]> git.proxmox.com Git - mirror_qemu.git/blob - qapi-schema.json
7aeb0fa1e76d77e4bc6ef16c03704c28a6282f8d
[mirror_qemu.git] / qapi-schema.json
1 # -*- Mode: Python -*-
2 #
3 # QAPI Schema
4
5 # QAPI common definitions
6 { 'include': 'qapi/common.json' }
7
8 # QAPI crypto definitions
9 { 'include': 'qapi/crypto.json' }
10
11 # QAPI block definitions
12 { 'include': 'qapi/block.json' }
13
14 # QAPI event definitions
15 { 'include': 'qapi/event.json' }
16
17 # Tracing commands
18 { 'include': 'qapi/trace.json' }
19
20 # QAPI introspection
21 { 'include': 'qapi/introspect.json' }
22
23 ##
24 # = QMP commands
25 ##
26
27 ##
28 # @qmp_capabilities:
29 #
30 # Enable QMP capabilities.
31 #
32 # Arguments: None.
33 #
34 # Example:
35 #
36 # -> { "execute": "qmp_capabilities" }
37 # <- { "return": {} }
38 #
39 # Notes: This command is valid exactly when first connecting: it must be
40 # issued before any other command will be accepted, and will fail once the
41 # monitor is accepting other commands. (see qemu docs/qmp-spec.txt)
42 #
43 # Since: 0.13
44 #
45 ##
46 { 'command': 'qmp_capabilities' }
47
48 ##
49 # @LostTickPolicy:
50 #
51 # Policy for handling lost ticks in timer devices.
52 #
53 # @discard: throw away the missed tick(s) and continue with future injection
54 # normally. Guest time may be delayed, unless the OS has explicit
55 # handling of lost ticks
56 #
57 # @delay: continue to deliver ticks at the normal rate. Guest time will be
58 # delayed due to the late tick
59 #
60 # @merge: merge the missed tick(s) into one tick and inject. Guest time
61 # may be delayed, depending on how the OS reacts to the merging
62 # of ticks
63 #
64 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
65 # guest time should not be delayed once catchup is complete.
66 #
67 # Since: 2.0
68 ##
69 { 'enum': 'LostTickPolicy',
70 'data': ['discard', 'delay', 'merge', 'slew' ] }
71
72 ##
73 # @add_client:
74 #
75 # Allow client connections for VNC, Spice and socket based
76 # character devices to be passed in to QEMU via SCM_RIGHTS.
77 #
78 # @protocol: protocol name. Valid names are "vnc", "spice" or the
79 # name of a character device (eg. from -chardev id=XXXX)
80 #
81 # @fdname: file descriptor name previously passed via 'getfd' command
82 #
83 # @skipauth: #optional whether to skip authentication. Only applies
84 # to "vnc" and "spice" protocols
85 #
86 # @tls: #optional whether to perform TLS. Only applies to the "spice"
87 # protocol
88 #
89 # Returns: nothing on success.
90 #
91 # Since: 0.14.0
92 #
93 # Example:
94 #
95 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
96 # "fdname": "myclient" } }
97 # <- { "return": {} }
98 #
99 ##
100 { 'command': 'add_client',
101 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
102 '*tls': 'bool' } }
103
104 ##
105 # @NameInfo:
106 #
107 # Guest name information.
108 #
109 # @name: #optional The name of the guest
110 #
111 # Since: 0.14.0
112 ##
113 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
114
115 ##
116 # @query-name:
117 #
118 # Return the name information of a guest.
119 #
120 # Returns: @NameInfo of the guest
121 #
122 # Since: 0.14.0
123 #
124 # Example:
125 #
126 # -> { "execute": "query-name" }
127 # <- { "return": { "name": "qemu-name" } }
128 #
129 ##
130 { 'command': 'query-name', 'returns': 'NameInfo' }
131
132 ##
133 # @KvmInfo:
134 #
135 # Information about support for KVM acceleration
136 #
137 # @enabled: true if KVM acceleration is active
138 #
139 # @present: true if KVM acceleration is built into this executable
140 #
141 # Since: 0.14.0
142 ##
143 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
144
145 ##
146 # @query-kvm:
147 #
148 # Returns information about KVM acceleration
149 #
150 # Returns: @KvmInfo
151 #
152 # Since: 0.14.0
153 #
154 # Example:
155 #
156 # -> { "execute": "query-kvm" }
157 # <- { "return": { "enabled": true, "present": true } }
158 #
159 ##
160 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
161
162 ##
163 # @RunState:
164 #
165 # An enumeration of VM run states.
166 #
167 # @debug: QEMU is running on a debugger
168 #
169 # @finish-migrate: guest is paused to finish the migration process
170 #
171 # @inmigrate: guest is paused waiting for an incoming migration. Note
172 # that this state does not tell whether the machine will start at the
173 # end of the migration. This depends on the command-line -S option and
174 # any invocation of 'stop' or 'cont' that has happened since QEMU was
175 # started.
176 #
177 # @internal-error: An internal error that prevents further guest execution
178 # has occurred
179 #
180 # @io-error: the last IOP has failed and the device is configured to pause
181 # on I/O errors
182 #
183 # @paused: guest has been paused via the 'stop' command
184 #
185 # @postmigrate: guest is paused following a successful 'migrate'
186 #
187 # @prelaunch: QEMU was started with -S and guest has not started
188 #
189 # @restore-vm: guest is paused to restore VM state
190 #
191 # @running: guest is actively running
192 #
193 # @save-vm: guest is paused to save the VM state
194 #
195 # @shutdown: guest is shut down (and -no-shutdown is in use)
196 #
197 # @suspended: guest is suspended (ACPI S3)
198 #
199 # @watchdog: the watchdog action is configured to pause and has been triggered
200 #
201 # @guest-panicked: guest has been panicked as a result of guest OS panic
202 #
203 # @colo: guest is paused to save/restore VM state under colo checkpoint,
204 # VM can not get into this state unless colo capability is enabled
205 # for migration. (since 2.8)
206 ##
207 { 'enum': 'RunState',
208 'data': [ 'debug', 'inmigrate', 'internal-error', 'io-error', 'paused',
209 'postmigrate', 'prelaunch', 'finish-migrate', 'restore-vm',
210 'running', 'save-vm', 'shutdown', 'suspended', 'watchdog',
211 'guest-panicked', 'colo' ] }
212
213 ##
214 # @StatusInfo:
215 #
216 # Information about VCPU run state
217 #
218 # @running: true if all VCPUs are runnable, false if not runnable
219 #
220 # @singlestep: true if VCPUs are in single-step mode
221 #
222 # @status: the virtual machine @RunState
223 #
224 # Since: 0.14.0
225 #
226 # Notes: @singlestep is enabled through the GDB stub
227 ##
228 { 'struct': 'StatusInfo',
229 'data': {'running': 'bool', 'singlestep': 'bool', 'status': 'RunState'} }
230
231 ##
232 # @query-status:
233 #
234 # Query the run status of all VCPUs
235 #
236 # Returns: @StatusInfo reflecting all VCPUs
237 #
238 # Since: 0.14.0
239 #
240 # Example:
241 #
242 # -> { "execute": "query-status" }
243 # <- { "return": { "running": true,
244 # "singlestep": false,
245 # "status": "running" } }
246 #
247 ##
248 { 'command': 'query-status', 'returns': 'StatusInfo' }
249
250 ##
251 # @UuidInfo:
252 #
253 # Guest UUID information (Universally Unique Identifier).
254 #
255 # @UUID: the UUID of the guest
256 #
257 # Since: 0.14.0
258 #
259 # Notes: If no UUID was specified for the guest, a null UUID is returned.
260 ##
261 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
262
263 ##
264 # @query-uuid:
265 #
266 # Query the guest UUID information.
267 #
268 # Returns: The @UuidInfo for the guest
269 #
270 # Since: 0.14.0
271 #
272 # Example:
273 #
274 # -> { "execute": "query-uuid" }
275 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
276 #
277 ##
278 { 'command': 'query-uuid', 'returns': 'UuidInfo' }
279
280 ##
281 # @ChardevInfo:
282 #
283 # Information about a character device.
284 #
285 # @label: the label of the character device
286 #
287 # @filename: the filename of the character device
288 #
289 # @frontend-open: shows whether the frontend device attached to this backend
290 # (eg. with the chardev=... option) is in open or closed state
291 # (since 2.1)
292 #
293 # Notes: @filename is encoded using the QEMU command line character device
294 # encoding. See the QEMU man page for details.
295 #
296 # Since: 0.14.0
297 ##
298 { 'struct': 'ChardevInfo', 'data': {'label': 'str',
299 'filename': 'str',
300 'frontend-open': 'bool'} }
301
302 ##
303 # @query-chardev:
304 #
305 # Returns information about current character devices.
306 #
307 # Returns: a list of @ChardevInfo
308 #
309 # Since: 0.14.0
310 #
311 # Example:
312 #
313 # -> { "execute": "query-chardev" }
314 # <- {
315 # "return": [
316 # {
317 # "label": "charchannel0",
318 # "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.agent,server",
319 # "frontend-open": false
320 # },
321 # {
322 # "label": "charmonitor",
323 # "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.monitor,server",
324 # "frontend-open": true
325 # },
326 # {
327 # "label": "charserial0",
328 # "filename": "pty:/dev/pts/2",
329 # "frontend-open": true
330 # }
331 # ]
332 # }
333 #
334 ##
335 { 'command': 'query-chardev', 'returns': ['ChardevInfo'] }
336
337 ##
338 # @ChardevBackendInfo:
339 #
340 # Information about a character device backend
341 #
342 # @name: The backend name
343 #
344 # Since: 2.0
345 ##
346 { 'struct': 'ChardevBackendInfo', 'data': {'name': 'str'} }
347
348 ##
349 # @query-chardev-backends:
350 #
351 # Returns information about character device backends.
352 #
353 # Returns: a list of @ChardevBackendInfo
354 #
355 # Since: 2.0
356 #
357 # Example:
358 #
359 # -> { "execute": "query-chardev-backends" }
360 # <- {
361 # "return":[
362 # {
363 # "name":"udp"
364 # },
365 # {
366 # "name":"tcp"
367 # },
368 # {
369 # "name":"unix"
370 # },
371 # {
372 # "name":"spiceport"
373 # }
374 # ]
375 # }
376 #
377 ##
378 { 'command': 'query-chardev-backends', 'returns': ['ChardevBackendInfo'] }
379
380 ##
381 # @DataFormat:
382 #
383 # An enumeration of data format.
384 #
385 # @utf8: Data is a UTF-8 string (RFC 3629)
386 #
387 # @base64: Data is Base64 encoded binary (RFC 3548)
388 #
389 # Since: 1.4
390 ##
391 { 'enum': 'DataFormat',
392 'data': [ 'utf8', 'base64' ] }
393
394 ##
395 # @ringbuf-write:
396 #
397 # Write to a ring buffer character device.
398 #
399 # @device: the ring buffer character device name
400 #
401 # @data: data to write
402 #
403 # @format: #optional data encoding (default 'utf8').
404 # - base64: data must be base64 encoded text. Its binary
405 # decoding gets written.
406 # - utf8: data's UTF-8 encoding is written
407 # - data itself is always Unicode regardless of format, like
408 # any other string.
409 #
410 # Returns: Nothing on success
411 #
412 # Since: 1.4
413 #
414 # Example:
415 #
416 # -> { "execute": "ringbuf-write",
417 # "arguments": { "device": "foo",
418 # "data": "abcdefgh",
419 # "format": "utf8" } }
420 # <- { "return": {} }
421 #
422 ##
423 { 'command': 'ringbuf-write',
424 'data': {'device': 'str', 'data': 'str',
425 '*format': 'DataFormat'} }
426
427 ##
428 # @ringbuf-read:
429 #
430 # Read from a ring buffer character device.
431 #
432 # @device: the ring buffer character device name
433 #
434 # @size: how many bytes to read at most
435 #
436 # @format: #optional data encoding (default 'utf8').
437 # - base64: the data read is returned in base64 encoding.
438 # - utf8: the data read is interpreted as UTF-8.
439 # Bug: can screw up when the buffer contains invalid UTF-8
440 # sequences, NUL characters, after the ring buffer lost
441 # data, and when reading stops because the size limit is
442 # reached.
443 # - The return value is always Unicode regardless of format,
444 # like any other string.
445 #
446 # Returns: data read from the device
447 #
448 # Since: 1.4
449 #
450 # Example:
451 #
452 # -> { "execute": "ringbuf-read",
453 # "arguments": { "device": "foo",
454 # "size": 1000,
455 # "format": "utf8" } }
456 # <- { "return": "abcdefgh" }
457 #
458 ##
459 { 'command': 'ringbuf-read',
460 'data': {'device': 'str', 'size': 'int', '*format': 'DataFormat'},
461 'returns': 'str' }
462
463 ##
464 # @EventInfo:
465 #
466 # Information about a QMP event
467 #
468 # @name: The event name
469 #
470 # Since: 1.2.0
471 ##
472 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
473
474 ##
475 # @query-events:
476 #
477 # Return a list of supported QMP events by this server
478 #
479 # Returns: A list of @EventInfo for all supported events
480 #
481 # Since: 1.2.0
482 #
483 # Example:
484 #
485 # -> { "execute": "query-events" }
486 # <- {
487 # "return": [
488 # {
489 # "name":"SHUTDOWN"
490 # },
491 # {
492 # "name":"RESET"
493 # }
494 # ]
495 # }
496 #
497 # Note: This example has been shortened as the real response is too long.
498 #
499 ##
500 { 'command': 'query-events', 'returns': ['EventInfo'] }
501
502 ##
503 # @MigrationStats:
504 #
505 # Detailed migration status.
506 #
507 # @transferred: amount of bytes already transferred to the target VM
508 #
509 # @remaining: amount of bytes remaining to be transferred to the target VM
510 #
511 # @total: total amount of bytes involved in the migration process
512 #
513 # @duplicate: number of duplicate (zero) pages (since 1.2)
514 #
515 # @skipped: number of skipped zero pages (since 1.5)
516 #
517 # @normal: number of normal pages (since 1.2)
518 #
519 # @normal-bytes: number of normal bytes sent (since 1.2)
520 #
521 # @dirty-pages-rate: number of pages dirtied by second by the
522 # guest (since 1.3)
523 #
524 # @mbps: throughput in megabits/sec. (since 1.6)
525 #
526 # @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
527 #
528 # @postcopy-requests: The number of page requests received from the destination
529 # (since 2.7)
530 #
531 # Since: 0.14.0
532 ##
533 { 'struct': 'MigrationStats',
534 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
535 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
536 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
537 'mbps' : 'number', 'dirty-sync-count' : 'int',
538 'postcopy-requests' : 'int' } }
539
540 ##
541 # @XBZRLECacheStats:
542 #
543 # Detailed XBZRLE migration cache statistics
544 #
545 # @cache-size: XBZRLE cache size
546 #
547 # @bytes: amount of bytes already transferred to the target VM
548 #
549 # @pages: amount of pages transferred to the target VM
550 #
551 # @cache-miss: number of cache miss
552 #
553 # @cache-miss-rate: rate of cache miss (since 2.1)
554 #
555 # @overflow: number of overflows
556 #
557 # Since: 1.2
558 ##
559 { 'struct': 'XBZRLECacheStats',
560 'data': {'cache-size': 'int', 'bytes': 'int', 'pages': 'int',
561 'cache-miss': 'int', 'cache-miss-rate': 'number',
562 'overflow': 'int' } }
563
564 ##
565 # @MigrationStatus:
566 #
567 # An enumeration of migration status.
568 #
569 # @none: no migration has ever happened.
570 #
571 # @setup: migration process has been initiated.
572 #
573 # @cancelling: in the process of cancelling migration.
574 #
575 # @cancelled: cancelling migration is finished.
576 #
577 # @active: in the process of doing migration.
578 #
579 # @postcopy-active: like active, but now in postcopy mode. (since 2.5)
580 #
581 # @completed: migration is finished.
582 #
583 # @failed: some error occurred during migration process.
584 #
585 # @colo: VM is in the process of fault tolerance, VM can not get into this
586 # state unless colo capability is enabled for migration. (since 2.8)
587 #
588 # Since: 2.3
589 #
590 ##
591 { 'enum': 'MigrationStatus',
592 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
593 'active', 'postcopy-active', 'completed', 'failed', 'colo' ] }
594
595 ##
596 # @MigrationInfo:
597 #
598 # Information about current migration process.
599 #
600 # @status: #optional @MigrationStatus describing the current migration status.
601 # If this field is not returned, no migration process
602 # has been initiated
603 #
604 # @ram: #optional @MigrationStats containing detailed migration
605 # status, only returned if status is 'active' or
606 # 'completed'(since 1.2)
607 #
608 # @disk: #optional @MigrationStats containing detailed disk migration
609 # status, only returned if status is 'active' and it is a block
610 # migration
611 #
612 # @xbzrle-cache: #optional @XBZRLECacheStats containing detailed XBZRLE
613 # migration statistics, only returned if XBZRLE feature is on and
614 # status is 'active' or 'completed' (since 1.2)
615 #
616 # @total-time: #optional total amount of milliseconds since migration started.
617 # If migration has ended, it returns the total migration
618 # time. (since 1.2)
619 #
620 # @downtime: #optional only present when migration finishes correctly
621 # total downtime in milliseconds for the guest.
622 # (since 1.3)
623 #
624 # @expected-downtime: #optional only present while migration is active
625 # expected downtime in milliseconds for the guest in last walk
626 # of the dirty bitmap. (since 1.3)
627 #
628 # @setup-time: #optional amount of setup time in milliseconds _before_ the
629 # iterations begin but _after_ the QMP command is issued. This is designed
630 # to provide an accounting of any activities (such as RDMA pinning) which
631 # may be expensive, but do not actually occur during the iterative
632 # migration rounds themselves. (since 1.6)
633 #
634 # @cpu-throttle-percentage: #optional percentage of time guest cpus are being
635 # throttled during auto-converge. This is only present when auto-converge
636 # has started throttling guest cpus. (Since 2.7)
637 #
638 # @error-desc: #optional the human readable error description string, when
639 # @status is 'failed'. Clients should not attempt to parse the
640 # error strings. (Since 2.7)
641 #
642 # Since: 0.14.0
643 ##
644 { 'struct': 'MigrationInfo',
645 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
646 '*disk': 'MigrationStats',
647 '*xbzrle-cache': 'XBZRLECacheStats',
648 '*total-time': 'int',
649 '*expected-downtime': 'int',
650 '*downtime': 'int',
651 '*setup-time': 'int',
652 '*cpu-throttle-percentage': 'int',
653 '*error-desc': 'str'} }
654
655 ##
656 # @query-migrate:
657 #
658 # Returns information about current migration process. If migration
659 # is active there will be another json-object with RAM migration
660 # status and if block migration is active another one with block
661 # migration status.
662 #
663 # Returns: @MigrationInfo
664 #
665 # Since: 0.14.0
666 #
667 # Example:
668 #
669 # 1. Before the first migration
670 #
671 # -> { "execute": "query-migrate" }
672 # <- { "return": {} }
673 #
674 # 2. Migration is done and has succeeded
675 #
676 # -> { "execute": "query-migrate" }
677 # <- { "return": {
678 # "status": "completed",
679 # "ram":{
680 # "transferred":123,
681 # "remaining":123,
682 # "total":246,
683 # "total-time":12345,
684 # "setup-time":12345,
685 # "downtime":12345,
686 # "duplicate":123,
687 # "normal":123,
688 # "normal-bytes":123456,
689 # "dirty-sync-count":15
690 # }
691 # }
692 # }
693 #
694 # 3. Migration is done and has failed
695 #
696 # -> { "execute": "query-migrate" }
697 # <- { "return": { "status": "failed" } }
698 #
699 # 4. Migration is being performed and is not a block migration:
700 #
701 # -> { "execute": "query-migrate" }
702 # <- {
703 # "return":{
704 # "status":"active",
705 # "ram":{
706 # "transferred":123,
707 # "remaining":123,
708 # "total":246,
709 # "total-time":12345,
710 # "setup-time":12345,
711 # "expected-downtime":12345,
712 # "duplicate":123,
713 # "normal":123,
714 # "normal-bytes":123456,
715 # "dirty-sync-count":15
716 # }
717 # }
718 # }
719 #
720 # 5. Migration is being performed and is a block migration:
721 #
722 # -> { "execute": "query-migrate" }
723 # <- {
724 # "return":{
725 # "status":"active",
726 # "ram":{
727 # "total":1057024,
728 # "remaining":1053304,
729 # "transferred":3720,
730 # "total-time":12345,
731 # "setup-time":12345,
732 # "expected-downtime":12345,
733 # "duplicate":123,
734 # "normal":123,
735 # "normal-bytes":123456,
736 # "dirty-sync-count":15
737 # },
738 # "disk":{
739 # "total":20971520,
740 # "remaining":20880384,
741 # "transferred":91136
742 # }
743 # }
744 # }
745 #
746 # 6. Migration is being performed and XBZRLE is active:
747 #
748 # -> { "execute": "query-migrate" }
749 # <- {
750 # "return":{
751 # "status":"active",
752 # "capabilities" : [ { "capability": "xbzrle", "state" : true } ],
753 # "ram":{
754 # "total":1057024,
755 # "remaining":1053304,
756 # "transferred":3720,
757 # "total-time":12345,
758 # "setup-time":12345,
759 # "expected-downtime":12345,
760 # "duplicate":10,
761 # "normal":3333,
762 # "normal-bytes":3412992,
763 # "dirty-sync-count":15
764 # },
765 # "xbzrle-cache":{
766 # "cache-size":67108864,
767 # "bytes":20971520,
768 # "pages":2444343,
769 # "cache-miss":2244,
770 # "cache-miss-rate":0.123,
771 # "overflow":34434
772 # }
773 # }
774 # }
775 #
776 ##
777 { 'command': 'query-migrate', 'returns': 'MigrationInfo' }
778
779 ##
780 # @MigrationCapability:
781 #
782 # Migration capabilities enumeration
783 #
784 # @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
785 # This feature allows us to minimize migration traffic for certain work
786 # loads, by sending compressed difference of the pages
787 #
788 # @rdma-pin-all: Controls whether or not the entire VM memory footprint is
789 # mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
790 # Disabled by default. (since 2.0)
791 #
792 # @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
793 # essentially saves 1MB of zeroes per block on the wire. Enabling requires
794 # source and target VM to support this feature. To enable it is sufficient
795 # to enable the capability on the source VM. The feature is disabled by
796 # default. (since 1.6)
797 #
798 # @compress: Use multiple compression threads to accelerate live migration.
799 # This feature can help to reduce the migration traffic, by sending
800 # compressed pages. Please note that if compress and xbzrle are both
801 # on, compress only takes effect in the ram bulk stage, after that,
802 # it will be disabled and only xbzrle takes effect, this can help to
803 # minimize migration traffic. The feature is disabled by default.
804 # (since 2.4 )
805 #
806 # @events: generate events for each migration state change
807 # (since 2.4 )
808 #
809 # @auto-converge: If enabled, QEMU will automatically throttle down the guest
810 # to speed up convergence of RAM migration. (since 1.6)
811 #
812 # @postcopy-ram: Start executing on the migration target before all of RAM has
813 # been migrated, pulling the remaining pages along as needed. NOTE: If
814 # the migration fails during postcopy the VM will fail. (since 2.6)
815 #
816 # @x-colo: If enabled, migration will never end, and the state of the VM on the
817 # primary side will be migrated continuously to the VM on secondary
818 # side, this process is called COarse-Grain LOck Stepping (COLO) for
819 # Non-stop Service. (since 2.8)
820 #
821 # Since: 1.2
822 ##
823 { 'enum': 'MigrationCapability',
824 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
825 'compress', 'events', 'postcopy-ram', 'x-colo'] }
826
827 ##
828 # @MigrationCapabilityStatus:
829 #
830 # Migration capability information
831 #
832 # @capability: capability enum
833 #
834 # @state: capability state bool
835 #
836 # Since: 1.2
837 ##
838 { 'struct': 'MigrationCapabilityStatus',
839 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
840
841 ##
842 # @migrate-set-capabilities:
843 #
844 # Enable/Disable the following migration capabilities (like xbzrle)
845 #
846 # @capabilities: json array of capability modifications to make
847 #
848 # Since: 1.2
849 #
850 # Example:
851 #
852 # -> { "execute": "migrate-set-capabilities" , "arguments":
853 # { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
854 #
855 ##
856 { 'command': 'migrate-set-capabilities',
857 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
858
859 ##
860 # @query-migrate-capabilities:
861 #
862 # Returns information about the current migration capabilities status
863 #
864 # Returns: @MigrationCapabilitiesStatus
865 #
866 # Since: 1.2
867 #
868 # Example:
869 #
870 # -> { "execute": "query-migrate-capabilities" }
871 # <- { "return": [
872 # {"state": false, "capability": "xbzrle"},
873 # {"state": false, "capability": "rdma-pin-all"},
874 # {"state": false, "capability": "auto-converge"},
875 # {"state": false, "capability": "zero-blocks"},
876 # {"state": false, "capability": "compress"},
877 # {"state": true, "capability": "events"},
878 # {"state": false, "capability": "postcopy-ram"},
879 # {"state": false, "capability": "x-colo"}
880 # ]}
881 #
882 ##
883 { 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
884
885 ##
886 # @MigrationParameter:
887 #
888 # Migration parameters enumeration
889 #
890 # @compress-level: Set the compression level to be used in live migration,
891 # the compression level is an integer between 0 and 9, where 0 means
892 # no compression, 1 means the best compression speed, and 9 means best
893 # compression ratio which will consume more CPU.
894 #
895 # @compress-threads: Set compression thread count to be used in live migration,
896 # the compression thread count is an integer between 1 and 255.
897 #
898 # @decompress-threads: Set decompression thread count to be used in live
899 # migration, the decompression thread count is an integer between 1
900 # and 255. Usually, decompression is at least 4 times as fast as
901 # compression, so set the decompress-threads to the number about 1/4
902 # of compress-threads is adequate.
903 #
904 # @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
905 # when migration auto-converge is activated. The
906 # default value is 20. (Since 2.7)
907 #
908 # @cpu-throttle-increment: throttle percentage increase each time
909 # auto-converge detects that migration is not making
910 # progress. The default value is 10. (Since 2.7)
911 #
912 # @tls-creds: ID of the 'tls-creds' object that provides credentials for
913 # establishing a TLS connection over the migration data channel.
914 # On the outgoing side of the migration, the credentials must
915 # be for a 'client' endpoint, while for the incoming side the
916 # credentials must be for a 'server' endpoint. Setting this
917 # will enable TLS for all migrations. The default is unset,
918 # resulting in unsecured migration at the QEMU level. (Since 2.7)
919 #
920 # @tls-hostname: hostname of the target host for the migration. This is
921 # required when using x509 based TLS credentials and the
922 # migration URI does not already include a hostname. For
923 # example if using fd: or exec: based migration, the
924 # hostname must be provided so that the server's x509
925 # certificate identity can be validated. (Since 2.7)
926 #
927 # @max-bandwidth: to set maximum speed for migration. maximum speed in
928 # bytes per second. (Since 2.8)
929 #
930 # @downtime-limit: set maximum tolerated downtime for migration. maximum
931 # downtime in milliseconds (Since 2.8)
932 #
933 # @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
934 # periodic mode. (Since 2.8)
935 #
936 # Since: 2.4
937 ##
938 { 'enum': 'MigrationParameter',
939 'data': ['compress-level', 'compress-threads', 'decompress-threads',
940 'cpu-throttle-initial', 'cpu-throttle-increment',
941 'tls-creds', 'tls-hostname', 'max-bandwidth',
942 'downtime-limit', 'x-checkpoint-delay' ] }
943
944 ##
945 # @migrate-set-parameters:
946 #
947 # Set various migration parameters. See MigrationParameters for details.
948 #
949 # Since: 2.4
950 #
951 # Example:
952 #
953 # -> { "execute": "migrate-set-parameters" ,
954 # "arguments": { "compress-level": 1 } }
955 #
956 ##
957 { 'command': 'migrate-set-parameters', 'boxed': true,
958 'data': 'MigrationParameters' }
959
960 ##
961 # @MigrationParameters:
962 #
963 # Optional members can be omitted on input ('migrate-set-parameters')
964 # but most members will always be present on output
965 # ('query-migrate-parameters'), with the exception of tls-creds and
966 # tls-hostname.
967 #
968 # @compress-level: #optional compression level
969 #
970 # @compress-threads: #optional compression thread count
971 #
972 # @decompress-threads: #optional decompression thread count
973 #
974 # @cpu-throttle-initial: #optional Initial percentage of time guest cpus are
975 # throttledwhen migration auto-converge is activated.
976 # The default value is 20. (Since 2.7)
977 #
978 # @cpu-throttle-increment: #optional throttle percentage increase each time
979 # auto-converge detects that migration is not making
980 # progress. The default value is 10. (Since 2.7)
981 #
982 # @tls-creds: #optional ID of the 'tls-creds' object that provides credentials
983 # for establishing a TLS connection over the migration data
984 # channel. On the outgoing side of the migration, the credentials
985 # must be for a 'client' endpoint, while for the incoming side the
986 # credentials must be for a 'server' endpoint. Setting this
987 # will enable TLS for all migrations. The default is unset,
988 # resulting in unsecured migration at the QEMU level. (Since 2.7)
989 #
990 # @tls-hostname: #optional hostname of the target host for the migration. This
991 # is required when using x509 based TLS credentials and the
992 # migration URI does not already include a hostname. For
993 # example if using fd: or exec: based migration, the
994 # hostname must be provided so that the server's x509
995 # certificate identity can be validated. (Since 2.7)
996 #
997 # @max-bandwidth: to set maximum speed for migration. maximum speed in
998 # bytes per second. (Since 2.8)
999 #
1000 # @downtime-limit: set maximum tolerated downtime for migration. maximum
1001 # downtime in milliseconds (Since 2.8)
1002 #
1003 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1004 #
1005 # Since: 2.4
1006 ##
1007 { 'struct': 'MigrationParameters',
1008 'data': { '*compress-level': 'int',
1009 '*compress-threads': 'int',
1010 '*decompress-threads': 'int',
1011 '*cpu-throttle-initial': 'int',
1012 '*cpu-throttle-increment': 'int',
1013 '*tls-creds': 'str',
1014 '*tls-hostname': 'str',
1015 '*max-bandwidth': 'int',
1016 '*downtime-limit': 'int',
1017 '*x-checkpoint-delay': 'int'} }
1018
1019 ##
1020 # @query-migrate-parameters:
1021 #
1022 # Returns information about the current migration parameters
1023 #
1024 # Returns: @MigrationParameters
1025 #
1026 # Since: 2.4
1027 #
1028 # Example:
1029 #
1030 # -> { "execute": "query-migrate-parameters" }
1031 # <- { "return": {
1032 # "decompress-threads": 2,
1033 # "cpu-throttle-increment": 10,
1034 # "compress-threads": 8,
1035 # "compress-level": 1,
1036 # "cpu-throttle-initial": 20,
1037 # "max-bandwidth": 33554432,
1038 # "downtime-limit": 300
1039 # }
1040 # }
1041 #
1042 ##
1043 { 'command': 'query-migrate-parameters',
1044 'returns': 'MigrationParameters' }
1045
1046 ##
1047 # @client_migrate_info:
1048 #
1049 # Set migration information for remote display. This makes the server
1050 # ask the client to automatically reconnect using the new parameters
1051 # once migration finished successfully. Only implemented for SPICE.
1052 #
1053 # @protocol: must be "spice"
1054 # @hostname: migration target hostname
1055 # @port: #optional spice tcp port for plaintext channels
1056 # @tls-port: #optional spice tcp port for tls-secured channels
1057 # @cert-subject: #optional server certificate subject
1058 #
1059 # Since: 0.14.0
1060 #
1061 # Example:
1062 #
1063 # -> { "execute": "client_migrate_info",
1064 # "arguments": { "protocol": "spice",
1065 # "hostname": "virt42.lab.kraxel.org",
1066 # "port": 1234 } }
1067 # <- { "return": {} }
1068 #
1069 ##
1070 { 'command': 'client_migrate_info',
1071 'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int',
1072 '*tls-port': 'int', '*cert-subject': 'str' } }
1073
1074 ##
1075 # @migrate-start-postcopy:
1076 #
1077 # Followup to a migration command to switch the migration to postcopy mode.
1078 # The postcopy-ram capability must be set before the original migration
1079 # command.
1080 #
1081 # Since: 2.5
1082 #
1083 # Example:
1084 #
1085 # -> { "execute": "migrate-start-postcopy" }
1086 # <- { "return": {} }
1087 #
1088 ##
1089 { 'command': 'migrate-start-postcopy' }
1090
1091 ##
1092 # @COLOMessage:
1093 #
1094 # The message transmission between Primary side and Secondary side.
1095 #
1096 # @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1097 #
1098 # @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1099 #
1100 # @checkpoint-reply: SVM gets PVM's checkpoint request
1101 #
1102 # @vmstate-send: VM's state will be sent by PVM.
1103 #
1104 # @vmstate-size: The total size of VMstate.
1105 #
1106 # @vmstate-received: VM's state has been received by SVM.
1107 #
1108 # @vmstate-loaded: VM's state has been loaded by SVM.
1109 #
1110 # Since: 2.8
1111 ##
1112 { 'enum': 'COLOMessage',
1113 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1114 'vmstate-send', 'vmstate-size', 'vmstate-received',
1115 'vmstate-loaded' ] }
1116
1117 ##
1118 # @COLOMode:
1119 #
1120 # The colo mode
1121 #
1122 # @unknown: unknown mode
1123 #
1124 # @primary: master side
1125 #
1126 # @secondary: slave side
1127 #
1128 # Since: 2.8
1129 ##
1130 { 'enum': 'COLOMode',
1131 'data': [ 'unknown', 'primary', 'secondary'] }
1132
1133 ##
1134 # @FailoverStatus:
1135 #
1136 # An enumeration of COLO failover status
1137 #
1138 # @none: no failover has ever happened
1139 #
1140 # @require: got failover requirement but not handled
1141 #
1142 # @active: in the process of doing failover
1143 #
1144 # @completed: finish the process of failover
1145 #
1146 # Since: 2.8
1147 ##
1148 { 'enum': 'FailoverStatus',
1149 'data': [ 'none', 'require', 'active', 'completed'] }
1150
1151 ##
1152 # @x-colo-lost-heartbeat:
1153 #
1154 # Tell qemu that heartbeat is lost, request it to do takeover procedures.
1155 # If this command is sent to the PVM, the Primary side will exit COLO mode.
1156 # If sent to the Secondary, the Secondary side will run failover work,
1157 # then takes over server operation to become the service VM.
1158 #
1159 # Since: 2.8
1160 ##
1161 { 'command': 'x-colo-lost-heartbeat' }
1162
1163 ##
1164 # @MouseInfo:
1165 #
1166 # Information about a mouse device.
1167 #
1168 # @name: the name of the mouse device
1169 #
1170 # @index: the index of the mouse device
1171 #
1172 # @current: true if this device is currently receiving mouse events
1173 #
1174 # @absolute: true if this device supports absolute coordinates as input
1175 #
1176 # Since: 0.14.0
1177 ##
1178 { 'struct': 'MouseInfo',
1179 'data': {'name': 'str', 'index': 'int', 'current': 'bool',
1180 'absolute': 'bool'} }
1181
1182 ##
1183 # @query-mice:
1184 #
1185 # Returns information about each active mouse device
1186 #
1187 # Returns: a list of @MouseInfo for each device
1188 #
1189 # Since: 0.14.0
1190 #
1191 # Example:
1192 #
1193 # -> { "execute": "query-mice" }
1194 # <- { "return": [
1195 # {
1196 # "name":"QEMU Microsoft Mouse",
1197 # "index":0,
1198 # "current":false,
1199 # "absolute":false
1200 # },
1201 # {
1202 # "name":"QEMU PS/2 Mouse",
1203 # "index":1,
1204 # "current":true,
1205 # "absolute":true
1206 # }
1207 # ]
1208 # }
1209 #
1210 ##
1211 { 'command': 'query-mice', 'returns': ['MouseInfo'] }
1212
1213 ##
1214 # @CpuInfoArch:
1215 #
1216 # An enumeration of cpu types that enable additional information during
1217 # @query-cpus.
1218 #
1219 # Since: 2.6
1220 ##
1221 { 'enum': 'CpuInfoArch',
1222 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 'other' ] }
1223
1224 ##
1225 # @CpuInfo:
1226 #
1227 # Information about a virtual CPU
1228 #
1229 # @CPU: the index of the virtual CPU
1230 #
1231 # @current: this only exists for backwards compatibility and should be ignored
1232 #
1233 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
1234 # to a processor specific low power mode.
1235 #
1236 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
1237 #
1238 # @thread_id: ID of the underlying host thread
1239 #
1240 # @arch: architecture of the cpu, which determines which additional fields
1241 # will be listed (since 2.6)
1242 #
1243 # Since: 0.14.0
1244 #
1245 # Notes: @halted is a transient state that changes frequently. By the time the
1246 # data is sent to the client, the guest may no longer be halted.
1247 ##
1248 { 'union': 'CpuInfo',
1249 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
1250 'qom_path': 'str', 'thread_id': 'int', 'arch': 'CpuInfoArch' },
1251 'discriminator': 'arch',
1252 'data': { 'x86': 'CpuInfoX86',
1253 'sparc': 'CpuInfoSPARC',
1254 'ppc': 'CpuInfoPPC',
1255 'mips': 'CpuInfoMIPS',
1256 'tricore': 'CpuInfoTricore',
1257 'other': 'CpuInfoOther' } }
1258
1259 ##
1260 # @CpuInfoX86:
1261 #
1262 # Additional information about a virtual i386 or x86_64 CPU
1263 #
1264 # @pc: the 64-bit instruction pointer
1265 #
1266 # Since: 2.6
1267 ##
1268 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
1269
1270 ##
1271 # @CpuInfoSPARC:
1272 #
1273 # Additional information about a virtual SPARC CPU
1274 #
1275 # @pc: the PC component of the instruction pointer
1276 #
1277 # @npc: the NPC component of the instruction pointer
1278 #
1279 # Since: 2.6
1280 ##
1281 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
1282
1283 ##
1284 # @CpuInfoPPC:
1285 #
1286 # Additional information about a virtual PPC CPU
1287 #
1288 # @nip: the instruction pointer
1289 #
1290 # Since: 2.6
1291 ##
1292 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
1293
1294 ##
1295 # @CpuInfoMIPS:
1296 #
1297 # Additional information about a virtual MIPS CPU
1298 #
1299 # @PC: the instruction pointer
1300 #
1301 # Since: 2.6
1302 ##
1303 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
1304
1305 ##
1306 # @CpuInfoTricore:
1307 #
1308 # Additional information about a virtual Tricore CPU
1309 #
1310 # @PC: the instruction pointer
1311 #
1312 # Since: 2.6
1313 ##
1314 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
1315
1316 ##
1317 # @CpuInfoOther:
1318 #
1319 # No additional information is available about the virtual CPU
1320 #
1321 # Since: 2.6
1322 #
1323 ##
1324 { 'struct': 'CpuInfoOther', 'data': { } }
1325
1326 ##
1327 # @query-cpus:
1328 #
1329 # Returns a list of information about each virtual CPU.
1330 #
1331 # Returns: a list of @CpuInfo for each virtual CPU
1332 #
1333 # Since: 0.14.0
1334 #
1335 # Example:
1336 #
1337 # -> { "execute": "query-cpus" }
1338 # <- { "return": [
1339 # {
1340 # "CPU":0,
1341 # "current":true,
1342 # "halted":false,
1343 # "qom_path":"/machine/unattached/device[0]",
1344 # "arch":"x86",
1345 # "pc":3227107138,
1346 # "thread_id":3134
1347 # },
1348 # {
1349 # "CPU":1,
1350 # "current":false,
1351 # "halted":true,
1352 # "qom_path":"/machine/unattached/device[2]",
1353 # "arch":"x86",
1354 # "pc":7108165,
1355 # "thread_id":3135
1356 # }
1357 # ]
1358 # }
1359 #
1360 ##
1361 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
1362
1363 ##
1364 # @IOThreadInfo:
1365 #
1366 # Information about an iothread
1367 #
1368 # @id: the identifier of the iothread
1369 #
1370 # @thread-id: ID of the underlying host thread
1371 #
1372 # Since: 2.0
1373 ##
1374 { 'struct': 'IOThreadInfo',
1375 'data': {'id': 'str', 'thread-id': 'int'} }
1376
1377 ##
1378 # @query-iothreads:
1379 #
1380 # Returns a list of information about each iothread.
1381 #
1382 # Note: this list excludes the QEMU main loop thread, which is not declared
1383 # using the -object iothread command-line option. It is always the main thread
1384 # of the process.
1385 #
1386 # Returns: a list of @IOThreadInfo for each iothread
1387 #
1388 # Since: 2.0
1389 #
1390 # Example:
1391 #
1392 # -> { "execute": "query-iothreads" }
1393 # <- { "return": [
1394 # {
1395 # "id":"iothread0",
1396 # "thread-id":3134
1397 # },
1398 # {
1399 # "id":"iothread1",
1400 # "thread-id":3135
1401 # }
1402 # ]
1403 # }
1404 #
1405 ##
1406 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
1407
1408 ##
1409 # @NetworkAddressFamily:
1410 #
1411 # The network address family
1412 #
1413 # @ipv4: IPV4 family
1414 #
1415 # @ipv6: IPV6 family
1416 #
1417 # @unix: unix socket
1418 #
1419 # @vsock: vsock family (since 2.8)
1420 #
1421 # @unknown: otherwise
1422 #
1423 # Since: 2.1
1424 ##
1425 { 'enum': 'NetworkAddressFamily',
1426 'data': [ 'ipv4', 'ipv6', 'unix', 'vsock', 'unknown' ] }
1427
1428 ##
1429 # @VncBasicInfo:
1430 #
1431 # The basic information for vnc network connection
1432 #
1433 # @host: IP address
1434 #
1435 # @service: The service name of the vnc port. This may depend on the host
1436 # system's service database so symbolic names should not be relied
1437 # on.
1438 #
1439 # @family: address family
1440 #
1441 # @websocket: true in case the socket is a websocket (since 2.3).
1442 #
1443 # Since: 2.1
1444 ##
1445 { 'struct': 'VncBasicInfo',
1446 'data': { 'host': 'str',
1447 'service': 'str',
1448 'family': 'NetworkAddressFamily',
1449 'websocket': 'bool' } }
1450
1451 ##
1452 # @VncServerInfo:
1453 #
1454 # The network connection information for server
1455 #
1456 # @auth: #optional, authentication method
1457 #
1458 # Since: 2.1
1459 ##
1460 { 'struct': 'VncServerInfo',
1461 'base': 'VncBasicInfo',
1462 'data': { '*auth': 'str' } }
1463
1464 ##
1465 # @VncClientInfo:
1466 #
1467 # Information about a connected VNC client.
1468 #
1469 # @x509_dname: #optional If x509 authentication is in use, the Distinguished
1470 # Name of the client.
1471 #
1472 # @sasl_username: #optional If SASL authentication is in use, the SASL username
1473 # used for authentication.
1474 #
1475 # Since: 0.14.0
1476 ##
1477 { 'struct': 'VncClientInfo',
1478 'base': 'VncBasicInfo',
1479 'data': { '*x509_dname': 'str', '*sasl_username': 'str' } }
1480
1481 ##
1482 # @VncInfo:
1483 #
1484 # Information about the VNC session.
1485 #
1486 # @enabled: true if the VNC server is enabled, false otherwise
1487 #
1488 # @host: #optional The hostname the VNC server is bound to. This depends on
1489 # the name resolution on the host and may be an IP address.
1490 #
1491 # @family: #optional 'ipv6' if the host is listening for IPv6 connections
1492 # 'ipv4' if the host is listening for IPv4 connections
1493 # 'unix' if the host is listening on a unix domain socket
1494 # 'unknown' otherwise
1495 #
1496 # @service: #optional The service name of the server's port. This may depends
1497 # on the host system's service database so symbolic names should not
1498 # be relied on.
1499 #
1500 # @auth: #optional the current authentication type used by the server
1501 # 'none' if no authentication is being used
1502 # 'vnc' if VNC authentication is being used
1503 # 'vencrypt+plain' if VEncrypt is used with plain text authentication
1504 # 'vencrypt+tls+none' if VEncrypt is used with TLS and no authentication
1505 # 'vencrypt+tls+vnc' if VEncrypt is used with TLS and VNC authentication
1506 # 'vencrypt+tls+plain' if VEncrypt is used with TLS and plain text auth
1507 # 'vencrypt+x509+none' if VEncrypt is used with x509 and no auth
1508 # 'vencrypt+x509+vnc' if VEncrypt is used with x509 and VNC auth
1509 # 'vencrypt+x509+plain' if VEncrypt is used with x509 and plain text auth
1510 # 'vencrypt+tls+sasl' if VEncrypt is used with TLS and SASL auth
1511 # 'vencrypt+x509+sasl' if VEncrypt is used with x509 and SASL auth
1512 #
1513 # @clients: a list of @VncClientInfo of all currently connected clients
1514 #
1515 # Since: 0.14.0
1516 ##
1517 { 'struct': 'VncInfo',
1518 'data': {'enabled': 'bool', '*host': 'str',
1519 '*family': 'NetworkAddressFamily',
1520 '*service': 'str', '*auth': 'str', '*clients': ['VncClientInfo']} }
1521
1522 ##
1523 # @VncPrimaryAuth:
1524 #
1525 # vnc primary authentication method.
1526 #
1527 # Since: 2.3
1528 ##
1529 { 'enum': 'VncPrimaryAuth',
1530 'data': [ 'none', 'vnc', 'ra2', 'ra2ne', 'tight', 'ultra',
1531 'tls', 'vencrypt', 'sasl' ] }
1532
1533 ##
1534 # @VncVencryptSubAuth:
1535 #
1536 # vnc sub authentication method with vencrypt.
1537 #
1538 # Since: 2.3
1539 ##
1540 { 'enum': 'VncVencryptSubAuth',
1541 'data': [ 'plain',
1542 'tls-none', 'x509-none',
1543 'tls-vnc', 'x509-vnc',
1544 'tls-plain', 'x509-plain',
1545 'tls-sasl', 'x509-sasl' ] }
1546
1547 ##
1548 # @VncInfo2:
1549 #
1550 # Information about a vnc server
1551 #
1552 # @id: vnc server name.
1553 #
1554 # @server: A list of @VncBasincInfo describing all listening sockets.
1555 # The list can be empty (in case the vnc server is disabled).
1556 # It also may have multiple entries: normal + websocket,
1557 # possibly also ipv4 + ipv6 in the future.
1558 #
1559 # @clients: A list of @VncClientInfo of all currently connected clients.
1560 # The list can be empty, for obvious reasons.
1561 #
1562 # @auth: The current authentication type used by the server
1563 #
1564 # @vencrypt: #optional The vencrypt sub authentication type used by the server,
1565 # only specified in case auth == vencrypt.
1566 #
1567 # @display: #optional The display device the vnc server is linked to.
1568 #
1569 # Since: 2.3
1570 ##
1571 { 'struct': 'VncInfo2',
1572 'data': { 'id' : 'str',
1573 'server' : ['VncBasicInfo'],
1574 'clients' : ['VncClientInfo'],
1575 'auth' : 'VncPrimaryAuth',
1576 '*vencrypt' : 'VncVencryptSubAuth',
1577 '*display' : 'str' } }
1578
1579 ##
1580 # @query-vnc:
1581 #
1582 # Returns information about the current VNC server
1583 #
1584 # Returns: @VncInfo
1585 #
1586 # Since: 0.14.0
1587 #
1588 # Example:
1589 #
1590 # -> { "execute": "query-vnc" }
1591 # <- { "return": {
1592 # "enabled":true,
1593 # "host":"0.0.0.0",
1594 # "service":"50402",
1595 # "auth":"vnc",
1596 # "family":"ipv4",
1597 # "clients":[
1598 # {
1599 # "host":"127.0.0.1",
1600 # "service":"50401",
1601 # "family":"ipv4"
1602 # }
1603 # ]
1604 # }
1605 # }
1606 #
1607 ##
1608 { 'command': 'query-vnc', 'returns': 'VncInfo' }
1609
1610 ##
1611 # @query-vnc-servers:
1612 #
1613 # Returns a list of vnc servers. The list can be empty.
1614 #
1615 # Returns: a list of @VncInfo2
1616 #
1617 # Since: 2.3
1618 ##
1619 { 'command': 'query-vnc-servers', 'returns': ['VncInfo2'] }
1620
1621 ##
1622 # @SpiceBasicInfo:
1623 #
1624 # The basic information for SPICE network connection
1625 #
1626 # @host: IP address
1627 #
1628 # @port: port number
1629 #
1630 # @family: address family
1631 #
1632 # Since: 2.1
1633 ##
1634 { 'struct': 'SpiceBasicInfo',
1635 'data': { 'host': 'str',
1636 'port': 'str',
1637 'family': 'NetworkAddressFamily' } }
1638
1639 ##
1640 # @SpiceServerInfo:
1641 #
1642 # Information about a SPICE server
1643 #
1644 # @auth: #optional, authentication method
1645 #
1646 # Since: 2.1
1647 ##
1648 { 'struct': 'SpiceServerInfo',
1649 'base': 'SpiceBasicInfo',
1650 'data': { '*auth': 'str' } }
1651
1652 ##
1653 # @SpiceChannel:
1654 #
1655 # Information about a SPICE client channel.
1656 #
1657 # @connection-id: SPICE connection id number. All channels with the same id
1658 # belong to the same SPICE session.
1659 #
1660 # @channel-type: SPICE channel type number. "1" is the main control
1661 # channel, filter for this one if you want to track spice
1662 # sessions only
1663 #
1664 # @channel-id: SPICE channel ID number. Usually "0", might be different when
1665 # multiple channels of the same type exist, such as multiple
1666 # display channels in a multihead setup
1667 #
1668 # @tls: true if the channel is encrypted, false otherwise.
1669 #
1670 # Since: 0.14.0
1671 ##
1672 { 'struct': 'SpiceChannel',
1673 'base': 'SpiceBasicInfo',
1674 'data': {'connection-id': 'int', 'channel-type': 'int', 'channel-id': 'int',
1675 'tls': 'bool'} }
1676
1677 ##
1678 # @SpiceQueryMouseMode:
1679 #
1680 # An enumeration of Spice mouse states.
1681 #
1682 # @client: Mouse cursor position is determined by the client.
1683 #
1684 # @server: Mouse cursor position is determined by the server.
1685 #
1686 # @unknown: No information is available about mouse mode used by
1687 # the spice server.
1688 #
1689 # Note: spice/enums.h has a SpiceMouseMode already, hence the name.
1690 #
1691 # Since: 1.1
1692 ##
1693 { 'enum': 'SpiceQueryMouseMode',
1694 'data': [ 'client', 'server', 'unknown' ] }
1695
1696 ##
1697 # @SpiceInfo:
1698 #
1699 # Information about the SPICE session.
1700 #
1701 # @enabled: true if the SPICE server is enabled, false otherwise
1702 #
1703 # @migrated: true if the last guest migration completed and spice
1704 # migration had completed as well. false otherwise. (since 1.4)
1705 #
1706 # @host: #optional The hostname the SPICE server is bound to. This depends on
1707 # the name resolution on the host and may be an IP address.
1708 #
1709 # @port: #optional The SPICE server's port number.
1710 #
1711 # @compiled-version: #optional SPICE server version.
1712 #
1713 # @tls-port: #optional The SPICE server's TLS port number.
1714 #
1715 # @auth: #optional the current authentication type used by the server
1716 # 'none' if no authentication is being used
1717 # 'spice' uses SASL or direct TLS authentication, depending on command
1718 # line options
1719 #
1720 # @mouse-mode: The mode in which the mouse cursor is displayed currently. Can
1721 # be determined by the client or the server, or unknown if spice
1722 # server doesn't provide this information. (since: 1.1)
1723 #
1724 # @channels: a list of @SpiceChannel for each active spice channel
1725 #
1726 # Since: 0.14.0
1727 ##
1728 { 'struct': 'SpiceInfo',
1729 'data': {'enabled': 'bool', 'migrated': 'bool', '*host': 'str', '*port': 'int',
1730 '*tls-port': 'int', '*auth': 'str', '*compiled-version': 'str',
1731 'mouse-mode': 'SpiceQueryMouseMode', '*channels': ['SpiceChannel']} }
1732
1733 ##
1734 # @query-spice:
1735 #
1736 # Returns information about the current SPICE server
1737 #
1738 # Returns: @SpiceInfo
1739 #
1740 # Since: 0.14.0
1741 #
1742 # Example:
1743 #
1744 # -> { "execute": "query-spice" }
1745 # <- { "return": {
1746 # "enabled": true,
1747 # "auth": "spice",
1748 # "port": 5920,
1749 # "tls-port": 5921,
1750 # "host": "0.0.0.0",
1751 # "channels": [
1752 # {
1753 # "port": "54924",
1754 # "family": "ipv4",
1755 # "channel-type": 1,
1756 # "connection-id": 1804289383,
1757 # "host": "127.0.0.1",
1758 # "channel-id": 0,
1759 # "tls": true
1760 # },
1761 # {
1762 # "port": "36710",
1763 # "family": "ipv4",
1764 # "channel-type": 4,
1765 # "connection-id": 1804289383,
1766 # "host": "127.0.0.1",
1767 # "channel-id": 0,
1768 # "tls": false
1769 # },
1770 # [ ... more channels follow ... ]
1771 # ]
1772 # }
1773 # }
1774 #
1775 ##
1776 { 'command': 'query-spice', 'returns': 'SpiceInfo' }
1777
1778 ##
1779 # @BalloonInfo:
1780 #
1781 # Information about the guest balloon device.
1782 #
1783 # @actual: the number of bytes the balloon currently contains
1784 #
1785 # Since: 0.14.0
1786 #
1787 ##
1788 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1789
1790 ##
1791 # @query-balloon:
1792 #
1793 # Return information about the balloon device.
1794 #
1795 # Returns: @BalloonInfo on success
1796 #
1797 # If the balloon driver is enabled but not functional because the KVM
1798 # kernel module cannot support it, KvmMissingCap
1799 #
1800 # If no balloon device is present, DeviceNotActive
1801 #
1802 # Since: 0.14.0
1803 #
1804 # Example:
1805 #
1806 # -> { "execute": "query-balloon" }
1807 # <- { "return": {
1808 # "actual": 1073741824,
1809 # }
1810 # }
1811 #
1812 ##
1813 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1814
1815 ##
1816 # @PciMemoryRange:
1817 #
1818 # A PCI device memory region
1819 #
1820 # @base: the starting address (guest physical)
1821 #
1822 # @limit: the ending address (guest physical)
1823 #
1824 # Since: 0.14.0
1825 ##
1826 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
1827
1828 ##
1829 # @PciMemoryRegion:
1830 #
1831 # Information about a PCI device I/O region.
1832 #
1833 # @bar: the index of the Base Address Register for this region
1834 #
1835 # @type: 'io' if the region is a PIO region
1836 # 'memory' if the region is a MMIO region
1837 #
1838 # @size: memory size
1839 #
1840 # @prefetch: #optional if @type is 'memory', true if the memory is prefetchable
1841 #
1842 # @mem_type_64: #optional if @type is 'memory', true if the BAR is 64-bit
1843 #
1844 # Since: 0.14.0
1845 ##
1846 { 'struct': 'PciMemoryRegion',
1847 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
1848 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
1849
1850 ##
1851 # @PciBusInfo:
1852 #
1853 # Information about a bus of a PCI Bridge device
1854 #
1855 # @number: primary bus interface number. This should be the number of the
1856 # bus the device resides on.
1857 #
1858 # @secondary: secondary bus interface number. This is the number of the
1859 # main bus for the bridge
1860 #
1861 # @subordinate: This is the highest number bus that resides below the
1862 # bridge.
1863 #
1864 # @io_range: The PIO range for all devices on this bridge
1865 #
1866 # @memory_range: The MMIO range for all devices on this bridge
1867 #
1868 # @prefetchable_range: The range of prefetchable MMIO for all devices on
1869 # this bridge
1870 #
1871 # Since: 2.4
1872 ##
1873 { 'struct': 'PciBusInfo',
1874 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
1875 'io_range': 'PciMemoryRange',
1876 'memory_range': 'PciMemoryRange',
1877 'prefetchable_range': 'PciMemoryRange' } }
1878
1879 ##
1880 # @PciBridgeInfo:
1881 #
1882 # Information about a PCI Bridge device
1883 #
1884 # @bus: information about the bus the device resides on
1885 #
1886 # @devices: a list of @PciDeviceInfo for each device on this bridge
1887 #
1888 # Since: 0.14.0
1889 ##
1890 { 'struct': 'PciBridgeInfo',
1891 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
1892
1893 ##
1894 # @PciDeviceClass:
1895 #
1896 # Information about the Class of a PCI device
1897 #
1898 # @desc: #optional a string description of the device's class
1899 #
1900 # @class: the class code of the device
1901 #
1902 # Since: 2.4
1903 ##
1904 { 'struct': 'PciDeviceClass',
1905 'data': {'*desc': 'str', 'class': 'int'} }
1906
1907 ##
1908 # @PciDeviceId:
1909 #
1910 # Information about the Id of a PCI device
1911 #
1912 # @device: the PCI device id
1913 #
1914 # @vendor: the PCI vendor id
1915 #
1916 # Since: 2.4
1917 ##
1918 { 'struct': 'PciDeviceId',
1919 'data': {'device': 'int', 'vendor': 'int'} }
1920
1921 ##
1922 # @PciDeviceInfo:
1923 #
1924 # Information about a PCI device
1925 #
1926 # @bus: the bus number of the device
1927 #
1928 # @slot: the slot the device is located in
1929 #
1930 # @function: the function of the slot used by the device
1931 #
1932 # @class_info: the class of the device
1933 #
1934 # @id: the PCI device id
1935 #
1936 # @irq: #optional if an IRQ is assigned to the device, the IRQ number
1937 #
1938 # @qdev_id: the device name of the PCI device
1939 #
1940 # @pci_bridge: if the device is a PCI bridge, the bridge information
1941 #
1942 # @regions: a list of the PCI I/O regions associated with the device
1943 #
1944 # Notes: the contents of @class_info.desc are not stable and should only be
1945 # treated as informational.
1946 #
1947 # Since: 0.14.0
1948 ##
1949 { 'struct': 'PciDeviceInfo',
1950 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
1951 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
1952 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
1953 'regions': ['PciMemoryRegion']} }
1954
1955 ##
1956 # @PciInfo:
1957 #
1958 # Information about a PCI bus
1959 #
1960 # @bus: the bus index
1961 #
1962 # @devices: a list of devices on this bus
1963 #
1964 # Since: 0.14.0
1965 ##
1966 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
1967
1968 ##
1969 # @query-pci:
1970 #
1971 # Return information about the PCI bus topology of the guest.
1972 #
1973 # Returns: a list of @PciInfo for each PCI bus. Each bus is
1974 # represented by a json-object, which has a key with a json-array of
1975 # all PCI devices attached to it. Each device is represented by a
1976 # json-object.
1977 #
1978 # Since: 0.14.0
1979 #
1980 # Example:
1981 #
1982 # -> { "execute": "query-pci" }
1983 # <- { "return": [
1984 # {
1985 # "bus": 0,
1986 # "devices": [
1987 # {
1988 # "bus": 0,
1989 # "qdev_id": "",
1990 # "slot": 0,
1991 # "class_info": {
1992 # "class": 1536,
1993 # "desc": "Host bridge"
1994 # },
1995 # "id": {
1996 # "device": 32902,
1997 # "vendor": 4663
1998 # },
1999 # "function": 0,
2000 # "regions": [
2001 # ]
2002 # },
2003 # {
2004 # "bus": 0,
2005 # "qdev_id": "",
2006 # "slot": 1,
2007 # "class_info": {
2008 # "class": 1537,
2009 # "desc": "ISA bridge"
2010 # },
2011 # "id": {
2012 # "device": 32902,
2013 # "vendor": 28672
2014 # },
2015 # "function": 0,
2016 # "regions": [
2017 # ]
2018 # },
2019 # {
2020 # "bus": 0,
2021 # "qdev_id": "",
2022 # "slot": 1,
2023 # "class_info": {
2024 # "class": 257,
2025 # "desc": "IDE controller"
2026 # },
2027 # "id": {
2028 # "device": 32902,
2029 # "vendor": 28688
2030 # },
2031 # "function": 1,
2032 # "regions": [
2033 # {
2034 # "bar": 4,
2035 # "size": 16,
2036 # "address": 49152,
2037 # "type": "io"
2038 # }
2039 # ]
2040 # },
2041 # {
2042 # "bus": 0,
2043 # "qdev_id": "",
2044 # "slot": 2,
2045 # "class_info": {
2046 # "class": 768,
2047 # "desc": "VGA controller"
2048 # },
2049 # "id": {
2050 # "device": 4115,
2051 # "vendor": 184
2052 # },
2053 # "function": 0,
2054 # "regions": [
2055 # {
2056 # "prefetch": true,
2057 # "mem_type_64": false,
2058 # "bar": 0,
2059 # "size": 33554432,
2060 # "address": 4026531840,
2061 # "type": "memory"
2062 # },
2063 # {
2064 # "prefetch": false,
2065 # "mem_type_64": false,
2066 # "bar": 1,
2067 # "size": 4096,
2068 # "address": 4060086272,
2069 # "type": "memory"
2070 # },
2071 # {
2072 # "prefetch": false,
2073 # "mem_type_64": false,
2074 # "bar": 6,
2075 # "size": 65536,
2076 # "address": -1,
2077 # "type": "memory"
2078 # }
2079 # ]
2080 # },
2081 # {
2082 # "bus": 0,
2083 # "qdev_id": "",
2084 # "irq": 11,
2085 # "slot": 4,
2086 # "class_info": {
2087 # "class": 1280,
2088 # "desc": "RAM controller"
2089 # },
2090 # "id": {
2091 # "device": 6900,
2092 # "vendor": 4098
2093 # },
2094 # "function": 0,
2095 # "regions": [
2096 # {
2097 # "bar": 0,
2098 # "size": 32,
2099 # "address": 49280,
2100 # "type": "io"
2101 # }
2102 # ]
2103 # }
2104 # ]
2105 # }
2106 # ]
2107 # }
2108 #
2109 # Note: This example has been shortened as the real response is too long.
2110 #
2111 ##
2112 { 'command': 'query-pci', 'returns': ['PciInfo'] }
2113
2114 ##
2115 # @quit:
2116 #
2117 # This command will cause the QEMU process to exit gracefully. While every
2118 # attempt is made to send the QMP response before terminating, this is not
2119 # guaranteed. When using this interface, a premature EOF would not be
2120 # unexpected.
2121 #
2122 # Since: 0.14.0
2123 #
2124 # Example:
2125 #
2126 # -> { "execute": "quit" }
2127 # <- { "return": {} }
2128 ##
2129 { 'command': 'quit' }
2130
2131 ##
2132 # @stop:
2133 #
2134 # Stop all guest VCPU execution.
2135 #
2136 # Since: 0.14.0
2137 #
2138 # Notes: This function will succeed even if the guest is already in the stopped
2139 # state. In "inmigrate" state, it will ensure that the guest
2140 # remains paused once migration finishes, as if the -S option was
2141 # passed on the command line.
2142 #
2143 # Example:
2144 #
2145 # -> { "execute": "stop" }
2146 # <- { "return": {} }
2147 #
2148 ##
2149 { 'command': 'stop' }
2150
2151 ##
2152 # @system_reset:
2153 #
2154 # Performs a hard reset of a guest.
2155 #
2156 # Since: 0.14.0
2157 #
2158 # Example:
2159 #
2160 # -> { "execute": "system_reset" }
2161 # <- { "return": {} }
2162 #
2163 ##
2164 { 'command': 'system_reset' }
2165
2166 ##
2167 # @system_powerdown:
2168 #
2169 # Requests that a guest perform a powerdown operation.
2170 #
2171 # Since: 0.14.0
2172 #
2173 # Notes: A guest may or may not respond to this command. This command
2174 # returning does not indicate that a guest has accepted the request or
2175 # that it has shut down. Many guests will respond to this command by
2176 # prompting the user in some way.
2177 # Example:
2178 #
2179 # -> { "execute": "system_powerdown" }
2180 # <- { "return": {} }
2181 #
2182 ##
2183 { 'command': 'system_powerdown' }
2184
2185 ##
2186 # @cpu:
2187 #
2188 # This command is a nop that is only provided for the purposes of compatibility.
2189 #
2190 # Since: 0.14.0
2191 #
2192 # Notes: Do not use this command.
2193 ##
2194 { 'command': 'cpu', 'data': {'index': 'int'} }
2195
2196 ##
2197 # @cpu-add:
2198 #
2199 # Adds CPU with specified ID
2200 #
2201 # @id: ID of CPU to be created, valid values [0..max_cpus)
2202 #
2203 # Returns: Nothing on success
2204 #
2205 # Since: 1.5
2206 #
2207 # Example:
2208 #
2209 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
2210 # <- { "return": {} }
2211 #
2212 ##
2213 { 'command': 'cpu-add', 'data': {'id': 'int'} }
2214
2215 ##
2216 # @memsave:
2217 #
2218 # Save a portion of guest memory to a file.
2219 #
2220 # @val: the virtual address of the guest to start from
2221 #
2222 # @size: the size of memory region to save
2223 #
2224 # @filename: the file to save the memory to as binary data
2225 #
2226 # @cpu-index: #optional the index of the virtual CPU to use for translating the
2227 # virtual address (defaults to CPU 0)
2228 #
2229 # Returns: Nothing on success
2230 #
2231 # Since: 0.14.0
2232 #
2233 # Notes: Errors were not reliably returned until 1.1
2234 #
2235 # Example:
2236 #
2237 # -> { "execute": "memsave",
2238 # "arguments": { "val": 10,
2239 # "size": 100,
2240 # "filename": "/tmp/virtual-mem-dump" } }
2241 # <- { "return": {} }
2242 #
2243 ##
2244 { 'command': 'memsave',
2245 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
2246
2247 ##
2248 # @pmemsave:
2249 #
2250 # Save a portion of guest physical memory to a file.
2251 #
2252 # @val: the physical address of the guest to start from
2253 #
2254 # @size: the size of memory region to save
2255 #
2256 # @filename: the file to save the memory to as binary data
2257 #
2258 # Returns: Nothing on success
2259 #
2260 # Since: 0.14.0
2261 #
2262 # Notes: Errors were not reliably returned until 1.1
2263 #
2264 # Example:
2265 #
2266 # -> { "execute": "pmemsave",
2267 # "arguments": { "val": 10,
2268 # "size": 100,
2269 # "filename": "/tmp/physical-mem-dump" } }
2270 # <- { "return": {} }
2271 #
2272 ##
2273 { 'command': 'pmemsave',
2274 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
2275
2276 ##
2277 # @cont:
2278 #
2279 # Resume guest VCPU execution.
2280 #
2281 # Since: 0.14.0
2282 #
2283 # Returns: If successful, nothing
2284 # If QEMU was started with an encrypted block device and a key has
2285 # not yet been set, DeviceEncrypted.
2286 #
2287 # Notes: This command will succeed if the guest is currently running. It
2288 # will also succeed if the guest is in the "inmigrate" state; in
2289 # this case, the effect of the command is to make sure the guest
2290 # starts once migration finishes, removing the effect of the -S
2291 # command line option if it was passed.
2292 #
2293 # Example:
2294 #
2295 # -> { "execute": "cont" }
2296 # <- { "return": {} }
2297 #
2298 ##
2299 { 'command': 'cont' }
2300
2301 ##
2302 # @system_wakeup:
2303 #
2304 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
2305 #
2306 # Since: 1.1
2307 #
2308 # Returns: nothing.
2309 #
2310 # Example:
2311 #
2312 # -> { "execute": "system_wakeup" }
2313 # <- { "return": {} }
2314 #
2315 ##
2316 { 'command': 'system_wakeup' }
2317
2318 ##
2319 # @inject-nmi:
2320 #
2321 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
2322 # The command fails when the guest doesn't support injecting.
2323 #
2324 # Returns: If successful, nothing
2325 #
2326 # Since: 0.14.0
2327 #
2328 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
2329 #
2330 # Example:
2331 #
2332 # -> { "execute": "inject-nmi" }
2333 # <- { "return": {} }
2334 #
2335 ##
2336 { 'command': 'inject-nmi' }
2337
2338 ##
2339 # @set_link:
2340 #
2341 # Sets the link status of a virtual network adapter.
2342 #
2343 # @name: the device name of the virtual network adapter
2344 #
2345 # @up: true to set the link status to be up
2346 #
2347 # Returns: Nothing on success
2348 # If @name is not a valid network device, DeviceNotFound
2349 #
2350 # Since: 0.14.0
2351 #
2352 # Notes: Not all network adapters support setting link status. This command
2353 # will succeed even if the network adapter does not support link status
2354 # notification.
2355 #
2356 # Example:
2357 #
2358 # -> { "execute": "set_link",
2359 # "arguments": { "name": "e1000.0", "up": false } }
2360 # <- { "return": {} }
2361 #
2362 ##
2363 { 'command': 'set_link', 'data': {'name': 'str', 'up': 'bool'} }
2364
2365 ##
2366 # @balloon:
2367 #
2368 # Request the balloon driver to change its balloon size.
2369 #
2370 # @value: the target size of the balloon in bytes
2371 #
2372 # Returns: Nothing on success
2373 # If the balloon driver is enabled but not functional because the KVM
2374 # kernel module cannot support it, KvmMissingCap
2375 # If no balloon device is present, DeviceNotActive
2376 #
2377 # Notes: This command just issues a request to the guest. When it returns,
2378 # the balloon size may not have changed. A guest can change the balloon
2379 # size independent of this command.
2380 #
2381 # Since: 0.14.0
2382 #
2383 # Example:
2384 #
2385 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
2386 # <- { "return": {} }
2387 #
2388 ##
2389 { 'command': 'balloon', 'data': {'value': 'int'} }
2390
2391 ##
2392 # @Abort:
2393 #
2394 # This action can be used to test transaction failure.
2395 #
2396 # Since: 1.6
2397 ##
2398 { 'struct': 'Abort',
2399 'data': { } }
2400
2401 ##
2402 # @ActionCompletionMode:
2403 #
2404 # An enumeration of Transactional completion modes.
2405 #
2406 # @individual: Do not attempt to cancel any other Actions if any Actions fail
2407 # after the Transaction request succeeds. All Actions that
2408 # can complete successfully will do so without waiting on others.
2409 # This is the default.
2410 #
2411 # @grouped: If any Action fails after the Transaction succeeds, cancel all
2412 # Actions. Actions do not complete until all Actions are ready to
2413 # complete. May be rejected by Actions that do not support this
2414 # completion mode.
2415 #
2416 # Since: 2.5
2417 ##
2418 { 'enum': 'ActionCompletionMode',
2419 'data': [ 'individual', 'grouped' ] }
2420
2421 ##
2422 # @TransactionAction:
2423 #
2424 # A discriminated record of operations that can be performed with
2425 # @transaction. Action @type can be:
2426 #
2427 # - @abort: since 1.6
2428 # - @block-dirty-bitmap-add: since 2.5
2429 # - @block-dirty-bitmap-clear: since 2.5
2430 # - @blockdev-backup: since 2.3
2431 # - @blockdev-snapshot: since 2.5
2432 # - @blockdev-snapshot-internal-sync: since 1.7
2433 # - @blockdev-snapshot-sync: since 1.1
2434 # - @drive-backup: since 1.6
2435 #
2436 # Since: 1.1
2437 ##
2438 { 'union': 'TransactionAction',
2439 'data': {
2440 'abort': 'Abort',
2441 'block-dirty-bitmap-add': 'BlockDirtyBitmapAdd',
2442 'block-dirty-bitmap-clear': 'BlockDirtyBitmap',
2443 'blockdev-backup': 'BlockdevBackup',
2444 'blockdev-snapshot': 'BlockdevSnapshot',
2445 'blockdev-snapshot-internal-sync': 'BlockdevSnapshotInternal',
2446 'blockdev-snapshot-sync': 'BlockdevSnapshotSync',
2447 'drive-backup': 'DriveBackup'
2448 } }
2449
2450 ##
2451 # @TransactionProperties:
2452 #
2453 # Optional arguments to modify the behavior of a Transaction.
2454 #
2455 # @completion-mode: #optional Controls how jobs launched asynchronously by
2456 # Actions will complete or fail as a group.
2457 # See @ActionCompletionMode for details.
2458 #
2459 # Since: 2.5
2460 ##
2461 { 'struct': 'TransactionProperties',
2462 'data': {
2463 '*completion-mode': 'ActionCompletionMode'
2464 }
2465 }
2466
2467 ##
2468 # @transaction:
2469 #
2470 # Executes a number of transactionable QMP commands atomically. If any
2471 # operation fails, then the entire set of actions will be abandoned and the
2472 # appropriate error returned.
2473 #
2474 # For external snapshots, the dictionary contains the device, the file to use for
2475 # the new snapshot, and the format. The default format, if not specified, is
2476 # qcow2.
2477 #
2478 # Each new snapshot defaults to being created by QEMU (wiping any
2479 # contents if the file already exists), but it is also possible to reuse
2480 # an externally-created file. In the latter case, you should ensure that
2481 # the new image file has the same contents as the current one; QEMU cannot
2482 # perform any meaningful check. Typically this is achieved by using the
2483 # current image file as the backing file for the new image.
2484 #
2485 # On failure, the original disks pre-snapshot attempt will be used.
2486 #
2487 # For internal snapshots, the dictionary contains the device and the snapshot's
2488 # name. If an internal snapshot matching name already exists, the request will
2489 # be rejected. Only some image formats support it, for example, qcow2, rbd,
2490 # and sheepdog.
2491 #
2492 # On failure, qemu will try delete the newly created internal snapshot in the
2493 # transaction. When an I/O error occurs during deletion, the user needs to fix
2494 # it later with qemu-img or other command.
2495 #
2496 # @actions: List of @TransactionAction;
2497 # information needed for the respective operations.
2498 #
2499 # @properties: #optional structure of additional options to control the
2500 # execution of the transaction. See @TransactionProperties
2501 # for additional detail.
2502 #
2503 # Returns: nothing on success
2504 #
2505 # Errors depend on the operations of the transaction
2506 #
2507 # Note: The transaction aborts on the first failure. Therefore, there will be
2508 # information on only one failed operation returned in an error condition, and
2509 # subsequent actions will not have been attempted.
2510 #
2511 # Since: 1.1
2512 #
2513 # Example:
2514 #
2515 # -> { "execute": "transaction",
2516 # "arguments": { "actions": [
2517 # { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd0",
2518 # "snapshot-file": "/some/place/my-image",
2519 # "format": "qcow2" } },
2520 # { "type": "blockdev-snapshot-sync", "data" : { "node-name": "myfile",
2521 # "snapshot-file": "/some/place/my-image2",
2522 # "snapshot-node-name": "node3432",
2523 # "mode": "existing",
2524 # "format": "qcow2" } },
2525 # { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd1",
2526 # "snapshot-file": "/some/place/my-image2",
2527 # "mode": "existing",
2528 # "format": "qcow2" } },
2529 # { "type": "blockdev-snapshot-internal-sync", "data" : {
2530 # "device": "ide-hd2",
2531 # "name": "snapshot0" } } ] } }
2532 # <- { "return": {} }
2533 #
2534 ##
2535 { 'command': 'transaction',
2536 'data': { 'actions': [ 'TransactionAction' ],
2537 '*properties': 'TransactionProperties'
2538 }
2539 }
2540
2541 ##
2542 # @human-monitor-command:
2543 #
2544 # Execute a command on the human monitor and return the output.
2545 #
2546 # @command-line: the command to execute in the human monitor
2547 #
2548 # @cpu-index: #optional The CPU to use for commands that require an implicit CPU
2549 #
2550 # Returns: the output of the command as a string
2551 #
2552 # Since: 0.14.0
2553 #
2554 # Notes: This command only exists as a stop-gap. Its use is highly
2555 # discouraged. The semantics of this command are not
2556 # guaranteed: this means that command names, arguments and
2557 # responses can change or be removed at ANY time. Applications
2558 # that rely on long term stability guarantees should NOT
2559 # use this command.
2560 #
2561 # Known limitations:
2562 #
2563 # * This command is stateless, this means that commands that depend
2564 # on state information (such as getfd) might not work
2565 #
2566 # * Commands that prompt the user for data (eg. 'cont' when the block
2567 # device is encrypted) don't currently work
2568 #
2569 # Example:
2570 #
2571 # -> { "execute": "human-monitor-command",
2572 # "arguments": { "command-line": "info kvm" } }
2573 # <- { "return": "kvm support: enabled\r\n" }
2574 #
2575 ##
2576 { 'command': 'human-monitor-command',
2577 'data': {'command-line': 'str', '*cpu-index': 'int'},
2578 'returns': 'str' }
2579
2580 ##
2581 # @migrate_cancel:
2582 #
2583 # Cancel the current executing migration process.
2584 #
2585 # Returns: nothing on success
2586 #
2587 # Notes: This command succeeds even if there is no migration process running.
2588 #
2589 # Since: 0.14.0
2590 #
2591 # Example:
2592 #
2593 # -> { "execute": "migrate_cancel" }
2594 # <- { "return": {} }
2595 #
2596 ##
2597 { 'command': 'migrate_cancel' }
2598
2599 ##
2600 # @migrate_set_downtime:
2601 #
2602 # Set maximum tolerated downtime for migration.
2603 #
2604 # @value: maximum downtime in seconds
2605 #
2606 # Returns: nothing on success
2607 #
2608 # Notes: This command is deprecated in favor of 'migrate-set-parameters'
2609 #
2610 # Since: 0.14.0
2611 #
2612 # Example:
2613 #
2614 # -> { "execute": "migrate_set_downtime", "arguments": { "value": 0.1 } }
2615 # <- { "return": {} }
2616 #
2617 ##
2618 { 'command': 'migrate_set_downtime', 'data': {'value': 'number'} }
2619
2620 ##
2621 # @migrate_set_speed:
2622 #
2623 # Set maximum speed for migration.
2624 #
2625 # @value: maximum speed in bytes per second.
2626 #
2627 # Returns: nothing on success
2628 #
2629 # Notes: This command is deprecated in favor of 'migrate-set-parameters'
2630 #
2631 # Since: 0.14.0
2632 #
2633 # Example:
2634 #
2635 # -> { "execute": "migrate_set_speed", "arguments": { "value": 1024 } }
2636 # <- { "return": {} }
2637 #
2638 ##
2639 { 'command': 'migrate_set_speed', 'data': {'value': 'int'} }
2640
2641 ##
2642 # @migrate-set-cache-size:
2643 #
2644 # Set cache size to be used by XBZRLE migration
2645 #
2646 # @value: cache size in bytes
2647 #
2648 # The size will be rounded down to the nearest power of 2.
2649 # The cache size can be modified before and during ongoing migration
2650 #
2651 # Returns: nothing on success
2652 #
2653 # Since: 1.2
2654 #
2655 # Example:
2656 #
2657 # -> { "execute": "migrate-set-cache-size",
2658 # "arguments": { "value": 536870912 } }
2659 # <- { "return": {} }
2660 #
2661 ##
2662 { 'command': 'migrate-set-cache-size', 'data': {'value': 'int'} }
2663
2664 ##
2665 # @query-migrate-cache-size:
2666 #
2667 # Query migration XBZRLE cache size
2668 #
2669 # Returns: XBZRLE cache size in bytes
2670 #
2671 # Since: 1.2
2672 #
2673 # Example:
2674 #
2675 # -> { "execute": "query-migrate-cache-size" }
2676 # <- { "return": 67108864 }
2677 #
2678 ##
2679 { 'command': 'query-migrate-cache-size', 'returns': 'int' }
2680
2681 ##
2682 # @ObjectPropertyInfo:
2683 #
2684 # @name: the name of the property
2685 #
2686 # @type: the type of the property. This will typically come in one of four
2687 # forms:
2688 #
2689 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
2690 # These types are mapped to the appropriate JSON type.
2691 #
2692 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
2693 # device type name. Child properties create the composition tree.
2694 #
2695 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
2696 # device type name. Link properties form the device model graph.
2697 #
2698 # Since: 1.2
2699 ##
2700 { 'struct': 'ObjectPropertyInfo',
2701 'data': { 'name': 'str', 'type': 'str' } }
2702
2703 ##
2704 # @qom-list:
2705 #
2706 # This command will list any properties of a object given a path in the object
2707 # model.
2708 #
2709 # @path: the path within the object model. See @qom-get for a description of
2710 # this parameter.
2711 #
2712 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
2713 # object.
2714 #
2715 # Since: 1.2
2716 ##
2717 { 'command': 'qom-list',
2718 'data': { 'path': 'str' },
2719 'returns': [ 'ObjectPropertyInfo' ] }
2720
2721 ##
2722 # @qom-get:
2723 #
2724 # This command will get a property from a object model path and return the
2725 # value.
2726 #
2727 # @path: The path within the object model. There are two forms of supported
2728 # paths--absolute and partial paths.
2729 #
2730 # Absolute paths are derived from the root object and can follow child<>
2731 # or link<> properties. Since they can follow link<> properties, they
2732 # can be arbitrarily long. Absolute paths look like absolute filenames
2733 # and are prefixed with a leading slash.
2734 #
2735 # Partial paths look like relative filenames. They do not begin
2736 # with a prefix. The matching rules for partial paths are subtle but
2737 # designed to make specifying objects easy. At each level of the
2738 # composition tree, the partial path is matched as an absolute path.
2739 # The first match is not returned. At least two matches are searched
2740 # for. A successful result is only returned if only one match is
2741 # found. If more than one match is found, a flag is return to
2742 # indicate that the match was ambiguous.
2743 #
2744 # @property: The property name to read
2745 #
2746 # Returns: The property value. The type depends on the property
2747 # type. child<> and link<> properties are returned as #str
2748 # pathnames. All integer property types (u8, u16, etc) are
2749 # returned as #int.
2750 #
2751 # Since: 1.2
2752 ##
2753 { 'command': 'qom-get',
2754 'data': { 'path': 'str', 'property': 'str' },
2755 'returns': 'any' }
2756
2757 ##
2758 # @qom-set:
2759 #
2760 # This command will set a property from a object model path.
2761 #
2762 # @path: see @qom-get for a description of this parameter
2763 #
2764 # @property: the property name to set
2765 #
2766 # @value: a value who's type is appropriate for the property type. See @qom-get
2767 # for a description of type mapping.
2768 #
2769 # Since: 1.2
2770 ##
2771 { 'command': 'qom-set',
2772 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
2773
2774 ##
2775 # @set_password:
2776 #
2777 # Sets the password of a remote display session.
2778 #
2779 # @protocol: `vnc' to modify the VNC server password
2780 # `spice' to modify the Spice server password
2781 #
2782 # @password: the new password
2783 #
2784 # @connected: #optional how to handle existing clients when changing the
2785 # password. If nothing is specified, defaults to `keep'
2786 # `fail' to fail the command if clients are connected
2787 # `disconnect' to disconnect existing clients
2788 # `keep' to maintain existing clients
2789 #
2790 # Returns: Nothing on success
2791 # If Spice is not enabled, DeviceNotFound
2792 #
2793 # Since: 0.14.0
2794 #
2795 # Example:
2796 #
2797 # -> { "execute": "set_password", "arguments": { "protocol": "vnc",
2798 # "password": "secret" } }
2799 # <- { "return": {} }
2800 #
2801 ##
2802 { 'command': 'set_password',
2803 'data': {'protocol': 'str', 'password': 'str', '*connected': 'str'} }
2804
2805 ##
2806 # @expire_password:
2807 #
2808 # Expire the password of a remote display server.
2809 #
2810 # @protocol: the name of the remote display protocol `vnc' or `spice'
2811 #
2812 # @time: when to expire the password.
2813 # `now' to expire the password immediately
2814 # `never' to cancel password expiration
2815 # `+INT' where INT is the number of seconds from now (integer)
2816 # `INT' where INT is the absolute time in seconds
2817 #
2818 # Returns: Nothing on success
2819 # If @protocol is `spice' and Spice is not active, DeviceNotFound
2820 #
2821 # Since: 0.14.0
2822 #
2823 # Notes: Time is relative to the server and currently there is no way to
2824 # coordinate server time with client time. It is not recommended to
2825 # use the absolute time version of the @time parameter unless you're
2826 # sure you are on the same machine as the QEMU instance.
2827 #
2828 # Example:
2829 #
2830 # -> { "execute": "expire_password", "arguments": { "protocol": "vnc",
2831 # "time": "+60" } }
2832 # <- { "return": {} }
2833 #
2834 ##
2835 { 'command': 'expire_password', 'data': {'protocol': 'str', 'time': 'str'} }
2836
2837 ##
2838 # @change-vnc-password:
2839 #
2840 # Change the VNC server password.
2841 #
2842 # @password: the new password to use with VNC authentication
2843 #
2844 # Since: 1.1
2845 #
2846 # Notes: An empty password in this command will set the password to the empty
2847 # string. Existing clients are unaffected by executing this command.
2848 ##
2849 { 'command': 'change-vnc-password', 'data': {'password': 'str'} }
2850
2851 ##
2852 # @change:
2853 #
2854 # This command is multiple commands multiplexed together.
2855 #
2856 # @device: This is normally the name of a block device but it may also be 'vnc'.
2857 # when it's 'vnc', then sub command depends on @target
2858 #
2859 # @target: If @device is a block device, then this is the new filename.
2860 # If @device is 'vnc', then if the value 'password' selects the vnc
2861 # change password command. Otherwise, this specifies a new server URI
2862 # address to listen to for VNC connections.
2863 #
2864 # @arg: If @device is a block device, then this is an optional format to open
2865 # the device with.
2866 # If @device is 'vnc' and @target is 'password', this is the new VNC
2867 # password to set. If this argument is an empty string, then no future
2868 # logins will be allowed.
2869 #
2870 # Returns: Nothing on success.
2871 # If @device is not a valid block device, DeviceNotFound
2872 # If the new block device is encrypted, DeviceEncrypted. Note that
2873 # if this error is returned, the device has been opened successfully
2874 # and an additional call to @block_passwd is required to set the
2875 # device's password. The behavior of reads and writes to the block
2876 # device between when these calls are executed is undefined.
2877 #
2878 # Notes: This interface is deprecated, and it is strongly recommended that you
2879 # avoid using it. For changing block devices, use
2880 # blockdev-change-medium; for changing VNC parameters, use
2881 # change-vnc-password.
2882 #
2883 # Since: 0.14.0
2884 #
2885 # Example:
2886 #
2887 # 1. Change a removable medium
2888 #
2889 # -> { "execute": "change",
2890 # "arguments": { "device": "ide1-cd0",
2891 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
2892 # <- { "return": {} }
2893 #
2894 # 2. Change VNC password
2895 #
2896 # -> { "execute": "change",
2897 # "arguments": { "device": "vnc", "target": "password",
2898 # "arg": "foobar1" } }
2899 # <- { "return": {} }
2900 #
2901 ##
2902 { 'command': 'change',
2903 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
2904
2905 ##
2906 # @ObjectTypeInfo:
2907 #
2908 # This structure describes a search result from @qom-list-types
2909 #
2910 # @name: the type name found in the search
2911 #
2912 # Since: 1.1
2913 #
2914 # Notes: This command is experimental and may change syntax in future releases.
2915 ##
2916 { 'struct': 'ObjectTypeInfo',
2917 'data': { 'name': 'str' } }
2918
2919 ##
2920 # @qom-list-types:
2921 #
2922 # This command will return a list of types given search parameters
2923 #
2924 # @implements: if specified, only return types that implement this type name
2925 #
2926 # @abstract: if true, include abstract types in the results
2927 #
2928 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
2929 #
2930 # Since: 1.1
2931 ##
2932 { 'command': 'qom-list-types',
2933 'data': { '*implements': 'str', '*abstract': 'bool' },
2934 'returns': [ 'ObjectTypeInfo' ] }
2935
2936 ##
2937 # @DevicePropertyInfo:
2938 #
2939 # Information about device properties.
2940 #
2941 # @name: the name of the property
2942 # @type: the typename of the property
2943 # @description: #optional if specified, the description of the property.
2944 # (since 2.2)
2945 #
2946 # Since: 1.2
2947 ##
2948 { 'struct': 'DevicePropertyInfo',
2949 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
2950
2951 ##
2952 # @device-list-properties:
2953 #
2954 # List properties associated with a device.
2955 #
2956 # @typename: the type name of a device
2957 #
2958 # Returns: a list of DevicePropertyInfo describing a devices properties
2959 #
2960 # Since: 1.2
2961 ##
2962 { 'command': 'device-list-properties',
2963 'data': { 'typename': 'str'},
2964 'returns': [ 'DevicePropertyInfo' ] }
2965
2966 ##
2967 # @migrate:
2968 #
2969 # Migrates the current running guest to another Virtual Machine.
2970 #
2971 # @uri: the Uniform Resource Identifier of the destination VM
2972 #
2973 # @blk: #optional do block migration (full disk copy)
2974 #
2975 # @inc: #optional incremental disk copy migration
2976 #
2977 # @detach: this argument exists only for compatibility reasons and
2978 # is ignored by QEMU
2979 #
2980 # Returns: nothing on success
2981 #
2982 # Since: 0.14.0
2983 #
2984 # Notes:
2985 #
2986 # 1. The 'query-migrate' command should be used to check migration's progress
2987 # and final result (this information is provided by the 'status' member)
2988 #
2989 # 2. All boolean arguments default to false
2990 #
2991 # 3. The user Monitor's "detach" argument is invalid in QMP and should not
2992 # be used
2993 #
2994 # Example:
2995 #
2996 # -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
2997 # <- { "return": {} }
2998 #
2999 ##
3000 { 'command': 'migrate',
3001 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', '*detach': 'bool' } }
3002
3003 ##
3004 # @migrate-incoming:
3005 #
3006 # Start an incoming migration, the qemu must have been started
3007 # with -incoming defer
3008 #
3009 # @uri: The Uniform Resource Identifier identifying the source or
3010 # address to listen on
3011 #
3012 # Returns: nothing on success
3013 #
3014 # Since: 2.3
3015 #
3016 # Notes:
3017 #
3018 # 1. It's a bad idea to use a string for the uri, but it needs to stay
3019 # compatible with -incoming and the format of the uri is already exposed
3020 # above libvirt.
3021 #
3022 # 2. QEMU must be started with -incoming defer to allow migrate-incoming to
3023 # be used.
3024 #
3025 # 3. The uri format is the same as for -incoming
3026 #
3027 # Example:
3028 #
3029 # -> { "execute": "migrate-incoming",
3030 # "arguments": { "uri": "tcp::4446" } }
3031 # <- { "return": {} }
3032 #
3033 ##
3034 { 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
3035
3036 ##
3037 # @xen-save-devices-state:
3038 #
3039 # Save the state of all devices to file. The RAM and the block devices
3040 # of the VM are not saved by this command.
3041 #
3042 # @filename: the file to save the state of the devices to as binary
3043 # data. See xen-save-devices-state.txt for a description of the binary
3044 # format.
3045 #
3046 # Returns: Nothing on success
3047 #
3048 # Since: 1.1
3049 #
3050 # Example:
3051 #
3052 # -> { "execute": "xen-save-devices-state",
3053 # "arguments": { "filename": "/tmp/save" } }
3054 # <- { "return": {} }
3055 #
3056 ##
3057 { 'command': 'xen-save-devices-state', 'data': {'filename': 'str'} }
3058
3059 ##
3060 # @xen-set-global-dirty-log:
3061 #
3062 # Enable or disable the global dirty log mode.
3063 #
3064 # @enable: true to enable, false to disable.
3065 #
3066 # Returns: nothing
3067 #
3068 # Since: 1.3
3069 #
3070 # Example:
3071 #
3072 # -> { "execute": "xen-set-global-dirty-log",
3073 # "arguments": { "enable": true } }
3074 # <- { "return": {} }
3075 #
3076 ##
3077 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
3078
3079 ##
3080 # @device_add:
3081 #
3082 # @driver: the name of the new device's driver
3083 #
3084 # @bus: #optional the device's parent bus (device tree path)
3085 #
3086 # @id: #optional the device's ID, must be unique
3087 #
3088 # Additional arguments depend on the type.
3089 #
3090 # Add a device.
3091 #
3092 # Notes:
3093 # 1. For detailed information about this command, please refer to the
3094 # 'docs/qdev-device-use.txt' file.
3095 #
3096 # 2. It's possible to list device properties by running QEMU with the
3097 # "-device DEVICE,help" command-line argument, where DEVICE is the
3098 # device's name
3099 #
3100 # Example:
3101 #
3102 # -> { "execute": "device_add",
3103 # "arguments": { "driver": "e1000", "id": "net1",
3104 # "bus": "pci.0",
3105 # "mac": "52:54:00:12:34:56" } }
3106 # <- { "return": {} }
3107 #
3108 # TODO: This command effectively bypasses QAPI completely due to its
3109 # "additional arguments" business. It shouldn't have been added to
3110 # the schema in this form. It should be qapified properly, or
3111 # replaced by a properly qapified command.
3112 #
3113 # Since: 0.13
3114 ##
3115 { 'command': 'device_add',
3116 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
3117 'gen': false } # so we can get the additional arguments
3118
3119 ##
3120 # @device_del:
3121 #
3122 # Remove a device from a guest
3123 #
3124 # @id: the device's ID or QOM path
3125 #
3126 # Returns: Nothing on success
3127 # If @id is not a valid device, DeviceNotFound
3128 #
3129 # Notes: When this command completes, the device may not be removed from the
3130 # guest. Hot removal is an operation that requires guest cooperation.
3131 # This command merely requests that the guest begin the hot removal
3132 # process. Completion of the device removal process is signaled with a
3133 # DEVICE_DELETED event. Guest reset will automatically complete removal
3134 # for all devices.
3135 #
3136 # Since: 0.14.0
3137 #
3138 # Example:
3139 #
3140 # -> { "execute": "device_del",
3141 # "arguments": { "id": "net1" } }
3142 # <- { "return": {} }
3143 #
3144 # -> { "execute": "device_del",
3145 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
3146 # <- { "return": {} }
3147 #
3148 ##
3149 { 'command': 'device_del', 'data': {'id': 'str'} }
3150
3151 ##
3152 # @DumpGuestMemoryFormat:
3153 #
3154 # An enumeration of guest-memory-dump's format.
3155 #
3156 # @elf: elf format
3157 #
3158 # @kdump-zlib: kdump-compressed format with zlib-compressed
3159 #
3160 # @kdump-lzo: kdump-compressed format with lzo-compressed
3161 #
3162 # @kdump-snappy: kdump-compressed format with snappy-compressed
3163 #
3164 # Since: 2.0
3165 ##
3166 { 'enum': 'DumpGuestMemoryFormat',
3167 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
3168
3169 ##
3170 # @dump-guest-memory:
3171 #
3172 # Dump guest's memory to vmcore. It is a synchronous operation that can take
3173 # very long depending on the amount of guest memory.
3174 #
3175 # @paging: if true, do paging to get guest's memory mapping. This allows
3176 # using gdb to process the core file.
3177 #
3178 # IMPORTANT: this option can make QEMU allocate several gigabytes
3179 # of RAM. This can happen for a large guest, or a
3180 # malicious guest pretending to be large.
3181 #
3182 # Also, paging=true has the following limitations:
3183 #
3184 # 1. The guest may be in a catastrophic state or can have corrupted
3185 # memory, which cannot be trusted
3186 # 2. The guest can be in real-mode even if paging is enabled. For
3187 # example, the guest uses ACPI to sleep, and ACPI sleep state
3188 # goes in real-mode
3189 # 3. Currently only supported on i386 and x86_64.
3190 #
3191 # @protocol: the filename or file descriptor of the vmcore. The supported
3192 # protocols are:
3193 #
3194 # 1. file: the protocol starts with "file:", and the following
3195 # string is the file's path.
3196 # 2. fd: the protocol starts with "fd:", and the following string
3197 # is the fd's name.
3198 #
3199 # @detach: #optional if true, QMP will return immediately rather than
3200 # waiting for the dump to finish. The user can track progress
3201 # using "query-dump". (since 2.6).
3202 #
3203 # @begin: #optional if specified, the starting physical address.
3204 #
3205 # @length: #optional if specified, the memory size, in bytes. If you don't
3206 # want to dump all guest's memory, please specify the start @begin
3207 # and @length
3208 #
3209 # @format: #optional if specified, the format of guest memory dump. But non-elf
3210 # format is conflict with paging and filter, ie. @paging, @begin and
3211 # @length is not allowed to be specified with non-elf @format at the
3212 # same time (since 2.0)
3213 #
3214 # Note: All boolean arguments default to false
3215 #
3216 # Returns: nothing on success
3217 #
3218 # Since: 1.2
3219 #
3220 # Example:
3221 #
3222 # -> { "execute": "dump-guest-memory",
3223 # "arguments": { "protocol": "fd:dump" } }
3224 # <- { "return": {} }
3225 #
3226 ##
3227 { 'command': 'dump-guest-memory',
3228 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
3229 '*begin': 'int', '*length': 'int',
3230 '*format': 'DumpGuestMemoryFormat'} }
3231
3232 ##
3233 # @DumpStatus:
3234 #
3235 # Describe the status of a long-running background guest memory dump.
3236 #
3237 # @none: no dump-guest-memory has started yet.
3238 #
3239 # @active: there is one dump running in background.
3240 #
3241 # @completed: the last dump has finished successfully.
3242 #
3243 # @failed: the last dump has failed.
3244 #
3245 # Since: 2.6
3246 ##
3247 { 'enum': 'DumpStatus',
3248 'data': [ 'none', 'active', 'completed', 'failed' ] }
3249
3250 ##
3251 # @DumpQueryResult:
3252 #
3253 # The result format for 'query-dump'.
3254 #
3255 # @status: enum of @DumpStatus, which shows current dump status
3256 #
3257 # @completed: bytes written in latest dump (uncompressed)
3258 #
3259 # @total: total bytes to be written in latest dump (uncompressed)
3260 #
3261 # Since: 2.6
3262 ##
3263 { 'struct': 'DumpQueryResult',
3264 'data': { 'status': 'DumpStatus',
3265 'completed': 'int',
3266 'total': 'int' } }
3267
3268 ##
3269 # @query-dump:
3270 #
3271 # Query latest dump status.
3272 #
3273 # Returns: A @DumpStatus object showing the dump status.
3274 #
3275 # Since: 2.6
3276 #
3277 # Example:
3278 #
3279 # -> { "execute": "query-dump" }
3280 # <- { "return": { "status": "active", "completed": 1024000,
3281 # "total": 2048000 } }
3282 #
3283 ##
3284 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
3285
3286 ##
3287 # @DumpGuestMemoryCapability:
3288 #
3289 # A list of the available formats for dump-guest-memory
3290 #
3291 # Since: 2.0
3292 ##
3293 { 'struct': 'DumpGuestMemoryCapability',
3294 'data': {
3295 'formats': ['DumpGuestMemoryFormat'] } }
3296
3297 ##
3298 # @query-dump-guest-memory-capability:
3299 #
3300 # Returns the available formats for dump-guest-memory
3301 #
3302 # Returns: A @DumpGuestMemoryCapability object listing available formats for
3303 # dump-guest-memory
3304 #
3305 # Since: 2.0
3306 #
3307 # Example:
3308 #
3309 # -> { "execute": "query-dump-guest-memory-capability" }
3310 # <- { "return": { "formats":
3311 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
3312 #
3313 ##
3314 { 'command': 'query-dump-guest-memory-capability',
3315 'returns': 'DumpGuestMemoryCapability' }
3316
3317 ##
3318 # @dump-skeys:
3319 #
3320 # Dump guest's storage keys
3321 #
3322 # @filename: the path to the file to dump to
3323 #
3324 # This command is only supported on s390 architecture.
3325 #
3326 # Since: 2.5
3327 #
3328 # Example:
3329 #
3330 # -> { "execute": "dump-skeys",
3331 # "arguments": { "filename": "/tmp/skeys" } }
3332 # <- { "return": {} }
3333 #
3334 ##
3335 { 'command': 'dump-skeys',
3336 'data': { 'filename': 'str' } }
3337
3338 ##
3339 # @netdev_add:
3340 #
3341 # Add a network backend.
3342 #
3343 # @type: the type of network backend. Current valid values are 'user', 'tap',
3344 # 'vde', 'socket', 'dump' and 'bridge'
3345 #
3346 # @id: the name of the new network backend
3347 #
3348 # Additional arguments depend on the type.
3349 #
3350 # TODO: This command effectively bypasses QAPI completely due to its
3351 # "additional arguments" business. It shouldn't have been added to
3352 # the schema in this form. It should be qapified properly, or
3353 # replaced by a properly qapified command.
3354 #
3355 # Since: 0.14.0
3356 #
3357 # Returns: Nothing on success
3358 # If @type is not a valid network backend, DeviceNotFound
3359 #
3360 # Example:
3361 #
3362 # -> { "execute": "netdev_add",
3363 # "arguments": { "type": "user", "id": "netdev1",
3364 # "dnssearch": "example.org" } }
3365 # <- { "return": {} }
3366 #
3367 ##
3368 { 'command': 'netdev_add',
3369 'data': {'type': 'str', 'id': 'str'},
3370 'gen': false } # so we can get the additional arguments
3371
3372 ##
3373 # @netdev_del:
3374 #
3375 # Remove a network backend.
3376 #
3377 # @id: the name of the network backend to remove
3378 #
3379 # Returns: Nothing on success
3380 # If @id is not a valid network backend, DeviceNotFound
3381 #
3382 # Since: 0.14.0
3383 #
3384 # Example:
3385 #
3386 # -> { "execute": "netdev_del", "arguments": { "id": "netdev1" } }
3387 # <- { "return": {} }
3388 #
3389 ##
3390 { 'command': 'netdev_del', 'data': {'id': 'str'} }
3391
3392 ##
3393 # @object-add:
3394 #
3395 # Create a QOM object.
3396 #
3397 # @qom-type: the class name for the object to be created
3398 #
3399 # @id: the name of the new object
3400 #
3401 # @props: #optional a dictionary of properties to be passed to the backend
3402 #
3403 # Returns: Nothing on success
3404 # Error if @qom-type is not a valid class name
3405 #
3406 # Since: 2.0
3407 #
3408 # Example:
3409 #
3410 # -> { "execute": "object-add",
3411 # "arguments": { "qom-type": "rng-random", "id": "rng1",
3412 # "props": { "filename": "/dev/hwrng" } } }
3413 # <- { "return": {} }
3414 #
3415 ##
3416 { 'command': 'object-add',
3417 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
3418
3419 ##
3420 # @object-del:
3421 #
3422 # Remove a QOM object.
3423 #
3424 # @id: the name of the QOM object to remove
3425 #
3426 # Returns: Nothing on success
3427 # Error if @id is not a valid id for a QOM object
3428 #
3429 # Since: 2.0
3430 #
3431 # Example:
3432 #
3433 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
3434 # <- { "return": {} }
3435 #
3436 ##
3437 { 'command': 'object-del', 'data': {'id': 'str'} }
3438
3439 ##
3440 # @NetdevNoneOptions:
3441 #
3442 # Use it alone to have zero network devices.
3443 #
3444 # Since: 1.2
3445 ##
3446 { 'struct': 'NetdevNoneOptions',
3447 'data': { } }
3448
3449 ##
3450 # @NetLegacyNicOptions:
3451 #
3452 # Create a new Network Interface Card.
3453 #
3454 # @netdev: #optional id of -netdev to connect to
3455 #
3456 # @macaddr: #optional MAC address
3457 #
3458 # @model: #optional device model (e1000, rtl8139, virtio etc.)
3459 #
3460 # @addr: #optional PCI device address
3461 #
3462 # @vectors: #optional number of MSI-x vectors, 0 to disable MSI-X
3463 #
3464 # Since: 1.2
3465 ##
3466 { 'struct': 'NetLegacyNicOptions',
3467 'data': {
3468 '*netdev': 'str',
3469 '*macaddr': 'str',
3470 '*model': 'str',
3471 '*addr': 'str',
3472 '*vectors': 'uint32' } }
3473
3474 ##
3475 # @String:
3476 #
3477 # A fat type wrapping 'str', to be embedded in lists.
3478 #
3479 # Since: 1.2
3480 ##
3481 { 'struct': 'String',
3482 'data': {
3483 'str': 'str' } }
3484
3485 ##
3486 # @NetdevUserOptions:
3487 #
3488 # Use the user mode network stack which requires no administrator privilege to
3489 # run.
3490 #
3491 # @hostname: #optional client hostname reported by the builtin DHCP server
3492 #
3493 # @restrict: #optional isolate the guest from the host
3494 #
3495 # @ipv4: #optional whether to support IPv4, default true for enabled
3496 # (since 2.6)
3497 #
3498 # @ipv6: #optional whether to support IPv6, default true for enabled
3499 # (since 2.6)
3500 #
3501 # @ip: #optional legacy parameter, use net= instead
3502 #
3503 # @net: #optional IP network address that the guest will see, in the
3504 # form addr[/netmask] The netmask is optional, and can be
3505 # either in the form a.b.c.d or as a number of valid top-most
3506 # bits. Default is 10.0.2.0/24.
3507 #
3508 # @host: #optional guest-visible address of the host
3509 #
3510 # @tftp: #optional root directory of the built-in TFTP server
3511 #
3512 # @bootfile: #optional BOOTP filename, for use with tftp=
3513 #
3514 # @dhcpstart: #optional the first of the 16 IPs the built-in DHCP server can
3515 # assign
3516 #
3517 # @dns: #optional guest-visible address of the virtual nameserver
3518 #
3519 # @dnssearch: #optional list of DNS suffixes to search, passed as DHCP option
3520 # to the guest
3521 #
3522 # @ipv6-prefix: #optional IPv6 network prefix (default is fec0::) (since
3523 # 2.6). The network prefix is given in the usual
3524 # hexadecimal IPv6 address notation.
3525 #
3526 # @ipv6-prefixlen: #optional IPv6 network prefix length (default is 64)
3527 # (since 2.6)
3528 #
3529 # @ipv6-host: #optional guest-visible IPv6 address of the host (since 2.6)
3530 #
3531 # @ipv6-dns: #optional guest-visible IPv6 address of the virtual
3532 # nameserver (since 2.6)
3533 #
3534 # @smb: #optional root directory of the built-in SMB server
3535 #
3536 # @smbserver: #optional IP address of the built-in SMB server
3537 #
3538 # @hostfwd: #optional redirect incoming TCP or UDP host connections to guest
3539 # endpoints
3540 #
3541 # @guestfwd: #optional forward guest TCP connections
3542 #
3543 # Since: 1.2
3544 ##
3545 { 'struct': 'NetdevUserOptions',
3546 'data': {
3547 '*hostname': 'str',
3548 '*restrict': 'bool',
3549 '*ipv4': 'bool',
3550 '*ipv6': 'bool',
3551 '*ip': 'str',
3552 '*net': 'str',
3553 '*host': 'str',
3554 '*tftp': 'str',
3555 '*bootfile': 'str',
3556 '*dhcpstart': 'str',
3557 '*dns': 'str',
3558 '*dnssearch': ['String'],
3559 '*ipv6-prefix': 'str',
3560 '*ipv6-prefixlen': 'int',
3561 '*ipv6-host': 'str',
3562 '*ipv6-dns': 'str',
3563 '*smb': 'str',
3564 '*smbserver': 'str',
3565 '*hostfwd': ['String'],
3566 '*guestfwd': ['String'] } }
3567
3568 ##
3569 # @NetdevTapOptions:
3570 #
3571 # Connect the host TAP network interface name to the VLAN.
3572 #
3573 # @ifname: #optional interface name
3574 #
3575 # @fd: #optional file descriptor of an already opened tap
3576 #
3577 # @fds: #optional multiple file descriptors of already opened multiqueue capable
3578 # tap
3579 #
3580 # @script: #optional script to initialize the interface
3581 #
3582 # @downscript: #optional script to shut down the interface
3583 #
3584 # @br: #optional bridge name (since 2.8)
3585 #
3586 # @helper: #optional command to execute to configure bridge
3587 #
3588 # @sndbuf: #optional send buffer limit. Understands [TGMKkb] suffixes.
3589 #
3590 # @vnet_hdr: #optional enable the IFF_VNET_HDR flag on the tap interface
3591 #
3592 # @vhost: #optional enable vhost-net network accelerator
3593 #
3594 # @vhostfd: #optional file descriptor of an already opened vhost net device
3595 #
3596 # @vhostfds: #optional file descriptors of multiple already opened vhost net
3597 # devices
3598 #
3599 # @vhostforce: #optional vhost on for non-MSIX virtio guests
3600 #
3601 # @queues: #optional number of queues to be created for multiqueue capable tap
3602 #
3603 # @poll-us: #optional maximum number of microseconds that could
3604 # be spent on busy polling for tap (since 2.7)
3605 #
3606 # Since: 1.2
3607 ##
3608 { 'struct': 'NetdevTapOptions',
3609 'data': {
3610 '*ifname': 'str',
3611 '*fd': 'str',
3612 '*fds': 'str',
3613 '*script': 'str',
3614 '*downscript': 'str',
3615 '*br': 'str',
3616 '*helper': 'str',
3617 '*sndbuf': 'size',
3618 '*vnet_hdr': 'bool',
3619 '*vhost': 'bool',
3620 '*vhostfd': 'str',
3621 '*vhostfds': 'str',
3622 '*vhostforce': 'bool',
3623 '*queues': 'uint32',
3624 '*poll-us': 'uint32'} }
3625
3626 ##
3627 # @NetdevSocketOptions:
3628 #
3629 # Connect the VLAN to a remote VLAN in another QEMU virtual machine using a TCP
3630 # socket connection.
3631 #
3632 # @fd: #optional file descriptor of an already opened socket
3633 #
3634 # @listen: #optional port number, and optional hostname, to listen on
3635 #
3636 # @connect: #optional port number, and optional hostname, to connect to
3637 #
3638 # @mcast: #optional UDP multicast address and port number
3639 #
3640 # @localaddr: #optional source address and port for multicast and udp packets
3641 #
3642 # @udp: #optional UDP unicast address and port number
3643 #
3644 # Since: 1.2
3645 ##
3646 { 'struct': 'NetdevSocketOptions',
3647 'data': {
3648 '*fd': 'str',
3649 '*listen': 'str',
3650 '*connect': 'str',
3651 '*mcast': 'str',
3652 '*localaddr': 'str',
3653 '*udp': 'str' } }
3654
3655 ##
3656 # @NetdevL2TPv3Options:
3657 #
3658 # Connect the VLAN to Ethernet over L2TPv3 Static tunnel
3659 #
3660 # @src: source address
3661 #
3662 # @dst: destination address
3663 #
3664 # @srcport: #optional source port - mandatory for udp, optional for ip
3665 #
3666 # @dstport: #optional destination port - mandatory for udp, optional for ip
3667 #
3668 # @ipv6: #optional - force the use of ipv6
3669 #
3670 # @udp: #optional - use the udp version of l2tpv3 encapsulation
3671 #
3672 # @cookie64: #optional - use 64 bit coookies
3673 #
3674 # @counter: #optional have sequence counter
3675 #
3676 # @pincounter: #optional pin sequence counter to zero -
3677 # workaround for buggy implementations or
3678 # networks with packet reorder
3679 #
3680 # @txcookie: #optional 32 or 64 bit transmit cookie
3681 #
3682 # @rxcookie: #optional 32 or 64 bit receive cookie
3683 #
3684 # @txsession: 32 bit transmit session
3685 #
3686 # @rxsession: #optional 32 bit receive session - if not specified
3687 # set to the same value as transmit
3688 #
3689 # @offset: #optional additional offset - allows the insertion of
3690 # additional application-specific data before the packet payload
3691 #
3692 # Since: 2.1
3693 ##
3694 { 'struct': 'NetdevL2TPv3Options',
3695 'data': {
3696 'src': 'str',
3697 'dst': 'str',
3698 '*srcport': 'str',
3699 '*dstport': 'str',
3700 '*ipv6': 'bool',
3701 '*udp': 'bool',
3702 '*cookie64': 'bool',
3703 '*counter': 'bool',
3704 '*pincounter': 'bool',
3705 '*txcookie': 'uint64',
3706 '*rxcookie': 'uint64',
3707 'txsession': 'uint32',
3708 '*rxsession': 'uint32',
3709 '*offset': 'uint32' } }
3710
3711 ##
3712 # @NetdevVdeOptions:
3713 #
3714 # Connect the VLAN to a vde switch running on the host.
3715 #
3716 # @sock: #optional socket path
3717 #
3718 # @port: #optional port number
3719 #
3720 # @group: #optional group owner of socket
3721 #
3722 # @mode: #optional permissions for socket
3723 #
3724 # Since: 1.2
3725 ##
3726 { 'struct': 'NetdevVdeOptions',
3727 'data': {
3728 '*sock': 'str',
3729 '*port': 'uint16',
3730 '*group': 'str',
3731 '*mode': 'uint16' } }
3732
3733 ##
3734 # @NetdevDumpOptions:
3735 #
3736 # Dump VLAN network traffic to a file.
3737 #
3738 # @len: #optional per-packet size limit (64k default). Understands [TGMKkb]
3739 # suffixes.
3740 #
3741 # @file: #optional dump file path (default is qemu-vlan0.pcap)
3742 #
3743 # Since: 1.2
3744 ##
3745 { 'struct': 'NetdevDumpOptions',
3746 'data': {
3747 '*len': 'size',
3748 '*file': 'str' } }
3749
3750 ##
3751 # @NetdevBridgeOptions:
3752 #
3753 # Connect a host TAP network interface to a host bridge device.
3754 #
3755 # @br: #optional bridge name
3756 #
3757 # @helper: #optional command to execute to configure bridge
3758 #
3759 # Since: 1.2
3760 ##
3761 { 'struct': 'NetdevBridgeOptions',
3762 'data': {
3763 '*br': 'str',
3764 '*helper': 'str' } }
3765
3766 ##
3767 # @NetdevHubPortOptions:
3768 #
3769 # Connect two or more net clients through a software hub.
3770 #
3771 # @hubid: hub identifier number
3772 #
3773 # Since: 1.2
3774 ##
3775 { 'struct': 'NetdevHubPortOptions',
3776 'data': {
3777 'hubid': 'int32' } }
3778
3779 ##
3780 # @NetdevNetmapOptions:
3781 #
3782 # Connect a client to a netmap-enabled NIC or to a VALE switch port
3783 #
3784 # @ifname: Either the name of an existing network interface supported by
3785 # netmap, or the name of a VALE port (created on the fly).
3786 # A VALE port name is in the form 'valeXXX:YYY', where XXX and
3787 # YYY are non-negative integers. XXX identifies a switch and
3788 # YYY identifies a port of the switch. VALE ports having the
3789 # same XXX are therefore connected to the same switch.
3790 #
3791 # @devname: #optional path of the netmap device (default: '/dev/netmap').
3792 #
3793 # Since: 2.0
3794 ##
3795 { 'struct': 'NetdevNetmapOptions',
3796 'data': {
3797 'ifname': 'str',
3798 '*devname': 'str' } }
3799
3800 ##
3801 # @NetdevVhostUserOptions:
3802 #
3803 # Vhost-user network backend
3804 #
3805 # @chardev: name of a unix socket chardev
3806 #
3807 # @vhostforce: #optional vhost on for non-MSIX virtio guests (default: false).
3808 #
3809 # @queues: #optional number of queues to be created for multiqueue vhost-user
3810 # (default: 1) (Since 2.5)
3811 #
3812 # Since: 2.1
3813 ##
3814 { 'struct': 'NetdevVhostUserOptions',
3815 'data': {
3816 'chardev': 'str',
3817 '*vhostforce': 'bool',
3818 '*queues': 'int' } }
3819
3820 ##
3821 # @NetClientDriver:
3822 #
3823 # Available netdev drivers.
3824 #
3825 # Since: 2.7
3826 ##
3827 { 'enum': 'NetClientDriver',
3828 'data': [ 'none', 'nic', 'user', 'tap', 'l2tpv3', 'socket', 'vde', 'dump',
3829 'bridge', 'hubport', 'netmap', 'vhost-user' ] }
3830
3831 ##
3832 # @Netdev:
3833 #
3834 # Captures the configuration of a network device.
3835 #
3836 # @id: identifier for monitor commands.
3837 #
3838 # @type: Specify the driver used for interpreting remaining arguments.
3839 #
3840 # Since: 1.2
3841 #
3842 # 'l2tpv3' - since 2.1
3843 ##
3844 { 'union': 'Netdev',
3845 'base': { 'id': 'str', 'type': 'NetClientDriver' },
3846 'discriminator': 'type',
3847 'data': {
3848 'none': 'NetdevNoneOptions',
3849 'nic': 'NetLegacyNicOptions',
3850 'user': 'NetdevUserOptions',
3851 'tap': 'NetdevTapOptions',
3852 'l2tpv3': 'NetdevL2TPv3Options',
3853 'socket': 'NetdevSocketOptions',
3854 'vde': 'NetdevVdeOptions',
3855 'dump': 'NetdevDumpOptions',
3856 'bridge': 'NetdevBridgeOptions',
3857 'hubport': 'NetdevHubPortOptions',
3858 'netmap': 'NetdevNetmapOptions',
3859 'vhost-user': 'NetdevVhostUserOptions' } }
3860
3861 ##
3862 # @NetLegacy:
3863 #
3864 # Captures the configuration of a network device; legacy.
3865 #
3866 # @vlan: #optional vlan number
3867 #
3868 # @id: #optional identifier for monitor commands
3869 #
3870 # @name: #optional identifier for monitor commands, ignored if @id is present
3871 #
3872 # @opts: device type specific properties (legacy)
3873 #
3874 # Since: 1.2
3875 ##
3876 { 'struct': 'NetLegacy',
3877 'data': {
3878 '*vlan': 'int32',
3879 '*id': 'str',
3880 '*name': 'str',
3881 'opts': 'NetLegacyOptions' } }
3882
3883 ##
3884 # @NetLegacyOptions:
3885 #
3886 # Like Netdev, but for use only by the legacy command line options
3887 #
3888 # Since: 1.2
3889 ##
3890 { 'union': 'NetLegacyOptions',
3891 'data': {
3892 'none': 'NetdevNoneOptions',
3893 'nic': 'NetLegacyNicOptions',
3894 'user': 'NetdevUserOptions',
3895 'tap': 'NetdevTapOptions',
3896 'l2tpv3': 'NetdevL2TPv3Options',
3897 'socket': 'NetdevSocketOptions',
3898 'vde': 'NetdevVdeOptions',
3899 'dump': 'NetdevDumpOptions',
3900 'bridge': 'NetdevBridgeOptions',
3901 'netmap': 'NetdevNetmapOptions',
3902 'vhost-user': 'NetdevVhostUserOptions' } }
3903
3904 ##
3905 # @NetFilterDirection:
3906 #
3907 # Indicates whether a netfilter is attached to a netdev's transmit queue or
3908 # receive queue or both.
3909 #
3910 # @all: the filter is attached both to the receive and the transmit
3911 # queue of the netdev (default).
3912 #
3913 # @rx: the filter is attached to the receive queue of the netdev,
3914 # where it will receive packets sent to the netdev.
3915 #
3916 # @tx: the filter is attached to the transmit queue of the netdev,
3917 # where it will receive packets sent by the netdev.
3918 #
3919 # Since: 2.5
3920 ##
3921 { 'enum': 'NetFilterDirection',
3922 'data': [ 'all', 'rx', 'tx' ] }
3923
3924 ##
3925 # @InetSocketAddress:
3926 #
3927 # Captures a socket address or address range in the Internet namespace.
3928 #
3929 # @host: host part of the address
3930 #
3931 # @port: port part of the address, or lowest port if @to is present
3932 #
3933 # @to: highest port to try
3934 #
3935 # @ipv4: whether to accept IPv4 addresses, default try both IPv4 and IPv6
3936 # #optional
3937 #
3938 # @ipv6: whether to accept IPv6 addresses, default try both IPv4 and IPv6
3939 # #optional
3940 #
3941 # Since: 1.3
3942 ##
3943 { 'struct': 'InetSocketAddress',
3944 'data': {
3945 'host': 'str',
3946 'port': 'str',
3947 '*to': 'uint16',
3948 '*ipv4': 'bool',
3949 '*ipv6': 'bool' } }
3950
3951 ##
3952 # @UnixSocketAddress:
3953 #
3954 # Captures a socket address in the local ("Unix socket") namespace.
3955 #
3956 # @path: filesystem path to use
3957 #
3958 # Since: 1.3
3959 ##
3960 { 'struct': 'UnixSocketAddress',
3961 'data': {
3962 'path': 'str' } }
3963
3964 ##
3965 # @VsockSocketAddress:
3966 #
3967 # Captures a socket address in the vsock namespace.
3968 #
3969 # @cid: unique host identifier
3970 # @port: port
3971 #
3972 # Note: string types are used to allow for possible future hostname or
3973 # service resolution support.
3974 #
3975 # Since: 2.8
3976 ##
3977 { 'struct': 'VsockSocketAddress',
3978 'data': {
3979 'cid': 'str',
3980 'port': 'str' } }
3981
3982 ##
3983 # @SocketAddress:
3984 #
3985 # Captures the address of a socket, which could also be a named file descriptor
3986 #
3987 # Since: 1.3
3988 ##
3989 { 'union': 'SocketAddress',
3990 'data': {
3991 'inet': 'InetSocketAddress',
3992 'unix': 'UnixSocketAddress',
3993 'vsock': 'VsockSocketAddress',
3994 'fd': 'String' } }
3995
3996 ##
3997 # @getfd:
3998 #
3999 # Receive a file descriptor via SCM rights and assign it a name
4000 #
4001 # @fdname: file descriptor name
4002 #
4003 # Returns: Nothing on success
4004 #
4005 # Since: 0.14.0
4006 #
4007 # Notes: If @fdname already exists, the file descriptor assigned to
4008 # it will be closed and replaced by the received file
4009 # descriptor.
4010 #
4011 # The 'closefd' command can be used to explicitly close the
4012 # file descriptor when it is no longer needed.
4013 #
4014 # Example:
4015 #
4016 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
4017 # <- { "return": {} }
4018 #
4019 ##
4020 { 'command': 'getfd', 'data': {'fdname': 'str'} }
4021
4022 ##
4023 # @closefd:
4024 #
4025 # Close a file descriptor previously passed via SCM rights
4026 #
4027 # @fdname: file descriptor name
4028 #
4029 # Returns: Nothing on success
4030 #
4031 # Since: 0.14.0
4032 #
4033 # Example:
4034 #
4035 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
4036 # <- { "return": {} }
4037 #
4038 ##
4039 { 'command': 'closefd', 'data': {'fdname': 'str'} }
4040
4041 ##
4042 # @MachineInfo:
4043 #
4044 # Information describing a machine.
4045 #
4046 # @name: the name of the machine
4047 #
4048 # @alias: #optional an alias for the machine name
4049 #
4050 # @is-default: #optional whether the machine is default
4051 #
4052 # @cpu-max: maximum number of CPUs supported by the machine type
4053 # (since 1.5.0)
4054 #
4055 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
4056 #
4057 # Since: 1.2.0
4058 ##
4059 { 'struct': 'MachineInfo',
4060 'data': { 'name': 'str', '*alias': 'str',
4061 '*is-default': 'bool', 'cpu-max': 'int',
4062 'hotpluggable-cpus': 'bool'} }
4063
4064 ##
4065 # @query-machines:
4066 #
4067 # Return a list of supported machines
4068 #
4069 # Returns: a list of MachineInfo
4070 #
4071 # Since: 1.2.0
4072 ##
4073 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
4074
4075 ##
4076 # @CpuDefinitionInfo:
4077 #
4078 # Virtual CPU definition.
4079 #
4080 # @name: the name of the CPU definition
4081 #
4082 # @migration-safe: #optional whether a CPU definition can be safely used for
4083 # migration in combination with a QEMU compatibility machine
4084 # when migrating between different QMU versions and between
4085 # hosts with different sets of (hardware or software)
4086 # capabilities. If not provided, information is not available
4087 # and callers should not assume the CPU definition to be
4088 # migration-safe. (since 2.8)
4089 #
4090 # @static: whether a CPU definition is static and will not change depending on
4091 # QEMU version, machine type, machine options and accelerator options.
4092 # A static model is always migration-safe. (since 2.8)
4093 #
4094 # @unavailable-features: #optional List of properties that prevent
4095 # the CPU model from running in the current
4096 # host. (since 2.8)
4097 # @typename: Type name that can be used as argument to @device-list-properties,
4098 # to introspect properties configurable using -cpu or -global.
4099 # (since 2.9)
4100 #
4101 # @unavailable-features is a list of QOM property names that
4102 # represent CPU model attributes that prevent the CPU from running.
4103 # If the QOM property is read-only, that means there's no known
4104 # way to make the CPU model run in the current host. Implementations
4105 # that choose not to provide specific information return the
4106 # property name "type".
4107 # If the property is read-write, it means that it MAY be possible
4108 # to run the CPU model in the current host if that property is
4109 # changed. Management software can use it as hints to suggest or
4110 # choose an alternative for the user, or just to generate meaningful
4111 # error messages explaining why the CPU model can't be used.
4112 # If @unavailable-features is an empty list, the CPU model is
4113 # runnable using the current host and machine-type.
4114 # If @unavailable-features is not present, runnability
4115 # information for the CPU is not available.
4116 #
4117 # Since: 1.2.0
4118 ##
4119 { 'struct': 'CpuDefinitionInfo',
4120 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
4121 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
4122
4123 ##
4124 # @query-cpu-definitions:
4125 #
4126 # Return a list of supported virtual CPU definitions
4127 #
4128 # Returns: a list of CpuDefInfo
4129 #
4130 # Since: 1.2.0
4131 ##
4132 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
4133
4134 ##
4135 # @CpuModelInfo:
4136 #
4137 # Virtual CPU model.
4138 #
4139 # A CPU model consists of the name of a CPU definition, to which
4140 # delta changes are applied (e.g. features added/removed). Most magic values
4141 # that an architecture might require should be hidden behind the name.
4142 # However, if required, architectures can expose relevant properties.
4143 #
4144 # @name: the name of the CPU definition the model is based on
4145 # @props: #optional a dictionary of QOM properties to be applied
4146 #
4147 # Since: 2.8.0
4148 ##
4149 { 'struct': 'CpuModelInfo',
4150 'data': { 'name': 'str',
4151 '*props': 'any' } }
4152
4153 ##
4154 # @CpuModelExpansionType:
4155 #
4156 # An enumeration of CPU model expansion types.
4157 #
4158 # @static: Expand to a static CPU model, a combination of a static base
4159 # model name and property delta changes. As the static base model will
4160 # never change, the expanded CPU model will be the same, independant of
4161 # independent of QEMU version, machine type, machine options, and
4162 # accelerator options. Therefore, the resulting model can be used by
4163 # tooling without having to specify a compatibility machine - e.g. when
4164 # displaying the "host" model. static CPU models are migration-safe.
4165 #
4166 # @full: Expand all properties. The produced model is not guaranteed to be
4167 # migration-safe, but allows tooling to get an insight and work with
4168 # model details.
4169 #
4170 # Since: 2.8.0
4171 ##
4172 { 'enum': 'CpuModelExpansionType',
4173 'data': [ 'static', 'full' ] }
4174
4175
4176 ##
4177 # @CpuModelExpansionInfo:
4178 #
4179 # The result of a cpu model expansion.
4180 #
4181 # @model: the expanded CpuModelInfo.
4182 #
4183 # Since: 2.8.0
4184 ##
4185 { 'struct': 'CpuModelExpansionInfo',
4186 'data': { 'model': 'CpuModelInfo' } }
4187
4188
4189 ##
4190 # @query-cpu-model-expansion:
4191 #
4192 # Expands a given CPU model (or a combination of CPU model + additional options)
4193 # to different granularities, allowing tooling to get an understanding what a
4194 # specific CPU model looks like in QEMU under a certain configuration.
4195 #
4196 # This interface can be used to query the "host" CPU model.
4197 #
4198 # The data returned by this command may be affected by:
4199 #
4200 # * QEMU version: CPU models may look different depending on the QEMU version.
4201 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4202 # * machine-type: CPU model may look different depending on the machine-type.
4203 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4204 # * machine options (including accelerator): in some architectures, CPU models
4205 # may look different depending on machine and accelerator options. (Except for
4206 # CPU models reported as "static" in query-cpu-definitions.)
4207 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4208 # global properties may affect expansion of CPU models. Using
4209 # query-cpu-model-expansion while using these is not advised.
4210 #
4211 # Some architectures may not support all expansion types. s390x supports
4212 # "full" and "static".
4213 #
4214 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
4215 # not supported, if the model cannot be expanded, if the model contains
4216 # an unknown CPU definition name, unknown properties or properties
4217 # with a wrong type. Also returns an error if an expansion type is
4218 # not supported.
4219 #
4220 # Since: 2.8.0
4221 ##
4222 { 'command': 'query-cpu-model-expansion',
4223 'data': { 'type': 'CpuModelExpansionType',
4224 'model': 'CpuModelInfo' },
4225 'returns': 'CpuModelExpansionInfo' }
4226
4227 ##
4228 # @CpuModelCompareResult:
4229 #
4230 # An enumeration of CPU model comparation results. The result is usually
4231 # calculated using e.g. CPU features or CPU generations.
4232 #
4233 # @incompatible: If model A is incompatible to model B, model A is not
4234 # guaranteed to run where model B runs and the other way around.
4235 #
4236 # @identical: If model A is identical to model B, model A is guaranteed to run
4237 # where model B runs and the other way around.
4238 #
4239 # @superset: If model A is a superset of model B, model B is guaranteed to run
4240 # where model A runs. There are no guarantees about the other way.
4241 #
4242 # @subset: If model A is a subset of model B, model A is guaranteed to run
4243 # where model B runs. There are no guarantees about the other way.
4244 #
4245 # Since: 2.8.0
4246 ##
4247 { 'enum': 'CpuModelCompareResult',
4248 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
4249
4250 ##
4251 # @CpuModelCompareInfo:
4252 #
4253 # The result of a CPU model comparison.
4254 #
4255 # @result: The result of the compare operation.
4256 # @responsible-properties: List of properties that led to the comparison result
4257 # not being identical.
4258 #
4259 # @responsible-properties is a list of QOM property names that led to
4260 # both CPUs not being detected as identical. For identical models, this
4261 # list is empty.
4262 # If a QOM property is read-only, that means there's no known way to make the
4263 # CPU models identical. If the special property name "type" is included, the
4264 # models are by definition not identical and cannot be made identical.
4265 #
4266 # Since: 2.8.0
4267 ##
4268 { 'struct': 'CpuModelCompareInfo',
4269 'data': {'result': 'CpuModelCompareResult',
4270 'responsible-properties': ['str']
4271 }
4272 }
4273
4274 ##
4275 # @query-cpu-model-comparison:
4276 #
4277 # Compares two CPU models, returning how they compare in a specific
4278 # configuration. The results indicates how both models compare regarding
4279 # runnability. This result can be used by tooling to make decisions if a
4280 # certain CPU model will run in a certain configuration or if a compatible
4281 # CPU model has to be created by baselining.
4282 #
4283 # Usually, a CPU model is compared against the maximum possible CPU model
4284 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
4285 # model is identical or a subset, it will run in that configuration.
4286 #
4287 # The result returned by this command may be affected by:
4288 #
4289 # * QEMU version: CPU models may look different depending on the QEMU version.
4290 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4291 # * machine-type: CPU model may look different depending on the machine-type.
4292 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4293 # * machine options (including accelerator): in some architectures, CPU models
4294 # may look different depending on machine and accelerator options. (Except for
4295 # CPU models reported as "static" in query-cpu-definitions.)
4296 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4297 # global properties may affect expansion of CPU models. Using
4298 # query-cpu-model-expansion while using these is not advised.
4299 #
4300 # Some architectures may not support comparing CPU models. s390x supports
4301 # comparing CPU models.
4302 #
4303 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
4304 # not supported, if a model cannot be used, if a model contains
4305 # an unknown cpu definition name, unknown properties or properties
4306 # with wrong types.
4307 #
4308 # Since: 2.8.0
4309 ##
4310 { 'command': 'query-cpu-model-comparison',
4311 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
4312 'returns': 'CpuModelCompareInfo' }
4313
4314 ##
4315 # @CpuModelBaselineInfo:
4316 #
4317 # The result of a CPU model baseline.
4318 #
4319 # @model: the baselined CpuModelInfo.
4320 #
4321 # Since: 2.8.0
4322 ##
4323 { 'struct': 'CpuModelBaselineInfo',
4324 'data': { 'model': 'CpuModelInfo' } }
4325
4326 ##
4327 # @query-cpu-model-baseline:
4328 #
4329 # Baseline two CPU models, creating a compatible third model. The created
4330 # model will always be a static, migration-safe CPU model (see "static"
4331 # CPU model expansion for details).
4332 #
4333 # This interface can be used by tooling to create a compatible CPU model out
4334 # two CPU models. The created CPU model will be identical to or a subset of
4335 # both CPU models when comparing them. Therefore, the created CPU model is
4336 # guaranteed to run where the given CPU models run.
4337 #
4338 # The result returned by this command may be affected by:
4339 #
4340 # * QEMU version: CPU models may look different depending on the QEMU version.
4341 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4342 # * machine-type: CPU model may look different depending on the machine-type.
4343 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4344 # * machine options (including accelerator): in some architectures, CPU models
4345 # may look different depending on machine and accelerator options. (Except for
4346 # CPU models reported as "static" in query-cpu-definitions.)
4347 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4348 # global properties may affect expansion of CPU models. Using
4349 # query-cpu-model-expansion while using these is not advised.
4350 #
4351 # Some architectures may not support baselining CPU models. s390x supports
4352 # baselining CPU models.
4353 #
4354 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
4355 # not supported, if a model cannot be used, if a model contains
4356 # an unknown cpu definition name, unknown properties or properties
4357 # with wrong types.
4358 #
4359 # Since: 2.8.0
4360 ##
4361 { 'command': 'query-cpu-model-baseline',
4362 'data': { 'modela': 'CpuModelInfo',
4363 'modelb': 'CpuModelInfo' },
4364 'returns': 'CpuModelBaselineInfo' }
4365
4366 ##
4367 # @AddfdInfo:
4368 #
4369 # Information about a file descriptor that was added to an fd set.
4370 #
4371 # @fdset-id: The ID of the fd set that @fd was added to.
4372 #
4373 # @fd: The file descriptor that was received via SCM rights and
4374 # added to the fd set.
4375 #
4376 # Since: 1.2.0
4377 ##
4378 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
4379
4380 ##
4381 # @add-fd:
4382 #
4383 # Add a file descriptor, that was passed via SCM rights, to an fd set.
4384 #
4385 # @fdset-id: #optional The ID of the fd set to add the file descriptor to.
4386 #
4387 # @opaque: #optional A free-form string that can be used to describe the fd.
4388 #
4389 # Returns: @AddfdInfo on success
4390 #
4391 # If file descriptor was not received, FdNotSupplied
4392 #
4393 # If @fdset-id is a negative value, InvalidParameterValue
4394 #
4395 # Notes: The list of fd sets is shared by all monitor connections.
4396 #
4397 # If @fdset-id is not specified, a new fd set will be created.
4398 #
4399 # Since: 1.2.0
4400 #
4401 # Example:
4402 #
4403 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
4404 # <- { "return": { "fdset-id": 1, "fd": 3 } }
4405 #
4406 ##
4407 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
4408 'returns': 'AddfdInfo' }
4409
4410 ##
4411 # @remove-fd:
4412 #
4413 # Remove a file descriptor from an fd set.
4414 #
4415 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
4416 #
4417 # @fd: #optional The file descriptor that is to be removed.
4418 #
4419 # Returns: Nothing on success
4420 # If @fdset-id or @fd is not found, FdNotFound
4421 #
4422 # Since: 1.2.0
4423 #
4424 # Notes: The list of fd sets is shared by all monitor connections.
4425 #
4426 # If @fd is not specified, all file descriptors in @fdset-id
4427 # will be removed.
4428 #
4429 # Example:
4430 #
4431 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
4432 # <- { "return": {} }
4433 #
4434 ##
4435 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
4436
4437 ##
4438 # @FdsetFdInfo:
4439 #
4440 # Information about a file descriptor that belongs to an fd set.
4441 #
4442 # @fd: The file descriptor value.
4443 #
4444 # @opaque: #optional A free-form string that can be used to describe the fd.
4445 #
4446 # Since: 1.2.0
4447 ##
4448 { 'struct': 'FdsetFdInfo',
4449 'data': {'fd': 'int', '*opaque': 'str'} }
4450
4451 ##
4452 # @FdsetInfo:
4453 #
4454 # Information about an fd set.
4455 #
4456 # @fdset-id: The ID of the fd set.
4457 #
4458 # @fds: A list of file descriptors that belong to this fd set.
4459 #
4460 # Since: 1.2.0
4461 ##
4462 { 'struct': 'FdsetInfo',
4463 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
4464
4465 ##
4466 # @query-fdsets:
4467 #
4468 # Return information describing all fd sets.
4469 #
4470 # Returns: A list of @FdsetInfo
4471 #
4472 # Since: 1.2.0
4473 #
4474 # Note: The list of fd sets is shared by all monitor connections.
4475 #
4476 # Example:
4477 #
4478 # -> { "execute": "query-fdsets" }
4479 # <- { "return": [
4480 # {
4481 # "fds": [
4482 # {
4483 # "fd": 30,
4484 # "opaque": "rdonly:/path/to/file"
4485 # },
4486 # {
4487 # "fd": 24,
4488 # "opaque": "rdwr:/path/to/file"
4489 # }
4490 # ],
4491 # "fdset-id": 1
4492 # },
4493 # {
4494 # "fds": [
4495 # {
4496 # "fd": 28
4497 # },
4498 # {
4499 # "fd": 29
4500 # }
4501 # ],
4502 # "fdset-id": 0
4503 # }
4504 # ]
4505 # }
4506 #
4507 ##
4508 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
4509
4510 ##
4511 # @TargetInfo:
4512 #
4513 # Information describing the QEMU target.
4514 #
4515 # @arch: the target architecture (eg "x86_64", "i386", etc)
4516 #
4517 # Since: 1.2.0
4518 ##
4519 { 'struct': 'TargetInfo',
4520 'data': { 'arch': 'str' } }
4521
4522 ##
4523 # @query-target:
4524 #
4525 # Return information about the target for this QEMU
4526 #
4527 # Returns: TargetInfo
4528 #
4529 # Since: 1.2.0
4530 ##
4531 { 'command': 'query-target', 'returns': 'TargetInfo' }
4532
4533 ##
4534 # @QKeyCode:
4535 #
4536 # An enumeration of key name.
4537 #
4538 # This is used by the @send-key command.
4539 #
4540 # @unmapped: since 2.0
4541 # @pause: since 2.0
4542 # @ro: since 2.4
4543 # @kp_comma: since 2.4
4544 # @kp_equals: since 2.6
4545 # @power: since 2.6
4546 # @hiragana: since 2.9
4547 # @henkan: since 2.9
4548 # @yen: since 2.9
4549 #
4550 # Since: 1.3.0
4551 #
4552 ##
4553 { 'enum': 'QKeyCode',
4554 'data': [ 'unmapped',
4555 'shift', 'shift_r', 'alt', 'alt_r', 'altgr', 'altgr_r', 'ctrl',
4556 'ctrl_r', 'menu', 'esc', '1', '2', '3', '4', '5', '6', '7', '8',
4557 '9', '0', 'minus', 'equal', 'backspace', 'tab', 'q', 'w', 'e',
4558 'r', 't', 'y', 'u', 'i', 'o', 'p', 'bracket_left', 'bracket_right',
4559 'ret', 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'semicolon',
4560 'apostrophe', 'grave_accent', 'backslash', 'z', 'x', 'c', 'v', 'b',
4561 'n', 'm', 'comma', 'dot', 'slash', 'asterisk', 'spc', 'caps_lock',
4562 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10',
4563 'num_lock', 'scroll_lock', 'kp_divide', 'kp_multiply',
4564 'kp_subtract', 'kp_add', 'kp_enter', 'kp_decimal', 'sysrq', 'kp_0',
4565 'kp_1', 'kp_2', 'kp_3', 'kp_4', 'kp_5', 'kp_6', 'kp_7', 'kp_8',
4566 'kp_9', 'less', 'f11', 'f12', 'print', 'home', 'pgup', 'pgdn', 'end',
4567 'left', 'up', 'down', 'right', 'insert', 'delete', 'stop', 'again',
4568 'props', 'undo', 'front', 'copy', 'open', 'paste', 'find', 'cut',
4569 'lf', 'help', 'meta_l', 'meta_r', 'compose', 'pause',
4570 'ro', 'hiragana', 'henkan', 'yen',
4571 'kp_comma', 'kp_equals', 'power' ] }
4572
4573 ##
4574 # @KeyValue:
4575 #
4576 # Represents a keyboard key.
4577 #
4578 # Since: 1.3.0
4579 ##
4580 { 'union': 'KeyValue',
4581 'data': {
4582 'number': 'int',
4583 'qcode': 'QKeyCode' } }
4584
4585 ##
4586 # @send-key:
4587 #
4588 # Send keys to guest.
4589 #
4590 # @keys: An array of @KeyValue elements. All @KeyValues in this array are
4591 # simultaneously sent to the guest. A @KeyValue.number value is sent
4592 # directly to the guest, while @KeyValue.qcode must be a valid
4593 # @QKeyCode value
4594 #
4595 # @hold-time: #optional time to delay key up events, milliseconds. Defaults
4596 # to 100
4597 #
4598 # Returns: Nothing on success
4599 # If key is unknown or redundant, InvalidParameter
4600 #
4601 # Since: 1.3.0
4602 #
4603 # Example:
4604 #
4605 # -> { "execute": "send-key",
4606 # "arguments": { "keys": [ { "type": "qcode", "data": "ctrl" },
4607 # { "type": "qcode", "data": "alt" },
4608 # { "type": "qcode", "data": "delete" } ] } }
4609 # <- { "return": {} }
4610 #
4611 ##
4612 { 'command': 'send-key',
4613 'data': { 'keys': ['KeyValue'], '*hold-time': 'int' } }
4614
4615 ##
4616 # @screendump:
4617 #
4618 # Write a PPM of the VGA screen to a file.
4619 #
4620 # @filename: the path of a new PPM file to store the image
4621 #
4622 # Returns: Nothing on success
4623 #
4624 # Since: 0.14.0
4625 #
4626 # Example:
4627 #
4628 # -> { "execute": "screendump",
4629 # "arguments": { "filename": "/tmp/image" } }
4630 # <- { "return": {} }
4631 #
4632 ##
4633 { 'command': 'screendump', 'data': {'filename': 'str'} }
4634
4635
4636 ##
4637 # @ChardevCommon:
4638 #
4639 # Configuration shared across all chardev backends
4640 #
4641 # @logfile: #optional The name of a logfile to save output
4642 # @logappend: #optional true to append instead of truncate
4643 # (default to false to truncate)
4644 #
4645 # Since: 2.6
4646 ##
4647 { 'struct': 'ChardevCommon', 'data': { '*logfile': 'str',
4648 '*logappend': 'bool' } }
4649
4650 ##
4651 # @ChardevFile:
4652 #
4653 # Configuration info for file chardevs.
4654 #
4655 # @in: #optional The name of the input file
4656 # @out: The name of the output file
4657 # @append: #optional Open the file in append mode (default false to
4658 # truncate) (Since 2.6)
4659 #
4660 # Since: 1.4
4661 ##
4662 { 'struct': 'ChardevFile', 'data': { '*in' : 'str',
4663 'out' : 'str',
4664 '*append': 'bool' },
4665 'base': 'ChardevCommon' }
4666
4667 ##
4668 # @ChardevHostdev:
4669 #
4670 # Configuration info for device and pipe chardevs.
4671 #
4672 # @device: The name of the special file for the device,
4673 # i.e. /dev/ttyS0 on Unix or COM1: on Windows
4674 #
4675 # Since: 1.4
4676 ##
4677 { 'struct': 'ChardevHostdev', 'data': { 'device' : 'str' },
4678 'base': 'ChardevCommon' }
4679
4680 ##
4681 # @ChardevSocket:
4682 #
4683 # Configuration info for (stream) socket chardevs.
4684 #
4685 # @addr: socket address to listen on (server=true)
4686 # or connect to (server=false)
4687 # @tls-creds: #optional the ID of the TLS credentials object (since 2.6)
4688 # @server: #optional create server socket (default: true)
4689 # @wait: #optional wait for incoming connection on server
4690 # sockets (default: false).
4691 # @nodelay: #optional set TCP_NODELAY socket option (default: false)
4692 # @telnet: #optional enable telnet protocol on server
4693 # sockets (default: false)
4694 # @reconnect: #optional For a client socket, if a socket is disconnected,
4695 # then attempt a reconnect after the given number of seconds.
4696 # Setting this to zero disables this function. (default: 0)
4697 # (Since: 2.2)
4698 #
4699 # Since: 1.4
4700 ##
4701 { 'struct': 'ChardevSocket', 'data': { 'addr' : 'SocketAddress',
4702 '*tls-creds' : 'str',
4703 '*server' : 'bool',
4704 '*wait' : 'bool',
4705 '*nodelay' : 'bool',
4706 '*telnet' : 'bool',
4707 '*reconnect' : 'int' },
4708 'base': 'ChardevCommon' }
4709
4710 ##
4711 # @ChardevUdp:
4712 #
4713 # Configuration info for datagram socket chardevs.
4714 #
4715 # @remote: remote address
4716 # @local: #optional local address
4717 #
4718 # Since: 1.5
4719 ##
4720 { 'struct': 'ChardevUdp', 'data': { 'remote' : 'SocketAddress',
4721 '*local' : 'SocketAddress' },
4722 'base': 'ChardevCommon' }
4723
4724 ##
4725 # @ChardevMux:
4726 #
4727 # Configuration info for mux chardevs.
4728 #
4729 # @chardev: name of the base chardev.
4730 #
4731 # Since: 1.5
4732 ##
4733 { 'struct': 'ChardevMux', 'data': { 'chardev' : 'str' },
4734 'base': 'ChardevCommon' }
4735
4736 ##
4737 # @ChardevStdio:
4738 #
4739 # Configuration info for stdio chardevs.
4740 #
4741 # @signal: #optional Allow signals (such as SIGINT triggered by ^C)
4742 # be delivered to qemu. Default: true in -nographic mode,
4743 # false otherwise.
4744 #
4745 # Since: 1.5
4746 ##
4747 { 'struct': 'ChardevStdio', 'data': { '*signal' : 'bool' },
4748 'base': 'ChardevCommon' }
4749
4750
4751 ##
4752 # @ChardevSpiceChannel:
4753 #
4754 # Configuration info for spice vm channel chardevs.
4755 #
4756 # @type: kind of channel (for example vdagent).
4757 #
4758 # Since: 1.5
4759 ##
4760 { 'struct': 'ChardevSpiceChannel', 'data': { 'type' : 'str' },
4761 'base': 'ChardevCommon' }
4762
4763 ##
4764 # @ChardevSpicePort:
4765 #
4766 # Configuration info for spice port chardevs.
4767 #
4768 # @fqdn: name of the channel (see docs/spice-port-fqdn.txt)
4769 #
4770 # Since: 1.5
4771 ##
4772 { 'struct': 'ChardevSpicePort', 'data': { 'fqdn' : 'str' },
4773 'base': 'ChardevCommon' }
4774
4775 ##
4776 # @ChardevVC:
4777 #
4778 # Configuration info for virtual console chardevs.
4779 #
4780 # @width: console width, in pixels
4781 # @height: console height, in pixels
4782 # @cols: console width, in chars
4783 # @rows: console height, in chars
4784 #
4785 # Since: 1.5
4786 ##
4787 { 'struct': 'ChardevVC', 'data': { '*width' : 'int',
4788 '*height' : 'int',
4789 '*cols' : 'int',
4790 '*rows' : 'int' },
4791 'base': 'ChardevCommon' }
4792
4793 ##
4794 # @ChardevRingbuf:
4795 #
4796 # Configuration info for ring buffer chardevs.
4797 #
4798 # @size: #optional ring buffer size, must be power of two, default is 65536
4799 #
4800 # Since: 1.5
4801 ##
4802 { 'struct': 'ChardevRingbuf', 'data': { '*size' : 'int' },
4803 'base': 'ChardevCommon' }
4804
4805 ##
4806 # @ChardevBackend:
4807 #
4808 # Configuration info for the new chardev backend.
4809 #
4810 # Since: 1.4 (testdev since 2.2)
4811 ##
4812 { 'union': 'ChardevBackend', 'data': { 'file' : 'ChardevFile',
4813 'serial' : 'ChardevHostdev',
4814 'parallel': 'ChardevHostdev',
4815 'pipe' : 'ChardevHostdev',
4816 'socket' : 'ChardevSocket',
4817 'udp' : 'ChardevUdp',
4818 'pty' : 'ChardevCommon',
4819 'null' : 'ChardevCommon',
4820 'mux' : 'ChardevMux',
4821 'msmouse': 'ChardevCommon',
4822 'braille': 'ChardevCommon',
4823 'testdev': 'ChardevCommon',
4824 'stdio' : 'ChardevStdio',
4825 'console': 'ChardevCommon',
4826 'spicevmc' : 'ChardevSpiceChannel',
4827 'spiceport' : 'ChardevSpicePort',
4828 'vc' : 'ChardevVC',
4829 'ringbuf': 'ChardevRingbuf',
4830 # next one is just for compatibility
4831 'memory' : 'ChardevRingbuf' } }
4832
4833 ##
4834 # @ChardevReturn:
4835 #
4836 # Return info about the chardev backend just created.
4837 #
4838 # @pty: #optional name of the slave pseudoterminal device, present if
4839 # and only if a chardev of type 'pty' was created
4840 #
4841 # Since: 1.4
4842 ##
4843 { 'struct' : 'ChardevReturn', 'data': { '*pty' : 'str' } }
4844
4845 ##
4846 # @chardev-add:
4847 #
4848 # Add a character device backend
4849 #
4850 # @id: the chardev's ID, must be unique
4851 # @backend: backend type and parameters
4852 #
4853 # Returns: ChardevReturn.
4854 #
4855 # Since: 1.4
4856 #
4857 # Example:
4858 #
4859 # -> { "execute" : "chardev-add",
4860 # "arguments" : { "id" : "foo",
4861 # "backend" : { "type" : "null", "data" : {} } } }
4862 # <- { "return": {} }
4863 #
4864 # -> { "execute" : "chardev-add",
4865 # "arguments" : { "id" : "bar",
4866 # "backend" : { "type" : "file",
4867 # "data" : { "out" : "/tmp/bar.log" } } } }
4868 # <- { "return": {} }
4869 #
4870 # -> { "execute" : "chardev-add",
4871 # "arguments" : { "id" : "baz",
4872 # "backend" : { "type" : "pty", "data" : {} } } }
4873 # <- { "return": { "pty" : "/dev/pty/42" } }
4874 #
4875 ##
4876 { 'command': 'chardev-add', 'data': {'id' : 'str',
4877 'backend' : 'ChardevBackend' },
4878 'returns': 'ChardevReturn' }
4879
4880 ##
4881 # @chardev-remove:
4882 #
4883 # Remove a character device backend
4884 #
4885 # @id: the chardev's ID, must exist and not be in use
4886 #
4887 # Returns: Nothing on success
4888 #
4889 # Since: 1.4
4890 #
4891 # Example:
4892 #
4893 # -> { "execute": "chardev-remove", "arguments": { "id" : "foo" } }
4894 # <- { "return": {} }
4895 #
4896 ##
4897 { 'command': 'chardev-remove', 'data': {'id': 'str'} }
4898
4899 ##
4900 # @TpmModel:
4901 #
4902 # An enumeration of TPM models
4903 #
4904 # @tpm-tis: TPM TIS model
4905 #
4906 # Since: 1.5
4907 ##
4908 { 'enum': 'TpmModel', 'data': [ 'tpm-tis' ] }
4909
4910 ##
4911 # @query-tpm-models:
4912 #
4913 # Return a list of supported TPM models
4914 #
4915 # Returns: a list of TpmModel
4916 #
4917 # Since: 1.5
4918 #
4919 # Example:
4920 #
4921 # -> { "execute": "query-tpm-models" }
4922 # <- { "return": [ "tpm-tis" ] }
4923 #
4924 ##
4925 { 'command': 'query-tpm-models', 'returns': ['TpmModel'] }
4926
4927 ##
4928 # @TpmType:
4929 #
4930 # An enumeration of TPM types
4931 #
4932 # @passthrough: TPM passthrough type
4933 #
4934 # Since: 1.5
4935 ##
4936 { 'enum': 'TpmType', 'data': [ 'passthrough' ] }
4937
4938 ##
4939 # @query-tpm-types:
4940 #
4941 # Return a list of supported TPM types
4942 #
4943 # Returns: a list of TpmType
4944 #
4945 # Since: 1.5
4946 #
4947 # Example:
4948 #
4949 # -> { "execute": "query-tpm-types" }
4950 # <- { "return": [ "passthrough" ] }
4951 #
4952 ##
4953 { 'command': 'query-tpm-types', 'returns': ['TpmType'] }
4954
4955 ##
4956 # @TPMPassthroughOptions:
4957 #
4958 # Information about the TPM passthrough type
4959 #
4960 # @path: #optional string describing the path used for accessing the TPM device
4961 #
4962 # @cancel-path: #optional string showing the TPM's sysfs cancel file
4963 # for cancellation of TPM commands while they are executing
4964 #
4965 # Since: 1.5
4966 ##
4967 { 'struct': 'TPMPassthroughOptions', 'data': { '*path' : 'str',
4968 '*cancel-path' : 'str'} }
4969
4970 ##
4971 # @TpmTypeOptions:
4972 #
4973 # A union referencing different TPM backend types' configuration options
4974 #
4975 # @type: 'passthrough' The configuration options for the TPM passthrough type
4976 #
4977 # Since: 1.5
4978 ##
4979 { 'union': 'TpmTypeOptions',
4980 'data': { 'passthrough' : 'TPMPassthroughOptions' } }
4981
4982 ##
4983 # @TPMInfo:
4984 #
4985 # Information about the TPM
4986 #
4987 # @id: The Id of the TPM
4988 #
4989 # @model: The TPM frontend model
4990 #
4991 # @options: The TPM (backend) type configuration options
4992 #
4993 # Since: 1.5
4994 ##
4995 { 'struct': 'TPMInfo',
4996 'data': {'id': 'str',
4997 'model': 'TpmModel',
4998 'options': 'TpmTypeOptions' } }
4999
5000 ##
5001 # @query-tpm:
5002 #
5003 # Return information about the TPM device
5004 #
5005 # Returns: @TPMInfo on success
5006 #
5007 # Since: 1.5
5008 #
5009 # Example:
5010 #
5011 # -> { "execute": "query-tpm" }
5012 # <- { "return":
5013 # [
5014 # { "model": "tpm-tis",
5015 # "options":
5016 # { "type": "passthrough",
5017 # "data":
5018 # { "cancel-path": "/sys/class/misc/tpm0/device/cancel",
5019 # "path": "/dev/tpm0"
5020 # }
5021 # },
5022 # "id": "tpm0"
5023 # }
5024 # ]
5025 # }
5026 #
5027 ##
5028 { 'command': 'query-tpm', 'returns': ['TPMInfo'] }
5029
5030 ##
5031 # @AcpiTableOptions:
5032 #
5033 # Specify an ACPI table on the command line to load.
5034 #
5035 # At most one of @file and @data can be specified. The list of files specified
5036 # by any one of them is loaded and concatenated in order. If both are omitted,
5037 # @data is implied.
5038 #
5039 # Other fields / optargs can be used to override fields of the generic ACPI
5040 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
5041 # Description Table Header. If a header field is not overridden, then the
5042 # corresponding value from the concatenated blob is used (in case of @file), or
5043 # it is filled in with a hard-coded value (in case of @data).
5044 #
5045 # String fields are copied into the matching ACPI member from lowest address
5046 # upwards, and silently truncated / NUL-padded to length.
5047 #
5048 # @sig: #optional table signature / identifier (4 bytes)
5049 #
5050 # @rev: #optional table revision number (dependent on signature, 1 byte)
5051 #
5052 # @oem_id: #optional OEM identifier (6 bytes)
5053 #
5054 # @oem_table_id: #optional OEM table identifier (8 bytes)
5055 #
5056 # @oem_rev: #optional OEM-supplied revision number (4 bytes)
5057 #
5058 # @asl_compiler_id: #optional identifier of the utility that created the table
5059 # (4 bytes)
5060 #
5061 # @asl_compiler_rev: #optional revision number of the utility that created the
5062 # table (4 bytes)
5063 #
5064 # @file: #optional colon (:) separated list of pathnames to load and
5065 # concatenate as table data. The resultant binary blob is expected to
5066 # have an ACPI table header. At least one file is required. This field
5067 # excludes @data.
5068 #
5069 # @data: #optional colon (:) separated list of pathnames to load and
5070 # concatenate as table data. The resultant binary blob must not have an
5071 # ACPI table header. At least one file is required. This field excludes
5072 # @file.
5073 #
5074 # Since: 1.5
5075 ##
5076 { 'struct': 'AcpiTableOptions',
5077 'data': {
5078 '*sig': 'str',
5079 '*rev': 'uint8',
5080 '*oem_id': 'str',
5081 '*oem_table_id': 'str',
5082 '*oem_rev': 'uint32',
5083 '*asl_compiler_id': 'str',
5084 '*asl_compiler_rev': 'uint32',
5085 '*file': 'str',
5086 '*data': 'str' }}
5087
5088 ##
5089 # @CommandLineParameterType:
5090 #
5091 # Possible types for an option parameter.
5092 #
5093 # @string: accepts a character string
5094 #
5095 # @boolean: accepts "on" or "off"
5096 #
5097 # @number: accepts a number
5098 #
5099 # @size: accepts a number followed by an optional suffix (K)ilo,
5100 # (M)ega, (G)iga, (T)era
5101 #
5102 # Since: 1.5
5103 ##
5104 { 'enum': 'CommandLineParameterType',
5105 'data': ['string', 'boolean', 'number', 'size'] }
5106
5107 ##
5108 # @CommandLineParameterInfo:
5109 #
5110 # Details about a single parameter of a command line option.
5111 #
5112 # @name: parameter name
5113 #
5114 # @type: parameter @CommandLineParameterType
5115 #
5116 # @help: #optional human readable text string, not suitable for parsing.
5117 #
5118 # @default: #optional default value string (since 2.1)
5119 #
5120 # Since: 1.5
5121 ##
5122 { 'struct': 'CommandLineParameterInfo',
5123 'data': { 'name': 'str',
5124 'type': 'CommandLineParameterType',
5125 '*help': 'str',
5126 '*default': 'str' } }
5127
5128 ##
5129 # @CommandLineOptionInfo:
5130 #
5131 # Details about a command line option, including its list of parameter details
5132 #
5133 # @option: option name
5134 #
5135 # @parameters: an array of @CommandLineParameterInfo
5136 #
5137 # Since: 1.5
5138 ##
5139 { 'struct': 'CommandLineOptionInfo',
5140 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
5141
5142 ##
5143 # @query-command-line-options:
5144 #
5145 # Query command line option schema.
5146 #
5147 # @option: #optional option name
5148 #
5149 # Returns: list of @CommandLineOptionInfo for all options (or for the given
5150 # @option). Returns an error if the given @option doesn't exist.
5151 #
5152 # Since: 1.5
5153 #
5154 # Example:
5155 #
5156 # -> { "execute": "query-command-line-options",
5157 # "arguments": { "option": "option-rom" } }
5158 # <- { "return": [
5159 # {
5160 # "parameters": [
5161 # {
5162 # "name": "romfile",
5163 # "type": "string"
5164 # },
5165 # {
5166 # "name": "bootindex",
5167 # "type": "number"
5168 # }
5169 # ],
5170 # "option": "option-rom"
5171 # }
5172 # ]
5173 # }
5174 #
5175 ##
5176 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
5177 'returns': ['CommandLineOptionInfo'] }
5178
5179 ##
5180 # @X86CPURegister32:
5181 #
5182 # A X86 32-bit register
5183 #
5184 # Since: 1.5
5185 ##
5186 { 'enum': 'X86CPURegister32',
5187 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
5188
5189 ##
5190 # @X86CPUFeatureWordInfo:
5191 #
5192 # Information about a X86 CPU feature word
5193 #
5194 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
5195 #
5196 # @cpuid-input-ecx: #optional Input ECX value for CPUID instruction for that
5197 # feature word
5198 #
5199 # @cpuid-register: Output register containing the feature bits
5200 #
5201 # @features: value of output register, containing the feature bits
5202 #
5203 # Since: 1.5
5204 ##
5205 { 'struct': 'X86CPUFeatureWordInfo',
5206 'data': { 'cpuid-input-eax': 'int',
5207 '*cpuid-input-ecx': 'int',
5208 'cpuid-register': 'X86CPURegister32',
5209 'features': 'int' } }
5210
5211 ##
5212 # @DummyForceArrays:
5213 #
5214 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
5215 #
5216 # Since: 2.5
5217 ##
5218 { 'struct': 'DummyForceArrays',
5219 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
5220
5221
5222 ##
5223 # @RxState:
5224 #
5225 # Packets receiving state
5226 #
5227 # @normal: filter assigned packets according to the mac-table
5228 #
5229 # @none: don't receive any assigned packet
5230 #
5231 # @all: receive all assigned packets
5232 #
5233 # Since: 1.6
5234 ##
5235 { 'enum': 'RxState', 'data': [ 'normal', 'none', 'all' ] }
5236
5237 ##
5238 # @RxFilterInfo:
5239 #
5240 # Rx-filter information for a NIC.
5241 #
5242 # @name: net client name
5243 #
5244 # @promiscuous: whether promiscuous mode is enabled
5245 #
5246 # @multicast: multicast receive state
5247 #
5248 # @unicast: unicast receive state
5249 #
5250 # @vlan: vlan receive state (Since 2.0)
5251 #
5252 # @broadcast-allowed: whether to receive broadcast
5253 #
5254 # @multicast-overflow: multicast table is overflowed or not
5255 #
5256 # @unicast-overflow: unicast table is overflowed or not
5257 #
5258 # @main-mac: the main macaddr string
5259 #
5260 # @vlan-table: a list of active vlan id
5261 #
5262 # @unicast-table: a list of unicast macaddr string
5263 #
5264 # @multicast-table: a list of multicast macaddr string
5265 #
5266 # Since: 1.6
5267 ##
5268 { 'struct': 'RxFilterInfo',
5269 'data': {
5270 'name': 'str',
5271 'promiscuous': 'bool',
5272 'multicast': 'RxState',
5273 'unicast': 'RxState',
5274 'vlan': 'RxState',
5275 'broadcast-allowed': 'bool',
5276 'multicast-overflow': 'bool',
5277 'unicast-overflow': 'bool',
5278 'main-mac': 'str',
5279 'vlan-table': ['int'],
5280 'unicast-table': ['str'],
5281 'multicast-table': ['str'] }}
5282
5283 ##
5284 # @query-rx-filter:
5285 #
5286 # Return rx-filter information for all NICs (or for the given NIC).
5287 #
5288 # @name: #optional net client name
5289 #
5290 # Returns: list of @RxFilterInfo for all NICs (or for the given NIC).
5291 # Returns an error if the given @name doesn't exist, or given
5292 # NIC doesn't support rx-filter querying, or given net client
5293 # isn't a NIC.
5294 #
5295 # Since: 1.6
5296 #
5297 # Example:
5298 #
5299 # -> { "execute": "query-rx-filter", "arguments": { "name": "vnet0" } }
5300 # <- { "return": [
5301 # {
5302 # "promiscuous": true,
5303 # "name": "vnet0",
5304 # "main-mac": "52:54:00:12:34:56",
5305 # "unicast": "normal",
5306 # "vlan": "normal",
5307 # "vlan-table": [
5308 # 4,
5309 # 0
5310 # ],
5311 # "unicast-table": [
5312 # ],
5313 # "multicast": "normal",
5314 # "multicast-overflow": false,
5315 # "unicast-overflow": false,
5316 # "multicast-table": [
5317 # "01:00:5e:00:00:01",
5318 # "33:33:00:00:00:01",
5319 # "33:33:ff:12:34:56"
5320 # ],
5321 # "broadcast-allowed": false
5322 # }
5323 # ]
5324 # }
5325 #
5326 ##
5327 { 'command': 'query-rx-filter', 'data': { '*name': 'str' },
5328 'returns': ['RxFilterInfo'] }
5329
5330 ##
5331 # @InputButton:
5332 #
5333 # Button of a pointer input device (mouse, tablet).
5334 #
5335 # Since: 2.0
5336 ##
5337 { 'enum' : 'InputButton',
5338 'data' : [ 'left', 'middle', 'right', 'wheel-up', 'wheel-down' ] }
5339
5340 ##
5341 # @InputAxis:
5342 #
5343 # Position axis of a pointer input device (mouse, tablet).
5344 #
5345 # Since: 2.0
5346 ##
5347 { 'enum' : 'InputAxis',
5348 'data' : [ 'x', 'y' ] }
5349
5350 ##
5351 # @InputKeyEvent:
5352 #
5353 # Keyboard input event.
5354 #
5355 # @key: Which key this event is for.
5356 # @down: True for key-down and false for key-up events.
5357 #
5358 # Since: 2.0
5359 ##
5360 { 'struct' : 'InputKeyEvent',
5361 'data' : { 'key' : 'KeyValue',
5362 'down' : 'bool' } }
5363
5364 ##
5365 # @InputBtnEvent:
5366 #
5367 # Pointer button input event.
5368 #
5369 # @button: Which button this event is for.
5370 # @down: True for key-down and false for key-up events.
5371 #
5372 # Since: 2.0
5373 ##
5374 { 'struct' : 'InputBtnEvent',
5375 'data' : { 'button' : 'InputButton',
5376 'down' : 'bool' } }
5377
5378 ##
5379 # @InputMoveEvent:
5380 #
5381 # Pointer motion input event.
5382 #
5383 # @axis: Which axis is referenced by @value.
5384 # @value: Pointer position. For absolute coordinates the
5385 # valid range is 0 -> 0x7ffff
5386 #
5387 # Since: 2.0
5388 ##
5389 { 'struct' : 'InputMoveEvent',
5390 'data' : { 'axis' : 'InputAxis',
5391 'value' : 'int' } }
5392
5393 ##
5394 # @InputEvent:
5395 #
5396 # Input event union.
5397 #
5398 # @type: the input type, one of:
5399 # - 'key': Input event of Keyboard
5400 # - 'btn': Input event of pointer buttons
5401 # - 'rel': Input event of relative pointer motion
5402 # - 'abs': Input event of absolute pointer motion
5403 #
5404 # Since: 2.0
5405 ##
5406 { 'union' : 'InputEvent',
5407 'data' : { 'key' : 'InputKeyEvent',
5408 'btn' : 'InputBtnEvent',
5409 'rel' : 'InputMoveEvent',
5410 'abs' : 'InputMoveEvent' } }
5411
5412 ##
5413 # @input-send-event:
5414 #
5415 # Send input event(s) to guest.
5416 #
5417 # @device: #optional display device to send event(s) to.
5418 # @head: #optional head to send event(s) to, in case the
5419 # display device supports multiple scanouts.
5420 # @events: List of InputEvent union.
5421 #
5422 # Returns: Nothing on success.
5423 #
5424 # The @device and @head parameters can be used to send the input event
5425 # to specific input devices in case (a) multiple input devices of the
5426 # same kind are added to the virtual machine and (b) you have
5427 # configured input routing (see docs/multiseat.txt) for those input
5428 # devices. The parameters work exactly like the device and head
5429 # properties of input devices. If @device is missing, only devices
5430 # that have no input routing config are admissible. If @device is
5431 # specified, both input devices with and without input routing config
5432 # are admissible, but devices with input routing config take
5433 # precedence.
5434 #
5435 # Since: 2.6
5436 #
5437 # Note: The consoles are visible in the qom tree, under
5438 # /backend/console[$index]. They have a device link and head property,
5439 # so it is possible to map which console belongs to which device and
5440 # display.
5441 #
5442 # Example:
5443 #
5444 # 1. Press left mouse button.
5445 #
5446 # -> { "execute": "input-send-event",
5447 # "arguments": { "device": "video0",
5448 # "events": [ { "type": "btn",
5449 # "data" : { "down": true, "button": "left" } } ] } }
5450 # <- { "return": {} }
5451 #
5452 # -> { "execute": "input-send-event",
5453 # "arguments": { "device": "video0",
5454 # "events": [ { "type": "btn",
5455 # "data" : { "down": false, "button": "left" } } ] } }
5456 # <- { "return": {} }
5457 #
5458 # 2. Press ctrl-alt-del.
5459 #
5460 # -> { "execute": "input-send-event",
5461 # "arguments": { "events": [
5462 # { "type": "key", "data" : { "down": true,
5463 # "key": {"type": "qcode", "data": "ctrl" } } },
5464 # { "type": "key", "data" : { "down": true,
5465 # "key": {"type": "qcode", "data": "alt" } } },
5466 # { "type": "key", "data" : { "down": true,
5467 # "key": {"type": "qcode", "data": "delete" } } } ] } }
5468 # <- { "return": {} }
5469 #
5470 # 3. Move mouse pointer to absolute coordinates (20000, 400).
5471 #
5472 # -> { "execute": "input-send-event" ,
5473 # "arguments": { "events": [
5474 # { "type": "abs", "data" : { "axis": "x", "value" : 20000 } },
5475 # { "type": "abs", "data" : { "axis": "y", "value" : 400 } } ] } }
5476 # <- { "return": {} }
5477 #
5478 ##
5479 { 'command': 'input-send-event',
5480 'data': { '*device': 'str',
5481 '*head' : 'int',
5482 'events' : [ 'InputEvent' ] } }
5483
5484 ##
5485 # @NumaOptions:
5486 #
5487 # A discriminated record of NUMA options. (for OptsVisitor)
5488 #
5489 # Since: 2.1
5490 ##
5491 { 'union': 'NumaOptions',
5492 'data': {
5493 'node': 'NumaNodeOptions' }}
5494
5495 ##
5496 # @NumaNodeOptions:
5497 #
5498 # Create a guest NUMA node. (for OptsVisitor)
5499 #
5500 # @nodeid: #optional NUMA node ID (increase by 1 from 0 if omitted)
5501 #
5502 # @cpus: #optional VCPUs belonging to this node (assign VCPUS round-robin
5503 # if omitted)
5504 #
5505 # @mem: #optional memory size of this node; mutually exclusive with @memdev.
5506 # Equally divide total memory among nodes if both @mem and @memdev are
5507 # omitted.
5508 #
5509 # @memdev: #optional memory backend object. If specified for one node,
5510 # it must be specified for all nodes.
5511 #
5512 # Since: 2.1
5513 ##
5514 { 'struct': 'NumaNodeOptions',
5515 'data': {
5516 '*nodeid': 'uint16',
5517 '*cpus': ['uint16'],
5518 '*mem': 'size',
5519 '*memdev': 'str' }}
5520
5521 ##
5522 # @HostMemPolicy:
5523 #
5524 # Host memory policy types
5525 #
5526 # @default: restore default policy, remove any nondefault policy
5527 #
5528 # @preferred: set the preferred host nodes for allocation
5529 #
5530 # @bind: a strict policy that restricts memory allocation to the
5531 # host nodes specified
5532 #
5533 # @interleave: memory allocations are interleaved across the set
5534 # of host nodes specified
5535 #
5536 # Since: 2.1
5537 ##
5538 { 'enum': 'HostMemPolicy',
5539 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
5540
5541 ##
5542 # @Memdev:
5543 #
5544 # Information about memory backend
5545 #
5546 # @id: #optional backend's ID if backend has 'id' property (since 2.9)
5547 #
5548 # @size: memory backend size
5549 #
5550 # @merge: enables or disables memory merge support
5551 #
5552 # @dump: includes memory backend's memory in a core dump or not
5553 #
5554 # @prealloc: enables or disables memory preallocation
5555 #
5556 # @host-nodes: host nodes for its memory policy
5557 #
5558 # @policy: memory policy of memory backend
5559 #
5560 # Since: 2.1
5561 ##
5562 { 'struct': 'Memdev',
5563 'data': {
5564 '*id': 'str',
5565 'size': 'size',
5566 'merge': 'bool',
5567 'dump': 'bool',
5568 'prealloc': 'bool',
5569 'host-nodes': ['uint16'],
5570 'policy': 'HostMemPolicy' }}
5571
5572 ##
5573 # @query-memdev:
5574 #
5575 # Returns information for all memory backends.
5576 #
5577 # Returns: a list of @Memdev.
5578 #
5579 # Since: 2.1
5580 #
5581 # Example:
5582 #
5583 # -> { "execute": "query-memdev" }
5584 # <- { "return": [
5585 # {
5586 # "id": "mem1",
5587 # "size": 536870912,
5588 # "merge": false,
5589 # "dump": true,
5590 # "prealloc": false,
5591 # "host-nodes": [0, 1],
5592 # "policy": "bind"
5593 # },
5594 # {
5595 # "size": 536870912,
5596 # "merge": false,
5597 # "dump": true,
5598 # "prealloc": true,
5599 # "host-nodes": [2, 3],
5600 # "policy": "preferred"
5601 # }
5602 # ]
5603 # }
5604 #
5605 ##
5606 { 'command': 'query-memdev', 'returns': ['Memdev'] }
5607
5608 ##
5609 # @PCDIMMDeviceInfo:
5610 #
5611 # PCDIMMDevice state information
5612 #
5613 # @id: #optional device's ID
5614 #
5615 # @addr: physical address, where device is mapped
5616 #
5617 # @size: size of memory that the device provides
5618 #
5619 # @slot: slot number at which device is plugged in
5620 #
5621 # @node: NUMA node number where device is plugged in
5622 #
5623 # @memdev: memory backend linked with device
5624 #
5625 # @hotplugged: true if device was hotplugged
5626 #
5627 # @hotpluggable: true if device if could be added/removed while machine is running
5628 #
5629 # Since: 2.1
5630 ##
5631 { 'struct': 'PCDIMMDeviceInfo',
5632 'data': { '*id': 'str',
5633 'addr': 'int',
5634 'size': 'int',
5635 'slot': 'int',
5636 'node': 'int',
5637 'memdev': 'str',
5638 'hotplugged': 'bool',
5639 'hotpluggable': 'bool'
5640 }
5641 }
5642
5643 ##
5644 # @MemoryDeviceInfo:
5645 #
5646 # Union containing information about a memory device
5647 #
5648 # Since: 2.1
5649 ##
5650 { 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
5651
5652 ##
5653 # @query-memory-devices:
5654 #
5655 # Lists available memory devices and their state
5656 #
5657 # Since: 2.1
5658 #
5659 # Example:
5660 #
5661 # -> { "execute": "query-memory-devices" }
5662 # <- { "return": [ { "data":
5663 # { "addr": 5368709120,
5664 # "hotpluggable": true,
5665 # "hotplugged": true,
5666 # "id": "d1",
5667 # "memdev": "/objects/memX",
5668 # "node": 0,
5669 # "size": 1073741824,
5670 # "slot": 0},
5671 # "type": "dimm"
5672 # } ] }
5673 #
5674 ##
5675 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
5676
5677 ##
5678 # @ACPISlotType:
5679 #
5680 # @DIMM: memory slot
5681 # @CPU: logical CPU slot (since 2.7)
5682 ##
5683 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
5684
5685 ##
5686 # @ACPIOSTInfo:
5687 #
5688 # OSPM Status Indication for a device
5689 # For description of possible values of @source and @status fields
5690 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
5691 #
5692 # @device: #optional device ID associated with slot
5693 #
5694 # @slot: slot ID, unique per slot of a given @slot-type
5695 #
5696 # @slot-type: type of the slot
5697 #
5698 # @source: an integer containing the source event
5699 #
5700 # @status: an integer containing the status code
5701 #
5702 # Since: 2.1
5703 ##
5704 { 'struct': 'ACPIOSTInfo',
5705 'data' : { '*device': 'str',
5706 'slot': 'str',
5707 'slot-type': 'ACPISlotType',
5708 'source': 'int',
5709 'status': 'int' } }
5710
5711 ##
5712 # @query-acpi-ospm-status:
5713 #
5714 # Return a list of ACPIOSTInfo for devices that support status
5715 # reporting via ACPI _OST method.
5716 #
5717 # Since: 2.1
5718 #
5719 # Example:
5720 #
5721 # -> { "execute": "query-acpi-ospm-status" }
5722 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
5723 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
5724 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
5725 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
5726 # ]}
5727 #
5728 ##
5729 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
5730
5731 ##
5732 # @WatchdogExpirationAction:
5733 #
5734 # An enumeration of the actions taken when the watchdog device's timer is
5735 # expired
5736 #
5737 # @reset: system resets
5738 #
5739 # @shutdown: system shutdown, note that it is similar to @powerdown, which
5740 # tries to set to system status and notify guest
5741 #
5742 # @poweroff: system poweroff, the emulator program exits
5743 #
5744 # @pause: system pauses, similar to @stop
5745 #
5746 # @debug: system enters debug state
5747 #
5748 # @none: nothing is done
5749 #
5750 # @inject-nmi: a non-maskable interrupt is injected into the first VCPU (all
5751 # VCPUS on x86) (since 2.4)
5752 #
5753 # Since: 2.1
5754 ##
5755 { 'enum': 'WatchdogExpirationAction',
5756 'data': [ 'reset', 'shutdown', 'poweroff', 'pause', 'debug', 'none',
5757 'inject-nmi' ] }
5758
5759 ##
5760 # @IoOperationType:
5761 #
5762 # An enumeration of the I/O operation types
5763 #
5764 # @read: read operation
5765 #
5766 # @write: write operation
5767 #
5768 # Since: 2.1
5769 ##
5770 { 'enum': 'IoOperationType',
5771 'data': [ 'read', 'write' ] }
5772
5773 ##
5774 # @GuestPanicAction:
5775 #
5776 # An enumeration of the actions taken when guest OS panic is detected
5777 #
5778 # @pause: system pauses
5779 #
5780 # Since: 2.1 (poweroff since 2.8)
5781 ##
5782 { 'enum': 'GuestPanicAction',
5783 'data': [ 'pause', 'poweroff' ] }
5784
5785 ##
5786 # @rtc-reset-reinjection:
5787 #
5788 # This command will reset the RTC interrupt reinjection backlog.
5789 # Can be used if another mechanism to synchronize guest time
5790 # is in effect, for example QEMU guest agent's guest-set-time
5791 # command.
5792 #
5793 # Since: 2.1
5794 #
5795 # Example:
5796 #
5797 # -> { "execute": "rtc-reset-reinjection" }
5798 # <- { "return": {} }
5799 #
5800 ##
5801 { 'command': 'rtc-reset-reinjection' }
5802
5803 # Rocker ethernet network switch
5804 { 'include': 'qapi/rocker.json' }
5805
5806 ##
5807 # @ReplayMode:
5808 #
5809 # Mode of the replay subsystem.
5810 #
5811 # @none: normal execution mode. Replay or record are not enabled.
5812 #
5813 # @record: record mode. All non-deterministic data is written into the
5814 # replay log.
5815 #
5816 # @play: replay mode. Non-deterministic data required for system execution
5817 # is read from the log.
5818 #
5819 # Since: 2.5
5820 ##
5821 { 'enum': 'ReplayMode',
5822 'data': [ 'none', 'record', 'play' ] }
5823
5824 ##
5825 # @xen-load-devices-state:
5826 #
5827 # Load the state of all devices from file. The RAM and the block devices
5828 # of the VM are not loaded by this command.
5829 #
5830 # @filename: the file to load the state of the devices from as binary
5831 # data. See xen-save-devices-state.txt for a description of the binary
5832 # format.
5833 #
5834 # Since: 2.7
5835 #
5836 # Example:
5837 #
5838 # -> { "execute": "xen-load-devices-state",
5839 # "arguments": { "filename": "/tmp/resume" } }
5840 # <- { "return": {} }
5841 #
5842 ##
5843 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
5844
5845 ##
5846 # @GICCapability:
5847 #
5848 # The struct describes capability for a specific GIC (Generic
5849 # Interrupt Controller) version. These bits are not only decided by
5850 # QEMU/KVM software version, but also decided by the hardware that
5851 # the program is running upon.
5852 #
5853 # @version: version of GIC to be described. Currently, only 2 and 3
5854 # are supported.
5855 #
5856 # @emulated: whether current QEMU/hardware supports emulated GIC
5857 # device in user space.
5858 #
5859 # @kernel: whether current QEMU/hardware supports hardware
5860 # accelerated GIC device in kernel.
5861 #
5862 # Since: 2.6
5863 ##
5864 { 'struct': 'GICCapability',
5865 'data': { 'version': 'int',
5866 'emulated': 'bool',
5867 'kernel': 'bool' } }
5868
5869 ##
5870 # @query-gic-capabilities:
5871 #
5872 # This command is ARM-only. It will return a list of GICCapability
5873 # objects that describe its capability bits.
5874 #
5875 # Returns: a list of GICCapability objects.
5876 #
5877 # Since: 2.6
5878 #
5879 # Example:
5880 #
5881 # -> { "execute": "query-gic-capabilities" }
5882 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
5883 # { "version": 3, "emulated": false, "kernel": true } ] }
5884 #
5885 ##
5886 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
5887
5888 ##
5889 # @CpuInstanceProperties:
5890 #
5891 # List of properties to be used for hotplugging a CPU instance,
5892 # it should be passed by management with device_add command when
5893 # a CPU is being hotplugged.
5894 #
5895 # @node-id: #optional NUMA node ID the CPU belongs to
5896 # @socket-id: #optional socket number within node/board the CPU belongs to
5897 # @core-id: #optional core number within socket the CPU belongs to
5898 # @thread-id: #optional thread number within core the CPU belongs to
5899 #
5900 # Note: currently there are 4 properties that could be present
5901 # but management should be prepared to pass through other
5902 # properties with device_add command to allow for future
5903 # interface extension. This also requires the filed names to be kept in
5904 # sync with the properties passed to -device/device_add.
5905 #
5906 # Since: 2.7
5907 ##
5908 { 'struct': 'CpuInstanceProperties',
5909 'data': { '*node-id': 'int',
5910 '*socket-id': 'int',
5911 '*core-id': 'int',
5912 '*thread-id': 'int'
5913 }
5914 }
5915
5916 ##
5917 # @HotpluggableCPU:
5918 #
5919 # @type: CPU object type for usage with device_add command
5920 # @props: list of properties to be used for hotplugging CPU
5921 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
5922 # @qom-path: #optional link to existing CPU object if CPU is present or
5923 # omitted if CPU is not present.
5924 #
5925 # Since: 2.7
5926 ##
5927 { 'struct': 'HotpluggableCPU',
5928 'data': { 'type': 'str',
5929 'vcpus-count': 'int',
5930 'props': 'CpuInstanceProperties',
5931 '*qom-path': 'str'
5932 }
5933 }
5934
5935 ##
5936 # @query-hotpluggable-cpus:
5937 #
5938 # Returns: a list of HotpluggableCPU objects.
5939 #
5940 # Since: 2.7
5941 #
5942 # Example:
5943 #
5944 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
5945 #
5946 # -> { "execute": "query-hotpluggable-cpus" }
5947 # <- {"return": [
5948 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
5949 # "vcpus-count": 1 },
5950 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
5951 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
5952 # ]}'
5953 #
5954 # For pc machine type started with -smp 1,maxcpus=2:
5955 #
5956 # -> { "execute": "query-hotpluggable-cpus" }
5957 # <- {"return": [
5958 # {
5959 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
5960 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
5961 # },
5962 # {
5963 # "qom-path": "/machine/unattached/device[0]",
5964 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
5965 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
5966 # }
5967 # ]}
5968 #
5969 ##
5970 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }