]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/misc.json
Merge remote-tracking branch 'remotes/xtensa/tags/20190122-xtensa' into staging
[mirror_qemu.git] / qapi / misc.json
1 # -*- Mode: Python -*-
2 #
3
4 ##
5 # = Miscellanea
6 ##
7
8 { 'include': 'common.json' }
9
10 ##
11 # @qmp_capabilities:
12 #
13 # Enable QMP capabilities.
14 #
15 # Arguments:
16 #
17 # @enable: An optional list of QMPCapability values to enable. The
18 # client must not enable any capability that is not
19 # mentioned in the QMP greeting message. If the field is not
20 # provided, it means no QMP capabilities will be enabled.
21 # (since 2.12)
22 #
23 # Example:
24 #
25 # -> { "execute": "qmp_capabilities",
26 # "arguments": { "enable": [ "oob" ] } }
27 # <- { "return": {} }
28 #
29 # Notes: This command is valid exactly when first connecting: it must be
30 # issued before any other command will be accepted, and will fail once the
31 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32 #
33 # The QMP client needs to explicitly enable QMP capabilities, otherwise
34 # all the QMP capabilities will be turned off by default.
35 #
36 # Since: 0.13
37 #
38 ##
39 { 'command': 'qmp_capabilities',
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
42
43 ##
44 # @QMPCapability:
45 #
46 # Enumeration of capabilities to be advertised during initial client
47 # connection, used for agreeing on particular QMP extension behaviors.
48 #
49 # @oob: QMP ability to support out-of-band requests.
50 # (Please refer to qmp-spec.txt for more information on OOB)
51 #
52 # Since: 2.12
53 #
54 ##
55 { 'enum': 'QMPCapability',
56 'data': [ 'oob' ] }
57
58 ##
59 # @VersionTriple:
60 #
61 # A three-part version number.
62 #
63 # @major: The major version number.
64 #
65 # @minor: The minor version number.
66 #
67 # @micro: The micro version number.
68 #
69 # Since: 2.4
70 ##
71 { 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75 ##
76 # @VersionInfo:
77 #
78 # A description of QEMU's version.
79 #
80 # @qemu: The version of QEMU. By current convention, a micro
81 # version of 50 signifies a development branch. A micro version
82 # greater than or equal to 90 signifies a release candidate for
83 # the next minor version. A micro version of less than 50
84 # signifies a stable release.
85 #
86 # @package: QEMU will always set this field to an empty string. Downstream
87 # versions of QEMU should set this to a non-empty string. The
88 # exact format depends on the downstream however it highly
89 # recommended that a unique name is used.
90 #
91 # Since: 0.14.0
92 ##
93 { 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96 ##
97 # @query-version:
98 #
99 # Returns the current version of QEMU.
100 #
101 # Returns: A @VersionInfo object describing the current version of QEMU.
102 #
103 # Since: 0.14.0
104 #
105 # Example:
106 #
107 # -> { "execute": "query-version" }
108 # <- {
109 # "return":{
110 # "qemu":{
111 # "major":0,
112 # "minor":11,
113 # "micro":5
114 # },
115 # "package":""
116 # }
117 # }
118 #
119 ##
120 { 'command': 'query-version', 'returns': 'VersionInfo',
121 'allow-preconfig': true }
122
123 ##
124 # @CommandInfo:
125 #
126 # Information about a QMP command
127 #
128 # @name: The command name
129 #
130 # Since: 0.14.0
131 ##
132 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134 ##
135 # @query-commands:
136 #
137 # Return a list of supported QMP commands by this server
138 #
139 # Returns: A list of @CommandInfo for all supported commands
140 #
141 # Since: 0.14.0
142 #
143 # Example:
144 #
145 # -> { "execute": "query-commands" }
146 # <- {
147 # "return":[
148 # {
149 # "name":"query-balloon"
150 # },
151 # {
152 # "name":"system_powerdown"
153 # }
154 # ]
155 # }
156 #
157 # Note: This example has been shortened as the real response is too long.
158 #
159 ##
160 { 'command': 'query-commands', 'returns': ['CommandInfo'],
161 'allow-preconfig': true }
162
163 ##
164 # @LostTickPolicy:
165 #
166 # Policy for handling lost ticks in timer devices.
167 #
168 # @discard: throw away the missed tick(s) and continue with future injection
169 # normally. Guest time may be delayed, unless the OS has explicit
170 # handling of lost ticks
171 #
172 # @delay: continue to deliver ticks at the normal rate. Guest time will be
173 # delayed due to the late tick
174 #
175 # @merge: merge the missed tick(s) into one tick and inject. Guest time
176 # may be delayed, depending on how the OS reacts to the merging
177 # of ticks
178 #
179 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
180 # guest time should not be delayed once catchup is complete.
181 #
182 # Since: 2.0
183 ##
184 { 'enum': 'LostTickPolicy',
185 'data': ['discard', 'delay', 'merge', 'slew' ] }
186
187 ##
188 # @add_client:
189 #
190 # Allow client connections for VNC, Spice and socket based
191 # character devices to be passed in to QEMU via SCM_RIGHTS.
192 #
193 # @protocol: protocol name. Valid names are "vnc", "spice" or the
194 # name of a character device (eg. from -chardev id=XXXX)
195 #
196 # @fdname: file descriptor name previously passed via 'getfd' command
197 #
198 # @skipauth: whether to skip authentication. Only applies
199 # to "vnc" and "spice" protocols
200 #
201 # @tls: whether to perform TLS. Only applies to the "spice"
202 # protocol
203 #
204 # Returns: nothing on success.
205 #
206 # Since: 0.14.0
207 #
208 # Example:
209 #
210 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
211 # "fdname": "myclient" } }
212 # <- { "return": {} }
213 #
214 ##
215 { 'command': 'add_client',
216 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
217 '*tls': 'bool' } }
218
219 ##
220 # @NameInfo:
221 #
222 # Guest name information.
223 #
224 # @name: The name of the guest
225 #
226 # Since: 0.14.0
227 ##
228 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
229
230 ##
231 # @query-name:
232 #
233 # Return the name information of a guest.
234 #
235 # Returns: @NameInfo of the guest
236 #
237 # Since: 0.14.0
238 #
239 # Example:
240 #
241 # -> { "execute": "query-name" }
242 # <- { "return": { "name": "qemu-name" } }
243 #
244 ##
245 { 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
246
247 ##
248 # @KvmInfo:
249 #
250 # Information about support for KVM acceleration
251 #
252 # @enabled: true if KVM acceleration is active
253 #
254 # @present: true if KVM acceleration is built into this executable
255 #
256 # Since: 0.14.0
257 ##
258 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
259
260 ##
261 # @query-kvm:
262 #
263 # Returns information about KVM acceleration
264 #
265 # Returns: @KvmInfo
266 #
267 # Since: 0.14.0
268 #
269 # Example:
270 #
271 # -> { "execute": "query-kvm" }
272 # <- { "return": { "enabled": true, "present": true } }
273 #
274 ##
275 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
276
277 ##
278 # @UuidInfo:
279 #
280 # Guest UUID information (Universally Unique Identifier).
281 #
282 # @UUID: the UUID of the guest
283 #
284 # Since: 0.14.0
285 #
286 # Notes: If no UUID was specified for the guest, a null UUID is returned.
287 ##
288 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
289
290 ##
291 # @query-uuid:
292 #
293 # Query the guest UUID information.
294 #
295 # Returns: The @UuidInfo for the guest
296 #
297 # Since: 0.14.0
298 #
299 # Example:
300 #
301 # -> { "execute": "query-uuid" }
302 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
303 #
304 ##
305 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
306
307 ##
308 # @EventInfo:
309 #
310 # Information about a QMP event
311 #
312 # @name: The event name
313 #
314 # Since: 1.2.0
315 ##
316 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
317
318 ##
319 # @query-events:
320 #
321 # Return a list of supported QMP events by this server
322 #
323 # Returns: A list of @EventInfo for all supported events
324 #
325 # Since: 1.2.0
326 #
327 # Example:
328 #
329 # -> { "execute": "query-events" }
330 # <- {
331 # "return": [
332 # {
333 # "name":"SHUTDOWN"
334 # },
335 # {
336 # "name":"RESET"
337 # }
338 # ]
339 # }
340 #
341 # Note: This example has been shortened as the real response is too long.
342 #
343 ##
344 { 'command': 'query-events', 'returns': ['EventInfo'] }
345
346 ##
347 # @CpuInfoArch:
348 #
349 # An enumeration of cpu types that enable additional information during
350 # @query-cpus and @query-cpus-fast.
351 #
352 # @s390: since 2.12
353 #
354 # @riscv: since 2.12
355 #
356 # Since: 2.6
357 ##
358 { 'enum': 'CpuInfoArch',
359 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
360
361 ##
362 # @CpuInfo:
363 #
364 # Information about a virtual CPU
365 #
366 # @CPU: the index of the virtual CPU
367 #
368 # @current: this only exists for backwards compatibility and should be ignored
369 #
370 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
371 # to a processor specific low power mode.
372 #
373 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
374 #
375 # @thread_id: ID of the underlying host thread
376 #
377 # @props: properties describing to which node/socket/core/thread
378 # virtual CPU belongs to, provided if supported by board (since 2.10)
379 #
380 # @arch: architecture of the cpu, which determines which additional fields
381 # will be listed (since 2.6)
382 #
383 # Since: 0.14.0
384 #
385 # Notes: @halted is a transient state that changes frequently. By the time the
386 # data is sent to the client, the guest may no longer be halted.
387 ##
388 { 'union': 'CpuInfo',
389 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
390 'qom_path': 'str', 'thread_id': 'int',
391 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
392 'discriminator': 'arch',
393 'data': { 'x86': 'CpuInfoX86',
394 'sparc': 'CpuInfoSPARC',
395 'ppc': 'CpuInfoPPC',
396 'mips': 'CpuInfoMIPS',
397 'tricore': 'CpuInfoTricore',
398 's390': 'CpuInfoS390',
399 'riscv': 'CpuInfoRISCV' } }
400
401 ##
402 # @CpuInfoX86:
403 #
404 # Additional information about a virtual i386 or x86_64 CPU
405 #
406 # @pc: the 64-bit instruction pointer
407 #
408 # Since: 2.6
409 ##
410 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411
412 ##
413 # @CpuInfoSPARC:
414 #
415 # Additional information about a virtual SPARC CPU
416 #
417 # @pc: the PC component of the instruction pointer
418 #
419 # @npc: the NPC component of the instruction pointer
420 #
421 # Since: 2.6
422 ##
423 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424
425 ##
426 # @CpuInfoPPC:
427 #
428 # Additional information about a virtual PPC CPU
429 #
430 # @nip: the instruction pointer
431 #
432 # Since: 2.6
433 ##
434 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435
436 ##
437 # @CpuInfoMIPS:
438 #
439 # Additional information about a virtual MIPS CPU
440 #
441 # @PC: the instruction pointer
442 #
443 # Since: 2.6
444 ##
445 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446
447 ##
448 # @CpuInfoTricore:
449 #
450 # Additional information about a virtual Tricore CPU
451 #
452 # @PC: the instruction pointer
453 #
454 # Since: 2.6
455 ##
456 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457
458 ##
459 # @CpuInfoRISCV:
460 #
461 # Additional information about a virtual RISCV CPU
462 #
463 # @pc: the instruction pointer
464 #
465 # Since 2.12
466 ##
467 { 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468
469 ##
470 # @CpuS390State:
471 #
472 # An enumeration of cpu states that can be assumed by a virtual
473 # S390 CPU
474 #
475 # Since: 2.12
476 ##
477 { 'enum': 'CpuS390State',
478 'prefix': 'S390_CPU_STATE',
479 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
480
481 ##
482 # @CpuInfoS390:
483 #
484 # Additional information about a virtual S390 CPU
485 #
486 # @cpu-state: the virtual CPU's state
487 #
488 # Since: 2.12
489 ##
490 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
491
492 ##
493 # @query-cpus:
494 #
495 # Returns a list of information about each virtual CPU.
496 #
497 # This command causes vCPU threads to exit to userspace, which causes
498 # a small interruption to guest CPU execution. This will have a negative
499 # impact on realtime guests and other latency sensitive guest workloads.
500 # It is recommended to use @query-cpus-fast instead of this command to
501 # avoid the vCPU interruption.
502 #
503 # Returns: a list of @CpuInfo for each virtual CPU
504 #
505 # Since: 0.14.0
506 #
507 # Example:
508 #
509 # -> { "execute": "query-cpus" }
510 # <- { "return": [
511 # {
512 # "CPU":0,
513 # "current":true,
514 # "halted":false,
515 # "qom_path":"/machine/unattached/device[0]",
516 # "arch":"x86",
517 # "pc":3227107138,
518 # "thread_id":3134
519 # },
520 # {
521 # "CPU":1,
522 # "current":false,
523 # "halted":true,
524 # "qom_path":"/machine/unattached/device[2]",
525 # "arch":"x86",
526 # "pc":7108165,
527 # "thread_id":3135
528 # }
529 # ]
530 # }
531 #
532 # Notes: This interface is deprecated (since 2.12.0), and it is strongly
533 # recommended that you avoid using it. Use @query-cpus-fast to
534 # obtain information about virtual CPUs.
535 #
536 ##
537 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
538
539 ##
540 # @CpuInfoFast:
541 #
542 # Information about a virtual CPU
543 #
544 # @cpu-index: index of the virtual CPU
545 #
546 # @qom-path: path to the CPU object in the QOM tree
547 #
548 # @thread-id: ID of the underlying host thread
549 #
550 # @props: properties describing to which node/socket/core/thread
551 # virtual CPU belongs to, provided if supported by board
552 #
553 # @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
554 # of @target
555 #
556 # @target: the QEMU system emulation target, which determines which
557 # additional fields will be listed (since 3.0)
558 #
559 # Since: 2.12
560 #
561 ##
562 { 'union' : 'CpuInfoFast',
563 'base' : { 'cpu-index' : 'int',
564 'qom-path' : 'str',
565 'thread-id' : 'int',
566 '*props' : 'CpuInstanceProperties',
567 'arch' : 'CpuInfoArch',
568 'target' : 'SysEmuTarget' },
569 'discriminator' : 'target',
570 'data' : { 's390x' : 'CpuInfoS390' } }
571
572 ##
573 # @query-cpus-fast:
574 #
575 # Returns information about all virtual CPUs. This command does not
576 # incur a performance penalty and should be used in production
577 # instead of query-cpus.
578 #
579 # Returns: list of @CpuInfoFast
580 #
581 # Since: 2.12
582 #
583 # Example:
584 #
585 # -> { "execute": "query-cpus-fast" }
586 # <- { "return": [
587 # {
588 # "thread-id": 25627,
589 # "props": {
590 # "core-id": 0,
591 # "thread-id": 0,
592 # "socket-id": 0
593 # },
594 # "qom-path": "/machine/unattached/device[0]",
595 # "arch":"x86",
596 # "target":"x86_64",
597 # "cpu-index": 0
598 # },
599 # {
600 # "thread-id": 25628,
601 # "props": {
602 # "core-id": 0,
603 # "thread-id": 0,
604 # "socket-id": 1
605 # },
606 # "qom-path": "/machine/unattached/device[2]",
607 # "arch":"x86",
608 # "target":"x86_64",
609 # "cpu-index": 1
610 # }
611 # ]
612 # }
613 ##
614 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
615
616 ##
617 # @IOThreadInfo:
618 #
619 # Information about an iothread
620 #
621 # @id: the identifier of the iothread
622 #
623 # @thread-id: ID of the underlying host thread
624 #
625 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
626 # (since 2.9)
627 #
628 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
629 # configured (since 2.9)
630 #
631 # @poll-shrink: how many ns will be removed from polling time, 0 means that
632 # it's not configured (since 2.9)
633 #
634 # Since: 2.0
635 ##
636 { 'struct': 'IOThreadInfo',
637 'data': {'id': 'str',
638 'thread-id': 'int',
639 'poll-max-ns': 'int',
640 'poll-grow': 'int',
641 'poll-shrink': 'int' } }
642
643 ##
644 # @query-iothreads:
645 #
646 # Returns a list of information about each iothread.
647 #
648 # Note: this list excludes the QEMU main loop thread, which is not declared
649 # using the -object iothread command-line option. It is always the main thread
650 # of the process.
651 #
652 # Returns: a list of @IOThreadInfo for each iothread
653 #
654 # Since: 2.0
655 #
656 # Example:
657 #
658 # -> { "execute": "query-iothreads" }
659 # <- { "return": [
660 # {
661 # "id":"iothread0",
662 # "thread-id":3134
663 # },
664 # {
665 # "id":"iothread1",
666 # "thread-id":3135
667 # }
668 # ]
669 # }
670 #
671 ##
672 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
673 'allow-preconfig': true }
674
675 ##
676 # @BalloonInfo:
677 #
678 # Information about the guest balloon device.
679 #
680 # @actual: the number of bytes the balloon currently contains
681 #
682 # Since: 0.14.0
683 #
684 ##
685 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
686
687 ##
688 # @query-balloon:
689 #
690 # Return information about the balloon device.
691 #
692 # Returns: @BalloonInfo on success
693 #
694 # If the balloon driver is enabled but not functional because the KVM
695 # kernel module cannot support it, KvmMissingCap
696 #
697 # If no balloon device is present, DeviceNotActive
698 #
699 # Since: 0.14.0
700 #
701 # Example:
702 #
703 # -> { "execute": "query-balloon" }
704 # <- { "return": {
705 # "actual": 1073741824,
706 # }
707 # }
708 #
709 ##
710 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
711
712 ##
713 # @BALLOON_CHANGE:
714 #
715 # Emitted when the guest changes the actual BALLOON level. This value is
716 # equivalent to the @actual field return by the 'query-balloon' command
717 #
718 # @actual: actual level of the guest memory balloon in bytes
719 #
720 # Note: this event is rate-limited.
721 #
722 # Since: 1.2
723 #
724 # Example:
725 #
726 # <- { "event": "BALLOON_CHANGE",
727 # "data": { "actual": 944766976 },
728 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
729 #
730 ##
731 { 'event': 'BALLOON_CHANGE',
732 'data': { 'actual': 'int' } }
733
734 ##
735 # @PciMemoryRange:
736 #
737 # A PCI device memory region
738 #
739 # @base: the starting address (guest physical)
740 #
741 # @limit: the ending address (guest physical)
742 #
743 # Since: 0.14.0
744 ##
745 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
746
747 ##
748 # @PciMemoryRegion:
749 #
750 # Information about a PCI device I/O region.
751 #
752 # @bar: the index of the Base Address Register for this region
753 #
754 # @type: 'io' if the region is a PIO region
755 # 'memory' if the region is a MMIO region
756 #
757 # @size: memory size
758 #
759 # @prefetch: if @type is 'memory', true if the memory is prefetchable
760 #
761 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
762 #
763 # Since: 0.14.0
764 ##
765 { 'struct': 'PciMemoryRegion',
766 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
767 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
768
769 ##
770 # @PciBusInfo:
771 #
772 # Information about a bus of a PCI Bridge device
773 #
774 # @number: primary bus interface number. This should be the number of the
775 # bus the device resides on.
776 #
777 # @secondary: secondary bus interface number. This is the number of the
778 # main bus for the bridge
779 #
780 # @subordinate: This is the highest number bus that resides below the
781 # bridge.
782 #
783 # @io_range: The PIO range for all devices on this bridge
784 #
785 # @memory_range: The MMIO range for all devices on this bridge
786 #
787 # @prefetchable_range: The range of prefetchable MMIO for all devices on
788 # this bridge
789 #
790 # Since: 2.4
791 ##
792 { 'struct': 'PciBusInfo',
793 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
794 'io_range': 'PciMemoryRange',
795 'memory_range': 'PciMemoryRange',
796 'prefetchable_range': 'PciMemoryRange' } }
797
798 ##
799 # @PciBridgeInfo:
800 #
801 # Information about a PCI Bridge device
802 #
803 # @bus: information about the bus the device resides on
804 #
805 # @devices: a list of @PciDeviceInfo for each device on this bridge
806 #
807 # Since: 0.14.0
808 ##
809 { 'struct': 'PciBridgeInfo',
810 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
811
812 ##
813 # @PciDeviceClass:
814 #
815 # Information about the Class of a PCI device
816 #
817 # @desc: a string description of the device's class
818 #
819 # @class: the class code of the device
820 #
821 # Since: 2.4
822 ##
823 { 'struct': 'PciDeviceClass',
824 'data': {'*desc': 'str', 'class': 'int'} }
825
826 ##
827 # @PciDeviceId:
828 #
829 # Information about the Id of a PCI device
830 #
831 # @device: the PCI device id
832 #
833 # @vendor: the PCI vendor id
834 #
835 # @subsystem: the PCI subsystem id (since 3.1)
836 #
837 # @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
838 #
839 # Since: 2.4
840 ##
841 { 'struct': 'PciDeviceId',
842 'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int',
843 '*subsystem-vendor': 'int'} }
844
845 ##
846 # @PciDeviceInfo:
847 #
848 # Information about a PCI device
849 #
850 # @bus: the bus number of the device
851 #
852 # @slot: the slot the device is located in
853 #
854 # @function: the function of the slot used by the device
855 #
856 # @class_info: the class of the device
857 #
858 # @id: the PCI device id
859 #
860 # @irq: if an IRQ is assigned to the device, the IRQ number
861 #
862 # @qdev_id: the device name of the PCI device
863 #
864 # @pci_bridge: if the device is a PCI bridge, the bridge information
865 #
866 # @regions: a list of the PCI I/O regions associated with the device
867 #
868 # Notes: the contents of @class_info.desc are not stable and should only be
869 # treated as informational.
870 #
871 # Since: 0.14.0
872 ##
873 { 'struct': 'PciDeviceInfo',
874 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
875 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
876 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
877 'regions': ['PciMemoryRegion']} }
878
879 ##
880 # @PciInfo:
881 #
882 # Information about a PCI bus
883 #
884 # @bus: the bus index
885 #
886 # @devices: a list of devices on this bus
887 #
888 # Since: 0.14.0
889 ##
890 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
891
892 ##
893 # @query-pci:
894 #
895 # Return information about the PCI bus topology of the guest.
896 #
897 # Returns: a list of @PciInfo for each PCI bus. Each bus is
898 # represented by a json-object, which has a key with a json-array of
899 # all PCI devices attached to it. Each device is represented by a
900 # json-object.
901 #
902 # Since: 0.14.0
903 #
904 # Example:
905 #
906 # -> { "execute": "query-pci" }
907 # <- { "return": [
908 # {
909 # "bus": 0,
910 # "devices": [
911 # {
912 # "bus": 0,
913 # "qdev_id": "",
914 # "slot": 0,
915 # "class_info": {
916 # "class": 1536,
917 # "desc": "Host bridge"
918 # },
919 # "id": {
920 # "device": 32902,
921 # "vendor": 4663
922 # },
923 # "function": 0,
924 # "regions": [
925 # ]
926 # },
927 # {
928 # "bus": 0,
929 # "qdev_id": "",
930 # "slot": 1,
931 # "class_info": {
932 # "class": 1537,
933 # "desc": "ISA bridge"
934 # },
935 # "id": {
936 # "device": 32902,
937 # "vendor": 28672
938 # },
939 # "function": 0,
940 # "regions": [
941 # ]
942 # },
943 # {
944 # "bus": 0,
945 # "qdev_id": "",
946 # "slot": 1,
947 # "class_info": {
948 # "class": 257,
949 # "desc": "IDE controller"
950 # },
951 # "id": {
952 # "device": 32902,
953 # "vendor": 28688
954 # },
955 # "function": 1,
956 # "regions": [
957 # {
958 # "bar": 4,
959 # "size": 16,
960 # "address": 49152,
961 # "type": "io"
962 # }
963 # ]
964 # },
965 # {
966 # "bus": 0,
967 # "qdev_id": "",
968 # "slot": 2,
969 # "class_info": {
970 # "class": 768,
971 # "desc": "VGA controller"
972 # },
973 # "id": {
974 # "device": 4115,
975 # "vendor": 184
976 # },
977 # "function": 0,
978 # "regions": [
979 # {
980 # "prefetch": true,
981 # "mem_type_64": false,
982 # "bar": 0,
983 # "size": 33554432,
984 # "address": 4026531840,
985 # "type": "memory"
986 # },
987 # {
988 # "prefetch": false,
989 # "mem_type_64": false,
990 # "bar": 1,
991 # "size": 4096,
992 # "address": 4060086272,
993 # "type": "memory"
994 # },
995 # {
996 # "prefetch": false,
997 # "mem_type_64": false,
998 # "bar": 6,
999 # "size": 65536,
1000 # "address": -1,
1001 # "type": "memory"
1002 # }
1003 # ]
1004 # },
1005 # {
1006 # "bus": 0,
1007 # "qdev_id": "",
1008 # "irq": 11,
1009 # "slot": 4,
1010 # "class_info": {
1011 # "class": 1280,
1012 # "desc": "RAM controller"
1013 # },
1014 # "id": {
1015 # "device": 6900,
1016 # "vendor": 4098
1017 # },
1018 # "function": 0,
1019 # "regions": [
1020 # {
1021 # "bar": 0,
1022 # "size": 32,
1023 # "address": 49280,
1024 # "type": "io"
1025 # }
1026 # ]
1027 # }
1028 # ]
1029 # }
1030 # ]
1031 # }
1032 #
1033 # Note: This example has been shortened as the real response is too long.
1034 #
1035 ##
1036 { 'command': 'query-pci', 'returns': ['PciInfo'] }
1037
1038 ##
1039 # @quit:
1040 #
1041 # This command will cause the QEMU process to exit gracefully. While every
1042 # attempt is made to send the QMP response before terminating, this is not
1043 # guaranteed. When using this interface, a premature EOF would not be
1044 # unexpected.
1045 #
1046 # Since: 0.14.0
1047 #
1048 # Example:
1049 #
1050 # -> { "execute": "quit" }
1051 # <- { "return": {} }
1052 ##
1053 { 'command': 'quit' }
1054
1055 ##
1056 # @stop:
1057 #
1058 # Stop all guest VCPU execution.
1059 #
1060 # Since: 0.14.0
1061 #
1062 # Notes: This function will succeed even if the guest is already in the stopped
1063 # state. In "inmigrate" state, it will ensure that the guest
1064 # remains paused once migration finishes, as if the -S option was
1065 # passed on the command line.
1066 #
1067 # Example:
1068 #
1069 # -> { "execute": "stop" }
1070 # <- { "return": {} }
1071 #
1072 ##
1073 { 'command': 'stop' }
1074
1075 ##
1076 # @system_reset:
1077 #
1078 # Performs a hard reset of a guest.
1079 #
1080 # Since: 0.14.0
1081 #
1082 # Example:
1083 #
1084 # -> { "execute": "system_reset" }
1085 # <- { "return": {} }
1086 #
1087 ##
1088 { 'command': 'system_reset' }
1089
1090 ##
1091 # @system_powerdown:
1092 #
1093 # Requests that a guest perform a powerdown operation.
1094 #
1095 # Since: 0.14.0
1096 #
1097 # Notes: A guest may or may not respond to this command. This command
1098 # returning does not indicate that a guest has accepted the request or
1099 # that it has shut down. Many guests will respond to this command by
1100 # prompting the user in some way.
1101 # Example:
1102 #
1103 # -> { "execute": "system_powerdown" }
1104 # <- { "return": {} }
1105 #
1106 ##
1107 { 'command': 'system_powerdown' }
1108
1109 ##
1110 # @cpu-add:
1111 #
1112 # Adds CPU with specified ID.
1113 #
1114 # @id: ID of CPU to be created, valid values [0..max_cpus)
1115 #
1116 # Returns: Nothing on success
1117 #
1118 # Since: 1.5
1119 #
1120 # Note: This command is deprecated. The `device_add` command should be
1121 # used instead. See the `query-hotpluggable-cpus` command for
1122 # details.
1123 #
1124 # Example:
1125 #
1126 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1127 # <- { "return": {} }
1128 #
1129 ##
1130 { 'command': 'cpu-add', 'data': {'id': 'int'} }
1131
1132 ##
1133 # @memsave:
1134 #
1135 # Save a portion of guest memory to a file.
1136 #
1137 # @val: the virtual address of the guest to start from
1138 #
1139 # @size: the size of memory region to save
1140 #
1141 # @filename: the file to save the memory to as binary data
1142 #
1143 # @cpu-index: the index of the virtual CPU to use for translating the
1144 # virtual address (defaults to CPU 0)
1145 #
1146 # Returns: Nothing on success
1147 #
1148 # Since: 0.14.0
1149 #
1150 # Notes: Errors were not reliably returned until 1.1
1151 #
1152 # Example:
1153 #
1154 # -> { "execute": "memsave",
1155 # "arguments": { "val": 10,
1156 # "size": 100,
1157 # "filename": "/tmp/virtual-mem-dump" } }
1158 # <- { "return": {} }
1159 #
1160 ##
1161 { 'command': 'memsave',
1162 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1163
1164 ##
1165 # @pmemsave:
1166 #
1167 # Save a portion of guest physical memory to a file.
1168 #
1169 # @val: the physical address of the guest to start from
1170 #
1171 # @size: the size of memory region to save
1172 #
1173 # @filename: the file to save the memory to as binary data
1174 #
1175 # Returns: Nothing on success
1176 #
1177 # Since: 0.14.0
1178 #
1179 # Notes: Errors were not reliably returned until 1.1
1180 #
1181 # Example:
1182 #
1183 # -> { "execute": "pmemsave",
1184 # "arguments": { "val": 10,
1185 # "size": 100,
1186 # "filename": "/tmp/physical-mem-dump" } }
1187 # <- { "return": {} }
1188 #
1189 ##
1190 { 'command': 'pmemsave',
1191 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1192
1193 ##
1194 # @cont:
1195 #
1196 # Resume guest VCPU execution.
1197 #
1198 # Since: 0.14.0
1199 #
1200 # Returns: If successful, nothing
1201 #
1202 # Notes: This command will succeed if the guest is currently running. It
1203 # will also succeed if the guest is in the "inmigrate" state; in
1204 # this case, the effect of the command is to make sure the guest
1205 # starts once migration finishes, removing the effect of the -S
1206 # command line option if it was passed.
1207 #
1208 # Example:
1209 #
1210 # -> { "execute": "cont" }
1211 # <- { "return": {} }
1212 #
1213 ##
1214 { 'command': 'cont' }
1215
1216 ##
1217 # @x-exit-preconfig:
1218 #
1219 # Exit from "preconfig" state
1220 #
1221 # This command makes QEMU exit the preconfig state and proceed with
1222 # VM initialization using configuration data provided on the command line
1223 # and via the QMP monitor during the preconfig state. The command is only
1224 # available during the preconfig state (i.e. when the --preconfig command
1225 # line option was in use).
1226 #
1227 # Since 3.0
1228 #
1229 # Returns: nothing
1230 #
1231 # Example:
1232 #
1233 # -> { "execute": "x-exit-preconfig" }
1234 # <- { "return": {} }
1235 #
1236 ##
1237 { 'command': 'x-exit-preconfig', 'allow-preconfig': true }
1238
1239 ##
1240 # @system_wakeup:
1241 #
1242 # Wake up guest from suspend. If the guest has wake-up from suspend
1243 # support enabled (wakeup-suspend-support flag from
1244 # query-current-machine), wake-up guest from suspend if the guest is
1245 # in SUSPENDED state. Return an error otherwise.
1246 #
1247 # Since: 1.1
1248 #
1249 # Returns: nothing.
1250 #
1251 # Note: prior to 4.0, this command does nothing in case the guest
1252 # isn't suspended.
1253 #
1254 # Example:
1255 #
1256 # -> { "execute": "system_wakeup" }
1257 # <- { "return": {} }
1258 #
1259 ##
1260 { 'command': 'system_wakeup' }
1261
1262 ##
1263 # @inject-nmi:
1264 #
1265 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1266 # The command fails when the guest doesn't support injecting.
1267 #
1268 # Returns: If successful, nothing
1269 #
1270 # Since: 0.14.0
1271 #
1272 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1273 #
1274 # Example:
1275 #
1276 # -> { "execute": "inject-nmi" }
1277 # <- { "return": {} }
1278 #
1279 ##
1280 { 'command': 'inject-nmi' }
1281
1282 ##
1283 # @balloon:
1284 #
1285 # Request the balloon driver to change its balloon size.
1286 #
1287 # @value: the target size of the balloon in bytes
1288 #
1289 # Returns: Nothing on success
1290 # If the balloon driver is enabled but not functional because the KVM
1291 # kernel module cannot support it, KvmMissingCap
1292 # If no balloon device is present, DeviceNotActive
1293 #
1294 # Notes: This command just issues a request to the guest. When it returns,
1295 # the balloon size may not have changed. A guest can change the balloon
1296 # size independent of this command.
1297 #
1298 # Since: 0.14.0
1299 #
1300 # Example:
1301 #
1302 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1303 # <- { "return": {} }
1304 #
1305 ##
1306 { 'command': 'balloon', 'data': {'value': 'int'} }
1307
1308 ##
1309 # @human-monitor-command:
1310 #
1311 # Execute a command on the human monitor and return the output.
1312 #
1313 # @command-line: the command to execute in the human monitor
1314 #
1315 # @cpu-index: The CPU to use for commands that require an implicit CPU
1316 #
1317 # Returns: the output of the command as a string
1318 #
1319 # Since: 0.14.0
1320 #
1321 # Notes: This command only exists as a stop-gap. Its use is highly
1322 # discouraged. The semantics of this command are not
1323 # guaranteed: this means that command names, arguments and
1324 # responses can change or be removed at ANY time. Applications
1325 # that rely on long term stability guarantees should NOT
1326 # use this command.
1327 #
1328 # Known limitations:
1329 #
1330 # * This command is stateless, this means that commands that depend
1331 # on state information (such as getfd) might not work
1332 #
1333 # * Commands that prompt the user for data don't currently work
1334 #
1335 # Example:
1336 #
1337 # -> { "execute": "human-monitor-command",
1338 # "arguments": { "command-line": "info kvm" } }
1339 # <- { "return": "kvm support: enabled\r\n" }
1340 #
1341 ##
1342 { 'command': 'human-monitor-command',
1343 'data': {'command-line': 'str', '*cpu-index': 'int'},
1344 'returns': 'str' }
1345
1346 ##
1347 # @ObjectPropertyInfo:
1348 #
1349 # @name: the name of the property
1350 #
1351 # @type: the type of the property. This will typically come in one of four
1352 # forms:
1353 #
1354 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1355 # These types are mapped to the appropriate JSON type.
1356 #
1357 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
1358 # device type name. Child properties create the composition tree.
1359 #
1360 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
1361 # device type name. Link properties form the device model graph.
1362 #
1363 # @description: if specified, the description of the property.
1364 #
1365 # Since: 1.2
1366 ##
1367 { 'struct': 'ObjectPropertyInfo',
1368 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1369
1370 ##
1371 # @qom-list:
1372 #
1373 # This command will list any properties of a object given a path in the object
1374 # model.
1375 #
1376 # @path: the path within the object model. See @qom-get for a description of
1377 # this parameter.
1378 #
1379 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
1380 # object.
1381 #
1382 # Since: 1.2
1383 ##
1384 { 'command': 'qom-list',
1385 'data': { 'path': 'str' },
1386 'returns': [ 'ObjectPropertyInfo' ],
1387 'allow-preconfig': true }
1388
1389 ##
1390 # @qom-get:
1391 #
1392 # This command will get a property from a object model path and return the
1393 # value.
1394 #
1395 # @path: The path within the object model. There are two forms of supported
1396 # paths--absolute and partial paths.
1397 #
1398 # Absolute paths are derived from the root object and can follow child<>
1399 # or link<> properties. Since they can follow link<> properties, they
1400 # can be arbitrarily long. Absolute paths look like absolute filenames
1401 # and are prefixed with a leading slash.
1402 #
1403 # Partial paths look like relative filenames. They do not begin
1404 # with a prefix. The matching rules for partial paths are subtle but
1405 # designed to make specifying objects easy. At each level of the
1406 # composition tree, the partial path is matched as an absolute path.
1407 # The first match is not returned. At least two matches are searched
1408 # for. A successful result is only returned if only one match is
1409 # found. If more than one match is found, a flag is return to
1410 # indicate that the match was ambiguous.
1411 #
1412 # @property: The property name to read
1413 #
1414 # Returns: The property value. The type depends on the property
1415 # type. child<> and link<> properties are returned as #str
1416 # pathnames. All integer property types (u8, u16, etc) are
1417 # returned as #int.
1418 #
1419 # Since: 1.2
1420 ##
1421 { 'command': 'qom-get',
1422 'data': { 'path': 'str', 'property': 'str' },
1423 'returns': 'any',
1424 'allow-preconfig': true }
1425
1426 ##
1427 # @qom-set:
1428 #
1429 # This command will set a property from a object model path.
1430 #
1431 # @path: see @qom-get for a description of this parameter
1432 #
1433 # @property: the property name to set
1434 #
1435 # @value: a value who's type is appropriate for the property type. See @qom-get
1436 # for a description of type mapping.
1437 #
1438 # Since: 1.2
1439 ##
1440 { 'command': 'qom-set',
1441 'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1442 'allow-preconfig': true }
1443
1444 ##
1445 # @change:
1446 #
1447 # This command is multiple commands multiplexed together.
1448 #
1449 # @device: This is normally the name of a block device but it may also be 'vnc'.
1450 # when it's 'vnc', then sub command depends on @target
1451 #
1452 # @target: If @device is a block device, then this is the new filename.
1453 # If @device is 'vnc', then if the value 'password' selects the vnc
1454 # change password command. Otherwise, this specifies a new server URI
1455 # address to listen to for VNC connections.
1456 #
1457 # @arg: If @device is a block device, then this is an optional format to open
1458 # the device with.
1459 # If @device is 'vnc' and @target is 'password', this is the new VNC
1460 # password to set. See change-vnc-password for additional notes.
1461 #
1462 # Returns: Nothing on success.
1463 # If @device is not a valid block device, DeviceNotFound
1464 #
1465 # Notes: This interface is deprecated, and it is strongly recommended that you
1466 # avoid using it. For changing block devices, use
1467 # blockdev-change-medium; for changing VNC parameters, use
1468 # change-vnc-password.
1469 #
1470 # Since: 0.14.0
1471 #
1472 # Example:
1473 #
1474 # 1. Change a removable medium
1475 #
1476 # -> { "execute": "change",
1477 # "arguments": { "device": "ide1-cd0",
1478 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1479 # <- { "return": {} }
1480 #
1481 # 2. Change VNC password
1482 #
1483 # -> { "execute": "change",
1484 # "arguments": { "device": "vnc", "target": "password",
1485 # "arg": "foobar1" } }
1486 # <- { "return": {} }
1487 #
1488 ##
1489 { 'command': 'change',
1490 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1491
1492 ##
1493 # @ObjectTypeInfo:
1494 #
1495 # This structure describes a search result from @qom-list-types
1496 #
1497 # @name: the type name found in the search
1498 #
1499 # @abstract: the type is abstract and can't be directly instantiated.
1500 # Omitted if false. (since 2.10)
1501 #
1502 # @parent: Name of parent type, if any (since 2.10)
1503 #
1504 # Since: 1.1
1505 ##
1506 { 'struct': 'ObjectTypeInfo',
1507 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1508
1509 ##
1510 # @qom-list-types:
1511 #
1512 # This command will return a list of types given search parameters
1513 #
1514 # @implements: if specified, only return types that implement this type name
1515 #
1516 # @abstract: if true, include abstract types in the results
1517 #
1518 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1519 #
1520 # Since: 1.1
1521 ##
1522 { 'command': 'qom-list-types',
1523 'data': { '*implements': 'str', '*abstract': 'bool' },
1524 'returns': [ 'ObjectTypeInfo' ],
1525 'allow-preconfig': true }
1526
1527 ##
1528 # @device-list-properties:
1529 #
1530 # List properties associated with a device.
1531 #
1532 # @typename: the type name of a device
1533 #
1534 # Returns: a list of ObjectPropertyInfo describing a devices properties
1535 #
1536 # Note: objects can create properties at runtime, for example to describe
1537 # links between different devices and/or objects. These properties
1538 # are not included in the output of this command.
1539 #
1540 # Since: 1.2
1541 ##
1542 { 'command': 'device-list-properties',
1543 'data': { 'typename': 'str'},
1544 'returns': [ 'ObjectPropertyInfo' ] }
1545
1546 ##
1547 # @qom-list-properties:
1548 #
1549 # List properties associated with a QOM object.
1550 #
1551 # @typename: the type name of an object
1552 #
1553 # Note: objects can create properties at runtime, for example to describe
1554 # links between different devices and/or objects. These properties
1555 # are not included in the output of this command.
1556 #
1557 # Returns: a list of ObjectPropertyInfo describing object properties
1558 #
1559 # Since: 2.12
1560 ##
1561 { 'command': 'qom-list-properties',
1562 'data': { 'typename': 'str'},
1563 'returns': [ 'ObjectPropertyInfo' ],
1564 'allow-preconfig': true }
1565
1566 ##
1567 # @xen-set-global-dirty-log:
1568 #
1569 # Enable or disable the global dirty log mode.
1570 #
1571 # @enable: true to enable, false to disable.
1572 #
1573 # Returns: nothing
1574 #
1575 # Since: 1.3
1576 #
1577 # Example:
1578 #
1579 # -> { "execute": "xen-set-global-dirty-log",
1580 # "arguments": { "enable": true } }
1581 # <- { "return": {} }
1582 #
1583 ##
1584 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1585
1586 ##
1587 # @device_add:
1588 #
1589 # @driver: the name of the new device's driver
1590 #
1591 # @bus: the device's parent bus (device tree path)
1592 #
1593 # @id: the device's ID, must be unique
1594 #
1595 # Additional arguments depend on the type.
1596 #
1597 # Add a device.
1598 #
1599 # Notes:
1600 # 1. For detailed information about this command, please refer to the
1601 # 'docs/qdev-device-use.txt' file.
1602 #
1603 # 2. It's possible to list device properties by running QEMU with the
1604 # "-device DEVICE,help" command-line argument, where DEVICE is the
1605 # device's name
1606 #
1607 # Example:
1608 #
1609 # -> { "execute": "device_add",
1610 # "arguments": { "driver": "e1000", "id": "net1",
1611 # "bus": "pci.0",
1612 # "mac": "52:54:00:12:34:56" } }
1613 # <- { "return": {} }
1614 #
1615 # TODO: This command effectively bypasses QAPI completely due to its
1616 # "additional arguments" business. It shouldn't have been added to
1617 # the schema in this form. It should be qapified properly, or
1618 # replaced by a properly qapified command.
1619 #
1620 # Since: 0.13
1621 ##
1622 { 'command': 'device_add',
1623 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1624 'gen': false } # so we can get the additional arguments
1625
1626 ##
1627 # @device_del:
1628 #
1629 # Remove a device from a guest
1630 #
1631 # @id: the device's ID or QOM path
1632 #
1633 # Returns: Nothing on success
1634 # If @id is not a valid device, DeviceNotFound
1635 #
1636 # Notes: When this command completes, the device may not be removed from the
1637 # guest. Hot removal is an operation that requires guest cooperation.
1638 # This command merely requests that the guest begin the hot removal
1639 # process. Completion of the device removal process is signaled with a
1640 # DEVICE_DELETED event. Guest reset will automatically complete removal
1641 # for all devices.
1642 #
1643 # Since: 0.14.0
1644 #
1645 # Example:
1646 #
1647 # -> { "execute": "device_del",
1648 # "arguments": { "id": "net1" } }
1649 # <- { "return": {} }
1650 #
1651 # -> { "execute": "device_del",
1652 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1653 # <- { "return": {} }
1654 #
1655 ##
1656 { 'command': 'device_del', 'data': {'id': 'str'} }
1657
1658 ##
1659 # @DEVICE_DELETED:
1660 #
1661 # Emitted whenever the device removal completion is acknowledged by the guest.
1662 # At this point, it's safe to reuse the specified device ID. Device removal can
1663 # be initiated by the guest or by HMP/QMP commands.
1664 #
1665 # @device: device name
1666 #
1667 # @path: device path
1668 #
1669 # Since: 1.5
1670 #
1671 # Example:
1672 #
1673 # <- { "event": "DEVICE_DELETED",
1674 # "data": { "device": "virtio-net-pci-0",
1675 # "path": "/machine/peripheral/virtio-net-pci-0" },
1676 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1677 #
1678 ##
1679 { 'event': 'DEVICE_DELETED',
1680 'data': { '*device': 'str', 'path': 'str' } }
1681
1682 ##
1683 # @DumpGuestMemoryFormat:
1684 #
1685 # An enumeration of guest-memory-dump's format.
1686 #
1687 # @elf: elf format
1688 #
1689 # @kdump-zlib: kdump-compressed format with zlib-compressed
1690 #
1691 # @kdump-lzo: kdump-compressed format with lzo-compressed
1692 #
1693 # @kdump-snappy: kdump-compressed format with snappy-compressed
1694 #
1695 # @win-dmp: Windows full crashdump format,
1696 # can be used instead of ELF converting (since 2.13)
1697 #
1698 # Since: 2.0
1699 ##
1700 { 'enum': 'DumpGuestMemoryFormat',
1701 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
1702
1703 ##
1704 # @dump-guest-memory:
1705 #
1706 # Dump guest's memory to vmcore. It is a synchronous operation that can take
1707 # very long depending on the amount of guest memory.
1708 #
1709 # @paging: if true, do paging to get guest's memory mapping. This allows
1710 # using gdb to process the core file.
1711 #
1712 # IMPORTANT: this option can make QEMU allocate several gigabytes
1713 # of RAM. This can happen for a large guest, or a
1714 # malicious guest pretending to be large.
1715 #
1716 # Also, paging=true has the following limitations:
1717 #
1718 # 1. The guest may be in a catastrophic state or can have corrupted
1719 # memory, which cannot be trusted
1720 # 2. The guest can be in real-mode even if paging is enabled. For
1721 # example, the guest uses ACPI to sleep, and ACPI sleep state
1722 # goes in real-mode
1723 # 3. Currently only supported on i386 and x86_64.
1724 #
1725 # @protocol: the filename or file descriptor of the vmcore. The supported
1726 # protocols are:
1727 #
1728 # 1. file: the protocol starts with "file:", and the following
1729 # string is the file's path.
1730 # 2. fd: the protocol starts with "fd:", and the following string
1731 # is the fd's name.
1732 #
1733 # @detach: if true, QMP will return immediately rather than
1734 # waiting for the dump to finish. The user can track progress
1735 # using "query-dump". (since 2.6).
1736 #
1737 # @begin: if specified, the starting physical address.
1738 #
1739 # @length: if specified, the memory size, in bytes. If you don't
1740 # want to dump all guest's memory, please specify the start @begin
1741 # and @length
1742 #
1743 # @format: if specified, the format of guest memory dump. But non-elf
1744 # format is conflict with paging and filter, ie. @paging, @begin and
1745 # @length is not allowed to be specified with non-elf @format at the
1746 # same time (since 2.0)
1747 #
1748 # Note: All boolean arguments default to false
1749 #
1750 # Returns: nothing on success
1751 #
1752 # Since: 1.2
1753 #
1754 # Example:
1755 #
1756 # -> { "execute": "dump-guest-memory",
1757 # "arguments": { "protocol": "fd:dump" } }
1758 # <- { "return": {} }
1759 #
1760 ##
1761 { 'command': 'dump-guest-memory',
1762 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1763 '*begin': 'int', '*length': 'int',
1764 '*format': 'DumpGuestMemoryFormat'} }
1765
1766 ##
1767 # @DumpStatus:
1768 #
1769 # Describe the status of a long-running background guest memory dump.
1770 #
1771 # @none: no dump-guest-memory has started yet.
1772 #
1773 # @active: there is one dump running in background.
1774 #
1775 # @completed: the last dump has finished successfully.
1776 #
1777 # @failed: the last dump has failed.
1778 #
1779 # Since: 2.6
1780 ##
1781 { 'enum': 'DumpStatus',
1782 'data': [ 'none', 'active', 'completed', 'failed' ] }
1783
1784 ##
1785 # @DumpQueryResult:
1786 #
1787 # The result format for 'query-dump'.
1788 #
1789 # @status: enum of @DumpStatus, which shows current dump status
1790 #
1791 # @completed: bytes written in latest dump (uncompressed)
1792 #
1793 # @total: total bytes to be written in latest dump (uncompressed)
1794 #
1795 # Since: 2.6
1796 ##
1797 { 'struct': 'DumpQueryResult',
1798 'data': { 'status': 'DumpStatus',
1799 'completed': 'int',
1800 'total': 'int' } }
1801
1802 ##
1803 # @query-dump:
1804 #
1805 # Query latest dump status.
1806 #
1807 # Returns: A @DumpStatus object showing the dump status.
1808 #
1809 # Since: 2.6
1810 #
1811 # Example:
1812 #
1813 # -> { "execute": "query-dump" }
1814 # <- { "return": { "status": "active", "completed": 1024000,
1815 # "total": 2048000 } }
1816 #
1817 ##
1818 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1819
1820 ##
1821 # @DUMP_COMPLETED:
1822 #
1823 # Emitted when background dump has completed
1824 #
1825 # @result: final dump status
1826 #
1827 # @error: human-readable error string that provides
1828 # hint on why dump failed. Only presents on failure. The
1829 # user should not try to interpret the error string.
1830 #
1831 # Since: 2.6
1832 #
1833 # Example:
1834 #
1835 # { "event": "DUMP_COMPLETED",
1836 # "data": {"result": {"total": 1090650112, "status": "completed",
1837 # "completed": 1090650112} } }
1838 #
1839 ##
1840 { 'event': 'DUMP_COMPLETED' ,
1841 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1842
1843 ##
1844 # @DumpGuestMemoryCapability:
1845 #
1846 # A list of the available formats for dump-guest-memory
1847 #
1848 # Since: 2.0
1849 ##
1850 { 'struct': 'DumpGuestMemoryCapability',
1851 'data': {
1852 'formats': ['DumpGuestMemoryFormat'] } }
1853
1854 ##
1855 # @query-dump-guest-memory-capability:
1856 #
1857 # Returns the available formats for dump-guest-memory
1858 #
1859 # Returns: A @DumpGuestMemoryCapability object listing available formats for
1860 # dump-guest-memory
1861 #
1862 # Since: 2.0
1863 #
1864 # Example:
1865 #
1866 # -> { "execute": "query-dump-guest-memory-capability" }
1867 # <- { "return": { "formats":
1868 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1869 #
1870 ##
1871 { 'command': 'query-dump-guest-memory-capability',
1872 'returns': 'DumpGuestMemoryCapability' }
1873
1874 ##
1875 # @dump-skeys:
1876 #
1877 # Dump guest's storage keys
1878 #
1879 # @filename: the path to the file to dump to
1880 #
1881 # This command is only supported on s390 architecture.
1882 #
1883 # Since: 2.5
1884 #
1885 # Example:
1886 #
1887 # -> { "execute": "dump-skeys",
1888 # "arguments": { "filename": "/tmp/skeys" } }
1889 # <- { "return": {} }
1890 #
1891 ##
1892 { 'command': 'dump-skeys',
1893 'data': { 'filename': 'str' } }
1894
1895 ##
1896 # @object-add:
1897 #
1898 # Create a QOM object.
1899 #
1900 # @qom-type: the class name for the object to be created
1901 #
1902 # @id: the name of the new object
1903 #
1904 # @props: a dictionary of properties to be passed to the backend
1905 #
1906 # Returns: Nothing on success
1907 # Error if @qom-type is not a valid class name
1908 #
1909 # Since: 2.0
1910 #
1911 # Example:
1912 #
1913 # -> { "execute": "object-add",
1914 # "arguments": { "qom-type": "rng-random", "id": "rng1",
1915 # "props": { "filename": "/dev/hwrng" } } }
1916 # <- { "return": {} }
1917 #
1918 ##
1919 { 'command': 'object-add',
1920 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1921
1922 ##
1923 # @object-del:
1924 #
1925 # Remove a QOM object.
1926 #
1927 # @id: the name of the QOM object to remove
1928 #
1929 # Returns: Nothing on success
1930 # Error if @id is not a valid id for a QOM object
1931 #
1932 # Since: 2.0
1933 #
1934 # Example:
1935 #
1936 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1937 # <- { "return": {} }
1938 #
1939 ##
1940 { 'command': 'object-del', 'data': {'id': 'str'} }
1941
1942 ##
1943 # @getfd:
1944 #
1945 # Receive a file descriptor via SCM rights and assign it a name
1946 #
1947 # @fdname: file descriptor name
1948 #
1949 # Returns: Nothing on success
1950 #
1951 # Since: 0.14.0
1952 #
1953 # Notes: If @fdname already exists, the file descriptor assigned to
1954 # it will be closed and replaced by the received file
1955 # descriptor.
1956 #
1957 # The 'closefd' command can be used to explicitly close the
1958 # file descriptor when it is no longer needed.
1959 #
1960 # Example:
1961 #
1962 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1963 # <- { "return": {} }
1964 #
1965 ##
1966 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1967
1968 ##
1969 # @closefd:
1970 #
1971 # Close a file descriptor previously passed via SCM rights
1972 #
1973 # @fdname: file descriptor name
1974 #
1975 # Returns: Nothing on success
1976 #
1977 # Since: 0.14.0
1978 #
1979 # Example:
1980 #
1981 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1982 # <- { "return": {} }
1983 #
1984 ##
1985 { 'command': 'closefd', 'data': {'fdname': 'str'} }
1986
1987 ##
1988 # @MachineInfo:
1989 #
1990 # Information describing a machine.
1991 #
1992 # @name: the name of the machine
1993 #
1994 # @alias: an alias for the machine name
1995 #
1996 # @is-default: whether the machine is default
1997 #
1998 # @cpu-max: maximum number of CPUs supported by the machine type
1999 # (since 1.5.0)
2000 #
2001 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
2002 #
2003 # Since: 1.2.0
2004 ##
2005 { 'struct': 'MachineInfo',
2006 'data': { 'name': 'str', '*alias': 'str',
2007 '*is-default': 'bool', 'cpu-max': 'int',
2008 'hotpluggable-cpus': 'bool'} }
2009
2010 ##
2011 # @query-machines:
2012 #
2013 # Return a list of supported machines
2014 #
2015 # Returns: a list of MachineInfo
2016 #
2017 # Since: 1.2.0
2018 ##
2019 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
2020
2021 ##
2022 # @CurrentMachineParams:
2023 #
2024 # Information describing the running machine parameters.
2025 #
2026 # @wakeup-suspend-support: true if the machine supports wake up from
2027 # suspend
2028 #
2029 # Since: 4.0
2030 ##
2031 { 'struct': 'CurrentMachineParams',
2032 'data': { 'wakeup-suspend-support': 'bool'} }
2033
2034 ##
2035 # @query-current-machine:
2036 #
2037 # Return information on the current virtual machine.
2038 #
2039 # Returns: CurrentMachineParams
2040 #
2041 # Since: 4.0
2042 ##
2043 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
2044
2045 ##
2046 # @CpuDefinitionInfo:
2047 #
2048 # Virtual CPU definition.
2049 #
2050 # @name: the name of the CPU definition
2051 #
2052 # @migration-safe: whether a CPU definition can be safely used for
2053 # migration in combination with a QEMU compatibility machine
2054 # when migrating between different QEMU versions and between
2055 # hosts with different sets of (hardware or software)
2056 # capabilities. If not provided, information is not available
2057 # and callers should not assume the CPU definition to be
2058 # migration-safe. (since 2.8)
2059 #
2060 # @static: whether a CPU definition is static and will not change depending on
2061 # QEMU version, machine type, machine options and accelerator options.
2062 # A static model is always migration-safe. (since 2.8)
2063 #
2064 # @unavailable-features: List of properties that prevent
2065 # the CPU model from running in the current
2066 # host. (since 2.8)
2067 # @typename: Type name that can be used as argument to @device-list-properties,
2068 # to introspect properties configurable using -cpu or -global.
2069 # (since 2.9)
2070 #
2071 # @unavailable-features is a list of QOM property names that
2072 # represent CPU model attributes that prevent the CPU from running.
2073 # If the QOM property is read-only, that means there's no known
2074 # way to make the CPU model run in the current host. Implementations
2075 # that choose not to provide specific information return the
2076 # property name "type".
2077 # If the property is read-write, it means that it MAY be possible
2078 # to run the CPU model in the current host if that property is
2079 # changed. Management software can use it as hints to suggest or
2080 # choose an alternative for the user, or just to generate meaningful
2081 # error messages explaining why the CPU model can't be used.
2082 # If @unavailable-features is an empty list, the CPU model is
2083 # runnable using the current host and machine-type.
2084 # If @unavailable-features is not present, runnability
2085 # information for the CPU is not available.
2086 #
2087 # Since: 1.2.0
2088 ##
2089 { 'struct': 'CpuDefinitionInfo',
2090 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2091 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2092
2093 ##
2094 # @MemoryInfo:
2095 #
2096 # Actual memory information in bytes.
2097 #
2098 # @base-memory: size of "base" memory specified with command line
2099 # option -m.
2100 #
2101 # @plugged-memory: size of memory that can be hot-unplugged. This field
2102 # is omitted if target doesn't support memory hotplug
2103 # (i.e. CONFIG_MEM_DEVICE not defined at build time).
2104 #
2105 # Since: 2.11.0
2106 ##
2107 { 'struct': 'MemoryInfo',
2108 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2109
2110 ##
2111 # @query-memory-size-summary:
2112 #
2113 # Return the amount of initially allocated and present hotpluggable (if
2114 # enabled) memory in bytes.
2115 #
2116 # Example:
2117 #
2118 # -> { "execute": "query-memory-size-summary" }
2119 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2120 #
2121 # Since: 2.11.0
2122 ##
2123 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2124
2125 ##
2126 # @query-cpu-definitions:
2127 #
2128 # Return a list of supported virtual CPU definitions
2129 #
2130 # Returns: a list of CpuDefInfo
2131 #
2132 # Since: 1.2.0
2133 ##
2134 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2135
2136 ##
2137 # @CpuModelInfo:
2138 #
2139 # Virtual CPU model.
2140 #
2141 # A CPU model consists of the name of a CPU definition, to which
2142 # delta changes are applied (e.g. features added/removed). Most magic values
2143 # that an architecture might require should be hidden behind the name.
2144 # However, if required, architectures can expose relevant properties.
2145 #
2146 # @name: the name of the CPU definition the model is based on
2147 # @props: a dictionary of QOM properties to be applied
2148 #
2149 # Since: 2.8.0
2150 ##
2151 { 'struct': 'CpuModelInfo',
2152 'data': { 'name': 'str',
2153 '*props': 'any' } }
2154
2155 ##
2156 # @CpuModelExpansionType:
2157 #
2158 # An enumeration of CPU model expansion types.
2159 #
2160 # @static: Expand to a static CPU model, a combination of a static base
2161 # model name and property delta changes. As the static base model will
2162 # never change, the expanded CPU model will be the same, independent of
2163 # QEMU version, machine type, machine options, and accelerator options.
2164 # Therefore, the resulting model can be used by tooling without having
2165 # to specify a compatibility machine - e.g. when displaying the "host"
2166 # model. The @static CPU models are migration-safe.
2167
2168 # @full: Expand all properties. The produced model is not guaranteed to be
2169 # migration-safe, but allows tooling to get an insight and work with
2170 # model details.
2171 #
2172 # Note: When a non-migration-safe CPU model is expanded in static mode, some
2173 # features enabled by the CPU model may be omitted, because they can't be
2174 # implemented by a static CPU model definition (e.g. cache info passthrough and
2175 # PMU passthrough in x86). If you need an accurate representation of the
2176 # features enabled by a non-migration-safe CPU model, use @full. If you need a
2177 # static representation that will keep ABI compatibility even when changing QEMU
2178 # version or machine-type, use @static (but keep in mind that some features may
2179 # be omitted).
2180 #
2181 # Since: 2.8.0
2182 ##
2183 { 'enum': 'CpuModelExpansionType',
2184 'data': [ 'static', 'full' ] }
2185
2186
2187 ##
2188 # @CpuModelExpansionInfo:
2189 #
2190 # The result of a cpu model expansion.
2191 #
2192 # @model: the expanded CpuModelInfo.
2193 #
2194 # Since: 2.8.0
2195 ##
2196 { 'struct': 'CpuModelExpansionInfo',
2197 'data': { 'model': 'CpuModelInfo' } }
2198
2199
2200 ##
2201 # @query-cpu-model-expansion:
2202 #
2203 # Expands a given CPU model (or a combination of CPU model + additional options)
2204 # to different granularities, allowing tooling to get an understanding what a
2205 # specific CPU model looks like in QEMU under a certain configuration.
2206 #
2207 # This interface can be used to query the "host" CPU model.
2208 #
2209 # The data returned by this command may be affected by:
2210 #
2211 # * QEMU version: CPU models may look different depending on the QEMU version.
2212 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2213 # * machine-type: CPU model may look different depending on the machine-type.
2214 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2215 # * machine options (including accelerator): in some architectures, CPU models
2216 # may look different depending on machine and accelerator options. (Except for
2217 # CPU models reported as "static" in query-cpu-definitions.)
2218 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2219 # global properties may affect expansion of CPU models. Using
2220 # query-cpu-model-expansion while using these is not advised.
2221 #
2222 # Some architectures may not support all expansion types. s390x supports
2223 # "full" and "static".
2224 #
2225 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2226 # not supported, if the model cannot be expanded, if the model contains
2227 # an unknown CPU definition name, unknown properties or properties
2228 # with a wrong type. Also returns an error if an expansion type is
2229 # not supported.
2230 #
2231 # Since: 2.8.0
2232 ##
2233 { 'command': 'query-cpu-model-expansion',
2234 'data': { 'type': 'CpuModelExpansionType',
2235 'model': 'CpuModelInfo' },
2236 'returns': 'CpuModelExpansionInfo' }
2237
2238 ##
2239 # @CpuModelCompareResult:
2240 #
2241 # An enumeration of CPU model comparison results. The result is usually
2242 # calculated using e.g. CPU features or CPU generations.
2243 #
2244 # @incompatible: If model A is incompatible to model B, model A is not
2245 # guaranteed to run where model B runs and the other way around.
2246 #
2247 # @identical: If model A is identical to model B, model A is guaranteed to run
2248 # where model B runs and the other way around.
2249 #
2250 # @superset: If model A is a superset of model B, model B is guaranteed to run
2251 # where model A runs. There are no guarantees about the other way.
2252 #
2253 # @subset: If model A is a subset of model B, model A is guaranteed to run
2254 # where model B runs. There are no guarantees about the other way.
2255 #
2256 # Since: 2.8.0
2257 ##
2258 { 'enum': 'CpuModelCompareResult',
2259 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2260
2261 ##
2262 # @CpuModelCompareInfo:
2263 #
2264 # The result of a CPU model comparison.
2265 #
2266 # @result: The result of the compare operation.
2267 # @responsible-properties: List of properties that led to the comparison result
2268 # not being identical.
2269 #
2270 # @responsible-properties is a list of QOM property names that led to
2271 # both CPUs not being detected as identical. For identical models, this
2272 # list is empty.
2273 # If a QOM property is read-only, that means there's no known way to make the
2274 # CPU models identical. If the special property name "type" is included, the
2275 # models are by definition not identical and cannot be made identical.
2276 #
2277 # Since: 2.8.0
2278 ##
2279 { 'struct': 'CpuModelCompareInfo',
2280 'data': {'result': 'CpuModelCompareResult',
2281 'responsible-properties': ['str']
2282 }
2283 }
2284
2285 ##
2286 # @query-cpu-model-comparison:
2287 #
2288 # Compares two CPU models, returning how they compare in a specific
2289 # configuration. The results indicates how both models compare regarding
2290 # runnability. This result can be used by tooling to make decisions if a
2291 # certain CPU model will run in a certain configuration or if a compatible
2292 # CPU model has to be created by baselining.
2293 #
2294 # Usually, a CPU model is compared against the maximum possible CPU model
2295 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
2296 # model is identical or a subset, it will run in that configuration.
2297 #
2298 # The result returned by this command may be affected by:
2299 #
2300 # * QEMU version: CPU models may look different depending on the QEMU version.
2301 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2302 # * machine-type: CPU model may look different depending on the machine-type.
2303 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2304 # * machine options (including accelerator): in some architectures, CPU models
2305 # may look different depending on machine and accelerator options. (Except for
2306 # CPU models reported as "static" in query-cpu-definitions.)
2307 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2308 # global properties may affect expansion of CPU models. Using
2309 # query-cpu-model-expansion while using these is not advised.
2310 #
2311 # Some architectures may not support comparing CPU models. s390x supports
2312 # comparing CPU models.
2313 #
2314 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2315 # not supported, if a model cannot be used, if a model contains
2316 # an unknown cpu definition name, unknown properties or properties
2317 # with wrong types.
2318 #
2319 # Since: 2.8.0
2320 ##
2321 { 'command': 'query-cpu-model-comparison',
2322 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2323 'returns': 'CpuModelCompareInfo' }
2324
2325 ##
2326 # @CpuModelBaselineInfo:
2327 #
2328 # The result of a CPU model baseline.
2329 #
2330 # @model: the baselined CpuModelInfo.
2331 #
2332 # Since: 2.8.0
2333 ##
2334 { 'struct': 'CpuModelBaselineInfo',
2335 'data': { 'model': 'CpuModelInfo' } }
2336
2337 ##
2338 # @query-cpu-model-baseline:
2339 #
2340 # Baseline two CPU models, creating a compatible third model. The created
2341 # model will always be a static, migration-safe CPU model (see "static"
2342 # CPU model expansion for details).
2343 #
2344 # This interface can be used by tooling to create a compatible CPU model out
2345 # two CPU models. The created CPU model will be identical to or a subset of
2346 # both CPU models when comparing them. Therefore, the created CPU model is
2347 # guaranteed to run where the given CPU models run.
2348 #
2349 # The result returned by this command may be affected by:
2350 #
2351 # * QEMU version: CPU models may look different depending on the QEMU version.
2352 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2353 # * machine-type: CPU model may look different depending on the machine-type.
2354 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2355 # * machine options (including accelerator): in some architectures, CPU models
2356 # may look different depending on machine and accelerator options. (Except for
2357 # CPU models reported as "static" in query-cpu-definitions.)
2358 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2359 # global properties may affect expansion of CPU models. Using
2360 # query-cpu-model-expansion while using these is not advised.
2361 #
2362 # Some architectures may not support baselining CPU models. s390x supports
2363 # baselining CPU models.
2364 #
2365 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2366 # not supported, if a model cannot be used, if a model contains
2367 # an unknown cpu definition name, unknown properties or properties
2368 # with wrong types.
2369 #
2370 # Since: 2.8.0
2371 ##
2372 { 'command': 'query-cpu-model-baseline',
2373 'data': { 'modela': 'CpuModelInfo',
2374 'modelb': 'CpuModelInfo' },
2375 'returns': 'CpuModelBaselineInfo' }
2376
2377 ##
2378 # @AddfdInfo:
2379 #
2380 # Information about a file descriptor that was added to an fd set.
2381 #
2382 # @fdset-id: The ID of the fd set that @fd was added to.
2383 #
2384 # @fd: The file descriptor that was received via SCM rights and
2385 # added to the fd set.
2386 #
2387 # Since: 1.2.0
2388 ##
2389 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2390
2391 ##
2392 # @add-fd:
2393 #
2394 # Add a file descriptor, that was passed via SCM rights, to an fd set.
2395 #
2396 # @fdset-id: The ID of the fd set to add the file descriptor to.
2397 #
2398 # @opaque: A free-form string that can be used to describe the fd.
2399 #
2400 # Returns: @AddfdInfo on success
2401 #
2402 # If file descriptor was not received, FdNotSupplied
2403 #
2404 # If @fdset-id is a negative value, InvalidParameterValue
2405 #
2406 # Notes: The list of fd sets is shared by all monitor connections.
2407 #
2408 # If @fdset-id is not specified, a new fd set will be created.
2409 #
2410 # Since: 1.2.0
2411 #
2412 # Example:
2413 #
2414 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2415 # <- { "return": { "fdset-id": 1, "fd": 3 } }
2416 #
2417 ##
2418 { 'command': 'add-fd',
2419 'data': { '*fdset-id': 'int',
2420 '*opaque': 'str' },
2421 'returns': 'AddfdInfo' }
2422
2423 ##
2424 # @remove-fd:
2425 #
2426 # Remove a file descriptor from an fd set.
2427 #
2428 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
2429 #
2430 # @fd: The file descriptor that is to be removed.
2431 #
2432 # Returns: Nothing on success
2433 # If @fdset-id or @fd is not found, FdNotFound
2434 #
2435 # Since: 1.2.0
2436 #
2437 # Notes: The list of fd sets is shared by all monitor connections.
2438 #
2439 # If @fd is not specified, all file descriptors in @fdset-id
2440 # will be removed.
2441 #
2442 # Example:
2443 #
2444 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2445 # <- { "return": {} }
2446 #
2447 ##
2448 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2449
2450 ##
2451 # @FdsetFdInfo:
2452 #
2453 # Information about a file descriptor that belongs to an fd set.
2454 #
2455 # @fd: The file descriptor value.
2456 #
2457 # @opaque: A free-form string that can be used to describe the fd.
2458 #
2459 # Since: 1.2.0
2460 ##
2461 { 'struct': 'FdsetFdInfo',
2462 'data': {'fd': 'int', '*opaque': 'str'} }
2463
2464 ##
2465 # @FdsetInfo:
2466 #
2467 # Information about an fd set.
2468 #
2469 # @fdset-id: The ID of the fd set.
2470 #
2471 # @fds: A list of file descriptors that belong to this fd set.
2472 #
2473 # Since: 1.2.0
2474 ##
2475 { 'struct': 'FdsetInfo',
2476 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2477
2478 ##
2479 # @query-fdsets:
2480 #
2481 # Return information describing all fd sets.
2482 #
2483 # Returns: A list of @FdsetInfo
2484 #
2485 # Since: 1.2.0
2486 #
2487 # Note: The list of fd sets is shared by all monitor connections.
2488 #
2489 # Example:
2490 #
2491 # -> { "execute": "query-fdsets" }
2492 # <- { "return": [
2493 # {
2494 # "fds": [
2495 # {
2496 # "fd": 30,
2497 # "opaque": "rdonly:/path/to/file"
2498 # },
2499 # {
2500 # "fd": 24,
2501 # "opaque": "rdwr:/path/to/file"
2502 # }
2503 # ],
2504 # "fdset-id": 1
2505 # },
2506 # {
2507 # "fds": [
2508 # {
2509 # "fd": 28
2510 # },
2511 # {
2512 # "fd": 29
2513 # }
2514 # ],
2515 # "fdset-id": 0
2516 # }
2517 # ]
2518 # }
2519 #
2520 ##
2521 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2522
2523 ##
2524 # @TargetInfo:
2525 #
2526 # Information describing the QEMU target.
2527 #
2528 # @arch: the target architecture
2529 #
2530 # Since: 1.2.0
2531 ##
2532 { 'struct': 'TargetInfo',
2533 'data': { 'arch': 'SysEmuTarget' } }
2534
2535 ##
2536 # @query-target:
2537 #
2538 # Return information about the target for this QEMU
2539 #
2540 # Returns: TargetInfo
2541 #
2542 # Since: 1.2.0
2543 ##
2544 { 'command': 'query-target', 'returns': 'TargetInfo' }
2545
2546 ##
2547 # @AcpiTableOptions:
2548 #
2549 # Specify an ACPI table on the command line to load.
2550 #
2551 # At most one of @file and @data can be specified. The list of files specified
2552 # by any one of them is loaded and concatenated in order. If both are omitted,
2553 # @data is implied.
2554 #
2555 # Other fields / optargs can be used to override fields of the generic ACPI
2556 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
2557 # Description Table Header. If a header field is not overridden, then the
2558 # corresponding value from the concatenated blob is used (in case of @file), or
2559 # it is filled in with a hard-coded value (in case of @data).
2560 #
2561 # String fields are copied into the matching ACPI member from lowest address
2562 # upwards, and silently truncated / NUL-padded to length.
2563 #
2564 # @sig: table signature / identifier (4 bytes)
2565 #
2566 # @rev: table revision number (dependent on signature, 1 byte)
2567 #
2568 # @oem_id: OEM identifier (6 bytes)
2569 #
2570 # @oem_table_id: OEM table identifier (8 bytes)
2571 #
2572 # @oem_rev: OEM-supplied revision number (4 bytes)
2573 #
2574 # @asl_compiler_id: identifier of the utility that created the table
2575 # (4 bytes)
2576 #
2577 # @asl_compiler_rev: revision number of the utility that created the
2578 # table (4 bytes)
2579 #
2580 # @file: colon (:) separated list of pathnames to load and
2581 # concatenate as table data. The resultant binary blob is expected to
2582 # have an ACPI table header. At least one file is required. This field
2583 # excludes @data.
2584 #
2585 # @data: colon (:) separated list of pathnames to load and
2586 # concatenate as table data. The resultant binary blob must not have an
2587 # ACPI table header. At least one file is required. This field excludes
2588 # @file.
2589 #
2590 # Since: 1.5
2591 ##
2592 { 'struct': 'AcpiTableOptions',
2593 'data': {
2594 '*sig': 'str',
2595 '*rev': 'uint8',
2596 '*oem_id': 'str',
2597 '*oem_table_id': 'str',
2598 '*oem_rev': 'uint32',
2599 '*asl_compiler_id': 'str',
2600 '*asl_compiler_rev': 'uint32',
2601 '*file': 'str',
2602 '*data': 'str' }}
2603
2604 ##
2605 # @CommandLineParameterType:
2606 #
2607 # Possible types for an option parameter.
2608 #
2609 # @string: accepts a character string
2610 #
2611 # @boolean: accepts "on" or "off"
2612 #
2613 # @number: accepts a number
2614 #
2615 # @size: accepts a number followed by an optional suffix (K)ilo,
2616 # (M)ega, (G)iga, (T)era
2617 #
2618 # Since: 1.5
2619 ##
2620 { 'enum': 'CommandLineParameterType',
2621 'data': ['string', 'boolean', 'number', 'size'] }
2622
2623 ##
2624 # @CommandLineParameterInfo:
2625 #
2626 # Details about a single parameter of a command line option.
2627 #
2628 # @name: parameter name
2629 #
2630 # @type: parameter @CommandLineParameterType
2631 #
2632 # @help: human readable text string, not suitable for parsing.
2633 #
2634 # @default: default value string (since 2.1)
2635 #
2636 # Since: 1.5
2637 ##
2638 { 'struct': 'CommandLineParameterInfo',
2639 'data': { 'name': 'str',
2640 'type': 'CommandLineParameterType',
2641 '*help': 'str',
2642 '*default': 'str' } }
2643
2644 ##
2645 # @CommandLineOptionInfo:
2646 #
2647 # Details about a command line option, including its list of parameter details
2648 #
2649 # @option: option name
2650 #
2651 # @parameters: an array of @CommandLineParameterInfo
2652 #
2653 # Since: 1.5
2654 ##
2655 { 'struct': 'CommandLineOptionInfo',
2656 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2657
2658 ##
2659 # @query-command-line-options:
2660 #
2661 # Query command line option schema.
2662 #
2663 # @option: option name
2664 #
2665 # Returns: list of @CommandLineOptionInfo for all options (or for the given
2666 # @option). Returns an error if the given @option doesn't exist.
2667 #
2668 # Since: 1.5
2669 #
2670 # Example:
2671 #
2672 # -> { "execute": "query-command-line-options",
2673 # "arguments": { "option": "option-rom" } }
2674 # <- { "return": [
2675 # {
2676 # "parameters": [
2677 # {
2678 # "name": "romfile",
2679 # "type": "string"
2680 # },
2681 # {
2682 # "name": "bootindex",
2683 # "type": "number"
2684 # }
2685 # ],
2686 # "option": "option-rom"
2687 # }
2688 # ]
2689 # }
2690 #
2691 ##
2692 {'command': 'query-command-line-options',
2693 'data': { '*option': 'str' },
2694 'returns': ['CommandLineOptionInfo'],
2695 'allow-preconfig': true }
2696
2697 ##
2698 # @X86CPURegister32:
2699 #
2700 # A X86 32-bit register
2701 #
2702 # Since: 1.5
2703 ##
2704 { 'enum': 'X86CPURegister32',
2705 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2706
2707 ##
2708 # @X86CPUFeatureWordInfo:
2709 #
2710 # Information about a X86 CPU feature word
2711 #
2712 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2713 #
2714 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2715 # feature word
2716 #
2717 # @cpuid-register: Output register containing the feature bits
2718 #
2719 # @features: value of output register, containing the feature bits
2720 #
2721 # Since: 1.5
2722 ##
2723 { 'struct': 'X86CPUFeatureWordInfo',
2724 'data': { 'cpuid-input-eax': 'int',
2725 '*cpuid-input-ecx': 'int',
2726 'cpuid-register': 'X86CPURegister32',
2727 'features': 'int' } }
2728
2729 ##
2730 # @DummyForceArrays:
2731 #
2732 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2733 #
2734 # Since: 2.5
2735 ##
2736 { 'struct': 'DummyForceArrays',
2737 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2738
2739
2740 ##
2741 # @NumaOptionsType:
2742 #
2743 # @node: NUMA nodes configuration
2744 #
2745 # @dist: NUMA distance configuration (since 2.10)
2746 #
2747 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
2748 #
2749 # Since: 2.1
2750 ##
2751 { 'enum': 'NumaOptionsType',
2752 'data': [ 'node', 'dist', 'cpu' ] }
2753
2754 ##
2755 # @NumaOptions:
2756 #
2757 # A discriminated record of NUMA options. (for OptsVisitor)
2758 #
2759 # Since: 2.1
2760 ##
2761 { 'union': 'NumaOptions',
2762 'base': { 'type': 'NumaOptionsType' },
2763 'discriminator': 'type',
2764 'data': {
2765 'node': 'NumaNodeOptions',
2766 'dist': 'NumaDistOptions',
2767 'cpu': 'NumaCpuOptions' }}
2768
2769 ##
2770 # @NumaNodeOptions:
2771 #
2772 # Create a guest NUMA node. (for OptsVisitor)
2773 #
2774 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2775 #
2776 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2777 # if omitted)
2778 #
2779 # @mem: memory size of this node; mutually exclusive with @memdev.
2780 # Equally divide total memory among nodes if both @mem and @memdev are
2781 # omitted.
2782 #
2783 # @memdev: memory backend object. If specified for one node,
2784 # it must be specified for all nodes.
2785 #
2786 # Since: 2.1
2787 ##
2788 { 'struct': 'NumaNodeOptions',
2789 'data': {
2790 '*nodeid': 'uint16',
2791 '*cpus': ['uint16'],
2792 '*mem': 'size',
2793 '*memdev': 'str' }}
2794
2795 ##
2796 # @NumaDistOptions:
2797 #
2798 # Set the distance between 2 NUMA nodes.
2799 #
2800 # @src: source NUMA node.
2801 #
2802 # @dst: destination NUMA node.
2803 #
2804 # @val: NUMA distance from source node to destination node.
2805 # When a node is unreachable from another node, set the distance
2806 # between them to 255.
2807 #
2808 # Since: 2.10
2809 ##
2810 { 'struct': 'NumaDistOptions',
2811 'data': {
2812 'src': 'uint16',
2813 'dst': 'uint16',
2814 'val': 'uint8' }}
2815
2816 ##
2817 # @NumaCpuOptions:
2818 #
2819 # Option "-numa cpu" overrides default cpu to node mapping.
2820 # It accepts the same set of cpu properties as returned by
2821 # query-hotpluggable-cpus[].props, where node-id could be used to
2822 # override default node mapping.
2823 #
2824 # Since: 2.10
2825 ##
2826 { 'struct': 'NumaCpuOptions',
2827 'base': 'CpuInstanceProperties',
2828 'data' : {} }
2829
2830 ##
2831 # @HostMemPolicy:
2832 #
2833 # Host memory policy types
2834 #
2835 # @default: restore default policy, remove any nondefault policy
2836 #
2837 # @preferred: set the preferred host nodes for allocation
2838 #
2839 # @bind: a strict policy that restricts memory allocation to the
2840 # host nodes specified
2841 #
2842 # @interleave: memory allocations are interleaved across the set
2843 # of host nodes specified
2844 #
2845 # Since: 2.1
2846 ##
2847 { 'enum': 'HostMemPolicy',
2848 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2849
2850 ##
2851 # @Memdev:
2852 #
2853 # Information about memory backend
2854 #
2855 # @id: backend's ID if backend has 'id' property (since 2.9)
2856 #
2857 # @size: memory backend size
2858 #
2859 # @merge: enables or disables memory merge support
2860 #
2861 # @dump: includes memory backend's memory in a core dump or not
2862 #
2863 # @prealloc: enables or disables memory preallocation
2864 #
2865 # @host-nodes: host nodes for its memory policy
2866 #
2867 # @policy: memory policy of memory backend
2868 #
2869 # Since: 2.1
2870 ##
2871 { 'struct': 'Memdev',
2872 'data': {
2873 '*id': 'str',
2874 'size': 'size',
2875 'merge': 'bool',
2876 'dump': 'bool',
2877 'prealloc': 'bool',
2878 'host-nodes': ['uint16'],
2879 'policy': 'HostMemPolicy' }}
2880
2881 ##
2882 # @query-memdev:
2883 #
2884 # Returns information for all memory backends.
2885 #
2886 # Returns: a list of @Memdev.
2887 #
2888 # Since: 2.1
2889 #
2890 # Example:
2891 #
2892 # -> { "execute": "query-memdev" }
2893 # <- { "return": [
2894 # {
2895 # "id": "mem1",
2896 # "size": 536870912,
2897 # "merge": false,
2898 # "dump": true,
2899 # "prealloc": false,
2900 # "host-nodes": [0, 1],
2901 # "policy": "bind"
2902 # },
2903 # {
2904 # "size": 536870912,
2905 # "merge": false,
2906 # "dump": true,
2907 # "prealloc": true,
2908 # "host-nodes": [2, 3],
2909 # "policy": "preferred"
2910 # }
2911 # ]
2912 # }
2913 #
2914 ##
2915 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
2916
2917 ##
2918 # @PCDIMMDeviceInfo:
2919 #
2920 # PCDIMMDevice state information
2921 #
2922 # @id: device's ID
2923 #
2924 # @addr: physical address, where device is mapped
2925 #
2926 # @size: size of memory that the device provides
2927 #
2928 # @slot: slot number at which device is plugged in
2929 #
2930 # @node: NUMA node number where device is plugged in
2931 #
2932 # @memdev: memory backend linked with device
2933 #
2934 # @hotplugged: true if device was hotplugged
2935 #
2936 # @hotpluggable: true if device if could be added/removed while machine is running
2937 #
2938 # Since: 2.1
2939 ##
2940 { 'struct': 'PCDIMMDeviceInfo',
2941 'data': { '*id': 'str',
2942 'addr': 'int',
2943 'size': 'int',
2944 'slot': 'int',
2945 'node': 'int',
2946 'memdev': 'str',
2947 'hotplugged': 'bool',
2948 'hotpluggable': 'bool'
2949 }
2950 }
2951
2952 ##
2953 # @MemoryDeviceInfo:
2954 #
2955 # Union containing information about a memory device
2956 #
2957 # Since: 2.1
2958 ##
2959 { 'union': 'MemoryDeviceInfo',
2960 'data': { 'dimm': 'PCDIMMDeviceInfo',
2961 'nvdimm': 'PCDIMMDeviceInfo'
2962 }
2963 }
2964
2965 ##
2966 # @query-memory-devices:
2967 #
2968 # Lists available memory devices and their state
2969 #
2970 # Since: 2.1
2971 #
2972 # Example:
2973 #
2974 # -> { "execute": "query-memory-devices" }
2975 # <- { "return": [ { "data":
2976 # { "addr": 5368709120,
2977 # "hotpluggable": true,
2978 # "hotplugged": true,
2979 # "id": "d1",
2980 # "memdev": "/objects/memX",
2981 # "node": 0,
2982 # "size": 1073741824,
2983 # "slot": 0},
2984 # "type": "dimm"
2985 # } ] }
2986 #
2987 ##
2988 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2989
2990 ##
2991 # @MEM_UNPLUG_ERROR:
2992 #
2993 # Emitted when memory hot unplug error occurs.
2994 #
2995 # @device: device name
2996 #
2997 # @msg: Informative message
2998 #
2999 # Since: 2.4
3000 #
3001 # Example:
3002 #
3003 # <- { "event": "MEM_UNPLUG_ERROR"
3004 # "data": { "device": "dimm1",
3005 # "msg": "acpi: device unplug for unsupported device"
3006 # },
3007 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
3008 #
3009 ##
3010 { 'event': 'MEM_UNPLUG_ERROR',
3011 'data': { 'device': 'str', 'msg': 'str' } }
3012
3013 ##
3014 # @ACPISlotType:
3015 #
3016 # @DIMM: memory slot
3017 # @CPU: logical CPU slot (since 2.7)
3018 ##
3019 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
3020
3021 ##
3022 # @ACPIOSTInfo:
3023 #
3024 # OSPM Status Indication for a device
3025 # For description of possible values of @source and @status fields
3026 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
3027 #
3028 # @device: device ID associated with slot
3029 #
3030 # @slot: slot ID, unique per slot of a given @slot-type
3031 #
3032 # @slot-type: type of the slot
3033 #
3034 # @source: an integer containing the source event
3035 #
3036 # @status: an integer containing the status code
3037 #
3038 # Since: 2.1
3039 ##
3040 { 'struct': 'ACPIOSTInfo',
3041 'data' : { '*device': 'str',
3042 'slot': 'str',
3043 'slot-type': 'ACPISlotType',
3044 'source': 'int',
3045 'status': 'int' } }
3046
3047 ##
3048 # @query-acpi-ospm-status:
3049 #
3050 # Return a list of ACPIOSTInfo for devices that support status
3051 # reporting via ACPI _OST method.
3052 #
3053 # Since: 2.1
3054 #
3055 # Example:
3056 #
3057 # -> { "execute": "query-acpi-ospm-status" }
3058 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3059 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3060 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3061 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3062 # ]}
3063 #
3064 ##
3065 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3066
3067 ##
3068 # @ACPI_DEVICE_OST:
3069 #
3070 # Emitted when guest executes ACPI _OST method.
3071 #
3072 # @info: OSPM Status Indication
3073 #
3074 # Since: 2.1
3075 #
3076 # Example:
3077 #
3078 # <- { "event": "ACPI_DEVICE_OST",
3079 # "data": { "device": "d1", "slot": "0",
3080 # "slot-type": "DIMM", "source": 1, "status": 0 } }
3081 #
3082 ##
3083 { 'event': 'ACPI_DEVICE_OST',
3084 'data': { 'info': 'ACPIOSTInfo' } }
3085
3086 ##
3087 # @rtc-reset-reinjection:
3088 #
3089 # This command will reset the RTC interrupt reinjection backlog.
3090 # Can be used if another mechanism to synchronize guest time
3091 # is in effect, for example QEMU guest agent's guest-set-time
3092 # command.
3093 #
3094 # Since: 2.1
3095 #
3096 # Example:
3097 #
3098 # -> { "execute": "rtc-reset-reinjection" }
3099 # <- { "return": {} }
3100 #
3101 ##
3102 { 'command': 'rtc-reset-reinjection' }
3103
3104 ##
3105 # @RTC_CHANGE:
3106 #
3107 # Emitted when the guest changes the RTC time.
3108 #
3109 # @offset: offset between base RTC clock (as specified by -rtc base), and
3110 # new RTC clock value. Note that value will be different depending
3111 # on clock chosen to drive RTC (specified by -rtc clock).
3112 #
3113 # Note: This event is rate-limited.
3114 #
3115 # Since: 0.13.0
3116 #
3117 # Example:
3118 #
3119 # <- { "event": "RTC_CHANGE",
3120 # "data": { "offset": 78 },
3121 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3122 #
3123 ##
3124 { 'event': 'RTC_CHANGE',
3125 'data': { 'offset': 'int' } }
3126
3127 ##
3128 # @ReplayMode:
3129 #
3130 # Mode of the replay subsystem.
3131 #
3132 # @none: normal execution mode. Replay or record are not enabled.
3133 #
3134 # @record: record mode. All non-deterministic data is written into the
3135 # replay log.
3136 #
3137 # @play: replay mode. Non-deterministic data required for system execution
3138 # is read from the log.
3139 #
3140 # Since: 2.5
3141 ##
3142 { 'enum': 'ReplayMode',
3143 'data': [ 'none', 'record', 'play' ] }
3144
3145 ##
3146 # @xen-load-devices-state:
3147 #
3148 # Load the state of all devices from file. The RAM and the block devices
3149 # of the VM are not loaded by this command.
3150 #
3151 # @filename: the file to load the state of the devices from as binary
3152 # data. See xen-save-devices-state.txt for a description of the binary
3153 # format.
3154 #
3155 # Since: 2.7
3156 #
3157 # Example:
3158 #
3159 # -> { "execute": "xen-load-devices-state",
3160 # "arguments": { "filename": "/tmp/resume" } }
3161 # <- { "return": {} }
3162 #
3163 ##
3164 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3165
3166 ##
3167 # @GICCapability:
3168 #
3169 # The struct describes capability for a specific GIC (Generic
3170 # Interrupt Controller) version. These bits are not only decided by
3171 # QEMU/KVM software version, but also decided by the hardware that
3172 # the program is running upon.
3173 #
3174 # @version: version of GIC to be described. Currently, only 2 and 3
3175 # are supported.
3176 #
3177 # @emulated: whether current QEMU/hardware supports emulated GIC
3178 # device in user space.
3179 #
3180 # @kernel: whether current QEMU/hardware supports hardware
3181 # accelerated GIC device in kernel.
3182 #
3183 # Since: 2.6
3184 ##
3185 { 'struct': 'GICCapability',
3186 'data': { 'version': 'int',
3187 'emulated': 'bool',
3188 'kernel': 'bool' } }
3189
3190 ##
3191 # @query-gic-capabilities:
3192 #
3193 # This command is ARM-only. It will return a list of GICCapability
3194 # objects that describe its capability bits.
3195 #
3196 # Returns: a list of GICCapability objects.
3197 #
3198 # Since: 2.6
3199 #
3200 # Example:
3201 #
3202 # -> { "execute": "query-gic-capabilities" }
3203 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3204 # { "version": 3, "emulated": false, "kernel": true } ] }
3205 #
3206 ##
3207 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3208
3209 ##
3210 # @CpuInstanceProperties:
3211 #
3212 # List of properties to be used for hotplugging a CPU instance,
3213 # it should be passed by management with device_add command when
3214 # a CPU is being hotplugged.
3215 #
3216 # @node-id: NUMA node ID the CPU belongs to
3217 # @socket-id: socket number within node/board the CPU belongs to
3218 # @core-id: core number within socket the CPU belongs to
3219 # @thread-id: thread number within core the CPU belongs to
3220 #
3221 # Note: currently there are 4 properties that could be present
3222 # but management should be prepared to pass through other
3223 # properties with device_add command to allow for future
3224 # interface extension. This also requires the filed names to be kept in
3225 # sync with the properties passed to -device/device_add.
3226 #
3227 # Since: 2.7
3228 ##
3229 { 'struct': 'CpuInstanceProperties',
3230 'data': { '*node-id': 'int',
3231 '*socket-id': 'int',
3232 '*core-id': 'int',
3233 '*thread-id': 'int'
3234 }
3235 }
3236
3237 ##
3238 # @HotpluggableCPU:
3239 #
3240 # @type: CPU object type for usage with device_add command
3241 # @props: list of properties to be used for hotplugging CPU
3242 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3243 # @qom-path: link to existing CPU object if CPU is present or
3244 # omitted if CPU is not present.
3245 #
3246 # Since: 2.7
3247 ##
3248 { 'struct': 'HotpluggableCPU',
3249 'data': { 'type': 'str',
3250 'vcpus-count': 'int',
3251 'props': 'CpuInstanceProperties',
3252 '*qom-path': 'str'
3253 }
3254 }
3255
3256 ##
3257 # @query-hotpluggable-cpus:
3258 #
3259 # TODO: Better documentation; currently there is none.
3260 #
3261 # Returns: a list of HotpluggableCPU objects.
3262 #
3263 # Since: 2.7
3264 #
3265 # Example:
3266 #
3267 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3268 #
3269 # -> { "execute": "query-hotpluggable-cpus" }
3270 # <- {"return": [
3271 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3272 # "vcpus-count": 1 },
3273 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3274 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3275 # ]}'
3276 #
3277 # For pc machine type started with -smp 1,maxcpus=2:
3278 #
3279 # -> { "execute": "query-hotpluggable-cpus" }
3280 # <- {"return": [
3281 # {
3282 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3283 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3284 # },
3285 # {
3286 # "qom-path": "/machine/unattached/device[0]",
3287 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3288 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3289 # }
3290 # ]}
3291 #
3292 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3293 # (Since: 2.11):
3294 #
3295 # -> { "execute": "query-hotpluggable-cpus" }
3296 # <- {"return": [
3297 # {
3298 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3299 # "props": { "core-id": 1 }
3300 # },
3301 # {
3302 # "qom-path": "/machine/unattached/device[0]",
3303 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3304 # "props": { "core-id": 0 }
3305 # }
3306 # ]}
3307 #
3308 ##
3309 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3310 'allow-preconfig': true }
3311
3312 ##
3313 # @GuidInfo:
3314 #
3315 # GUID information.
3316 #
3317 # @guid: the globally unique identifier
3318 #
3319 # Since: 2.9
3320 ##
3321 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3322
3323 ##
3324 # @query-vm-generation-id:
3325 #
3326 # Show Virtual Machine Generation ID
3327 #
3328 # Since: 2.9
3329 ##
3330 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3331
3332
3333 ##
3334 # @SevState:
3335 #
3336 # An enumeration of SEV state information used during @query-sev.
3337 #
3338 # @uninit: The guest is uninitialized.
3339 #
3340 # @launch-update: The guest is currently being launched; plaintext data and
3341 # register state is being imported.
3342 #
3343 # @launch-secret: The guest is currently being launched; ciphertext data
3344 # is being imported.
3345 #
3346 # @running: The guest is fully launched or migrated in.
3347 #
3348 # @send-update: The guest is currently being migrated out to another machine.
3349 #
3350 # @receive-update: The guest is currently being migrated from another machine.
3351 #
3352 # Since: 2.12
3353 ##
3354 { 'enum': 'SevState',
3355 'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3356 'send-update', 'receive-update' ] }
3357
3358 ##
3359 # @SevInfo:
3360 #
3361 # Information about Secure Encrypted Virtualization (SEV) support
3362 #
3363 # @enabled: true if SEV is active
3364 #
3365 # @api-major: SEV API major version
3366 #
3367 # @api-minor: SEV API minor version
3368 #
3369 # @build-id: SEV FW build id
3370 #
3371 # @policy: SEV policy value
3372 #
3373 # @state: SEV guest state
3374 #
3375 # @handle: SEV firmware handle
3376 #
3377 # Since: 2.12
3378 ##
3379 { 'struct': 'SevInfo',
3380 'data': { 'enabled': 'bool',
3381 'api-major': 'uint8',
3382 'api-minor' : 'uint8',
3383 'build-id' : 'uint8',
3384 'policy' : 'uint32',
3385 'state' : 'SevState',
3386 'handle' : 'uint32'
3387 }
3388 }
3389
3390 ##
3391 # @query-sev:
3392 #
3393 # Returns information about SEV
3394 #
3395 # Returns: @SevInfo
3396 #
3397 # Since: 2.12
3398 #
3399 # Example:
3400 #
3401 # -> { "execute": "query-sev" }
3402 # <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3403 # "build-id" : 0, "policy" : 0, "state" : "running",
3404 # "handle" : 1 } }
3405 #
3406 ##
3407 { 'command': 'query-sev', 'returns': 'SevInfo' }
3408
3409 ##
3410 # @SevLaunchMeasureInfo:
3411 #
3412 # SEV Guest Launch measurement information
3413 #
3414 # @data: the measurement value encoded in base64
3415 #
3416 # Since: 2.12
3417 #
3418 ##
3419 { 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3420
3421 ##
3422 # @query-sev-launch-measure:
3423 #
3424 # Query the SEV guest launch information.
3425 #
3426 # Returns: The @SevLaunchMeasureInfo for the guest
3427 #
3428 # Since: 2.12
3429 #
3430 # Example:
3431 #
3432 # -> { "execute": "query-sev-launch-measure" }
3433 # <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3434 #
3435 ##
3436 { 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
3437
3438 ##
3439 # @SevCapability:
3440 #
3441 # The struct describes capability for a Secure Encrypted Virtualization
3442 # feature.
3443 #
3444 # @pdh: Platform Diffie-Hellman key (base64 encoded)
3445 #
3446 # @cert-chain: PDH certificate chain (base64 encoded)
3447 #
3448 # @cbitpos: C-bit location in page table entry
3449 #
3450 # @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3451 # enabled
3452 #
3453 # Since: 2.12
3454 ##
3455 { 'struct': 'SevCapability',
3456 'data': { 'pdh': 'str',
3457 'cert-chain': 'str',
3458 'cbitpos': 'int',
3459 'reduced-phys-bits': 'int'} }
3460
3461 ##
3462 # @query-sev-capabilities:
3463 #
3464 # This command is used to get the SEV capabilities, and is supported on AMD
3465 # X86 platforms only.
3466 #
3467 # Returns: SevCapability objects.
3468 #
3469 # Since: 2.12
3470 #
3471 # Example:
3472 #
3473 # -> { "execute": "query-sev-capabilities" }
3474 # <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3475 # "cbitpos": 47, "reduced-phys-bits": 5}}
3476 #
3477 ##
3478 { 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
3479
3480 ##
3481 # @set-numa-node:
3482 #
3483 # Runtime equivalent of '-numa' CLI option, available at
3484 # preconfigure stage to configure numa mapping before initializing
3485 # machine.
3486 #
3487 # Since 3.0
3488 ##
3489 { 'command': 'set-numa-node', 'boxed': true,
3490 'data': 'NumaOptions',
3491 'allow-preconfig': true
3492 }