]> git.proxmox.com Git - mirror_qemu.git/blob - qapi-schema.json
Merge remote-tracking branch 'remotes/armbru/tags/pull-qapi-2017-09-01-v3' into staging
[mirror_qemu.git] / qapi-schema.json
1 # -*- Mode: Python -*-
2 ##
3 # = Introduction
4 #
5 # This document describes all commands currently supported by QMP.
6 #
7 # Most of the time their usage is exactly the same as in the user Monitor, this
8 # means that any other document which also describe commands (the manpage,
9 # QEMU's manual, etc) can and should be consulted.
10 #
11 # QMP has two types of commands: regular and query commands. Regular commands
12 # usually change the Virtual Machine's state someway, while query commands just
13 # return information. The sections below are divided accordingly.
14 #
15 # It's important to observe that all communication examples are formatted in
16 # a reader-friendly way, so that they're easier to understand. However, in real
17 # protocol usage, they're emitted as a single line.
18 #
19 # Also, the following notation is used to denote data flow:
20 #
21 # Example:
22 #
23 # | -> data issued by the Client
24 # | <- Server data response
25 #
26 # Please, refer to the QMP specification (docs/interop/qmp-spec.txt) for
27 # detailed information on the Server command and response formats.
28 #
29 # = Stability Considerations
30 #
31 # The current QMP command set (described in this file) may be useful for a
32 # number of use cases, however it's limited and several commands have bad
33 # defined semantics, specially with regard to command completion.
34 #
35 # These problems are going to be solved incrementally in the next QEMU releases
36 # and we're going to establish a deprecation policy for badly defined commands.
37 #
38 # If you're planning to adopt QMP, please observe the following:
39 #
40 # 1. The deprecation policy will take effect and be documented soon, please
41 # check the documentation of each used command as soon as a new release of
42 # QEMU is available
43 #
44 # 2. DO NOT rely on anything which is not explicit documented
45 #
46 # 3. Errors, in special, are not documented. Applications should NOT check
47 # for specific errors classes or data (it's strongly recommended to only
48 # check for the "error" key)
49 #
50 ##
51
52 { 'pragma': { 'doc-required': true } }
53
54 # Whitelists to permit QAPI rule violations; think twice before you
55 # add to them!
56 { 'pragma': {
57 # Commands allowed to return a non-dictionary:
58 'returns-whitelist': [
59 'human-monitor-command',
60 'qom-get',
61 'query-migrate-cache-size',
62 'query-tpm-models',
63 'query-tpm-types',
64 'ringbuf-read' ],
65 'name-case-whitelist': [
66 'ACPISlotType', # DIMM, visible through query-acpi-ospm-status
67 'CpuInfoMIPS', # PC, visible through query-cpu
68 'CpuInfoTricore', # PC, visible through query-cpu
69 'QapiErrorClass', # all members, visible through errors
70 'UuidInfo', # UUID, visible through query-uuid
71 'X86CPURegister32', # all members, visible indirectly through qom-get
72 'q_obj_CpuInfo-base' # CPU, visible through query-cpu
73 ] } }
74
75 # Documentation generated with qapi2texi.py is in source order, with
76 # included sub-schemas inserted at the first include directive
77 # (subsequent include directives have no effect). To get a sane and
78 # stable order, it's best to include each sub-schema just once, or
79 # include it first in qapi-schema.json.
80
81 { 'include': 'qapi/common.json' }
82 { 'include': 'qapi/sockets.json' }
83 { 'include': 'qapi/run-state.json' }
84 { 'include': 'qapi/crypto.json' }
85 { 'include': 'qapi/block.json' }
86 { 'include': 'qapi/char.json' }
87 { 'include': 'qapi/net.json' }
88 { 'include': 'qapi/rocker.json' }
89 { 'include': 'qapi/tpm.json' }
90 { 'include': 'qapi/ui.json' }
91 { 'include': 'qapi/migration.json' }
92 { 'include': 'qapi/transaction.json' }
93 { 'include': 'qapi/trace.json' }
94 { 'include': 'qapi/introspect.json' }
95
96 ##
97 # = Miscellanea
98 ##
99
100 ##
101 # @qmp_capabilities:
102 #
103 # Enable QMP capabilities.
104 #
105 # Arguments: None.
106 #
107 # Example:
108 #
109 # -> { "execute": "qmp_capabilities" }
110 # <- { "return": {} }
111 #
112 # Notes: This command is valid exactly when first connecting: it must be
113 # issued before any other command will be accepted, and will fail once the
114 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
115 #
116 # Since: 0.13
117 #
118 ##
119 { 'command': 'qmp_capabilities' }
120
121 ##
122 # @VersionTriple:
123 #
124 # A three-part version number.
125 #
126 # @major: The major version number.
127 #
128 # @minor: The minor version number.
129 #
130 # @micro: The micro version number.
131 #
132 # Since: 2.4
133 ##
134 { 'struct': 'VersionTriple',
135 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
136
137
138 ##
139 # @VersionInfo:
140 #
141 # A description of QEMU's version.
142 #
143 # @qemu: The version of QEMU. By current convention, a micro
144 # version of 50 signifies a development branch. A micro version
145 # greater than or equal to 90 signifies a release candidate for
146 # the next minor version. A micro version of less than 50
147 # signifies a stable release.
148 #
149 # @package: QEMU will always set this field to an empty string. Downstream
150 # versions of QEMU should set this to a non-empty string. The
151 # exact format depends on the downstream however it highly
152 # recommended that a unique name is used.
153 #
154 # Since: 0.14.0
155 ##
156 { 'struct': 'VersionInfo',
157 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
158
159 ##
160 # @query-version:
161 #
162 # Returns the current version of QEMU.
163 #
164 # Returns: A @VersionInfo object describing the current version of QEMU.
165 #
166 # Since: 0.14.0
167 #
168 # Example:
169 #
170 # -> { "execute": "query-version" }
171 # <- {
172 # "return":{
173 # "qemu":{
174 # "major":0,
175 # "minor":11,
176 # "micro":5
177 # },
178 # "package":""
179 # }
180 # }
181 #
182 ##
183 { 'command': 'query-version', 'returns': 'VersionInfo' }
184
185 ##
186 # @CommandInfo:
187 #
188 # Information about a QMP command
189 #
190 # @name: The command name
191 #
192 # Since: 0.14.0
193 ##
194 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
195
196 ##
197 # @query-commands:
198 #
199 # Return a list of supported QMP commands by this server
200 #
201 # Returns: A list of @CommandInfo for all supported commands
202 #
203 # Since: 0.14.0
204 #
205 # Example:
206 #
207 # -> { "execute": "query-commands" }
208 # <- {
209 # "return":[
210 # {
211 # "name":"query-balloon"
212 # },
213 # {
214 # "name":"system_powerdown"
215 # }
216 # ]
217 # }
218 #
219 # Note: This example has been shortened as the real response is too long.
220 #
221 ##
222 { 'command': 'query-commands', 'returns': ['CommandInfo'] }
223
224 ##
225 # @LostTickPolicy:
226 #
227 # Policy for handling lost ticks in timer devices.
228 #
229 # @discard: throw away the missed tick(s) and continue with future injection
230 # normally. Guest time may be delayed, unless the OS has explicit
231 # handling of lost ticks
232 #
233 # @delay: continue to deliver ticks at the normal rate. Guest time will be
234 # delayed due to the late tick
235 #
236 # @merge: merge the missed tick(s) into one tick and inject. Guest time
237 # may be delayed, depending on how the OS reacts to the merging
238 # of ticks
239 #
240 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
241 # guest time should not be delayed once catchup is complete.
242 #
243 # Since: 2.0
244 ##
245 { 'enum': 'LostTickPolicy',
246 'data': ['discard', 'delay', 'merge', 'slew' ] }
247
248 ##
249 # @add_client:
250 #
251 # Allow client connections for VNC, Spice and socket based
252 # character devices to be passed in to QEMU via SCM_RIGHTS.
253 #
254 # @protocol: protocol name. Valid names are "vnc", "spice" or the
255 # name of a character device (eg. from -chardev id=XXXX)
256 #
257 # @fdname: file descriptor name previously passed via 'getfd' command
258 #
259 # @skipauth: whether to skip authentication. Only applies
260 # to "vnc" and "spice" protocols
261 #
262 # @tls: whether to perform TLS. Only applies to the "spice"
263 # protocol
264 #
265 # Returns: nothing on success.
266 #
267 # Since: 0.14.0
268 #
269 # Example:
270 #
271 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
272 # "fdname": "myclient" } }
273 # <- { "return": {} }
274 #
275 ##
276 { 'command': 'add_client',
277 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
278 '*tls': 'bool' } }
279
280 ##
281 # @NameInfo:
282 #
283 # Guest name information.
284 #
285 # @name: The name of the guest
286 #
287 # Since: 0.14.0
288 ##
289 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
290
291 ##
292 # @query-name:
293 #
294 # Return the name information of a guest.
295 #
296 # Returns: @NameInfo of the guest
297 #
298 # Since: 0.14.0
299 #
300 # Example:
301 #
302 # -> { "execute": "query-name" }
303 # <- { "return": { "name": "qemu-name" } }
304 #
305 ##
306 { 'command': 'query-name', 'returns': 'NameInfo' }
307
308 ##
309 # @KvmInfo:
310 #
311 # Information about support for KVM acceleration
312 #
313 # @enabled: true if KVM acceleration is active
314 #
315 # @present: true if KVM acceleration is built into this executable
316 #
317 # Since: 0.14.0
318 ##
319 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
320
321 ##
322 # @query-kvm:
323 #
324 # Returns information about KVM acceleration
325 #
326 # Returns: @KvmInfo
327 #
328 # Since: 0.14.0
329 #
330 # Example:
331 #
332 # -> { "execute": "query-kvm" }
333 # <- { "return": { "enabled": true, "present": true } }
334 #
335 ##
336 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
337
338 ##
339 # @UuidInfo:
340 #
341 # Guest UUID information (Universally Unique Identifier).
342 #
343 # @UUID: the UUID of the guest
344 #
345 # Since: 0.14.0
346 #
347 # Notes: If no UUID was specified for the guest, a null UUID is returned.
348 ##
349 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
350
351 ##
352 # @query-uuid:
353 #
354 # Query the guest UUID information.
355 #
356 # Returns: The @UuidInfo for the guest
357 #
358 # Since: 0.14.0
359 #
360 # Example:
361 #
362 # -> { "execute": "query-uuid" }
363 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
364 #
365 ##
366 { 'command': 'query-uuid', 'returns': 'UuidInfo' }
367
368 ##
369 # @EventInfo:
370 #
371 # Information about a QMP event
372 #
373 # @name: The event name
374 #
375 # Since: 1.2.0
376 ##
377 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
378
379 ##
380 # @query-events:
381 #
382 # Return a list of supported QMP events by this server
383 #
384 # Returns: A list of @EventInfo for all supported events
385 #
386 # Since: 1.2.0
387 #
388 # Example:
389 #
390 # -> { "execute": "query-events" }
391 # <- {
392 # "return": [
393 # {
394 # "name":"SHUTDOWN"
395 # },
396 # {
397 # "name":"RESET"
398 # }
399 # ]
400 # }
401 #
402 # Note: This example has been shortened as the real response is too long.
403 #
404 ##
405 { 'command': 'query-events', 'returns': ['EventInfo'] }
406
407 ##
408 # @CpuInfoArch:
409 #
410 # An enumeration of cpu types that enable additional information during
411 # @query-cpus.
412 #
413 # Since: 2.6
414 ##
415 { 'enum': 'CpuInfoArch',
416 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 'other' ] }
417
418 ##
419 # @CpuInfo:
420 #
421 # Information about a virtual CPU
422 #
423 # @CPU: the index of the virtual CPU
424 #
425 # @current: this only exists for backwards compatibility and should be ignored
426 #
427 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
428 # to a processor specific low power mode.
429 #
430 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
431 #
432 # @thread_id: ID of the underlying host thread
433 #
434 # @props: properties describing to which node/socket/core/thread
435 # virtual CPU belongs to, provided if supported by board (since 2.10)
436 #
437 # @arch: architecture of the cpu, which determines which additional fields
438 # will be listed (since 2.6)
439 #
440 # Since: 0.14.0
441 #
442 # Notes: @halted is a transient state that changes frequently. By the time the
443 # data is sent to the client, the guest may no longer be halted.
444 ##
445 { 'union': 'CpuInfo',
446 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
447 'qom_path': 'str', 'thread_id': 'int',
448 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
449 'discriminator': 'arch',
450 'data': { 'x86': 'CpuInfoX86',
451 'sparc': 'CpuInfoSPARC',
452 'ppc': 'CpuInfoPPC',
453 'mips': 'CpuInfoMIPS',
454 'tricore': 'CpuInfoTricore',
455 'other': 'CpuInfoOther' } }
456
457 ##
458 # @CpuInfoX86:
459 #
460 # Additional information about a virtual i386 or x86_64 CPU
461 #
462 # @pc: the 64-bit instruction pointer
463 #
464 # Since: 2.6
465 ##
466 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
467
468 ##
469 # @CpuInfoSPARC:
470 #
471 # Additional information about a virtual SPARC CPU
472 #
473 # @pc: the PC component of the instruction pointer
474 #
475 # @npc: the NPC component of the instruction pointer
476 #
477 # Since: 2.6
478 ##
479 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
480
481 ##
482 # @CpuInfoPPC:
483 #
484 # Additional information about a virtual PPC CPU
485 #
486 # @nip: the instruction pointer
487 #
488 # Since: 2.6
489 ##
490 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
491
492 ##
493 # @CpuInfoMIPS:
494 #
495 # Additional information about a virtual MIPS CPU
496 #
497 # @PC: the instruction pointer
498 #
499 # Since: 2.6
500 ##
501 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
502
503 ##
504 # @CpuInfoTricore:
505 #
506 # Additional information about a virtual Tricore CPU
507 #
508 # @PC: the instruction pointer
509 #
510 # Since: 2.6
511 ##
512 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
513
514 ##
515 # @CpuInfoOther:
516 #
517 # No additional information is available about the virtual CPU
518 #
519 # Since: 2.6
520 #
521 ##
522 { 'struct': 'CpuInfoOther', 'data': { } }
523
524 ##
525 # @query-cpus:
526 #
527 # Returns a list of information about each virtual CPU.
528 #
529 # Returns: a list of @CpuInfo for each virtual CPU
530 #
531 # Since: 0.14.0
532 #
533 # Example:
534 #
535 # -> { "execute": "query-cpus" }
536 # <- { "return": [
537 # {
538 # "CPU":0,
539 # "current":true,
540 # "halted":false,
541 # "qom_path":"/machine/unattached/device[0]",
542 # "arch":"x86",
543 # "pc":3227107138,
544 # "thread_id":3134
545 # },
546 # {
547 # "CPU":1,
548 # "current":false,
549 # "halted":true,
550 # "qom_path":"/machine/unattached/device[2]",
551 # "arch":"x86",
552 # "pc":7108165,
553 # "thread_id":3135
554 # }
555 # ]
556 # }
557 #
558 ##
559 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
560
561 ##
562 # @IOThreadInfo:
563 #
564 # Information about an iothread
565 #
566 # @id: the identifier of the iothread
567 #
568 # @thread-id: ID of the underlying host thread
569 #
570 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
571 # (since 2.9)
572 #
573 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
574 # configured (since 2.9)
575 #
576 # @poll-shrink: how many ns will be removed from polling time, 0 means that
577 # it's not configured (since 2.9)
578 #
579 # Since: 2.0
580 ##
581 { 'struct': 'IOThreadInfo',
582 'data': {'id': 'str',
583 'thread-id': 'int',
584 'poll-max-ns': 'int',
585 'poll-grow': 'int',
586 'poll-shrink': 'int' } }
587
588 ##
589 # @query-iothreads:
590 #
591 # Returns a list of information about each iothread.
592 #
593 # Note: this list excludes the QEMU main loop thread, which is not declared
594 # using the -object iothread command-line option. It is always the main thread
595 # of the process.
596 #
597 # Returns: a list of @IOThreadInfo for each iothread
598 #
599 # Since: 2.0
600 #
601 # Example:
602 #
603 # -> { "execute": "query-iothreads" }
604 # <- { "return": [
605 # {
606 # "id":"iothread0",
607 # "thread-id":3134
608 # },
609 # {
610 # "id":"iothread1",
611 # "thread-id":3135
612 # }
613 # ]
614 # }
615 #
616 ##
617 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
618
619 ##
620 # @BalloonInfo:
621 #
622 # Information about the guest balloon device.
623 #
624 # @actual: the number of bytes the balloon currently contains
625 #
626 # Since: 0.14.0
627 #
628 ##
629 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
630
631 ##
632 # @query-balloon:
633 #
634 # Return information about the balloon device.
635 #
636 # Returns: @BalloonInfo on success
637 #
638 # If the balloon driver is enabled but not functional because the KVM
639 # kernel module cannot support it, KvmMissingCap
640 #
641 # If no balloon device is present, DeviceNotActive
642 #
643 # Since: 0.14.0
644 #
645 # Example:
646 #
647 # -> { "execute": "query-balloon" }
648 # <- { "return": {
649 # "actual": 1073741824,
650 # }
651 # }
652 #
653 ##
654 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
655
656 ##
657 # @BALLOON_CHANGE:
658 #
659 # Emitted when the guest changes the actual BALLOON level. This value is
660 # equivalent to the @actual field return by the 'query-balloon' command
661 #
662 # @actual: actual level of the guest memory balloon in bytes
663 #
664 # Note: this event is rate-limited.
665 #
666 # Since: 1.2
667 #
668 # Example:
669 #
670 # <- { "event": "BALLOON_CHANGE",
671 # "data": { "actual": 944766976 },
672 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
673 #
674 ##
675 { 'event': 'BALLOON_CHANGE',
676 'data': { 'actual': 'int' } }
677
678 ##
679 # @PciMemoryRange:
680 #
681 # A PCI device memory region
682 #
683 # @base: the starting address (guest physical)
684 #
685 # @limit: the ending address (guest physical)
686 #
687 # Since: 0.14.0
688 ##
689 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
690
691 ##
692 # @PciMemoryRegion:
693 #
694 # Information about a PCI device I/O region.
695 #
696 # @bar: the index of the Base Address Register for this region
697 #
698 # @type: 'io' if the region is a PIO region
699 # 'memory' if the region is a MMIO region
700 #
701 # @size: memory size
702 #
703 # @prefetch: if @type is 'memory', true if the memory is prefetchable
704 #
705 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
706 #
707 # Since: 0.14.0
708 ##
709 { 'struct': 'PciMemoryRegion',
710 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
711 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
712
713 ##
714 # @PciBusInfo:
715 #
716 # Information about a bus of a PCI Bridge device
717 #
718 # @number: primary bus interface number. This should be the number of the
719 # bus the device resides on.
720 #
721 # @secondary: secondary bus interface number. This is the number of the
722 # main bus for the bridge
723 #
724 # @subordinate: This is the highest number bus that resides below the
725 # bridge.
726 #
727 # @io_range: The PIO range for all devices on this bridge
728 #
729 # @memory_range: The MMIO range for all devices on this bridge
730 #
731 # @prefetchable_range: The range of prefetchable MMIO for all devices on
732 # this bridge
733 #
734 # Since: 2.4
735 ##
736 { 'struct': 'PciBusInfo',
737 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
738 'io_range': 'PciMemoryRange',
739 'memory_range': 'PciMemoryRange',
740 'prefetchable_range': 'PciMemoryRange' } }
741
742 ##
743 # @PciBridgeInfo:
744 #
745 # Information about a PCI Bridge device
746 #
747 # @bus: information about the bus the device resides on
748 #
749 # @devices: a list of @PciDeviceInfo for each device on this bridge
750 #
751 # Since: 0.14.0
752 ##
753 { 'struct': 'PciBridgeInfo',
754 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
755
756 ##
757 # @PciDeviceClass:
758 #
759 # Information about the Class of a PCI device
760 #
761 # @desc: a string description of the device's class
762 #
763 # @class: the class code of the device
764 #
765 # Since: 2.4
766 ##
767 { 'struct': 'PciDeviceClass',
768 'data': {'*desc': 'str', 'class': 'int'} }
769
770 ##
771 # @PciDeviceId:
772 #
773 # Information about the Id of a PCI device
774 #
775 # @device: the PCI device id
776 #
777 # @vendor: the PCI vendor id
778 #
779 # Since: 2.4
780 ##
781 { 'struct': 'PciDeviceId',
782 'data': {'device': 'int', 'vendor': 'int'} }
783
784 ##
785 # @PciDeviceInfo:
786 #
787 # Information about a PCI device
788 #
789 # @bus: the bus number of the device
790 #
791 # @slot: the slot the device is located in
792 #
793 # @function: the function of the slot used by the device
794 #
795 # @class_info: the class of the device
796 #
797 # @id: the PCI device id
798 #
799 # @irq: if an IRQ is assigned to the device, the IRQ number
800 #
801 # @qdev_id: the device name of the PCI device
802 #
803 # @pci_bridge: if the device is a PCI bridge, the bridge information
804 #
805 # @regions: a list of the PCI I/O regions associated with the device
806 #
807 # Notes: the contents of @class_info.desc are not stable and should only be
808 # treated as informational.
809 #
810 # Since: 0.14.0
811 ##
812 { 'struct': 'PciDeviceInfo',
813 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
814 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
815 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
816 'regions': ['PciMemoryRegion']} }
817
818 ##
819 # @PciInfo:
820 #
821 # Information about a PCI bus
822 #
823 # @bus: the bus index
824 #
825 # @devices: a list of devices on this bus
826 #
827 # Since: 0.14.0
828 ##
829 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
830
831 ##
832 # @query-pci:
833 #
834 # Return information about the PCI bus topology of the guest.
835 #
836 # Returns: a list of @PciInfo for each PCI bus. Each bus is
837 # represented by a json-object, which has a key with a json-array of
838 # all PCI devices attached to it. Each device is represented by a
839 # json-object.
840 #
841 # Since: 0.14.0
842 #
843 # Example:
844 #
845 # -> { "execute": "query-pci" }
846 # <- { "return": [
847 # {
848 # "bus": 0,
849 # "devices": [
850 # {
851 # "bus": 0,
852 # "qdev_id": "",
853 # "slot": 0,
854 # "class_info": {
855 # "class": 1536,
856 # "desc": "Host bridge"
857 # },
858 # "id": {
859 # "device": 32902,
860 # "vendor": 4663
861 # },
862 # "function": 0,
863 # "regions": [
864 # ]
865 # },
866 # {
867 # "bus": 0,
868 # "qdev_id": "",
869 # "slot": 1,
870 # "class_info": {
871 # "class": 1537,
872 # "desc": "ISA bridge"
873 # },
874 # "id": {
875 # "device": 32902,
876 # "vendor": 28672
877 # },
878 # "function": 0,
879 # "regions": [
880 # ]
881 # },
882 # {
883 # "bus": 0,
884 # "qdev_id": "",
885 # "slot": 1,
886 # "class_info": {
887 # "class": 257,
888 # "desc": "IDE controller"
889 # },
890 # "id": {
891 # "device": 32902,
892 # "vendor": 28688
893 # },
894 # "function": 1,
895 # "regions": [
896 # {
897 # "bar": 4,
898 # "size": 16,
899 # "address": 49152,
900 # "type": "io"
901 # }
902 # ]
903 # },
904 # {
905 # "bus": 0,
906 # "qdev_id": "",
907 # "slot": 2,
908 # "class_info": {
909 # "class": 768,
910 # "desc": "VGA controller"
911 # },
912 # "id": {
913 # "device": 4115,
914 # "vendor": 184
915 # },
916 # "function": 0,
917 # "regions": [
918 # {
919 # "prefetch": true,
920 # "mem_type_64": false,
921 # "bar": 0,
922 # "size": 33554432,
923 # "address": 4026531840,
924 # "type": "memory"
925 # },
926 # {
927 # "prefetch": false,
928 # "mem_type_64": false,
929 # "bar": 1,
930 # "size": 4096,
931 # "address": 4060086272,
932 # "type": "memory"
933 # },
934 # {
935 # "prefetch": false,
936 # "mem_type_64": false,
937 # "bar": 6,
938 # "size": 65536,
939 # "address": -1,
940 # "type": "memory"
941 # }
942 # ]
943 # },
944 # {
945 # "bus": 0,
946 # "qdev_id": "",
947 # "irq": 11,
948 # "slot": 4,
949 # "class_info": {
950 # "class": 1280,
951 # "desc": "RAM controller"
952 # },
953 # "id": {
954 # "device": 6900,
955 # "vendor": 4098
956 # },
957 # "function": 0,
958 # "regions": [
959 # {
960 # "bar": 0,
961 # "size": 32,
962 # "address": 49280,
963 # "type": "io"
964 # }
965 # ]
966 # }
967 # ]
968 # }
969 # ]
970 # }
971 #
972 # Note: This example has been shortened as the real response is too long.
973 #
974 ##
975 { 'command': 'query-pci', 'returns': ['PciInfo'] }
976
977 ##
978 # @quit:
979 #
980 # This command will cause the QEMU process to exit gracefully. While every
981 # attempt is made to send the QMP response before terminating, this is not
982 # guaranteed. When using this interface, a premature EOF would not be
983 # unexpected.
984 #
985 # Since: 0.14.0
986 #
987 # Example:
988 #
989 # -> { "execute": "quit" }
990 # <- { "return": {} }
991 ##
992 { 'command': 'quit' }
993
994 ##
995 # @stop:
996 #
997 # Stop all guest VCPU execution.
998 #
999 # Since: 0.14.0
1000 #
1001 # Notes: This function will succeed even if the guest is already in the stopped
1002 # state. In "inmigrate" state, it will ensure that the guest
1003 # remains paused once migration finishes, as if the -S option was
1004 # passed on the command line.
1005 #
1006 # Example:
1007 #
1008 # -> { "execute": "stop" }
1009 # <- { "return": {} }
1010 #
1011 ##
1012 { 'command': 'stop' }
1013
1014 ##
1015 # @system_reset:
1016 #
1017 # Performs a hard reset of a guest.
1018 #
1019 # Since: 0.14.0
1020 #
1021 # Example:
1022 #
1023 # -> { "execute": "system_reset" }
1024 # <- { "return": {} }
1025 #
1026 ##
1027 { 'command': 'system_reset' }
1028
1029 ##
1030 # @system_powerdown:
1031 #
1032 # Requests that a guest perform a powerdown operation.
1033 #
1034 # Since: 0.14.0
1035 #
1036 # Notes: A guest may or may not respond to this command. This command
1037 # returning does not indicate that a guest has accepted the request or
1038 # that it has shut down. Many guests will respond to this command by
1039 # prompting the user in some way.
1040 # Example:
1041 #
1042 # -> { "execute": "system_powerdown" }
1043 # <- { "return": {} }
1044 #
1045 ##
1046 { 'command': 'system_powerdown' }
1047
1048 ##
1049 # @cpu:
1050 #
1051 # This command is a nop that is only provided for the purposes of compatibility.
1052 #
1053 # Since: 0.14.0
1054 #
1055 # Notes: Do not use this command.
1056 ##
1057 { 'command': 'cpu', 'data': {'index': 'int'} }
1058
1059 ##
1060 # @cpu-add:
1061 #
1062 # Adds CPU with specified ID
1063 #
1064 # @id: ID of CPU to be created, valid values [0..max_cpus)
1065 #
1066 # Returns: Nothing on success
1067 #
1068 # Since: 1.5
1069 #
1070 # Example:
1071 #
1072 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1073 # <- { "return": {} }
1074 #
1075 ##
1076 { 'command': 'cpu-add', 'data': {'id': 'int'} }
1077
1078 ##
1079 # @memsave:
1080 #
1081 # Save a portion of guest memory to a file.
1082 #
1083 # @val: the virtual address of the guest to start from
1084 #
1085 # @size: the size of memory region to save
1086 #
1087 # @filename: the file to save the memory to as binary data
1088 #
1089 # @cpu-index: the index of the virtual CPU to use for translating the
1090 # virtual address (defaults to CPU 0)
1091 #
1092 # Returns: Nothing on success
1093 #
1094 # Since: 0.14.0
1095 #
1096 # Notes: Errors were not reliably returned until 1.1
1097 #
1098 # Example:
1099 #
1100 # -> { "execute": "memsave",
1101 # "arguments": { "val": 10,
1102 # "size": 100,
1103 # "filename": "/tmp/virtual-mem-dump" } }
1104 # <- { "return": {} }
1105 #
1106 ##
1107 { 'command': 'memsave',
1108 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1109
1110 ##
1111 # @pmemsave:
1112 #
1113 # Save a portion of guest physical memory to a file.
1114 #
1115 # @val: the physical address of the guest to start from
1116 #
1117 # @size: the size of memory region to save
1118 #
1119 # @filename: the file to save the memory to as binary data
1120 #
1121 # Returns: Nothing on success
1122 #
1123 # Since: 0.14.0
1124 #
1125 # Notes: Errors were not reliably returned until 1.1
1126 #
1127 # Example:
1128 #
1129 # -> { "execute": "pmemsave",
1130 # "arguments": { "val": 10,
1131 # "size": 100,
1132 # "filename": "/tmp/physical-mem-dump" } }
1133 # <- { "return": {} }
1134 #
1135 ##
1136 { 'command': 'pmemsave',
1137 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1138
1139 ##
1140 # @cont:
1141 #
1142 # Resume guest VCPU execution.
1143 #
1144 # Since: 0.14.0
1145 #
1146 # Returns: If successful, nothing
1147 #
1148 # Notes: This command will succeed if the guest is currently running. It
1149 # will also succeed if the guest is in the "inmigrate" state; in
1150 # this case, the effect of the command is to make sure the guest
1151 # starts once migration finishes, removing the effect of the -S
1152 # command line option if it was passed.
1153 #
1154 # Example:
1155 #
1156 # -> { "execute": "cont" }
1157 # <- { "return": {} }
1158 #
1159 ##
1160 { 'command': 'cont' }
1161
1162 ##
1163 # @system_wakeup:
1164 #
1165 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1166 #
1167 # Since: 1.1
1168 #
1169 # Returns: nothing.
1170 #
1171 # Example:
1172 #
1173 # -> { "execute": "system_wakeup" }
1174 # <- { "return": {} }
1175 #
1176 ##
1177 { 'command': 'system_wakeup' }
1178
1179 ##
1180 # @inject-nmi:
1181 #
1182 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1183 # The command fails when the guest doesn't support injecting.
1184 #
1185 # Returns: If successful, nothing
1186 #
1187 # Since: 0.14.0
1188 #
1189 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1190 #
1191 # Example:
1192 #
1193 # -> { "execute": "inject-nmi" }
1194 # <- { "return": {} }
1195 #
1196 ##
1197 { 'command': 'inject-nmi' }
1198
1199 ##
1200 # @balloon:
1201 #
1202 # Request the balloon driver to change its balloon size.
1203 #
1204 # @value: the target size of the balloon in bytes
1205 #
1206 # Returns: Nothing on success
1207 # If the balloon driver is enabled but not functional because the KVM
1208 # kernel module cannot support it, KvmMissingCap
1209 # If no balloon device is present, DeviceNotActive
1210 #
1211 # Notes: This command just issues a request to the guest. When it returns,
1212 # the balloon size may not have changed. A guest can change the balloon
1213 # size independent of this command.
1214 #
1215 # Since: 0.14.0
1216 #
1217 # Example:
1218 #
1219 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1220 # <- { "return": {} }
1221 #
1222 ##
1223 { 'command': 'balloon', 'data': {'value': 'int'} }
1224
1225 ##
1226 # @human-monitor-command:
1227 #
1228 # Execute a command on the human monitor and return the output.
1229 #
1230 # @command-line: the command to execute in the human monitor
1231 #
1232 # @cpu-index: The CPU to use for commands that require an implicit CPU
1233 #
1234 # Returns: the output of the command as a string
1235 #
1236 # Since: 0.14.0
1237 #
1238 # Notes: This command only exists as a stop-gap. Its use is highly
1239 # discouraged. The semantics of this command are not
1240 # guaranteed: this means that command names, arguments and
1241 # responses can change or be removed at ANY time. Applications
1242 # that rely on long term stability guarantees should NOT
1243 # use this command.
1244 #
1245 # Known limitations:
1246 #
1247 # * This command is stateless, this means that commands that depend
1248 # on state information (such as getfd) might not work
1249 #
1250 # * Commands that prompt the user for data don't currently work
1251 #
1252 # Example:
1253 #
1254 # -> { "execute": "human-monitor-command",
1255 # "arguments": { "command-line": "info kvm" } }
1256 # <- { "return": "kvm support: enabled\r\n" }
1257 #
1258 ##
1259 { 'command': 'human-monitor-command',
1260 'data': {'command-line': 'str', '*cpu-index': 'int'},
1261 'returns': 'str' }
1262
1263 ##
1264 # @ObjectPropertyInfo:
1265 #
1266 # @name: the name of the property
1267 #
1268 # @type: the type of the property. This will typically come in one of four
1269 # forms:
1270 #
1271 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1272 # These types are mapped to the appropriate JSON type.
1273 #
1274 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
1275 # device type name. Child properties create the composition tree.
1276 #
1277 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
1278 # device type name. Link properties form the device model graph.
1279 #
1280 # Since: 1.2
1281 ##
1282 { 'struct': 'ObjectPropertyInfo',
1283 'data': { 'name': 'str', 'type': 'str' } }
1284
1285 ##
1286 # @qom-list:
1287 #
1288 # This command will list any properties of a object given a path in the object
1289 # model.
1290 #
1291 # @path: the path within the object model. See @qom-get for a description of
1292 # this parameter.
1293 #
1294 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
1295 # object.
1296 #
1297 # Since: 1.2
1298 ##
1299 { 'command': 'qom-list',
1300 'data': { 'path': 'str' },
1301 'returns': [ 'ObjectPropertyInfo' ] }
1302
1303 ##
1304 # @qom-get:
1305 #
1306 # This command will get a property from a object model path and return the
1307 # value.
1308 #
1309 # @path: The path within the object model. There are two forms of supported
1310 # paths--absolute and partial paths.
1311 #
1312 # Absolute paths are derived from the root object and can follow child<>
1313 # or link<> properties. Since they can follow link<> properties, they
1314 # can be arbitrarily long. Absolute paths look like absolute filenames
1315 # and are prefixed with a leading slash.
1316 #
1317 # Partial paths look like relative filenames. They do not begin
1318 # with a prefix. The matching rules for partial paths are subtle but
1319 # designed to make specifying objects easy. At each level of the
1320 # composition tree, the partial path is matched as an absolute path.
1321 # The first match is not returned. At least two matches are searched
1322 # for. A successful result is only returned if only one match is
1323 # found. If more than one match is found, a flag is return to
1324 # indicate that the match was ambiguous.
1325 #
1326 # @property: The property name to read
1327 #
1328 # Returns: The property value. The type depends on the property
1329 # type. child<> and link<> properties are returned as #str
1330 # pathnames. All integer property types (u8, u16, etc) are
1331 # returned as #int.
1332 #
1333 # Since: 1.2
1334 ##
1335 { 'command': 'qom-get',
1336 'data': { 'path': 'str', 'property': 'str' },
1337 'returns': 'any' }
1338
1339 ##
1340 # @qom-set:
1341 #
1342 # This command will set a property from a object model path.
1343 #
1344 # @path: see @qom-get for a description of this parameter
1345 #
1346 # @property: the property name to set
1347 #
1348 # @value: a value who's type is appropriate for the property type. See @qom-get
1349 # for a description of type mapping.
1350 #
1351 # Since: 1.2
1352 ##
1353 { 'command': 'qom-set',
1354 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
1355
1356 ##
1357 # @change:
1358 #
1359 # This command is multiple commands multiplexed together.
1360 #
1361 # @device: This is normally the name of a block device but it may also be 'vnc'.
1362 # when it's 'vnc', then sub command depends on @target
1363 #
1364 # @target: If @device is a block device, then this is the new filename.
1365 # If @device is 'vnc', then if the value 'password' selects the vnc
1366 # change password command. Otherwise, this specifies a new server URI
1367 # address to listen to for VNC connections.
1368 #
1369 # @arg: If @device is a block device, then this is an optional format to open
1370 # the device with.
1371 # If @device is 'vnc' and @target is 'password', this is the new VNC
1372 # password to set. See change-vnc-password for additional notes.
1373 #
1374 # Returns: Nothing on success.
1375 # If @device is not a valid block device, DeviceNotFound
1376 #
1377 # Notes: This interface is deprecated, and it is strongly recommended that you
1378 # avoid using it. For changing block devices, use
1379 # blockdev-change-medium; for changing VNC parameters, use
1380 # change-vnc-password.
1381 #
1382 # Since: 0.14.0
1383 #
1384 # Example:
1385 #
1386 # 1. Change a removable medium
1387 #
1388 # -> { "execute": "change",
1389 # "arguments": { "device": "ide1-cd0",
1390 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1391 # <- { "return": {} }
1392 #
1393 # 2. Change VNC password
1394 #
1395 # -> { "execute": "change",
1396 # "arguments": { "device": "vnc", "target": "password",
1397 # "arg": "foobar1" } }
1398 # <- { "return": {} }
1399 #
1400 ##
1401 { 'command': 'change',
1402 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1403
1404 ##
1405 # @ObjectTypeInfo:
1406 #
1407 # This structure describes a search result from @qom-list-types
1408 #
1409 # @name: the type name found in the search
1410 #
1411 # @abstract: the type is abstract and can't be directly instantiated.
1412 # Omitted if false. (since 2.10)
1413 #
1414 # @parent: Name of parent type, if any (since 2.10)
1415 #
1416 # Since: 1.1
1417 ##
1418 { 'struct': 'ObjectTypeInfo',
1419 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1420
1421 ##
1422 # @qom-list-types:
1423 #
1424 # This command will return a list of types given search parameters
1425 #
1426 # @implements: if specified, only return types that implement this type name
1427 #
1428 # @abstract: if true, include abstract types in the results
1429 #
1430 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1431 #
1432 # Since: 1.1
1433 ##
1434 { 'command': 'qom-list-types',
1435 'data': { '*implements': 'str', '*abstract': 'bool' },
1436 'returns': [ 'ObjectTypeInfo' ] }
1437
1438 ##
1439 # @DevicePropertyInfo:
1440 #
1441 # Information about device properties.
1442 #
1443 # @name: the name of the property
1444 # @type: the typename of the property
1445 # @description: if specified, the description of the property.
1446 # (since 2.2)
1447 #
1448 # Since: 1.2
1449 ##
1450 { 'struct': 'DevicePropertyInfo',
1451 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1452
1453 ##
1454 # @device-list-properties:
1455 #
1456 # List properties associated with a device.
1457 #
1458 # @typename: the type name of a device
1459 #
1460 # Returns: a list of DevicePropertyInfo describing a devices properties
1461 #
1462 # Since: 1.2
1463 ##
1464 { 'command': 'device-list-properties',
1465 'data': { 'typename': 'str'},
1466 'returns': [ 'DevicePropertyInfo' ] }
1467
1468 ##
1469 # @xen-set-global-dirty-log:
1470 #
1471 # Enable or disable the global dirty log mode.
1472 #
1473 # @enable: true to enable, false to disable.
1474 #
1475 # Returns: nothing
1476 #
1477 # Since: 1.3
1478 #
1479 # Example:
1480 #
1481 # -> { "execute": "xen-set-global-dirty-log",
1482 # "arguments": { "enable": true } }
1483 # <- { "return": {} }
1484 #
1485 ##
1486 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1487
1488 ##
1489 # @device_add:
1490 #
1491 # @driver: the name of the new device's driver
1492 #
1493 # @bus: the device's parent bus (device tree path)
1494 #
1495 # @id: the device's ID, must be unique
1496 #
1497 # Additional arguments depend on the type.
1498 #
1499 # Add a device.
1500 #
1501 # Notes:
1502 # 1. For detailed information about this command, please refer to the
1503 # 'docs/qdev-device-use.txt' file.
1504 #
1505 # 2. It's possible to list device properties by running QEMU with the
1506 # "-device DEVICE,help" command-line argument, where DEVICE is the
1507 # device's name
1508 #
1509 # Example:
1510 #
1511 # -> { "execute": "device_add",
1512 # "arguments": { "driver": "e1000", "id": "net1",
1513 # "bus": "pci.0",
1514 # "mac": "52:54:00:12:34:56" } }
1515 # <- { "return": {} }
1516 #
1517 # TODO: This command effectively bypasses QAPI completely due to its
1518 # "additional arguments" business. It shouldn't have been added to
1519 # the schema in this form. It should be qapified properly, or
1520 # replaced by a properly qapified command.
1521 #
1522 # Since: 0.13
1523 ##
1524 { 'command': 'device_add',
1525 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1526 'gen': false } # so we can get the additional arguments
1527
1528 ##
1529 # @device_del:
1530 #
1531 # Remove a device from a guest
1532 #
1533 # @id: the device's ID or QOM path
1534 #
1535 # Returns: Nothing on success
1536 # If @id is not a valid device, DeviceNotFound
1537 #
1538 # Notes: When this command completes, the device may not be removed from the
1539 # guest. Hot removal is an operation that requires guest cooperation.
1540 # This command merely requests that the guest begin the hot removal
1541 # process. Completion of the device removal process is signaled with a
1542 # DEVICE_DELETED event. Guest reset will automatically complete removal
1543 # for all devices.
1544 #
1545 # Since: 0.14.0
1546 #
1547 # Example:
1548 #
1549 # -> { "execute": "device_del",
1550 # "arguments": { "id": "net1" } }
1551 # <- { "return": {} }
1552 #
1553 # -> { "execute": "device_del",
1554 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1555 # <- { "return": {} }
1556 #
1557 ##
1558 { 'command': 'device_del', 'data': {'id': 'str'} }
1559
1560 ##
1561 # @DEVICE_DELETED:
1562 #
1563 # Emitted whenever the device removal completion is acknowledged by the guest.
1564 # At this point, it's safe to reuse the specified device ID. Device removal can
1565 # be initiated by the guest or by HMP/QMP commands.
1566 #
1567 # @device: device name
1568 #
1569 # @path: device path
1570 #
1571 # Since: 1.5
1572 #
1573 # Example:
1574 #
1575 # <- { "event": "DEVICE_DELETED",
1576 # "data": { "device": "virtio-net-pci-0",
1577 # "path": "/machine/peripheral/virtio-net-pci-0" },
1578 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1579 #
1580 ##
1581 { 'event': 'DEVICE_DELETED',
1582 'data': { '*device': 'str', 'path': 'str' } }
1583
1584 ##
1585 # @DumpGuestMemoryFormat:
1586 #
1587 # An enumeration of guest-memory-dump's format.
1588 #
1589 # @elf: elf format
1590 #
1591 # @kdump-zlib: kdump-compressed format with zlib-compressed
1592 #
1593 # @kdump-lzo: kdump-compressed format with lzo-compressed
1594 #
1595 # @kdump-snappy: kdump-compressed format with snappy-compressed
1596 #
1597 # Since: 2.0
1598 ##
1599 { 'enum': 'DumpGuestMemoryFormat',
1600 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
1601
1602 ##
1603 # @dump-guest-memory:
1604 #
1605 # Dump guest's memory to vmcore. It is a synchronous operation that can take
1606 # very long depending on the amount of guest memory.
1607 #
1608 # @paging: if true, do paging to get guest's memory mapping. This allows
1609 # using gdb to process the core file.
1610 #
1611 # IMPORTANT: this option can make QEMU allocate several gigabytes
1612 # of RAM. This can happen for a large guest, or a
1613 # malicious guest pretending to be large.
1614 #
1615 # Also, paging=true has the following limitations:
1616 #
1617 # 1. The guest may be in a catastrophic state or can have corrupted
1618 # memory, which cannot be trusted
1619 # 2. The guest can be in real-mode even if paging is enabled. For
1620 # example, the guest uses ACPI to sleep, and ACPI sleep state
1621 # goes in real-mode
1622 # 3. Currently only supported on i386 and x86_64.
1623 #
1624 # @protocol: the filename or file descriptor of the vmcore. The supported
1625 # protocols are:
1626 #
1627 # 1. file: the protocol starts with "file:", and the following
1628 # string is the file's path.
1629 # 2. fd: the protocol starts with "fd:", and the following string
1630 # is the fd's name.
1631 #
1632 # @detach: if true, QMP will return immediately rather than
1633 # waiting for the dump to finish. The user can track progress
1634 # using "query-dump". (since 2.6).
1635 #
1636 # @begin: if specified, the starting physical address.
1637 #
1638 # @length: if specified, the memory size, in bytes. If you don't
1639 # want to dump all guest's memory, please specify the start @begin
1640 # and @length
1641 #
1642 # @format: if specified, the format of guest memory dump. But non-elf
1643 # format is conflict with paging and filter, ie. @paging, @begin and
1644 # @length is not allowed to be specified with non-elf @format at the
1645 # same time (since 2.0)
1646 #
1647 # Note: All boolean arguments default to false
1648 #
1649 # Returns: nothing on success
1650 #
1651 # Since: 1.2
1652 #
1653 # Example:
1654 #
1655 # -> { "execute": "dump-guest-memory",
1656 # "arguments": { "protocol": "fd:dump" } }
1657 # <- { "return": {} }
1658 #
1659 ##
1660 { 'command': 'dump-guest-memory',
1661 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1662 '*begin': 'int', '*length': 'int',
1663 '*format': 'DumpGuestMemoryFormat'} }
1664
1665 ##
1666 # @DumpStatus:
1667 #
1668 # Describe the status of a long-running background guest memory dump.
1669 #
1670 # @none: no dump-guest-memory has started yet.
1671 #
1672 # @active: there is one dump running in background.
1673 #
1674 # @completed: the last dump has finished successfully.
1675 #
1676 # @failed: the last dump has failed.
1677 #
1678 # Since: 2.6
1679 ##
1680 { 'enum': 'DumpStatus',
1681 'data': [ 'none', 'active', 'completed', 'failed' ] }
1682
1683 ##
1684 # @DumpQueryResult:
1685 #
1686 # The result format for 'query-dump'.
1687 #
1688 # @status: enum of @DumpStatus, which shows current dump status
1689 #
1690 # @completed: bytes written in latest dump (uncompressed)
1691 #
1692 # @total: total bytes to be written in latest dump (uncompressed)
1693 #
1694 # Since: 2.6
1695 ##
1696 { 'struct': 'DumpQueryResult',
1697 'data': { 'status': 'DumpStatus',
1698 'completed': 'int',
1699 'total': 'int' } }
1700
1701 ##
1702 # @query-dump:
1703 #
1704 # Query latest dump status.
1705 #
1706 # Returns: A @DumpStatus object showing the dump status.
1707 #
1708 # Since: 2.6
1709 #
1710 # Example:
1711 #
1712 # -> { "execute": "query-dump" }
1713 # <- { "return": { "status": "active", "completed": 1024000,
1714 # "total": 2048000 } }
1715 #
1716 ##
1717 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1718
1719 ##
1720 # @DUMP_COMPLETED:
1721 #
1722 # Emitted when background dump has completed
1723 #
1724 # @result: DumpQueryResult type described in qapi-schema.json.
1725 #
1726 # @error: human-readable error string that provides
1727 # hint on why dump failed. Only presents on failure. The
1728 # user should not try to interpret the error string.
1729 #
1730 # Since: 2.6
1731 #
1732 # Example:
1733 #
1734 # { "event": "DUMP_COMPLETED",
1735 # "data": {"result": {"total": 1090650112, "status": "completed",
1736 # "completed": 1090650112} } }
1737 #
1738 ##
1739 { 'event': 'DUMP_COMPLETED' ,
1740 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1741
1742 ##
1743 # @DumpGuestMemoryCapability:
1744 #
1745 # A list of the available formats for dump-guest-memory
1746 #
1747 # Since: 2.0
1748 ##
1749 { 'struct': 'DumpGuestMemoryCapability',
1750 'data': {
1751 'formats': ['DumpGuestMemoryFormat'] } }
1752
1753 ##
1754 # @query-dump-guest-memory-capability:
1755 #
1756 # Returns the available formats for dump-guest-memory
1757 #
1758 # Returns: A @DumpGuestMemoryCapability object listing available formats for
1759 # dump-guest-memory
1760 #
1761 # Since: 2.0
1762 #
1763 # Example:
1764 #
1765 # -> { "execute": "query-dump-guest-memory-capability" }
1766 # <- { "return": { "formats":
1767 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1768 #
1769 ##
1770 { 'command': 'query-dump-guest-memory-capability',
1771 'returns': 'DumpGuestMemoryCapability' }
1772
1773 ##
1774 # @dump-skeys:
1775 #
1776 # Dump guest's storage keys
1777 #
1778 # @filename: the path to the file to dump to
1779 #
1780 # This command is only supported on s390 architecture.
1781 #
1782 # Since: 2.5
1783 #
1784 # Example:
1785 #
1786 # -> { "execute": "dump-skeys",
1787 # "arguments": { "filename": "/tmp/skeys" } }
1788 # <- { "return": {} }
1789 #
1790 ##
1791 { 'command': 'dump-skeys',
1792 'data': { 'filename': 'str' } }
1793
1794 ##
1795 # @object-add:
1796 #
1797 # Create a QOM object.
1798 #
1799 # @qom-type: the class name for the object to be created
1800 #
1801 # @id: the name of the new object
1802 #
1803 # @props: a dictionary of properties to be passed to the backend
1804 #
1805 # Returns: Nothing on success
1806 # Error if @qom-type is not a valid class name
1807 #
1808 # Since: 2.0
1809 #
1810 # Example:
1811 #
1812 # -> { "execute": "object-add",
1813 # "arguments": { "qom-type": "rng-random", "id": "rng1",
1814 # "props": { "filename": "/dev/hwrng" } } }
1815 # <- { "return": {} }
1816 #
1817 ##
1818 { 'command': 'object-add',
1819 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1820
1821 ##
1822 # @object-del:
1823 #
1824 # Remove a QOM object.
1825 #
1826 # @id: the name of the QOM object to remove
1827 #
1828 # Returns: Nothing on success
1829 # Error if @id is not a valid id for a QOM object
1830 #
1831 # Since: 2.0
1832 #
1833 # Example:
1834 #
1835 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1836 # <- { "return": {} }
1837 #
1838 ##
1839 { 'command': 'object-del', 'data': {'id': 'str'} }
1840
1841 ##
1842 # @getfd:
1843 #
1844 # Receive a file descriptor via SCM rights and assign it a name
1845 #
1846 # @fdname: file descriptor name
1847 #
1848 # Returns: Nothing on success
1849 #
1850 # Since: 0.14.0
1851 #
1852 # Notes: If @fdname already exists, the file descriptor assigned to
1853 # it will be closed and replaced by the received file
1854 # descriptor.
1855 #
1856 # The 'closefd' command can be used to explicitly close the
1857 # file descriptor when it is no longer needed.
1858 #
1859 # Example:
1860 #
1861 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1862 # <- { "return": {} }
1863 #
1864 ##
1865 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1866
1867 ##
1868 # @closefd:
1869 #
1870 # Close a file descriptor previously passed via SCM rights
1871 #
1872 # @fdname: file descriptor name
1873 #
1874 # Returns: Nothing on success
1875 #
1876 # Since: 0.14.0
1877 #
1878 # Example:
1879 #
1880 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1881 # <- { "return": {} }
1882 #
1883 ##
1884 { 'command': 'closefd', 'data': {'fdname': 'str'} }
1885
1886 ##
1887 # @MachineInfo:
1888 #
1889 # Information describing a machine.
1890 #
1891 # @name: the name of the machine
1892 #
1893 # @alias: an alias for the machine name
1894 #
1895 # @is-default: whether the machine is default
1896 #
1897 # @cpu-max: maximum number of CPUs supported by the machine type
1898 # (since 1.5.0)
1899 #
1900 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1901 #
1902 # Since: 1.2.0
1903 ##
1904 { 'struct': 'MachineInfo',
1905 'data': { 'name': 'str', '*alias': 'str',
1906 '*is-default': 'bool', 'cpu-max': 'int',
1907 'hotpluggable-cpus': 'bool'} }
1908
1909 ##
1910 # @query-machines:
1911 #
1912 # Return a list of supported machines
1913 #
1914 # Returns: a list of MachineInfo
1915 #
1916 # Since: 1.2.0
1917 ##
1918 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
1919
1920 ##
1921 # @CpuDefinitionInfo:
1922 #
1923 # Virtual CPU definition.
1924 #
1925 # @name: the name of the CPU definition
1926 #
1927 # @migration-safe: whether a CPU definition can be safely used for
1928 # migration in combination with a QEMU compatibility machine
1929 # when migrating between different QMU versions and between
1930 # hosts with different sets of (hardware or software)
1931 # capabilities. If not provided, information is not available
1932 # and callers should not assume the CPU definition to be
1933 # migration-safe. (since 2.8)
1934 #
1935 # @static: whether a CPU definition is static and will not change depending on
1936 # QEMU version, machine type, machine options and accelerator options.
1937 # A static model is always migration-safe. (since 2.8)
1938 #
1939 # @unavailable-features: List of properties that prevent
1940 # the CPU model from running in the current
1941 # host. (since 2.8)
1942 # @typename: Type name that can be used as argument to @device-list-properties,
1943 # to introspect properties configurable using -cpu or -global.
1944 # (since 2.9)
1945 #
1946 # @unavailable-features is a list of QOM property names that
1947 # represent CPU model attributes that prevent the CPU from running.
1948 # If the QOM property is read-only, that means there's no known
1949 # way to make the CPU model run in the current host. Implementations
1950 # that choose not to provide specific information return the
1951 # property name "type".
1952 # If the property is read-write, it means that it MAY be possible
1953 # to run the CPU model in the current host if that property is
1954 # changed. Management software can use it as hints to suggest or
1955 # choose an alternative for the user, or just to generate meaningful
1956 # error messages explaining why the CPU model can't be used.
1957 # If @unavailable-features is an empty list, the CPU model is
1958 # runnable using the current host and machine-type.
1959 # If @unavailable-features is not present, runnability
1960 # information for the CPU is not available.
1961 #
1962 # Since: 1.2.0
1963 ##
1964 { 'struct': 'CpuDefinitionInfo',
1965 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
1966 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
1967
1968 ##
1969 # @query-cpu-definitions:
1970 #
1971 # Return a list of supported virtual CPU definitions
1972 #
1973 # Returns: a list of CpuDefInfo
1974 #
1975 # Since: 1.2.0
1976 ##
1977 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
1978
1979 ##
1980 # @CpuModelInfo:
1981 #
1982 # Virtual CPU model.
1983 #
1984 # A CPU model consists of the name of a CPU definition, to which
1985 # delta changes are applied (e.g. features added/removed). Most magic values
1986 # that an architecture might require should be hidden behind the name.
1987 # However, if required, architectures can expose relevant properties.
1988 #
1989 # @name: the name of the CPU definition the model is based on
1990 # @props: a dictionary of QOM properties to be applied
1991 #
1992 # Since: 2.8.0
1993 ##
1994 { 'struct': 'CpuModelInfo',
1995 'data': { 'name': 'str',
1996 '*props': 'any' } }
1997
1998 ##
1999 # @CpuModelExpansionType:
2000 #
2001 # An enumeration of CPU model expansion types.
2002 #
2003 # @static: Expand to a static CPU model, a combination of a static base
2004 # model name and property delta changes. As the static base model will
2005 # never change, the expanded CPU model will be the same, independant of
2006 # independent of QEMU version, machine type, machine options, and
2007 # accelerator options. Therefore, the resulting model can be used by
2008 # tooling without having to specify a compatibility machine - e.g. when
2009 # displaying the "host" model. static CPU models are migration-safe.
2010 #
2011 # @full: Expand all properties. The produced model is not guaranteed to be
2012 # migration-safe, but allows tooling to get an insight and work with
2013 # model details.
2014 #
2015 # Note: When a non-migration-safe CPU model is expanded in static mode, some
2016 # features enabled by the CPU model may be omitted, because they can't be
2017 # implemented by a static CPU model definition (e.g. cache info passthrough and
2018 # PMU passthrough in x86). If you need an accurate representation of the
2019 # features enabled by a non-migration-safe CPU model, use @full. If you need a
2020 # static representation that will keep ABI compatibility even when changing QEMU
2021 # version or machine-type, use @static (but keep in mind that some features may
2022 # be omitted).
2023 #
2024 # Since: 2.8.0
2025 ##
2026 { 'enum': 'CpuModelExpansionType',
2027 'data': [ 'static', 'full' ] }
2028
2029
2030 ##
2031 # @CpuModelExpansionInfo:
2032 #
2033 # The result of a cpu model expansion.
2034 #
2035 # @model: the expanded CpuModelInfo.
2036 #
2037 # Since: 2.8.0
2038 ##
2039 { 'struct': 'CpuModelExpansionInfo',
2040 'data': { 'model': 'CpuModelInfo' } }
2041
2042
2043 ##
2044 # @query-cpu-model-expansion:
2045 #
2046 # Expands a given CPU model (or a combination of CPU model + additional options)
2047 # to different granularities, allowing tooling to get an understanding what a
2048 # specific CPU model looks like in QEMU under a certain configuration.
2049 #
2050 # This interface can be used to query the "host" CPU model.
2051 #
2052 # The data returned by this command may be affected by:
2053 #
2054 # * QEMU version: CPU models may look different depending on the QEMU version.
2055 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2056 # * machine-type: CPU model may look different depending on the machine-type.
2057 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2058 # * machine options (including accelerator): in some architectures, CPU models
2059 # may look different depending on machine and accelerator options. (Except for
2060 # CPU models reported as "static" in query-cpu-definitions.)
2061 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2062 # global properties may affect expansion of CPU models. Using
2063 # query-cpu-model-expansion while using these is not advised.
2064 #
2065 # Some architectures may not support all expansion types. s390x supports
2066 # "full" and "static".
2067 #
2068 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2069 # not supported, if the model cannot be expanded, if the model contains
2070 # an unknown CPU definition name, unknown properties or properties
2071 # with a wrong type. Also returns an error if an expansion type is
2072 # not supported.
2073 #
2074 # Since: 2.8.0
2075 ##
2076 { 'command': 'query-cpu-model-expansion',
2077 'data': { 'type': 'CpuModelExpansionType',
2078 'model': 'CpuModelInfo' },
2079 'returns': 'CpuModelExpansionInfo' }
2080
2081 ##
2082 # @CpuModelCompareResult:
2083 #
2084 # An enumeration of CPU model comparation results. The result is usually
2085 # calculated using e.g. CPU features or CPU generations.
2086 #
2087 # @incompatible: If model A is incompatible to model B, model A is not
2088 # guaranteed to run where model B runs and the other way around.
2089 #
2090 # @identical: If model A is identical to model B, model A is guaranteed to run
2091 # where model B runs and the other way around.
2092 #
2093 # @superset: If model A is a superset of model B, model B is guaranteed to run
2094 # where model A runs. There are no guarantees about the other way.
2095 #
2096 # @subset: If model A is a subset of model B, model A is guaranteed to run
2097 # where model B runs. There are no guarantees about the other way.
2098 #
2099 # Since: 2.8.0
2100 ##
2101 { 'enum': 'CpuModelCompareResult',
2102 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2103
2104 ##
2105 # @CpuModelCompareInfo:
2106 #
2107 # The result of a CPU model comparison.
2108 #
2109 # @result: The result of the compare operation.
2110 # @responsible-properties: List of properties that led to the comparison result
2111 # not being identical.
2112 #
2113 # @responsible-properties is a list of QOM property names that led to
2114 # both CPUs not being detected as identical. For identical models, this
2115 # list is empty.
2116 # If a QOM property is read-only, that means there's no known way to make the
2117 # CPU models identical. If the special property name "type" is included, the
2118 # models are by definition not identical and cannot be made identical.
2119 #
2120 # Since: 2.8.0
2121 ##
2122 { 'struct': 'CpuModelCompareInfo',
2123 'data': {'result': 'CpuModelCompareResult',
2124 'responsible-properties': ['str']
2125 }
2126 }
2127
2128 ##
2129 # @query-cpu-model-comparison:
2130 #
2131 # Compares two CPU models, returning how they compare in a specific
2132 # configuration. The results indicates how both models compare regarding
2133 # runnability. This result can be used by tooling to make decisions if a
2134 # certain CPU model will run in a certain configuration or if a compatible
2135 # CPU model has to be created by baselining.
2136 #
2137 # Usually, a CPU model is compared against the maximum possible CPU model
2138 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
2139 # model is identical or a subset, it will run in that configuration.
2140 #
2141 # The result returned by this command may be affected by:
2142 #
2143 # * QEMU version: CPU models may look different depending on the QEMU version.
2144 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2145 # * machine-type: CPU model may look different depending on the machine-type.
2146 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2147 # * machine options (including accelerator): in some architectures, CPU models
2148 # may look different depending on machine and accelerator options. (Except for
2149 # CPU models reported as "static" in query-cpu-definitions.)
2150 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2151 # global properties may affect expansion of CPU models. Using
2152 # query-cpu-model-expansion while using these is not advised.
2153 #
2154 # Some architectures may not support comparing CPU models. s390x supports
2155 # comparing CPU models.
2156 #
2157 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2158 # not supported, if a model cannot be used, if a model contains
2159 # an unknown cpu definition name, unknown properties or properties
2160 # with wrong types.
2161 #
2162 # Since: 2.8.0
2163 ##
2164 { 'command': 'query-cpu-model-comparison',
2165 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2166 'returns': 'CpuModelCompareInfo' }
2167
2168 ##
2169 # @CpuModelBaselineInfo:
2170 #
2171 # The result of a CPU model baseline.
2172 #
2173 # @model: the baselined CpuModelInfo.
2174 #
2175 # Since: 2.8.0
2176 ##
2177 { 'struct': 'CpuModelBaselineInfo',
2178 'data': { 'model': 'CpuModelInfo' } }
2179
2180 ##
2181 # @query-cpu-model-baseline:
2182 #
2183 # Baseline two CPU models, creating a compatible third model. The created
2184 # model will always be a static, migration-safe CPU model (see "static"
2185 # CPU model expansion for details).
2186 #
2187 # This interface can be used by tooling to create a compatible CPU model out
2188 # two CPU models. The created CPU model will be identical to or a subset of
2189 # both CPU models when comparing them. Therefore, the created CPU model is
2190 # guaranteed to run where the given CPU models run.
2191 #
2192 # The result returned by this command may be affected by:
2193 #
2194 # * QEMU version: CPU models may look different depending on the QEMU version.
2195 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2196 # * machine-type: CPU model may look different depending on the machine-type.
2197 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2198 # * machine options (including accelerator): in some architectures, CPU models
2199 # may look different depending on machine and accelerator options. (Except for
2200 # CPU models reported as "static" in query-cpu-definitions.)
2201 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2202 # global properties may affect expansion of CPU models. Using
2203 # query-cpu-model-expansion while using these is not advised.
2204 #
2205 # Some architectures may not support baselining CPU models. s390x supports
2206 # baselining CPU models.
2207 #
2208 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2209 # not supported, if a model cannot be used, if a model contains
2210 # an unknown cpu definition name, unknown properties or properties
2211 # with wrong types.
2212 #
2213 # Since: 2.8.0
2214 ##
2215 { 'command': 'query-cpu-model-baseline',
2216 'data': { 'modela': 'CpuModelInfo',
2217 'modelb': 'CpuModelInfo' },
2218 'returns': 'CpuModelBaselineInfo' }
2219
2220 ##
2221 # @AddfdInfo:
2222 #
2223 # Information about a file descriptor that was added to an fd set.
2224 #
2225 # @fdset-id: The ID of the fd set that @fd was added to.
2226 #
2227 # @fd: The file descriptor that was received via SCM rights and
2228 # added to the fd set.
2229 #
2230 # Since: 1.2.0
2231 ##
2232 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2233
2234 ##
2235 # @add-fd:
2236 #
2237 # Add a file descriptor, that was passed via SCM rights, to an fd set.
2238 #
2239 # @fdset-id: The ID of the fd set to add the file descriptor to.
2240 #
2241 # @opaque: A free-form string that can be used to describe the fd.
2242 #
2243 # Returns: @AddfdInfo on success
2244 #
2245 # If file descriptor was not received, FdNotSupplied
2246 #
2247 # If @fdset-id is a negative value, InvalidParameterValue
2248 #
2249 # Notes: The list of fd sets is shared by all monitor connections.
2250 #
2251 # If @fdset-id is not specified, a new fd set will be created.
2252 #
2253 # Since: 1.2.0
2254 #
2255 # Example:
2256 #
2257 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2258 # <- { "return": { "fdset-id": 1, "fd": 3 } }
2259 #
2260 ##
2261 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2262 'returns': 'AddfdInfo' }
2263
2264 ##
2265 # @remove-fd:
2266 #
2267 # Remove a file descriptor from an fd set.
2268 #
2269 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
2270 #
2271 # @fd: The file descriptor that is to be removed.
2272 #
2273 # Returns: Nothing on success
2274 # If @fdset-id or @fd is not found, FdNotFound
2275 #
2276 # Since: 1.2.0
2277 #
2278 # Notes: The list of fd sets is shared by all monitor connections.
2279 #
2280 # If @fd is not specified, all file descriptors in @fdset-id
2281 # will be removed.
2282 #
2283 # Example:
2284 #
2285 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2286 # <- { "return": {} }
2287 #
2288 ##
2289 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2290
2291 ##
2292 # @FdsetFdInfo:
2293 #
2294 # Information about a file descriptor that belongs to an fd set.
2295 #
2296 # @fd: The file descriptor value.
2297 #
2298 # @opaque: A free-form string that can be used to describe the fd.
2299 #
2300 # Since: 1.2.0
2301 ##
2302 { 'struct': 'FdsetFdInfo',
2303 'data': {'fd': 'int', '*opaque': 'str'} }
2304
2305 ##
2306 # @FdsetInfo:
2307 #
2308 # Information about an fd set.
2309 #
2310 # @fdset-id: The ID of the fd set.
2311 #
2312 # @fds: A list of file descriptors that belong to this fd set.
2313 #
2314 # Since: 1.2.0
2315 ##
2316 { 'struct': 'FdsetInfo',
2317 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2318
2319 ##
2320 # @query-fdsets:
2321 #
2322 # Return information describing all fd sets.
2323 #
2324 # Returns: A list of @FdsetInfo
2325 #
2326 # Since: 1.2.0
2327 #
2328 # Note: The list of fd sets is shared by all monitor connections.
2329 #
2330 # Example:
2331 #
2332 # -> { "execute": "query-fdsets" }
2333 # <- { "return": [
2334 # {
2335 # "fds": [
2336 # {
2337 # "fd": 30,
2338 # "opaque": "rdonly:/path/to/file"
2339 # },
2340 # {
2341 # "fd": 24,
2342 # "opaque": "rdwr:/path/to/file"
2343 # }
2344 # ],
2345 # "fdset-id": 1
2346 # },
2347 # {
2348 # "fds": [
2349 # {
2350 # "fd": 28
2351 # },
2352 # {
2353 # "fd": 29
2354 # }
2355 # ],
2356 # "fdset-id": 0
2357 # }
2358 # ]
2359 # }
2360 #
2361 ##
2362 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2363
2364 ##
2365 # @TargetInfo:
2366 #
2367 # Information describing the QEMU target.
2368 #
2369 # @arch: the target architecture (eg "x86_64", "i386", etc)
2370 #
2371 # Since: 1.2.0
2372 ##
2373 { 'struct': 'TargetInfo',
2374 'data': { 'arch': 'str' } }
2375
2376 ##
2377 # @query-target:
2378 #
2379 # Return information about the target for this QEMU
2380 #
2381 # Returns: TargetInfo
2382 #
2383 # Since: 1.2.0
2384 ##
2385 { 'command': 'query-target', 'returns': 'TargetInfo' }
2386
2387 ##
2388 # @AcpiTableOptions:
2389 #
2390 # Specify an ACPI table on the command line to load.
2391 #
2392 # At most one of @file and @data can be specified. The list of files specified
2393 # by any one of them is loaded and concatenated in order. If both are omitted,
2394 # @data is implied.
2395 #
2396 # Other fields / optargs can be used to override fields of the generic ACPI
2397 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
2398 # Description Table Header. If a header field is not overridden, then the
2399 # corresponding value from the concatenated blob is used (in case of @file), or
2400 # it is filled in with a hard-coded value (in case of @data).
2401 #
2402 # String fields are copied into the matching ACPI member from lowest address
2403 # upwards, and silently truncated / NUL-padded to length.
2404 #
2405 # @sig: table signature / identifier (4 bytes)
2406 #
2407 # @rev: table revision number (dependent on signature, 1 byte)
2408 #
2409 # @oem_id: OEM identifier (6 bytes)
2410 #
2411 # @oem_table_id: OEM table identifier (8 bytes)
2412 #
2413 # @oem_rev: OEM-supplied revision number (4 bytes)
2414 #
2415 # @asl_compiler_id: identifier of the utility that created the table
2416 # (4 bytes)
2417 #
2418 # @asl_compiler_rev: revision number of the utility that created the
2419 # table (4 bytes)
2420 #
2421 # @file: colon (:) separated list of pathnames to load and
2422 # concatenate as table data. The resultant binary blob is expected to
2423 # have an ACPI table header. At least one file is required. This field
2424 # excludes @data.
2425 #
2426 # @data: colon (:) separated list of pathnames to load and
2427 # concatenate as table data. The resultant binary blob must not have an
2428 # ACPI table header. At least one file is required. This field excludes
2429 # @file.
2430 #
2431 # Since: 1.5
2432 ##
2433 { 'struct': 'AcpiTableOptions',
2434 'data': {
2435 '*sig': 'str',
2436 '*rev': 'uint8',
2437 '*oem_id': 'str',
2438 '*oem_table_id': 'str',
2439 '*oem_rev': 'uint32',
2440 '*asl_compiler_id': 'str',
2441 '*asl_compiler_rev': 'uint32',
2442 '*file': 'str',
2443 '*data': 'str' }}
2444
2445 ##
2446 # @CommandLineParameterType:
2447 #
2448 # Possible types for an option parameter.
2449 #
2450 # @string: accepts a character string
2451 #
2452 # @boolean: accepts "on" or "off"
2453 #
2454 # @number: accepts a number
2455 #
2456 # @size: accepts a number followed by an optional suffix (K)ilo,
2457 # (M)ega, (G)iga, (T)era
2458 #
2459 # Since: 1.5
2460 ##
2461 { 'enum': 'CommandLineParameterType',
2462 'data': ['string', 'boolean', 'number', 'size'] }
2463
2464 ##
2465 # @CommandLineParameterInfo:
2466 #
2467 # Details about a single parameter of a command line option.
2468 #
2469 # @name: parameter name
2470 #
2471 # @type: parameter @CommandLineParameterType
2472 #
2473 # @help: human readable text string, not suitable for parsing.
2474 #
2475 # @default: default value string (since 2.1)
2476 #
2477 # Since: 1.5
2478 ##
2479 { 'struct': 'CommandLineParameterInfo',
2480 'data': { 'name': 'str',
2481 'type': 'CommandLineParameterType',
2482 '*help': 'str',
2483 '*default': 'str' } }
2484
2485 ##
2486 # @CommandLineOptionInfo:
2487 #
2488 # Details about a command line option, including its list of parameter details
2489 #
2490 # @option: option name
2491 #
2492 # @parameters: an array of @CommandLineParameterInfo
2493 #
2494 # Since: 1.5
2495 ##
2496 { 'struct': 'CommandLineOptionInfo',
2497 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2498
2499 ##
2500 # @query-command-line-options:
2501 #
2502 # Query command line option schema.
2503 #
2504 # @option: option name
2505 #
2506 # Returns: list of @CommandLineOptionInfo for all options (or for the given
2507 # @option). Returns an error if the given @option doesn't exist.
2508 #
2509 # Since: 1.5
2510 #
2511 # Example:
2512 #
2513 # -> { "execute": "query-command-line-options",
2514 # "arguments": { "option": "option-rom" } }
2515 # <- { "return": [
2516 # {
2517 # "parameters": [
2518 # {
2519 # "name": "romfile",
2520 # "type": "string"
2521 # },
2522 # {
2523 # "name": "bootindex",
2524 # "type": "number"
2525 # }
2526 # ],
2527 # "option": "option-rom"
2528 # }
2529 # ]
2530 # }
2531 #
2532 ##
2533 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
2534 'returns': ['CommandLineOptionInfo'] }
2535
2536 ##
2537 # @X86CPURegister32:
2538 #
2539 # A X86 32-bit register
2540 #
2541 # Since: 1.5
2542 ##
2543 { 'enum': 'X86CPURegister32',
2544 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2545
2546 ##
2547 # @X86CPUFeatureWordInfo:
2548 #
2549 # Information about a X86 CPU feature word
2550 #
2551 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2552 #
2553 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2554 # feature word
2555 #
2556 # @cpuid-register: Output register containing the feature bits
2557 #
2558 # @features: value of output register, containing the feature bits
2559 #
2560 # Since: 1.5
2561 ##
2562 { 'struct': 'X86CPUFeatureWordInfo',
2563 'data': { 'cpuid-input-eax': 'int',
2564 '*cpuid-input-ecx': 'int',
2565 'cpuid-register': 'X86CPURegister32',
2566 'features': 'int' } }
2567
2568 ##
2569 # @DummyForceArrays:
2570 #
2571 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2572 #
2573 # Since: 2.5
2574 ##
2575 { 'struct': 'DummyForceArrays',
2576 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2577
2578
2579 ##
2580 # @NumaOptionsType:
2581 #
2582 # @node: NUMA nodes configuration
2583 #
2584 # @dist: NUMA distance configuration (since 2.10)
2585 #
2586 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
2587 #
2588 # Since: 2.1
2589 ##
2590 { 'enum': 'NumaOptionsType',
2591 'data': [ 'node', 'dist', 'cpu' ] }
2592
2593 ##
2594 # @NumaOptions:
2595 #
2596 # A discriminated record of NUMA options. (for OptsVisitor)
2597 #
2598 # Since: 2.1
2599 ##
2600 { 'union': 'NumaOptions',
2601 'base': { 'type': 'NumaOptionsType' },
2602 'discriminator': 'type',
2603 'data': {
2604 'node': 'NumaNodeOptions',
2605 'dist': 'NumaDistOptions',
2606 'cpu': 'NumaCpuOptions' }}
2607
2608 ##
2609 # @NumaNodeOptions:
2610 #
2611 # Create a guest NUMA node. (for OptsVisitor)
2612 #
2613 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2614 #
2615 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2616 # if omitted)
2617 #
2618 # @mem: memory size of this node; mutually exclusive with @memdev.
2619 # Equally divide total memory among nodes if both @mem and @memdev are
2620 # omitted.
2621 #
2622 # @memdev: memory backend object. If specified for one node,
2623 # it must be specified for all nodes.
2624 #
2625 # Since: 2.1
2626 ##
2627 { 'struct': 'NumaNodeOptions',
2628 'data': {
2629 '*nodeid': 'uint16',
2630 '*cpus': ['uint16'],
2631 '*mem': 'size',
2632 '*memdev': 'str' }}
2633
2634 ##
2635 # @NumaDistOptions:
2636 #
2637 # Set the distance between 2 NUMA nodes.
2638 #
2639 # @src: source NUMA node.
2640 #
2641 # @dst: destination NUMA node.
2642 #
2643 # @val: NUMA distance from source node to destination node.
2644 # When a node is unreachable from another node, set the distance
2645 # between them to 255.
2646 #
2647 # Since: 2.10
2648 ##
2649 { 'struct': 'NumaDistOptions',
2650 'data': {
2651 'src': 'uint16',
2652 'dst': 'uint16',
2653 'val': 'uint8' }}
2654
2655 ##
2656 # @NumaCpuOptions:
2657 #
2658 # Option "-numa cpu" overrides default cpu to node mapping.
2659 # It accepts the same set of cpu properties as returned by
2660 # query-hotpluggable-cpus[].props, where node-id could be used to
2661 # override default node mapping.
2662 #
2663 # Since: 2.10
2664 ##
2665 { 'struct': 'NumaCpuOptions',
2666 'base': 'CpuInstanceProperties',
2667 'data' : {} }
2668
2669 ##
2670 # @HostMemPolicy:
2671 #
2672 # Host memory policy types
2673 #
2674 # @default: restore default policy, remove any nondefault policy
2675 #
2676 # @preferred: set the preferred host nodes for allocation
2677 #
2678 # @bind: a strict policy that restricts memory allocation to the
2679 # host nodes specified
2680 #
2681 # @interleave: memory allocations are interleaved across the set
2682 # of host nodes specified
2683 #
2684 # Since: 2.1
2685 ##
2686 { 'enum': 'HostMemPolicy',
2687 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2688
2689 ##
2690 # @Memdev:
2691 #
2692 # Information about memory backend
2693 #
2694 # @id: backend's ID if backend has 'id' property (since 2.9)
2695 #
2696 # @size: memory backend size
2697 #
2698 # @merge: enables or disables memory merge support
2699 #
2700 # @dump: includes memory backend's memory in a core dump or not
2701 #
2702 # @prealloc: enables or disables memory preallocation
2703 #
2704 # @host-nodes: host nodes for its memory policy
2705 #
2706 # @policy: memory policy of memory backend
2707 #
2708 # Since: 2.1
2709 ##
2710 { 'struct': 'Memdev',
2711 'data': {
2712 '*id': 'str',
2713 'size': 'size',
2714 'merge': 'bool',
2715 'dump': 'bool',
2716 'prealloc': 'bool',
2717 'host-nodes': ['uint16'],
2718 'policy': 'HostMemPolicy' }}
2719
2720 ##
2721 # @query-memdev:
2722 #
2723 # Returns information for all memory backends.
2724 #
2725 # Returns: a list of @Memdev.
2726 #
2727 # Since: 2.1
2728 #
2729 # Example:
2730 #
2731 # -> { "execute": "query-memdev" }
2732 # <- { "return": [
2733 # {
2734 # "id": "mem1",
2735 # "size": 536870912,
2736 # "merge": false,
2737 # "dump": true,
2738 # "prealloc": false,
2739 # "host-nodes": [0, 1],
2740 # "policy": "bind"
2741 # },
2742 # {
2743 # "size": 536870912,
2744 # "merge": false,
2745 # "dump": true,
2746 # "prealloc": true,
2747 # "host-nodes": [2, 3],
2748 # "policy": "preferred"
2749 # }
2750 # ]
2751 # }
2752 #
2753 ##
2754 { 'command': 'query-memdev', 'returns': ['Memdev'] }
2755
2756 ##
2757 # @PCDIMMDeviceInfo:
2758 #
2759 # PCDIMMDevice state information
2760 #
2761 # @id: device's ID
2762 #
2763 # @addr: physical address, where device is mapped
2764 #
2765 # @size: size of memory that the device provides
2766 #
2767 # @slot: slot number at which device is plugged in
2768 #
2769 # @node: NUMA node number where device is plugged in
2770 #
2771 # @memdev: memory backend linked with device
2772 #
2773 # @hotplugged: true if device was hotplugged
2774 #
2775 # @hotpluggable: true if device if could be added/removed while machine is running
2776 #
2777 # Since: 2.1
2778 ##
2779 { 'struct': 'PCDIMMDeviceInfo',
2780 'data': { '*id': 'str',
2781 'addr': 'int',
2782 'size': 'int',
2783 'slot': 'int',
2784 'node': 'int',
2785 'memdev': 'str',
2786 'hotplugged': 'bool',
2787 'hotpluggable': 'bool'
2788 }
2789 }
2790
2791 ##
2792 # @MemoryDeviceInfo:
2793 #
2794 # Union containing information about a memory device
2795 #
2796 # Since: 2.1
2797 ##
2798 { 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
2799
2800 ##
2801 # @query-memory-devices:
2802 #
2803 # Lists available memory devices and their state
2804 #
2805 # Since: 2.1
2806 #
2807 # Example:
2808 #
2809 # -> { "execute": "query-memory-devices" }
2810 # <- { "return": [ { "data":
2811 # { "addr": 5368709120,
2812 # "hotpluggable": true,
2813 # "hotplugged": true,
2814 # "id": "d1",
2815 # "memdev": "/objects/memX",
2816 # "node": 0,
2817 # "size": 1073741824,
2818 # "slot": 0},
2819 # "type": "dimm"
2820 # } ] }
2821 #
2822 ##
2823 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2824
2825 ##
2826 # @MEM_UNPLUG_ERROR:
2827 #
2828 # Emitted when memory hot unplug error occurs.
2829 #
2830 # @device: device name
2831 #
2832 # @msg: Informative message
2833 #
2834 # Since: 2.4
2835 #
2836 # Example:
2837 #
2838 # <- { "event": "MEM_UNPLUG_ERROR"
2839 # "data": { "device": "dimm1",
2840 # "msg": "acpi: device unplug for unsupported device"
2841 # },
2842 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2843 #
2844 ##
2845 { 'event': 'MEM_UNPLUG_ERROR',
2846 'data': { 'device': 'str', 'msg': 'str' } }
2847
2848 ##
2849 # @ACPISlotType:
2850 #
2851 # @DIMM: memory slot
2852 # @CPU: logical CPU slot (since 2.7)
2853 ##
2854 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2855
2856 ##
2857 # @ACPIOSTInfo:
2858 #
2859 # OSPM Status Indication for a device
2860 # For description of possible values of @source and @status fields
2861 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2862 #
2863 # @device: device ID associated with slot
2864 #
2865 # @slot: slot ID, unique per slot of a given @slot-type
2866 #
2867 # @slot-type: type of the slot
2868 #
2869 # @source: an integer containing the source event
2870 #
2871 # @status: an integer containing the status code
2872 #
2873 # Since: 2.1
2874 ##
2875 { 'struct': 'ACPIOSTInfo',
2876 'data' : { '*device': 'str',
2877 'slot': 'str',
2878 'slot-type': 'ACPISlotType',
2879 'source': 'int',
2880 'status': 'int' } }
2881
2882 ##
2883 # @query-acpi-ospm-status:
2884 #
2885 # Return a list of ACPIOSTInfo for devices that support status
2886 # reporting via ACPI _OST method.
2887 #
2888 # Since: 2.1
2889 #
2890 # Example:
2891 #
2892 # -> { "execute": "query-acpi-ospm-status" }
2893 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
2894 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
2895 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
2896 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
2897 # ]}
2898 #
2899 ##
2900 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
2901
2902 ##
2903 # @ACPI_DEVICE_OST:
2904 #
2905 # Emitted when guest executes ACPI _OST method.
2906 #
2907 # @info: ACPIOSTInfo type as described in qapi-schema.json
2908 #
2909 # Since: 2.1
2910 #
2911 # Example:
2912 #
2913 # <- { "event": "ACPI_DEVICE_OST",
2914 # "data": { "device": "d1", "slot": "0",
2915 # "slot-type": "DIMM", "source": 1, "status": 0 } }
2916 #
2917 ##
2918 { 'event': 'ACPI_DEVICE_OST',
2919 'data': { 'info': 'ACPIOSTInfo' } }
2920
2921 ##
2922 # @rtc-reset-reinjection:
2923 #
2924 # This command will reset the RTC interrupt reinjection backlog.
2925 # Can be used if another mechanism to synchronize guest time
2926 # is in effect, for example QEMU guest agent's guest-set-time
2927 # command.
2928 #
2929 # Since: 2.1
2930 #
2931 # Example:
2932 #
2933 # -> { "execute": "rtc-reset-reinjection" }
2934 # <- { "return": {} }
2935 #
2936 ##
2937 { 'command': 'rtc-reset-reinjection' }
2938
2939 ##
2940 # @RTC_CHANGE:
2941 #
2942 # Emitted when the guest changes the RTC time.
2943 #
2944 # @offset: offset between base RTC clock (as specified by -rtc base), and
2945 # new RTC clock value
2946 #
2947 # Note: This event is rate-limited.
2948 #
2949 # Since: 0.13.0
2950 #
2951 # Example:
2952 #
2953 # <- { "event": "RTC_CHANGE",
2954 # "data": { "offset": 78 },
2955 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
2956 #
2957 ##
2958 { 'event': 'RTC_CHANGE',
2959 'data': { 'offset': 'int' } }
2960
2961 ##
2962 # @ReplayMode:
2963 #
2964 # Mode of the replay subsystem.
2965 #
2966 # @none: normal execution mode. Replay or record are not enabled.
2967 #
2968 # @record: record mode. All non-deterministic data is written into the
2969 # replay log.
2970 #
2971 # @play: replay mode. Non-deterministic data required for system execution
2972 # is read from the log.
2973 #
2974 # Since: 2.5
2975 ##
2976 { 'enum': 'ReplayMode',
2977 'data': [ 'none', 'record', 'play' ] }
2978
2979 ##
2980 # @xen-load-devices-state:
2981 #
2982 # Load the state of all devices from file. The RAM and the block devices
2983 # of the VM are not loaded by this command.
2984 #
2985 # @filename: the file to load the state of the devices from as binary
2986 # data. See xen-save-devices-state.txt for a description of the binary
2987 # format.
2988 #
2989 # Since: 2.7
2990 #
2991 # Example:
2992 #
2993 # -> { "execute": "xen-load-devices-state",
2994 # "arguments": { "filename": "/tmp/resume" } }
2995 # <- { "return": {} }
2996 #
2997 ##
2998 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
2999
3000 ##
3001 # @GICCapability:
3002 #
3003 # The struct describes capability for a specific GIC (Generic
3004 # Interrupt Controller) version. These bits are not only decided by
3005 # QEMU/KVM software version, but also decided by the hardware that
3006 # the program is running upon.
3007 #
3008 # @version: version of GIC to be described. Currently, only 2 and 3
3009 # are supported.
3010 #
3011 # @emulated: whether current QEMU/hardware supports emulated GIC
3012 # device in user space.
3013 #
3014 # @kernel: whether current QEMU/hardware supports hardware
3015 # accelerated GIC device in kernel.
3016 #
3017 # Since: 2.6
3018 ##
3019 { 'struct': 'GICCapability',
3020 'data': { 'version': 'int',
3021 'emulated': 'bool',
3022 'kernel': 'bool' } }
3023
3024 ##
3025 # @query-gic-capabilities:
3026 #
3027 # This command is ARM-only. It will return a list of GICCapability
3028 # objects that describe its capability bits.
3029 #
3030 # Returns: a list of GICCapability objects.
3031 #
3032 # Since: 2.6
3033 #
3034 # Example:
3035 #
3036 # -> { "execute": "query-gic-capabilities" }
3037 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3038 # { "version": 3, "emulated": false, "kernel": true } ] }
3039 #
3040 ##
3041 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3042
3043 ##
3044 # @CpuInstanceProperties:
3045 #
3046 # List of properties to be used for hotplugging a CPU instance,
3047 # it should be passed by management with device_add command when
3048 # a CPU is being hotplugged.
3049 #
3050 # @node-id: NUMA node ID the CPU belongs to
3051 # @socket-id: socket number within node/board the CPU belongs to
3052 # @core-id: core number within socket the CPU belongs to
3053 # @thread-id: thread number within core the CPU belongs to
3054 #
3055 # Note: currently there are 4 properties that could be present
3056 # but management should be prepared to pass through other
3057 # properties with device_add command to allow for future
3058 # interface extension. This also requires the filed names to be kept in
3059 # sync with the properties passed to -device/device_add.
3060 #
3061 # Since: 2.7
3062 ##
3063 { 'struct': 'CpuInstanceProperties',
3064 'data': { '*node-id': 'int',
3065 '*socket-id': 'int',
3066 '*core-id': 'int',
3067 '*thread-id': 'int'
3068 }
3069 }
3070
3071 ##
3072 # @HotpluggableCPU:
3073 #
3074 # @type: CPU object type for usage with device_add command
3075 # @props: list of properties to be used for hotplugging CPU
3076 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3077 # @qom-path: link to existing CPU object if CPU is present or
3078 # omitted if CPU is not present.
3079 #
3080 # Since: 2.7
3081 ##
3082 { 'struct': 'HotpluggableCPU',
3083 'data': { 'type': 'str',
3084 'vcpus-count': 'int',
3085 'props': 'CpuInstanceProperties',
3086 '*qom-path': 'str'
3087 }
3088 }
3089
3090 ##
3091 # @query-hotpluggable-cpus:
3092 #
3093 # Returns: a list of HotpluggableCPU objects.
3094 #
3095 # Since: 2.7
3096 #
3097 # Example:
3098 #
3099 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3100 #
3101 # -> { "execute": "query-hotpluggable-cpus" }
3102 # <- {"return": [
3103 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3104 # "vcpus-count": 1 },
3105 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3106 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3107 # ]}'
3108 #
3109 # For pc machine type started with -smp 1,maxcpus=2:
3110 #
3111 # -> { "execute": "query-hotpluggable-cpus" }
3112 # <- {"return": [
3113 # {
3114 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3115 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3116 # },
3117 # {
3118 # "qom-path": "/machine/unattached/device[0]",
3119 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3120 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3121 # }
3122 # ]}
3123 #
3124 ##
3125 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
3126
3127 ##
3128 # @GuidInfo:
3129 #
3130 # GUID information.
3131 #
3132 # @guid: the globally unique identifier
3133 #
3134 # Since: 2.9
3135 ##
3136 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3137
3138 ##
3139 # @query-vm-generation-id:
3140 #
3141 # Show Virtual Machine Generation ID
3142 #
3143 # Since 2.9
3144 ##
3145 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }