At least one file is required. This field
2464 # excludes @data.
2465 #
2466 # @data: colon (:) separated list of pathnames to load and
2467 # concatenate as table data. The resultant binary blob must not have an
2468 # ACPI table header. At least one file is required. This field excludes
2469 # @file.
2470 #
2471 # Since: 1.5
2472 ##
2473 { 'struct': 'AcpiTableOptions',
2474 'data': {
2475 '*sig': 'str',
2476 '*rev': 'uint8',
2477 '*oem_id': 'str',
2478 '*oem_table_id': 'str',
2479 '*oem_rev': 'uint32',
2480 '*asl_compiler_id': 'str',
2481 '*asl_compiler_rev': 'uint32',
2482 '*file': 'str',
2483 '*data': 'str' }}
2484
2485 ##
2486 # @CommandLineParameterType:
2487 #
2488 # Possible types for an option parameter.
2489 #
2490 # @string: accepts a character string
2491 #
2492 # @boolean: accepts "on" or "off"
2493 #
2494 # @number: accepts a number
2495 #
2496 # @size: accepts a number followed by an optional suffix (K)ilo,
2497 # (M)ega, (G)iga, (T)era
2498 #
2499 # Since: 1.5
2500 ##
2501 { 'enum': 'CommandLineParameterType',
2502 'data': ['string', 'boolean', 'number', 'size'] }
2503
2504 ##
2505 # @CommandLineParameterInfo:
2506 #
2507 # Details about a single parameter of a command line option.
2508 #
2509 # @name: parameter name
2510 #
2511 # @type: parameter @CommandLineParameterType
2512 #
2513 # @help: human readable text string, not suitable for parsing.
2514 #
2515 # @default: default value string (since 2.1)
2516 #
2517 # Since: 1.5
2518 ##
2519 { 'struct': 'CommandLineParameterInfo',
2520 'data': { 'name': 'str',
2521 'type': 'CommandLineParameterType',
2522 '*help': 'str',
2523 '*default': 'str' } }
2524
2525 ##
2526 # @CommandLineOptionInfo:
2527 #
2528 # Details about a command line option, including its list of parameter details
2529 #
2530 # @option: option name
2531 #
2532 # @parameters: an array of @CommandLineParameterInfo
2533 #
2534 # Since: 1.5
2535 ##
2536 { 'struct': 'CommandLineOptionInfo',
2537 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2538
2539 ##
2540 # @query-command-line-options:
2541 #
2542 # Query command line option schema.
2543 #
2544 # @option: option name
2545 #
2546 # Returns: list of @CommandLineOptionInfo for all options (or for the given
2547 # @option). Returns an error if the given @option doesn't exist.
2548 #
2549 # Since: 1.5
2550 #
2551 # Example:
2552 #
2553 # -> { "execute": "query-command-line-options",
2554 # "arguments": { "option": "option-rom" } }
2555 # <- { "return": [
2556 # {
2557 # "parameters": [
2558 # {
2559 # "name": "romfile",
2560 # "type": "string"
2561 # },
2562 # {
2563 # "name": "bootindex",
2564 # "type": "number"
2565 # }
2566 # ],
2567 # "option": "option-rom"
2568 # }
2569 # ]
2570 # }
2571 #
2572 ##
2573 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
2574 'returns': ['CommandLineOptionInfo'] }
2575
2576 ##
2577 # @X86CPURegister32:
2578 #
2579 # A X86 32-bit register
2580 #
2581 # Since: 1.5
2582 ##
2583 { 'enum': 'X86CPURegister32',
2584 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2585
2586 ##
2587 # @X86CPUFeatureWordInfo:
2588 #
2589 # Information about a X86 CPU feature word
2590 #
2591 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2592 #
2593 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2594 # feature word
2595 #
2596 # @cpuid-register: Output register containing the feature bits
2597 #
2598 # @features: value of output register, containing the feature bits
2599 #
2600 # Since: 1.5
2601 ##
2602 { 'struct': 'X86CPUFeatureWordInfo',
2603 'data': { 'cpuid-input-eax': 'int',
2604 '*cpuid-input-ecx': 'int',
2605 'cpuid-register': 'X86CPURegister32',
2606 'features': 'int' } }
2607
2608 ##
2609 # @DummyForceArrays:
2610 #
2611 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2612 #
2613 # Since: 2.5
2614 ##
2615 { 'struct': 'DummyForceArrays',
2616 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2617
2618
2619 ##
2620 # @NumaOptionsType:
2621 #
2622 # @node: NUMA nodes configuration
2623 #
2624 # @dist: NUMA distance configuration (since 2.10)
2625 #
2626 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
2627 #
2628 # Since: 2.1
2629 ##
2630 { 'enum': 'NumaOptionsType',
2631 'data': [ 'node', 'dist', 'cpu' ] }
2632
2633 ##
2634 # @NumaOptions:
2635 #
2636 # A discriminated record of NUMA options. (for OptsVisitor)
2637 #
2638 # Since: 2.1
2639 ##
2640 { 'union': 'NumaOptions',
2641 'base': { 'type': 'NumaOptionsType' },
2642 'discriminator': 'type',
2643 'data': {
2644 'node': 'NumaNodeOptions',
2645 'dist': 'NumaDistOptions',
2646 'cpu': 'NumaCpuOptions' }}
2647
2648 ##
2649 # @NumaNodeOptions:
2650 #
2651 # Create a guest NUMA node. (for OptsVisitor)
2652 #
2653 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2654 #
2655 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2656 # if omitted)
2657 #
2658 # @mem: memory size of this node; mutually exclusive with @memdev.
2659 # Equally divide total memory among nodes if both @mem and @memdev are
2660 # omitted.
2661 #
2662 # @memdev: memory backend object. If specified for one node,
2663 # it must be specified for all nodes.
2664 #
2665 # Since: 2.1
2666 ##
2667 { 'struct': 'NumaNodeOptions',
2668 'data': {
2669 '*nodeid': 'uint16',
2670 '*cpus': ['uint16'],
2671 '*mem': 'size',
2672 '*memdev': 'str' }}
2673
2674 ##
2675 # @NumaDistOptions:
2676 #
2677 # Set the distance between 2 NUMA nodes.
2678 #
2679 # @src: source NUMA node.
2680 #
2681 # @dst: destination NUMA node.
2682 #
2683 # @val: NUMA distance from source node to destination node.
2684 # When a node is unreachable from another node, set the distance
2685 # between them to 255.
2686 #
2687 # Since: 2.10
2688 ##
2689 { 'struct': 'NumaDistOptions',
2690 'data': {
2691 'src': 'uint16',
2692 'dst': 'uint16',
2693 'val': 'uint8' }}
2694
2695 ##
2696 # @NumaCpuOptions:
2697 #
2698 # Option "-numa cpu" overrides default cpu to node mapping.
2699 # It accepts the same set of cpu properties as returned by
2700 # query-hotpluggable-cpus[].props, where node-id could be used to
2701 # override default node mapping.
2702 #
2703 # Since: 2.10
2704 ##
2705 { 'struct': 'NumaCpuOptions',
2706 'base': 'CpuInstanceProperties',
2707 'data' : {} }
2708
2709 ##
2710 # @HostMemPolicy:
2711 #
2712 # Host memory policy types
2713 #
2714 # @default: restore default policy, remove any nondefault policy
2715 #
2716 # @preferred: set the preferred host nodes for allocation
2717 #
2718 # @bind: a strict policy that restricts memory allocation to the
2719 # host nodes specified
2720 #
2721 # @interleave: memory allocations are interleaved across the set
2722 # of host nodes specified
2723 #
2724 # Since: 2.1
2725 ##
2726 { 'enum': 'HostMemPolicy',
2727 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2728
2729 ##
2730 # @Memdev:
2731 #
2732 # Information about memory backend
2733 #
2734 # @id: backend's ID if backend has 'id' property (since 2.9)
2735 #
2736 # @size: memory backend size
2737 #
2738 # @merge: enables or disables memory merge support
2739 #
2740 # @dump: includes memory backend's memory in a core dump or not
2741 #
2742 # @prealloc: enables or disables memory preallocation
2743 #
2744 # @host-nodes: host nodes for its memory policy
2745 #
2746 # @policy: memory policy of memory backend
2747 #
2748 # Since: 2.1
2749 ##
2750 { 'struct': 'Memdev',
2751 'data': {
2752 '*id': 'str',
2753 'size': 'size',
2754 'merge': 'bool',
2755 'dump': 'bool',
2756 'prealloc': 'bool',
2757 'host-nodes': ['uint16'],
2758 'policy': 'HostMemPolicy' }}
2759
2760 ##
2761 # @query-memdev:
2762 #
2763 # Returns information for all memory backends.
2764 #
2765 # Returns: a list of @Memdev.
2766 #
2767 # Since: 2.1
2768 #
2769 # Example:
2770 #
2771 # -> { "execute": "query-memdev" }
2772 # <- { "return": [
2773 # {
2774 # "id": "mem1",
2775 # "size": 536870912,
2776 # "merge": false,
2777 # "dump": true,
2778 # "prealloc": false,
2779 # "host-nodes": [0, 1],
2780 # "policy": "bind"
2781 # },
2782 # {
2783 # "size": 536870912,
2784 # "merge": false,
2785 # "dump": true,
2786 # "prealloc": true,
2787 # "host-nodes": [2, 3],
2788 # "policy": "preferred"
2789 # }
2790 # ]
2791 # }
2792 #
2793 ##
2794 { 'command': 'query-memdev', 'returns': ['Memdev'] }
2795
2796 ##
2797 # @PCDIMMDeviceInfo:
2798 #
2799 # PCDIMMDevice state information
2800 #
2801 # @id: device's ID
2802 #
2803 # @addr: physical address, where device is mapped
2804 #
2805 # @size: size of memory that the device provides
2806 #
2807 # @slot: slot number at which device is plugged in
2808 #
2809 # @node: NUMA node number where device is plugged in
2810 #
2811 # @memdev: memory backend linked with device
2812 #
2813 # @hotplugged: true if device was hotplugged
2814 #
2815 # @hotpluggable: true if device if could be added/removed while machine is running
2816 #
2817 # Since: 2.1
2818 ##
2819 { 'struct': 'PCDIMMDeviceInfo',
2820 'data': { '*id': 'str',
2821 'addr': 'int',
2822 'size': 'int',
2823 'slot': 'int',
2824 'node': 'int',
2825 'memdev': 'str',
2826 'hotplugged': 'bool',
2827 'hotpluggable': 'bool'
2828 }
2829 }
2830
2831 ##
2832 # @MemoryDeviceInfo:
2833 #
2834 # Union containing information about a memory device
2835 #
2836 # Since: 2.1
2837 ##
2838 { 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
2839
2840 ##
2841 # @query-memory-devices:
2842 #
2843 # Lists available memory devices and their state
2844 #
2845 # Since: 2.1
2846 #
2847 # Example:
2848 #
2849 # -> { "execute": "query-memory-devices" }
2850 # <- { "return": [ { "data":
2851 # { "addr": 5368709120,
2852 # "hotpluggable": true,
2853 # "hotplugged": true,
2854 # "id": "d1",
2855 # "memdev": "/objects/memX",
2856 # "node": 0,
2857 # "size": 1073741824,
2858 # "slot": 0},
2859 # "type": "dimm"
2860 # } ] }
2861 #
2862 ##
2863 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2864
2865 ##
2866 # @MEM_UNPLUG_ERROR:
2867 #
2868 # Emitted when memory hot unplug error occurs.
2869 #
2870 # @device: device name
2871 #
2872 # @msg: Informative message
2873 #
2874 # Since: 2.4
2875 #
2876 # Example:
2877 #
2878 # <- { "event": "MEM_UNPLUG_ERROR"
2879 # "data": { "device": "dimm1",
2880 # "msg": "acpi: device unplug for unsupported device"
2881 # },
2882 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2883 #
2884 ##
2885 { 'event': 'MEM_UNPLUG_ERROR',
2886 'data': { 'device': 'str', 'msg': 'str' } }
2887
2888 ##
2889 # @ACPISlotType:
2890 #
2891 # @DIMM: memory slot
2892 # @CPU: logical CPU slot (since 2.7)
2893 ##
2894 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2895
2896 ##
2897 # @ACPIOSTInfo:
2898 #
2899 # OSPM Status Indication for a device
2900 # For description of possible values of @source and @status fields
2901 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2902 #
2903 # @device: device ID associated with slot
2904 #
2905 # @slot: slot ID, unique per slot of a given @slot-type
2906 #
2907 # @slot-type: type of the slot
2908 #
2909 # @source: an integer containing the source event
2910 #
2911 # @status: an integer containing the status code
2912 #
2913 # Since: 2.1
2914 ##
2915 { 'struct': 'ACPIOSTInfo',
2916 'data' : { '*device': 'str',
2917 'slot': 'str',
2918 'slot-type': 'ACPISlotType',
2919 'source': 'int',
2920 'status': 'int' } }
2921
2922 ##
2923 # @query-acpi-ospm-status:
2924 #
2925 # Return a list of ACPIOSTInfo for devices that support status
2926 # reporting via ACPI _OST method.
2927 #
2928 # Since: 2.1
2929 #
2930 # Example:
2931 #
2932 # -> { "execute": "query-acpi-ospm-status" }
2933 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
2934 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
2935 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
2936 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
2937 # ]}
2938 #
2939 ##
2940 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
2941
2942 ##
2943 # @ACPI_DEVICE_OST:
2944 #
2945 # Emitted when guest executes ACPI _OST method.
2946 #
2947 # @info: OSPM Status Indication
2948 #
2949 # Since: 2.1
2950 #
2951 # Example:
2952 #
2953 # <- { "event": "ACPI_DEVICE_OST",
2954 # "data": { "device": "d1", "slot": "0",
2955 # "slot-type": "DIMM", "source": 1, "status": 0 } }
2956 #
2957 ##
2958 { 'event': 'ACPI_DEVICE_OST',
2959 'data': { 'info': 'ACPIOSTInfo' } }
2960
2961 ##
2962 # @rtc-reset-reinjection:
2963 #
2964 # This command will reset the RTC interrupt reinjection backlog.
2965 # Can be used if another mechanism to synchronize guest time
2966 # is in effect, for example QEMU guest agent's guest-set-time
2967 # command.
2968 #
2969 # Since: 2.1
2970 #
2971 # Example:
2972 #
2973 # -> { "execute": "rtc-reset-reinjection" }
2974 # <- { "return": {} }
2975 #
2976 ##
2977 { 'command': 'rtc-reset-reinjection' }
2978
2979 ##
2980 # @RTC_CHANGE:
2981 #
2982 # Emitted when the guest changes the RTC time.
2983 #
2984 # @offset: offset between base RTC clock (as specified by -rtc base), and
2985 # new RTC clock value
2986 #
2987 # Note: This event is rate-limited.
2988 #
2989 # Since: 0.13.0
2990 #
2991 # Example:
2992 #
2993 # <- { "event": "RTC_CHANGE",
2994 # "data": { "offset": 78 },
2995 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
2996 #
2997 ##
2998 { 'event': 'RTC_CHANGE',
2999 'data': { 'offset': 'int' } }
3000
3001 ##
3002 # @ReplayMode:
3003 #
3004 # Mode of the replay subsystem.
3005 #
3006 # @none: normal execution mode. Replay or record are not enabled.
3007 #
3008 # @record: record mode. All non-deterministic data is written into the
3009 # replay log.
3010 #
3011 # @play: replay mode. Non-deterministic data required for system execution
3012 # is read from the log.
3013 #
3014 # Since: 2.5
3015 ##
3016 { 'enum': 'ReplayMode',
3017 'data': [ 'none', 'record', 'play' ] }
3018
3019 ##
3020 # @xen-load-devices-state:
3021 #
3022 # Load the state of all devices from file. The RAM and the block devices
3023 # of the VM are not loaded by this command.
3024 #
3025 # @filename: the file to load the state of the devices from as binary
3026 # data. See xen-save-devices-state.txt for a description of the binary
3027 # format.
3028 #
3029 # Since: 2.7
3030 #
3031 # Example:
3032 #
3033 # -> { "execute": "xen-load-devices-state",
3034 # "arguments": { "filename": "/tmp/resume" } }
3035 # <- { "return": {} }
3036 #
3037 ##
3038 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3039
3040 ##
3041 # @GICCapability:
3042 #
3043 # The struct describes capability for a specific GIC (Generic
3044 # Interrupt Controller) version. These bits are not only decided by
3045 # QEMU/KVM software version, but also decided by the hardware that
3046 # the program is running upon.
3047 #
3048 # @version: version of GIC to be described. Currently, only 2 and 3
3049 # are supported.
3050 #
3051 # @emulated: whether current QEMU/hardware supports emulated GIC
3052 # device in user space.
3053 #
3054 # @kernel: whether current QEMU/hardware supports hardware
3055 # accelerated GIC device in kernel.
3056 #
3057 # Since: 2.6
3058 ##
3059 { 'struct': 'GICCapability',
3060 'data': { 'version': 'int',
3061 'emulated': 'bool',
3062 'kernel': 'bool' } }
3063
3064 ##
3065 # @query-gic-capabilities:
3066 #
3067 # This command is ARM-only. It will return a list of GICCapability
3068 # objects that describe its capability bits.
3069 #
3070 # Returns: a list of GICCapability objects.
3071 #
3072 # Since: 2.6
3073 #
3074 # Example:
3075 #
3076 # -> { "execute": "query-gic-capabilities" }
3077 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3078 # { "version": 3, "emulated": false, "kernel": true } ] }
3079 #
3080 ##
3081 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3082
3083 ##
3084 # @CpuInstanceProperties:
3085 #
3086 # List of properties to be used for hotplugging a CPU instance,
3087 # it should be passed by management with device_add command when
3088 # a CPU is being hotplugged.
3089 #
3090 # @node-id: NUMA node ID the CPU belongs to
3091 # @socket-id: socket number within node/board the CPU belongs to
3092 # @core-id: core number within socket the CPU belongs to
3093 # @thread-id: thread number within core the CPU belongs to
3094 #
3095 # Note: currently there are 4 properties that could be present
3096 # but management should be prepared to pass through other
3097 # properties with device_add command to allow for future
3098 # interface extension. This also requires the filed names to be kept in
3099 # sync with the properties passed to -device/device_add.
3100 #
3101 # Since: 2.7
3102 ##
3103 { 'struct': 'CpuInstanceProperties',
3104 'data': { '*node-id': 'int',
3105 '*socket-id': 'int',
3106 '*core-id': 'int',
3107 '*thread-id': 'int'
3108 }
3109 }
3110
3111 ##
3112 # @HotpluggableCPU:
3113 #
3114 # @type: CPU object type for usage with device_add command
3115 # @props: list of properties to be used for hotplugging CPU
3116 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3117 # @qom-path: link to existing CPU object if CPU is present or
3118 # omitted if CPU is not present.
3119 #
3120 # Since: 2.7
3121 ##
3122 { 'struct': 'HotpluggableCPU',
3123 'data': { 'type': 'str',
3124 'vcpus-count': 'int',
3125 'props': 'CpuInstanceProperties',
3126 '*qom-path': 'str'
3127 }
3128 }
3129
3130 ##
3131 # @query-hotpluggable-cpus:
3132 #
3133 # Returns: a list of HotpluggableCPU objects.
3134 #
3135 # Since: 2.7
3136 #
3137 # Example:
3138 #
3139 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3140 #
3141 # -> { "execute": "query-hotpluggable-cpus" }
3142 # <- {"return": [
3143 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3144 # "vcpus-count": 1 },
3145 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3146 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3147 # ]}'
3148 #
3149 # For pc machine type started with -smp 1,maxcpus=2:
3150 #
3151 # -> { "execute": "query-hotpluggable-cpus" }
3152 # <- {"return": [
3153 # {
3154 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3155 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3156 # },
3157 # {
3158 # "qom-path": "/machine/unattached/device[0]",
3159 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3160 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3161 # }
3162 # ]}
3163 #
3164 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3165 # (Since: 2.11):
3166 #
3167 # -> { "execute": "query-hotpluggable-cpus" }
3168 # <- {"return": [
3169 # {
3170 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3171 # "props": { "core-id": 1 }
3172 # },
3173 # {
3174 # "qom-path": "/machine/unattached/device[0]",
3175 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3176 # "props": { "core-id": 0 }
3177 # }
3178 # ]}
3179 #
3180 ##
3181 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
3182
3183 ##
3184 # @GuidInfo:
3185 #
3186 # GUID information.
3187 #
3188 # @guid: the globally unique identifier
3189 #
3190 # Since: 2.9
3191 ##
3192 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3193
3194 ##
3195 # @query-vm-generation-id:
3196 #
3197 # Show Virtual Machine Generation ID
3198 #
3199 # Since: 2.9
3200 ##
3201 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }