]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/misc.json
Merge remote-tracking branch 'remotes/otubo/tags/pull-seccomp-20180926' into staging
[mirror_qemu.git] / qapi / misc.json
1 # -*- Mode: Python -*-
2 #
3
4 ##
5 # = Miscellanea
6 ##
7
8 { 'include': 'common.json' }
9
10 ##
11 # @qmp_capabilities:
12 #
13 # Enable QMP capabilities.
14 #
15 # Arguments:
16 #
17 # @enable: An optional list of QMPCapability values to enable. The
18 # client must not enable any capability that is not
19 # mentioned in the QMP greeting message. If the field is not
20 # provided, it means no QMP capabilities will be enabled.
21 # (since 2.12)
22 #
23 # Example:
24 #
25 # -> { "execute": "qmp_capabilities",
26 # "arguments": { "enable": [ "oob" ] } }
27 # <- { "return": {} }
28 #
29 # Notes: This command is valid exactly when first connecting: it must be
30 # issued before any other command will be accepted, and will fail once the
31 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32 #
33 # The QMP client needs to explicitly enable QMP capabilities, otherwise
34 # all the QMP capabilities will be turned off by default.
35 #
36 # Since: 0.13
37 #
38 ##
39 { 'command': 'qmp_capabilities',
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
42
43 ##
44 # @QMPCapability:
45 #
46 # Enumeration of capabilities to be advertised during initial client
47 # connection, used for agreeing on particular QMP extension behaviors.
48 #
49 # @oob: QMP ability to support out-of-band requests.
50 # (Please refer to qmp-spec.txt for more information on OOB)
51 #
52 # Since: 2.12
53 #
54 ##
55 { 'enum': 'QMPCapability',
56 'data': [ 'oob' ] }
57
58 ##
59 # @VersionTriple:
60 #
61 # A three-part version number.
62 #
63 # @major: The major version number.
64 #
65 # @minor: The minor version number.
66 #
67 # @micro: The micro version number.
68 #
69 # Since: 2.4
70 ##
71 { 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75 ##
76 # @VersionInfo:
77 #
78 # A description of QEMU's version.
79 #
80 # @qemu: The version of QEMU. By current convention, a micro
81 # version of 50 signifies a development branch. A micro version
82 # greater than or equal to 90 signifies a release candidate for
83 # the next minor version. A micro version of less than 50
84 # signifies a stable release.
85 #
86 # @package: QEMU will always set this field to an empty string. Downstream
87 # versions of QEMU should set this to a non-empty string. The
88 # exact format depends on the downstream however it highly
89 # recommended that a unique name is used.
90 #
91 # Since: 0.14.0
92 ##
93 { 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96 ##
97 # @query-version:
98 #
99 # Returns the current version of QEMU.
100 #
101 # Returns: A @VersionInfo object describing the current version of QEMU.
102 #
103 # Since: 0.14.0
104 #
105 # Example:
106 #
107 # -> { "execute": "query-version" }
108 # <- {
109 # "return":{
110 # "qemu":{
111 # "major":0,
112 # "minor":11,
113 # "micro":5
114 # },
115 # "package":""
116 # }
117 # }
118 #
119 ##
120 { 'command': 'query-version', 'returns': 'VersionInfo',
121 'allow-preconfig': true }
122
123 ##
124 # @CommandInfo:
125 #
126 # Information about a QMP command
127 #
128 # @name: The command name
129 #
130 # Since: 0.14.0
131 ##
132 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134 ##
135 # @query-commands:
136 #
137 # Return a list of supported QMP commands by this server
138 #
139 # Returns: A list of @CommandInfo for all supported commands
140 #
141 # Since: 0.14.0
142 #
143 # Example:
144 #
145 # -> { "execute": "query-commands" }
146 # <- {
147 # "return":[
148 # {
149 # "name":"query-balloon"
150 # },
151 # {
152 # "name":"system_powerdown"
153 # }
154 # ]
155 # }
156 #
157 # Note: This example has been shortened as the real response is too long.
158 #
159 ##
160 { 'command': 'query-commands', 'returns': ['CommandInfo'],
161 'allow-preconfig': true }
162
163 ##
164 # @LostTickPolicy:
165 #
166 # Policy for handling lost ticks in timer devices.
167 #
168 # @discard: throw away the missed tick(s) and continue with future injection
169 # normally. Guest time may be delayed, unless the OS has explicit
170 # handling of lost ticks
171 #
172 # @delay: continue to deliver ticks at the normal rate. Guest time will be
173 # delayed due to the late tick
174 #
175 # @merge: merge the missed tick(s) into one tick and inject. Guest time
176 # may be delayed, depending on how the OS reacts to the merging
177 # of ticks
178 #
179 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
180 # guest time should not be delayed once catchup is complete.
181 #
182 # Since: 2.0
183 ##
184 { 'enum': 'LostTickPolicy',
185 'data': ['discard', 'delay', 'merge', 'slew' ] }
186
187 ##
188 # @add_client:
189 #
190 # Allow client connections for VNC, Spice and socket based
191 # character devices to be passed in to QEMU via SCM_RIGHTS.
192 #
193 # @protocol: protocol name. Valid names are "vnc", "spice" or the
194 # name of a character device (eg. from -chardev id=XXXX)
195 #
196 # @fdname: file descriptor name previously passed via 'getfd' command
197 #
198 # @skipauth: whether to skip authentication. Only applies
199 # to "vnc" and "spice" protocols
200 #
201 # @tls: whether to perform TLS. Only applies to the "spice"
202 # protocol
203 #
204 # Returns: nothing on success.
205 #
206 # Since: 0.14.0
207 #
208 # Example:
209 #
210 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
211 # "fdname": "myclient" } }
212 # <- { "return": {} }
213 #
214 ##
215 { 'command': 'add_client',
216 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
217 '*tls': 'bool' } }
218
219 ##
220 # @NameInfo:
221 #
222 # Guest name information.
223 #
224 # @name: The name of the guest
225 #
226 # Since: 0.14.0
227 ##
228 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
229
230 ##
231 # @query-name:
232 #
233 # Return the name information of a guest.
234 #
235 # Returns: @NameInfo of the guest
236 #
237 # Since: 0.14.0
238 #
239 # Example:
240 #
241 # -> { "execute": "query-name" }
242 # <- { "return": { "name": "qemu-name" } }
243 #
244 ##
245 { 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
246
247 ##
248 # @KvmInfo:
249 #
250 # Information about support for KVM acceleration
251 #
252 # @enabled: true if KVM acceleration is active
253 #
254 # @present: true if KVM acceleration is built into this executable
255 #
256 # Since: 0.14.0
257 ##
258 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
259
260 ##
261 # @query-kvm:
262 #
263 # Returns information about KVM acceleration
264 #
265 # Returns: @KvmInfo
266 #
267 # Since: 0.14.0
268 #
269 # Example:
270 #
271 # -> { "execute": "query-kvm" }
272 # <- { "return": { "enabled": true, "present": true } }
273 #
274 ##
275 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
276
277 ##
278 # @UuidInfo:
279 #
280 # Guest UUID information (Universally Unique Identifier).
281 #
282 # @UUID: the UUID of the guest
283 #
284 # Since: 0.14.0
285 #
286 # Notes: If no UUID was specified for the guest, a null UUID is returned.
287 ##
288 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
289
290 ##
291 # @query-uuid:
292 #
293 # Query the guest UUID information.
294 #
295 # Returns: The @UuidInfo for the guest
296 #
297 # Since: 0.14.0
298 #
299 # Example:
300 #
301 # -> { "execute": "query-uuid" }
302 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
303 #
304 ##
305 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
306
307 ##
308 # @EventInfo:
309 #
310 # Information about a QMP event
311 #
312 # @name: The event name
313 #
314 # Since: 1.2.0
315 ##
316 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
317
318 ##
319 # @query-events:
320 #
321 # Return a list of supported QMP events by this server
322 #
323 # Returns: A list of @EventInfo for all supported events
324 #
325 # Since: 1.2.0
326 #
327 # Example:
328 #
329 # -> { "execute": "query-events" }
330 # <- {
331 # "return": [
332 # {
333 # "name":"SHUTDOWN"
334 # },
335 # {
336 # "name":"RESET"
337 # }
338 # ]
339 # }
340 #
341 # Note: This example has been shortened as the real response is too long.
342 #
343 ##
344 { 'command': 'query-events', 'returns': ['EventInfo'] }
345
346 ##
347 # @CpuInfoArch:
348 #
349 # An enumeration of cpu types that enable additional information during
350 # @query-cpus and @query-cpus-fast.
351 #
352 # @s390: since 2.12
353 #
354 # @riscv: since 2.12
355 #
356 # Since: 2.6
357 ##
358 { 'enum': 'CpuInfoArch',
359 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
360
361 ##
362 # @CpuInfo:
363 #
364 # Information about a virtual CPU
365 #
366 # @CPU: the index of the virtual CPU
367 #
368 # @current: this only exists for backwards compatibility and should be ignored
369 #
370 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
371 # to a processor specific low power mode.
372 #
373 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
374 #
375 # @thread_id: ID of the underlying host thread
376 #
377 # @props: properties describing to which node/socket/core/thread
378 # virtual CPU belongs to, provided if supported by board (since 2.10)
379 #
380 # @arch: architecture of the cpu, which determines which additional fields
381 # will be listed (since 2.6)
382 #
383 # Since: 0.14.0
384 #
385 # Notes: @halted is a transient state that changes frequently. By the time the
386 # data is sent to the client, the guest may no longer be halted.
387 ##
388 { 'union': 'CpuInfo',
389 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
390 'qom_path': 'str', 'thread_id': 'int',
391 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
392 'discriminator': 'arch',
393 'data': { 'x86': 'CpuInfoX86',
394 'sparc': 'CpuInfoSPARC',
395 'ppc': 'CpuInfoPPC',
396 'mips': 'CpuInfoMIPS',
397 'tricore': 'CpuInfoTricore',
398 's390': 'CpuInfoS390',
399 'riscv': 'CpuInfoRISCV' } }
400
401 ##
402 # @CpuInfoX86:
403 #
404 # Additional information about a virtual i386 or x86_64 CPU
405 #
406 # @pc: the 64-bit instruction pointer
407 #
408 # Since: 2.6
409 ##
410 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411
412 ##
413 # @CpuInfoSPARC:
414 #
415 # Additional information about a virtual SPARC CPU
416 #
417 # @pc: the PC component of the instruction pointer
418 #
419 # @npc: the NPC component of the instruction pointer
420 #
421 # Since: 2.6
422 ##
423 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424
425 ##
426 # @CpuInfoPPC:
427 #
428 # Additional information about a virtual PPC CPU
429 #
430 # @nip: the instruction pointer
431 #
432 # Since: 2.6
433 ##
434 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435
436 ##
437 # @CpuInfoMIPS:
438 #
439 # Additional information about a virtual MIPS CPU
440 #
441 # @PC: the instruction pointer
442 #
443 # Since: 2.6
444 ##
445 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446
447 ##
448 # @CpuInfoTricore:
449 #
450 # Additional information about a virtual Tricore CPU
451 #
452 # @PC: the instruction pointer
453 #
454 # Since: 2.6
455 ##
456 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457
458 ##
459 # @CpuInfoRISCV:
460 #
461 # Additional information about a virtual RISCV CPU
462 #
463 # @pc: the instruction pointer
464 #
465 # Since 2.12
466 ##
467 { 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468
469 ##
470 # @CpuS390State:
471 #
472 # An enumeration of cpu states that can be assumed by a virtual
473 # S390 CPU
474 #
475 # Since: 2.12
476 ##
477 { 'enum': 'CpuS390State',
478 'prefix': 'S390_CPU_STATE',
479 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
480
481 ##
482 # @CpuInfoS390:
483 #
484 # Additional information about a virtual S390 CPU
485 #
486 # @cpu-state: the virtual CPU's state
487 #
488 # Since: 2.12
489 ##
490 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
491
492 ##
493 # @query-cpus:
494 #
495 # Returns a list of information about each virtual CPU.
496 #
497 # This command causes vCPU threads to exit to userspace, which causes
498 # a small interruption to guest CPU execution. This will have a negative
499 # impact on realtime guests and other latency sensitive guest workloads.
500 # It is recommended to use @query-cpus-fast instead of this command to
501 # avoid the vCPU interruption.
502 #
503 # Returns: a list of @CpuInfo for each virtual CPU
504 #
505 # Since: 0.14.0
506 #
507 # Example:
508 #
509 # -> { "execute": "query-cpus" }
510 # <- { "return": [
511 # {
512 # "CPU":0,
513 # "current":true,
514 # "halted":false,
515 # "qom_path":"/machine/unattached/device[0]",
516 # "arch":"x86",
517 # "pc":3227107138,
518 # "thread_id":3134
519 # },
520 # {
521 # "CPU":1,
522 # "current":false,
523 # "halted":true,
524 # "qom_path":"/machine/unattached/device[2]",
525 # "arch":"x86",
526 # "pc":7108165,
527 # "thread_id":3135
528 # }
529 # ]
530 # }
531 #
532 # Notes: This interface is deprecated (since 2.12.0), and it is strongly
533 # recommended that you avoid using it. Use @query-cpus-fast to
534 # obtain information about virtual CPUs.
535 #
536 ##
537 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
538
539 ##
540 # @CpuInfoFast:
541 #
542 # Information about a virtual CPU
543 #
544 # @cpu-index: index of the virtual CPU
545 #
546 # @qom-path: path to the CPU object in the QOM tree
547 #
548 # @thread-id: ID of the underlying host thread
549 #
550 # @props: properties describing to which node/socket/core/thread
551 # virtual CPU belongs to, provided if supported by board
552 #
553 # @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
554 # of @target
555 #
556 # @target: the QEMU system emulation target, which determines which
557 # additional fields will be listed (since 3.0)
558 #
559 # Since: 2.12
560 #
561 ##
562 { 'union' : 'CpuInfoFast',
563 'base' : { 'cpu-index' : 'int',
564 'qom-path' : 'str',
565 'thread-id' : 'int',
566 '*props' : 'CpuInstanceProperties',
567 'arch' : 'CpuInfoArch',
568 'target' : 'SysEmuTarget' },
569 'discriminator' : 'target',
570 'data' : { 's390x' : 'CpuInfoS390' } }
571
572 ##
573 # @query-cpus-fast:
574 #
575 # Returns information about all virtual CPUs. This command does not
576 # incur a performance penalty and should be used in production
577 # instead of query-cpus.
578 #
579 # Returns: list of @CpuInfoFast
580 #
581 # Since: 2.12
582 #
583 # Example:
584 #
585 # -> { "execute": "query-cpus-fast" }
586 # <- { "return": [
587 # {
588 # "thread-id": 25627,
589 # "props": {
590 # "core-id": 0,
591 # "thread-id": 0,
592 # "socket-id": 0
593 # },
594 # "qom-path": "/machine/unattached/device[0]",
595 # "arch":"x86",
596 # "target":"x86_64",
597 # "cpu-index": 0
598 # },
599 # {
600 # "thread-id": 25628,
601 # "props": {
602 # "core-id": 0,
603 # "thread-id": 0,
604 # "socket-id": 1
605 # },
606 # "qom-path": "/machine/unattached/device[2]",
607 # "arch":"x86",
608 # "target":"x86_64",
609 # "cpu-index": 1
610 # }
611 # ]
612 # }
613 ##
614 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
615
616 ##
617 # @IOThreadInfo:
618 #
619 # Information about an iothread
620 #
621 # @id: the identifier of the iothread
622 #
623 # @thread-id: ID of the underlying host thread
624 #
625 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
626 # (since 2.9)
627 #
628 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
629 # configured (since 2.9)
630 #
631 # @poll-shrink: how many ns will be removed from polling time, 0 means that
632 # it's not configured (since 2.9)
633 #
634 # Since: 2.0
635 ##
636 { 'struct': 'IOThreadInfo',
637 'data': {'id': 'str',
638 'thread-id': 'int',
639 'poll-max-ns': 'int',
640 'poll-grow': 'int',
641 'poll-shrink': 'int' } }
642
643 ##
644 # @query-iothreads:
645 #
646 # Returns a list of information about each iothread.
647 #
648 # Note: this list excludes the QEMU main loop thread, which is not declared
649 # using the -object iothread command-line option. It is always the main thread
650 # of the process.
651 #
652 # Returns: a list of @IOThreadInfo for each iothread
653 #
654 # Since: 2.0
655 #
656 # Example:
657 #
658 # -> { "execute": "query-iothreads" }
659 # <- { "return": [
660 # {
661 # "id":"iothread0",
662 # "thread-id":3134
663 # },
664 # {
665 # "id":"iothread1",
666 # "thread-id":3135
667 # }
668 # ]
669 # }
670 #
671 ##
672 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
673 'allow-preconfig': true }
674
675 ##
676 # @BalloonInfo:
677 #
678 # Information about the guest balloon device.
679 #
680 # @actual: the number of bytes the balloon currently contains
681 #
682 # Since: 0.14.0
683 #
684 ##
685 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
686
687 ##
688 # @query-balloon:
689 #
690 # Return information about the balloon device.
691 #
692 # Returns: @BalloonInfo on success
693 #
694 # If the balloon driver is enabled but not functional because the KVM
695 # kernel module cannot support it, KvmMissingCap
696 #
697 # If no balloon device is present, DeviceNotActive
698 #
699 # Since: 0.14.0
700 #
701 # Example:
702 #
703 # -> { "execute": "query-balloon" }
704 # <- { "return": {
705 # "actual": 1073741824,
706 # }
707 # }
708 #
709 ##
710 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
711
712 ##
713 # @BALLOON_CHANGE:
714 #
715 # Emitted when the guest changes the actual BALLOON level. This value is
716 # equivalent to the @actual field return by the 'query-balloon' command
717 #
718 # @actual: actual level of the guest memory balloon in bytes
719 #
720 # Note: this event is rate-limited.
721 #
722 # Since: 1.2
723 #
724 # Example:
725 #
726 # <- { "event": "BALLOON_CHANGE",
727 # "data": { "actual": 944766976 },
728 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
729 #
730 ##
731 { 'event': 'BALLOON_CHANGE',
732 'data': { 'actual': 'int' } }
733
734 ##
735 # @PciMemoryRange:
736 #
737 # A PCI device memory region
738 #
739 # @base: the starting address (guest physical)
740 #
741 # @limit: the ending address (guest physical)
742 #
743 # Since: 0.14.0
744 ##
745 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
746
747 ##
748 # @PciMemoryRegion:
749 #
750 # Information about a PCI device I/O region.
751 #
752 # @bar: the index of the Base Address Register for this region
753 #
754 # @type: 'io' if the region is a PIO region
755 # 'memory' if the region is a MMIO region
756 #
757 # @size: memory size
758 #
759 # @prefetch: if @type is 'memory', true if the memory is prefetchable
760 #
761 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
762 #
763 # Since: 0.14.0
764 ##
765 { 'struct': 'PciMemoryRegion',
766 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
767 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
768
769 ##
770 # @PciBusInfo:
771 #
772 # Information about a bus of a PCI Bridge device
773 #
774 # @number: primary bus interface number. This should be the number of the
775 # bus the device resides on.
776 #
777 # @secondary: secondary bus interface number. This is the number of the
778 # main bus for the bridge
779 #
780 # @subordinate: This is the highest number bus that resides below the
781 # bridge.
782 #
783 # @io_range: The PIO range for all devices on this bridge
784 #
785 # @memory_range: The MMIO range for all devices on this bridge
786 #
787 # @prefetchable_range: The range of prefetchable MMIO for all devices on
788 # this bridge
789 #
790 # Since: 2.4
791 ##
792 { 'struct': 'PciBusInfo',
793 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
794 'io_range': 'PciMemoryRange',
795 'memory_range': 'PciMemoryRange',
796 'prefetchable_range': 'PciMemoryRange' } }
797
798 ##
799 # @PciBridgeInfo:
800 #
801 # Information about a PCI Bridge device
802 #
803 # @bus: information about the bus the device resides on
804 #
805 # @devices: a list of @PciDeviceInfo for each device on this bridge
806 #
807 # Since: 0.14.0
808 ##
809 { 'struct': 'PciBridgeInfo',
810 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
811
812 ##
813 # @PciDeviceClass:
814 #
815 # Information about the Class of a PCI device
816 #
817 # @desc: a string description of the device's class
818 #
819 # @class: the class code of the device
820 #
821 # Since: 2.4
822 ##
823 { 'struct': 'PciDeviceClass',
824 'data': {'*desc': 'str', 'class': 'int'} }
825
826 ##
827 # @PciDeviceId:
828 #
829 # Information about the Id of a PCI device
830 #
831 # @device: the PCI device id
832 #
833 # @vendor: the PCI vendor id
834 #
835 # @subsystem: the PCI subsystem id (since 3.1)
836 #
837 # @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
838 #
839 # Since: 2.4
840 ##
841 { 'struct': 'PciDeviceId',
842 'data': {'device': 'int', 'vendor': 'int', 'subsystem': 'int',
843 'subsystem-vendor': 'int'} }
844
845 ##
846 # @PciDeviceInfo:
847 #
848 # Information about a PCI device
849 #
850 # @bus: the bus number of the device
851 #
852 # @slot: the slot the device is located in
853 #
854 # @function: the function of the slot used by the device
855 #
856 # @class_info: the class of the device
857 #
858 # @id: the PCI device id
859 #
860 # @irq: if an IRQ is assigned to the device, the IRQ number
861 #
862 # @qdev_id: the device name of the PCI device
863 #
864 # @pci_bridge: if the device is a PCI bridge, the bridge information
865 #
866 # @regions: a list of the PCI I/O regions associated with the device
867 #
868 # Notes: the contents of @class_info.desc are not stable and should only be
869 # treated as informational.
870 #
871 # Since: 0.14.0
872 ##
873 { 'struct': 'PciDeviceInfo',
874 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
875 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
876 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
877 'regions': ['PciMemoryRegion']} }
878
879 ##
880 # @PciInfo:
881 #
882 # Information about a PCI bus
883 #
884 # @bus: the bus index
885 #
886 # @devices: a list of devices on this bus
887 #
888 # Since: 0.14.0
889 ##
890 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
891
892 ##
893 # @query-pci:
894 #
895 # Return information about the PCI bus topology of the guest.
896 #
897 # Returns: a list of @PciInfo for each PCI bus. Each bus is
898 # represented by a json-object, which has a key with a json-array of
899 # all PCI devices attached to it. Each device is represented by a
900 # json-object.
901 #
902 # Since: 0.14.0
903 #
904 # Example:
905 #
906 # -> { "execute": "query-pci" }
907 # <- { "return": [
908 # {
909 # "bus": 0,
910 # "devices": [
911 # {
912 # "bus": 0,
913 # "qdev_id": "",
914 # "slot": 0,
915 # "class_info": {
916 # "class": 1536,
917 # "desc": "Host bridge"
918 # },
919 # "id": {
920 # "device": 32902,
921 # "vendor": 4663
922 # },
923 # "function": 0,
924 # "regions": [
925 # ]
926 # },
927 # {
928 # "bus": 0,
929 # "qdev_id": "",
930 # "slot": 1,
931 # "class_info": {
932 # "class": 1537,
933 # "desc": "ISA bridge"
934 # },
935 # "id": {
936 # "device": 32902,
937 # "vendor": 28672
938 # },
939 # "function": 0,
940 # "regions": [
941 # ]
942 # },
943 # {
944 # "bus": 0,
945 # "qdev_id": "",
946 # "slot": 1,
947 # "class_info": {
948 # "class": 257,
949 # "desc": "IDE controller"
950 # },
951 # "id": {
952 # "device": 32902,
953 # "vendor": 28688
954 # },
955 # "function": 1,
956 # "regions": [
957 # {
958 # "bar": 4,
959 # "size": 16,
960 # "address": 49152,
961 # "type": "io"
962 # }
963 # ]
964 # },
965 # {
966 # "bus": 0,
967 # "qdev_id": "",
968 # "slot": 2,
969 # "class_info": {
970 # "class": 768,
971 # "desc": "VGA controller"
972 # },
973 # "id": {
974 # "device": 4115,
975 # "vendor": 184
976 # },
977 # "function": 0,
978 # "regions": [
979 # {
980 # "prefetch": true,
981 # "mem_type_64": false,
982 # "bar": 0,
983 # "size": 33554432,
984 # "address": 4026531840,
985 # "type": "memory"
986 # },
987 # {
988 # "prefetch": false,
989 # "mem_type_64": false,
990 # "bar": 1,
991 # "size": 4096,
992 # "address": 4060086272,
993 # "type": "memory"
994 # },
995 # {
996 # "prefetch": false,
997 # "mem_type_64": false,
998 # "bar": 6,
999 # "size": 65536,
1000 # "address": -1,
1001 # "type": "memory"
1002 # }
1003 # ]
1004 # },
1005 # {
1006 # "bus": 0,
1007 # "qdev_id": "",
1008 # "irq": 11,
1009 # "slot": 4,
1010 # "class_info": {
1011 # "class": 1280,
1012 # "desc": "RAM controller"
1013 # },
1014 # "id": {
1015 # "device": 6900,
1016 # "vendor": 4098
1017 # },
1018 # "function": 0,
1019 # "regions": [
1020 # {
1021 # "bar": 0,
1022 # "size": 32,
1023 # "address": 49280,
1024 # "type": "io"
1025 # }
1026 # ]
1027 # }
1028 # ]
1029 # }
1030 # ]
1031 # }
1032 #
1033 # Note: This example has been shortened as the real response is too long.
1034 #
1035 ##
1036 { 'command': 'query-pci', 'returns': ['PciInfo'] }
1037
1038 ##
1039 # @quit:
1040 #
1041 # This command will cause the QEMU process to exit gracefully. While every
1042 # attempt is made to send the QMP response before terminating, this is not
1043 # guaranteed. When using this interface, a premature EOF would not be
1044 # unexpected.
1045 #
1046 # Since: 0.14.0
1047 #
1048 # Example:
1049 #
1050 # -> { "execute": "quit" }
1051 # <- { "return": {} }
1052 ##
1053 { 'command': 'quit' }
1054
1055 ##
1056 # @stop:
1057 #
1058 # Stop all guest VCPU execution.
1059 #
1060 # Since: 0.14.0
1061 #
1062 # Notes: This function will succeed even if the guest is already in the stopped
1063 # state. In "inmigrate" state, it will ensure that the guest
1064 # remains paused once migration finishes, as if the -S option was
1065 # passed on the command line.
1066 #
1067 # Example:
1068 #
1069 # -> { "execute": "stop" }
1070 # <- { "return": {} }
1071 #
1072 ##
1073 { 'command': 'stop' }
1074
1075 ##
1076 # @system_reset:
1077 #
1078 # Performs a hard reset of a guest.
1079 #
1080 # Since: 0.14.0
1081 #
1082 # Example:
1083 #
1084 # -> { "execute": "system_reset" }
1085 # <- { "return": {} }
1086 #
1087 ##
1088 { 'command': 'system_reset' }
1089
1090 ##
1091 # @system_powerdown:
1092 #
1093 # Requests that a guest perform a powerdown operation.
1094 #
1095 # Since: 0.14.0
1096 #
1097 # Notes: A guest may or may not respond to this command. This command
1098 # returning does not indicate that a guest has accepted the request or
1099 # that it has shut down. Many guests will respond to this command by
1100 # prompting the user in some way.
1101 # Example:
1102 #
1103 # -> { "execute": "system_powerdown" }
1104 # <- { "return": {} }
1105 #
1106 ##
1107 { 'command': 'system_powerdown' }
1108
1109 ##
1110 # @cpu-add:
1111 #
1112 # Adds CPU with specified ID
1113 #
1114 # @id: ID of CPU to be created, valid values [0..max_cpus)
1115 #
1116 # Returns: Nothing on success
1117 #
1118 # Since: 1.5
1119 #
1120 # Example:
1121 #
1122 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1123 # <- { "return": {} }
1124 #
1125 ##
1126 { 'command': 'cpu-add', 'data': {'id': 'int'} }
1127
1128 ##
1129 # @memsave:
1130 #
1131 # Save a portion of guest memory to a file.
1132 #
1133 # @val: the virtual address of the guest to start from
1134 #
1135 # @size: the size of memory region to save
1136 #
1137 # @filename: the file to save the memory to as binary data
1138 #
1139 # @cpu-index: the index of the virtual CPU to use for translating the
1140 # virtual address (defaults to CPU 0)
1141 #
1142 # Returns: Nothing on success
1143 #
1144 # Since: 0.14.0
1145 #
1146 # Notes: Errors were not reliably returned until 1.1
1147 #
1148 # Example:
1149 #
1150 # -> { "execute": "memsave",
1151 # "arguments": { "val": 10,
1152 # "size": 100,
1153 # "filename": "/tmp/virtual-mem-dump" } }
1154 # <- { "return": {} }
1155 #
1156 ##
1157 { 'command': 'memsave',
1158 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1159
1160 ##
1161 # @pmemsave:
1162 #
1163 # Save a portion of guest physical memory to a file.
1164 #
1165 # @val: the physical address of the guest to start from
1166 #
1167 # @size: the size of memory region to save
1168 #
1169 # @filename: the file to save the memory to as binary data
1170 #
1171 # Returns: Nothing on success
1172 #
1173 # Since: 0.14.0
1174 #
1175 # Notes: Errors were not reliably returned until 1.1
1176 #
1177 # Example:
1178 #
1179 # -> { "execute": "pmemsave",
1180 # "arguments": { "val": 10,
1181 # "size": 100,
1182 # "filename": "/tmp/physical-mem-dump" } }
1183 # <- { "return": {} }
1184 #
1185 ##
1186 { 'command': 'pmemsave',
1187 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1188
1189 ##
1190 # @cont:
1191 #
1192 # Resume guest VCPU execution.
1193 #
1194 # Since: 0.14.0
1195 #
1196 # Returns: If successful, nothing
1197 #
1198 # Notes: This command will succeed if the guest is currently running. It
1199 # will also succeed if the guest is in the "inmigrate" state; in
1200 # this case, the effect of the command is to make sure the guest
1201 # starts once migration finishes, removing the effect of the -S
1202 # command line option if it was passed.
1203 #
1204 # Example:
1205 #
1206 # -> { "execute": "cont" }
1207 # <- { "return": {} }
1208 #
1209 ##
1210 { 'command': 'cont' }
1211
1212 ##
1213 # @x-exit-preconfig:
1214 #
1215 # Exit from "preconfig" state
1216 #
1217 # This command makes QEMU exit the preconfig state and proceed with
1218 # VM initialization using configuration data provided on the command line
1219 # and via the QMP monitor during the preconfig state. The command is only
1220 # available during the preconfig state (i.e. when the --preconfig command
1221 # line option was in use).
1222 #
1223 # Since 3.0
1224 #
1225 # Returns: nothing
1226 #
1227 # Example:
1228 #
1229 # -> { "execute": "x-exit-preconfig" }
1230 # <- { "return": {} }
1231 #
1232 ##
1233 { 'command': 'x-exit-preconfig', 'allow-preconfig': true }
1234
1235 ##
1236 # @system_wakeup:
1237 #
1238 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1239 #
1240 # Since: 1.1
1241 #
1242 # Returns: nothing.
1243 #
1244 # Example:
1245 #
1246 # -> { "execute": "system_wakeup" }
1247 # <- { "return": {} }
1248 #
1249 ##
1250 { 'command': 'system_wakeup' }
1251
1252 ##
1253 # @inject-nmi:
1254 #
1255 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1256 # The command fails when the guest doesn't support injecting.
1257 #
1258 # Returns: If successful, nothing
1259 #
1260 # Since: 0.14.0
1261 #
1262 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1263 #
1264 # Example:
1265 #
1266 # -> { "execute": "inject-nmi" }
1267 # <- { "return": {} }
1268 #
1269 ##
1270 { 'command': 'inject-nmi' }
1271
1272 ##
1273 # @balloon:
1274 #
1275 # Request the balloon driver to change its balloon size.
1276 #
1277 # @value: the target size of the balloon in bytes
1278 #
1279 # Returns: Nothing on success
1280 # If the balloon driver is enabled but not functional because the KVM
1281 # kernel module cannot support it, KvmMissingCap
1282 # If no balloon device is present, DeviceNotActive
1283 #
1284 # Notes: This command just issues a request to the guest. When it returns,
1285 # the balloon size may not have changed. A guest can change the balloon
1286 # size independent of this command.
1287 #
1288 # Since: 0.14.0
1289 #
1290 # Example:
1291 #
1292 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1293 # <- { "return": {} }
1294 #
1295 ##
1296 { 'command': 'balloon', 'data': {'value': 'int'} }
1297
1298 ##
1299 # @human-monitor-command:
1300 #
1301 # Execute a command on the human monitor and return the output.
1302 #
1303 # @command-line: the command to execute in the human monitor
1304 #
1305 # @cpu-index: The CPU to use for commands that require an implicit CPU
1306 #
1307 # Returns: the output of the command as a string
1308 #
1309 # Since: 0.14.0
1310 #
1311 # Notes: This command only exists as a stop-gap. Its use is highly
1312 # discouraged. The semantics of this command are not
1313 # guaranteed: this means that command names, arguments and
1314 # responses can change or be removed at ANY time. Applications
1315 # that rely on long term stability guarantees should NOT
1316 # use this command.
1317 #
1318 # Known limitations:
1319 #
1320 # * This command is stateless, this means that commands that depend
1321 # on state information (such as getfd) might not work
1322 #
1323 # * Commands that prompt the user for data don't currently work
1324 #
1325 # Example:
1326 #
1327 # -> { "execute": "human-monitor-command",
1328 # "arguments": { "command-line": "info kvm" } }
1329 # <- { "return": "kvm support: enabled\r\n" }
1330 #
1331 ##
1332 { 'command': 'human-monitor-command',
1333 'data': {'command-line': 'str', '*cpu-index': 'int'},
1334 'returns': 'str' }
1335
1336 ##
1337 # @ObjectPropertyInfo:
1338 #
1339 # @name: the name of the property
1340 #
1341 # @type: the type of the property. This will typically come in one of four
1342 # forms:
1343 #
1344 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1345 # These types are mapped to the appropriate JSON type.
1346 #
1347 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
1348 # device type name. Child properties create the composition tree.
1349 #
1350 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
1351 # device type name. Link properties form the device model graph.
1352 #
1353 # @description: if specified, the description of the property.
1354 #
1355 # Since: 1.2
1356 ##
1357 { 'struct': 'ObjectPropertyInfo',
1358 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1359
1360 ##
1361 # @qom-list:
1362 #
1363 # This command will list any properties of a object given a path in the object
1364 # model.
1365 #
1366 # @path: the path within the object model. See @qom-get for a description of
1367 # this parameter.
1368 #
1369 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
1370 # object.
1371 #
1372 # Since: 1.2
1373 ##
1374 { 'command': 'qom-list',
1375 'data': { 'path': 'str' },
1376 'returns': [ 'ObjectPropertyInfo' ],
1377 'allow-preconfig': true }
1378
1379 ##
1380 # @qom-get:
1381 #
1382 # This command will get a property from a object model path and return the
1383 # value.
1384 #
1385 # @path: The path within the object model. There are two forms of supported
1386 # paths--absolute and partial paths.
1387 #
1388 # Absolute paths are derived from the root object and can follow child<>
1389 # or link<> properties. Since they can follow link<> properties, they
1390 # can be arbitrarily long. Absolute paths look like absolute filenames
1391 # and are prefixed with a leading slash.
1392 #
1393 # Partial paths look like relative filenames. They do not begin
1394 # with a prefix. The matching rules for partial paths are subtle but
1395 # designed to make specifying objects easy. At each level of the
1396 # composition tree, the partial path is matched as an absolute path.
1397 # The first match is not returned. At least two matches are searched
1398 # for. A successful result is only returned if only one match is
1399 # found. If more than one match is found, a flag is return to
1400 # indicate that the match was ambiguous.
1401 #
1402 # @property: The property name to read
1403 #
1404 # Returns: The property value. The type depends on the property
1405 # type. child<> and link<> properties are returned as #str
1406 # pathnames. All integer property types (u8, u16, etc) are
1407 # returned as #int.
1408 #
1409 # Since: 1.2
1410 ##
1411 { 'command': 'qom-get',
1412 'data': { 'path': 'str', 'property': 'str' },
1413 'returns': 'any',
1414 'allow-preconfig': true }
1415
1416 ##
1417 # @qom-set:
1418 #
1419 # This command will set a property from a object model path.
1420 #
1421 # @path: see @qom-get for a description of this parameter
1422 #
1423 # @property: the property name to set
1424 #
1425 # @value: a value who's type is appropriate for the property type. See @qom-get
1426 # for a description of type mapping.
1427 #
1428 # Since: 1.2
1429 ##
1430 { 'command': 'qom-set',
1431 'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1432 'allow-preconfig': true }
1433
1434 ##
1435 # @change:
1436 #
1437 # This command is multiple commands multiplexed together.
1438 #
1439 # @device: This is normally the name of a block device but it may also be 'vnc'.
1440 # when it's 'vnc', then sub command depends on @target
1441 #
1442 # @target: If @device is a block device, then this is the new filename.
1443 # If @device is 'vnc', then if the value 'password' selects the vnc
1444 # change password command. Otherwise, this specifies a new server URI
1445 # address to listen to for VNC connections.
1446 #
1447 # @arg: If @device is a block device, then this is an optional format to open
1448 # the device with.
1449 # If @device is 'vnc' and @target is 'password', this is the new VNC
1450 # password to set. See change-vnc-password for additional notes.
1451 #
1452 # Returns: Nothing on success.
1453 # If @device is not a valid block device, DeviceNotFound
1454 #
1455 # Notes: This interface is deprecated, and it is strongly recommended that you
1456 # avoid using it. For changing block devices, use
1457 # blockdev-change-medium; for changing VNC parameters, use
1458 # change-vnc-password.
1459 #
1460 # Since: 0.14.0
1461 #
1462 # Example:
1463 #
1464 # 1. Change a removable medium
1465 #
1466 # -> { "execute": "change",
1467 # "arguments": { "device": "ide1-cd0",
1468 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1469 # <- { "return": {} }
1470 #
1471 # 2. Change VNC password
1472 #
1473 # -> { "execute": "change",
1474 # "arguments": { "device": "vnc", "target": "password",
1475 # "arg": "foobar1" } }
1476 # <- { "return": {} }
1477 #
1478 ##
1479 { 'command': 'change',
1480 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1481
1482 ##
1483 # @ObjectTypeInfo:
1484 #
1485 # This structure describes a search result from @qom-list-types
1486 #
1487 # @name: the type name found in the search
1488 #
1489 # @abstract: the type is abstract and can't be directly instantiated.
1490 # Omitted if false. (since 2.10)
1491 #
1492 # @parent: Name of parent type, if any (since 2.10)
1493 #
1494 # Since: 1.1
1495 ##
1496 { 'struct': 'ObjectTypeInfo',
1497 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1498
1499 ##
1500 # @qom-list-types:
1501 #
1502 # This command will return a list of types given search parameters
1503 #
1504 # @implements: if specified, only return types that implement this type name
1505 #
1506 # @abstract: if true, include abstract types in the results
1507 #
1508 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1509 #
1510 # Since: 1.1
1511 ##
1512 { 'command': 'qom-list-types',
1513 'data': { '*implements': 'str', '*abstract': 'bool' },
1514 'returns': [ 'ObjectTypeInfo' ],
1515 'allow-preconfig': true }
1516
1517 ##
1518 # @device-list-properties:
1519 #
1520 # List properties associated with a device.
1521 #
1522 # @typename: the type name of a device
1523 #
1524 # Returns: a list of ObjectPropertyInfo describing a devices properties
1525 #
1526 # Note: objects can create properties at runtime, for example to describe
1527 # links between different devices and/or objects. These properties
1528 # are not included in the output of this command.
1529 #
1530 # Since: 1.2
1531 ##
1532 { 'command': 'device-list-properties',
1533 'data': { 'typename': 'str'},
1534 'returns': [ 'ObjectPropertyInfo' ] }
1535
1536 ##
1537 # @qom-list-properties:
1538 #
1539 # List properties associated with a QOM object.
1540 #
1541 # @typename: the type name of an object
1542 #
1543 # Note: objects can create properties at runtime, for example to describe
1544 # links between different devices and/or objects. These properties
1545 # are not included in the output of this command.
1546 #
1547 # Returns: a list of ObjectPropertyInfo describing object properties
1548 #
1549 # Since: 2.12
1550 ##
1551 { 'command': 'qom-list-properties',
1552 'data': { 'typename': 'str'},
1553 'returns': [ 'ObjectPropertyInfo' ],
1554 'allow-preconfig': true }
1555
1556 ##
1557 # @xen-set-global-dirty-log:
1558 #
1559 # Enable or disable the global dirty log mode.
1560 #
1561 # @enable: true to enable, false to disable.
1562 #
1563 # Returns: nothing
1564 #
1565 # Since: 1.3
1566 #
1567 # Example:
1568 #
1569 # -> { "execute": "xen-set-global-dirty-log",
1570 # "arguments": { "enable": true } }
1571 # <- { "return": {} }
1572 #
1573 ##
1574 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1575
1576 ##
1577 # @device_add:
1578 #
1579 # @driver: the name of the new device's driver
1580 #
1581 # @bus: the device's parent bus (device tree path)
1582 #
1583 # @id: the device's ID, must be unique
1584 #
1585 # Additional arguments depend on the type.
1586 #
1587 # Add a device.
1588 #
1589 # Notes:
1590 # 1. For detailed information about this command, please refer to the
1591 # 'docs/qdev-device-use.txt' file.
1592 #
1593 # 2. It's possible to list device properties by running QEMU with the
1594 # "-device DEVICE,help" command-line argument, where DEVICE is the
1595 # device's name
1596 #
1597 # Example:
1598 #
1599 # -> { "execute": "device_add",
1600 # "arguments": { "driver": "e1000", "id": "net1",
1601 # "bus": "pci.0",
1602 # "mac": "52:54:00:12:34:56" } }
1603 # <- { "return": {} }
1604 #
1605 # TODO: This command effectively bypasses QAPI completely due to its
1606 # "additional arguments" business. It shouldn't have been added to
1607 # the schema in this form. It should be qapified properly, or
1608 # replaced by a properly qapified command.
1609 #
1610 # Since: 0.13
1611 ##
1612 { 'command': 'device_add',
1613 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1614 'gen': false } # so we can get the additional arguments
1615
1616 ##
1617 # @device_del:
1618 #
1619 # Remove a device from a guest
1620 #
1621 # @id: the device's ID or QOM path
1622 #
1623 # Returns: Nothing on success
1624 # If @id is not a valid device, DeviceNotFound
1625 #
1626 # Notes: When this command completes, the device may not be removed from the
1627 # guest. Hot removal is an operation that requires guest cooperation.
1628 # This command merely requests that the guest begin the hot removal
1629 # process. Completion of the device removal process is signaled with a
1630 # DEVICE_DELETED event. Guest reset will automatically complete removal
1631 # for all devices.
1632 #
1633 # Since: 0.14.0
1634 #
1635 # Example:
1636 #
1637 # -> { "execute": "device_del",
1638 # "arguments": { "id": "net1" } }
1639 # <- { "return": {} }
1640 #
1641 # -> { "execute": "device_del",
1642 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1643 # <- { "return": {} }
1644 #
1645 ##
1646 { 'command': 'device_del', 'data': {'id': 'str'} }
1647
1648 ##
1649 # @DEVICE_DELETED:
1650 #
1651 # Emitted whenever the device removal completion is acknowledged by the guest.
1652 # At this point, it's safe to reuse the specified device ID. Device removal can
1653 # be initiated by the guest or by HMP/QMP commands.
1654 #
1655 # @device: device name
1656 #
1657 # @path: device path
1658 #
1659 # Since: 1.5
1660 #
1661 # Example:
1662 #
1663 # <- { "event": "DEVICE_DELETED",
1664 # "data": { "device": "virtio-net-pci-0",
1665 # "path": "/machine/peripheral/virtio-net-pci-0" },
1666 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1667 #
1668 ##
1669 { 'event': 'DEVICE_DELETED',
1670 'data': { '*device': 'str', 'path': 'str' } }
1671
1672 ##
1673 # @DumpGuestMemoryFormat:
1674 #
1675 # An enumeration of guest-memory-dump's format.
1676 #
1677 # @elf: elf format
1678 #
1679 # @kdump-zlib: kdump-compressed format with zlib-compressed
1680 #
1681 # @kdump-lzo: kdump-compressed format with lzo-compressed
1682 #
1683 # @kdump-snappy: kdump-compressed format with snappy-compressed
1684 #
1685 # @win-dmp: Windows full crashdump format,
1686 # can be used instead of ELF converting (since 2.13)
1687 #
1688 # Since: 2.0
1689 ##
1690 { 'enum': 'DumpGuestMemoryFormat',
1691 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
1692
1693 ##
1694 # @dump-guest-memory:
1695 #
1696 # Dump guest's memory to vmcore. It is a synchronous operation that can take
1697 # very long depending on the amount of guest memory.
1698 #
1699 # @paging: if true, do paging to get guest's memory mapping. This allows
1700 # using gdb to process the core file.
1701 #
1702 # IMPORTANT: this option can make QEMU allocate several gigabytes
1703 # of RAM. This can happen for a large guest, or a
1704 # malicious guest pretending to be large.
1705 #
1706 # Also, paging=true has the following limitations:
1707 #
1708 # 1. The guest may be in a catastrophic state or can have corrupted
1709 # memory, which cannot be trusted
1710 # 2. The guest can be in real-mode even if paging is enabled. For
1711 # example, the guest uses ACPI to sleep, and ACPI sleep state
1712 # goes in real-mode
1713 # 3. Currently only supported on i386 and x86_64.
1714 #
1715 # @protocol: the filename or file descriptor of the vmcore. The supported
1716 # protocols are:
1717 #
1718 # 1. file: the protocol starts with "file:", and the following
1719 # string is the file's path.
1720 # 2. fd: the protocol starts with "fd:", and the following string
1721 # is the fd's name.
1722 #
1723 # @detach: if true, QMP will return immediately rather than
1724 # waiting for the dump to finish. The user can track progress
1725 # using "query-dump". (since 2.6).
1726 #
1727 # @begin: if specified, the starting physical address.
1728 #
1729 # @length: if specified, the memory size, in bytes. If you don't
1730 # want to dump all guest's memory, please specify the start @begin
1731 # and @length
1732 #
1733 # @format: if specified, the format of guest memory dump. But non-elf
1734 # format is conflict with paging and filter, ie. @paging, @begin and
1735 # @length is not allowed to be specified with non-elf @format at the
1736 # same time (since 2.0)
1737 #
1738 # Note: All boolean arguments default to false
1739 #
1740 # Returns: nothing on success
1741 #
1742 # Since: 1.2
1743 #
1744 # Example:
1745 #
1746 # -> { "execute": "dump-guest-memory",
1747 # "arguments": { "protocol": "fd:dump" } }
1748 # <- { "return": {} }
1749 #
1750 ##
1751 { 'command': 'dump-guest-memory',
1752 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1753 '*begin': 'int', '*length': 'int',
1754 '*format': 'DumpGuestMemoryFormat'} }
1755
1756 ##
1757 # @DumpStatus:
1758 #
1759 # Describe the status of a long-running background guest memory dump.
1760 #
1761 # @none: no dump-guest-memory has started yet.
1762 #
1763 # @active: there is one dump running in background.
1764 #
1765 # @completed: the last dump has finished successfully.
1766 #
1767 # @failed: the last dump has failed.
1768 #
1769 # Since: 2.6
1770 ##
1771 { 'enum': 'DumpStatus',
1772 'data': [ 'none', 'active', 'completed', 'failed' ] }
1773
1774 ##
1775 # @DumpQueryResult:
1776 #
1777 # The result format for 'query-dump'.
1778 #
1779 # @status: enum of @DumpStatus, which shows current dump status
1780 #
1781 # @completed: bytes written in latest dump (uncompressed)
1782 #
1783 # @total: total bytes to be written in latest dump (uncompressed)
1784 #
1785 # Since: 2.6
1786 ##
1787 { 'struct': 'DumpQueryResult',
1788 'data': { 'status': 'DumpStatus',
1789 'completed': 'int',
1790 'total': 'int' } }
1791
1792 ##
1793 # @query-dump:
1794 #
1795 # Query latest dump status.
1796 #
1797 # Returns: A @DumpStatus object showing the dump status.
1798 #
1799 # Since: 2.6
1800 #
1801 # Example:
1802 #
1803 # -> { "execute": "query-dump" }
1804 # <- { "return": { "status": "active", "completed": 1024000,
1805 # "total": 2048000 } }
1806 #
1807 ##
1808 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1809
1810 ##
1811 # @DUMP_COMPLETED:
1812 #
1813 # Emitted when background dump has completed
1814 #
1815 # @result: final dump status
1816 #
1817 # @error: human-readable error string that provides
1818 # hint on why dump failed. Only presents on failure. The
1819 # user should not try to interpret the error string.
1820 #
1821 # Since: 2.6
1822 #
1823 # Example:
1824 #
1825 # { "event": "DUMP_COMPLETED",
1826 # "data": {"result": {"total": 1090650112, "status": "completed",
1827 # "completed": 1090650112} } }
1828 #
1829 ##
1830 { 'event': 'DUMP_COMPLETED' ,
1831 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1832
1833 ##
1834 # @DumpGuestMemoryCapability:
1835 #
1836 # A list of the available formats for dump-guest-memory
1837 #
1838 # Since: 2.0
1839 ##
1840 { 'struct': 'DumpGuestMemoryCapability',
1841 'data': {
1842 'formats': ['DumpGuestMemoryFormat'] } }
1843
1844 ##
1845 # @query-dump-guest-memory-capability:
1846 #
1847 # Returns the available formats for dump-guest-memory
1848 #
1849 # Returns: A @DumpGuestMemoryCapability object listing available formats for
1850 # dump-guest-memory
1851 #
1852 # Since: 2.0
1853 #
1854 # Example:
1855 #
1856 # -> { "execute": "query-dump-guest-memory-capability" }
1857 # <- { "return": { "formats":
1858 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1859 #
1860 ##
1861 { 'command': 'query-dump-guest-memory-capability',
1862 'returns': 'DumpGuestMemoryCapability' }
1863
1864 ##
1865 # @dump-skeys:
1866 #
1867 # Dump guest's storage keys
1868 #
1869 # @filename: the path to the file to dump to
1870 #
1871 # This command is only supported on s390 architecture.
1872 #
1873 # Since: 2.5
1874 #
1875 # Example:
1876 #
1877 # -> { "execute": "dump-skeys",
1878 # "arguments": { "filename": "/tmp/skeys" } }
1879 # <- { "return": {} }
1880 #
1881 ##
1882 { 'command': 'dump-skeys',
1883 'data': { 'filename': 'str' } }
1884
1885 ##
1886 # @object-add:
1887 #
1888 # Create a QOM object.
1889 #
1890 # @qom-type: the class name for the object to be created
1891 #
1892 # @id: the name of the new object
1893 #
1894 # @props: a dictionary of properties to be passed to the backend
1895 #
1896 # Returns: Nothing on success
1897 # Error if @qom-type is not a valid class name
1898 #
1899 # Since: 2.0
1900 #
1901 # Example:
1902 #
1903 # -> { "execute": "object-add",
1904 # "arguments": { "qom-type": "rng-random", "id": "rng1",
1905 # "props": { "filename": "/dev/hwrng" } } }
1906 # <- { "return": {} }
1907 #
1908 ##
1909 { 'command': 'object-add',
1910 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1911
1912 ##
1913 # @object-del:
1914 #
1915 # Remove a QOM object.
1916 #
1917 # @id: the name of the QOM object to remove
1918 #
1919 # Returns: Nothing on success
1920 # Error if @id is not a valid id for a QOM object
1921 #
1922 # Since: 2.0
1923 #
1924 # Example:
1925 #
1926 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1927 # <- { "return": {} }
1928 #
1929 ##
1930 { 'command': 'object-del', 'data': {'id': 'str'} }
1931
1932 ##
1933 # @getfd:
1934 #
1935 # Receive a file descriptor via SCM rights and assign it a name
1936 #
1937 # @fdname: file descriptor name
1938 #
1939 # Returns: Nothing on success
1940 #
1941 # Since: 0.14.0
1942 #
1943 # Notes: If @fdname already exists, the file descriptor assigned to
1944 # it will be closed and replaced by the received file
1945 # descriptor.
1946 #
1947 # The 'closefd' command can be used to explicitly close the
1948 # file descriptor when it is no longer needed.
1949 #
1950 # Example:
1951 #
1952 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1953 # <- { "return": {} }
1954 #
1955 ##
1956 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1957
1958 ##
1959 # @closefd:
1960 #
1961 # Close a file descriptor previously passed via SCM rights
1962 #
1963 # @fdname: file descriptor name
1964 #
1965 # Returns: Nothing on success
1966 #
1967 # Since: 0.14.0
1968 #
1969 # Example:
1970 #
1971 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1972 # <- { "return": {} }
1973 #
1974 ##
1975 { 'command': 'closefd', 'data': {'fdname': 'str'} }
1976
1977 ##
1978 # @MachineInfo:
1979 #
1980 # Information describing a machine.
1981 #
1982 # @name: the name of the machine
1983 #
1984 # @alias: an alias for the machine name
1985 #
1986 # @is-default: whether the machine is default
1987 #
1988 # @cpu-max: maximum number of CPUs supported by the machine type
1989 # (since 1.5.0)
1990 #
1991 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1992 #
1993 # Since: 1.2.0
1994 ##
1995 { 'struct': 'MachineInfo',
1996 'data': { 'name': 'str', '*alias': 'str',
1997 '*is-default': 'bool', 'cpu-max': 'int',
1998 'hotpluggable-cpus': 'bool'} }
1999
2000 ##
2001 # @query-machines:
2002 #
2003 # Return a list of supported machines
2004 #
2005 # Returns: a list of MachineInfo
2006 #
2007 # Since: 1.2.0
2008 ##
2009 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
2010
2011 ##
2012 # @CpuDefinitionInfo:
2013 #
2014 # Virtual CPU definition.
2015 #
2016 # @name: the name of the CPU definition
2017 #
2018 # @migration-safe: whether a CPU definition can be safely used for
2019 # migration in combination with a QEMU compatibility machine
2020 # when migrating between different QMU versions and between
2021 # hosts with different sets of (hardware or software)
2022 # capabilities. If not provided, information is not available
2023 # and callers should not assume the CPU definition to be
2024 # migration-safe. (since 2.8)
2025 #
2026 # @static: whether a CPU definition is static and will not change depending on
2027 # QEMU version, machine type, machine options and accelerator options.
2028 # A static model is always migration-safe. (since 2.8)
2029 #
2030 # @unavailable-features: List of properties that prevent
2031 # the CPU model from running in the current
2032 # host. (since 2.8)
2033 # @typename: Type name that can be used as argument to @device-list-properties,
2034 # to introspect properties configurable using -cpu or -global.
2035 # (since 2.9)
2036 #
2037 # @unavailable-features is a list of QOM property names that
2038 # represent CPU model attributes that prevent the CPU from running.
2039 # If the QOM property is read-only, that means there's no known
2040 # way to make the CPU model run in the current host. Implementations
2041 # that choose not to provide specific information return the
2042 # property name "type".
2043 # If the property is read-write, it means that it MAY be possible
2044 # to run the CPU model in the current host if that property is
2045 # changed. Management software can use it as hints to suggest or
2046 # choose an alternative for the user, or just to generate meaningful
2047 # error messages explaining why the CPU model can't be used.
2048 # If @unavailable-features is an empty list, the CPU model is
2049 # runnable using the current host and machine-type.
2050 # If @unavailable-features is not present, runnability
2051 # information for the CPU is not available.
2052 #
2053 # Since: 1.2.0
2054 ##
2055 { 'struct': 'CpuDefinitionInfo',
2056 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2057 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2058
2059 ##
2060 # @MemoryInfo:
2061 #
2062 # Actual memory information in bytes.
2063 #
2064 # @base-memory: size of "base" memory specified with command line
2065 # option -m.
2066 #
2067 # @plugged-memory: size of memory that can be hot-unplugged. This field
2068 # is omitted if target doesn't support memory hotplug
2069 # (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2070 #
2071 # Since: 2.11.0
2072 ##
2073 { 'struct': 'MemoryInfo',
2074 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2075
2076 ##
2077 # @query-memory-size-summary:
2078 #
2079 # Return the amount of initially allocated and present hotpluggable (if
2080 # enabled) memory in bytes.
2081 #
2082 # Example:
2083 #
2084 # -> { "execute": "query-memory-size-summary" }
2085 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2086 #
2087 # Since: 2.11.0
2088 ##
2089 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2090
2091 ##
2092 # @query-cpu-definitions:
2093 #
2094 # Return a list of supported virtual CPU definitions
2095 #
2096 # Returns: a list of CpuDefInfo
2097 #
2098 # Since: 1.2.0
2099 ##
2100 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2101
2102 ##
2103 # @CpuModelInfo:
2104 #
2105 # Virtual CPU model.
2106 #
2107 # A CPU model consists of the name of a CPU definition, to which
2108 # delta changes are applied (e.g. features added/removed). Most magic values
2109 # that an architecture might require should be hidden behind the name.
2110 # However, if required, architectures can expose relevant properties.
2111 #
2112 # @name: the name of the CPU definition the model is based on
2113 # @props: a dictionary of QOM properties to be applied
2114 #
2115 # Since: 2.8.0
2116 ##
2117 { 'struct': 'CpuModelInfo',
2118 'data': { 'name': 'str',
2119 '*props': 'any' } }
2120
2121 ##
2122 # @CpuModelExpansionType:
2123 #
2124 # An enumeration of CPU model expansion types.
2125 #
2126 # @static: Expand to a static CPU model, a combination of a static base
2127 # model name and property delta changes. As the static base model will
2128 # never change, the expanded CPU model will be the same, independent of
2129 # independent of QEMU version, machine type, machine options, and
2130 # accelerator options. Therefore, the resulting model can be used by
2131 # tooling without having to specify a compatibility machine - e.g. when
2132 # displaying the "host" model. static CPU models are migration-safe.
2133 #
2134 # @full: Expand all properties. The produced model is not guaranteed to be
2135 # migration-safe, but allows tooling to get an insight and work with
2136 # model details.
2137 #
2138 # Note: When a non-migration-safe CPU model is expanded in static mode, some
2139 # features enabled by the CPU model may be omitted, because they can't be
2140 # implemented by a static CPU model definition (e.g. cache info passthrough and
2141 # PMU passthrough in x86). If you need an accurate representation of the
2142 # features enabled by a non-migration-safe CPU model, use @full. If you need a
2143 # static representation that will keep ABI compatibility even when changing QEMU
2144 # version or machine-type, use @static (but keep in mind that some features may
2145 # be omitted).
2146 #
2147 # Since: 2.8.0
2148 ##
2149 { 'enum': 'CpuModelExpansionType',
2150 'data': [ 'static', 'full' ] }
2151
2152
2153 ##
2154 # @CpuModelExpansionInfo:
2155 #
2156 # The result of a cpu model expansion.
2157 #
2158 # @model: the expanded CpuModelInfo.
2159 #
2160 # Since: 2.8.0
2161 ##
2162 { 'struct': 'CpuModelExpansionInfo',
2163 'data': { 'model': 'CpuModelInfo' } }
2164
2165
2166 ##
2167 # @query-cpu-model-expansion:
2168 #
2169 # Expands a given CPU model (or a combination of CPU model + additional options)
2170 # to different granularities, allowing tooling to get an understanding what a
2171 # specific CPU model looks like in QEMU under a certain configuration.
2172 #
2173 # This interface can be used to query the "host" CPU model.
2174 #
2175 # The data returned by this command may be affected by:
2176 #
2177 # * QEMU version: CPU models may look different depending on the QEMU version.
2178 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2179 # * machine-type: CPU model may look different depending on the machine-type.
2180 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2181 # * machine options (including accelerator): in some architectures, CPU models
2182 # may look different depending on machine and accelerator options. (Except for
2183 # CPU models reported as "static" in query-cpu-definitions.)
2184 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2185 # global properties may affect expansion of CPU models. Using
2186 # query-cpu-model-expansion while using these is not advised.
2187 #
2188 # Some architectures may not support all expansion types. s390x supports
2189 # "full" and "static".
2190 #
2191 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2192 # not supported, if the model cannot be expanded, if the model contains
2193 # an unknown CPU definition name, unknown properties or properties
2194 # with a wrong type. Also returns an error if an expansion type is
2195 # not supported.
2196 #
2197 # Since: 2.8.0
2198 ##
2199 { 'command': 'query-cpu-model-expansion',
2200 'data': { 'type': 'CpuModelExpansionType',
2201 'model': 'CpuModelInfo' },
2202 'returns': 'CpuModelExpansionInfo' }
2203
2204 ##
2205 # @CpuModelCompareResult:
2206 #
2207 # An enumeration of CPU model comparison results. The result is usually
2208 # calculated using e.g. CPU features or CPU generations.
2209 #
2210 # @incompatible: If model A is incompatible to model B, model A is not
2211 # guaranteed to run where model B runs and the other way around.
2212 #
2213 # @identical: If model A is identical to model B, model A is guaranteed to run
2214 # where model B runs and the other way around.
2215 #
2216 # @superset: If model A is a superset of model B, model B is guaranteed to run
2217 # where model A runs. There are no guarantees about the other way.
2218 #
2219 # @subset: If model A is a subset of model B, model A is guaranteed to run
2220 # where model B runs. There are no guarantees about the other way.
2221 #
2222 # Since: 2.8.0
2223 ##
2224 { 'enum': 'CpuModelCompareResult',
2225 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2226
2227 ##
2228 # @CpuModelCompareInfo:
2229 #
2230 # The result of a CPU model comparison.
2231 #
2232 # @result: The result of the compare operation.
2233 # @responsible-properties: List of properties that led to the comparison result
2234 # not being identical.
2235 #
2236 # @responsible-properties is a list of QOM property names that led to
2237 # both CPUs not being detected as identical. For identical models, this
2238 # list is empty.
2239 # If a QOM property is read-only, that means there's no known way to make the
2240 # CPU models identical. If the special property name "type" is included, the
2241 # models are by definition not identical and cannot be made identical.
2242 #
2243 # Since: 2.8.0
2244 ##
2245 { 'struct': 'CpuModelCompareInfo',
2246 'data': {'result': 'CpuModelCompareResult',
2247 'responsible-properties': ['str']
2248 }
2249 }
2250
2251 ##
2252 # @query-cpu-model-comparison:
2253 #
2254 # Compares two CPU models, returning how they compare in a specific
2255 # configuration. The results indicates how both models compare regarding
2256 # runnability. This result can be used by tooling to make decisions if a
2257 # certain CPU model will run in a certain configuration or if a compatible
2258 # CPU model has to be created by baselining.
2259 #
2260 # Usually, a CPU model is compared against the maximum possible CPU model
2261 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
2262 # model is identical or a subset, it will run in that configuration.
2263 #
2264 # The result returned by this command may be affected by:
2265 #
2266 # * QEMU version: CPU models may look different depending on the QEMU version.
2267 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2268 # * machine-type: CPU model may look different depending on the machine-type.
2269 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2270 # * machine options (including accelerator): in some architectures, CPU models
2271 # may look different depending on machine and accelerator options. (Except for
2272 # CPU models reported as "static" in query-cpu-definitions.)
2273 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2274 # global properties may affect expansion of CPU models. Using
2275 # query-cpu-model-expansion while using these is not advised.
2276 #
2277 # Some architectures may not support comparing CPU models. s390x supports
2278 # comparing CPU models.
2279 #
2280 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2281 # not supported, if a model cannot be used, if a model contains
2282 # an unknown cpu definition name, unknown properties or properties
2283 # with wrong types.
2284 #
2285 # Since: 2.8.0
2286 ##
2287 { 'command': 'query-cpu-model-comparison',
2288 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2289 'returns': 'CpuModelCompareInfo' }
2290
2291 ##
2292 # @CpuModelBaselineInfo:
2293 #
2294 # The result of a CPU model baseline.
2295 #
2296 # @model: the baselined CpuModelInfo.
2297 #
2298 # Since: 2.8.0
2299 ##
2300 { 'struct': 'CpuModelBaselineInfo',
2301 'data': { 'model': 'CpuModelInfo' } }
2302
2303 ##
2304 # @query-cpu-model-baseline:
2305 #
2306 # Baseline two CPU models, creating a compatible third model. The created
2307 # model will always be a static, migration-safe CPU model (see "static"
2308 # CPU model expansion for details).
2309 #
2310 # This interface can be used by tooling to create a compatible CPU model out
2311 # two CPU models. The created CPU model will be identical to or a subset of
2312 # both CPU models when comparing them. Therefore, the created CPU model is
2313 # guaranteed to run where the given CPU models run.
2314 #
2315 # The result returned by this command may be affected by:
2316 #
2317 # * QEMU version: CPU models may look different depending on the QEMU version.
2318 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2319 # * machine-type: CPU model may look different depending on the machine-type.
2320 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2321 # * machine options (including accelerator): in some architectures, CPU models
2322 # may look different depending on machine and accelerator options. (Except for
2323 # CPU models reported as "static" in query-cpu-definitions.)
2324 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2325 # global properties may affect expansion of CPU models. Using
2326 # query-cpu-model-expansion while using these is not advised.
2327 #
2328 # Some architectures may not support baselining CPU models. s390x supports
2329 # baselining CPU models.
2330 #
2331 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2332 # not supported, if a model cannot be used, if a model contains
2333 # an unknown cpu definition name, unknown properties or properties
2334 # with wrong types.
2335 #
2336 # Since: 2.8.0
2337 ##
2338 { 'command': 'query-cpu-model-baseline',
2339 'data': { 'modela': 'CpuModelInfo',
2340 'modelb': 'CpuModelInfo' },
2341 'returns': 'CpuModelBaselineInfo' }
2342
2343 ##
2344 # @AddfdInfo:
2345 #
2346 # Information about a file descriptor that was added to an fd set.
2347 #
2348 # @fdset-id: The ID of the fd set that @fd was added to.
2349 #
2350 # @fd: The file descriptor that was received via SCM rights and
2351 # added to the fd set.
2352 #
2353 # Since: 1.2.0
2354 ##
2355 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2356
2357 ##
2358 # @add-fd:
2359 #
2360 # Add a file descriptor, that was passed via SCM rights, to an fd set.
2361 #
2362 # @fdset-id: The ID of the fd set to add the file descriptor to.
2363 #
2364 # @opaque: A free-form string that can be used to describe the fd.
2365 #
2366 # Returns: @AddfdInfo on success
2367 #
2368 # If file descriptor was not received, FdNotSupplied
2369 #
2370 # If @fdset-id is a negative value, InvalidParameterValue
2371 #
2372 # Notes: The list of fd sets is shared by all monitor connections.
2373 #
2374 # If @fdset-id is not specified, a new fd set will be created.
2375 #
2376 # Since: 1.2.0
2377 #
2378 # Example:
2379 #
2380 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2381 # <- { "return": { "fdset-id": 1, "fd": 3 } }
2382 #
2383 ##
2384 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2385 'returns': 'AddfdInfo' }
2386
2387 ##
2388 # @remove-fd:
2389 #
2390 # Remove a file descriptor from an fd set.
2391 #
2392 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
2393 #
2394 # @fd: The file descriptor that is to be removed.
2395 #
2396 # Returns: Nothing on success
2397 # If @fdset-id or @fd is not found, FdNotFound
2398 #
2399 # Since: 1.2.0
2400 #
2401 # Notes: The list of fd sets is shared by all monitor connections.
2402 #
2403 # If @fd is not specified, all file descriptors in @fdset-id
2404 # will be removed.
2405 #
2406 # Example:
2407 #
2408 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2409 # <- { "return": {} }
2410 #
2411 ##
2412 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2413
2414 ##
2415 # @FdsetFdInfo:
2416 #
2417 # Information about a file descriptor that belongs to an fd set.
2418 #
2419 # @fd: The file descriptor value.
2420 #
2421 # @opaque: A free-form string that can be used to describe the fd.
2422 #
2423 # Since: 1.2.0
2424 ##
2425 { 'struct': 'FdsetFdInfo',
2426 'data': {'fd': 'int', '*opaque': 'str'} }
2427
2428 ##
2429 # @FdsetInfo:
2430 #
2431 # Information about an fd set.
2432 #
2433 # @fdset-id: The ID of the fd set.
2434 #
2435 # @fds: A list of file descriptors that belong to this fd set.
2436 #
2437 # Since: 1.2.0
2438 ##
2439 { 'struct': 'FdsetInfo',
2440 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2441
2442 ##
2443 # @query-fdsets:
2444 #
2445 # Return information describing all fd sets.
2446 #
2447 # Returns: A list of @FdsetInfo
2448 #
2449 # Since: 1.2.0
2450 #
2451 # Note: The list of fd sets is shared by all monitor connections.
2452 #
2453 # Example:
2454 #
2455 # -> { "execute": "query-fdsets" }
2456 # <- { "return": [
2457 # {
2458 # "fds": [
2459 # {
2460 # "fd": 30,
2461 # "opaque": "rdonly:/path/to/file"
2462 # },
2463 # {
2464 # "fd": 24,
2465 # "opaque": "rdwr:/path/to/file"
2466 # }
2467 # ],
2468 # "fdset-id": 1
2469 # },
2470 # {
2471 # "fds": [
2472 # {
2473 # "fd": 28
2474 # },
2475 # {
2476 # "fd": 29
2477 # }
2478 # ],
2479 # "fdset-id": 0
2480 # }
2481 # ]
2482 # }
2483 #
2484 ##
2485 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2486
2487 ##
2488 # @TargetInfo:
2489 #
2490 # Information describing the QEMU target.
2491 #
2492 # @arch: the target architecture
2493 #
2494 # Since: 1.2.0
2495 ##
2496 { 'struct': 'TargetInfo',
2497 'data': { 'arch': 'SysEmuTarget' } }
2498
2499 ##
2500 # @query-target:
2501 #
2502 # Return information about the target for this QEMU
2503 #
2504 # Returns: TargetInfo
2505 #
2506 # Since: 1.2.0
2507 ##
2508 { 'command': 'query-target', 'returns': 'TargetInfo' }
2509
2510 ##
2511 # @AcpiTableOptions:
2512 #
2513 # Specify an ACPI table on the command line to load.
2514 #
2515 # At most one of @file and @data can be specified. The list of files specified
2516 # by any one of them is loaded and concatenated in order. If both are omitted,
2517 # @data is implied.
2518 #
2519 # Other fields / optargs can be used to override fields of the generic ACPI
2520 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
2521 # Description Table Header. If a header field is not overridden, then the
2522 # corresponding value from the concatenated blob is used (in case of @file), or
2523 # it is filled in with a hard-coded value (in case of @data).
2524 #
2525 # String fields are copied into the matching ACPI member from lowest address
2526 # upwards, and silently truncated / NUL-padded to length.
2527 #
2528 # @sig: table signature / identifier (4 bytes)
2529 #
2530 # @rev: table revision number (dependent on signature, 1 byte)
2531 #
2532 # @oem_id: OEM identifier (6 bytes)
2533 #
2534 # @oem_table_id: OEM table identifier (8 bytes)
2535 #
2536 # @oem_rev: OEM-supplied revision number (4 bytes)
2537 #
2538 # @asl_compiler_id: identifier of the utility that created the table
2539 # (4 bytes)
2540 #
2541 # @asl_compiler_rev: revision number of the utility that created the
2542 # table (4 bytes)
2543 #
2544 # @file: colon (:) separated list of pathnames to load and
2545 # concatenate as table data. The resultant binary blob is expected to
2546 # have an ACPI table header. At least one file is required. This field
2547 # excludes @data.
2548 #
2549 # @data: colon (:) separated list of pathnames to load and
2550 # concatenate as table data. The resultant binary blob must not have an
2551 # ACPI table header. At least one file is required. This field excludes
2552 # @file.
2553 #
2554 # Since: 1.5
2555 ##
2556 { 'struct': 'AcpiTableOptions',
2557 'data': {
2558 '*sig': 'str',
2559 '*rev': 'uint8',
2560 '*oem_id': 'str',
2561 '*oem_table_id': 'str',
2562 '*oem_rev': 'uint32',
2563 '*asl_compiler_id': 'str',
2564 '*asl_compiler_rev': 'uint32',
2565 '*file': 'str',
2566 '*data': 'str' }}
2567
2568 ##
2569 # @CommandLineParameterType:
2570 #
2571 # Possible types for an option parameter.
2572 #
2573 # @string: accepts a character string
2574 #
2575 # @boolean: accepts "on" or "off"
2576 #
2577 # @number: accepts a number
2578 #
2579 # @size: accepts a number followed by an optional suffix (K)ilo,
2580 # (M)ega, (G)iga, (T)era
2581 #
2582 # Since: 1.5
2583 ##
2584 { 'enum': 'CommandLineParameterType',
2585 'data': ['string', 'boolean', 'number', 'size'] }
2586
2587 ##
2588 # @CommandLineParameterInfo:
2589 #
2590 # Details about a single parameter of a command line option.
2591 #
2592 # @name: parameter name
2593 #
2594 # @type: parameter @CommandLineParameterType
2595 #
2596 # @help: human readable text string, not suitable for parsing.
2597 #
2598 # @default: default value string (since 2.1)
2599 #
2600 # Since: 1.5
2601 ##
2602 { 'struct': 'CommandLineParameterInfo',
2603 'data': { 'name': 'str',
2604 'type': 'CommandLineParameterType',
2605 '*help': 'str',
2606 '*default': 'str' } }
2607
2608 ##
2609 # @CommandLineOptionInfo:
2610 #
2611 # Details about a command line option, including its list of parameter details
2612 #
2613 # @option: option name
2614 #
2615 # @parameters: an array of @CommandLineParameterInfo
2616 #
2617 # Since: 1.5
2618 ##
2619 { 'struct': 'CommandLineOptionInfo',
2620 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2621
2622 ##
2623 # @query-command-line-options:
2624 #
2625 # Query command line option schema.
2626 #
2627 # @option: option name
2628 #
2629 # Returns: list of @CommandLineOptionInfo for all options (or for the given
2630 # @option). Returns an error if the given @option doesn't exist.
2631 #
2632 # Since: 1.5
2633 #
2634 # Example:
2635 #
2636 # -> { "execute": "query-command-line-options",
2637 # "arguments": { "option": "option-rom" } }
2638 # <- { "return": [
2639 # {
2640 # "parameters": [
2641 # {
2642 # "name": "romfile",
2643 # "type": "string"
2644 # },
2645 # {
2646 # "name": "bootindex",
2647 # "type": "number"
2648 # }
2649 # ],
2650 # "option": "option-rom"
2651 # }
2652 # ]
2653 # }
2654 #
2655 ##
2656 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
2657 'returns': ['CommandLineOptionInfo'],
2658 'allow-preconfig': true }
2659
2660 ##
2661 # @X86CPURegister32:
2662 #
2663 # A X86 32-bit register
2664 #
2665 # Since: 1.5
2666 ##
2667 { 'enum': 'X86CPURegister32',
2668 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2669
2670 ##
2671 # @X86CPUFeatureWordInfo:
2672 #
2673 # Information about a X86 CPU feature word
2674 #
2675 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2676 #
2677 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2678 # feature word
2679 #
2680 # @cpuid-register: Output register containing the feature bits
2681 #
2682 # @features: value of output register, containing the feature bits
2683 #
2684 # Since: 1.5
2685 ##
2686 { 'struct': 'X86CPUFeatureWordInfo',
2687 'data': { 'cpuid-input-eax': 'int',
2688 '*cpuid-input-ecx': 'int',
2689 'cpuid-register': 'X86CPURegister32',
2690 'features': 'int' } }
2691
2692 ##
2693 # @DummyForceArrays:
2694 #
2695 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2696 #
2697 # Since: 2.5
2698 ##
2699 { 'struct': 'DummyForceArrays',
2700 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2701
2702
2703 ##
2704 # @NumaOptionsType:
2705 #
2706 # @node: NUMA nodes configuration
2707 #
2708 # @dist: NUMA distance configuration (since 2.10)
2709 #
2710 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
2711 #
2712 # Since: 2.1
2713 ##
2714 { 'enum': 'NumaOptionsType',
2715 'data': [ 'node', 'dist', 'cpu' ] }
2716
2717 ##
2718 # @NumaOptions:
2719 #
2720 # A discriminated record of NUMA options. (for OptsVisitor)
2721 #
2722 # Since: 2.1
2723 ##
2724 { 'union': 'NumaOptions',
2725 'base': { 'type': 'NumaOptionsType' },
2726 'discriminator': 'type',
2727 'data': {
2728 'node': 'NumaNodeOptions',
2729 'dist': 'NumaDistOptions',
2730 'cpu': 'NumaCpuOptions' }}
2731
2732 ##
2733 # @NumaNodeOptions:
2734 #
2735 # Create a guest NUMA node. (for OptsVisitor)
2736 #
2737 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2738 #
2739 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2740 # if omitted)
2741 #
2742 # @mem: memory size of this node; mutually exclusive with @memdev.
2743 # Equally divide total memory among nodes if both @mem and @memdev are
2744 # omitted.
2745 #
2746 # @memdev: memory backend object. If specified for one node,
2747 # it must be specified for all nodes.
2748 #
2749 # Since: 2.1
2750 ##
2751 { 'struct': 'NumaNodeOptions',
2752 'data': {
2753 '*nodeid': 'uint16',
2754 '*cpus': ['uint16'],
2755 '*mem': 'size',
2756 '*memdev': 'str' }}
2757
2758 ##
2759 # @NumaDistOptions:
2760 #
2761 # Set the distance between 2 NUMA nodes.
2762 #
2763 # @src: source NUMA node.
2764 #
2765 # @dst: destination NUMA node.
2766 #
2767 # @val: NUMA distance from source node to destination node.
2768 # When a node is unreachable from another node, set the distance
2769 # between them to 255.
2770 #
2771 # Since: 2.10
2772 ##
2773 { 'struct': 'NumaDistOptions',
2774 'data': {
2775 'src': 'uint16',
2776 'dst': 'uint16',
2777 'val': 'uint8' }}
2778
2779 ##
2780 # @NumaCpuOptions:
2781 #
2782 # Option "-numa cpu" overrides default cpu to node mapping.
2783 # It accepts the same set of cpu properties as returned by
2784 # query-hotpluggable-cpus[].props, where node-id could be used to
2785 # override default node mapping.
2786 #
2787 # Since: 2.10
2788 ##
2789 { 'struct': 'NumaCpuOptions',
2790 'base': 'CpuInstanceProperties',
2791 'data' : {} }
2792
2793 ##
2794 # @HostMemPolicy:
2795 #
2796 # Host memory policy types
2797 #
2798 # @default: restore default policy, remove any nondefault policy
2799 #
2800 # @preferred: set the preferred host nodes for allocation
2801 #
2802 # @bind: a strict policy that restricts memory allocation to the
2803 # host nodes specified
2804 #
2805 # @interleave: memory allocations are interleaved across the set
2806 # of host nodes specified
2807 #
2808 # Since: 2.1
2809 ##
2810 { 'enum': 'HostMemPolicy',
2811 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2812
2813 ##
2814 # @Memdev:
2815 #
2816 # Information about memory backend
2817 #
2818 # @id: backend's ID if backend has 'id' property (since 2.9)
2819 #
2820 # @size: memory backend size
2821 #
2822 # @merge: enables or disables memory merge support
2823 #
2824 # @dump: includes memory backend's memory in a core dump or not
2825 #
2826 # @prealloc: enables or disables memory preallocation
2827 #
2828 # @host-nodes: host nodes for its memory policy
2829 #
2830 # @policy: memory policy of memory backend
2831 #
2832 # Since: 2.1
2833 ##
2834 { 'struct': 'Memdev',
2835 'data': {
2836 '*id': 'str',
2837 'size': 'size',
2838 'merge': 'bool',
2839 'dump': 'bool',
2840 'prealloc': 'bool',
2841 'host-nodes': ['uint16'],
2842 'policy': 'HostMemPolicy' }}
2843
2844 ##
2845 # @query-memdev:
2846 #
2847 # Returns information for all memory backends.
2848 #
2849 # Returns: a list of @Memdev.
2850 #
2851 # Since: 2.1
2852 #
2853 # Example:
2854 #
2855 # -> { "execute": "query-memdev" }
2856 # <- { "return": [
2857 # {
2858 # "id": "mem1",
2859 # "size": 536870912,
2860 # "merge": false,
2861 # "dump": true,
2862 # "prealloc": false,
2863 # "host-nodes": [0, 1],
2864 # "policy": "bind"
2865 # },
2866 # {
2867 # "size": 536870912,
2868 # "merge": false,
2869 # "dump": true,
2870 # "prealloc": true,
2871 # "host-nodes": [2, 3],
2872 # "policy": "preferred"
2873 # }
2874 # ]
2875 # }
2876 #
2877 ##
2878 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
2879
2880 ##
2881 # @PCDIMMDeviceInfo:
2882 #
2883 # PCDIMMDevice state information
2884 #
2885 # @id: device's ID
2886 #
2887 # @addr: physical address, where device is mapped
2888 #
2889 # @size: size of memory that the device provides
2890 #
2891 # @slot: slot number at which device is plugged in
2892 #
2893 # @node: NUMA node number where device is plugged in
2894 #
2895 # @memdev: memory backend linked with device
2896 #
2897 # @hotplugged: true if device was hotplugged
2898 #
2899 # @hotpluggable: true if device if could be added/removed while machine is running
2900 #
2901 # Since: 2.1
2902 ##
2903 { 'struct': 'PCDIMMDeviceInfo',
2904 'data': { '*id': 'str',
2905 'addr': 'int',
2906 'size': 'int',
2907 'slot': 'int',
2908 'node': 'int',
2909 'memdev': 'str',
2910 'hotplugged': 'bool',
2911 'hotpluggable': 'bool'
2912 }
2913 }
2914
2915 ##
2916 # @MemoryDeviceInfo:
2917 #
2918 # Union containing information about a memory device
2919 #
2920 # Since: 2.1
2921 ##
2922 { 'union': 'MemoryDeviceInfo',
2923 'data': { 'dimm': 'PCDIMMDeviceInfo',
2924 'nvdimm': 'PCDIMMDeviceInfo'
2925 }
2926 }
2927
2928 ##
2929 # @query-memory-devices:
2930 #
2931 # Lists available memory devices and their state
2932 #
2933 # Since: 2.1
2934 #
2935 # Example:
2936 #
2937 # -> { "execute": "query-memory-devices" }
2938 # <- { "return": [ { "data":
2939 # { "addr": 5368709120,
2940 # "hotpluggable": true,
2941 # "hotplugged": true,
2942 # "id": "d1",
2943 # "memdev": "/objects/memX",
2944 # "node": 0,
2945 # "size": 1073741824,
2946 # "slot": 0},
2947 # "type": "dimm"
2948 # } ] }
2949 #
2950 ##
2951 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2952
2953 ##
2954 # @MEM_UNPLUG_ERROR:
2955 #
2956 # Emitted when memory hot unplug error occurs.
2957 #
2958 # @device: device name
2959 #
2960 # @msg: Informative message
2961 #
2962 # Since: 2.4
2963 #
2964 # Example:
2965 #
2966 # <- { "event": "MEM_UNPLUG_ERROR"
2967 # "data": { "device": "dimm1",
2968 # "msg": "acpi: device unplug for unsupported device"
2969 # },
2970 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2971 #
2972 ##
2973 { 'event': 'MEM_UNPLUG_ERROR',
2974 'data': { 'device': 'str', 'msg': 'str' } }
2975
2976 ##
2977 # @ACPISlotType:
2978 #
2979 # @DIMM: memory slot
2980 # @CPU: logical CPU slot (since 2.7)
2981 ##
2982 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2983
2984 ##
2985 # @ACPIOSTInfo:
2986 #
2987 # OSPM Status Indication for a device
2988 # For description of possible values of @source and @status fields
2989 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2990 #
2991 # @device: device ID associated with slot
2992 #
2993 # @slot: slot ID, unique per slot of a given @slot-type
2994 #
2995 # @slot-type: type of the slot
2996 #
2997 # @source: an integer containing the source event
2998 #
2999 # @status: an integer containing the status code
3000 #
3001 # Since: 2.1
3002 ##
3003 { 'struct': 'ACPIOSTInfo',
3004 'data' : { '*device': 'str',
3005 'slot': 'str',
3006 'slot-type': 'ACPISlotType',
3007 'source': 'int',
3008 'status': 'int' } }
3009
3010 ##
3011 # @query-acpi-ospm-status:
3012 #
3013 # Return a list of ACPIOSTInfo for devices that support status
3014 # reporting via ACPI _OST method.
3015 #
3016 # Since: 2.1
3017 #
3018 # Example:
3019 #
3020 # -> { "execute": "query-acpi-ospm-status" }
3021 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3022 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3023 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3024 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3025 # ]}
3026 #
3027 ##
3028 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3029
3030 ##
3031 # @ACPI_DEVICE_OST:
3032 #
3033 # Emitted when guest executes ACPI _OST method.
3034 #
3035 # @info: OSPM Status Indication
3036 #
3037 # Since: 2.1
3038 #
3039 # Example:
3040 #
3041 # <- { "event": "ACPI_DEVICE_OST",
3042 # "data": { "device": "d1", "slot": "0",
3043 # "slot-type": "DIMM", "source": 1, "status": 0 } }
3044 #
3045 ##
3046 { 'event': 'ACPI_DEVICE_OST',
3047 'data': { 'info': 'ACPIOSTInfo' } }
3048
3049 ##
3050 # @rtc-reset-reinjection:
3051 #
3052 # This command will reset the RTC interrupt reinjection backlog.
3053 # Can be used if another mechanism to synchronize guest time
3054 # is in effect, for example QEMU guest agent's guest-set-time
3055 # command.
3056 #
3057 # Since: 2.1
3058 #
3059 # Example:
3060 #
3061 # -> { "execute": "rtc-reset-reinjection" }
3062 # <- { "return": {} }
3063 #
3064 ##
3065 { 'command': 'rtc-reset-reinjection' }
3066
3067 ##
3068 # @RTC_CHANGE:
3069 #
3070 # Emitted when the guest changes the RTC time.
3071 #
3072 # @offset: offset between base RTC clock (as specified by -rtc base), and
3073 # new RTC clock value
3074 #
3075 # Note: This event is rate-limited.
3076 #
3077 # Since: 0.13.0
3078 #
3079 # Example:
3080 #
3081 # <- { "event": "RTC_CHANGE",
3082 # "data": { "offset": 78 },
3083 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3084 #
3085 ##
3086 { 'event': 'RTC_CHANGE',
3087 'data': { 'offset': 'int' } }
3088
3089 ##
3090 # @ReplayMode:
3091 #
3092 # Mode of the replay subsystem.
3093 #
3094 # @none: normal execution mode. Replay or record are not enabled.
3095 #
3096 # @record: record mode. All non-deterministic data is written into the
3097 # replay log.
3098 #
3099 # @play: replay mode. Non-deterministic data required for system execution
3100 # is read from the log.
3101 #
3102 # Since: 2.5
3103 ##
3104 { 'enum': 'ReplayMode',
3105 'data': [ 'none', 'record', 'play' ] }
3106
3107 ##
3108 # @xen-load-devices-state:
3109 #
3110 # Load the state of all devices from file. The RAM and the block devices
3111 # of the VM are not loaded by this command.
3112 #
3113 # @filename: the file to load the state of the devices from as binary
3114 # data. See xen-save-devices-state.txt for a description of the binary
3115 # format.
3116 #
3117 # Since: 2.7
3118 #
3119 # Example:
3120 #
3121 # -> { "execute": "xen-load-devices-state",
3122 # "arguments": { "filename": "/tmp/resume" } }
3123 # <- { "return": {} }
3124 #
3125 ##
3126 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3127
3128 ##
3129 # @GICCapability:
3130 #
3131 # The struct describes capability for a specific GIC (Generic
3132 # Interrupt Controller) version. These bits are not only decided by
3133 # QEMU/KVM software version, but also decided by the hardware that
3134 # the program is running upon.
3135 #
3136 # @version: version of GIC to be described. Currently, only 2 and 3
3137 # are supported.
3138 #
3139 # @emulated: whether current QEMU/hardware supports emulated GIC
3140 # device in user space.
3141 #
3142 # @kernel: whether current QEMU/hardware supports hardware
3143 # accelerated GIC device in kernel.
3144 #
3145 # Since: 2.6
3146 ##
3147 { 'struct': 'GICCapability',
3148 'data': { 'version': 'int',
3149 'emulated': 'bool',
3150 'kernel': 'bool' } }
3151
3152 ##
3153 # @query-gic-capabilities:
3154 #
3155 # This command is ARM-only. It will return a list of GICCapability
3156 # objects that describe its capability bits.
3157 #
3158 # Returns: a list of GICCapability objects.
3159 #
3160 # Since: 2.6
3161 #
3162 # Example:
3163 #
3164 # -> { "execute": "query-gic-capabilities" }
3165 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3166 # { "version": 3, "emulated": false, "kernel": true } ] }
3167 #
3168 ##
3169 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3170
3171 ##
3172 # @CpuInstanceProperties:
3173 #
3174 # List of properties to be used for hotplugging a CPU instance,
3175 # it should be passed by management with device_add command when
3176 # a CPU is being hotplugged.
3177 #
3178 # @node-id: NUMA node ID the CPU belongs to
3179 # @socket-id: socket number within node/board the CPU belongs to
3180 # @core-id: core number within socket the CPU belongs to
3181 # @thread-id: thread number within core the CPU belongs to
3182 #
3183 # Note: currently there are 4 properties that could be present
3184 # but management should be prepared to pass through other
3185 # properties with device_add command to allow for future
3186 # interface extension. This also requires the filed names to be kept in
3187 # sync with the properties passed to -device/device_add.
3188 #
3189 # Since: 2.7
3190 ##
3191 { 'struct': 'CpuInstanceProperties',
3192 'data': { '*node-id': 'int',
3193 '*socket-id': 'int',
3194 '*core-id': 'int',
3195 '*thread-id': 'int'
3196 }
3197 }
3198
3199 ##
3200 # @HotpluggableCPU:
3201 #
3202 # @type: CPU object type for usage with device_add command
3203 # @props: list of properties to be used for hotplugging CPU
3204 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3205 # @qom-path: link to existing CPU object if CPU is present or
3206 # omitted if CPU is not present.
3207 #
3208 # Since: 2.7
3209 ##
3210 { 'struct': 'HotpluggableCPU',
3211 'data': { 'type': 'str',
3212 'vcpus-count': 'int',
3213 'props': 'CpuInstanceProperties',
3214 '*qom-path': 'str'
3215 }
3216 }
3217
3218 ##
3219 # @query-hotpluggable-cpus:
3220 #
3221 # Returns: a list of HotpluggableCPU objects.
3222 #
3223 # Since: 2.7
3224 #
3225 # Example:
3226 #
3227 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3228 #
3229 # -> { "execute": "query-hotpluggable-cpus" }
3230 # <- {"return": [
3231 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3232 # "vcpus-count": 1 },
3233 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3234 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3235 # ]}'
3236 #
3237 # For pc machine type started with -smp 1,maxcpus=2:
3238 #
3239 # -> { "execute": "query-hotpluggable-cpus" }
3240 # <- {"return": [
3241 # {
3242 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3243 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3244 # },
3245 # {
3246 # "qom-path": "/machine/unattached/device[0]",
3247 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3248 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3249 # }
3250 # ]}
3251 #
3252 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3253 # (Since: 2.11):
3254 #
3255 # -> { "execute": "query-hotpluggable-cpus" }
3256 # <- {"return": [
3257 # {
3258 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3259 # "props": { "core-id": 1 }
3260 # },
3261 # {
3262 # "qom-path": "/machine/unattached/device[0]",
3263 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3264 # "props": { "core-id": 0 }
3265 # }
3266 # ]}
3267 #
3268 ##
3269 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3270 'allow-preconfig': true }
3271
3272 ##
3273 # @GuidInfo:
3274 #
3275 # GUID information.
3276 #
3277 # @guid: the globally unique identifier
3278 #
3279 # Since: 2.9
3280 ##
3281 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3282
3283 ##
3284 # @query-vm-generation-id:
3285 #
3286 # Show Virtual Machine Generation ID
3287 #
3288 # Since: 2.9
3289 ##
3290 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3291
3292
3293 ##
3294 # @SevState:
3295 #
3296 # An enumeration of SEV state information used during @query-sev.
3297 #
3298 # @uninit: The guest is uninitialized.
3299 #
3300 # @launch-update: The guest is currently being launched; plaintext data and
3301 # register state is being imported.
3302 #
3303 # @launch-secret: The guest is currently being launched; ciphertext data
3304 # is being imported.
3305 #
3306 # @running: The guest is fully launched or migrated in.
3307 #
3308 # @send-update: The guest is currently being migrated out to another machine.
3309 #
3310 # @receive-update: The guest is currently being migrated from another machine.
3311 #
3312 # Since: 2.12
3313 ##
3314 { 'enum': 'SevState',
3315 'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3316 'send-update', 'receive-update' ] }
3317
3318 ##
3319 # @SevInfo:
3320 #
3321 # Information about Secure Encrypted Virtualization (SEV) support
3322 #
3323 # @enabled: true if SEV is active
3324 #
3325 # @api-major: SEV API major version
3326 #
3327 # @api-minor: SEV API minor version
3328 #
3329 # @build-id: SEV FW build id
3330 #
3331 # @policy: SEV policy value
3332 #
3333 # @state: SEV guest state
3334 #
3335 # @handle: SEV firmware handle
3336 #
3337 # Since: 2.12
3338 ##
3339 { 'struct': 'SevInfo',
3340 'data': { 'enabled': 'bool',
3341 'api-major': 'uint8',
3342 'api-minor' : 'uint8',
3343 'build-id' : 'uint8',
3344 'policy' : 'uint32',
3345 'state' : 'SevState',
3346 'handle' : 'uint32'
3347 }
3348 }
3349
3350 ##
3351 # @query-sev:
3352 #
3353 # Returns information about SEV
3354 #
3355 # Returns: @SevInfo
3356 #
3357 # Since: 2.12
3358 #
3359 # Example:
3360 #
3361 # -> { "execute": "query-sev" }
3362 # <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3363 # "build-id" : 0, "policy" : 0, "state" : "running",
3364 # "handle" : 1 } }
3365 #
3366 ##
3367 { 'command': 'query-sev', 'returns': 'SevInfo' }
3368
3369 ##
3370 # @SevLaunchMeasureInfo:
3371 #
3372 # SEV Guest Launch measurement information
3373 #
3374 # @data: the measurement value encoded in base64
3375 #
3376 # Since: 2.12
3377 #
3378 ##
3379 { 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3380
3381 ##
3382 # @query-sev-launch-measure:
3383 #
3384 # Query the SEV guest launch information.
3385 #
3386 # Returns: The @SevLaunchMeasureInfo for the guest
3387 #
3388 # Since: 2.12
3389 #
3390 # Example:
3391 #
3392 # -> { "execute": "query-sev-launch-measure" }
3393 # <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3394 #
3395 ##
3396 { 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
3397
3398 ##
3399 # @SevCapability:
3400 #
3401 # The struct describes capability for a Secure Encrypted Virtualization
3402 # feature.
3403 #
3404 # @pdh: Platform Diffie-Hellman key (base64 encoded)
3405 #
3406 # @cert-chain: PDH certificate chain (base64 encoded)
3407 #
3408 # @cbitpos: C-bit location in page table entry
3409 #
3410 # @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3411 # enabled
3412 #
3413 # Since: 2.12
3414 ##
3415 { 'struct': 'SevCapability',
3416 'data': { 'pdh': 'str',
3417 'cert-chain': 'str',
3418 'cbitpos': 'int',
3419 'reduced-phys-bits': 'int'} }
3420
3421 ##
3422 # @query-sev-capabilities:
3423 #
3424 # This command is used to get the SEV capabilities, and is supported on AMD
3425 # X86 platforms only.
3426 #
3427 # Returns: SevCapability objects.
3428 #
3429 # Since: 2.12
3430 #
3431 # Example:
3432 #
3433 # -> { "execute": "query-sev-capabilities" }
3434 # <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3435 # "cbitpos": 47, "reduced-phys-bits": 5}}
3436 #
3437 ##
3438 { 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
3439
3440 ##
3441 # @CommandDropReason:
3442 #
3443 # Reasons that caused one command to be dropped.
3444 #
3445 # @queue-full: the command queue is full. This can only occur when
3446 # the client sends a new non-oob command before the
3447 # response to the previous non-oob command has been
3448 # received.
3449 #
3450 # Since: 2.12
3451 ##
3452 { 'enum': 'CommandDropReason',
3453 'data': [ 'queue-full' ] }
3454
3455 ##
3456 # @COMMAND_DROPPED:
3457 #
3458 # Emitted when a command is dropped due to some reason. Commands can
3459 # only be dropped when the oob capability is enabled.
3460 #
3461 # @id: The dropped command's "id" field.
3462 # FIXME Broken by design. Events are broadcast to all monitors. If
3463 # another monitor's client has a command with the same ID in flight,
3464 # the event will incorrectly claim that command was dropped.
3465 #
3466 # @reason: The reason why the command is dropped.
3467 #
3468 # Since: 2.12
3469 #
3470 # Example:
3471 #
3472 # { "event": "COMMAND_DROPPED",
3473 # "data": {"result": {"id": "libvirt-102",
3474 # "reason": "queue-full" } } }
3475 #
3476 ##
3477 { 'event': 'COMMAND_DROPPED' ,
3478 'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
3479
3480 ##
3481 # @set-numa-node:
3482 #
3483 # Runtime equivalent of '-numa' CLI option, available at
3484 # preconfigure stage to configure numa mapping before initializing
3485 # machine.
3486 #
3487 # Since 3.0
3488 ##
3489 { 'command': 'set-numa-node', 'boxed': true,
3490 'data': 'NumaOptions',
3491 'allow-preconfig': true
3492 }