]> git.proxmox.com Git - mirror_qemu.git/blob - qapi-schema.json
qmp-commands: move 'query-hotpluggable-cpus' doc to schema
[mirror_qemu.git] / qapi-schema.json
1 # -*- Mode: Python -*-
2 #
3 # QAPI Schema
4
5 # QAPI common definitions
6 { 'include': 'qapi/common.json' }
7
8 # QAPI crypto definitions
9 { 'include': 'qapi/crypto.json' }
10
11 # QAPI block definitions
12 { 'include': 'qapi/block.json' }
13
14 # QAPI event definitions
15 { 'include': 'qapi/event.json' }
16
17 # Tracing commands
18 { 'include': 'qapi/trace.json' }
19
20 # QAPI introspection
21 { 'include': 'qapi/introspect.json' }
22
23 ##
24 # = QMP commands
25 ##
26
27 ##
28 # @qmp_capabilities:
29 #
30 # Enable QMP capabilities.
31 #
32 # Arguments: None.
33 #
34 # Example:
35 #
36 # -> { "execute": "qmp_capabilities" }
37 # <- { "return": {} }
38 #
39 # Notes: This command is valid exactly when first connecting: it must be
40 # issued before any other command will be accepted, and will fail once the
41 # monitor is accepting other commands. (see qemu docs/qmp-spec.txt)
42 #
43 # Since: 0.13
44 #
45 ##
46 { 'command': 'qmp_capabilities' }
47
48 ##
49 # @LostTickPolicy:
50 #
51 # Policy for handling lost ticks in timer devices.
52 #
53 # @discard: throw away the missed tick(s) and continue with future injection
54 # normally. Guest time may be delayed, unless the OS has explicit
55 # handling of lost ticks
56 #
57 # @delay: continue to deliver ticks at the normal rate. Guest time will be
58 # delayed due to the late tick
59 #
60 # @merge: merge the missed tick(s) into one tick and inject. Guest time
61 # may be delayed, depending on how the OS reacts to the merging
62 # of ticks
63 #
64 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
65 # guest time should not be delayed once catchup is complete.
66 #
67 # Since: 2.0
68 ##
69 { 'enum': 'LostTickPolicy',
70 'data': ['discard', 'delay', 'merge', 'slew' ] }
71
72 ##
73 # @add_client:
74 #
75 # Allow client connections for VNC, Spice and socket based
76 # character devices to be passed in to QEMU via SCM_RIGHTS.
77 #
78 # @protocol: protocol name. Valid names are "vnc", "spice" or the
79 # name of a character device (eg. from -chardev id=XXXX)
80 #
81 # @fdname: file descriptor name previously passed via 'getfd' command
82 #
83 # @skipauth: #optional whether to skip authentication. Only applies
84 # to "vnc" and "spice" protocols
85 #
86 # @tls: #optional whether to perform TLS. Only applies to the "spice"
87 # protocol
88 #
89 # Returns: nothing on success.
90 #
91 # Since: 0.14.0
92 #
93 # Example:
94 #
95 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
96 # "fdname": "myclient" } }
97 # <- { "return": {} }
98 #
99 ##
100 { 'command': 'add_client',
101 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
102 '*tls': 'bool' } }
103
104 ##
105 # @NameInfo:
106 #
107 # Guest name information.
108 #
109 # @name: #optional The name of the guest
110 #
111 # Since: 0.14.0
112 ##
113 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
114
115 ##
116 # @query-name:
117 #
118 # Return the name information of a guest.
119 #
120 # Returns: @NameInfo of the guest
121 #
122 # Since: 0.14.0
123 #
124 # Example:
125 #
126 # -> { "execute": "query-name" }
127 # <- { "return": { "name": "qemu-name" } }
128 #
129 ##
130 { 'command': 'query-name', 'returns': 'NameInfo' }
131
132 ##
133 # @KvmInfo:
134 #
135 # Information about support for KVM acceleration
136 #
137 # @enabled: true if KVM acceleration is active
138 #
139 # @present: true if KVM acceleration is built into this executable
140 #
141 # Since: 0.14.0
142 ##
143 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
144
145 ##
146 # @query-kvm:
147 #
148 # Returns information about KVM acceleration
149 #
150 # Returns: @KvmInfo
151 #
152 # Since: 0.14.0
153 #
154 # Example:
155 #
156 # -> { "execute": "query-kvm" }
157 # <- { "return": { "enabled": true, "present": true } }
158 #
159 ##
160 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
161
162 ##
163 # @RunState:
164 #
165 # An enumeration of VM run states.
166 #
167 # @debug: QEMU is running on a debugger
168 #
169 # @finish-migrate: guest is paused to finish the migration process
170 #
171 # @inmigrate: guest is paused waiting for an incoming migration. Note
172 # that this state does not tell whether the machine will start at the
173 # end of the migration. This depends on the command-line -S option and
174 # any invocation of 'stop' or 'cont' that has happened since QEMU was
175 # started.
176 #
177 # @internal-error: An internal error that prevents further guest execution
178 # has occurred
179 #
180 # @io-error: the last IOP has failed and the device is configured to pause
181 # on I/O errors
182 #
183 # @paused: guest has been paused via the 'stop' command
184 #
185 # @postmigrate: guest is paused following a successful 'migrate'
186 #
187 # @prelaunch: QEMU was started with -S and guest has not started
188 #
189 # @restore-vm: guest is paused to restore VM state
190 #
191 # @running: guest is actively running
192 #
193 # @save-vm: guest is paused to save the VM state
194 #
195 # @shutdown: guest is shut down (and -no-shutdown is in use)
196 #
197 # @suspended: guest is suspended (ACPI S3)
198 #
199 # @watchdog: the watchdog action is configured to pause and has been triggered
200 #
201 # @guest-panicked: guest has been panicked as a result of guest OS panic
202 #
203 # @colo: guest is paused to save/restore VM state under colo checkpoint,
204 # VM can not get into this state unless colo capability is enabled
205 # for migration. (since 2.8)
206 ##
207 { 'enum': 'RunState',
208 'data': [ 'debug', 'inmigrate', 'internal-error', 'io-error', 'paused',
209 'postmigrate', 'prelaunch', 'finish-migrate', 'restore-vm',
210 'running', 'save-vm', 'shutdown', 'suspended', 'watchdog',
211 'guest-panicked', 'colo' ] }
212
213 ##
214 # @StatusInfo:
215 #
216 # Information about VCPU run state
217 #
218 # @running: true if all VCPUs are runnable, false if not runnable
219 #
220 # @singlestep: true if VCPUs are in single-step mode
221 #
222 # @status: the virtual machine @RunState
223 #
224 # Since: 0.14.0
225 #
226 # Notes: @singlestep is enabled through the GDB stub
227 ##
228 { 'struct': 'StatusInfo',
229 'data': {'running': 'bool', 'singlestep': 'bool', 'status': 'RunState'} }
230
231 ##
232 # @query-status:
233 #
234 # Query the run status of all VCPUs
235 #
236 # Returns: @StatusInfo reflecting all VCPUs
237 #
238 # Since: 0.14.0
239 #
240 # Example:
241 #
242 # -> { "execute": "query-status" }
243 # <- { "return": { "running": true,
244 # "singlestep": false,
245 # "status": "running" } }
246 #
247 ##
248 { 'command': 'query-status', 'returns': 'StatusInfo' }
249
250 ##
251 # @UuidInfo:
252 #
253 # Guest UUID information (Universally Unique Identifier).
254 #
255 # @UUID: the UUID of the guest
256 #
257 # Since: 0.14.0
258 #
259 # Notes: If no UUID was specified for the guest, a null UUID is returned.
260 ##
261 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
262
263 ##
264 # @query-uuid:
265 #
266 # Query the guest UUID information.
267 #
268 # Returns: The @UuidInfo for the guest
269 #
270 # Since: 0.14.0
271 #
272 # Example:
273 #
274 # -> { "execute": "query-uuid" }
275 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
276 #
277 ##
278 { 'command': 'query-uuid', 'returns': 'UuidInfo' }
279
280 ##
281 # @ChardevInfo:
282 #
283 # Information about a character device.
284 #
285 # @label: the label of the character device
286 #
287 # @filename: the filename of the character device
288 #
289 # @frontend-open: shows whether the frontend device attached to this backend
290 # (eg. with the chardev=... option) is in open or closed state
291 # (since 2.1)
292 #
293 # Notes: @filename is encoded using the QEMU command line character device
294 # encoding. See the QEMU man page for details.
295 #
296 # Since: 0.14.0
297 ##
298 { 'struct': 'ChardevInfo', 'data': {'label': 'str',
299 'filename': 'str',
300 'frontend-open': 'bool'} }
301
302 ##
303 # @query-chardev:
304 #
305 # Returns information about current character devices.
306 #
307 # Returns: a list of @ChardevInfo
308 #
309 # Since: 0.14.0
310 #
311 # Example:
312 #
313 # -> { "execute": "query-chardev" }
314 # <- {
315 # "return": [
316 # {
317 # "label": "charchannel0",
318 # "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.agent,server",
319 # "frontend-open": false
320 # },
321 # {
322 # "label": "charmonitor",
323 # "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.monitor,server",
324 # "frontend-open": true
325 # },
326 # {
327 # "label": "charserial0",
328 # "filename": "pty:/dev/pts/2",
329 # "frontend-open": true
330 # }
331 # ]
332 # }
333 #
334 ##
335 { 'command': 'query-chardev', 'returns': ['ChardevInfo'] }
336
337 ##
338 # @ChardevBackendInfo:
339 #
340 # Information about a character device backend
341 #
342 # @name: The backend name
343 #
344 # Since: 2.0
345 ##
346 { 'struct': 'ChardevBackendInfo', 'data': {'name': 'str'} }
347
348 ##
349 # @query-chardev-backends:
350 #
351 # Returns information about character device backends.
352 #
353 # Returns: a list of @ChardevBackendInfo
354 #
355 # Since: 2.0
356 #
357 # Example:
358 #
359 # -> { "execute": "query-chardev-backends" }
360 # <- {
361 # "return":[
362 # {
363 # "name":"udp"
364 # },
365 # {
366 # "name":"tcp"
367 # },
368 # {
369 # "name":"unix"
370 # },
371 # {
372 # "name":"spiceport"
373 # }
374 # ]
375 # }
376 #
377 ##
378 { 'command': 'query-chardev-backends', 'returns': ['ChardevBackendInfo'] }
379
380 ##
381 # @DataFormat:
382 #
383 # An enumeration of data format.
384 #
385 # @utf8: Data is a UTF-8 string (RFC 3629)
386 #
387 # @base64: Data is Base64 encoded binary (RFC 3548)
388 #
389 # Since: 1.4
390 ##
391 { 'enum': 'DataFormat',
392 'data': [ 'utf8', 'base64' ] }
393
394 ##
395 # @ringbuf-write:
396 #
397 # Write to a ring buffer character device.
398 #
399 # @device: the ring buffer character device name
400 #
401 # @data: data to write
402 #
403 # @format: #optional data encoding (default 'utf8').
404 # - base64: data must be base64 encoded text. Its binary
405 # decoding gets written.
406 # - utf8: data's UTF-8 encoding is written
407 # - data itself is always Unicode regardless of format, like
408 # any other string.
409 #
410 # Returns: Nothing on success
411 #
412 # Since: 1.4
413 #
414 # Example:
415 #
416 # -> { "execute": "ringbuf-write",
417 # "arguments": { "device": "foo",
418 # "data": "abcdefgh",
419 # "format": "utf8" } }
420 # <- { "return": {} }
421 #
422 ##
423 { 'command': 'ringbuf-write',
424 'data': {'device': 'str', 'data': 'str',
425 '*format': 'DataFormat'} }
426
427 ##
428 # @ringbuf-read:
429 #
430 # Read from a ring buffer character device.
431 #
432 # @device: the ring buffer character device name
433 #
434 # @size: how many bytes to read at most
435 #
436 # @format: #optional data encoding (default 'utf8').
437 # - base64: the data read is returned in base64 encoding.
438 # - utf8: the data read is interpreted as UTF-8.
439 # Bug: can screw up when the buffer contains invalid UTF-8
440 # sequences, NUL characters, after the ring buffer lost
441 # data, and when reading stops because the size limit is
442 # reached.
443 # - The return value is always Unicode regardless of format,
444 # like any other string.
445 #
446 # Returns: data read from the device
447 #
448 # Since: 1.4
449 #
450 # Example:
451 #
452 # -> { "execute": "ringbuf-read",
453 # "arguments": { "device": "foo",
454 # "size": 1000,
455 # "format": "utf8" } }
456 # <- { "return": "abcdefgh" }
457 #
458 ##
459 { 'command': 'ringbuf-read',
460 'data': {'device': 'str', 'size': 'int', '*format': 'DataFormat'},
461 'returns': 'str' }
462
463 ##
464 # @EventInfo:
465 #
466 # Information about a QMP event
467 #
468 # @name: The event name
469 #
470 # Since: 1.2.0
471 ##
472 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
473
474 ##
475 # @query-events:
476 #
477 # Return a list of supported QMP events by this server
478 #
479 # Returns: A list of @EventInfo for all supported events
480 #
481 # Since: 1.2.0
482 #
483 # Example:
484 #
485 # -> { "execute": "query-events" }
486 # <- {
487 # "return": [
488 # {
489 # "name":"SHUTDOWN"
490 # },
491 # {
492 # "name":"RESET"
493 # }
494 # ]
495 # }
496 #
497 # Note: This example has been shortened as the real response is too long.
498 #
499 ##
500 { 'command': 'query-events', 'returns': ['EventInfo'] }
501
502 ##
503 # @MigrationStats:
504 #
505 # Detailed migration status.
506 #
507 # @transferred: amount of bytes already transferred to the target VM
508 #
509 # @remaining: amount of bytes remaining to be transferred to the target VM
510 #
511 # @total: total amount of bytes involved in the migration process
512 #
513 # @duplicate: number of duplicate (zero) pages (since 1.2)
514 #
515 # @skipped: number of skipped zero pages (since 1.5)
516 #
517 # @normal: number of normal pages (since 1.2)
518 #
519 # @normal-bytes: number of normal bytes sent (since 1.2)
520 #
521 # @dirty-pages-rate: number of pages dirtied by second by the
522 # guest (since 1.3)
523 #
524 # @mbps: throughput in megabits/sec. (since 1.6)
525 #
526 # @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
527 #
528 # @postcopy-requests: The number of page requests received from the destination
529 # (since 2.7)
530 #
531 # Since: 0.14.0
532 ##
533 { 'struct': 'MigrationStats',
534 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
535 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
536 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
537 'mbps' : 'number', 'dirty-sync-count' : 'int',
538 'postcopy-requests' : 'int' } }
539
540 ##
541 # @XBZRLECacheStats:
542 #
543 # Detailed XBZRLE migration cache statistics
544 #
545 # @cache-size: XBZRLE cache size
546 #
547 # @bytes: amount of bytes already transferred to the target VM
548 #
549 # @pages: amount of pages transferred to the target VM
550 #
551 # @cache-miss: number of cache miss
552 #
553 # @cache-miss-rate: rate of cache miss (since 2.1)
554 #
555 # @overflow: number of overflows
556 #
557 # Since: 1.2
558 ##
559 { 'struct': 'XBZRLECacheStats',
560 'data': {'cache-size': 'int', 'bytes': 'int', 'pages': 'int',
561 'cache-miss': 'int', 'cache-miss-rate': 'number',
562 'overflow': 'int' } }
563
564 ##
565 # @MigrationStatus:
566 #
567 # An enumeration of migration status.
568 #
569 # @none: no migration has ever happened.
570 #
571 # @setup: migration process has been initiated.
572 #
573 # @cancelling: in the process of cancelling migration.
574 #
575 # @cancelled: cancelling migration is finished.
576 #
577 # @active: in the process of doing migration.
578 #
579 # @postcopy-active: like active, but now in postcopy mode. (since 2.5)
580 #
581 # @completed: migration is finished.
582 #
583 # @failed: some error occurred during migration process.
584 #
585 # @colo: VM is in the process of fault tolerance, VM can not get into this
586 # state unless colo capability is enabled for migration. (since 2.8)
587 #
588 # Since: 2.3
589 #
590 ##
591 { 'enum': 'MigrationStatus',
592 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
593 'active', 'postcopy-active', 'completed', 'failed', 'colo' ] }
594
595 ##
596 # @MigrationInfo:
597 #
598 # Information about current migration process.
599 #
600 # @status: #optional @MigrationStatus describing the current migration status.
601 # If this field is not returned, no migration process
602 # has been initiated
603 #
604 # @ram: #optional @MigrationStats containing detailed migration
605 # status, only returned if status is 'active' or
606 # 'completed'(since 1.2)
607 #
608 # @disk: #optional @MigrationStats containing detailed disk migration
609 # status, only returned if status is 'active' and it is a block
610 # migration
611 #
612 # @xbzrle-cache: #optional @XBZRLECacheStats containing detailed XBZRLE
613 # migration statistics, only returned if XBZRLE feature is on and
614 # status is 'active' or 'completed' (since 1.2)
615 #
616 # @total-time: #optional total amount of milliseconds since migration started.
617 # If migration has ended, it returns the total migration
618 # time. (since 1.2)
619 #
620 # @downtime: #optional only present when migration finishes correctly
621 # total downtime in milliseconds for the guest.
622 # (since 1.3)
623 #
624 # @expected-downtime: #optional only present while migration is active
625 # expected downtime in milliseconds for the guest in last walk
626 # of the dirty bitmap. (since 1.3)
627 #
628 # @setup-time: #optional amount of setup time in milliseconds _before_ the
629 # iterations begin but _after_ the QMP command is issued. This is designed
630 # to provide an accounting of any activities (such as RDMA pinning) which
631 # may be expensive, but do not actually occur during the iterative
632 # migration rounds themselves. (since 1.6)
633 #
634 # @cpu-throttle-percentage: #optional percentage of time guest cpus are being
635 # throttled during auto-converge. This is only present when auto-converge
636 # has started throttling guest cpus. (Since 2.7)
637 #
638 # @error-desc: #optional the human readable error description string, when
639 # @status is 'failed'. Clients should not attempt to parse the
640 # error strings. (Since 2.7)
641 #
642 # Since: 0.14.0
643 ##
644 { 'struct': 'MigrationInfo',
645 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
646 '*disk': 'MigrationStats',
647 '*xbzrle-cache': 'XBZRLECacheStats',
648 '*total-time': 'int',
649 '*expected-downtime': 'int',
650 '*downtime': 'int',
651 '*setup-time': 'int',
652 '*cpu-throttle-percentage': 'int',
653 '*error-desc': 'str'} }
654
655 ##
656 # @query-migrate:
657 #
658 # Returns information about current migration process. If migration
659 # is active there will be another json-object with RAM migration
660 # status and if block migration is active another one with block
661 # migration status.
662 #
663 # Returns: @MigrationInfo
664 #
665 # Since: 0.14.0
666 #
667 # Example:
668 #
669 # 1. Before the first migration
670 #
671 # -> { "execute": "query-migrate" }
672 # <- { "return": {} }
673 #
674 # 2. Migration is done and has succeeded
675 #
676 # -> { "execute": "query-migrate" }
677 # <- { "return": {
678 # "status": "completed",
679 # "ram":{
680 # "transferred":123,
681 # "remaining":123,
682 # "total":246,
683 # "total-time":12345,
684 # "setup-time":12345,
685 # "downtime":12345,
686 # "duplicate":123,
687 # "normal":123,
688 # "normal-bytes":123456,
689 # "dirty-sync-count":15
690 # }
691 # }
692 # }
693 #
694 # 3. Migration is done and has failed
695 #
696 # -> { "execute": "query-migrate" }
697 # <- { "return": { "status": "failed" } }
698 #
699 # 4. Migration is being performed and is not a block migration:
700 #
701 # -> { "execute": "query-migrate" }
702 # <- {
703 # "return":{
704 # "status":"active",
705 # "ram":{
706 # "transferred":123,
707 # "remaining":123,
708 # "total":246,
709 # "total-time":12345,
710 # "setup-time":12345,
711 # "expected-downtime":12345,
712 # "duplicate":123,
713 # "normal":123,
714 # "normal-bytes":123456,
715 # "dirty-sync-count":15
716 # }
717 # }
718 # }
719 #
720 # 5. Migration is being performed and is a block migration:
721 #
722 # -> { "execute": "query-migrate" }
723 # <- {
724 # "return":{
725 # "status":"active",
726 # "ram":{
727 # "total":1057024,
728 # "remaining":1053304,
729 # "transferred":3720,
730 # "total-time":12345,
731 # "setup-time":12345,
732 # "expected-downtime":12345,
733 # "duplicate":123,
734 # "normal":123,
735 # "normal-bytes":123456,
736 # "dirty-sync-count":15
737 # },
738 # "disk":{
739 # "total":20971520,
740 # "remaining":20880384,
741 # "transferred":91136
742 # }
743 # }
744 # }
745 #
746 # 6. Migration is being performed and XBZRLE is active:
747 #
748 # -> { "execute": "query-migrate" }
749 # <- {
750 # "return":{
751 # "status":"active",
752 # "capabilities" : [ { "capability": "xbzrle", "state" : true } ],
753 # "ram":{
754 # "total":1057024,
755 # "remaining":1053304,
756 # "transferred":3720,
757 # "total-time":12345,
758 # "setup-time":12345,
759 # "expected-downtime":12345,
760 # "duplicate":10,
761 # "normal":3333,
762 # "normal-bytes":3412992,
763 # "dirty-sync-count":15
764 # },
765 # "xbzrle-cache":{
766 # "cache-size":67108864,
767 # "bytes":20971520,
768 # "pages":2444343,
769 # "cache-miss":2244,
770 # "cache-miss-rate":0.123,
771 # "overflow":34434
772 # }
773 # }
774 # }
775 #
776 ##
777 { 'command': 'query-migrate', 'returns': 'MigrationInfo' }
778
779 ##
780 # @MigrationCapability:
781 #
782 # Migration capabilities enumeration
783 #
784 # @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
785 # This feature allows us to minimize migration traffic for certain work
786 # loads, by sending compressed difference of the pages
787 #
788 # @rdma-pin-all: Controls whether or not the entire VM memory footprint is
789 # mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
790 # Disabled by default. (since 2.0)
791 #
792 # @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
793 # essentially saves 1MB of zeroes per block on the wire. Enabling requires
794 # source and target VM to support this feature. To enable it is sufficient
795 # to enable the capability on the source VM. The feature is disabled by
796 # default. (since 1.6)
797 #
798 # @compress: Use multiple compression threads to accelerate live migration.
799 # This feature can help to reduce the migration traffic, by sending
800 # compressed pages. Please note that if compress and xbzrle are both
801 # on, compress only takes effect in the ram bulk stage, after that,
802 # it will be disabled and only xbzrle takes effect, this can help to
803 # minimize migration traffic. The feature is disabled by default.
804 # (since 2.4 )
805 #
806 # @events: generate events for each migration state change
807 # (since 2.4 )
808 #
809 # @auto-converge: If enabled, QEMU will automatically throttle down the guest
810 # to speed up convergence of RAM migration. (since 1.6)
811 #
812 # @postcopy-ram: Start executing on the migration target before all of RAM has
813 # been migrated, pulling the remaining pages along as needed. NOTE: If
814 # the migration fails during postcopy the VM will fail. (since 2.6)
815 #
816 # @x-colo: If enabled, migration will never end, and the state of the VM on the
817 # primary side will be migrated continuously to the VM on secondary
818 # side, this process is called COarse-Grain LOck Stepping (COLO) for
819 # Non-stop Service. (since 2.8)
820 #
821 # Since: 1.2
822 ##
823 { 'enum': 'MigrationCapability',
824 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
825 'compress', 'events', 'postcopy-ram', 'x-colo'] }
826
827 ##
828 # @MigrationCapabilityStatus:
829 #
830 # Migration capability information
831 #
832 # @capability: capability enum
833 #
834 # @state: capability state bool
835 #
836 # Since: 1.2
837 ##
838 { 'struct': 'MigrationCapabilityStatus',
839 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
840
841 ##
842 # @migrate-set-capabilities:
843 #
844 # Enable/Disable the following migration capabilities (like xbzrle)
845 #
846 # @capabilities: json array of capability modifications to make
847 #
848 # Since: 1.2
849 #
850 # Example:
851 #
852 # -> { "execute": "migrate-set-capabilities" , "arguments":
853 # { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
854 #
855 ##
856 { 'command': 'migrate-set-capabilities',
857 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
858
859 ##
860 # @query-migrate-capabilities:
861 #
862 # Returns information about the current migration capabilities status
863 #
864 # Returns: @MigrationCapabilitiesStatus
865 #
866 # Since: 1.2
867 #
868 # Example:
869 #
870 # -> { "execute": "query-migrate-capabilities" }
871 # <- { "return": [
872 # {"state": false, "capability": "xbzrle"},
873 # {"state": false, "capability": "rdma-pin-all"},
874 # {"state": false, "capability": "auto-converge"},
875 # {"state": false, "capability": "zero-blocks"},
876 # {"state": false, "capability": "compress"},
877 # {"state": true, "capability": "events"},
878 # {"state": false, "capability": "postcopy-ram"},
879 # {"state": false, "capability": "x-colo"}
880 # ]}
881 #
882 ##
883 { 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
884
885 ##
886 # @MigrationParameter:
887 #
888 # Migration parameters enumeration
889 #
890 # @compress-level: Set the compression level to be used in live migration,
891 # the compression level is an integer between 0 and 9, where 0 means
892 # no compression, 1 means the best compression speed, and 9 means best
893 # compression ratio which will consume more CPU.
894 #
895 # @compress-threads: Set compression thread count to be used in live migration,
896 # the compression thread count is an integer between 1 and 255.
897 #
898 # @decompress-threads: Set decompression thread count to be used in live
899 # migration, the decompression thread count is an integer between 1
900 # and 255. Usually, decompression is at least 4 times as fast as
901 # compression, so set the decompress-threads to the number about 1/4
902 # of compress-threads is adequate.
903 #
904 # @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
905 # when migration auto-converge is activated. The
906 # default value is 20. (Since 2.7)
907 #
908 # @cpu-throttle-increment: throttle percentage increase each time
909 # auto-converge detects that migration is not making
910 # progress. The default value is 10. (Since 2.7)
911 #
912 # @tls-creds: ID of the 'tls-creds' object that provides credentials for
913 # establishing a TLS connection over the migration data channel.
914 # On the outgoing side of the migration, the credentials must
915 # be for a 'client' endpoint, while for the incoming side the
916 # credentials must be for a 'server' endpoint. Setting this
917 # will enable TLS for all migrations. The default is unset,
918 # resulting in unsecured migration at the QEMU level. (Since 2.7)
919 #
920 # @tls-hostname: hostname of the target host for the migration. This is
921 # required when using x509 based TLS credentials and the
922 # migration URI does not already include a hostname. For
923 # example if using fd: or exec: based migration, the
924 # hostname must be provided so that the server's x509
925 # certificate identity can be validated. (Since 2.7)
926 #
927 # @max-bandwidth: to set maximum speed for migration. maximum speed in
928 # bytes per second. (Since 2.8)
929 #
930 # @downtime-limit: set maximum tolerated downtime for migration. maximum
931 # downtime in milliseconds (Since 2.8)
932 #
933 # @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
934 # periodic mode. (Since 2.8)
935 #
936 # Since: 2.4
937 ##
938 { 'enum': 'MigrationParameter',
939 'data': ['compress-level', 'compress-threads', 'decompress-threads',
940 'cpu-throttle-initial', 'cpu-throttle-increment',
941 'tls-creds', 'tls-hostname', 'max-bandwidth',
942 'downtime-limit', 'x-checkpoint-delay' ] }
943
944 ##
945 # @migrate-set-parameters:
946 #
947 # Set various migration parameters. See MigrationParameters for details.
948 #
949 # Since: 2.4
950 #
951 # Example:
952 #
953 # -> { "execute": "migrate-set-parameters" ,
954 # "arguments": { "compress-level": 1 } }
955 #
956 ##
957 { 'command': 'migrate-set-parameters', 'boxed': true,
958 'data': 'MigrationParameters' }
959
960 ##
961 # @MigrationParameters:
962 #
963 # Optional members can be omitted on input ('migrate-set-parameters')
964 # but most members will always be present on output
965 # ('query-migrate-parameters'), with the exception of tls-creds and
966 # tls-hostname.
967 #
968 # @compress-level: #optional compression level
969 #
970 # @compress-threads: #optional compression thread count
971 #
972 # @decompress-threads: #optional decompression thread count
973 #
974 # @cpu-throttle-initial: #optional Initial percentage of time guest cpus are
975 # throttledwhen migration auto-converge is activated.
976 # The default value is 20. (Since 2.7)
977 #
978 # @cpu-throttle-increment: #optional throttle percentage increase each time
979 # auto-converge detects that migration is not making
980 # progress. The default value is 10. (Since 2.7)
981 #
982 # @tls-creds: #optional ID of the 'tls-creds' object that provides credentials
983 # for establishing a TLS connection over the migration data
984 # channel. On the outgoing side of the migration, the credentials
985 # must be for a 'client' endpoint, while for the incoming side the
986 # credentials must be for a 'server' endpoint. Setting this
987 # will enable TLS for all migrations. The default is unset,
988 # resulting in unsecured migration at the QEMU level. (Since 2.7)
989 #
990 # @tls-hostname: #optional hostname of the target host for the migration. This
991 # is required when using x509 based TLS credentials and the
992 # migration URI does not already include a hostname. For
993 # example if using fd: or exec: based migration, the
994 # hostname must be provided so that the server's x509
995 # certificate identity can be validated. (Since 2.7)
996 #
997 # @max-bandwidth: to set maximum speed for migration. maximum speed in
998 # bytes per second. (Since 2.8)
999 #
1000 # @downtime-limit: set maximum tolerated downtime for migration. maximum
1001 # downtime in milliseconds (Since 2.8)
1002 #
1003 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1004 #
1005 # Since: 2.4
1006 ##
1007 { 'struct': 'MigrationParameters',
1008 'data': { '*compress-level': 'int',
1009 '*compress-threads': 'int',
1010 '*decompress-threads': 'int',
1011 '*cpu-throttle-initial': 'int',
1012 '*cpu-throttle-increment': 'int',
1013 '*tls-creds': 'str',
1014 '*tls-hostname': 'str',
1015 '*max-bandwidth': 'int',
1016 '*downtime-limit': 'int',
1017 '*x-checkpoint-delay': 'int'} }
1018
1019 ##
1020 # @query-migrate-parameters:
1021 #
1022 # Returns information about the current migration parameters
1023 #
1024 # Returns: @MigrationParameters
1025 #
1026 # Since: 2.4
1027 #
1028 # Example:
1029 #
1030 # -> { "execute": "query-migrate-parameters" }
1031 # <- { "return": {
1032 # "decompress-threads": 2,
1033 # "cpu-throttle-increment": 10,
1034 # "compress-threads": 8,
1035 # "compress-level": 1,
1036 # "cpu-throttle-initial": 20,
1037 # "max-bandwidth": 33554432,
1038 # "downtime-limit": 300
1039 # }
1040 # }
1041 #
1042 ##
1043 { 'command': 'query-migrate-parameters',
1044 'returns': 'MigrationParameters' }
1045
1046 ##
1047 # @client_migrate_info:
1048 #
1049 # Set migration information for remote display. This makes the server
1050 # ask the client to automatically reconnect using the new parameters
1051 # once migration finished successfully. Only implemented for SPICE.
1052 #
1053 # @protocol: must be "spice"
1054 # @hostname: migration target hostname
1055 # @port: #optional spice tcp port for plaintext channels
1056 # @tls-port: #optional spice tcp port for tls-secured channels
1057 # @cert-subject: #optional server certificate subject
1058 #
1059 # Since: 0.14.0
1060 #
1061 # Example:
1062 #
1063 # -> { "execute": "client_migrate_info",
1064 # "arguments": { "protocol": "spice",
1065 # "hostname": "virt42.lab.kraxel.org",
1066 # "port": 1234 } }
1067 # <- { "return": {} }
1068 #
1069 ##
1070 { 'command': 'client_migrate_info',
1071 'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int',
1072 '*tls-port': 'int', '*cert-subject': 'str' } }
1073
1074 ##
1075 # @migrate-start-postcopy:
1076 #
1077 # Followup to a migration command to switch the migration to postcopy mode.
1078 # The postcopy-ram capability must be set before the original migration
1079 # command.
1080 #
1081 # Since: 2.5
1082 #
1083 # Example:
1084 #
1085 # -> { "execute": "migrate-start-postcopy" }
1086 # <- { "return": {} }
1087 #
1088 ##
1089 { 'command': 'migrate-start-postcopy' }
1090
1091 ##
1092 # @COLOMessage:
1093 #
1094 # The message transmission between Primary side and Secondary side.
1095 #
1096 # @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1097 #
1098 # @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1099 #
1100 # @checkpoint-reply: SVM gets PVM's checkpoint request
1101 #
1102 # @vmstate-send: VM's state will be sent by PVM.
1103 #
1104 # @vmstate-size: The total size of VMstate.
1105 #
1106 # @vmstate-received: VM's state has been received by SVM.
1107 #
1108 # @vmstate-loaded: VM's state has been loaded by SVM.
1109 #
1110 # Since: 2.8
1111 ##
1112 { 'enum': 'COLOMessage',
1113 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1114 'vmstate-send', 'vmstate-size', 'vmstate-received',
1115 'vmstate-loaded' ] }
1116
1117 ##
1118 # @COLOMode:
1119 #
1120 # The colo mode
1121 #
1122 # @unknown: unknown mode
1123 #
1124 # @primary: master side
1125 #
1126 # @secondary: slave side
1127 #
1128 # Since: 2.8
1129 ##
1130 { 'enum': 'COLOMode',
1131 'data': [ 'unknown', 'primary', 'secondary'] }
1132
1133 ##
1134 # @FailoverStatus:
1135 #
1136 # An enumeration of COLO failover status
1137 #
1138 # @none: no failover has ever happened
1139 #
1140 # @require: got failover requirement but not handled
1141 #
1142 # @active: in the process of doing failover
1143 #
1144 # @completed: finish the process of failover
1145 #
1146 # Since: 2.8
1147 ##
1148 { 'enum': 'FailoverStatus',
1149 'data': [ 'none', 'require', 'active', 'completed'] }
1150
1151 ##
1152 # @x-colo-lost-heartbeat:
1153 #
1154 # Tell qemu that heartbeat is lost, request it to do takeover procedures.
1155 # If this command is sent to the PVM, the Primary side will exit COLO mode.
1156 # If sent to the Secondary, the Secondary side will run failover work,
1157 # then takes over server operation to become the service VM.
1158 #
1159 # Since: 2.8
1160 ##
1161 { 'command': 'x-colo-lost-heartbeat' }
1162
1163 ##
1164 # @MouseInfo:
1165 #
1166 # Information about a mouse device.
1167 #
1168 # @name: the name of the mouse device
1169 #
1170 # @index: the index of the mouse device
1171 #
1172 # @current: true if this device is currently receiving mouse events
1173 #
1174 # @absolute: true if this device supports absolute coordinates as input
1175 #
1176 # Since: 0.14.0
1177 ##
1178 { 'struct': 'MouseInfo',
1179 'data': {'name': 'str', 'index': 'int', 'current': 'bool',
1180 'absolute': 'bool'} }
1181
1182 ##
1183 # @query-mice:
1184 #
1185 # Returns information about each active mouse device
1186 #
1187 # Returns: a list of @MouseInfo for each device
1188 #
1189 # Since: 0.14.0
1190 #
1191 # Example:
1192 #
1193 # -> { "execute": "query-mice" }
1194 # <- { "return": [
1195 # {
1196 # "name":"QEMU Microsoft Mouse",
1197 # "index":0,
1198 # "current":false,
1199 # "absolute":false
1200 # },
1201 # {
1202 # "name":"QEMU PS/2 Mouse",
1203 # "index":1,
1204 # "current":true,
1205 # "absolute":true
1206 # }
1207 # ]
1208 # }
1209 #
1210 ##
1211 { 'command': 'query-mice', 'returns': ['MouseInfo'] }
1212
1213 ##
1214 # @CpuInfoArch:
1215 #
1216 # An enumeration of cpu types that enable additional information during
1217 # @query-cpus.
1218 #
1219 # Since: 2.6
1220 ##
1221 { 'enum': 'CpuInfoArch',
1222 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 'other' ] }
1223
1224 ##
1225 # @CpuInfo:
1226 #
1227 # Information about a virtual CPU
1228 #
1229 # @CPU: the index of the virtual CPU
1230 #
1231 # @current: this only exists for backwards compatibility and should be ignored
1232 #
1233 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
1234 # to a processor specific low power mode.
1235 #
1236 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
1237 #
1238 # @thread_id: ID of the underlying host thread
1239 #
1240 # @arch: architecture of the cpu, which determines which additional fields
1241 # will be listed (since 2.6)
1242 #
1243 # Since: 0.14.0
1244 #
1245 # Notes: @halted is a transient state that changes frequently. By the time the
1246 # data is sent to the client, the guest may no longer be halted.
1247 ##
1248 { 'union': 'CpuInfo',
1249 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
1250 'qom_path': 'str', 'thread_id': 'int', 'arch': 'CpuInfoArch' },
1251 'discriminator': 'arch',
1252 'data': { 'x86': 'CpuInfoX86',
1253 'sparc': 'CpuInfoSPARC',
1254 'ppc': 'CpuInfoPPC',
1255 'mips': 'CpuInfoMIPS',
1256 'tricore': 'CpuInfoTricore',
1257 'other': 'CpuInfoOther' } }
1258
1259 ##
1260 # @CpuInfoX86:
1261 #
1262 # Additional information about a virtual i386 or x86_64 CPU
1263 #
1264 # @pc: the 64-bit instruction pointer
1265 #
1266 # Since: 2.6
1267 ##
1268 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
1269
1270 ##
1271 # @CpuInfoSPARC:
1272 #
1273 # Additional information about a virtual SPARC CPU
1274 #
1275 # @pc: the PC component of the instruction pointer
1276 #
1277 # @npc: the NPC component of the instruction pointer
1278 #
1279 # Since: 2.6
1280 ##
1281 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
1282
1283 ##
1284 # @CpuInfoPPC:
1285 #
1286 # Additional information about a virtual PPC CPU
1287 #
1288 # @nip: the instruction pointer
1289 #
1290 # Since: 2.6
1291 ##
1292 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
1293
1294 ##
1295 # @CpuInfoMIPS:
1296 #
1297 # Additional information about a virtual MIPS CPU
1298 #
1299 # @PC: the instruction pointer
1300 #
1301 # Since: 2.6
1302 ##
1303 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
1304
1305 ##
1306 # @CpuInfoTricore:
1307 #
1308 # Additional information about a virtual Tricore CPU
1309 #
1310 # @PC: the instruction pointer
1311 #
1312 # Since: 2.6
1313 ##
1314 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
1315
1316 ##
1317 # @CpuInfoOther:
1318 #
1319 # No additional information is available about the virtual CPU
1320 #
1321 # Since: 2.6
1322 #
1323 ##
1324 { 'struct': 'CpuInfoOther', 'data': { } }
1325
1326 ##
1327 # @query-cpus:
1328 #
1329 # Returns a list of information about each virtual CPU.
1330 #
1331 # Returns: a list of @CpuInfo for each virtual CPU
1332 #
1333 # Since: 0.14.0
1334 #
1335 # Example:
1336 #
1337 # -> { "execute": "query-cpus" }
1338 # <- { "return": [
1339 # {
1340 # "CPU":0,
1341 # "current":true,
1342 # "halted":false,
1343 # "qom_path":"/machine/unattached/device[0]",
1344 # "arch":"x86",
1345 # "pc":3227107138,
1346 # "thread_id":3134
1347 # },
1348 # {
1349 # "CPU":1,
1350 # "current":false,
1351 # "halted":true,
1352 # "qom_path":"/machine/unattached/device[2]",
1353 # "arch":"x86",
1354 # "pc":7108165,
1355 # "thread_id":3135
1356 # }
1357 # ]
1358 # }
1359 #
1360 ##
1361 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
1362
1363 ##
1364 # @IOThreadInfo:
1365 #
1366 # Information about an iothread
1367 #
1368 # @id: the identifier of the iothread
1369 #
1370 # @thread-id: ID of the underlying host thread
1371 #
1372 # Since: 2.0
1373 ##
1374 { 'struct': 'IOThreadInfo',
1375 'data': {'id': 'str', 'thread-id': 'int'} }
1376
1377 ##
1378 # @query-iothreads:
1379 #
1380 # Returns a list of information about each iothread.
1381 #
1382 # Note: this list excludes the QEMU main loop thread, which is not declared
1383 # using the -object iothread command-line option. It is always the main thread
1384 # of the process.
1385 #
1386 # Returns: a list of @IOThreadInfo for each iothread
1387 #
1388 # Since: 2.0
1389 #
1390 # Example:
1391 #
1392 # -> { "execute": "query-iothreads" }
1393 # <- { "return": [
1394 # {
1395 # "id":"iothread0",
1396 # "thread-id":3134
1397 # },
1398 # {
1399 # "id":"iothread1",
1400 # "thread-id":3135
1401 # }
1402 # ]
1403 # }
1404 #
1405 ##
1406 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
1407
1408 ##
1409 # @NetworkAddressFamily:
1410 #
1411 # The network address family
1412 #
1413 # @ipv4: IPV4 family
1414 #
1415 # @ipv6: IPV6 family
1416 #
1417 # @unix: unix socket
1418 #
1419 # @vsock: vsock family (since 2.8)
1420 #
1421 # @unknown: otherwise
1422 #
1423 # Since: 2.1
1424 ##
1425 { 'enum': 'NetworkAddressFamily',
1426 'data': [ 'ipv4', 'ipv6', 'unix', 'vsock', 'unknown' ] }
1427
1428 ##
1429 # @VncBasicInfo:
1430 #
1431 # The basic information for vnc network connection
1432 #
1433 # @host: IP address
1434 #
1435 # @service: The service name of the vnc port. This may depend on the host
1436 # system's service database so symbolic names should not be relied
1437 # on.
1438 #
1439 # @family: address family
1440 #
1441 # @websocket: true in case the socket is a websocket (since 2.3).
1442 #
1443 # Since: 2.1
1444 ##
1445 { 'struct': 'VncBasicInfo',
1446 'data': { 'host': 'str',
1447 'service': 'str',
1448 'family': 'NetworkAddressFamily',
1449 'websocket': 'bool' } }
1450
1451 ##
1452 # @VncServerInfo:
1453 #
1454 # The network connection information for server
1455 #
1456 # @auth: #optional, authentication method
1457 #
1458 # Since: 2.1
1459 ##
1460 { 'struct': 'VncServerInfo',
1461 'base': 'VncBasicInfo',
1462 'data': { '*auth': 'str' } }
1463
1464 ##
1465 # @VncClientInfo:
1466 #
1467 # Information about a connected VNC client.
1468 #
1469 # @x509_dname: #optional If x509 authentication is in use, the Distinguished
1470 # Name of the client.
1471 #
1472 # @sasl_username: #optional If SASL authentication is in use, the SASL username
1473 # used for authentication.
1474 #
1475 # Since: 0.14.0
1476 ##
1477 { 'struct': 'VncClientInfo',
1478 'base': 'VncBasicInfo',
1479 'data': { '*x509_dname': 'str', '*sasl_username': 'str' } }
1480
1481 ##
1482 # @VncInfo:
1483 #
1484 # Information about the VNC session.
1485 #
1486 # @enabled: true if the VNC server is enabled, false otherwise
1487 #
1488 # @host: #optional The hostname the VNC server is bound to. This depends on
1489 # the name resolution on the host and may be an IP address.
1490 #
1491 # @family: #optional 'ipv6' if the host is listening for IPv6 connections
1492 # 'ipv4' if the host is listening for IPv4 connections
1493 # 'unix' if the host is listening on a unix domain socket
1494 # 'unknown' otherwise
1495 #
1496 # @service: #optional The service name of the server's port. This may depends
1497 # on the host system's service database so symbolic names should not
1498 # be relied on.
1499 #
1500 # @auth: #optional the current authentication type used by the server
1501 # 'none' if no authentication is being used
1502 # 'vnc' if VNC authentication is being used
1503 # 'vencrypt+plain' if VEncrypt is used with plain text authentication
1504 # 'vencrypt+tls+none' if VEncrypt is used with TLS and no authentication
1505 # 'vencrypt+tls+vnc' if VEncrypt is used with TLS and VNC authentication
1506 # 'vencrypt+tls+plain' if VEncrypt is used with TLS and plain text auth
1507 # 'vencrypt+x509+none' if VEncrypt is used with x509 and no auth
1508 # 'vencrypt+x509+vnc' if VEncrypt is used with x509 and VNC auth
1509 # 'vencrypt+x509+plain' if VEncrypt is used with x509 and plain text auth
1510 # 'vencrypt+tls+sasl' if VEncrypt is used with TLS and SASL auth
1511 # 'vencrypt+x509+sasl' if VEncrypt is used with x509 and SASL auth
1512 #
1513 # @clients: a list of @VncClientInfo of all currently connected clients
1514 #
1515 # Since: 0.14.0
1516 ##
1517 { 'struct': 'VncInfo',
1518 'data': {'enabled': 'bool', '*host': 'str',
1519 '*family': 'NetworkAddressFamily',
1520 '*service': 'str', '*auth': 'str', '*clients': ['VncClientInfo']} }
1521
1522 ##
1523 # @VncPrimaryAuth:
1524 #
1525 # vnc primary authentication method.
1526 #
1527 # Since: 2.3
1528 ##
1529 { 'enum': 'VncPrimaryAuth',
1530 'data': [ 'none', 'vnc', 'ra2', 'ra2ne', 'tight', 'ultra',
1531 'tls', 'vencrypt', 'sasl' ] }
1532
1533 ##
1534 # @VncVencryptSubAuth:
1535 #
1536 # vnc sub authentication method with vencrypt.
1537 #
1538 # Since: 2.3
1539 ##
1540 { 'enum': 'VncVencryptSubAuth',
1541 'data': [ 'plain',
1542 'tls-none', 'x509-none',
1543 'tls-vnc', 'x509-vnc',
1544 'tls-plain', 'x509-plain',
1545 'tls-sasl', 'x509-sasl' ] }
1546
1547 ##
1548 # @VncInfo2:
1549 #
1550 # Information about a vnc server
1551 #
1552 # @id: vnc server name.
1553 #
1554 # @server: A list of @VncBasincInfo describing all listening sockets.
1555 # The list can be empty (in case the vnc server is disabled).
1556 # It also may have multiple entries: normal + websocket,
1557 # possibly also ipv4 + ipv6 in the future.
1558 #
1559 # @clients: A list of @VncClientInfo of all currently connected clients.
1560 # The list can be empty, for obvious reasons.
1561 #
1562 # @auth: The current authentication type used by the server
1563 #
1564 # @vencrypt: #optional The vencrypt sub authentication type used by the server,
1565 # only specified in case auth == vencrypt.
1566 #
1567 # @display: #optional The display device the vnc server is linked to.
1568 #
1569 # Since: 2.3
1570 ##
1571 { 'struct': 'VncInfo2',
1572 'data': { 'id' : 'str',
1573 'server' : ['VncBasicInfo'],
1574 'clients' : ['VncClientInfo'],
1575 'auth' : 'VncPrimaryAuth',
1576 '*vencrypt' : 'VncVencryptSubAuth',
1577 '*display' : 'str' } }
1578
1579 ##
1580 # @query-vnc:
1581 #
1582 # Returns information about the current VNC server
1583 #
1584 # Returns: @VncInfo
1585 #
1586 # Since: 0.14.0
1587 #
1588 # Example:
1589 #
1590 # -> { "execute": "query-vnc" }
1591 # <- { "return": {
1592 # "enabled":true,
1593 # "host":"0.0.0.0",
1594 # "service":"50402",
1595 # "auth":"vnc",
1596 # "family":"ipv4",
1597 # "clients":[
1598 # {
1599 # "host":"127.0.0.1",
1600 # "service":"50401",
1601 # "family":"ipv4"
1602 # }
1603 # ]
1604 # }
1605 # }
1606 #
1607 ##
1608 { 'command': 'query-vnc', 'returns': 'VncInfo' }
1609
1610 ##
1611 # @query-vnc-servers:
1612 #
1613 # Returns a list of vnc servers. The list can be empty.
1614 #
1615 # Returns: a list of @VncInfo2
1616 #
1617 # Since: 2.3
1618 ##
1619 { 'command': 'query-vnc-servers', 'returns': ['VncInfo2'] }
1620
1621 ##
1622 # @SpiceBasicInfo:
1623 #
1624 # The basic information for SPICE network connection
1625 #
1626 # @host: IP address
1627 #
1628 # @port: port number
1629 #
1630 # @family: address family
1631 #
1632 # Since: 2.1
1633 ##
1634 { 'struct': 'SpiceBasicInfo',
1635 'data': { 'host': 'str',
1636 'port': 'str',
1637 'family': 'NetworkAddressFamily' } }
1638
1639 ##
1640 # @SpiceServerInfo:
1641 #
1642 # Information about a SPICE server
1643 #
1644 # @auth: #optional, authentication method
1645 #
1646 # Since: 2.1
1647 ##
1648 { 'struct': 'SpiceServerInfo',
1649 'base': 'SpiceBasicInfo',
1650 'data': { '*auth': 'str' } }
1651
1652 ##
1653 # @SpiceChannel:
1654 #
1655 # Information about a SPICE client channel.
1656 #
1657 # @connection-id: SPICE connection id number. All channels with the same id
1658 # belong to the same SPICE session.
1659 #
1660 # @channel-type: SPICE channel type number. "1" is the main control
1661 # channel, filter for this one if you want to track spice
1662 # sessions only
1663 #
1664 # @channel-id: SPICE channel ID number. Usually "0", might be different when
1665 # multiple channels of the same type exist, such as multiple
1666 # display channels in a multihead setup
1667 #
1668 # @tls: true if the channel is encrypted, false otherwise.
1669 #
1670 # Since: 0.14.0
1671 ##
1672 { 'struct': 'SpiceChannel',
1673 'base': 'SpiceBasicInfo',
1674 'data': {'connection-id': 'int', 'channel-type': 'int', 'channel-id': 'int',
1675 'tls': 'bool'} }
1676
1677 ##
1678 # @SpiceQueryMouseMode:
1679 #
1680 # An enumeration of Spice mouse states.
1681 #
1682 # @client: Mouse cursor position is determined by the client.
1683 #
1684 # @server: Mouse cursor position is determined by the server.
1685 #
1686 # @unknown: No information is available about mouse mode used by
1687 # the spice server.
1688 #
1689 # Note: spice/enums.h has a SpiceMouseMode already, hence the name.
1690 #
1691 # Since: 1.1
1692 ##
1693 { 'enum': 'SpiceQueryMouseMode',
1694 'data': [ 'client', 'server', 'unknown' ] }
1695
1696 ##
1697 # @SpiceInfo:
1698 #
1699 # Information about the SPICE session.
1700 #
1701 # @enabled: true if the SPICE server is enabled, false otherwise
1702 #
1703 # @migrated: true if the last guest migration completed and spice
1704 # migration had completed as well. false otherwise. (since 1.4)
1705 #
1706 # @host: #optional The hostname the SPICE server is bound to. This depends on
1707 # the name resolution on the host and may be an IP address.
1708 #
1709 # @port: #optional The SPICE server's port number.
1710 #
1711 # @compiled-version: #optional SPICE server version.
1712 #
1713 # @tls-port: #optional The SPICE server's TLS port number.
1714 #
1715 # @auth: #optional the current authentication type used by the server
1716 # 'none' if no authentication is being used
1717 # 'spice' uses SASL or direct TLS authentication, depending on command
1718 # line options
1719 #
1720 # @mouse-mode: The mode in which the mouse cursor is displayed currently. Can
1721 # be determined by the client or the server, or unknown if spice
1722 # server doesn't provide this information. (since: 1.1)
1723 #
1724 # @channels: a list of @SpiceChannel for each active spice channel
1725 #
1726 # Since: 0.14.0
1727 ##
1728 { 'struct': 'SpiceInfo',
1729 'data': {'enabled': 'bool', 'migrated': 'bool', '*host': 'str', '*port': 'int',
1730 '*tls-port': 'int', '*auth': 'str', '*compiled-version': 'str',
1731 'mouse-mode': 'SpiceQueryMouseMode', '*channels': ['SpiceChannel']} }
1732
1733 ##
1734 # @query-spice:
1735 #
1736 # Returns information about the current SPICE server
1737 #
1738 # Returns: @SpiceInfo
1739 #
1740 # Since: 0.14.0
1741 #
1742 # Example:
1743 #
1744 # -> { "execute": "query-spice" }
1745 # <- { "return": {
1746 # "enabled": true,
1747 # "auth": "spice",
1748 # "port": 5920,
1749 # "tls-port": 5921,
1750 # "host": "0.0.0.0",
1751 # "channels": [
1752 # {
1753 # "port": "54924",
1754 # "family": "ipv4",
1755 # "channel-type": 1,
1756 # "connection-id": 1804289383,
1757 # "host": "127.0.0.1",
1758 # "channel-id": 0,
1759 # "tls": true
1760 # },
1761 # {
1762 # "port": "36710",
1763 # "family": "ipv4",
1764 # "channel-type": 4,
1765 # "connection-id": 1804289383,
1766 # "host": "127.0.0.1",
1767 # "channel-id": 0,
1768 # "tls": false
1769 # },
1770 # [ ... more channels follow ... ]
1771 # ]
1772 # }
1773 # }
1774 #
1775 ##
1776 { 'command': 'query-spice', 'returns': 'SpiceInfo' }
1777
1778 ##
1779 # @BalloonInfo:
1780 #
1781 # Information about the guest balloon device.
1782 #
1783 # @actual: the number of bytes the balloon currently contains
1784 #
1785 # Since: 0.14.0
1786 #
1787 ##
1788 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1789
1790 ##
1791 # @query-balloon:
1792 #
1793 # Return information about the balloon device.
1794 #
1795 # Returns: @BalloonInfo on success
1796 #
1797 # If the balloon driver is enabled but not functional because the KVM
1798 # kernel module cannot support it, KvmMissingCap
1799 #
1800 # If no balloon device is present, DeviceNotActive
1801 #
1802 # Since: 0.14.0
1803 #
1804 # Example:
1805 #
1806 # -> { "execute": "query-balloon" }
1807 # <- { "return": {
1808 # "actual": 1073741824,
1809 # }
1810 # }
1811 #
1812 ##
1813 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1814
1815 ##
1816 # @PciMemoryRange:
1817 #
1818 # A PCI device memory region
1819 #
1820 # @base: the starting address (guest physical)
1821 #
1822 # @limit: the ending address (guest physical)
1823 #
1824 # Since: 0.14.0
1825 ##
1826 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
1827
1828 ##
1829 # @PciMemoryRegion:
1830 #
1831 # Information about a PCI device I/O region.
1832 #
1833 # @bar: the index of the Base Address Register for this region
1834 #
1835 # @type: 'io' if the region is a PIO region
1836 # 'memory' if the region is a MMIO region
1837 #
1838 # @size: memory size
1839 #
1840 # @prefetch: #optional if @type is 'memory', true if the memory is prefetchable
1841 #
1842 # @mem_type_64: #optional if @type is 'memory', true if the BAR is 64-bit
1843 #
1844 # Since: 0.14.0
1845 ##
1846 { 'struct': 'PciMemoryRegion',
1847 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
1848 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
1849
1850 ##
1851 # @PciBusInfo:
1852 #
1853 # Information about a bus of a PCI Bridge device
1854 #
1855 # @number: primary bus interface number. This should be the number of the
1856 # bus the device resides on.
1857 #
1858 # @secondary: secondary bus interface number. This is the number of the
1859 # main bus for the bridge
1860 #
1861 # @subordinate: This is the highest number bus that resides below the
1862 # bridge.
1863 #
1864 # @io_range: The PIO range for all devices on this bridge
1865 #
1866 # @memory_range: The MMIO range for all devices on this bridge
1867 #
1868 # @prefetchable_range: The range of prefetchable MMIO for all devices on
1869 # this bridge
1870 #
1871 # Since: 2.4
1872 ##
1873 { 'struct': 'PciBusInfo',
1874 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
1875 'io_range': 'PciMemoryRange',
1876 'memory_range': 'PciMemoryRange',
1877 'prefetchable_range': 'PciMemoryRange' } }
1878
1879 ##
1880 # @PciBridgeInfo:
1881 #
1882 # Information about a PCI Bridge device
1883 #
1884 # @bus: information about the bus the device resides on
1885 #
1886 # @devices: a list of @PciDeviceInfo for each device on this bridge
1887 #
1888 # Since: 0.14.0
1889 ##
1890 { 'struct': 'PciBridgeInfo',
1891 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
1892
1893 ##
1894 # @PciDeviceClass:
1895 #
1896 # Information about the Class of a PCI device
1897 #
1898 # @desc: #optional a string description of the device's class
1899 #
1900 # @class: the class code of the device
1901 #
1902 # Since: 2.4
1903 ##
1904 { 'struct': 'PciDeviceClass',
1905 'data': {'*desc': 'str', 'class': 'int'} }
1906
1907 ##
1908 # @PciDeviceId:
1909 #
1910 # Information about the Id of a PCI device
1911 #
1912 # @device: the PCI device id
1913 #
1914 # @vendor: the PCI vendor id
1915 #
1916 # Since: 2.4
1917 ##
1918 { 'struct': 'PciDeviceId',
1919 'data': {'device': 'int', 'vendor': 'int'} }
1920
1921 ##
1922 # @PciDeviceInfo:
1923 #
1924 # Information about a PCI device
1925 #
1926 # @bus: the bus number of the device
1927 #
1928 # @slot: the slot the device is located in
1929 #
1930 # @function: the function of the slot used by the device
1931 #
1932 # @class_info: the class of the device
1933 #
1934 # @id: the PCI device id
1935 #
1936 # @irq: #optional if an IRQ is assigned to the device, the IRQ number
1937 #
1938 # @qdev_id: the device name of the PCI device
1939 #
1940 # @pci_bridge: if the device is a PCI bridge, the bridge information
1941 #
1942 # @regions: a list of the PCI I/O regions associated with the device
1943 #
1944 # Notes: the contents of @class_info.desc are not stable and should only be
1945 # treated as informational.
1946 #
1947 # Since: 0.14.0
1948 ##
1949 { 'struct': 'PciDeviceInfo',
1950 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
1951 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
1952 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
1953 'regions': ['PciMemoryRegion']} }
1954
1955 ##
1956 # @PciInfo:
1957 #
1958 # Information about a PCI bus
1959 #
1960 # @bus: the bus index
1961 #
1962 # @devices: a list of devices on this bus
1963 #
1964 # Since: 0.14.0
1965 ##
1966 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
1967
1968 ##
1969 # @query-pci:
1970 #
1971 # Return information about the PCI bus topology of the guest.
1972 #
1973 # Returns: a list of @PciInfo for each PCI bus. Each bus is
1974 # represented by a json-object, which has a key with a json-array of
1975 # all PCI devices attached to it. Each device is represented by a
1976 # json-object.
1977 #
1978 # Since: 0.14.0
1979 #
1980 # Example:
1981 #
1982 # -> { "execute": "query-pci" }
1983 # <- { "return": [
1984 # {
1985 # "bus": 0,
1986 # "devices": [
1987 # {
1988 # "bus": 0,
1989 # "qdev_id": "",
1990 # "slot": 0,
1991 # "class_info": {
1992 # "class": 1536,
1993 # "desc": "Host bridge"
1994 # },
1995 # "id": {
1996 # "device": 32902,
1997 # "vendor": 4663
1998 # },
1999 # "function": 0,
2000 # "regions": [
2001 # ]
2002 # },
2003 # {
2004 # "bus": 0,
2005 # "qdev_id": "",
2006 # "slot": 1,
2007 # "class_info": {
2008 # "class": 1537,
2009 # "desc": "ISA bridge"
2010 # },
2011 # "id": {
2012 # "device": 32902,
2013 # "vendor": 28672
2014 # },
2015 # "function": 0,
2016 # "regions": [
2017 # ]
2018 # },
2019 # {
2020 # "bus": 0,
2021 # "qdev_id": "",
2022 # "slot": 1,
2023 # "class_info": {
2024 # "class": 257,
2025 # "desc": "IDE controller"
2026 # },
2027 # "id": {
2028 # "device": 32902,
2029 # "vendor": 28688
2030 # },
2031 # "function": 1,
2032 # "regions": [
2033 # {
2034 # "bar": 4,
2035 # "size": 16,
2036 # "address": 49152,
2037 # "type": "io"
2038 # }
2039 # ]
2040 # },
2041 # {
2042 # "bus": 0,
2043 # "qdev_id": "",
2044 # "slot": 2,
2045 # "class_info": {
2046 # "class": 768,
2047 # "desc": "VGA controller"
2048 # },
2049 # "id": {
2050 # "device": 4115,
2051 # "vendor": 184
2052 # },
2053 # "function": 0,
2054 # "regions": [
2055 # {
2056 # "prefetch": true,
2057 # "mem_type_64": false,
2058 # "bar": 0,
2059 # "size": 33554432,
2060 # "address": 4026531840,
2061 # "type": "memory"
2062 # },
2063 # {
2064 # "prefetch": false,
2065 # "mem_type_64": false,
2066 # "bar": 1,
2067 # "size": 4096,
2068 # "address": 4060086272,
2069 # "type": "memory"
2070 # },
2071 # {
2072 # "prefetch": false,
2073 # "mem_type_64": false,
2074 # "bar": 6,
2075 # "size": 65536,
2076 # "address": -1,
2077 # "type": "memory"
2078 # }
2079 # ]
2080 # },
2081 # {
2082 # "bus": 0,
2083 # "qdev_id": "",
2084 # "irq": 11,
2085 # "slot": 4,
2086 # "class_info": {
2087 # "class": 1280,
2088 # "desc": "RAM controller"
2089 # },
2090 # "id": {
2091 # "device": 6900,
2092 # "vendor": 4098
2093 # },
2094 # "function": 0,
2095 # "regions": [
2096 # {
2097 # "bar": 0,
2098 # "size": 32,
2099 # "address": 49280,
2100 # "type": "io"
2101 # }
2102 # ]
2103 # }
2104 # ]
2105 # }
2106 # ]
2107 # }
2108 #
2109 # Note: This example has been shortened as the real response is too long.
2110 #
2111 ##
2112 { 'command': 'query-pci', 'returns': ['PciInfo'] }
2113
2114 ##
2115 # @quit:
2116 #
2117 # This command will cause the QEMU process to exit gracefully. While every
2118 # attempt is made to send the QMP response before terminating, this is not
2119 # guaranteed. When using this interface, a premature EOF would not be
2120 # unexpected.
2121 #
2122 # Since: 0.14.0
2123 #
2124 # Example:
2125 #
2126 # -> { "execute": "quit" }
2127 # <- { "return": {} }
2128 ##
2129 { 'command': 'quit' }
2130
2131 ##
2132 # @stop:
2133 #
2134 # Stop all guest VCPU execution.
2135 #
2136 # Since: 0.14.0
2137 #
2138 # Notes: This function will succeed even if the guest is already in the stopped
2139 # state. In "inmigrate" state, it will ensure that the guest
2140 # remains paused once migration finishes, as if the -S option was
2141 # passed on the command line.
2142 #
2143 # Example:
2144 #
2145 # -> { "execute": "stop" }
2146 # <- { "return": {} }
2147 #
2148 ##
2149 { 'command': 'stop' }
2150
2151 ##
2152 # @system_reset:
2153 #
2154 # Performs a hard reset of a guest.
2155 #
2156 # Since: 0.14.0
2157 #
2158 # Example:
2159 #
2160 # -> { "execute": "system_reset" }
2161 # <- { "return": {} }
2162 #
2163 ##
2164 { 'command': 'system_reset' }
2165
2166 ##
2167 # @system_powerdown:
2168 #
2169 # Requests that a guest perform a powerdown operation.
2170 #
2171 # Since: 0.14.0
2172 #
2173 # Notes: A guest may or may not respond to this command. This command
2174 # returning does not indicate that a guest has accepted the request or
2175 # that it has shut down. Many guests will respond to this command by
2176 # prompting the user in some way.
2177 # Example:
2178 #
2179 # -> { "execute": "system_powerdown" }
2180 # <- { "return": {} }
2181 #
2182 ##
2183 { 'command': 'system_powerdown' }
2184
2185 ##
2186 # @cpu:
2187 #
2188 # This command is a nop that is only provided for the purposes of compatibility.
2189 #
2190 # Since: 0.14.0
2191 #
2192 # Notes: Do not use this command.
2193 ##
2194 { 'command': 'cpu', 'data': {'index': 'int'} }
2195
2196 ##
2197 # @cpu-add:
2198 #
2199 # Adds CPU with specified ID
2200 #
2201 # @id: ID of CPU to be created, valid values [0..max_cpus)
2202 #
2203 # Returns: Nothing on success
2204 #
2205 # Since: 1.5
2206 #
2207 # Example:
2208 #
2209 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
2210 # <- { "return": {} }
2211 #
2212 ##
2213 { 'command': 'cpu-add', 'data': {'id': 'int'} }
2214
2215 ##
2216 # @memsave:
2217 #
2218 # Save a portion of guest memory to a file.
2219 #
2220 # @val: the virtual address of the guest to start from
2221 #
2222 # @size: the size of memory region to save
2223 #
2224 # @filename: the file to save the memory to as binary data
2225 #
2226 # @cpu-index: #optional the index of the virtual CPU to use for translating the
2227 # virtual address (defaults to CPU 0)
2228 #
2229 # Returns: Nothing on success
2230 #
2231 # Since: 0.14.0
2232 #
2233 # Notes: Errors were not reliably returned until 1.1
2234 #
2235 # Example:
2236 #
2237 # -> { "execute": "memsave",
2238 # "arguments": { "val": 10,
2239 # "size": 100,
2240 # "filename": "/tmp/virtual-mem-dump" } }
2241 # <- { "return": {} }
2242 #
2243 ##
2244 { 'command': 'memsave',
2245 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
2246
2247 ##
2248 # @pmemsave:
2249 #
2250 # Save a portion of guest physical memory to a file.
2251 #
2252 # @val: the physical address of the guest to start from
2253 #
2254 # @size: the size of memory region to save
2255 #
2256 # @filename: the file to save the memory to as binary data
2257 #
2258 # Returns: Nothing on success
2259 #
2260 # Since: 0.14.0
2261 #
2262 # Notes: Errors were not reliably returned until 1.1
2263 #
2264 # Example:
2265 #
2266 # -> { "execute": "pmemsave",
2267 # "arguments": { "val": 10,
2268 # "size": 100,
2269 # "filename": "/tmp/physical-mem-dump" } }
2270 # <- { "return": {} }
2271 #
2272 ##
2273 { 'command': 'pmemsave',
2274 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
2275
2276 ##
2277 # @cont:
2278 #
2279 # Resume guest VCPU execution.
2280 #
2281 # Since: 0.14.0
2282 #
2283 # Returns: If successful, nothing
2284 # If QEMU was started with an encrypted block device and a key has
2285 # not yet been set, DeviceEncrypted.
2286 #
2287 # Notes: This command will succeed if the guest is currently running. It
2288 # will also succeed if the guest is in the "inmigrate" state; in
2289 # this case, the effect of the command is to make sure the guest
2290 # starts once migration finishes, removing the effect of the -S
2291 # command line option if it was passed.
2292 #
2293 # Example:
2294 #
2295 # -> { "execute": "cont" }
2296 # <- { "return": {} }
2297 #
2298 ##
2299 { 'command': 'cont' }
2300
2301 ##
2302 # @system_wakeup:
2303 #
2304 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
2305 #
2306 # Since: 1.1
2307 #
2308 # Returns: nothing.
2309 #
2310 # Example:
2311 #
2312 # -> { "execute": "system_wakeup" }
2313 # <- { "return": {} }
2314 #
2315 ##
2316 { 'command': 'system_wakeup' }
2317
2318 ##
2319 # @inject-nmi:
2320 #
2321 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
2322 # The command fails when the guest doesn't support injecting.
2323 #
2324 # Returns: If successful, nothing
2325 #
2326 # Since: 0.14.0
2327 #
2328 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
2329 #
2330 # Example:
2331 #
2332 # -> { "execute": "inject-nmi" }
2333 # <- { "return": {} }
2334 #
2335 ##
2336 { 'command': 'inject-nmi' }
2337
2338 ##
2339 # @set_link:
2340 #
2341 # Sets the link status of a virtual network adapter.
2342 #
2343 # @name: the device name of the virtual network adapter
2344 #
2345 # @up: true to set the link status to be up
2346 #
2347 # Returns: Nothing on success
2348 # If @name is not a valid network device, DeviceNotFound
2349 #
2350 # Since: 0.14.0
2351 #
2352 # Notes: Not all network adapters support setting link status. This command
2353 # will succeed even if the network adapter does not support link status
2354 # notification.
2355 #
2356 # Example:
2357 #
2358 # -> { "execute": "set_link",
2359 # "arguments": { "name": "e1000.0", "up": false } }
2360 # <- { "return": {} }
2361 #
2362 ##
2363 { 'command': 'set_link', 'data': {'name': 'str', 'up': 'bool'} }
2364
2365 ##
2366 # @balloon:
2367 #
2368 # Request the balloon driver to change its balloon size.
2369 #
2370 # @value: the target size of the balloon in bytes
2371 #
2372 # Returns: Nothing on success
2373 # If the balloon driver is enabled but not functional because the KVM
2374 # kernel module cannot support it, KvmMissingCap
2375 # If no balloon device is present, DeviceNotActive
2376 #
2377 # Notes: This command just issues a request to the guest. When it returns,
2378 # the balloon size may not have changed. A guest can change the balloon
2379 # size independent of this command.
2380 #
2381 # Since: 0.14.0
2382 #
2383 # Example:
2384 #
2385 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
2386 # <- { "return": {} }
2387 #
2388 ##
2389 { 'command': 'balloon', 'data': {'value': 'int'} }
2390
2391 ##
2392 # @Abort:
2393 #
2394 # This action can be used to test transaction failure.
2395 #
2396 # Since: 1.6
2397 ##
2398 { 'struct': 'Abort',
2399 'data': { } }
2400
2401 ##
2402 # @ActionCompletionMode:
2403 #
2404 # An enumeration of Transactional completion modes.
2405 #
2406 # @individual: Do not attempt to cancel any other Actions if any Actions fail
2407 # after the Transaction request succeeds. All Actions that
2408 # can complete successfully will do so without waiting on others.
2409 # This is the default.
2410 #
2411 # @grouped: If any Action fails after the Transaction succeeds, cancel all
2412 # Actions. Actions do not complete until all Actions are ready to
2413 # complete. May be rejected by Actions that do not support this
2414 # completion mode.
2415 #
2416 # Since: 2.5
2417 ##
2418 { 'enum': 'ActionCompletionMode',
2419 'data': [ 'individual', 'grouped' ] }
2420
2421 ##
2422 # @TransactionAction:
2423 #
2424 # A discriminated record of operations that can be performed with
2425 # @transaction. Action @type can be:
2426 #
2427 # - @abort: since 1.6
2428 # - @block-dirty-bitmap-add: since 2.5
2429 # - @block-dirty-bitmap-clear: since 2.5
2430 # - @blockdev-backup: since 2.3
2431 # - @blockdev-snapshot: since 2.5
2432 # - @blockdev-snapshot-internal-sync: since 1.7
2433 # - @blockdev-snapshot-sync: since 1.1
2434 # - @drive-backup: since 1.6
2435 #
2436 # Since: 1.1
2437 ##
2438 { 'union': 'TransactionAction',
2439 'data': {
2440 'abort': 'Abort',
2441 'block-dirty-bitmap-add': 'BlockDirtyBitmapAdd',
2442 'block-dirty-bitmap-clear': 'BlockDirtyBitmap',
2443 'blockdev-backup': 'BlockdevBackup',
2444 'blockdev-snapshot': 'BlockdevSnapshot',
2445 'blockdev-snapshot-internal-sync': 'BlockdevSnapshotInternal',
2446 'blockdev-snapshot-sync': 'BlockdevSnapshotSync',
2447 'drive-backup': 'DriveBackup'
2448 } }
2449
2450 ##
2451 # @TransactionProperties:
2452 #
2453 # Optional arguments to modify the behavior of a Transaction.
2454 #
2455 # @completion-mode: #optional Controls how jobs launched asynchronously by
2456 # Actions will complete or fail as a group.
2457 # See @ActionCompletionMode for details.
2458 #
2459 # Since: 2.5
2460 ##
2461 { 'struct': 'TransactionProperties',
2462 'data': {
2463 '*completion-mode': 'ActionCompletionMode'
2464 }
2465 }
2466
2467 ##
2468 # @transaction:
2469 #
2470 # Executes a number of transactionable QMP commands atomically. If any
2471 # operation fails, then the entire set of actions will be abandoned and the
2472 # appropriate error returned.
2473 #
2474 # For external snapshots, the dictionary contains the device, the file to use for
2475 # the new snapshot, and the format. The default format, if not specified, is
2476 # qcow2.
2477 #
2478 # Each new snapshot defaults to being created by QEMU (wiping any
2479 # contents if the file already exists), but it is also possible to reuse
2480 # an externally-created file. In the latter case, you should ensure that
2481 # the new image file has the same contents as the current one; QEMU cannot
2482 # perform any meaningful check. Typically this is achieved by using the
2483 # current image file as the backing file for the new image.
2484 #
2485 # On failure, the original disks pre-snapshot attempt will be used.
2486 #
2487 # For internal snapshots, the dictionary contains the device and the snapshot's
2488 # name. If an internal snapshot matching name already exists, the request will
2489 # be rejected. Only some image formats support it, for example, qcow2, rbd,
2490 # and sheepdog.
2491 #
2492 # On failure, qemu will try delete the newly created internal snapshot in the
2493 # transaction. When an I/O error occurs during deletion, the user needs to fix
2494 # it later with qemu-img or other command.
2495 #
2496 # @actions: List of @TransactionAction;
2497 # information needed for the respective operations.
2498 #
2499 # @properties: #optional structure of additional options to control the
2500 # execution of the transaction. See @TransactionProperties
2501 # for additional detail.
2502 #
2503 # Returns: nothing on success
2504 #
2505 # Errors depend on the operations of the transaction
2506 #
2507 # Note: The transaction aborts on the first failure. Therefore, there will be
2508 # information on only one failed operation returned in an error condition, and
2509 # subsequent actions will not have been attempted.
2510 #
2511 # Since: 1.1
2512 #
2513 # Example:
2514 #
2515 # -> { "execute": "transaction",
2516 # "arguments": { "actions": [
2517 # { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd0",
2518 # "snapshot-file": "/some/place/my-image",
2519 # "format": "qcow2" } },
2520 # { "type": "blockdev-snapshot-sync", "data" : { "node-name": "myfile",
2521 # "snapshot-file": "/some/place/my-image2",
2522 # "snapshot-node-name": "node3432",
2523 # "mode": "existing",
2524 # "format": "qcow2" } },
2525 # { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd1",
2526 # "snapshot-file": "/some/place/my-image2",
2527 # "mode": "existing",
2528 # "format": "qcow2" } },
2529 # { "type": "blockdev-snapshot-internal-sync", "data" : {
2530 # "device": "ide-hd2",
2531 # "name": "snapshot0" } } ] } }
2532 # <- { "return": {} }
2533 #
2534 ##
2535 { 'command': 'transaction',
2536 'data': { 'actions': [ 'TransactionAction' ],
2537 '*properties': 'TransactionProperties'
2538 }
2539 }
2540
2541 ##
2542 # @human-monitor-command:
2543 #
2544 # Execute a command on the human monitor and return the output.
2545 #
2546 # @command-line: the command to execute in the human monitor
2547 #
2548 # @cpu-index: #optional The CPU to use for commands that require an implicit CPU
2549 #
2550 # Returns: the output of the command as a string
2551 #
2552 # Since: 0.14.0
2553 #
2554 # Notes: This command only exists as a stop-gap. Its use is highly
2555 # discouraged. The semantics of this command are not
2556 # guaranteed: this means that command names, arguments and
2557 # responses can change or be removed at ANY time. Applications
2558 # that rely on long term stability guarantees should NOT
2559 # use this command.
2560 #
2561 # Known limitations:
2562 #
2563 # * This command is stateless, this means that commands that depend
2564 # on state information (such as getfd) might not work
2565 #
2566 # * Commands that prompt the user for data (eg. 'cont' when the block
2567 # device is encrypted) don't currently work
2568 #
2569 # Example:
2570 #
2571 # -> { "execute": "human-monitor-command",
2572 # "arguments": { "command-line": "info kvm" } }
2573 # <- { "return": "kvm support: enabled\r\n" }
2574 #
2575 ##
2576 { 'command': 'human-monitor-command',
2577 'data': {'command-line': 'str', '*cpu-index': 'int'},
2578 'returns': 'str' }
2579
2580 ##
2581 # @migrate_cancel:
2582 #
2583 # Cancel the current executing migration process.
2584 #
2585 # Returns: nothing on success
2586 #
2587 # Notes: This command succeeds even if there is no migration process running.
2588 #
2589 # Since: 0.14.0
2590 #
2591 # Example:
2592 #
2593 # -> { "execute": "migrate_cancel" }
2594 # <- { "return": {} }
2595 #
2596 ##
2597 { 'command': 'migrate_cancel' }
2598
2599 ##
2600 # @migrate_set_downtime:
2601 #
2602 # Set maximum tolerated downtime for migration.
2603 #
2604 # @value: maximum downtime in seconds
2605 #
2606 # Returns: nothing on success
2607 #
2608 # Notes: This command is deprecated in favor of 'migrate-set-parameters'
2609 #
2610 # Since: 0.14.0
2611 #
2612 # Example:
2613 #
2614 # -> { "execute": "migrate_set_downtime", "arguments": { "value": 0.1 } }
2615 # <- { "return": {} }
2616 #
2617 ##
2618 { 'command': 'migrate_set_downtime', 'data': {'value': 'number'} }
2619
2620 ##
2621 # @migrate_set_speed:
2622 #
2623 # Set maximum speed for migration.
2624 #
2625 # @value: maximum speed in bytes per second.
2626 #
2627 # Returns: nothing on success
2628 #
2629 # Notes: This command is deprecated in favor of 'migrate-set-parameters'
2630 #
2631 # Since: 0.14.0
2632 #
2633 # Example:
2634 #
2635 # -> { "execute": "migrate_set_speed", "arguments": { "value": 1024 } }
2636 # <- { "return": {} }
2637 #
2638 ##
2639 { 'command': 'migrate_set_speed', 'data': {'value': 'int'} }
2640
2641 ##
2642 # @migrate-set-cache-size:
2643 #
2644 # Set XBZRLE cache size
2645 #
2646 # @value: cache size in bytes
2647 #
2648 # The size will be rounded down to the nearest power of 2.
2649 # The cache size can be modified before and during ongoing migration
2650 #
2651 # Returns: nothing on success
2652 #
2653 # Since: 1.2
2654 ##
2655 { 'command': 'migrate-set-cache-size', 'data': {'value': 'int'} }
2656
2657 ##
2658 # @query-migrate-cache-size:
2659 #
2660 # Query migration XBZRLE cache size
2661 #
2662 # Returns: XBZRLE cache size in bytes
2663 #
2664 # Since: 1.2
2665 #
2666 # Example:
2667 #
2668 # -> { "execute": "query-migrate-cache-size" }
2669 # <- { "return": 67108864 }
2670 #
2671 ##
2672 { 'command': 'query-migrate-cache-size', 'returns': 'int' }
2673
2674 ##
2675 # @ObjectPropertyInfo:
2676 #
2677 # @name: the name of the property
2678 #
2679 # @type: the type of the property. This will typically come in one of four
2680 # forms:
2681 #
2682 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
2683 # These types are mapped to the appropriate JSON type.
2684 #
2685 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
2686 # device type name. Child properties create the composition tree.
2687 #
2688 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
2689 # device type name. Link properties form the device model graph.
2690 #
2691 # Since: 1.2
2692 ##
2693 { 'struct': 'ObjectPropertyInfo',
2694 'data': { 'name': 'str', 'type': 'str' } }
2695
2696 ##
2697 # @qom-list:
2698 #
2699 # This command will list any properties of a object given a path in the object
2700 # model.
2701 #
2702 # @path: the path within the object model. See @qom-get for a description of
2703 # this parameter.
2704 #
2705 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
2706 # object.
2707 #
2708 # Since: 1.2
2709 ##
2710 { 'command': 'qom-list',
2711 'data': { 'path': 'str' },
2712 'returns': [ 'ObjectPropertyInfo' ] }
2713
2714 ##
2715 # @qom-get:
2716 #
2717 # This command will get a property from a object model path and return the
2718 # value.
2719 #
2720 # @path: The path within the object model. There are two forms of supported
2721 # paths--absolute and partial paths.
2722 #
2723 # Absolute paths are derived from the root object and can follow child<>
2724 # or link<> properties. Since they can follow link<> properties, they
2725 # can be arbitrarily long. Absolute paths look like absolute filenames
2726 # and are prefixed with a leading slash.
2727 #
2728 # Partial paths look like relative filenames. They do not begin
2729 # with a prefix. The matching rules for partial paths are subtle but
2730 # designed to make specifying objects easy. At each level of the
2731 # composition tree, the partial path is matched as an absolute path.
2732 # The first match is not returned. At least two matches are searched
2733 # for. A successful result is only returned if only one match is
2734 # found. If more than one match is found, a flag is return to
2735 # indicate that the match was ambiguous.
2736 #
2737 # @property: The property name to read
2738 #
2739 # Returns: The property value. The type depends on the property
2740 # type. child<> and link<> properties are returned as #str
2741 # pathnames. All integer property types (u8, u16, etc) are
2742 # returned as #int.
2743 #
2744 # Since: 1.2
2745 ##
2746 { 'command': 'qom-get',
2747 'data': { 'path': 'str', 'property': 'str' },
2748 'returns': 'any' }
2749
2750 ##
2751 # @qom-set:
2752 #
2753 # This command will set a property from a object model path.
2754 #
2755 # @path: see @qom-get for a description of this parameter
2756 #
2757 # @property: the property name to set
2758 #
2759 # @value: a value who's type is appropriate for the property type. See @qom-get
2760 # for a description of type mapping.
2761 #
2762 # Since: 1.2
2763 ##
2764 { 'command': 'qom-set',
2765 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
2766
2767 ##
2768 # @set_password:
2769 #
2770 # Sets the password of a remote display session.
2771 #
2772 # @protocol: `vnc' to modify the VNC server password
2773 # `spice' to modify the Spice server password
2774 #
2775 # @password: the new password
2776 #
2777 # @connected: #optional how to handle existing clients when changing the
2778 # password. If nothing is specified, defaults to `keep'
2779 # `fail' to fail the command if clients are connected
2780 # `disconnect' to disconnect existing clients
2781 # `keep' to maintain existing clients
2782 #
2783 # Returns: Nothing on success
2784 # If Spice is not enabled, DeviceNotFound
2785 #
2786 # Since: 0.14.0
2787 #
2788 # Example:
2789 #
2790 # -> { "execute": "set_password", "arguments": { "protocol": "vnc",
2791 # "password": "secret" } }
2792 # <- { "return": {} }
2793 #
2794 ##
2795 { 'command': 'set_password',
2796 'data': {'protocol': 'str', 'password': 'str', '*connected': 'str'} }
2797
2798 ##
2799 # @expire_password:
2800 #
2801 # Expire the password of a remote display server.
2802 #
2803 # @protocol: the name of the remote display protocol `vnc' or `spice'
2804 #
2805 # @time: when to expire the password.
2806 # `now' to expire the password immediately
2807 # `never' to cancel password expiration
2808 # `+INT' where INT is the number of seconds from now (integer)
2809 # `INT' where INT is the absolute time in seconds
2810 #
2811 # Returns: Nothing on success
2812 # If @protocol is `spice' and Spice is not active, DeviceNotFound
2813 #
2814 # Since: 0.14.0
2815 #
2816 # Notes: Time is relative to the server and currently there is no way to
2817 # coordinate server time with client time. It is not recommended to
2818 # use the absolute time version of the @time parameter unless you're
2819 # sure you are on the same machine as the QEMU instance.
2820 #
2821 # Example:
2822 #
2823 # -> { "execute": "expire_password", "arguments": { "protocol": "vnc",
2824 # "time": "+60" } }
2825 # <- { "return": {} }
2826 #
2827 ##
2828 { 'command': 'expire_password', 'data': {'protocol': 'str', 'time': 'str'} }
2829
2830 ##
2831 # @change-vnc-password:
2832 #
2833 # Change the VNC server password.
2834 #
2835 # @password: the new password to use with VNC authentication
2836 #
2837 # Since: 1.1
2838 #
2839 # Notes: An empty password in this command will set the password to the empty
2840 # string. Existing clients are unaffected by executing this command.
2841 ##
2842 { 'command': 'change-vnc-password', 'data': {'password': 'str'} }
2843
2844 ##
2845 # @change:
2846 #
2847 # This command is multiple commands multiplexed together.
2848 #
2849 # @device: This is normally the name of a block device but it may also be 'vnc'.
2850 # when it's 'vnc', then sub command depends on @target
2851 #
2852 # @target: If @device is a block device, then this is the new filename.
2853 # If @device is 'vnc', then if the value 'password' selects the vnc
2854 # change password command. Otherwise, this specifies a new server URI
2855 # address to listen to for VNC connections.
2856 #
2857 # @arg: If @device is a block device, then this is an optional format to open
2858 # the device with.
2859 # If @device is 'vnc' and @target is 'password', this is the new VNC
2860 # password to set. If this argument is an empty string, then no future
2861 # logins will be allowed.
2862 #
2863 # Returns: Nothing on success.
2864 # If @device is not a valid block device, DeviceNotFound
2865 # If the new block device is encrypted, DeviceEncrypted. Note that
2866 # if this error is returned, the device has been opened successfully
2867 # and an additional call to @block_passwd is required to set the
2868 # device's password. The behavior of reads and writes to the block
2869 # device between when these calls are executed is undefined.
2870 #
2871 # Notes: This interface is deprecated, and it is strongly recommended that you
2872 # avoid using it. For changing block devices, use
2873 # blockdev-change-medium; for changing VNC parameters, use
2874 # change-vnc-password.
2875 #
2876 # Since: 0.14.0
2877 #
2878 # Example:
2879 #
2880 # 1. Change a removable medium
2881 #
2882 # -> { "execute": "change",
2883 # "arguments": { "device": "ide1-cd0",
2884 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
2885 # <- { "return": {} }
2886 #
2887 # 2. Change VNC password
2888 #
2889 # -> { "execute": "change",
2890 # "arguments": { "device": "vnc", "target": "password",
2891 # "arg": "foobar1" } }
2892 # <- { "return": {} }
2893 #
2894 ##
2895 { 'command': 'change',
2896 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
2897
2898 ##
2899 # @ObjectTypeInfo:
2900 #
2901 # This structure describes a search result from @qom-list-types
2902 #
2903 # @name: the type name found in the search
2904 #
2905 # Since: 1.1
2906 #
2907 # Notes: This command is experimental and may change syntax in future releases.
2908 ##
2909 { 'struct': 'ObjectTypeInfo',
2910 'data': { 'name': 'str' } }
2911
2912 ##
2913 # @qom-list-types:
2914 #
2915 # This command will return a list of types given search parameters
2916 #
2917 # @implements: if specified, only return types that implement this type name
2918 #
2919 # @abstract: if true, include abstract types in the results
2920 #
2921 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
2922 #
2923 # Since: 1.1
2924 ##
2925 { 'command': 'qom-list-types',
2926 'data': { '*implements': 'str', '*abstract': 'bool' },
2927 'returns': [ 'ObjectTypeInfo' ] }
2928
2929 ##
2930 # @DevicePropertyInfo:
2931 #
2932 # Information about device properties.
2933 #
2934 # @name: the name of the property
2935 # @type: the typename of the property
2936 # @description: #optional if specified, the description of the property.
2937 # (since 2.2)
2938 #
2939 # Since: 1.2
2940 ##
2941 { 'struct': 'DevicePropertyInfo',
2942 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
2943
2944 ##
2945 # @device-list-properties:
2946 #
2947 # List properties associated with a device.
2948 #
2949 # @typename: the type name of a device
2950 #
2951 # Returns: a list of DevicePropertyInfo describing a devices properties
2952 #
2953 # Since: 1.2
2954 ##
2955 { 'command': 'device-list-properties',
2956 'data': { 'typename': 'str'},
2957 'returns': [ 'DevicePropertyInfo' ] }
2958
2959 ##
2960 # @migrate:
2961 #
2962 # Migrates the current running guest to another Virtual Machine.
2963 #
2964 # @uri: the Uniform Resource Identifier of the destination VM
2965 #
2966 # @blk: #optional do block migration (full disk copy)
2967 #
2968 # @inc: #optional incremental disk copy migration
2969 #
2970 # @detach: this argument exists only for compatibility reasons and
2971 # is ignored by QEMU
2972 #
2973 # Returns: nothing on success
2974 #
2975 # Since: 0.14.0
2976 #
2977 # Notes:
2978 #
2979 # 1. The 'query-migrate' command should be used to check migration's progress
2980 # and final result (this information is provided by the 'status' member)
2981 #
2982 # 2. All boolean arguments default to false
2983 #
2984 # 3. The user Monitor's "detach" argument is invalid in QMP and should not
2985 # be used
2986 #
2987 # Example:
2988 #
2989 # -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
2990 # <- { "return": {} }
2991 #
2992 ##
2993 { 'command': 'migrate',
2994 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', '*detach': 'bool' } }
2995
2996 ##
2997 # @migrate-incoming:
2998 #
2999 # Start an incoming migration, the qemu must have been started
3000 # with -incoming defer
3001 #
3002 # @uri: The Uniform Resource Identifier identifying the source or
3003 # address to listen on
3004 #
3005 # Returns: nothing on success
3006 #
3007 # Since: 2.3
3008 #
3009 # Notes:
3010 #
3011 # 1. It's a bad idea to use a string for the uri, but it needs to stay
3012 # compatible with -incoming and the format of the uri is already exposed
3013 # above libvirt.
3014 #
3015 # 2. QEMU must be started with -incoming defer to allow migrate-incoming to
3016 # be used.
3017 #
3018 # 3. The uri format is the same as for -incoming
3019 #
3020 # Example:
3021 #
3022 # -> { "execute": "migrate-incoming",
3023 # "arguments": { "uri": "tcp::4446" } }
3024 # <- { "return": {} }
3025 #
3026 ##
3027 { 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
3028
3029 ##
3030 # @xen-save-devices-state:
3031 #
3032 # Save the state of all devices to file. The RAM and the block devices
3033 # of the VM are not saved by this command.
3034 #
3035 # @filename: the file to save the state of the devices to as binary
3036 # data. See xen-save-devices-state.txt for a description of the binary
3037 # format.
3038 #
3039 # Returns: Nothing on success
3040 #
3041 # Since: 1.1
3042 #
3043 # Example:
3044 #
3045 # -> { "execute": "xen-save-devices-state",
3046 # "arguments": { "filename": "/tmp/save" } }
3047 # <- { "return": {} }
3048 #
3049 ##
3050 { 'command': 'xen-save-devices-state', 'data': {'filename': 'str'} }
3051
3052 ##
3053 # @xen-set-global-dirty-log:
3054 #
3055 # Enable or disable the global dirty log mode.
3056 #
3057 # @enable: true to enable, false to disable.
3058 #
3059 # Returns: nothing
3060 #
3061 # Since: 1.3
3062 #
3063 # Example:
3064 #
3065 # -> { "execute": "xen-set-global-dirty-log",
3066 # "arguments": { "enable": true } }
3067 # <- { "return": {} }
3068 #
3069 ##
3070 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
3071
3072 ##
3073 # @device_add:
3074 #
3075 # @driver: the name of the new device's driver
3076 #
3077 # @bus: #optional the device's parent bus (device tree path)
3078 #
3079 # @id: #optional the device's ID, must be unique
3080 #
3081 # Additional arguments depend on the type.
3082 #
3083 # Add a device.
3084 #
3085 # Notes:
3086 # 1. For detailed information about this command, please refer to the
3087 # 'docs/qdev-device-use.txt' file.
3088 #
3089 # 2. It's possible to list device properties by running QEMU with the
3090 # "-device DEVICE,help" command-line argument, where DEVICE is the
3091 # device's name
3092 #
3093 # Example:
3094 #
3095 # -> { "execute": "device_add",
3096 # "arguments": { "driver": "e1000", "id": "net1",
3097 # "bus": "pci.0",
3098 # "mac": "52:54:00:12:34:56" } }
3099 # <- { "return": {} }
3100 #
3101 # TODO: This command effectively bypasses QAPI completely due to its
3102 # "additional arguments" business. It shouldn't have been added to
3103 # the schema in this form. It should be qapified properly, or
3104 # replaced by a properly qapified command.
3105 #
3106 # Since: 0.13
3107 ##
3108 { 'command': 'device_add',
3109 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
3110 'gen': false } # so we can get the additional arguments
3111
3112 ##
3113 # @device_del:
3114 #
3115 # Remove a device from a guest
3116 #
3117 # @id: the device's ID or QOM path
3118 #
3119 # Returns: Nothing on success
3120 # If @id is not a valid device, DeviceNotFound
3121 #
3122 # Notes: When this command completes, the device may not be removed from the
3123 # guest. Hot removal is an operation that requires guest cooperation.
3124 # This command merely requests that the guest begin the hot removal
3125 # process. Completion of the device removal process is signaled with a
3126 # DEVICE_DELETED event. Guest reset will automatically complete removal
3127 # for all devices.
3128 #
3129 # Since: 0.14.0
3130 #
3131 # Example:
3132 #
3133 # -> { "execute": "device_del",
3134 # "arguments": { "id": "net1" } }
3135 # <- { "return": {} }
3136 #
3137 # -> { "execute": "device_del",
3138 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
3139 # <- { "return": {} }
3140 #
3141 ##
3142 { 'command': 'device_del', 'data': {'id': 'str'} }
3143
3144 ##
3145 # @DumpGuestMemoryFormat:
3146 #
3147 # An enumeration of guest-memory-dump's format.
3148 #
3149 # @elf: elf format
3150 #
3151 # @kdump-zlib: kdump-compressed format with zlib-compressed
3152 #
3153 # @kdump-lzo: kdump-compressed format with lzo-compressed
3154 #
3155 # @kdump-snappy: kdump-compressed format with snappy-compressed
3156 #
3157 # Since: 2.0
3158 ##
3159 { 'enum': 'DumpGuestMemoryFormat',
3160 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
3161
3162 ##
3163 # @dump-guest-memory:
3164 #
3165 # Dump guest's memory to vmcore. It is a synchronous operation that can take
3166 # very long depending on the amount of guest memory.
3167 #
3168 # @paging: if true, do paging to get guest's memory mapping. This allows
3169 # using gdb to process the core file.
3170 #
3171 # IMPORTANT: this option can make QEMU allocate several gigabytes
3172 # of RAM. This can happen for a large guest, or a
3173 # malicious guest pretending to be large.
3174 #
3175 # Also, paging=true has the following limitations:
3176 #
3177 # 1. The guest may be in a catastrophic state or can have corrupted
3178 # memory, which cannot be trusted
3179 # 2. The guest can be in real-mode even if paging is enabled. For
3180 # example, the guest uses ACPI to sleep, and ACPI sleep state
3181 # goes in real-mode
3182 # 3. Currently only supported on i386 and x86_64.
3183 #
3184 # @protocol: the filename or file descriptor of the vmcore. The supported
3185 # protocols are:
3186 #
3187 # 1. file: the protocol starts with "file:", and the following
3188 # string is the file's path.
3189 # 2. fd: the protocol starts with "fd:", and the following string
3190 # is the fd's name.
3191 #
3192 # @detach: #optional if true, QMP will return immediately rather than
3193 # waiting for the dump to finish. The user can track progress
3194 # using "query-dump". (since 2.6).
3195 #
3196 # @begin: #optional if specified, the starting physical address.
3197 #
3198 # @length: #optional if specified, the memory size, in bytes. If you don't
3199 # want to dump all guest's memory, please specify the start @begin
3200 # and @length
3201 #
3202 # @format: #optional if specified, the format of guest memory dump. But non-elf
3203 # format is conflict with paging and filter, ie. @paging, @begin and
3204 # @length is not allowed to be specified with non-elf @format at the
3205 # same time (since 2.0)
3206 #
3207 # Note: All boolean arguments default to false
3208 #
3209 # Returns: nothing on success
3210 #
3211 # Since: 1.2
3212 #
3213 # Example:
3214 #
3215 # -> { "execute": "dump-guest-memory",
3216 # "arguments": { "protocol": "fd:dump" } }
3217 # <- { "return": {} }
3218 #
3219 ##
3220 { 'command': 'dump-guest-memory',
3221 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
3222 '*begin': 'int', '*length': 'int',
3223 '*format': 'DumpGuestMemoryFormat'} }
3224
3225 ##
3226 # @DumpStatus:
3227 #
3228 # Describe the status of a long-running background guest memory dump.
3229 #
3230 # @none: no dump-guest-memory has started yet.
3231 #
3232 # @active: there is one dump running in background.
3233 #
3234 # @completed: the last dump has finished successfully.
3235 #
3236 # @failed: the last dump has failed.
3237 #
3238 # Since: 2.6
3239 ##
3240 { 'enum': 'DumpStatus',
3241 'data': [ 'none', 'active', 'completed', 'failed' ] }
3242
3243 ##
3244 # @DumpQueryResult:
3245 #
3246 # The result format for 'query-dump'.
3247 #
3248 # @status: enum of @DumpStatus, which shows current dump status
3249 #
3250 # @completed: bytes written in latest dump (uncompressed)
3251 #
3252 # @total: total bytes to be written in latest dump (uncompressed)
3253 #
3254 # Since: 2.6
3255 ##
3256 { 'struct': 'DumpQueryResult',
3257 'data': { 'status': 'DumpStatus',
3258 'completed': 'int',
3259 'total': 'int' } }
3260
3261 ##
3262 # @query-dump:
3263 #
3264 # Query latest dump status.
3265 #
3266 # Returns: A @DumpStatus object showing the dump status.
3267 #
3268 # Since: 2.6
3269 ##
3270 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
3271
3272 ##
3273 # @DumpGuestMemoryCapability:
3274 #
3275 # A list of the available formats for dump-guest-memory
3276 #
3277 # Since: 2.0
3278 ##
3279 { 'struct': 'DumpGuestMemoryCapability',
3280 'data': {
3281 'formats': ['DumpGuestMemoryFormat'] } }
3282
3283 ##
3284 # @query-dump-guest-memory-capability:
3285 #
3286 # Returns the available formats for dump-guest-memory
3287 #
3288 # Returns: A @DumpGuestMemoryCapability object listing available formats for
3289 # dump-guest-memory
3290 #
3291 # Since: 2.0
3292 #
3293 # Example:
3294 #
3295 # -> { "execute": "query-dump-guest-memory-capability" }
3296 # <- { "return": { "formats":
3297 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
3298 #
3299 ##
3300 { 'command': 'query-dump-guest-memory-capability',
3301 'returns': 'DumpGuestMemoryCapability' }
3302
3303 ##
3304 # @dump-skeys:
3305 #
3306 # Dump guest's storage keys
3307 #
3308 # @filename: the path to the file to dump to
3309 #
3310 # This command is only supported on s390 architecture.
3311 #
3312 # Since: 2.5
3313 #
3314 # Example:
3315 #
3316 # -> { "execute": "dump-skeys",
3317 # "arguments": { "filename": "/tmp/skeys" } }
3318 # <- { "return": {} }
3319 #
3320 ##
3321 { 'command': 'dump-skeys',
3322 'data': { 'filename': 'str' } }
3323
3324 ##
3325 # @netdev_add:
3326 #
3327 # Add a network backend.
3328 #
3329 # @type: the type of network backend. Current valid values are 'user', 'tap',
3330 # 'vde', 'socket', 'dump' and 'bridge'
3331 #
3332 # @id: the name of the new network backend
3333 #
3334 # Additional arguments depend on the type.
3335 #
3336 # TODO: This command effectively bypasses QAPI completely due to its
3337 # "additional arguments" business. It shouldn't have been added to
3338 # the schema in this form. It should be qapified properly, or
3339 # replaced by a properly qapified command.
3340 #
3341 # Since: 0.14.0
3342 #
3343 # Returns: Nothing on success
3344 # If @type is not a valid network backend, DeviceNotFound
3345 #
3346 # Example:
3347 #
3348 # -> { "execute": "netdev_add",
3349 # "arguments": { "type": "user", "id": "netdev1",
3350 # "dnssearch": "example.org" } }
3351 # <- { "return": {} }
3352 #
3353 ##
3354 { 'command': 'netdev_add',
3355 'data': {'type': 'str', 'id': 'str'},
3356 'gen': false } # so we can get the additional arguments
3357
3358 ##
3359 # @netdev_del:
3360 #
3361 # Remove a network backend.
3362 #
3363 # @id: the name of the network backend to remove
3364 #
3365 # Returns: Nothing on success
3366 # If @id is not a valid network backend, DeviceNotFound
3367 #
3368 # Since: 0.14.0
3369 #
3370 # Example:
3371 #
3372 # -> { "execute": "netdev_del", "arguments": { "id": "netdev1" } }
3373 # <- { "return": {} }
3374 #
3375 ##
3376 { 'command': 'netdev_del', 'data': {'id': 'str'} }
3377
3378 ##
3379 # @object-add:
3380 #
3381 # Create a QOM object.
3382 #
3383 # @qom-type: the class name for the object to be created
3384 #
3385 # @id: the name of the new object
3386 #
3387 # @props: #optional a dictionary of properties to be passed to the backend
3388 #
3389 # Returns: Nothing on success
3390 # Error if @qom-type is not a valid class name
3391 #
3392 # Since: 2.0
3393 #
3394 # Example:
3395 #
3396 # -> { "execute": "object-add",
3397 # "arguments": { "qom-type": "rng-random", "id": "rng1",
3398 # "props": { "filename": "/dev/hwrng" } } }
3399 # <- { "return": {} }
3400 #
3401 ##
3402 { 'command': 'object-add',
3403 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
3404
3405 ##
3406 # @object-del:
3407 #
3408 # Remove a QOM object.
3409 #
3410 # @id: the name of the QOM object to remove
3411 #
3412 # Returns: Nothing on success
3413 # Error if @id is not a valid id for a QOM object
3414 #
3415 # Since: 2.0
3416 #
3417 # Example:
3418 #
3419 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
3420 # <- { "return": {} }
3421 #
3422 ##
3423 { 'command': 'object-del', 'data': {'id': 'str'} }
3424
3425 ##
3426 # @NetdevNoneOptions:
3427 #
3428 # Use it alone to have zero network devices.
3429 #
3430 # Since: 1.2
3431 ##
3432 { 'struct': 'NetdevNoneOptions',
3433 'data': { } }
3434
3435 ##
3436 # @NetLegacyNicOptions:
3437 #
3438 # Create a new Network Interface Card.
3439 #
3440 # @netdev: #optional id of -netdev to connect to
3441 #
3442 # @macaddr: #optional MAC address
3443 #
3444 # @model: #optional device model (e1000, rtl8139, virtio etc.)
3445 #
3446 # @addr: #optional PCI device address
3447 #
3448 # @vectors: #optional number of MSI-x vectors, 0 to disable MSI-X
3449 #
3450 # Since: 1.2
3451 ##
3452 { 'struct': 'NetLegacyNicOptions',
3453 'data': {
3454 '*netdev': 'str',
3455 '*macaddr': 'str',
3456 '*model': 'str',
3457 '*addr': 'str',
3458 '*vectors': 'uint32' } }
3459
3460 ##
3461 # @String:
3462 #
3463 # A fat type wrapping 'str', to be embedded in lists.
3464 #
3465 # Since: 1.2
3466 ##
3467 { 'struct': 'String',
3468 'data': {
3469 'str': 'str' } }
3470
3471 ##
3472 # @NetdevUserOptions:
3473 #
3474 # Use the user mode network stack which requires no administrator privilege to
3475 # run.
3476 #
3477 # @hostname: #optional client hostname reported by the builtin DHCP server
3478 #
3479 # @restrict: #optional isolate the guest from the host
3480 #
3481 # @ipv4: #optional whether to support IPv4, default true for enabled
3482 # (since 2.6)
3483 #
3484 # @ipv6: #optional whether to support IPv6, default true for enabled
3485 # (since 2.6)
3486 #
3487 # @ip: #optional legacy parameter, use net= instead
3488 #
3489 # @net: #optional IP network address that the guest will see, in the
3490 # form addr[/netmask] The netmask is optional, and can be
3491 # either in the form a.b.c.d or as a number of valid top-most
3492 # bits. Default is 10.0.2.0/24.
3493 #
3494 # @host: #optional guest-visible address of the host
3495 #
3496 # @tftp: #optional root directory of the built-in TFTP server
3497 #
3498 # @bootfile: #optional BOOTP filename, for use with tftp=
3499 #
3500 # @dhcpstart: #optional the first of the 16 IPs the built-in DHCP server can
3501 # assign
3502 #
3503 # @dns: #optional guest-visible address of the virtual nameserver
3504 #
3505 # @dnssearch: #optional list of DNS suffixes to search, passed as DHCP option
3506 # to the guest
3507 #
3508 # @ipv6-prefix: #optional IPv6 network prefix (default is fec0::) (since
3509 # 2.6). The network prefix is given in the usual
3510 # hexadecimal IPv6 address notation.
3511 #
3512 # @ipv6-prefixlen: #optional IPv6 network prefix length (default is 64)
3513 # (since 2.6)
3514 #
3515 # @ipv6-host: #optional guest-visible IPv6 address of the host (since 2.6)
3516 #
3517 # @ipv6-dns: #optional guest-visible IPv6 address of the virtual
3518 # nameserver (since 2.6)
3519 #
3520 # @smb: #optional root directory of the built-in SMB server
3521 #
3522 # @smbserver: #optional IP address of the built-in SMB server
3523 #
3524 # @hostfwd: #optional redirect incoming TCP or UDP host connections to guest
3525 # endpoints
3526 #
3527 # @guestfwd: #optional forward guest TCP connections
3528 #
3529 # Since: 1.2
3530 ##
3531 { 'struct': 'NetdevUserOptions',
3532 'data': {
3533 '*hostname': 'str',
3534 '*restrict': 'bool',
3535 '*ipv4': 'bool',
3536 '*ipv6': 'bool',
3537 '*ip': 'str',
3538 '*net': 'str',
3539 '*host': 'str',
3540 '*tftp': 'str',
3541 '*bootfile': 'str',
3542 '*dhcpstart': 'str',
3543 '*dns': 'str',
3544 '*dnssearch': ['String'],
3545 '*ipv6-prefix': 'str',
3546 '*ipv6-prefixlen': 'int',
3547 '*ipv6-host': 'str',
3548 '*ipv6-dns': 'str',
3549 '*smb': 'str',
3550 '*smbserver': 'str',
3551 '*hostfwd': ['String'],
3552 '*guestfwd': ['String'] } }
3553
3554 ##
3555 # @NetdevTapOptions:
3556 #
3557 # Connect the host TAP network interface name to the VLAN.
3558 #
3559 # @ifname: #optional interface name
3560 #
3561 # @fd: #optional file descriptor of an already opened tap
3562 #
3563 # @fds: #optional multiple file descriptors of already opened multiqueue capable
3564 # tap
3565 #
3566 # @script: #optional script to initialize the interface
3567 #
3568 # @downscript: #optional script to shut down the interface
3569 #
3570 # @br: #optional bridge name (since 2.8)
3571 #
3572 # @helper: #optional command to execute to configure bridge
3573 #
3574 # @sndbuf: #optional send buffer limit. Understands [TGMKkb] suffixes.
3575 #
3576 # @vnet_hdr: #optional enable the IFF_VNET_HDR flag on the tap interface
3577 #
3578 # @vhost: #optional enable vhost-net network accelerator
3579 #
3580 # @vhostfd: #optional file descriptor of an already opened vhost net device
3581 #
3582 # @vhostfds: #optional file descriptors of multiple already opened vhost net
3583 # devices
3584 #
3585 # @vhostforce: #optional vhost on for non-MSIX virtio guests
3586 #
3587 # @queues: #optional number of queues to be created for multiqueue capable tap
3588 #
3589 # @poll-us: #optional maximum number of microseconds that could
3590 # be spent on busy polling for tap (since 2.7)
3591 #
3592 # Since: 1.2
3593 ##
3594 { 'struct': 'NetdevTapOptions',
3595 'data': {
3596 '*ifname': 'str',
3597 '*fd': 'str',
3598 '*fds': 'str',
3599 '*script': 'str',
3600 '*downscript': 'str',
3601 '*br': 'str',
3602 '*helper': 'str',
3603 '*sndbuf': 'size',
3604 '*vnet_hdr': 'bool',
3605 '*vhost': 'bool',
3606 '*vhostfd': 'str',
3607 '*vhostfds': 'str',
3608 '*vhostforce': 'bool',
3609 '*queues': 'uint32',
3610 '*poll-us': 'uint32'} }
3611
3612 ##
3613 # @NetdevSocketOptions:
3614 #
3615 # Connect the VLAN to a remote VLAN in another QEMU virtual machine using a TCP
3616 # socket connection.
3617 #
3618 # @fd: #optional file descriptor of an already opened socket
3619 #
3620 # @listen: #optional port number, and optional hostname, to listen on
3621 #
3622 # @connect: #optional port number, and optional hostname, to connect to
3623 #
3624 # @mcast: #optional UDP multicast address and port number
3625 #
3626 # @localaddr: #optional source address and port for multicast and udp packets
3627 #
3628 # @udp: #optional UDP unicast address and port number
3629 #
3630 # Since: 1.2
3631 ##
3632 { 'struct': 'NetdevSocketOptions',
3633 'data': {
3634 '*fd': 'str',
3635 '*listen': 'str',
3636 '*connect': 'str',
3637 '*mcast': 'str',
3638 '*localaddr': 'str',
3639 '*udp': 'str' } }
3640
3641 ##
3642 # @NetdevL2TPv3Options:
3643 #
3644 # Connect the VLAN to Ethernet over L2TPv3 Static tunnel
3645 #
3646 # @src: source address
3647 #
3648 # @dst: destination address
3649 #
3650 # @srcport: #optional source port - mandatory for udp, optional for ip
3651 #
3652 # @dstport: #optional destination port - mandatory for udp, optional for ip
3653 #
3654 # @ipv6: #optional - force the use of ipv6
3655 #
3656 # @udp: #optional - use the udp version of l2tpv3 encapsulation
3657 #
3658 # @cookie64: #optional - use 64 bit coookies
3659 #
3660 # @counter: #optional have sequence counter
3661 #
3662 # @pincounter: #optional pin sequence counter to zero -
3663 # workaround for buggy implementations or
3664 # networks with packet reorder
3665 #
3666 # @txcookie: #optional 32 or 64 bit transmit cookie
3667 #
3668 # @rxcookie: #optional 32 or 64 bit receive cookie
3669 #
3670 # @txsession: 32 bit transmit session
3671 #
3672 # @rxsession: #optional 32 bit receive session - if not specified
3673 # set to the same value as transmit
3674 #
3675 # @offset: #optional additional offset - allows the insertion of
3676 # additional application-specific data before the packet payload
3677 #
3678 # Since: 2.1
3679 ##
3680 { 'struct': 'NetdevL2TPv3Options',
3681 'data': {
3682 'src': 'str',
3683 'dst': 'str',
3684 '*srcport': 'str',
3685 '*dstport': 'str',
3686 '*ipv6': 'bool',
3687 '*udp': 'bool',
3688 '*cookie64': 'bool',
3689 '*counter': 'bool',
3690 '*pincounter': 'bool',
3691 '*txcookie': 'uint64',
3692 '*rxcookie': 'uint64',
3693 'txsession': 'uint32',
3694 '*rxsession': 'uint32',
3695 '*offset': 'uint32' } }
3696
3697 ##
3698 # @NetdevVdeOptions:
3699 #
3700 # Connect the VLAN to a vde switch running on the host.
3701 #
3702 # @sock: #optional socket path
3703 #
3704 # @port: #optional port number
3705 #
3706 # @group: #optional group owner of socket
3707 #
3708 # @mode: #optional permissions for socket
3709 #
3710 # Since: 1.2
3711 ##
3712 { 'struct': 'NetdevVdeOptions',
3713 'data': {
3714 '*sock': 'str',
3715 '*port': 'uint16',
3716 '*group': 'str',
3717 '*mode': 'uint16' } }
3718
3719 ##
3720 # @NetdevDumpOptions:
3721 #
3722 # Dump VLAN network traffic to a file.
3723 #
3724 # @len: #optional per-packet size limit (64k default). Understands [TGMKkb]
3725 # suffixes.
3726 #
3727 # @file: #optional dump file path (default is qemu-vlan0.pcap)
3728 #
3729 # Since: 1.2
3730 ##
3731 { 'struct': 'NetdevDumpOptions',
3732 'data': {
3733 '*len': 'size',
3734 '*file': 'str' } }
3735
3736 ##
3737 # @NetdevBridgeOptions:
3738 #
3739 # Connect a host TAP network interface to a host bridge device.
3740 #
3741 # @br: #optional bridge name
3742 #
3743 # @helper: #optional command to execute to configure bridge
3744 #
3745 # Since: 1.2
3746 ##
3747 { 'struct': 'NetdevBridgeOptions',
3748 'data': {
3749 '*br': 'str',
3750 '*helper': 'str' } }
3751
3752 ##
3753 # @NetdevHubPortOptions:
3754 #
3755 # Connect two or more net clients through a software hub.
3756 #
3757 # @hubid: hub identifier number
3758 #
3759 # Since: 1.2
3760 ##
3761 { 'struct': 'NetdevHubPortOptions',
3762 'data': {
3763 'hubid': 'int32' } }
3764
3765 ##
3766 # @NetdevNetmapOptions:
3767 #
3768 # Connect a client to a netmap-enabled NIC or to a VALE switch port
3769 #
3770 # @ifname: Either the name of an existing network interface supported by
3771 # netmap, or the name of a VALE port (created on the fly).
3772 # A VALE port name is in the form 'valeXXX:YYY', where XXX and
3773 # YYY are non-negative integers. XXX identifies a switch and
3774 # YYY identifies a port of the switch. VALE ports having the
3775 # same XXX are therefore connected to the same switch.
3776 #
3777 # @devname: #optional path of the netmap device (default: '/dev/netmap').
3778 #
3779 # Since: 2.0
3780 ##
3781 { 'struct': 'NetdevNetmapOptions',
3782 'data': {
3783 'ifname': 'str',
3784 '*devname': 'str' } }
3785
3786 ##
3787 # @NetdevVhostUserOptions:
3788 #
3789 # Vhost-user network backend
3790 #
3791 # @chardev: name of a unix socket chardev
3792 #
3793 # @vhostforce: #optional vhost on for non-MSIX virtio guests (default: false).
3794 #
3795 # @queues: #optional number of queues to be created for multiqueue vhost-user
3796 # (default: 1) (Since 2.5)
3797 #
3798 # Since: 2.1
3799 ##
3800 { 'struct': 'NetdevVhostUserOptions',
3801 'data': {
3802 'chardev': 'str',
3803 '*vhostforce': 'bool',
3804 '*queues': 'int' } }
3805
3806 ##
3807 # @NetClientDriver:
3808 #
3809 # Available netdev drivers.
3810 #
3811 # Since: 2.7
3812 ##
3813 { 'enum': 'NetClientDriver',
3814 'data': [ 'none', 'nic', 'user', 'tap', 'l2tpv3', 'socket', 'vde', 'dump',
3815 'bridge', 'hubport', 'netmap', 'vhost-user' ] }
3816
3817 ##
3818 # @Netdev:
3819 #
3820 # Captures the configuration of a network device.
3821 #
3822 # @id: identifier for monitor commands.
3823 #
3824 # @type: Specify the driver used for interpreting remaining arguments.
3825 #
3826 # Since: 1.2
3827 #
3828 # 'l2tpv3' - since 2.1
3829 ##
3830 { 'union': 'Netdev',
3831 'base': { 'id': 'str', 'type': 'NetClientDriver' },
3832 'discriminator': 'type',
3833 'data': {
3834 'none': 'NetdevNoneOptions',
3835 'nic': 'NetLegacyNicOptions',
3836 'user': 'NetdevUserOptions',
3837 'tap': 'NetdevTapOptions',
3838 'l2tpv3': 'NetdevL2TPv3Options',
3839 'socket': 'NetdevSocketOptions',
3840 'vde': 'NetdevVdeOptions',
3841 'dump': 'NetdevDumpOptions',
3842 'bridge': 'NetdevBridgeOptions',
3843 'hubport': 'NetdevHubPortOptions',
3844 'netmap': 'NetdevNetmapOptions',
3845 'vhost-user': 'NetdevVhostUserOptions' } }
3846
3847 ##
3848 # @NetLegacy:
3849 #
3850 # Captures the configuration of a network device; legacy.
3851 #
3852 # @vlan: #optional vlan number
3853 #
3854 # @id: #optional identifier for monitor commands
3855 #
3856 # @name: #optional identifier for monitor commands, ignored if @id is present
3857 #
3858 # @opts: device type specific properties (legacy)
3859 #
3860 # Since: 1.2
3861 ##
3862 { 'struct': 'NetLegacy',
3863 'data': {
3864 '*vlan': 'int32',
3865 '*id': 'str',
3866 '*name': 'str',
3867 'opts': 'NetLegacyOptions' } }
3868
3869 ##
3870 # @NetLegacyOptions:
3871 #
3872 # Like Netdev, but for use only by the legacy command line options
3873 #
3874 # Since: 1.2
3875 ##
3876 { 'union': 'NetLegacyOptions',
3877 'data': {
3878 'none': 'NetdevNoneOptions',
3879 'nic': 'NetLegacyNicOptions',
3880 'user': 'NetdevUserOptions',
3881 'tap': 'NetdevTapOptions',
3882 'l2tpv3': 'NetdevL2TPv3Options',
3883 'socket': 'NetdevSocketOptions',
3884 'vde': 'NetdevVdeOptions',
3885 'dump': 'NetdevDumpOptions',
3886 'bridge': 'NetdevBridgeOptions',
3887 'netmap': 'NetdevNetmapOptions',
3888 'vhost-user': 'NetdevVhostUserOptions' } }
3889
3890 ##
3891 # @NetFilterDirection:
3892 #
3893 # Indicates whether a netfilter is attached to a netdev's transmit queue or
3894 # receive queue or both.
3895 #
3896 # @all: the filter is attached both to the receive and the transmit
3897 # queue of the netdev (default).
3898 #
3899 # @rx: the filter is attached to the receive queue of the netdev,
3900 # where it will receive packets sent to the netdev.
3901 #
3902 # @tx: the filter is attached to the transmit queue of the netdev,
3903 # where it will receive packets sent by the netdev.
3904 #
3905 # Since: 2.5
3906 ##
3907 { 'enum': 'NetFilterDirection',
3908 'data': [ 'all', 'rx', 'tx' ] }
3909
3910 ##
3911 # @InetSocketAddress:
3912 #
3913 # Captures a socket address or address range in the Internet namespace.
3914 #
3915 # @host: host part of the address
3916 #
3917 # @port: port part of the address, or lowest port if @to is present
3918 #
3919 # @to: highest port to try
3920 #
3921 # @ipv4: whether to accept IPv4 addresses, default try both IPv4 and IPv6
3922 # #optional
3923 #
3924 # @ipv6: whether to accept IPv6 addresses, default try both IPv4 and IPv6
3925 # #optional
3926 #
3927 # Since: 1.3
3928 ##
3929 { 'struct': 'InetSocketAddress',
3930 'data': {
3931 'host': 'str',
3932 'port': 'str',
3933 '*to': 'uint16',
3934 '*ipv4': 'bool',
3935 '*ipv6': 'bool' } }
3936
3937 ##
3938 # @UnixSocketAddress:
3939 #
3940 # Captures a socket address in the local ("Unix socket") namespace.
3941 #
3942 # @path: filesystem path to use
3943 #
3944 # Since: 1.3
3945 ##
3946 { 'struct': 'UnixSocketAddress',
3947 'data': {
3948 'path': 'str' } }
3949
3950 ##
3951 # @VsockSocketAddress:
3952 #
3953 # Captures a socket address in the vsock namespace.
3954 #
3955 # @cid: unique host identifier
3956 # @port: port
3957 #
3958 # Note: string types are used to allow for possible future hostname or
3959 # service resolution support.
3960 #
3961 # Since: 2.8
3962 ##
3963 { 'struct': 'VsockSocketAddress',
3964 'data': {
3965 'cid': 'str',
3966 'port': 'str' } }
3967
3968 ##
3969 # @SocketAddress:
3970 #
3971 # Captures the address of a socket, which could also be a named file descriptor
3972 #
3973 # Since: 1.3
3974 ##
3975 { 'union': 'SocketAddress',
3976 'data': {
3977 'inet': 'InetSocketAddress',
3978 'unix': 'UnixSocketAddress',
3979 'vsock': 'VsockSocketAddress',
3980 'fd': 'String' } }
3981
3982 ##
3983 # @getfd:
3984 #
3985 # Receive a file descriptor via SCM rights and assign it a name
3986 #
3987 # @fdname: file descriptor name
3988 #
3989 # Returns: Nothing on success
3990 #
3991 # Since: 0.14.0
3992 #
3993 # Notes: If @fdname already exists, the file descriptor assigned to
3994 # it will be closed and replaced by the received file
3995 # descriptor.
3996 #
3997 # The 'closefd' command can be used to explicitly close the
3998 # file descriptor when it is no longer needed.
3999 #
4000 # Example:
4001 #
4002 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
4003 # <- { "return": {} }
4004 #
4005 ##
4006 { 'command': 'getfd', 'data': {'fdname': 'str'} }
4007
4008 ##
4009 # @closefd:
4010 #
4011 # Close a file descriptor previously passed via SCM rights
4012 #
4013 # @fdname: file descriptor name
4014 #
4015 # Returns: Nothing on success
4016 #
4017 # Since: 0.14.0
4018 #
4019 # Example:
4020 #
4021 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
4022 # <- { "return": {} }
4023 #
4024 ##
4025 { 'command': 'closefd', 'data': {'fdname': 'str'} }
4026
4027 ##
4028 # @MachineInfo:
4029 #
4030 # Information describing a machine.
4031 #
4032 # @name: the name of the machine
4033 #
4034 # @alias: #optional an alias for the machine name
4035 #
4036 # @is-default: #optional whether the machine is default
4037 #
4038 # @cpu-max: maximum number of CPUs supported by the machine type
4039 # (since 1.5.0)
4040 #
4041 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
4042 #
4043 # Since: 1.2.0
4044 ##
4045 { 'struct': 'MachineInfo',
4046 'data': { 'name': 'str', '*alias': 'str',
4047 '*is-default': 'bool', 'cpu-max': 'int',
4048 'hotpluggable-cpus': 'bool'} }
4049
4050 ##
4051 # @query-machines:
4052 #
4053 # Return a list of supported machines
4054 #
4055 # Returns: a list of MachineInfo
4056 #
4057 # Since: 1.2.0
4058 ##
4059 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
4060
4061 ##
4062 # @CpuDefinitionInfo:
4063 #
4064 # Virtual CPU definition.
4065 #
4066 # @name: the name of the CPU definition
4067 #
4068 # @migration-safe: #optional whether a CPU definition can be safely used for
4069 # migration in combination with a QEMU compatibility machine
4070 # when migrating between different QMU versions and between
4071 # hosts with different sets of (hardware or software)
4072 # capabilities. If not provided, information is not available
4073 # and callers should not assume the CPU definition to be
4074 # migration-safe. (since 2.8)
4075 #
4076 # @static: whether a CPU definition is static and will not change depending on
4077 # QEMU version, machine type, machine options and accelerator options.
4078 # A static model is always migration-safe. (since 2.8)
4079 #
4080 # @unavailable-features: #optional List of properties that prevent
4081 # the CPU model from running in the current
4082 # host. (since 2.8)
4083 # @typename: Type name that can be used as argument to @device-list-properties,
4084 # to introspect properties configurable using -cpu or -global.
4085 # (since 2.9)
4086 #
4087 # @unavailable-features is a list of QOM property names that
4088 # represent CPU model attributes that prevent the CPU from running.
4089 # If the QOM property is read-only, that means there's no known
4090 # way to make the CPU model run in the current host. Implementations
4091 # that choose not to provide specific information return the
4092 # property name "type".
4093 # If the property is read-write, it means that it MAY be possible
4094 # to run the CPU model in the current host if that property is
4095 # changed. Management software can use it as hints to suggest or
4096 # choose an alternative for the user, or just to generate meaningful
4097 # error messages explaining why the CPU model can't be used.
4098 # If @unavailable-features is an empty list, the CPU model is
4099 # runnable using the current host and machine-type.
4100 # If @unavailable-features is not present, runnability
4101 # information for the CPU is not available.
4102 #
4103 # Since: 1.2.0
4104 ##
4105 { 'struct': 'CpuDefinitionInfo',
4106 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
4107 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
4108
4109 ##
4110 # @query-cpu-definitions:
4111 #
4112 # Return a list of supported virtual CPU definitions
4113 #
4114 # Returns: a list of CpuDefInfo
4115 #
4116 # Since: 1.2.0
4117 ##
4118 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
4119
4120 ##
4121 # @CpuModelInfo:
4122 #
4123 # Virtual CPU model.
4124 #
4125 # A CPU model consists of the name of a CPU definition, to which
4126 # delta changes are applied (e.g. features added/removed). Most magic values
4127 # that an architecture might require should be hidden behind the name.
4128 # However, if required, architectures can expose relevant properties.
4129 #
4130 # @name: the name of the CPU definition the model is based on
4131 # @props: #optional a dictionary of QOM properties to be applied
4132 #
4133 # Since: 2.8.0
4134 ##
4135 { 'struct': 'CpuModelInfo',
4136 'data': { 'name': 'str',
4137 '*props': 'any' } }
4138
4139 ##
4140 # @CpuModelExpansionType:
4141 #
4142 # An enumeration of CPU model expansion types.
4143 #
4144 # @static: Expand to a static CPU model, a combination of a static base
4145 # model name and property delta changes. As the static base model will
4146 # never change, the expanded CPU model will be the same, independant of
4147 # independent of QEMU version, machine type, machine options, and
4148 # accelerator options. Therefore, the resulting model can be used by
4149 # tooling without having to specify a compatibility machine - e.g. when
4150 # displaying the "host" model. static CPU models are migration-safe.
4151 #
4152 # @full: Expand all properties. The produced model is not guaranteed to be
4153 # migration-safe, but allows tooling to get an insight and work with
4154 # model details.
4155 #
4156 # Since: 2.8.0
4157 ##
4158 { 'enum': 'CpuModelExpansionType',
4159 'data': [ 'static', 'full' ] }
4160
4161
4162 ##
4163 # @CpuModelExpansionInfo:
4164 #
4165 # The result of a cpu model expansion.
4166 #
4167 # @model: the expanded CpuModelInfo.
4168 #
4169 # Since: 2.8.0
4170 ##
4171 { 'struct': 'CpuModelExpansionInfo',
4172 'data': { 'model': 'CpuModelInfo' } }
4173
4174
4175 ##
4176 # @query-cpu-model-expansion:
4177 #
4178 # Expands a given CPU model (or a combination of CPU model + additional options)
4179 # to different granularities, allowing tooling to get an understanding what a
4180 # specific CPU model looks like in QEMU under a certain configuration.
4181 #
4182 # This interface can be used to query the "host" CPU model.
4183 #
4184 # The data returned by this command may be affected by:
4185 #
4186 # * QEMU version: CPU models may look different depending on the QEMU version.
4187 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4188 # * machine-type: CPU model may look different depending on the machine-type.
4189 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4190 # * machine options (including accelerator): in some architectures, CPU models
4191 # may look different depending on machine and accelerator options. (Except for
4192 # CPU models reported as "static" in query-cpu-definitions.)
4193 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4194 # global properties may affect expansion of CPU models. Using
4195 # query-cpu-model-expansion while using these is not advised.
4196 #
4197 # Some architectures may not support all expansion types. s390x supports
4198 # "full" and "static".
4199 #
4200 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
4201 # not supported, if the model cannot be expanded, if the model contains
4202 # an unknown CPU definition name, unknown properties or properties
4203 # with a wrong type. Also returns an error if an expansion type is
4204 # not supported.
4205 #
4206 # Since: 2.8.0
4207 ##
4208 { 'command': 'query-cpu-model-expansion',
4209 'data': { 'type': 'CpuModelExpansionType',
4210 'model': 'CpuModelInfo' },
4211 'returns': 'CpuModelExpansionInfo' }
4212
4213 ##
4214 # @CpuModelCompareResult:
4215 #
4216 # An enumeration of CPU model comparation results. The result is usually
4217 # calculated using e.g. CPU features or CPU generations.
4218 #
4219 # @incompatible: If model A is incompatible to model B, model A is not
4220 # guaranteed to run where model B runs and the other way around.
4221 #
4222 # @identical: If model A is identical to model B, model A is guaranteed to run
4223 # where model B runs and the other way around.
4224 #
4225 # @superset: If model A is a superset of model B, model B is guaranteed to run
4226 # where model A runs. There are no guarantees about the other way.
4227 #
4228 # @subset: If model A is a subset of model B, model A is guaranteed to run
4229 # where model B runs. There are no guarantees about the other way.
4230 #
4231 # Since: 2.8.0
4232 ##
4233 { 'enum': 'CpuModelCompareResult',
4234 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
4235
4236 ##
4237 # @CpuModelCompareInfo:
4238 #
4239 # The result of a CPU model comparison.
4240 #
4241 # @result: The result of the compare operation.
4242 # @responsible-properties: List of properties that led to the comparison result
4243 # not being identical.
4244 #
4245 # @responsible-properties is a list of QOM property names that led to
4246 # both CPUs not being detected as identical. For identical models, this
4247 # list is empty.
4248 # If a QOM property is read-only, that means there's no known way to make the
4249 # CPU models identical. If the special property name "type" is included, the
4250 # models are by definition not identical and cannot be made identical.
4251 #
4252 # Since: 2.8.0
4253 ##
4254 { 'struct': 'CpuModelCompareInfo',
4255 'data': {'result': 'CpuModelCompareResult',
4256 'responsible-properties': ['str']
4257 }
4258 }
4259
4260 ##
4261 # @query-cpu-model-comparison:
4262 #
4263 # Compares two CPU models, returning how they compare in a specific
4264 # configuration. The results indicates how both models compare regarding
4265 # runnability. This result can be used by tooling to make decisions if a
4266 # certain CPU model will run in a certain configuration or if a compatible
4267 # CPU model has to be created by baselining.
4268 #
4269 # Usually, a CPU model is compared against the maximum possible CPU model
4270 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
4271 # model is identical or a subset, it will run in that configuration.
4272 #
4273 # The result returned by this command may be affected by:
4274 #
4275 # * QEMU version: CPU models may look different depending on the QEMU version.
4276 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4277 # * machine-type: CPU model may look different depending on the machine-type.
4278 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4279 # * machine options (including accelerator): in some architectures, CPU models
4280 # may look different depending on machine and accelerator options. (Except for
4281 # CPU models reported as "static" in query-cpu-definitions.)
4282 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4283 # global properties may affect expansion of CPU models. Using
4284 # query-cpu-model-expansion while using these is not advised.
4285 #
4286 # Some architectures may not support comparing CPU models. s390x supports
4287 # comparing CPU models.
4288 #
4289 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
4290 # not supported, if a model cannot be used, if a model contains
4291 # an unknown cpu definition name, unknown properties or properties
4292 # with wrong types.
4293 #
4294 # Since: 2.8.0
4295 ##
4296 { 'command': 'query-cpu-model-comparison',
4297 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
4298 'returns': 'CpuModelCompareInfo' }
4299
4300 ##
4301 # @CpuModelBaselineInfo:
4302 #
4303 # The result of a CPU model baseline.
4304 #
4305 # @model: the baselined CpuModelInfo.
4306 #
4307 # Since: 2.8.0
4308 ##
4309 { 'struct': 'CpuModelBaselineInfo',
4310 'data': { 'model': 'CpuModelInfo' } }
4311
4312 ##
4313 # @query-cpu-model-baseline:
4314 #
4315 # Baseline two CPU models, creating a compatible third model. The created
4316 # model will always be a static, migration-safe CPU model (see "static"
4317 # CPU model expansion for details).
4318 #
4319 # This interface can be used by tooling to create a compatible CPU model out
4320 # two CPU models. The created CPU model will be identical to or a subset of
4321 # both CPU models when comparing them. Therefore, the created CPU model is
4322 # guaranteed to run where the given CPU models run.
4323 #
4324 # The result returned by this command may be affected by:
4325 #
4326 # * QEMU version: CPU models may look different depending on the QEMU version.
4327 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4328 # * machine-type: CPU model may look different depending on the machine-type.
4329 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4330 # * machine options (including accelerator): in some architectures, CPU models
4331 # may look different depending on machine and accelerator options. (Except for
4332 # CPU models reported as "static" in query-cpu-definitions.)
4333 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4334 # global properties may affect expansion of CPU models. Using
4335 # query-cpu-model-expansion while using these is not advised.
4336 #
4337 # Some architectures may not support baselining CPU models. s390x supports
4338 # baselining CPU models.
4339 #
4340 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
4341 # not supported, if a model cannot be used, if a model contains
4342 # an unknown cpu definition name, unknown properties or properties
4343 # with wrong types.
4344 #
4345 # Since: 2.8.0
4346 ##
4347 { 'command': 'query-cpu-model-baseline',
4348 'data': { 'modela': 'CpuModelInfo',
4349 'modelb': 'CpuModelInfo' },
4350 'returns': 'CpuModelBaselineInfo' }
4351
4352 ##
4353 # @AddfdInfo:
4354 #
4355 # Information about a file descriptor that was added to an fd set.
4356 #
4357 # @fdset-id: The ID of the fd set that @fd was added to.
4358 #
4359 # @fd: The file descriptor that was received via SCM rights and
4360 # added to the fd set.
4361 #
4362 # Since: 1.2.0
4363 ##
4364 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
4365
4366 ##
4367 # @add-fd:
4368 #
4369 # Add a file descriptor, that was passed via SCM rights, to an fd set.
4370 #
4371 # @fdset-id: #optional The ID of the fd set to add the file descriptor to.
4372 #
4373 # @opaque: #optional A free-form string that can be used to describe the fd.
4374 #
4375 # Returns: @AddfdInfo on success
4376 #
4377 # If file descriptor was not received, FdNotSupplied
4378 #
4379 # If @fdset-id is a negative value, InvalidParameterValue
4380 #
4381 # Notes: The list of fd sets is shared by all monitor connections.
4382 #
4383 # If @fdset-id is not specified, a new fd set will be created.
4384 #
4385 # Since: 1.2.0
4386 #
4387 # Example:
4388 #
4389 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
4390 # <- { "return": { "fdset-id": 1, "fd": 3 } }
4391 #
4392 ##
4393 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
4394 'returns': 'AddfdInfo' }
4395
4396 ##
4397 # @remove-fd:
4398 #
4399 # Remove a file descriptor from an fd set.
4400 #
4401 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
4402 #
4403 # @fd: #optional The file descriptor that is to be removed.
4404 #
4405 # Returns: Nothing on success
4406 # If @fdset-id or @fd is not found, FdNotFound
4407 #
4408 # Since: 1.2.0
4409 #
4410 # Notes: The list of fd sets is shared by all monitor connections.
4411 #
4412 # If @fd is not specified, all file descriptors in @fdset-id
4413 # will be removed.
4414 #
4415 # Example:
4416 #
4417 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
4418 # <- { "return": {} }
4419 #
4420 ##
4421 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
4422
4423 ##
4424 # @FdsetFdInfo:
4425 #
4426 # Information about a file descriptor that belongs to an fd set.
4427 #
4428 # @fd: The file descriptor value.
4429 #
4430 # @opaque: #optional A free-form string that can be used to describe the fd.
4431 #
4432 # Since: 1.2.0
4433 ##
4434 { 'struct': 'FdsetFdInfo',
4435 'data': {'fd': 'int', '*opaque': 'str'} }
4436
4437 ##
4438 # @FdsetInfo:
4439 #
4440 # Information about an fd set.
4441 #
4442 # @fdset-id: The ID of the fd set.
4443 #
4444 # @fds: A list of file descriptors that belong to this fd set.
4445 #
4446 # Since: 1.2.0
4447 ##
4448 { 'struct': 'FdsetInfo',
4449 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
4450
4451 ##
4452 # @query-fdsets:
4453 #
4454 # Return information describing all fd sets.
4455 #
4456 # Returns: A list of @FdsetInfo
4457 #
4458 # Since: 1.2.0
4459 #
4460 # Note: The list of fd sets is shared by all monitor connections.
4461 #
4462 # Example:
4463 #
4464 # -> { "execute": "query-fdsets" }
4465 # <- { "return": [
4466 # {
4467 # "fds": [
4468 # {
4469 # "fd": 30,
4470 # "opaque": "rdonly:/path/to/file"
4471 # },
4472 # {
4473 # "fd": 24,
4474 # "opaque": "rdwr:/path/to/file"
4475 # }
4476 # ],
4477 # "fdset-id": 1
4478 # },
4479 # {
4480 # "fds": [
4481 # {
4482 # "fd": 28
4483 # },
4484 # {
4485 # "fd": 29
4486 # }
4487 # ],
4488 # "fdset-id": 0
4489 # }
4490 # ]
4491 # }
4492 #
4493 ##
4494 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
4495
4496 ##
4497 # @TargetInfo:
4498 #
4499 # Information describing the QEMU target.
4500 #
4501 # @arch: the target architecture (eg "x86_64", "i386", etc)
4502 #
4503 # Since: 1.2.0
4504 ##
4505 { 'struct': 'TargetInfo',
4506 'data': { 'arch': 'str' } }
4507
4508 ##
4509 # @query-target:
4510 #
4511 # Return information about the target for this QEMU
4512 #
4513 # Returns: TargetInfo
4514 #
4515 # Since: 1.2.0
4516 ##
4517 { 'command': 'query-target', 'returns': 'TargetInfo' }
4518
4519 ##
4520 # @QKeyCode:
4521 #
4522 # An enumeration of key name.
4523 #
4524 # This is used by the @send-key command.
4525 #
4526 # @unmapped: since 2.0
4527 # @pause: since 2.0
4528 # @ro: since 2.4
4529 # @kp_comma: since 2.4
4530 # @kp_equals: since 2.6
4531 # @power: since 2.6
4532 # @hiragana: since 2.9
4533 # @henkan: since 2.9
4534 # @yen: since 2.9
4535 #
4536 # Since: 1.3.0
4537 #
4538 ##
4539 { 'enum': 'QKeyCode',
4540 'data': [ 'unmapped',
4541 'shift', 'shift_r', 'alt', 'alt_r', 'altgr', 'altgr_r', 'ctrl',
4542 'ctrl_r', 'menu', 'esc', '1', '2', '3', '4', '5', '6', '7', '8',
4543 '9', '0', 'minus', 'equal', 'backspace', 'tab', 'q', 'w', 'e',
4544 'r', 't', 'y', 'u', 'i', 'o', 'p', 'bracket_left', 'bracket_right',
4545 'ret', 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'semicolon',
4546 'apostrophe', 'grave_accent', 'backslash', 'z', 'x', 'c', 'v', 'b',
4547 'n', 'm', 'comma', 'dot', 'slash', 'asterisk', 'spc', 'caps_lock',
4548 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10',
4549 'num_lock', 'scroll_lock', 'kp_divide', 'kp_multiply',
4550 'kp_subtract', 'kp_add', 'kp_enter', 'kp_decimal', 'sysrq', 'kp_0',
4551 'kp_1', 'kp_2', 'kp_3', 'kp_4', 'kp_5', 'kp_6', 'kp_7', 'kp_8',
4552 'kp_9', 'less', 'f11', 'f12', 'print', 'home', 'pgup', 'pgdn', 'end',
4553 'left', 'up', 'down', 'right', 'insert', 'delete', 'stop', 'again',
4554 'props', 'undo', 'front', 'copy', 'open', 'paste', 'find', 'cut',
4555 'lf', 'help', 'meta_l', 'meta_r', 'compose', 'pause',
4556 'ro', 'hiragana', 'henkan', 'yen',
4557 'kp_comma', 'kp_equals', 'power' ] }
4558
4559 ##
4560 # @KeyValue:
4561 #
4562 # Represents a keyboard key.
4563 #
4564 # Since: 1.3.0
4565 ##
4566 { 'union': 'KeyValue',
4567 'data': {
4568 'number': 'int',
4569 'qcode': 'QKeyCode' } }
4570
4571 ##
4572 # @send-key:
4573 #
4574 # Send keys to guest.
4575 #
4576 # @keys: An array of @KeyValue elements. All @KeyValues in this array are
4577 # simultaneously sent to the guest. A @KeyValue.number value is sent
4578 # directly to the guest, while @KeyValue.qcode must be a valid
4579 # @QKeyCode value
4580 #
4581 # @hold-time: #optional time to delay key up events, milliseconds. Defaults
4582 # to 100
4583 #
4584 # Returns: Nothing on success
4585 # If key is unknown or redundant, InvalidParameter
4586 #
4587 # Since: 1.3.0
4588 #
4589 # Example:
4590 #
4591 # -> { "execute": "send-key",
4592 # "arguments": { "keys": [ { "type": "qcode", "data": "ctrl" },
4593 # { "type": "qcode", "data": "alt" },
4594 # { "type": "qcode", "data": "delete" } ] } }
4595 # <- { "return": {} }
4596 #
4597 ##
4598 { 'command': 'send-key',
4599 'data': { 'keys': ['KeyValue'], '*hold-time': 'int' } }
4600
4601 ##
4602 # @screendump:
4603 #
4604 # Write a PPM of the VGA screen to a file.
4605 #
4606 # @filename: the path of a new PPM file to store the image
4607 #
4608 # Returns: Nothing on success
4609 #
4610 # Since: 0.14.0
4611 #
4612 # Example:
4613 #
4614 # -> { "execute": "screendump",
4615 # "arguments": { "filename": "/tmp/image" } }
4616 # <- { "return": {} }
4617 #
4618 ##
4619 { 'command': 'screendump', 'data': {'filename': 'str'} }
4620
4621
4622 ##
4623 # @ChardevCommon:
4624 #
4625 # Configuration shared across all chardev backends
4626 #
4627 # @logfile: #optional The name of a logfile to save output
4628 # @logappend: #optional true to append instead of truncate
4629 # (default to false to truncate)
4630 #
4631 # Since: 2.6
4632 ##
4633 { 'struct': 'ChardevCommon', 'data': { '*logfile': 'str',
4634 '*logappend': 'bool' } }
4635
4636 ##
4637 # @ChardevFile:
4638 #
4639 # Configuration info for file chardevs.
4640 #
4641 # @in: #optional The name of the input file
4642 # @out: The name of the output file
4643 # @append: #optional Open the file in append mode (default false to
4644 # truncate) (Since 2.6)
4645 #
4646 # Since: 1.4
4647 ##
4648 { 'struct': 'ChardevFile', 'data': { '*in' : 'str',
4649 'out' : 'str',
4650 '*append': 'bool' },
4651 'base': 'ChardevCommon' }
4652
4653 ##
4654 # @ChardevHostdev:
4655 #
4656 # Configuration info for device and pipe chardevs.
4657 #
4658 # @device: The name of the special file for the device,
4659 # i.e. /dev/ttyS0 on Unix or COM1: on Windows
4660 #
4661 # Since: 1.4
4662 ##
4663 { 'struct': 'ChardevHostdev', 'data': { 'device' : 'str' },
4664 'base': 'ChardevCommon' }
4665
4666 ##
4667 # @ChardevSocket:
4668 #
4669 # Configuration info for (stream) socket chardevs.
4670 #
4671 # @addr: socket address to listen on (server=true)
4672 # or connect to (server=false)
4673 # @tls-creds: #optional the ID of the TLS credentials object (since 2.6)
4674 # @server: #optional create server socket (default: true)
4675 # @wait: #optional wait for incoming connection on server
4676 # sockets (default: false).
4677 # @nodelay: #optional set TCP_NODELAY socket option (default: false)
4678 # @telnet: #optional enable telnet protocol on server
4679 # sockets (default: false)
4680 # @reconnect: #optional For a client socket, if a socket is disconnected,
4681 # then attempt a reconnect after the given number of seconds.
4682 # Setting this to zero disables this function. (default: 0)
4683 # (Since: 2.2)
4684 #
4685 # Since: 1.4
4686 ##
4687 { 'struct': 'ChardevSocket', 'data': { 'addr' : 'SocketAddress',
4688 '*tls-creds' : 'str',
4689 '*server' : 'bool',
4690 '*wait' : 'bool',
4691 '*nodelay' : 'bool',
4692 '*telnet' : 'bool',
4693 '*reconnect' : 'int' },
4694 'base': 'ChardevCommon' }
4695
4696 ##
4697 # @ChardevUdp:
4698 #
4699 # Configuration info for datagram socket chardevs.
4700 #
4701 # @remote: remote address
4702 # @local: #optional local address
4703 #
4704 # Since: 1.5
4705 ##
4706 { 'struct': 'ChardevUdp', 'data': { 'remote' : 'SocketAddress',
4707 '*local' : 'SocketAddress' },
4708 'base': 'ChardevCommon' }
4709
4710 ##
4711 # @ChardevMux:
4712 #
4713 # Configuration info for mux chardevs.
4714 #
4715 # @chardev: name of the base chardev.
4716 #
4717 # Since: 1.5
4718 ##
4719 { 'struct': 'ChardevMux', 'data': { 'chardev' : 'str' },
4720 'base': 'ChardevCommon' }
4721
4722 ##
4723 # @ChardevStdio:
4724 #
4725 # Configuration info for stdio chardevs.
4726 #
4727 # @signal: #optional Allow signals (such as SIGINT triggered by ^C)
4728 # be delivered to qemu. Default: true in -nographic mode,
4729 # false otherwise.
4730 #
4731 # Since: 1.5
4732 ##
4733 { 'struct': 'ChardevStdio', 'data': { '*signal' : 'bool' },
4734 'base': 'ChardevCommon' }
4735
4736
4737 ##
4738 # @ChardevSpiceChannel:
4739 #
4740 # Configuration info for spice vm channel chardevs.
4741 #
4742 # @type: kind of channel (for example vdagent).
4743 #
4744 # Since: 1.5
4745 ##
4746 { 'struct': 'ChardevSpiceChannel', 'data': { 'type' : 'str' },
4747 'base': 'ChardevCommon' }
4748
4749 ##
4750 # @ChardevSpicePort:
4751 #
4752 # Configuration info for spice port chardevs.
4753 #
4754 # @fqdn: name of the channel (see docs/spice-port-fqdn.txt)
4755 #
4756 # Since: 1.5
4757 ##
4758 { 'struct': 'ChardevSpicePort', 'data': { 'fqdn' : 'str' },
4759 'base': 'ChardevCommon' }
4760
4761 ##
4762 # @ChardevVC:
4763 #
4764 # Configuration info for virtual console chardevs.
4765 #
4766 # @width: console width, in pixels
4767 # @height: console height, in pixels
4768 # @cols: console width, in chars
4769 # @rows: console height, in chars
4770 #
4771 # Since: 1.5
4772 ##
4773 { 'struct': 'ChardevVC', 'data': { '*width' : 'int',
4774 '*height' : 'int',
4775 '*cols' : 'int',
4776 '*rows' : 'int' },
4777 'base': 'ChardevCommon' }
4778
4779 ##
4780 # @ChardevRingbuf:
4781 #
4782 # Configuration info for ring buffer chardevs.
4783 #
4784 # @size: #optional ring buffer size, must be power of two, default is 65536
4785 #
4786 # Since: 1.5
4787 ##
4788 { 'struct': 'ChardevRingbuf', 'data': { '*size' : 'int' },
4789 'base': 'ChardevCommon' }
4790
4791 ##
4792 # @ChardevBackend:
4793 #
4794 # Configuration info for the new chardev backend.
4795 #
4796 # Since: 1.4 (testdev since 2.2)
4797 ##
4798 { 'union': 'ChardevBackend', 'data': { 'file' : 'ChardevFile',
4799 'serial' : 'ChardevHostdev',
4800 'parallel': 'ChardevHostdev',
4801 'pipe' : 'ChardevHostdev',
4802 'socket' : 'ChardevSocket',
4803 'udp' : 'ChardevUdp',
4804 'pty' : 'ChardevCommon',
4805 'null' : 'ChardevCommon',
4806 'mux' : 'ChardevMux',
4807 'msmouse': 'ChardevCommon',
4808 'braille': 'ChardevCommon',
4809 'testdev': 'ChardevCommon',
4810 'stdio' : 'ChardevStdio',
4811 'console': 'ChardevCommon',
4812 'spicevmc' : 'ChardevSpiceChannel',
4813 'spiceport' : 'ChardevSpicePort',
4814 'vc' : 'ChardevVC',
4815 'ringbuf': 'ChardevRingbuf',
4816 # next one is just for compatibility
4817 'memory' : 'ChardevRingbuf' } }
4818
4819 ##
4820 # @ChardevReturn:
4821 #
4822 # Return info about the chardev backend just created.
4823 #
4824 # @pty: #optional name of the slave pseudoterminal device, present if
4825 # and only if a chardev of type 'pty' was created
4826 #
4827 # Since: 1.4
4828 ##
4829 { 'struct' : 'ChardevReturn', 'data': { '*pty' : 'str' } }
4830
4831 ##
4832 # @chardev-add:
4833 #
4834 # Add a character device backend
4835 #
4836 # @id: the chardev's ID, must be unique
4837 # @backend: backend type and parameters
4838 #
4839 # Returns: ChardevReturn.
4840 #
4841 # Since: 1.4
4842 #
4843 # Example:
4844 #
4845 # -> { "execute" : "chardev-add",
4846 # "arguments" : { "id" : "foo",
4847 # "backend" : { "type" : "null", "data" : {} } } }
4848 # <- { "return": {} }
4849 #
4850 # -> { "execute" : "chardev-add",
4851 # "arguments" : { "id" : "bar",
4852 # "backend" : { "type" : "file",
4853 # "data" : { "out" : "/tmp/bar.log" } } } }
4854 # <- { "return": {} }
4855 #
4856 # -> { "execute" : "chardev-add",
4857 # "arguments" : { "id" : "baz",
4858 # "backend" : { "type" : "pty", "data" : {} } } }
4859 # <- { "return": { "pty" : "/dev/pty/42" } }
4860 #
4861 ##
4862 { 'command': 'chardev-add', 'data': {'id' : 'str',
4863 'backend' : 'ChardevBackend' },
4864 'returns': 'ChardevReturn' }
4865
4866 ##
4867 # @chardev-remove:
4868 #
4869 # Remove a character device backend
4870 #
4871 # @id: the chardev's ID, must exist and not be in use
4872 #
4873 # Returns: Nothing on success
4874 #
4875 # Since: 1.4
4876 #
4877 # Example:
4878 #
4879 # -> { "execute": "chardev-remove", "arguments": { "id" : "foo" } }
4880 # <- { "return": {} }
4881 #
4882 ##
4883 { 'command': 'chardev-remove', 'data': {'id': 'str'} }
4884
4885 ##
4886 # @TpmModel:
4887 #
4888 # An enumeration of TPM models
4889 #
4890 # @tpm-tis: TPM TIS model
4891 #
4892 # Since: 1.5
4893 ##
4894 { 'enum': 'TpmModel', 'data': [ 'tpm-tis' ] }
4895
4896 ##
4897 # @query-tpm-models:
4898 #
4899 # Return a list of supported TPM models
4900 #
4901 # Returns: a list of TpmModel
4902 #
4903 # Since: 1.5
4904 #
4905 # Example:
4906 #
4907 # -> { "execute": "query-tpm-models" }
4908 # <- { "return": [ "tpm-tis" ] }
4909 #
4910 ##
4911 { 'command': 'query-tpm-models', 'returns': ['TpmModel'] }
4912
4913 ##
4914 # @TpmType:
4915 #
4916 # An enumeration of TPM types
4917 #
4918 # @passthrough: TPM passthrough type
4919 #
4920 # Since: 1.5
4921 ##
4922 { 'enum': 'TpmType', 'data': [ 'passthrough' ] }
4923
4924 ##
4925 # @query-tpm-types:
4926 #
4927 # Return a list of supported TPM types
4928 #
4929 # Returns: a list of TpmType
4930 #
4931 # Since: 1.5
4932 #
4933 # Example:
4934 #
4935 # -> { "execute": "query-tpm-types" }
4936 # <- { "return": [ "passthrough" ] }
4937 #
4938 ##
4939 { 'command': 'query-tpm-types', 'returns': ['TpmType'] }
4940
4941 ##
4942 # @TPMPassthroughOptions:
4943 #
4944 # Information about the TPM passthrough type
4945 #
4946 # @path: #optional string describing the path used for accessing the TPM device
4947 #
4948 # @cancel-path: #optional string showing the TPM's sysfs cancel file
4949 # for cancellation of TPM commands while they are executing
4950 #
4951 # Since: 1.5
4952 ##
4953 { 'struct': 'TPMPassthroughOptions', 'data': { '*path' : 'str',
4954 '*cancel-path' : 'str'} }
4955
4956 ##
4957 # @TpmTypeOptions:
4958 #
4959 # A union referencing different TPM backend types' configuration options
4960 #
4961 # @type: 'passthrough' The configuration options for the TPM passthrough type
4962 #
4963 # Since: 1.5
4964 ##
4965 { 'union': 'TpmTypeOptions',
4966 'data': { 'passthrough' : 'TPMPassthroughOptions' } }
4967
4968 ##
4969 # @TPMInfo:
4970 #
4971 # Information about the TPM
4972 #
4973 # @id: The Id of the TPM
4974 #
4975 # @model: The TPM frontend model
4976 #
4977 # @options: The TPM (backend) type configuration options
4978 #
4979 # Since: 1.5
4980 ##
4981 { 'struct': 'TPMInfo',
4982 'data': {'id': 'str',
4983 'model': 'TpmModel',
4984 'options': 'TpmTypeOptions' } }
4985
4986 ##
4987 # @query-tpm:
4988 #
4989 # Return information about the TPM device
4990 #
4991 # Returns: @TPMInfo on success
4992 #
4993 # Since: 1.5
4994 #
4995 # Example:
4996 #
4997 # -> { "execute": "query-tpm" }
4998 # <- { "return":
4999 # [
5000 # { "model": "tpm-tis",
5001 # "options":
5002 # { "type": "passthrough",
5003 # "data":
5004 # { "cancel-path": "/sys/class/misc/tpm0/device/cancel",
5005 # "path": "/dev/tpm0"
5006 # }
5007 # },
5008 # "id": "tpm0"
5009 # }
5010 # ]
5011 # }
5012 #
5013 ##
5014 { 'command': 'query-tpm', 'returns': ['TPMInfo'] }
5015
5016 ##
5017 # @AcpiTableOptions:
5018 #
5019 # Specify an ACPI table on the command line to load.
5020 #
5021 # At most one of @file and @data can be specified. The list of files specified
5022 # by any one of them is loaded and concatenated in order. If both are omitted,
5023 # @data is implied.
5024 #
5025 # Other fields / optargs can be used to override fields of the generic ACPI
5026 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
5027 # Description Table Header. If a header field is not overridden, then the
5028 # corresponding value from the concatenated blob is used (in case of @file), or
5029 # it is filled in with a hard-coded value (in case of @data).
5030 #
5031 # String fields are copied into the matching ACPI member from lowest address
5032 # upwards, and silently truncated / NUL-padded to length.
5033 #
5034 # @sig: #optional table signature / identifier (4 bytes)
5035 #
5036 # @rev: #optional table revision number (dependent on signature, 1 byte)
5037 #
5038 # @oem_id: #optional OEM identifier (6 bytes)
5039 #
5040 # @oem_table_id: #optional OEM table identifier (8 bytes)
5041 #
5042 # @oem_rev: #optional OEM-supplied revision number (4 bytes)
5043 #
5044 # @asl_compiler_id: #optional identifier of the utility that created the table
5045 # (4 bytes)
5046 #
5047 # @asl_compiler_rev: #optional revision number of the utility that created the
5048 # table (4 bytes)
5049 #
5050 # @file: #optional colon (:) separated list of pathnames to load and
5051 # concatenate as table data. The resultant binary blob is expected to
5052 # have an ACPI table header. At least one file is required. This field
5053 # excludes @data.
5054 #
5055 # @data: #optional colon (:) separated list of pathnames to load and
5056 # concatenate as table data. The resultant binary blob must not have an
5057 # ACPI table header. At least one file is required. This field excludes
5058 # @file.
5059 #
5060 # Since: 1.5
5061 ##
5062 { 'struct': 'AcpiTableOptions',
5063 'data': {
5064 '*sig': 'str',
5065 '*rev': 'uint8',
5066 '*oem_id': 'str',
5067 '*oem_table_id': 'str',
5068 '*oem_rev': 'uint32',
5069 '*asl_compiler_id': 'str',
5070 '*asl_compiler_rev': 'uint32',
5071 '*file': 'str',
5072 '*data': 'str' }}
5073
5074 ##
5075 # @CommandLineParameterType:
5076 #
5077 # Possible types for an option parameter.
5078 #
5079 # @string: accepts a character string
5080 #
5081 # @boolean: accepts "on" or "off"
5082 #
5083 # @number: accepts a number
5084 #
5085 # @size: accepts a number followed by an optional suffix (K)ilo,
5086 # (M)ega, (G)iga, (T)era
5087 #
5088 # Since: 1.5
5089 ##
5090 { 'enum': 'CommandLineParameterType',
5091 'data': ['string', 'boolean', 'number', 'size'] }
5092
5093 ##
5094 # @CommandLineParameterInfo:
5095 #
5096 # Details about a single parameter of a command line option.
5097 #
5098 # @name: parameter name
5099 #
5100 # @type: parameter @CommandLineParameterType
5101 #
5102 # @help: #optional human readable text string, not suitable for parsing.
5103 #
5104 # @default: #optional default value string (since 2.1)
5105 #
5106 # Since: 1.5
5107 ##
5108 { 'struct': 'CommandLineParameterInfo',
5109 'data': { 'name': 'str',
5110 'type': 'CommandLineParameterType',
5111 '*help': 'str',
5112 '*default': 'str' } }
5113
5114 ##
5115 # @CommandLineOptionInfo:
5116 #
5117 # Details about a command line option, including its list of parameter details
5118 #
5119 # @option: option name
5120 #
5121 # @parameters: an array of @CommandLineParameterInfo
5122 #
5123 # Since: 1.5
5124 ##
5125 { 'struct': 'CommandLineOptionInfo',
5126 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
5127
5128 ##
5129 # @query-command-line-options:
5130 #
5131 # Query command line option schema.
5132 #
5133 # @option: #optional option name
5134 #
5135 # Returns: list of @CommandLineOptionInfo for all options (or for the given
5136 # @option). Returns an error if the given @option doesn't exist.
5137 #
5138 # Since: 1.5
5139 #
5140 # Example:
5141 #
5142 # -> { "execute": "query-command-line-options",
5143 # "arguments": { "option": "option-rom" } }
5144 # <- { "return": [
5145 # {
5146 # "parameters": [
5147 # {
5148 # "name": "romfile",
5149 # "type": "string"
5150 # },
5151 # {
5152 # "name": "bootindex",
5153 # "type": "number"
5154 # }
5155 # ],
5156 # "option": "option-rom"
5157 # }
5158 # ]
5159 # }
5160 #
5161 ##
5162 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
5163 'returns': ['CommandLineOptionInfo'] }
5164
5165 ##
5166 # @X86CPURegister32:
5167 #
5168 # A X86 32-bit register
5169 #
5170 # Since: 1.5
5171 ##
5172 { 'enum': 'X86CPURegister32',
5173 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
5174
5175 ##
5176 # @X86CPUFeatureWordInfo:
5177 #
5178 # Information about a X86 CPU feature word
5179 #
5180 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
5181 #
5182 # @cpuid-input-ecx: #optional Input ECX value for CPUID instruction for that
5183 # feature word
5184 #
5185 # @cpuid-register: Output register containing the feature bits
5186 #
5187 # @features: value of output register, containing the feature bits
5188 #
5189 # Since: 1.5
5190 ##
5191 { 'struct': 'X86CPUFeatureWordInfo',
5192 'data': { 'cpuid-input-eax': 'int',
5193 '*cpuid-input-ecx': 'int',
5194 'cpuid-register': 'X86CPURegister32',
5195 'features': 'int' } }
5196
5197 ##
5198 # @DummyForceArrays:
5199 #
5200 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
5201 #
5202 # Since: 2.5
5203 ##
5204 { 'struct': 'DummyForceArrays',
5205 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
5206
5207
5208 ##
5209 # @RxState:
5210 #
5211 # Packets receiving state
5212 #
5213 # @normal: filter assigned packets according to the mac-table
5214 #
5215 # @none: don't receive any assigned packet
5216 #
5217 # @all: receive all assigned packets
5218 #
5219 # Since: 1.6
5220 ##
5221 { 'enum': 'RxState', 'data': [ 'normal', 'none', 'all' ] }
5222
5223 ##
5224 # @RxFilterInfo:
5225 #
5226 # Rx-filter information for a NIC.
5227 #
5228 # @name: net client name
5229 #
5230 # @promiscuous: whether promiscuous mode is enabled
5231 #
5232 # @multicast: multicast receive state
5233 #
5234 # @unicast: unicast receive state
5235 #
5236 # @vlan: vlan receive state (Since 2.0)
5237 #
5238 # @broadcast-allowed: whether to receive broadcast
5239 #
5240 # @multicast-overflow: multicast table is overflowed or not
5241 #
5242 # @unicast-overflow: unicast table is overflowed or not
5243 #
5244 # @main-mac: the main macaddr string
5245 #
5246 # @vlan-table: a list of active vlan id
5247 #
5248 # @unicast-table: a list of unicast macaddr string
5249 #
5250 # @multicast-table: a list of multicast macaddr string
5251 #
5252 # Since: 1.6
5253 ##
5254 { 'struct': 'RxFilterInfo',
5255 'data': {
5256 'name': 'str',
5257 'promiscuous': 'bool',
5258 'multicast': 'RxState',
5259 'unicast': 'RxState',
5260 'vlan': 'RxState',
5261 'broadcast-allowed': 'bool',
5262 'multicast-overflow': 'bool',
5263 'unicast-overflow': 'bool',
5264 'main-mac': 'str',
5265 'vlan-table': ['int'],
5266 'unicast-table': ['str'],
5267 'multicast-table': ['str'] }}
5268
5269 ##
5270 # @query-rx-filter:
5271 #
5272 # Return rx-filter information for all NICs (or for the given NIC).
5273 #
5274 # @name: #optional net client name
5275 #
5276 # Returns: list of @RxFilterInfo for all NICs (or for the given NIC).
5277 # Returns an error if the given @name doesn't exist, or given
5278 # NIC doesn't support rx-filter querying, or given net client
5279 # isn't a NIC.
5280 #
5281 # Since: 1.6
5282 #
5283 # Example:
5284 #
5285 # -> { "execute": "query-rx-filter", "arguments": { "name": "vnet0" } }
5286 # <- { "return": [
5287 # {
5288 # "promiscuous": true,
5289 # "name": "vnet0",
5290 # "main-mac": "52:54:00:12:34:56",
5291 # "unicast": "normal",
5292 # "vlan": "normal",
5293 # "vlan-table": [
5294 # 4,
5295 # 0
5296 # ],
5297 # "unicast-table": [
5298 # ],
5299 # "multicast": "normal",
5300 # "multicast-overflow": false,
5301 # "unicast-overflow": false,
5302 # "multicast-table": [
5303 # "01:00:5e:00:00:01",
5304 # "33:33:00:00:00:01",
5305 # "33:33:ff:12:34:56"
5306 # ],
5307 # "broadcast-allowed": false
5308 # }
5309 # ]
5310 # }
5311 #
5312 ##
5313 { 'command': 'query-rx-filter', 'data': { '*name': 'str' },
5314 'returns': ['RxFilterInfo'] }
5315
5316 ##
5317 # @InputButton:
5318 #
5319 # Button of a pointer input device (mouse, tablet).
5320 #
5321 # Since: 2.0
5322 ##
5323 { 'enum' : 'InputButton',
5324 'data' : [ 'left', 'middle', 'right', 'wheel-up', 'wheel-down' ] }
5325
5326 ##
5327 # @InputAxis:
5328 #
5329 # Position axis of a pointer input device (mouse, tablet).
5330 #
5331 # Since: 2.0
5332 ##
5333 { 'enum' : 'InputAxis',
5334 'data' : [ 'x', 'y' ] }
5335
5336 ##
5337 # @InputKeyEvent:
5338 #
5339 # Keyboard input event.
5340 #
5341 # @key: Which key this event is for.
5342 # @down: True for key-down and false for key-up events.
5343 #
5344 # Since: 2.0
5345 ##
5346 { 'struct' : 'InputKeyEvent',
5347 'data' : { 'key' : 'KeyValue',
5348 'down' : 'bool' } }
5349
5350 ##
5351 # @InputBtnEvent:
5352 #
5353 # Pointer button input event.
5354 #
5355 # @button: Which button this event is for.
5356 # @down: True for key-down and false for key-up events.
5357 #
5358 # Since: 2.0
5359 ##
5360 { 'struct' : 'InputBtnEvent',
5361 'data' : { 'button' : 'InputButton',
5362 'down' : 'bool' } }
5363
5364 ##
5365 # @InputMoveEvent:
5366 #
5367 # Pointer motion input event.
5368 #
5369 # @axis: Which axis is referenced by @value.
5370 # @value: Pointer position. For absolute coordinates the
5371 # valid range is 0 -> 0x7ffff
5372 #
5373 # Since: 2.0
5374 ##
5375 { 'struct' : 'InputMoveEvent',
5376 'data' : { 'axis' : 'InputAxis',
5377 'value' : 'int' } }
5378
5379 ##
5380 # @InputEvent:
5381 #
5382 # Input event union.
5383 #
5384 # @type: the input type, one of:
5385 # - 'key': Input event of Keyboard
5386 # - 'btn': Input event of pointer buttons
5387 # - 'rel': Input event of relative pointer motion
5388 # - 'abs': Input event of absolute pointer motion
5389 #
5390 # Since: 2.0
5391 ##
5392 { 'union' : 'InputEvent',
5393 'data' : { 'key' : 'InputKeyEvent',
5394 'btn' : 'InputBtnEvent',
5395 'rel' : 'InputMoveEvent',
5396 'abs' : 'InputMoveEvent' } }
5397
5398 ##
5399 # @input-send-event:
5400 #
5401 # Send input event(s) to guest.
5402 #
5403 # @device: #optional display device to send event(s) to.
5404 # @head: #optional head to send event(s) to, in case the
5405 # display device supports multiple scanouts.
5406 # @events: List of InputEvent union.
5407 #
5408 # Returns: Nothing on success.
5409 #
5410 # The @device and @head parameters can be used to send the input event
5411 # to specific input devices in case (a) multiple input devices of the
5412 # same kind are added to the virtual machine and (b) you have
5413 # configured input routing (see docs/multiseat.txt) for those input
5414 # devices. The parameters work exactly like the device and head
5415 # properties of input devices. If @device is missing, only devices
5416 # that have no input routing config are admissible. If @device is
5417 # specified, both input devices with and without input routing config
5418 # are admissible, but devices with input routing config take
5419 # precedence.
5420 #
5421 # Since: 2.6
5422 #
5423 # Note: The consoles are visible in the qom tree, under
5424 # /backend/console[$index]. They have a device link and head property,
5425 # so it is possible to map which console belongs to which device and
5426 # display.
5427 #
5428 # Example:
5429 #
5430 # 1. Press left mouse button.
5431 #
5432 # -> { "execute": "input-send-event",
5433 # "arguments": { "device": "video0",
5434 # "events": [ { "type": "btn",
5435 # "data" : { "down": true, "button": "left" } } ] } }
5436 # <- { "return": {} }
5437 #
5438 # -> { "execute": "input-send-event",
5439 # "arguments": { "device": "video0",
5440 # "events": [ { "type": "btn",
5441 # "data" : { "down": false, "button": "left" } } ] } }
5442 # <- { "return": {} }
5443 #
5444 # 2. Press ctrl-alt-del.
5445 #
5446 # -> { "execute": "input-send-event",
5447 # "arguments": { "events": [
5448 # { "type": "key", "data" : { "down": true,
5449 # "key": {"type": "qcode", "data": "ctrl" } } },
5450 # { "type": "key", "data" : { "down": true,
5451 # "key": {"type": "qcode", "data": "alt" } } },
5452 # { "type": "key", "data" : { "down": true,
5453 # "key": {"type": "qcode", "data": "delete" } } } ] } }
5454 # <- { "return": {} }
5455 #
5456 # 3. Move mouse pointer to absolute coordinates (20000, 400).
5457 #
5458 # -> { "execute": "input-send-event" ,
5459 # "arguments": { "events": [
5460 # { "type": "abs", "data" : { "axis": "x", "value" : 20000 } },
5461 # { "type": "abs", "data" : { "axis": "y", "value" : 400 } } ] } }
5462 # <- { "return": {} }
5463 #
5464 ##
5465 { 'command': 'input-send-event',
5466 'data': { '*device': 'str',
5467 '*head' : 'int',
5468 'events' : [ 'InputEvent' ] } }
5469
5470 ##
5471 # @NumaOptions:
5472 #
5473 # A discriminated record of NUMA options. (for OptsVisitor)
5474 #
5475 # Since: 2.1
5476 ##
5477 { 'union': 'NumaOptions',
5478 'data': {
5479 'node': 'NumaNodeOptions' }}
5480
5481 ##
5482 # @NumaNodeOptions:
5483 #
5484 # Create a guest NUMA node. (for OptsVisitor)
5485 #
5486 # @nodeid: #optional NUMA node ID (increase by 1 from 0 if omitted)
5487 #
5488 # @cpus: #optional VCPUs belonging to this node (assign VCPUS round-robin
5489 # if omitted)
5490 #
5491 # @mem: #optional memory size of this node; mutually exclusive with @memdev.
5492 # Equally divide total memory among nodes if both @mem and @memdev are
5493 # omitted.
5494 #
5495 # @memdev: #optional memory backend object. If specified for one node,
5496 # it must be specified for all nodes.
5497 #
5498 # Since: 2.1
5499 ##
5500 { 'struct': 'NumaNodeOptions',
5501 'data': {
5502 '*nodeid': 'uint16',
5503 '*cpus': ['uint16'],
5504 '*mem': 'size',
5505 '*memdev': 'str' }}
5506
5507 ##
5508 # @HostMemPolicy:
5509 #
5510 # Host memory policy types
5511 #
5512 # @default: restore default policy, remove any nondefault policy
5513 #
5514 # @preferred: set the preferred host nodes for allocation
5515 #
5516 # @bind: a strict policy that restricts memory allocation to the
5517 # host nodes specified
5518 #
5519 # @interleave: memory allocations are interleaved across the set
5520 # of host nodes specified
5521 #
5522 # Since: 2.1
5523 ##
5524 { 'enum': 'HostMemPolicy',
5525 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
5526
5527 ##
5528 # @Memdev:
5529 #
5530 # Information about memory backend
5531 #
5532 # @id: #optional backend's ID if backend has 'id' property (since 2.9)
5533 #
5534 # @size: memory backend size
5535 #
5536 # @merge: enables or disables memory merge support
5537 #
5538 # @dump: includes memory backend's memory in a core dump or not
5539 #
5540 # @prealloc: enables or disables memory preallocation
5541 #
5542 # @host-nodes: host nodes for its memory policy
5543 #
5544 # @policy: memory policy of memory backend
5545 #
5546 # Since: 2.1
5547 ##
5548 { 'struct': 'Memdev',
5549 'data': {
5550 '*id': 'str',
5551 'size': 'size',
5552 'merge': 'bool',
5553 'dump': 'bool',
5554 'prealloc': 'bool',
5555 'host-nodes': ['uint16'],
5556 'policy': 'HostMemPolicy' }}
5557
5558 ##
5559 # @query-memdev:
5560 #
5561 # Returns information for all memory backends.
5562 #
5563 # Returns: a list of @Memdev.
5564 #
5565 # Since: 2.1
5566 #
5567 # Example:
5568 #
5569 # -> { "execute": "query-memdev" }
5570 # <- { "return": [
5571 # {
5572 # "id": "mem1",
5573 # "size": 536870912,
5574 # "merge": false,
5575 # "dump": true,
5576 # "prealloc": false,
5577 # "host-nodes": [0, 1],
5578 # "policy": "bind"
5579 # },
5580 # {
5581 # "size": 536870912,
5582 # "merge": false,
5583 # "dump": true,
5584 # "prealloc": true,
5585 # "host-nodes": [2, 3],
5586 # "policy": "preferred"
5587 # }
5588 # ]
5589 # }
5590 #
5591 ##
5592 { 'command': 'query-memdev', 'returns': ['Memdev'] }
5593
5594 ##
5595 # @PCDIMMDeviceInfo:
5596 #
5597 # PCDIMMDevice state information
5598 #
5599 # @id: #optional device's ID
5600 #
5601 # @addr: physical address, where device is mapped
5602 #
5603 # @size: size of memory that the device provides
5604 #
5605 # @slot: slot number at which device is plugged in
5606 #
5607 # @node: NUMA node number where device is plugged in
5608 #
5609 # @memdev: memory backend linked with device
5610 #
5611 # @hotplugged: true if device was hotplugged
5612 #
5613 # @hotpluggable: true if device if could be added/removed while machine is running
5614 #
5615 # Since: 2.1
5616 ##
5617 { 'struct': 'PCDIMMDeviceInfo',
5618 'data': { '*id': 'str',
5619 'addr': 'int',
5620 'size': 'int',
5621 'slot': 'int',
5622 'node': 'int',
5623 'memdev': 'str',
5624 'hotplugged': 'bool',
5625 'hotpluggable': 'bool'
5626 }
5627 }
5628
5629 ##
5630 # @MemoryDeviceInfo:
5631 #
5632 # Union containing information about a memory device
5633 #
5634 # Since: 2.1
5635 ##
5636 { 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
5637
5638 ##
5639 # @query-memory-devices:
5640 #
5641 # Lists available memory devices and their state
5642 #
5643 # Since: 2.1
5644 #
5645 # Example:
5646 #
5647 # -> { "execute": "query-memory-devices" }
5648 # <- { "return": [ { "data":
5649 # { "addr": 5368709120,
5650 # "hotpluggable": true,
5651 # "hotplugged": true,
5652 # "id": "d1",
5653 # "memdev": "/objects/memX",
5654 # "node": 0,
5655 # "size": 1073741824,
5656 # "slot": 0},
5657 # "type": "dimm"
5658 # } ] }
5659 #
5660 ##
5661 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
5662
5663 ##
5664 # @ACPISlotType:
5665 #
5666 # @DIMM: memory slot
5667 # @CPU: logical CPU slot (since 2.7)
5668 ##
5669 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
5670
5671 ##
5672 # @ACPIOSTInfo:
5673 #
5674 # OSPM Status Indication for a device
5675 # For description of possible values of @source and @status fields
5676 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
5677 #
5678 # @device: #optional device ID associated with slot
5679 #
5680 # @slot: slot ID, unique per slot of a given @slot-type
5681 #
5682 # @slot-type: type of the slot
5683 #
5684 # @source: an integer containing the source event
5685 #
5686 # @status: an integer containing the status code
5687 #
5688 # Since: 2.1
5689 ##
5690 { 'struct': 'ACPIOSTInfo',
5691 'data' : { '*device': 'str',
5692 'slot': 'str',
5693 'slot-type': 'ACPISlotType',
5694 'source': 'int',
5695 'status': 'int' } }
5696
5697 ##
5698 # @query-acpi-ospm-status:
5699 #
5700 # Return a list of ACPIOSTInfo for devices that support status
5701 # reporting via ACPI _OST method.
5702 #
5703 # Since: 2.1
5704 #
5705 # Example:
5706 #
5707 # -> { "execute": "query-acpi-ospm-status" }
5708 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
5709 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
5710 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
5711 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
5712 # ]}
5713 #
5714 ##
5715 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
5716
5717 ##
5718 # @WatchdogExpirationAction:
5719 #
5720 # An enumeration of the actions taken when the watchdog device's timer is
5721 # expired
5722 #
5723 # @reset: system resets
5724 #
5725 # @shutdown: system shutdown, note that it is similar to @powerdown, which
5726 # tries to set to system status and notify guest
5727 #
5728 # @poweroff: system poweroff, the emulator program exits
5729 #
5730 # @pause: system pauses, similar to @stop
5731 #
5732 # @debug: system enters debug state
5733 #
5734 # @none: nothing is done
5735 #
5736 # @inject-nmi: a non-maskable interrupt is injected into the first VCPU (all
5737 # VCPUS on x86) (since 2.4)
5738 #
5739 # Since: 2.1
5740 ##
5741 { 'enum': 'WatchdogExpirationAction',
5742 'data': [ 'reset', 'shutdown', 'poweroff', 'pause', 'debug', 'none',
5743 'inject-nmi' ] }
5744
5745 ##
5746 # @IoOperationType:
5747 #
5748 # An enumeration of the I/O operation types
5749 #
5750 # @read: read operation
5751 #
5752 # @write: write operation
5753 #
5754 # Since: 2.1
5755 ##
5756 { 'enum': 'IoOperationType',
5757 'data': [ 'read', 'write' ] }
5758
5759 ##
5760 # @GuestPanicAction:
5761 #
5762 # An enumeration of the actions taken when guest OS panic is detected
5763 #
5764 # @pause: system pauses
5765 #
5766 # Since: 2.1 (poweroff since 2.8)
5767 ##
5768 { 'enum': 'GuestPanicAction',
5769 'data': [ 'pause', 'poweroff' ] }
5770
5771 ##
5772 # @rtc-reset-reinjection:
5773 #
5774 # This command will reset the RTC interrupt reinjection backlog.
5775 # Can be used if another mechanism to synchronize guest time
5776 # is in effect, for example QEMU guest agent's guest-set-time
5777 # command.
5778 #
5779 # Since: 2.1
5780 #
5781 # Example:
5782 #
5783 # -> { "execute": "rtc-reset-reinjection" }
5784 # <- { "return": {} }
5785 #
5786 ##
5787 { 'command': 'rtc-reset-reinjection' }
5788
5789 # Rocker ethernet network switch
5790 { 'include': 'qapi/rocker.json' }
5791
5792 ##
5793 # @ReplayMode:
5794 #
5795 # Mode of the replay subsystem.
5796 #
5797 # @none: normal execution mode. Replay or record are not enabled.
5798 #
5799 # @record: record mode. All non-deterministic data is written into the
5800 # replay log.
5801 #
5802 # @play: replay mode. Non-deterministic data required for system execution
5803 # is read from the log.
5804 #
5805 # Since: 2.5
5806 ##
5807 { 'enum': 'ReplayMode',
5808 'data': [ 'none', 'record', 'play' ] }
5809
5810 ##
5811 # @xen-load-devices-state:
5812 #
5813 # Load the state of all devices from file. The RAM and the block devices
5814 # of the VM are not loaded by this command.
5815 #
5816 # @filename: the file to load the state of the devices from as binary
5817 # data. See xen-save-devices-state.txt for a description of the binary
5818 # format.
5819 #
5820 # Since: 2.7
5821 ##
5822 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
5823
5824 ##
5825 # @GICCapability:
5826 #
5827 # The struct describes capability for a specific GIC (Generic
5828 # Interrupt Controller) version. These bits are not only decided by
5829 # QEMU/KVM software version, but also decided by the hardware that
5830 # the program is running upon.
5831 #
5832 # @version: version of GIC to be described. Currently, only 2 and 3
5833 # are supported.
5834 #
5835 # @emulated: whether current QEMU/hardware supports emulated GIC
5836 # device in user space.
5837 #
5838 # @kernel: whether current QEMU/hardware supports hardware
5839 # accelerated GIC device in kernel.
5840 #
5841 # Since: 2.6
5842 ##
5843 { 'struct': 'GICCapability',
5844 'data': { 'version': 'int',
5845 'emulated': 'bool',
5846 'kernel': 'bool' } }
5847
5848 ##
5849 # @query-gic-capabilities:
5850 #
5851 # This command is ARM-only. It will return a list of GICCapability
5852 # objects that describe its capability bits.
5853 #
5854 # Returns: a list of GICCapability objects.
5855 #
5856 # Since: 2.6
5857 ##
5858 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
5859
5860 ##
5861 # @CpuInstanceProperties:
5862 #
5863 # List of properties to be used for hotplugging a CPU instance,
5864 # it should be passed by management with device_add command when
5865 # a CPU is being hotplugged.
5866 #
5867 # @node-id: #optional NUMA node ID the CPU belongs to
5868 # @socket-id: #optional socket number within node/board the CPU belongs to
5869 # @core-id: #optional core number within socket the CPU belongs to
5870 # @thread-id: #optional thread number within core the CPU belongs to
5871 #
5872 # Note: currently there are 4 properties that could be present
5873 # but management should be prepared to pass through other
5874 # properties with device_add command to allow for future
5875 # interface extension. This also requires the filed names to be kept in
5876 # sync with the properties passed to -device/device_add.
5877 #
5878 # Since: 2.7
5879 ##
5880 { 'struct': 'CpuInstanceProperties',
5881 'data': { '*node-id': 'int',
5882 '*socket-id': 'int',
5883 '*core-id': 'int',
5884 '*thread-id': 'int'
5885 }
5886 }
5887
5888 ##
5889 # @HotpluggableCPU:
5890 #
5891 # @type: CPU object type for usage with device_add command
5892 # @props: list of properties to be used for hotplugging CPU
5893 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
5894 # @qom-path: #optional link to existing CPU object if CPU is present or
5895 # omitted if CPU is not present.
5896 #
5897 # Since: 2.7
5898 ##
5899 { 'struct': 'HotpluggableCPU',
5900 'data': { 'type': 'str',
5901 'vcpus-count': 'int',
5902 'props': 'CpuInstanceProperties',
5903 '*qom-path': 'str'
5904 }
5905 }
5906
5907 ##
5908 # @query-hotpluggable-cpus:
5909 #
5910 # Returns: a list of HotpluggableCPU objects.
5911 #
5912 # Since: 2.7
5913 #
5914 # Example:
5915 #
5916 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
5917 #
5918 # -> { "execute": "query-hotpluggable-cpus" }
5919 # <- {"return": [
5920 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
5921 # "vcpus-count": 1 },
5922 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
5923 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
5924 # ]}'
5925 #
5926 # For pc machine type started with -smp 1,maxcpus=2:
5927 #
5928 # -> { "execute": "query-hotpluggable-cpus" }
5929 # <- {"return": [
5930 # {
5931 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
5932 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
5933 # },
5934 # {
5935 # "qom-path": "/machine/unattached/device[0]",
5936 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
5937 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
5938 # }
5939 # ]}
5940 #
5941 ##
5942 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }