]> git.proxmox.com Git - mirror_qemu.git/blob - qapi-schema.json
net: Flatten simple union NetLegacyOptions
[mirror_qemu.git] / qapi-schema.json
1 # -*- Mode: Python -*-
2 ##
3 # = Introduction
4 #
5 # This document describes all commands currently supported by QMP.
6 #
7 # Most of the time their usage is exactly the same as in the user Monitor, this
8 # means that any other document which also describe commands (the manpage,
9 # QEMU's manual, etc) can and should be consulted.
10 #
11 # QMP has two types of commands: regular and query commands. Regular commands
12 # usually change the Virtual Machine's state someway, while query commands just
13 # return information. The sections below are divided accordingly.
14 #
15 # It's important to observe that all communication examples are formatted in
16 # a reader-friendly way, so that they're easier to understand. However, in real
17 # protocol usage, they're emitted as a single line.
18 #
19 # Also, the following notation is used to denote data flow:
20 #
21 # Example:
22 #
23 # | -> data issued by the Client
24 # | <- Server data response
25 #
26 # Please, refer to the QMP specification (docs/qmp-spec.txt) for
27 # detailed information on the Server command and response formats.
28 #
29 # = Stability Considerations
30 #
31 # The current QMP command set (described in this file) may be useful for a
32 # number of use cases, however it's limited and several commands have bad
33 # defined semantics, specially with regard to command completion.
34 #
35 # These problems are going to be solved incrementally in the next QEMU releases
36 # and we're going to establish a deprecation policy for badly defined commands.
37 #
38 # If you're planning to adopt QMP, please observe the following:
39 #
40 # 1. The deprecation policy will take effect and be documented soon, please
41 # check the documentation of each used command as soon as a new release of
42 # QEMU is available
43 #
44 # 2. DO NOT rely on anything which is not explicit documented
45 #
46 # 3. Errors, in special, are not documented. Applications should NOT check
47 # for specific errors classes or data (it's strongly recommended to only
48 # check for the "error" key)
49 #
50 ##
51
52 # QAPI common definitions
53 { 'include': 'qapi/common.json' }
54
55 # QAPI crypto definitions
56 { 'include': 'qapi/crypto.json' }
57
58 # QAPI block definitions
59 { 'include': 'qapi/block.json' }
60
61 # QAPI event definitions
62 { 'include': 'qapi/event.json' }
63
64 # Tracing commands
65 { 'include': 'qapi/trace.json' }
66
67 # QAPI introspection
68 { 'include': 'qapi/introspect.json' }
69
70 ##
71 # = QMP commands
72 ##
73
74 ##
75 # @qmp_capabilities:
76 #
77 # Enable QMP capabilities.
78 #
79 # Arguments: None.
80 #
81 # Example:
82 #
83 # -> { "execute": "qmp_capabilities" }
84 # <- { "return": {} }
85 #
86 # Notes: This command is valid exactly when first connecting: it must be
87 # issued before any other command will be accepted, and will fail once the
88 # monitor is accepting other commands. (see qemu docs/qmp-spec.txt)
89 #
90 # Since: 0.13
91 #
92 ##
93 { 'command': 'qmp_capabilities' }
94
95 ##
96 # @LostTickPolicy:
97 #
98 # Policy for handling lost ticks in timer devices.
99 #
100 # @discard: throw away the missed tick(s) and continue with future injection
101 # normally. Guest time may be delayed, unless the OS has explicit
102 # handling of lost ticks
103 #
104 # @delay: continue to deliver ticks at the normal rate. Guest time will be
105 # delayed due to the late tick
106 #
107 # @merge: merge the missed tick(s) into one tick and inject. Guest time
108 # may be delayed, depending on how the OS reacts to the merging
109 # of ticks
110 #
111 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
112 # guest time should not be delayed once catchup is complete.
113 #
114 # Since: 2.0
115 ##
116 { 'enum': 'LostTickPolicy',
117 'data': ['discard', 'delay', 'merge', 'slew' ] }
118
119 ##
120 # @add_client:
121 #
122 # Allow client connections for VNC, Spice and socket based
123 # character devices to be passed in to QEMU via SCM_RIGHTS.
124 #
125 # @protocol: protocol name. Valid names are "vnc", "spice" or the
126 # name of a character device (eg. from -chardev id=XXXX)
127 #
128 # @fdname: file descriptor name previously passed via 'getfd' command
129 #
130 # @skipauth: #optional whether to skip authentication. Only applies
131 # to "vnc" and "spice" protocols
132 #
133 # @tls: #optional whether to perform TLS. Only applies to the "spice"
134 # protocol
135 #
136 # Returns: nothing on success.
137 #
138 # Since: 0.14.0
139 #
140 # Example:
141 #
142 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
143 # "fdname": "myclient" } }
144 # <- { "return": {} }
145 #
146 ##
147 { 'command': 'add_client',
148 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
149 '*tls': 'bool' } }
150
151 ##
152 # @NameInfo:
153 #
154 # Guest name information.
155 #
156 # @name: #optional The name of the guest
157 #
158 # Since: 0.14.0
159 ##
160 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
161
162 ##
163 # @query-name:
164 #
165 # Return the name information of a guest.
166 #
167 # Returns: @NameInfo of the guest
168 #
169 # Since: 0.14.0
170 #
171 # Example:
172 #
173 # -> { "execute": "query-name" }
174 # <- { "return": { "name": "qemu-name" } }
175 #
176 ##
177 { 'command': 'query-name', 'returns': 'NameInfo' }
178
179 ##
180 # @KvmInfo:
181 #
182 # Information about support for KVM acceleration
183 #
184 # @enabled: true if KVM acceleration is active
185 #
186 # @present: true if KVM acceleration is built into this executable
187 #
188 # Since: 0.14.0
189 ##
190 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
191
192 ##
193 # @query-kvm:
194 #
195 # Returns information about KVM acceleration
196 #
197 # Returns: @KvmInfo
198 #
199 # Since: 0.14.0
200 #
201 # Example:
202 #
203 # -> { "execute": "query-kvm" }
204 # <- { "return": { "enabled": true, "present": true } }
205 #
206 ##
207 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
208
209 ##
210 # @RunState:
211 #
212 # An enumeration of VM run states.
213 #
214 # @debug: QEMU is running on a debugger
215 #
216 # @finish-migrate: guest is paused to finish the migration process
217 #
218 # @inmigrate: guest is paused waiting for an incoming migration. Note
219 # that this state does not tell whether the machine will start at the
220 # end of the migration. This depends on the command-line -S option and
221 # any invocation of 'stop' or 'cont' that has happened since QEMU was
222 # started.
223 #
224 # @internal-error: An internal error that prevents further guest execution
225 # has occurred
226 #
227 # @io-error: the last IOP has failed and the device is configured to pause
228 # on I/O errors
229 #
230 # @paused: guest has been paused via the 'stop' command
231 #
232 # @postmigrate: guest is paused following a successful 'migrate'
233 #
234 # @prelaunch: QEMU was started with -S and guest has not started
235 #
236 # @restore-vm: guest is paused to restore VM state
237 #
238 # @running: guest is actively running
239 #
240 # @save-vm: guest is paused to save the VM state
241 #
242 # @shutdown: guest is shut down (and -no-shutdown is in use)
243 #
244 # @suspended: guest is suspended (ACPI S3)
245 #
246 # @watchdog: the watchdog action is configured to pause and has been triggered
247 #
248 # @guest-panicked: guest has been panicked as a result of guest OS panic
249 #
250 # @colo: guest is paused to save/restore VM state under colo checkpoint,
251 # VM can not get into this state unless colo capability is enabled
252 # for migration. (since 2.8)
253 ##
254 { 'enum': 'RunState',
255 'data': [ 'debug', 'inmigrate', 'internal-error', 'io-error', 'paused',
256 'postmigrate', 'prelaunch', 'finish-migrate', 'restore-vm',
257 'running', 'save-vm', 'shutdown', 'suspended', 'watchdog',
258 'guest-panicked', 'colo' ] }
259
260 ##
261 # @StatusInfo:
262 #
263 # Information about VCPU run state
264 #
265 # @running: true if all VCPUs are runnable, false if not runnable
266 #
267 # @singlestep: true if VCPUs are in single-step mode
268 #
269 # @status: the virtual machine @RunState
270 #
271 # Since: 0.14.0
272 #
273 # Notes: @singlestep is enabled through the GDB stub
274 ##
275 { 'struct': 'StatusInfo',
276 'data': {'running': 'bool', 'singlestep': 'bool', 'status': 'RunState'} }
277
278 ##
279 # @query-status:
280 #
281 # Query the run status of all VCPUs
282 #
283 # Returns: @StatusInfo reflecting all VCPUs
284 #
285 # Since: 0.14.0
286 #
287 # Example:
288 #
289 # -> { "execute": "query-status" }
290 # <- { "return": { "running": true,
291 # "singlestep": false,
292 # "status": "running" } }
293 #
294 ##
295 { 'command': 'query-status', 'returns': 'StatusInfo' }
296
297 ##
298 # @UuidInfo:
299 #
300 # Guest UUID information (Universally Unique Identifier).
301 #
302 # @UUID: the UUID of the guest
303 #
304 # Since: 0.14.0
305 #
306 # Notes: If no UUID was specified for the guest, a null UUID is returned.
307 ##
308 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
309
310 ##
311 # @query-uuid:
312 #
313 # Query the guest UUID information.
314 #
315 # Returns: The @UuidInfo for the guest
316 #
317 # Since: 0.14.0
318 #
319 # Example:
320 #
321 # -> { "execute": "query-uuid" }
322 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
323 #
324 ##
325 { 'command': 'query-uuid', 'returns': 'UuidInfo' }
326
327 ##
328 # @ChardevInfo:
329 #
330 # Information about a character device.
331 #
332 # @label: the label of the character device
333 #
334 # @filename: the filename of the character device
335 #
336 # @frontend-open: shows whether the frontend device attached to this backend
337 # (eg. with the chardev=... option) is in open or closed state
338 # (since 2.1)
339 #
340 # Notes: @filename is encoded using the QEMU command line character device
341 # encoding. See the QEMU man page for details.
342 #
343 # Since: 0.14.0
344 ##
345 { 'struct': 'ChardevInfo', 'data': {'label': 'str',
346 'filename': 'str',
347 'frontend-open': 'bool'} }
348
349 ##
350 # @query-chardev:
351 #
352 # Returns information about current character devices.
353 #
354 # Returns: a list of @ChardevInfo
355 #
356 # Since: 0.14.0
357 #
358 # Example:
359 #
360 # -> { "execute": "query-chardev" }
361 # <- {
362 # "return": [
363 # {
364 # "label": "charchannel0",
365 # "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.agent,server",
366 # "frontend-open": false
367 # },
368 # {
369 # "label": "charmonitor",
370 # "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.monitor,server",
371 # "frontend-open": true
372 # },
373 # {
374 # "label": "charserial0",
375 # "filename": "pty:/dev/pts/2",
376 # "frontend-open": true
377 # }
378 # ]
379 # }
380 #
381 ##
382 { 'command': 'query-chardev', 'returns': ['ChardevInfo'] }
383
384 ##
385 # @ChardevBackendInfo:
386 #
387 # Information about a character device backend
388 #
389 # @name: The backend name
390 #
391 # Since: 2.0
392 ##
393 { 'struct': 'ChardevBackendInfo', 'data': {'name': 'str'} }
394
395 ##
396 # @query-chardev-backends:
397 #
398 # Returns information about character device backends.
399 #
400 # Returns: a list of @ChardevBackendInfo
401 #
402 # Since: 2.0
403 #
404 # Example:
405 #
406 # -> { "execute": "query-chardev-backends" }
407 # <- {
408 # "return":[
409 # {
410 # "name":"udp"
411 # },
412 # {
413 # "name":"tcp"
414 # },
415 # {
416 # "name":"unix"
417 # },
418 # {
419 # "name":"spiceport"
420 # }
421 # ]
422 # }
423 #
424 ##
425 { 'command': 'query-chardev-backends', 'returns': ['ChardevBackendInfo'] }
426
427 ##
428 # @DataFormat:
429 #
430 # An enumeration of data format.
431 #
432 # @utf8: Data is a UTF-8 string (RFC 3629)
433 #
434 # @base64: Data is Base64 encoded binary (RFC 3548)
435 #
436 # Since: 1.4
437 ##
438 { 'enum': 'DataFormat',
439 'data': [ 'utf8', 'base64' ] }
440
441 ##
442 # @ringbuf-write:
443 #
444 # Write to a ring buffer character device.
445 #
446 # @device: the ring buffer character device name
447 #
448 # @data: data to write
449 #
450 # @format: #optional data encoding (default 'utf8').
451 # - base64: data must be base64 encoded text. Its binary
452 # decoding gets written.
453 # - utf8: data's UTF-8 encoding is written
454 # - data itself is always Unicode regardless of format, like
455 # any other string.
456 #
457 # Returns: Nothing on success
458 #
459 # Since: 1.4
460 #
461 # Example:
462 #
463 # -> { "execute": "ringbuf-write",
464 # "arguments": { "device": "foo",
465 # "data": "abcdefgh",
466 # "format": "utf8" } }
467 # <- { "return": {} }
468 #
469 ##
470 { 'command': 'ringbuf-write',
471 'data': {'device': 'str', 'data': 'str',
472 '*format': 'DataFormat'} }
473
474 ##
475 # @ringbuf-read:
476 #
477 # Read from a ring buffer character device.
478 #
479 # @device: the ring buffer character device name
480 #
481 # @size: how many bytes to read at most
482 #
483 # @format: #optional data encoding (default 'utf8').
484 # - base64: the data read is returned in base64 encoding.
485 # - utf8: the data read is interpreted as UTF-8.
486 # Bug: can screw up when the buffer contains invalid UTF-8
487 # sequences, NUL characters, after the ring buffer lost
488 # data, and when reading stops because the size limit is
489 # reached.
490 # - The return value is always Unicode regardless of format,
491 # like any other string.
492 #
493 # Returns: data read from the device
494 #
495 # Since: 1.4
496 #
497 # Example:
498 #
499 # -> { "execute": "ringbuf-read",
500 # "arguments": { "device": "foo",
501 # "size": 1000,
502 # "format": "utf8" } }
503 # <- { "return": "abcdefgh" }
504 #
505 ##
506 { 'command': 'ringbuf-read',
507 'data': {'device': 'str', 'size': 'int', '*format': 'DataFormat'},
508 'returns': 'str' }
509
510 ##
511 # @EventInfo:
512 #
513 # Information about a QMP event
514 #
515 # @name: The event name
516 #
517 # Since: 1.2.0
518 ##
519 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
520
521 ##
522 # @query-events:
523 #
524 # Return a list of supported QMP events by this server
525 #
526 # Returns: A list of @EventInfo for all supported events
527 #
528 # Since: 1.2.0
529 #
530 # Example:
531 #
532 # -> { "execute": "query-events" }
533 # <- {
534 # "return": [
535 # {
536 # "name":"SHUTDOWN"
537 # },
538 # {
539 # "name":"RESET"
540 # }
541 # ]
542 # }
543 #
544 # Note: This example has been shortened as the real response is too long.
545 #
546 ##
547 { 'command': 'query-events', 'returns': ['EventInfo'] }
548
549 ##
550 # @MigrationStats:
551 #
552 # Detailed migration status.
553 #
554 # @transferred: amount of bytes already transferred to the target VM
555 #
556 # @remaining: amount of bytes remaining to be transferred to the target VM
557 #
558 # @total: total amount of bytes involved in the migration process
559 #
560 # @duplicate: number of duplicate (zero) pages (since 1.2)
561 #
562 # @skipped: number of skipped zero pages (since 1.5)
563 #
564 # @normal: number of normal pages (since 1.2)
565 #
566 # @normal-bytes: number of normal bytes sent (since 1.2)
567 #
568 # @dirty-pages-rate: number of pages dirtied by second by the
569 # guest (since 1.3)
570 #
571 # @mbps: throughput in megabits/sec. (since 1.6)
572 #
573 # @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
574 #
575 # @postcopy-requests: The number of page requests received from the destination
576 # (since 2.7)
577 #
578 # Since: 0.14.0
579 ##
580 { 'struct': 'MigrationStats',
581 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
582 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
583 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
584 'mbps' : 'number', 'dirty-sync-count' : 'int',
585 'postcopy-requests' : 'int' } }
586
587 ##
588 # @XBZRLECacheStats:
589 #
590 # Detailed XBZRLE migration cache statistics
591 #
592 # @cache-size: XBZRLE cache size
593 #
594 # @bytes: amount of bytes already transferred to the target VM
595 #
596 # @pages: amount of pages transferred to the target VM
597 #
598 # @cache-miss: number of cache miss
599 #
600 # @cache-miss-rate: rate of cache miss (since 2.1)
601 #
602 # @overflow: number of overflows
603 #
604 # Since: 1.2
605 ##
606 { 'struct': 'XBZRLECacheStats',
607 'data': {'cache-size': 'int', 'bytes': 'int', 'pages': 'int',
608 'cache-miss': 'int', 'cache-miss-rate': 'number',
609 'overflow': 'int' } }
610
611 ##
612 # @MigrationStatus:
613 #
614 # An enumeration of migration status.
615 #
616 # @none: no migration has ever happened.
617 #
618 # @setup: migration process has been initiated.
619 #
620 # @cancelling: in the process of cancelling migration.
621 #
622 # @cancelled: cancelling migration is finished.
623 #
624 # @active: in the process of doing migration.
625 #
626 # @postcopy-active: like active, but now in postcopy mode. (since 2.5)
627 #
628 # @completed: migration is finished.
629 #
630 # @failed: some error occurred during migration process.
631 #
632 # @colo: VM is in the process of fault tolerance, VM can not get into this
633 # state unless colo capability is enabled for migration. (since 2.8)
634 #
635 # Since: 2.3
636 #
637 ##
638 { 'enum': 'MigrationStatus',
639 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
640 'active', 'postcopy-active', 'completed', 'failed', 'colo' ] }
641
642 ##
643 # @MigrationInfo:
644 #
645 # Information about current migration process.
646 #
647 # @status: #optional @MigrationStatus describing the current migration status.
648 # If this field is not returned, no migration process
649 # has been initiated
650 #
651 # @ram: #optional @MigrationStats containing detailed migration
652 # status, only returned if status is 'active' or
653 # 'completed'(since 1.2)
654 #
655 # @disk: #optional @MigrationStats containing detailed disk migration
656 # status, only returned if status is 'active' and it is a block
657 # migration
658 #
659 # @xbzrle-cache: #optional @XBZRLECacheStats containing detailed XBZRLE
660 # migration statistics, only returned if XBZRLE feature is on and
661 # status is 'active' or 'completed' (since 1.2)
662 #
663 # @total-time: #optional total amount of milliseconds since migration started.
664 # If migration has ended, it returns the total migration
665 # time. (since 1.2)
666 #
667 # @downtime: #optional only present when migration finishes correctly
668 # total downtime in milliseconds for the guest.
669 # (since 1.3)
670 #
671 # @expected-downtime: #optional only present while migration is active
672 # expected downtime in milliseconds for the guest in last walk
673 # of the dirty bitmap. (since 1.3)
674 #
675 # @setup-time: #optional amount of setup time in milliseconds _before_ the
676 # iterations begin but _after_ the QMP command is issued. This is designed
677 # to provide an accounting of any activities (such as RDMA pinning) which
678 # may be expensive, but do not actually occur during the iterative
679 # migration rounds themselves. (since 1.6)
680 #
681 # @cpu-throttle-percentage: #optional percentage of time guest cpus are being
682 # throttled during auto-converge. This is only present when auto-converge
683 # has started throttling guest cpus. (Since 2.7)
684 #
685 # @error-desc: #optional the human readable error description string, when
686 # @status is 'failed'. Clients should not attempt to parse the
687 # error strings. (Since 2.7)
688 #
689 # Since: 0.14.0
690 ##
691 { 'struct': 'MigrationInfo',
692 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
693 '*disk': 'MigrationStats',
694 '*xbzrle-cache': 'XBZRLECacheStats',
695 '*total-time': 'int',
696 '*expected-downtime': 'int',
697 '*downtime': 'int',
698 '*setup-time': 'int',
699 '*cpu-throttle-percentage': 'int',
700 '*error-desc': 'str'} }
701
702 ##
703 # @query-migrate:
704 #
705 # Returns information about current migration process. If migration
706 # is active there will be another json-object with RAM migration
707 # status and if block migration is active another one with block
708 # migration status.
709 #
710 # Returns: @MigrationInfo
711 #
712 # Since: 0.14.0
713 #
714 # Example:
715 #
716 # 1. Before the first migration
717 #
718 # -> { "execute": "query-migrate" }
719 # <- { "return": {} }
720 #
721 # 2. Migration is done and has succeeded
722 #
723 # -> { "execute": "query-migrate" }
724 # <- { "return": {
725 # "status": "completed",
726 # "ram":{
727 # "transferred":123,
728 # "remaining":123,
729 # "total":246,
730 # "total-time":12345,
731 # "setup-time":12345,
732 # "downtime":12345,
733 # "duplicate":123,
734 # "normal":123,
735 # "normal-bytes":123456,
736 # "dirty-sync-count":15
737 # }
738 # }
739 # }
740 #
741 # 3. Migration is done and has failed
742 #
743 # -> { "execute": "query-migrate" }
744 # <- { "return": { "status": "failed" } }
745 #
746 # 4. Migration is being performed and is not a block migration:
747 #
748 # -> { "execute": "query-migrate" }
749 # <- {
750 # "return":{
751 # "status":"active",
752 # "ram":{
753 # "transferred":123,
754 # "remaining":123,
755 # "total":246,
756 # "total-time":12345,
757 # "setup-time":12345,
758 # "expected-downtime":12345,
759 # "duplicate":123,
760 # "normal":123,
761 # "normal-bytes":123456,
762 # "dirty-sync-count":15
763 # }
764 # }
765 # }
766 #
767 # 5. Migration is being performed and is a block migration:
768 #
769 # -> { "execute": "query-migrate" }
770 # <- {
771 # "return":{
772 # "status":"active",
773 # "ram":{
774 # "total":1057024,
775 # "remaining":1053304,
776 # "transferred":3720,
777 # "total-time":12345,
778 # "setup-time":12345,
779 # "expected-downtime":12345,
780 # "duplicate":123,
781 # "normal":123,
782 # "normal-bytes":123456,
783 # "dirty-sync-count":15
784 # },
785 # "disk":{
786 # "total":20971520,
787 # "remaining":20880384,
788 # "transferred":91136
789 # }
790 # }
791 # }
792 #
793 # 6. Migration is being performed and XBZRLE is active:
794 #
795 # -> { "execute": "query-migrate" }
796 # <- {
797 # "return":{
798 # "status":"active",
799 # "capabilities" : [ { "capability": "xbzrle", "state" : true } ],
800 # "ram":{
801 # "total":1057024,
802 # "remaining":1053304,
803 # "transferred":3720,
804 # "total-time":12345,
805 # "setup-time":12345,
806 # "expected-downtime":12345,
807 # "duplicate":10,
808 # "normal":3333,
809 # "normal-bytes":3412992,
810 # "dirty-sync-count":15
811 # },
812 # "xbzrle-cache":{
813 # "cache-size":67108864,
814 # "bytes":20971520,
815 # "pages":2444343,
816 # "cache-miss":2244,
817 # "cache-miss-rate":0.123,
818 # "overflow":34434
819 # }
820 # }
821 # }
822 #
823 ##
824 { 'command': 'query-migrate', 'returns': 'MigrationInfo' }
825
826 ##
827 # @MigrationCapability:
828 #
829 # Migration capabilities enumeration
830 #
831 # @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
832 # This feature allows us to minimize migration traffic for certain work
833 # loads, by sending compressed difference of the pages
834 #
835 # @rdma-pin-all: Controls whether or not the entire VM memory footprint is
836 # mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
837 # Disabled by default. (since 2.0)
838 #
839 # @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
840 # essentially saves 1MB of zeroes per block on the wire. Enabling requires
841 # source and target VM to support this feature. To enable it is sufficient
842 # to enable the capability on the source VM. The feature is disabled by
843 # default. (since 1.6)
844 #
845 # @compress: Use multiple compression threads to accelerate live migration.
846 # This feature can help to reduce the migration traffic, by sending
847 # compressed pages. Please note that if compress and xbzrle are both
848 # on, compress only takes effect in the ram bulk stage, after that,
849 # it will be disabled and only xbzrle takes effect, this can help to
850 # minimize migration traffic. The feature is disabled by default.
851 # (since 2.4 )
852 #
853 # @events: generate events for each migration state change
854 # (since 2.4 )
855 #
856 # @auto-converge: If enabled, QEMU will automatically throttle down the guest
857 # to speed up convergence of RAM migration. (since 1.6)
858 #
859 # @postcopy-ram: Start executing on the migration target before all of RAM has
860 # been migrated, pulling the remaining pages along as needed. NOTE: If
861 # the migration fails during postcopy the VM will fail. (since 2.6)
862 #
863 # @x-colo: If enabled, migration will never end, and the state of the VM on the
864 # primary side will be migrated continuously to the VM on secondary
865 # side, this process is called COarse-Grain LOck Stepping (COLO) for
866 # Non-stop Service. (since 2.8)
867 #
868 # @release-ram: if enabled, qemu will free the migrated ram pages on the source
869 # during postcopy-ram migration. (since 2.9)
870 #
871 # Since: 1.2
872 ##
873 { 'enum': 'MigrationCapability',
874 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
875 'compress', 'events', 'postcopy-ram', 'x-colo', 'release-ram'] }
876
877 ##
878 # @MigrationCapabilityStatus:
879 #
880 # Migration capability information
881 #
882 # @capability: capability enum
883 #
884 # @state: capability state bool
885 #
886 # Since: 1.2
887 ##
888 { 'struct': 'MigrationCapabilityStatus',
889 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
890
891 ##
892 # @migrate-set-capabilities:
893 #
894 # Enable/Disable the following migration capabilities (like xbzrle)
895 #
896 # @capabilities: json array of capability modifications to make
897 #
898 # Since: 1.2
899 #
900 # Example:
901 #
902 # -> { "execute": "migrate-set-capabilities" , "arguments":
903 # { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
904 #
905 ##
906 { 'command': 'migrate-set-capabilities',
907 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
908
909 ##
910 # @query-migrate-capabilities:
911 #
912 # Returns information about the current migration capabilities status
913 #
914 # Returns: @MigrationCapabilitiesStatus
915 #
916 # Since: 1.2
917 #
918 # Example:
919 #
920 # -> { "execute": "query-migrate-capabilities" }
921 # <- { "return": [
922 # {"state": false, "capability": "xbzrle"},
923 # {"state": false, "capability": "rdma-pin-all"},
924 # {"state": false, "capability": "auto-converge"},
925 # {"state": false, "capability": "zero-blocks"},
926 # {"state": false, "capability": "compress"},
927 # {"state": true, "capability": "events"},
928 # {"state": false, "capability": "postcopy-ram"},
929 # {"state": false, "capability": "x-colo"}
930 # ]}
931 #
932 ##
933 { 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
934
935 ##
936 # @MigrationParameter:
937 #
938 # Migration parameters enumeration
939 #
940 # @compress-level: Set the compression level to be used in live migration,
941 # the compression level is an integer between 0 and 9, where 0 means
942 # no compression, 1 means the best compression speed, and 9 means best
943 # compression ratio which will consume more CPU.
944 #
945 # @compress-threads: Set compression thread count to be used in live migration,
946 # the compression thread count is an integer between 1 and 255.
947 #
948 # @decompress-threads: Set decompression thread count to be used in live
949 # migration, the decompression thread count is an integer between 1
950 # and 255. Usually, decompression is at least 4 times as fast as
951 # compression, so set the decompress-threads to the number about 1/4
952 # of compress-threads is adequate.
953 #
954 # @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
955 # when migration auto-converge is activated. The
956 # default value is 20. (Since 2.7)
957 #
958 # @cpu-throttle-increment: throttle percentage increase each time
959 # auto-converge detects that migration is not making
960 # progress. The default value is 10. (Since 2.7)
961 #
962 # @tls-creds: ID of the 'tls-creds' object that provides credentials for
963 # establishing a TLS connection over the migration data channel.
964 # On the outgoing side of the migration, the credentials must
965 # be for a 'client' endpoint, while for the incoming side the
966 # credentials must be for a 'server' endpoint. Setting this
967 # will enable TLS for all migrations. The default is unset,
968 # resulting in unsecured migration at the QEMU level. (Since 2.7)
969 #
970 # @tls-hostname: hostname of the target host for the migration. This is
971 # required when using x509 based TLS credentials and the
972 # migration URI does not already include a hostname. For
973 # example if using fd: or exec: based migration, the
974 # hostname must be provided so that the server's x509
975 # certificate identity can be validated. (Since 2.7)
976 #
977 # @max-bandwidth: to set maximum speed for migration. maximum speed in
978 # bytes per second. (Since 2.8)
979 #
980 # @downtime-limit: set maximum tolerated downtime for migration. maximum
981 # downtime in milliseconds (Since 2.8)
982 #
983 # @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
984 # periodic mode. (Since 2.8)
985 #
986 # Since: 2.4
987 ##
988 { 'enum': 'MigrationParameter',
989 'data': ['compress-level', 'compress-threads', 'decompress-threads',
990 'cpu-throttle-initial', 'cpu-throttle-increment',
991 'tls-creds', 'tls-hostname', 'max-bandwidth',
992 'downtime-limit', 'x-checkpoint-delay' ] }
993
994 ##
995 # @migrate-set-parameters:
996 #
997 # Set various migration parameters. See MigrationParameters for details.
998 #
999 # Since: 2.4
1000 #
1001 # Example:
1002 #
1003 # -> { "execute": "migrate-set-parameters" ,
1004 # "arguments": { "compress-level": 1 } }
1005 #
1006 ##
1007 { 'command': 'migrate-set-parameters', 'boxed': true,
1008 'data': 'MigrationParameters' }
1009
1010 ##
1011 # @MigrationParameters:
1012 #
1013 # Optional members can be omitted on input ('migrate-set-parameters')
1014 # but most members will always be present on output
1015 # ('query-migrate-parameters'), with the exception of tls-creds and
1016 # tls-hostname.
1017 #
1018 # @compress-level: #optional compression level
1019 #
1020 # @compress-threads: #optional compression thread count
1021 #
1022 # @decompress-threads: #optional decompression thread count
1023 #
1024 # @cpu-throttle-initial: #optional Initial percentage of time guest cpus are
1025 # throttledwhen migration auto-converge is activated.
1026 # The default value is 20. (Since 2.7)
1027 #
1028 # @cpu-throttle-increment: #optional throttle percentage increase each time
1029 # auto-converge detects that migration is not making
1030 # progress. The default value is 10. (Since 2.7)
1031 #
1032 # @tls-creds: #optional ID of the 'tls-creds' object that provides credentials
1033 # for establishing a TLS connection over the migration data
1034 # channel. On the outgoing side of the migration, the credentials
1035 # must be for a 'client' endpoint, while for the incoming side the
1036 # credentials must be for a 'server' endpoint. Setting this
1037 # will enable TLS for all migrations. The default is unset,
1038 # resulting in unsecured migration at the QEMU level. (Since 2.7)
1039 #
1040 # @tls-hostname: #optional hostname of the target host for the migration. This
1041 # is required when using x509 based TLS credentials and the
1042 # migration URI does not already include a hostname. For
1043 # example if using fd: or exec: based migration, the
1044 # hostname must be provided so that the server's x509
1045 # certificate identity can be validated. (Since 2.7)
1046 #
1047 # @max-bandwidth: to set maximum speed for migration. maximum speed in
1048 # bytes per second. (Since 2.8)
1049 #
1050 # @downtime-limit: set maximum tolerated downtime for migration. maximum
1051 # downtime in milliseconds (Since 2.8)
1052 #
1053 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1054 #
1055 # Since: 2.4
1056 ##
1057 { 'struct': 'MigrationParameters',
1058 'data': { '*compress-level': 'int',
1059 '*compress-threads': 'int',
1060 '*decompress-threads': 'int',
1061 '*cpu-throttle-initial': 'int',
1062 '*cpu-throttle-increment': 'int',
1063 '*tls-creds': 'str',
1064 '*tls-hostname': 'str',
1065 '*max-bandwidth': 'int',
1066 '*downtime-limit': 'int',
1067 '*x-checkpoint-delay': 'int'} }
1068
1069 ##
1070 # @query-migrate-parameters:
1071 #
1072 # Returns information about the current migration parameters
1073 #
1074 # Returns: @MigrationParameters
1075 #
1076 # Since: 2.4
1077 #
1078 # Example:
1079 #
1080 # -> { "execute": "query-migrate-parameters" }
1081 # <- { "return": {
1082 # "decompress-threads": 2,
1083 # "cpu-throttle-increment": 10,
1084 # "compress-threads": 8,
1085 # "compress-level": 1,
1086 # "cpu-throttle-initial": 20,
1087 # "max-bandwidth": 33554432,
1088 # "downtime-limit": 300
1089 # }
1090 # }
1091 #
1092 ##
1093 { 'command': 'query-migrate-parameters',
1094 'returns': 'MigrationParameters' }
1095
1096 ##
1097 # @client_migrate_info:
1098 #
1099 # Set migration information for remote display. This makes the server
1100 # ask the client to automatically reconnect using the new parameters
1101 # once migration finished successfully. Only implemented for SPICE.
1102 #
1103 # @protocol: must be "spice"
1104 # @hostname: migration target hostname
1105 # @port: #optional spice tcp port for plaintext channels
1106 # @tls-port: #optional spice tcp port for tls-secured channels
1107 # @cert-subject: #optional server certificate subject
1108 #
1109 # Since: 0.14.0
1110 #
1111 # Example:
1112 #
1113 # -> { "execute": "client_migrate_info",
1114 # "arguments": { "protocol": "spice",
1115 # "hostname": "virt42.lab.kraxel.org",
1116 # "port": 1234 } }
1117 # <- { "return": {} }
1118 #
1119 ##
1120 { 'command': 'client_migrate_info',
1121 'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int',
1122 '*tls-port': 'int', '*cert-subject': 'str' } }
1123
1124 ##
1125 # @migrate-start-postcopy:
1126 #
1127 # Followup to a migration command to switch the migration to postcopy mode.
1128 # The postcopy-ram capability must be set before the original migration
1129 # command.
1130 #
1131 # Since: 2.5
1132 #
1133 # Example:
1134 #
1135 # -> { "execute": "migrate-start-postcopy" }
1136 # <- { "return": {} }
1137 #
1138 ##
1139 { 'command': 'migrate-start-postcopy' }
1140
1141 ##
1142 # @COLOMessage:
1143 #
1144 # The message transmission between Primary side and Secondary side.
1145 #
1146 # @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1147 #
1148 # @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1149 #
1150 # @checkpoint-reply: SVM gets PVM's checkpoint request
1151 #
1152 # @vmstate-send: VM's state will be sent by PVM.
1153 #
1154 # @vmstate-size: The total size of VMstate.
1155 #
1156 # @vmstate-received: VM's state has been received by SVM.
1157 #
1158 # @vmstate-loaded: VM's state has been loaded by SVM.
1159 #
1160 # Since: 2.8
1161 ##
1162 { 'enum': 'COLOMessage',
1163 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1164 'vmstate-send', 'vmstate-size', 'vmstate-received',
1165 'vmstate-loaded' ] }
1166
1167 ##
1168 # @COLOMode:
1169 #
1170 # The colo mode
1171 #
1172 # @unknown: unknown mode
1173 #
1174 # @primary: master side
1175 #
1176 # @secondary: slave side
1177 #
1178 # Since: 2.8
1179 ##
1180 { 'enum': 'COLOMode',
1181 'data': [ 'unknown', 'primary', 'secondary'] }
1182
1183 ##
1184 # @FailoverStatus:
1185 #
1186 # An enumeration of COLO failover status
1187 #
1188 # @none: no failover has ever happened
1189 #
1190 # @require: got failover requirement but not handled
1191 #
1192 # @active: in the process of doing failover
1193 #
1194 # @completed: finish the process of failover
1195 #
1196 # @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1197 #
1198 # Since: 2.8
1199 ##
1200 { 'enum': 'FailoverStatus',
1201 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1202
1203 ##
1204 # @x-colo-lost-heartbeat:
1205 #
1206 # Tell qemu that heartbeat is lost, request it to do takeover procedures.
1207 # If this command is sent to the PVM, the Primary side will exit COLO mode.
1208 # If sent to the Secondary, the Secondary side will run failover work,
1209 # then takes over server operation to become the service VM.
1210 #
1211 # Since: 2.8
1212 #
1213 # Example:
1214 #
1215 # -> { "execute": "x-colo-lost-heartbeat" }
1216 # <- { "return": {} }
1217 #
1218 ##
1219 { 'command': 'x-colo-lost-heartbeat' }
1220
1221 ##
1222 # @MouseInfo:
1223 #
1224 # Information about a mouse device.
1225 #
1226 # @name: the name of the mouse device
1227 #
1228 # @index: the index of the mouse device
1229 #
1230 # @current: true if this device is currently receiving mouse events
1231 #
1232 # @absolute: true if this device supports absolute coordinates as input
1233 #
1234 # Since: 0.14.0
1235 ##
1236 { 'struct': 'MouseInfo',
1237 'data': {'name': 'str', 'index': 'int', 'current': 'bool',
1238 'absolute': 'bool'} }
1239
1240 ##
1241 # @query-mice:
1242 #
1243 # Returns information about each active mouse device
1244 #
1245 # Returns: a list of @MouseInfo for each device
1246 #
1247 # Since: 0.14.0
1248 #
1249 # Example:
1250 #
1251 # -> { "execute": "query-mice" }
1252 # <- { "return": [
1253 # {
1254 # "name":"QEMU Microsoft Mouse",
1255 # "index":0,
1256 # "current":false,
1257 # "absolute":false
1258 # },
1259 # {
1260 # "name":"QEMU PS/2 Mouse",
1261 # "index":1,
1262 # "current":true,
1263 # "absolute":true
1264 # }
1265 # ]
1266 # }
1267 #
1268 ##
1269 { 'command': 'query-mice', 'returns': ['MouseInfo'] }
1270
1271 ##
1272 # @CpuInfoArch:
1273 #
1274 # An enumeration of cpu types that enable additional information during
1275 # @query-cpus.
1276 #
1277 # Since: 2.6
1278 ##
1279 { 'enum': 'CpuInfoArch',
1280 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 'other' ] }
1281
1282 ##
1283 # @CpuInfo:
1284 #
1285 # Information about a virtual CPU
1286 #
1287 # @CPU: the index of the virtual CPU
1288 #
1289 # @current: this only exists for backwards compatibility and should be ignored
1290 #
1291 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
1292 # to a processor specific low power mode.
1293 #
1294 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
1295 #
1296 # @thread_id: ID of the underlying host thread
1297 #
1298 # @arch: architecture of the cpu, which determines which additional fields
1299 # will be listed (since 2.6)
1300 #
1301 # Since: 0.14.0
1302 #
1303 # Notes: @halted is a transient state that changes frequently. By the time the
1304 # data is sent to the client, the guest may no longer be halted.
1305 ##
1306 { 'union': 'CpuInfo',
1307 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
1308 'qom_path': 'str', 'thread_id': 'int', 'arch': 'CpuInfoArch' },
1309 'discriminator': 'arch',
1310 'data': { 'x86': 'CpuInfoX86',
1311 'sparc': 'CpuInfoSPARC',
1312 'ppc': 'CpuInfoPPC',
1313 'mips': 'CpuInfoMIPS',
1314 'tricore': 'CpuInfoTricore',
1315 'other': 'CpuInfoOther' } }
1316
1317 ##
1318 # @CpuInfoX86:
1319 #
1320 # Additional information about a virtual i386 or x86_64 CPU
1321 #
1322 # @pc: the 64-bit instruction pointer
1323 #
1324 # Since: 2.6
1325 ##
1326 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
1327
1328 ##
1329 # @CpuInfoSPARC:
1330 #
1331 # Additional information about a virtual SPARC CPU
1332 #
1333 # @pc: the PC component of the instruction pointer
1334 #
1335 # @npc: the NPC component of the instruction pointer
1336 #
1337 # Since: 2.6
1338 ##
1339 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
1340
1341 ##
1342 # @CpuInfoPPC:
1343 #
1344 # Additional information about a virtual PPC CPU
1345 #
1346 # @nip: the instruction pointer
1347 #
1348 # Since: 2.6
1349 ##
1350 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
1351
1352 ##
1353 # @CpuInfoMIPS:
1354 #
1355 # Additional information about a virtual MIPS CPU
1356 #
1357 # @PC: the instruction pointer
1358 #
1359 # Since: 2.6
1360 ##
1361 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
1362
1363 ##
1364 # @CpuInfoTricore:
1365 #
1366 # Additional information about a virtual Tricore CPU
1367 #
1368 # @PC: the instruction pointer
1369 #
1370 # Since: 2.6
1371 ##
1372 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
1373
1374 ##
1375 # @CpuInfoOther:
1376 #
1377 # No additional information is available about the virtual CPU
1378 #
1379 # Since: 2.6
1380 #
1381 ##
1382 { 'struct': 'CpuInfoOther', 'data': { } }
1383
1384 ##
1385 # @query-cpus:
1386 #
1387 # Returns a list of information about each virtual CPU.
1388 #
1389 # Returns: a list of @CpuInfo for each virtual CPU
1390 #
1391 # Since: 0.14.0
1392 #
1393 # Example:
1394 #
1395 # -> { "execute": "query-cpus" }
1396 # <- { "return": [
1397 # {
1398 # "CPU":0,
1399 # "current":true,
1400 # "halted":false,
1401 # "qom_path":"/machine/unattached/device[0]",
1402 # "arch":"x86",
1403 # "pc":3227107138,
1404 # "thread_id":3134
1405 # },
1406 # {
1407 # "CPU":1,
1408 # "current":false,
1409 # "halted":true,
1410 # "qom_path":"/machine/unattached/device[2]",
1411 # "arch":"x86",
1412 # "pc":7108165,
1413 # "thread_id":3135
1414 # }
1415 # ]
1416 # }
1417 #
1418 ##
1419 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
1420
1421 ##
1422 # @IOThreadInfo:
1423 #
1424 # Information about an iothread
1425 #
1426 # @id: the identifier of the iothread
1427 #
1428 # @thread-id: ID of the underlying host thread
1429 #
1430 # Since: 2.0
1431 ##
1432 { 'struct': 'IOThreadInfo',
1433 'data': {'id': 'str', 'thread-id': 'int'} }
1434
1435 ##
1436 # @query-iothreads:
1437 #
1438 # Returns a list of information about each iothread.
1439 #
1440 # Note: this list excludes the QEMU main loop thread, which is not declared
1441 # using the -object iothread command-line option. It is always the main thread
1442 # of the process.
1443 #
1444 # Returns: a list of @IOThreadInfo for each iothread
1445 #
1446 # Since: 2.0
1447 #
1448 # Example:
1449 #
1450 # -> { "execute": "query-iothreads" }
1451 # <- { "return": [
1452 # {
1453 # "id":"iothread0",
1454 # "thread-id":3134
1455 # },
1456 # {
1457 # "id":"iothread1",
1458 # "thread-id":3135
1459 # }
1460 # ]
1461 # }
1462 #
1463 ##
1464 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
1465
1466 ##
1467 # @NetworkAddressFamily:
1468 #
1469 # The network address family
1470 #
1471 # @ipv4: IPV4 family
1472 #
1473 # @ipv6: IPV6 family
1474 #
1475 # @unix: unix socket
1476 #
1477 # @vsock: vsock family (since 2.8)
1478 #
1479 # @unknown: otherwise
1480 #
1481 # Since: 2.1
1482 ##
1483 { 'enum': 'NetworkAddressFamily',
1484 'data': [ 'ipv4', 'ipv6', 'unix', 'vsock', 'unknown' ] }
1485
1486 ##
1487 # @VncBasicInfo:
1488 #
1489 # The basic information for vnc network connection
1490 #
1491 # @host: IP address
1492 #
1493 # @service: The service name of the vnc port. This may depend on the host
1494 # system's service database so symbolic names should not be relied
1495 # on.
1496 #
1497 # @family: address family
1498 #
1499 # @websocket: true in case the socket is a websocket (since 2.3).
1500 #
1501 # Since: 2.1
1502 ##
1503 { 'struct': 'VncBasicInfo',
1504 'data': { 'host': 'str',
1505 'service': 'str',
1506 'family': 'NetworkAddressFamily',
1507 'websocket': 'bool' } }
1508
1509 ##
1510 # @VncServerInfo:
1511 #
1512 # The network connection information for server
1513 #
1514 # @auth: #optional authentication method used for
1515 # the plain (non-websocket) VNC server
1516 #
1517 # Since: 2.1
1518 ##
1519 { 'struct': 'VncServerInfo',
1520 'base': 'VncBasicInfo',
1521 'data': { '*auth': 'str' } }
1522
1523 ##
1524 # @VncClientInfo:
1525 #
1526 # Information about a connected VNC client.
1527 #
1528 # @x509_dname: #optional If x509 authentication is in use, the Distinguished
1529 # Name of the client.
1530 #
1531 # @sasl_username: #optional If SASL authentication is in use, the SASL username
1532 # used for authentication.
1533 #
1534 # Since: 0.14.0
1535 ##
1536 { 'struct': 'VncClientInfo',
1537 'base': 'VncBasicInfo',
1538 'data': { '*x509_dname': 'str', '*sasl_username': 'str' } }
1539
1540 ##
1541 # @VncInfo:
1542 #
1543 # Information about the VNC session.
1544 #
1545 # @enabled: true if the VNC server is enabled, false otherwise
1546 #
1547 # @host: #optional The hostname the VNC server is bound to. This depends on
1548 # the name resolution on the host and may be an IP address.
1549 #
1550 # @family: #optional 'ipv6' if the host is listening for IPv6 connections
1551 # 'ipv4' if the host is listening for IPv4 connections
1552 # 'unix' if the host is listening on a unix domain socket
1553 # 'unknown' otherwise
1554 #
1555 # @service: #optional The service name of the server's port. This may depends
1556 # on the host system's service database so symbolic names should not
1557 # be relied on.
1558 #
1559 # @auth: #optional the current authentication type used by the server
1560 # 'none' if no authentication is being used
1561 # 'vnc' if VNC authentication is being used
1562 # 'vencrypt+plain' if VEncrypt is used with plain text authentication
1563 # 'vencrypt+tls+none' if VEncrypt is used with TLS and no authentication
1564 # 'vencrypt+tls+vnc' if VEncrypt is used with TLS and VNC authentication
1565 # 'vencrypt+tls+plain' if VEncrypt is used with TLS and plain text auth
1566 # 'vencrypt+x509+none' if VEncrypt is used with x509 and no auth
1567 # 'vencrypt+x509+vnc' if VEncrypt is used with x509 and VNC auth
1568 # 'vencrypt+x509+plain' if VEncrypt is used with x509 and plain text auth
1569 # 'vencrypt+tls+sasl' if VEncrypt is used with TLS and SASL auth
1570 # 'vencrypt+x509+sasl' if VEncrypt is used with x509 and SASL auth
1571 #
1572 # @clients: a list of @VncClientInfo of all currently connected clients
1573 #
1574 # Since: 0.14.0
1575 ##
1576 { 'struct': 'VncInfo',
1577 'data': {'enabled': 'bool', '*host': 'str',
1578 '*family': 'NetworkAddressFamily',
1579 '*service': 'str', '*auth': 'str', '*clients': ['VncClientInfo']} }
1580
1581 ##
1582 # @VncPrimaryAuth:
1583 #
1584 # vnc primary authentication method.
1585 #
1586 # Since: 2.3
1587 ##
1588 { 'enum': 'VncPrimaryAuth',
1589 'data': [ 'none', 'vnc', 'ra2', 'ra2ne', 'tight', 'ultra',
1590 'tls', 'vencrypt', 'sasl' ] }
1591
1592 ##
1593 # @VncVencryptSubAuth:
1594 #
1595 # vnc sub authentication method with vencrypt.
1596 #
1597 # Since: 2.3
1598 ##
1599 { 'enum': 'VncVencryptSubAuth',
1600 'data': [ 'plain',
1601 'tls-none', 'x509-none',
1602 'tls-vnc', 'x509-vnc',
1603 'tls-plain', 'x509-plain',
1604 'tls-sasl', 'x509-sasl' ] }
1605
1606
1607 ##
1608 # @VncServerInfo2:
1609 #
1610 # The network connection information for server
1611 #
1612 # @auth: The current authentication type used by the servers
1613 #
1614 # @vencrypt: #optional The vencrypt sub authentication type used by the
1615 # servers, only specified in case auth == vencrypt.
1616 #
1617 # Since: 2.9
1618 ##
1619 { 'struct': 'VncServerInfo2',
1620 'base': 'VncBasicInfo',
1621 'data': { 'auth' : 'VncPrimaryAuth',
1622 '*vencrypt' : 'VncVencryptSubAuth' } }
1623
1624
1625 ##
1626 # @VncInfo2:
1627 #
1628 # Information about a vnc server
1629 #
1630 # @id: vnc server name.
1631 #
1632 # @server: A list of @VncBasincInfo describing all listening sockets.
1633 # The list can be empty (in case the vnc server is disabled).
1634 # It also may have multiple entries: normal + websocket,
1635 # possibly also ipv4 + ipv6 in the future.
1636 #
1637 # @clients: A list of @VncClientInfo of all currently connected clients.
1638 # The list can be empty, for obvious reasons.
1639 #
1640 # @auth: The current authentication type used by the non-websockets servers
1641 #
1642 # @vencrypt: #optional The vencrypt authentication type used by the servers,
1643 # only specified in case auth == vencrypt.
1644 #
1645 # @display: #optional The display device the vnc server is linked to.
1646 #
1647 # Since: 2.3
1648 ##
1649 { 'struct': 'VncInfo2',
1650 'data': { 'id' : 'str',
1651 'server' : ['VncServerInfo2'],
1652 'clients' : ['VncClientInfo'],
1653 'auth' : 'VncPrimaryAuth',
1654 '*vencrypt' : 'VncVencryptSubAuth',
1655 '*display' : 'str' } }
1656
1657 ##
1658 # @query-vnc:
1659 #
1660 # Returns information about the current VNC server
1661 #
1662 # Returns: @VncInfo
1663 #
1664 # Since: 0.14.0
1665 #
1666 # Example:
1667 #
1668 # -> { "execute": "query-vnc" }
1669 # <- { "return": {
1670 # "enabled":true,
1671 # "host":"0.0.0.0",
1672 # "service":"50402",
1673 # "auth":"vnc",
1674 # "family":"ipv4",
1675 # "clients":[
1676 # {
1677 # "host":"127.0.0.1",
1678 # "service":"50401",
1679 # "family":"ipv4"
1680 # }
1681 # ]
1682 # }
1683 # }
1684 #
1685 ##
1686 { 'command': 'query-vnc', 'returns': 'VncInfo' }
1687
1688 ##
1689 # @query-vnc-servers:
1690 #
1691 # Returns a list of vnc servers. The list can be empty.
1692 #
1693 # Returns: a list of @VncInfo2
1694 #
1695 # Since: 2.3
1696 ##
1697 { 'command': 'query-vnc-servers', 'returns': ['VncInfo2'] }
1698
1699 ##
1700 # @SpiceBasicInfo:
1701 #
1702 # The basic information for SPICE network connection
1703 #
1704 # @host: IP address
1705 #
1706 # @port: port number
1707 #
1708 # @family: address family
1709 #
1710 # Since: 2.1
1711 ##
1712 { 'struct': 'SpiceBasicInfo',
1713 'data': { 'host': 'str',
1714 'port': 'str',
1715 'family': 'NetworkAddressFamily' } }
1716
1717 ##
1718 # @SpiceServerInfo:
1719 #
1720 # Information about a SPICE server
1721 #
1722 # @auth: #optional authentication method
1723 #
1724 # Since: 2.1
1725 ##
1726 { 'struct': 'SpiceServerInfo',
1727 'base': 'SpiceBasicInfo',
1728 'data': { '*auth': 'str' } }
1729
1730 ##
1731 # @SpiceChannel:
1732 #
1733 # Information about a SPICE client channel.
1734 #
1735 # @connection-id: SPICE connection id number. All channels with the same id
1736 # belong to the same SPICE session.
1737 #
1738 # @channel-type: SPICE channel type number. "1" is the main control
1739 # channel, filter for this one if you want to track spice
1740 # sessions only
1741 #
1742 # @channel-id: SPICE channel ID number. Usually "0", might be different when
1743 # multiple channels of the same type exist, such as multiple
1744 # display channels in a multihead setup
1745 #
1746 # @tls: true if the channel is encrypted, false otherwise.
1747 #
1748 # Since: 0.14.0
1749 ##
1750 { 'struct': 'SpiceChannel',
1751 'base': 'SpiceBasicInfo',
1752 'data': {'connection-id': 'int', 'channel-type': 'int', 'channel-id': 'int',
1753 'tls': 'bool'} }
1754
1755 ##
1756 # @SpiceQueryMouseMode:
1757 #
1758 # An enumeration of Spice mouse states.
1759 #
1760 # @client: Mouse cursor position is determined by the client.
1761 #
1762 # @server: Mouse cursor position is determined by the server.
1763 #
1764 # @unknown: No information is available about mouse mode used by
1765 # the spice server.
1766 #
1767 # Note: spice/enums.h has a SpiceMouseMode already, hence the name.
1768 #
1769 # Since: 1.1
1770 ##
1771 { 'enum': 'SpiceQueryMouseMode',
1772 'data': [ 'client', 'server', 'unknown' ] }
1773
1774 ##
1775 # @SpiceInfo:
1776 #
1777 # Information about the SPICE session.
1778 #
1779 # @enabled: true if the SPICE server is enabled, false otherwise
1780 #
1781 # @migrated: true if the last guest migration completed and spice
1782 # migration had completed as well. false otherwise. (since 1.4)
1783 #
1784 # @host: #optional The hostname the SPICE server is bound to. This depends on
1785 # the name resolution on the host and may be an IP address.
1786 #
1787 # @port: #optional The SPICE server's port number.
1788 #
1789 # @compiled-version: #optional SPICE server version.
1790 #
1791 # @tls-port: #optional The SPICE server's TLS port number.
1792 #
1793 # @auth: #optional the current authentication type used by the server
1794 # 'none' if no authentication is being used
1795 # 'spice' uses SASL or direct TLS authentication, depending on command
1796 # line options
1797 #
1798 # @mouse-mode: The mode in which the mouse cursor is displayed currently. Can
1799 # be determined by the client or the server, or unknown if spice
1800 # server doesn't provide this information. (since: 1.1)
1801 #
1802 # @channels: a list of @SpiceChannel for each active spice channel
1803 #
1804 # Since: 0.14.0
1805 ##
1806 { 'struct': 'SpiceInfo',
1807 'data': {'enabled': 'bool', 'migrated': 'bool', '*host': 'str', '*port': 'int',
1808 '*tls-port': 'int', '*auth': 'str', '*compiled-version': 'str',
1809 'mouse-mode': 'SpiceQueryMouseMode', '*channels': ['SpiceChannel']} }
1810
1811 ##
1812 # @query-spice:
1813 #
1814 # Returns information about the current SPICE server
1815 #
1816 # Returns: @SpiceInfo
1817 #
1818 # Since: 0.14.0
1819 #
1820 # Example:
1821 #
1822 # -> { "execute": "query-spice" }
1823 # <- { "return": {
1824 # "enabled": true,
1825 # "auth": "spice",
1826 # "port": 5920,
1827 # "tls-port": 5921,
1828 # "host": "0.0.0.0",
1829 # "channels": [
1830 # {
1831 # "port": "54924",
1832 # "family": "ipv4",
1833 # "channel-type": 1,
1834 # "connection-id": 1804289383,
1835 # "host": "127.0.0.1",
1836 # "channel-id": 0,
1837 # "tls": true
1838 # },
1839 # {
1840 # "port": "36710",
1841 # "family": "ipv4",
1842 # "channel-type": 4,
1843 # "connection-id": 1804289383,
1844 # "host": "127.0.0.1",
1845 # "channel-id": 0,
1846 # "tls": false
1847 # },
1848 # [ ... more channels follow ... ]
1849 # ]
1850 # }
1851 # }
1852 #
1853 ##
1854 { 'command': 'query-spice', 'returns': 'SpiceInfo' }
1855
1856 ##
1857 # @BalloonInfo:
1858 #
1859 # Information about the guest balloon device.
1860 #
1861 # @actual: the number of bytes the balloon currently contains
1862 #
1863 # Since: 0.14.0
1864 #
1865 ##
1866 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1867
1868 ##
1869 # @query-balloon:
1870 #
1871 # Return information about the balloon device.
1872 #
1873 # Returns: @BalloonInfo on success
1874 #
1875 # If the balloon driver is enabled but not functional because the KVM
1876 # kernel module cannot support it, KvmMissingCap
1877 #
1878 # If no balloon device is present, DeviceNotActive
1879 #
1880 # Since: 0.14.0
1881 #
1882 # Example:
1883 #
1884 # -> { "execute": "query-balloon" }
1885 # <- { "return": {
1886 # "actual": 1073741824,
1887 # }
1888 # }
1889 #
1890 ##
1891 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1892
1893 ##
1894 # @PciMemoryRange:
1895 #
1896 # A PCI device memory region
1897 #
1898 # @base: the starting address (guest physical)
1899 #
1900 # @limit: the ending address (guest physical)
1901 #
1902 # Since: 0.14.0
1903 ##
1904 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
1905
1906 ##
1907 # @PciMemoryRegion:
1908 #
1909 # Information about a PCI device I/O region.
1910 #
1911 # @bar: the index of the Base Address Register for this region
1912 #
1913 # @type: 'io' if the region is a PIO region
1914 # 'memory' if the region is a MMIO region
1915 #
1916 # @size: memory size
1917 #
1918 # @prefetch: #optional if @type is 'memory', true if the memory is prefetchable
1919 #
1920 # @mem_type_64: #optional if @type is 'memory', true if the BAR is 64-bit
1921 #
1922 # Since: 0.14.0
1923 ##
1924 { 'struct': 'PciMemoryRegion',
1925 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
1926 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
1927
1928 ##
1929 # @PciBusInfo:
1930 #
1931 # Information about a bus of a PCI Bridge device
1932 #
1933 # @number: primary bus interface number. This should be the number of the
1934 # bus the device resides on.
1935 #
1936 # @secondary: secondary bus interface number. This is the number of the
1937 # main bus for the bridge
1938 #
1939 # @subordinate: This is the highest number bus that resides below the
1940 # bridge.
1941 #
1942 # @io_range: The PIO range for all devices on this bridge
1943 #
1944 # @memory_range: The MMIO range for all devices on this bridge
1945 #
1946 # @prefetchable_range: The range of prefetchable MMIO for all devices on
1947 # this bridge
1948 #
1949 # Since: 2.4
1950 ##
1951 { 'struct': 'PciBusInfo',
1952 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
1953 'io_range': 'PciMemoryRange',
1954 'memory_range': 'PciMemoryRange',
1955 'prefetchable_range': 'PciMemoryRange' } }
1956
1957 ##
1958 # @PciBridgeInfo:
1959 #
1960 # Information about a PCI Bridge device
1961 #
1962 # @bus: information about the bus the device resides on
1963 #
1964 # @devices: a list of @PciDeviceInfo for each device on this bridge
1965 #
1966 # Since: 0.14.0
1967 ##
1968 { 'struct': 'PciBridgeInfo',
1969 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
1970
1971 ##
1972 # @PciDeviceClass:
1973 #
1974 # Information about the Class of a PCI device
1975 #
1976 # @desc: #optional a string description of the device's class
1977 #
1978 # @class: the class code of the device
1979 #
1980 # Since: 2.4
1981 ##
1982 { 'struct': 'PciDeviceClass',
1983 'data': {'*desc': 'str', 'class': 'int'} }
1984
1985 ##
1986 # @PciDeviceId:
1987 #
1988 # Information about the Id of a PCI device
1989 #
1990 # @device: the PCI device id
1991 #
1992 # @vendor: the PCI vendor id
1993 #
1994 # Since: 2.4
1995 ##
1996 { 'struct': 'PciDeviceId',
1997 'data': {'device': 'int', 'vendor': 'int'} }
1998
1999 ##
2000 # @PciDeviceInfo:
2001 #
2002 # Information about a PCI device
2003 #
2004 # @bus: the bus number of the device
2005 #
2006 # @slot: the slot the device is located in
2007 #
2008 # @function: the function of the slot used by the device
2009 #
2010 # @class_info: the class of the device
2011 #
2012 # @id: the PCI device id
2013 #
2014 # @irq: #optional if an IRQ is assigned to the device, the IRQ number
2015 #
2016 # @qdev_id: the device name of the PCI device
2017 #
2018 # @pci_bridge: if the device is a PCI bridge, the bridge information
2019 #
2020 # @regions: a list of the PCI I/O regions associated with the device
2021 #
2022 # Notes: the contents of @class_info.desc are not stable and should only be
2023 # treated as informational.
2024 #
2025 # Since: 0.14.0
2026 ##
2027 { 'struct': 'PciDeviceInfo',
2028 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
2029 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
2030 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
2031 'regions': ['PciMemoryRegion']} }
2032
2033 ##
2034 # @PciInfo:
2035 #
2036 # Information about a PCI bus
2037 #
2038 # @bus: the bus index
2039 #
2040 # @devices: a list of devices on this bus
2041 #
2042 # Since: 0.14.0
2043 ##
2044 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
2045
2046 ##
2047 # @query-pci:
2048 #
2049 # Return information about the PCI bus topology of the guest.
2050 #
2051 # Returns: a list of @PciInfo for each PCI bus. Each bus is
2052 # represented by a json-object, which has a key with a json-array of
2053 # all PCI devices attached to it. Each device is represented by a
2054 # json-object.
2055 #
2056 # Since: 0.14.0
2057 #
2058 # Example:
2059 #
2060 # -> { "execute": "query-pci" }
2061 # <- { "return": [
2062 # {
2063 # "bus": 0,
2064 # "devices": [
2065 # {
2066 # "bus": 0,
2067 # "qdev_id": "",
2068 # "slot": 0,
2069 # "class_info": {
2070 # "class": 1536,
2071 # "desc": "Host bridge"
2072 # },
2073 # "id": {
2074 # "device": 32902,
2075 # "vendor": 4663
2076 # },
2077 # "function": 0,
2078 # "regions": [
2079 # ]
2080 # },
2081 # {
2082 # "bus": 0,
2083 # "qdev_id": "",
2084 # "slot": 1,
2085 # "class_info": {
2086 # "class": 1537,
2087 # "desc": "ISA bridge"
2088 # },
2089 # "id": {
2090 # "device": 32902,
2091 # "vendor": 28672
2092 # },
2093 # "function": 0,
2094 # "regions": [
2095 # ]
2096 # },
2097 # {
2098 # "bus": 0,
2099 # "qdev_id": "",
2100 # "slot": 1,
2101 # "class_info": {
2102 # "class": 257,
2103 # "desc": "IDE controller"
2104 # },
2105 # "id": {
2106 # "device": 32902,
2107 # "vendor": 28688
2108 # },
2109 # "function": 1,
2110 # "regions": [
2111 # {
2112 # "bar": 4,
2113 # "size": 16,
2114 # "address": 49152,
2115 # "type": "io"
2116 # }
2117 # ]
2118 # },
2119 # {
2120 # "bus": 0,
2121 # "qdev_id": "",
2122 # "slot": 2,
2123 # "class_info": {
2124 # "class": 768,
2125 # "desc": "VGA controller"
2126 # },
2127 # "id": {
2128 # "device": 4115,
2129 # "vendor": 184
2130 # },
2131 # "function": 0,
2132 # "regions": [
2133 # {
2134 # "prefetch": true,
2135 # "mem_type_64": false,
2136 # "bar": 0,
2137 # "size": 33554432,
2138 # "address": 4026531840,
2139 # "type": "memory"
2140 # },
2141 # {
2142 # "prefetch": false,
2143 # "mem_type_64": false,
2144 # "bar": 1,
2145 # "size": 4096,
2146 # "address": 4060086272,
2147 # "type": "memory"
2148 # },
2149 # {
2150 # "prefetch": false,
2151 # "mem_type_64": false,
2152 # "bar": 6,
2153 # "size": 65536,
2154 # "address": -1,
2155 # "type": "memory"
2156 # }
2157 # ]
2158 # },
2159 # {
2160 # "bus": 0,
2161 # "qdev_id": "",
2162 # "irq": 11,
2163 # "slot": 4,
2164 # "class_info": {
2165 # "class": 1280,
2166 # "desc": "RAM controller"
2167 # },
2168 # "id": {
2169 # "device": 6900,
2170 # "vendor": 4098
2171 # },
2172 # "function": 0,
2173 # "regions": [
2174 # {
2175 # "bar": 0,
2176 # "size": 32,
2177 # "address": 49280,
2178 # "type": "io"
2179 # }
2180 # ]
2181 # }
2182 # ]
2183 # }
2184 # ]
2185 # }
2186 #
2187 # Note: This example has been shortened as the real response is too long.
2188 #
2189 ##
2190 { 'command': 'query-pci', 'returns': ['PciInfo'] }
2191
2192 ##
2193 # @quit:
2194 #
2195 # This command will cause the QEMU process to exit gracefully. While every
2196 # attempt is made to send the QMP response before terminating, this is not
2197 # guaranteed. When using this interface, a premature EOF would not be
2198 # unexpected.
2199 #
2200 # Since: 0.14.0
2201 #
2202 # Example:
2203 #
2204 # -> { "execute": "quit" }
2205 # <- { "return": {} }
2206 ##
2207 { 'command': 'quit' }
2208
2209 ##
2210 # @stop:
2211 #
2212 # Stop all guest VCPU execution.
2213 #
2214 # Since: 0.14.0
2215 #
2216 # Notes: This function will succeed even if the guest is already in the stopped
2217 # state. In "inmigrate" state, it will ensure that the guest
2218 # remains paused once migration finishes, as if the -S option was
2219 # passed on the command line.
2220 #
2221 # Example:
2222 #
2223 # -> { "execute": "stop" }
2224 # <- { "return": {} }
2225 #
2226 ##
2227 { 'command': 'stop' }
2228
2229 ##
2230 # @system_reset:
2231 #
2232 # Performs a hard reset of a guest.
2233 #
2234 # Since: 0.14.0
2235 #
2236 # Example:
2237 #
2238 # -> { "execute": "system_reset" }
2239 # <- { "return": {} }
2240 #
2241 ##
2242 { 'command': 'system_reset' }
2243
2244 ##
2245 # @system_powerdown:
2246 #
2247 # Requests that a guest perform a powerdown operation.
2248 #
2249 # Since: 0.14.0
2250 #
2251 # Notes: A guest may or may not respond to this command. This command
2252 # returning does not indicate that a guest has accepted the request or
2253 # that it has shut down. Many guests will respond to this command by
2254 # prompting the user in some way.
2255 # Example:
2256 #
2257 # -> { "execute": "system_powerdown" }
2258 # <- { "return": {} }
2259 #
2260 ##
2261 { 'command': 'system_powerdown' }
2262
2263 ##
2264 # @cpu:
2265 #
2266 # This command is a nop that is only provided for the purposes of compatibility.
2267 #
2268 # Since: 0.14.0
2269 #
2270 # Notes: Do not use this command.
2271 ##
2272 { 'command': 'cpu', 'data': {'index': 'int'} }
2273
2274 ##
2275 # @cpu-add:
2276 #
2277 # Adds CPU with specified ID
2278 #
2279 # @id: ID of CPU to be created, valid values [0..max_cpus)
2280 #
2281 # Returns: Nothing on success
2282 #
2283 # Since: 1.5
2284 #
2285 # Example:
2286 #
2287 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
2288 # <- { "return": {} }
2289 #
2290 ##
2291 { 'command': 'cpu-add', 'data': {'id': 'int'} }
2292
2293 ##
2294 # @memsave:
2295 #
2296 # Save a portion of guest memory to a file.
2297 #
2298 # @val: the virtual address of the guest to start from
2299 #
2300 # @size: the size of memory region to save
2301 #
2302 # @filename: the file to save the memory to as binary data
2303 #
2304 # @cpu-index: #optional the index of the virtual CPU to use for translating the
2305 # virtual address (defaults to CPU 0)
2306 #
2307 # Returns: Nothing on success
2308 #
2309 # Since: 0.14.0
2310 #
2311 # Notes: Errors were not reliably returned until 1.1
2312 #
2313 # Example:
2314 #
2315 # -> { "execute": "memsave",
2316 # "arguments": { "val": 10,
2317 # "size": 100,
2318 # "filename": "/tmp/virtual-mem-dump" } }
2319 # <- { "return": {} }
2320 #
2321 ##
2322 { 'command': 'memsave',
2323 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
2324
2325 ##
2326 # @pmemsave:
2327 #
2328 # Save a portion of guest physical memory to a file.
2329 #
2330 # @val: the physical address of the guest to start from
2331 #
2332 # @size: the size of memory region to save
2333 #
2334 # @filename: the file to save the memory to as binary data
2335 #
2336 # Returns: Nothing on success
2337 #
2338 # Since: 0.14.0
2339 #
2340 # Notes: Errors were not reliably returned until 1.1
2341 #
2342 # Example:
2343 #
2344 # -> { "execute": "pmemsave",
2345 # "arguments": { "val": 10,
2346 # "size": 100,
2347 # "filename": "/tmp/physical-mem-dump" } }
2348 # <- { "return": {} }
2349 #
2350 ##
2351 { 'command': 'pmemsave',
2352 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
2353
2354 ##
2355 # @cont:
2356 #
2357 # Resume guest VCPU execution.
2358 #
2359 # Since: 0.14.0
2360 #
2361 # Returns: If successful, nothing
2362 # If QEMU was started with an encrypted block device and a key has
2363 # not yet been set, DeviceEncrypted.
2364 #
2365 # Notes: This command will succeed if the guest is currently running. It
2366 # will also succeed if the guest is in the "inmigrate" state; in
2367 # this case, the effect of the command is to make sure the guest
2368 # starts once migration finishes, removing the effect of the -S
2369 # command line option if it was passed.
2370 #
2371 # Example:
2372 #
2373 # -> { "execute": "cont" }
2374 # <- { "return": {} }
2375 #
2376 ##
2377 { 'command': 'cont' }
2378
2379 ##
2380 # @system_wakeup:
2381 #
2382 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
2383 #
2384 # Since: 1.1
2385 #
2386 # Returns: nothing.
2387 #
2388 # Example:
2389 #
2390 # -> { "execute": "system_wakeup" }
2391 # <- { "return": {} }
2392 #
2393 ##
2394 { 'command': 'system_wakeup' }
2395
2396 ##
2397 # @inject-nmi:
2398 #
2399 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
2400 # The command fails when the guest doesn't support injecting.
2401 #
2402 # Returns: If successful, nothing
2403 #
2404 # Since: 0.14.0
2405 #
2406 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
2407 #
2408 # Example:
2409 #
2410 # -> { "execute": "inject-nmi" }
2411 # <- { "return": {} }
2412 #
2413 ##
2414 { 'command': 'inject-nmi' }
2415
2416 ##
2417 # @set_link:
2418 #
2419 # Sets the link status of a virtual network adapter.
2420 #
2421 # @name: the device name of the virtual network adapter
2422 #
2423 # @up: true to set the link status to be up
2424 #
2425 # Returns: Nothing on success
2426 # If @name is not a valid network device, DeviceNotFound
2427 #
2428 # Since: 0.14.0
2429 #
2430 # Notes: Not all network adapters support setting link status. This command
2431 # will succeed even if the network adapter does not support link status
2432 # notification.
2433 #
2434 # Example:
2435 #
2436 # -> { "execute": "set_link",
2437 # "arguments": { "name": "e1000.0", "up": false } }
2438 # <- { "return": {} }
2439 #
2440 ##
2441 { 'command': 'set_link', 'data': {'name': 'str', 'up': 'bool'} }
2442
2443 ##
2444 # @balloon:
2445 #
2446 # Request the balloon driver to change its balloon size.
2447 #
2448 # @value: the target size of the balloon in bytes
2449 #
2450 # Returns: Nothing on success
2451 # If the balloon driver is enabled but not functional because the KVM
2452 # kernel module cannot support it, KvmMissingCap
2453 # If no balloon device is present, DeviceNotActive
2454 #
2455 # Notes: This command just issues a request to the guest. When it returns,
2456 # the balloon size may not have changed. A guest can change the balloon
2457 # size independent of this command.
2458 #
2459 # Since: 0.14.0
2460 #
2461 # Example:
2462 #
2463 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
2464 # <- { "return": {} }
2465 #
2466 ##
2467 { 'command': 'balloon', 'data': {'value': 'int'} }
2468
2469 ##
2470 # @Abort:
2471 #
2472 # This action can be used to test transaction failure.
2473 #
2474 # Since: 1.6
2475 ##
2476 { 'struct': 'Abort',
2477 'data': { } }
2478
2479 ##
2480 # @ActionCompletionMode:
2481 #
2482 # An enumeration of Transactional completion modes.
2483 #
2484 # @individual: Do not attempt to cancel any other Actions if any Actions fail
2485 # after the Transaction request succeeds. All Actions that
2486 # can complete successfully will do so without waiting on others.
2487 # This is the default.
2488 #
2489 # @grouped: If any Action fails after the Transaction succeeds, cancel all
2490 # Actions. Actions do not complete until all Actions are ready to
2491 # complete. May be rejected by Actions that do not support this
2492 # completion mode.
2493 #
2494 # Since: 2.5
2495 ##
2496 { 'enum': 'ActionCompletionMode',
2497 'data': [ 'individual', 'grouped' ] }
2498
2499 ##
2500 # @TransactionAction:
2501 #
2502 # A discriminated record of operations that can be performed with
2503 # @transaction. Action @type can be:
2504 #
2505 # - @abort: since 1.6
2506 # - @block-dirty-bitmap-add: since 2.5
2507 # - @block-dirty-bitmap-clear: since 2.5
2508 # - @blockdev-backup: since 2.3
2509 # - @blockdev-snapshot: since 2.5
2510 # - @blockdev-snapshot-internal-sync: since 1.7
2511 # - @blockdev-snapshot-sync: since 1.1
2512 # - @drive-backup: since 1.6
2513 #
2514 # Since: 1.1
2515 ##
2516 { 'union': 'TransactionAction',
2517 'data': {
2518 'abort': 'Abort',
2519 'block-dirty-bitmap-add': 'BlockDirtyBitmapAdd',
2520 'block-dirty-bitmap-clear': 'BlockDirtyBitmap',
2521 'blockdev-backup': 'BlockdevBackup',
2522 'blockdev-snapshot': 'BlockdevSnapshot',
2523 'blockdev-snapshot-internal-sync': 'BlockdevSnapshotInternal',
2524 'blockdev-snapshot-sync': 'BlockdevSnapshotSync',
2525 'drive-backup': 'DriveBackup'
2526 } }
2527
2528 ##
2529 # @TransactionProperties:
2530 #
2531 # Optional arguments to modify the behavior of a Transaction.
2532 #
2533 # @completion-mode: #optional Controls how jobs launched asynchronously by
2534 # Actions will complete or fail as a group.
2535 # See @ActionCompletionMode for details.
2536 #
2537 # Since: 2.5
2538 ##
2539 { 'struct': 'TransactionProperties',
2540 'data': {
2541 '*completion-mode': 'ActionCompletionMode'
2542 }
2543 }
2544
2545 ##
2546 # @transaction:
2547 #
2548 # Executes a number of transactionable QMP commands atomically. If any
2549 # operation fails, then the entire set of actions will be abandoned and the
2550 # appropriate error returned.
2551 #
2552 # For external snapshots, the dictionary contains the device, the file to use for
2553 # the new snapshot, and the format. The default format, if not specified, is
2554 # qcow2.
2555 #
2556 # Each new snapshot defaults to being created by QEMU (wiping any
2557 # contents if the file already exists), but it is also possible to reuse
2558 # an externally-created file. In the latter case, you should ensure that
2559 # the new image file has the same contents as the current one; QEMU cannot
2560 # perform any meaningful check. Typically this is achieved by using the
2561 # current image file as the backing file for the new image.
2562 #
2563 # On failure, the original disks pre-snapshot attempt will be used.
2564 #
2565 # For internal snapshots, the dictionary contains the device and the snapshot's
2566 # name. If an internal snapshot matching name already exists, the request will
2567 # be rejected. Only some image formats support it, for example, qcow2, rbd,
2568 # and sheepdog.
2569 #
2570 # On failure, qemu will try delete the newly created internal snapshot in the
2571 # transaction. When an I/O error occurs during deletion, the user needs to fix
2572 # it later with qemu-img or other command.
2573 #
2574 # @actions: List of @TransactionAction;
2575 # information needed for the respective operations.
2576 #
2577 # @properties: #optional structure of additional options to control the
2578 # execution of the transaction. See @TransactionProperties
2579 # for additional detail.
2580 #
2581 # Returns: nothing on success
2582 #
2583 # Errors depend on the operations of the transaction
2584 #
2585 # Note: The transaction aborts on the first failure. Therefore, there will be
2586 # information on only one failed operation returned in an error condition, and
2587 # subsequent actions will not have been attempted.
2588 #
2589 # Since: 1.1
2590 #
2591 # Example:
2592 #
2593 # -> { "execute": "transaction",
2594 # "arguments": { "actions": [
2595 # { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd0",
2596 # "snapshot-file": "/some/place/my-image",
2597 # "format": "qcow2" } },
2598 # { "type": "blockdev-snapshot-sync", "data" : { "node-name": "myfile",
2599 # "snapshot-file": "/some/place/my-image2",
2600 # "snapshot-node-name": "node3432",
2601 # "mode": "existing",
2602 # "format": "qcow2" } },
2603 # { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd1",
2604 # "snapshot-file": "/some/place/my-image2",
2605 # "mode": "existing",
2606 # "format": "qcow2" } },
2607 # { "type": "blockdev-snapshot-internal-sync", "data" : {
2608 # "device": "ide-hd2",
2609 # "name": "snapshot0" } } ] } }
2610 # <- { "return": {} }
2611 #
2612 ##
2613 { 'command': 'transaction',
2614 'data': { 'actions': [ 'TransactionAction' ],
2615 '*properties': 'TransactionProperties'
2616 }
2617 }
2618
2619 ##
2620 # @human-monitor-command:
2621 #
2622 # Execute a command on the human monitor and return the output.
2623 #
2624 # @command-line: the command to execute in the human monitor
2625 #
2626 # @cpu-index: #optional The CPU to use for commands that require an implicit CPU
2627 #
2628 # Returns: the output of the command as a string
2629 #
2630 # Since: 0.14.0
2631 #
2632 # Notes: This command only exists as a stop-gap. Its use is highly
2633 # discouraged. The semantics of this command are not
2634 # guaranteed: this means that command names, arguments and
2635 # responses can change or be removed at ANY time. Applications
2636 # that rely on long term stability guarantees should NOT
2637 # use this command.
2638 #
2639 # Known limitations:
2640 #
2641 # * This command is stateless, this means that commands that depend
2642 # on state information (such as getfd) might not work
2643 #
2644 # * Commands that prompt the user for data (eg. 'cont' when the block
2645 # device is encrypted) don't currently work
2646 #
2647 # Example:
2648 #
2649 # -> { "execute": "human-monitor-command",
2650 # "arguments": { "command-line": "info kvm" } }
2651 # <- { "return": "kvm support: enabled\r\n" }
2652 #
2653 ##
2654 { 'command': 'human-monitor-command',
2655 'data': {'command-line': 'str', '*cpu-index': 'int'},
2656 'returns': 'str' }
2657
2658 ##
2659 # @migrate_cancel:
2660 #
2661 # Cancel the current executing migration process.
2662 #
2663 # Returns: nothing on success
2664 #
2665 # Notes: This command succeeds even if there is no migration process running.
2666 #
2667 # Since: 0.14.0
2668 #
2669 # Example:
2670 #
2671 # -> { "execute": "migrate_cancel" }
2672 # <- { "return": {} }
2673 #
2674 ##
2675 { 'command': 'migrate_cancel' }
2676
2677 ##
2678 # @migrate_set_downtime:
2679 #
2680 # Set maximum tolerated downtime for migration.
2681 #
2682 # @value: maximum downtime in seconds
2683 #
2684 # Returns: nothing on success
2685 #
2686 # Notes: This command is deprecated in favor of 'migrate-set-parameters'
2687 #
2688 # Since: 0.14.0
2689 #
2690 # Example:
2691 #
2692 # -> { "execute": "migrate_set_downtime", "arguments": { "value": 0.1 } }
2693 # <- { "return": {} }
2694 #
2695 ##
2696 { 'command': 'migrate_set_downtime', 'data': {'value': 'number'} }
2697
2698 ##
2699 # @migrate_set_speed:
2700 #
2701 # Set maximum speed for migration.
2702 #
2703 # @value: maximum speed in bytes per second.
2704 #
2705 # Returns: nothing on success
2706 #
2707 # Notes: This command is deprecated in favor of 'migrate-set-parameters'
2708 #
2709 # Since: 0.14.0
2710 #
2711 # Example:
2712 #
2713 # -> { "execute": "migrate_set_speed", "arguments": { "value": 1024 } }
2714 # <- { "return": {} }
2715 #
2716 ##
2717 { 'command': 'migrate_set_speed', 'data': {'value': 'int'} }
2718
2719 ##
2720 # @migrate-set-cache-size:
2721 #
2722 # Set cache size to be used by XBZRLE migration
2723 #
2724 # @value: cache size in bytes
2725 #
2726 # The size will be rounded down to the nearest power of 2.
2727 # The cache size can be modified before and during ongoing migration
2728 #
2729 # Returns: nothing on success
2730 #
2731 # Since: 1.2
2732 #
2733 # Example:
2734 #
2735 # -> { "execute": "migrate-set-cache-size",
2736 # "arguments": { "value": 536870912 } }
2737 # <- { "return": {} }
2738 #
2739 ##
2740 { 'command': 'migrate-set-cache-size', 'data': {'value': 'int'} }
2741
2742 ##
2743 # @query-migrate-cache-size:
2744 #
2745 # Query migration XBZRLE cache size
2746 #
2747 # Returns: XBZRLE cache size in bytes
2748 #
2749 # Since: 1.2
2750 #
2751 # Example:
2752 #
2753 # -> { "execute": "query-migrate-cache-size" }
2754 # <- { "return": 67108864 }
2755 #
2756 ##
2757 { 'command': 'query-migrate-cache-size', 'returns': 'int' }
2758
2759 ##
2760 # @ObjectPropertyInfo:
2761 #
2762 # @name: the name of the property
2763 #
2764 # @type: the type of the property. This will typically come in one of four
2765 # forms:
2766 #
2767 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
2768 # These types are mapped to the appropriate JSON type.
2769 #
2770 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
2771 # device type name. Child properties create the composition tree.
2772 #
2773 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
2774 # device type name. Link properties form the device model graph.
2775 #
2776 # Since: 1.2
2777 ##
2778 { 'struct': 'ObjectPropertyInfo',
2779 'data': { 'name': 'str', 'type': 'str' } }
2780
2781 ##
2782 # @qom-list:
2783 #
2784 # This command will list any properties of a object given a path in the object
2785 # model.
2786 #
2787 # @path: the path within the object model. See @qom-get for a description of
2788 # this parameter.
2789 #
2790 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
2791 # object.
2792 #
2793 # Since: 1.2
2794 ##
2795 { 'command': 'qom-list',
2796 'data': { 'path': 'str' },
2797 'returns': [ 'ObjectPropertyInfo' ] }
2798
2799 ##
2800 # @qom-get:
2801 #
2802 # This command will get a property from a object model path and return the
2803 # value.
2804 #
2805 # @path: The path within the object model. There are two forms of supported
2806 # paths--absolute and partial paths.
2807 #
2808 # Absolute paths are derived from the root object and can follow child<>
2809 # or link<> properties. Since they can follow link<> properties, they
2810 # can be arbitrarily long. Absolute paths look like absolute filenames
2811 # and are prefixed with a leading slash.
2812 #
2813 # Partial paths look like relative filenames. They do not begin
2814 # with a prefix. The matching rules for partial paths are subtle but
2815 # designed to make specifying objects easy. At each level of the
2816 # composition tree, the partial path is matched as an absolute path.
2817 # The first match is not returned. At least two matches are searched
2818 # for. A successful result is only returned if only one match is
2819 # found. If more than one match is found, a flag is return to
2820 # indicate that the match was ambiguous.
2821 #
2822 # @property: The property name to read
2823 #
2824 # Returns: The property value. The type depends on the property
2825 # type. child<> and link<> properties are returned as #str
2826 # pathnames. All integer property types (u8, u16, etc) are
2827 # returned as #int.
2828 #
2829 # Since: 1.2
2830 ##
2831 { 'command': 'qom-get',
2832 'data': { 'path': 'str', 'property': 'str' },
2833 'returns': 'any' }
2834
2835 ##
2836 # @qom-set:
2837 #
2838 # This command will set a property from a object model path.
2839 #
2840 # @path: see @qom-get for a description of this parameter
2841 #
2842 # @property: the property name to set
2843 #
2844 # @value: a value who's type is appropriate for the property type. See @qom-get
2845 # for a description of type mapping.
2846 #
2847 # Since: 1.2
2848 ##
2849 { 'command': 'qom-set',
2850 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
2851
2852 ##
2853 # @set_password:
2854 #
2855 # Sets the password of a remote display session.
2856 #
2857 # @protocol: `vnc' to modify the VNC server password
2858 # `spice' to modify the Spice server password
2859 #
2860 # @password: the new password
2861 #
2862 # @connected: #optional how to handle existing clients when changing the
2863 # password. If nothing is specified, defaults to `keep'
2864 # `fail' to fail the command if clients are connected
2865 # `disconnect' to disconnect existing clients
2866 # `keep' to maintain existing clients
2867 #
2868 # Returns: Nothing on success
2869 # If Spice is not enabled, DeviceNotFound
2870 #
2871 # Since: 0.14.0
2872 #
2873 # Example:
2874 #
2875 # -> { "execute": "set_password", "arguments": { "protocol": "vnc",
2876 # "password": "secret" } }
2877 # <- { "return": {} }
2878 #
2879 ##
2880 { 'command': 'set_password',
2881 'data': {'protocol': 'str', 'password': 'str', '*connected': 'str'} }
2882
2883 ##
2884 # @expire_password:
2885 #
2886 # Expire the password of a remote display server.
2887 #
2888 # @protocol: the name of the remote display protocol `vnc' or `spice'
2889 #
2890 # @time: when to expire the password.
2891 # `now' to expire the password immediately
2892 # `never' to cancel password expiration
2893 # `+INT' where INT is the number of seconds from now (integer)
2894 # `INT' where INT is the absolute time in seconds
2895 #
2896 # Returns: Nothing on success
2897 # If @protocol is `spice' and Spice is not active, DeviceNotFound
2898 #
2899 # Since: 0.14.0
2900 #
2901 # Notes: Time is relative to the server and currently there is no way to
2902 # coordinate server time with client time. It is not recommended to
2903 # use the absolute time version of the @time parameter unless you're
2904 # sure you are on the same machine as the QEMU instance.
2905 #
2906 # Example:
2907 #
2908 # -> { "execute": "expire_password", "arguments": { "protocol": "vnc",
2909 # "time": "+60" } }
2910 # <- { "return": {} }
2911 #
2912 ##
2913 { 'command': 'expire_password', 'data': {'protocol': 'str', 'time': 'str'} }
2914
2915 ##
2916 # @change-vnc-password:
2917 #
2918 # Change the VNC server password.
2919 #
2920 # @password: the new password to use with VNC authentication
2921 #
2922 # Since: 1.1
2923 #
2924 # Notes: An empty password in this command will set the password to the empty
2925 # string. Existing clients are unaffected by executing this command.
2926 ##
2927 { 'command': 'change-vnc-password', 'data': {'password': 'str'} }
2928
2929 ##
2930 # @change:
2931 #
2932 # This command is multiple commands multiplexed together.
2933 #
2934 # @device: This is normally the name of a block device but it may also be 'vnc'.
2935 # when it's 'vnc', then sub command depends on @target
2936 #
2937 # @target: If @device is a block device, then this is the new filename.
2938 # If @device is 'vnc', then if the value 'password' selects the vnc
2939 # change password command. Otherwise, this specifies a new server URI
2940 # address to listen to for VNC connections.
2941 #
2942 # @arg: If @device is a block device, then this is an optional format to open
2943 # the device with.
2944 # If @device is 'vnc' and @target is 'password', this is the new VNC
2945 # password to set. If this argument is an empty string, then no future
2946 # logins will be allowed.
2947 #
2948 # Returns: Nothing on success.
2949 # If @device is not a valid block device, DeviceNotFound
2950 # If the new block device is encrypted, DeviceEncrypted. Note that
2951 # if this error is returned, the device has been opened successfully
2952 # and an additional call to @block_passwd is required to set the
2953 # device's password. The behavior of reads and writes to the block
2954 # device between when these calls are executed is undefined.
2955 #
2956 # Notes: This interface is deprecated, and it is strongly recommended that you
2957 # avoid using it. For changing block devices, use
2958 # blockdev-change-medium; for changing VNC parameters, use
2959 # change-vnc-password.
2960 #
2961 # Since: 0.14.0
2962 #
2963 # Example:
2964 #
2965 # 1. Change a removable medium
2966 #
2967 # -> { "execute": "change",
2968 # "arguments": { "device": "ide1-cd0",
2969 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
2970 # <- { "return": {} }
2971 #
2972 # 2. Change VNC password
2973 #
2974 # -> { "execute": "change",
2975 # "arguments": { "device": "vnc", "target": "password",
2976 # "arg": "foobar1" } }
2977 # <- { "return": {} }
2978 #
2979 ##
2980 { 'command': 'change',
2981 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
2982
2983 ##
2984 # @ObjectTypeInfo:
2985 #
2986 # This structure describes a search result from @qom-list-types
2987 #
2988 # @name: the type name found in the search
2989 #
2990 # Since: 1.1
2991 #
2992 # Notes: This command is experimental and may change syntax in future releases.
2993 ##
2994 { 'struct': 'ObjectTypeInfo',
2995 'data': { 'name': 'str' } }
2996
2997 ##
2998 # @qom-list-types:
2999 #
3000 # This command will return a list of types given search parameters
3001 #
3002 # @implements: if specified, only return types that implement this type name
3003 #
3004 # @abstract: if true, include abstract types in the results
3005 #
3006 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
3007 #
3008 # Since: 1.1
3009 ##
3010 { 'command': 'qom-list-types',
3011 'data': { '*implements': 'str', '*abstract': 'bool' },
3012 'returns': [ 'ObjectTypeInfo' ] }
3013
3014 ##
3015 # @DevicePropertyInfo:
3016 #
3017 # Information about device properties.
3018 #
3019 # @name: the name of the property
3020 # @type: the typename of the property
3021 # @description: #optional if specified, the description of the property.
3022 # (since 2.2)
3023 #
3024 # Since: 1.2
3025 ##
3026 { 'struct': 'DevicePropertyInfo',
3027 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
3028
3029 ##
3030 # @device-list-properties:
3031 #
3032 # List properties associated with a device.
3033 #
3034 # @typename: the type name of a device
3035 #
3036 # Returns: a list of DevicePropertyInfo describing a devices properties
3037 #
3038 # Since: 1.2
3039 ##
3040 { 'command': 'device-list-properties',
3041 'data': { 'typename': 'str'},
3042 'returns': [ 'DevicePropertyInfo' ] }
3043
3044 ##
3045 # @migrate:
3046 #
3047 # Migrates the current running guest to another Virtual Machine.
3048 #
3049 # @uri: the Uniform Resource Identifier of the destination VM
3050 #
3051 # @blk: #optional do block migration (full disk copy)
3052 #
3053 # @inc: #optional incremental disk copy migration
3054 #
3055 # @detach: this argument exists only for compatibility reasons and
3056 # is ignored by QEMU
3057 #
3058 # Returns: nothing on success
3059 #
3060 # Since: 0.14.0
3061 #
3062 # Notes:
3063 #
3064 # 1. The 'query-migrate' command should be used to check migration's progress
3065 # and final result (this information is provided by the 'status' member)
3066 #
3067 # 2. All boolean arguments default to false
3068 #
3069 # 3. The user Monitor's "detach" argument is invalid in QMP and should not
3070 # be used
3071 #
3072 # Example:
3073 #
3074 # -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
3075 # <- { "return": {} }
3076 #
3077 ##
3078 { 'command': 'migrate',
3079 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', '*detach': 'bool' } }
3080
3081 ##
3082 # @migrate-incoming:
3083 #
3084 # Start an incoming migration, the qemu must have been started
3085 # with -incoming defer
3086 #
3087 # @uri: The Uniform Resource Identifier identifying the source or
3088 # address to listen on
3089 #
3090 # Returns: nothing on success
3091 #
3092 # Since: 2.3
3093 #
3094 # Notes:
3095 #
3096 # 1. It's a bad idea to use a string for the uri, but it needs to stay
3097 # compatible with -incoming and the format of the uri is already exposed
3098 # above libvirt.
3099 #
3100 # 2. QEMU must be started with -incoming defer to allow migrate-incoming to
3101 # be used.
3102 #
3103 # 3. The uri format is the same as for -incoming
3104 #
3105 # Example:
3106 #
3107 # -> { "execute": "migrate-incoming",
3108 # "arguments": { "uri": "tcp::4446" } }
3109 # <- { "return": {} }
3110 #
3111 ##
3112 { 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
3113
3114 ##
3115 # @xen-save-devices-state:
3116 #
3117 # Save the state of all devices to file. The RAM and the block devices
3118 # of the VM are not saved by this command.
3119 #
3120 # @filename: the file to save the state of the devices to as binary
3121 # data. See xen-save-devices-state.txt for a description of the binary
3122 # format.
3123 #
3124 # Returns: Nothing on success
3125 #
3126 # Since: 1.1
3127 #
3128 # Example:
3129 #
3130 # -> { "execute": "xen-save-devices-state",
3131 # "arguments": { "filename": "/tmp/save" } }
3132 # <- { "return": {} }
3133 #
3134 ##
3135 { 'command': 'xen-save-devices-state', 'data': {'filename': 'str'} }
3136
3137 ##
3138 # @xen-set-global-dirty-log:
3139 #
3140 # Enable or disable the global dirty log mode.
3141 #
3142 # @enable: true to enable, false to disable.
3143 #
3144 # Returns: nothing
3145 #
3146 # Since: 1.3
3147 #
3148 # Example:
3149 #
3150 # -> { "execute": "xen-set-global-dirty-log",
3151 # "arguments": { "enable": true } }
3152 # <- { "return": {} }
3153 #
3154 ##
3155 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
3156
3157 ##
3158 # @device_add:
3159 #
3160 # @driver: the name of the new device's driver
3161 #
3162 # @bus: #optional the device's parent bus (device tree path)
3163 #
3164 # @id: #optional the device's ID, must be unique
3165 #
3166 # Additional arguments depend on the type.
3167 #
3168 # Add a device.
3169 #
3170 # Notes:
3171 # 1. For detailed information about this command, please refer to the
3172 # 'docs/qdev-device-use.txt' file.
3173 #
3174 # 2. It's possible to list device properties by running QEMU with the
3175 # "-device DEVICE,help" command-line argument, where DEVICE is the
3176 # device's name
3177 #
3178 # Example:
3179 #
3180 # -> { "execute": "device_add",
3181 # "arguments": { "driver": "e1000", "id": "net1",
3182 # "bus": "pci.0",
3183 # "mac": "52:54:00:12:34:56" } }
3184 # <- { "return": {} }
3185 #
3186 # TODO: This command effectively bypasses QAPI completely due to its
3187 # "additional arguments" business. It shouldn't have been added to
3188 # the schema in this form. It should be qapified properly, or
3189 # replaced by a properly qapified command.
3190 #
3191 # Since: 0.13
3192 ##
3193 { 'command': 'device_add',
3194 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
3195 'gen': false } # so we can get the additional arguments
3196
3197 ##
3198 # @device_del:
3199 #
3200 # Remove a device from a guest
3201 #
3202 # @id: the device's ID or QOM path
3203 #
3204 # Returns: Nothing on success
3205 # If @id is not a valid device, DeviceNotFound
3206 #
3207 # Notes: When this command completes, the device may not be removed from the
3208 # guest. Hot removal is an operation that requires guest cooperation.
3209 # This command merely requests that the guest begin the hot removal
3210 # process. Completion of the device removal process is signaled with a
3211 # DEVICE_DELETED event. Guest reset will automatically complete removal
3212 # for all devices.
3213 #
3214 # Since: 0.14.0
3215 #
3216 # Example:
3217 #
3218 # -> { "execute": "device_del",
3219 # "arguments": { "id": "net1" } }
3220 # <- { "return": {} }
3221 #
3222 # -> { "execute": "device_del",
3223 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
3224 # <- { "return": {} }
3225 #
3226 ##
3227 { 'command': 'device_del', 'data': {'id': 'str'} }
3228
3229 ##
3230 # @DumpGuestMemoryFormat:
3231 #
3232 # An enumeration of guest-memory-dump's format.
3233 #
3234 # @elf: elf format
3235 #
3236 # @kdump-zlib: kdump-compressed format with zlib-compressed
3237 #
3238 # @kdump-lzo: kdump-compressed format with lzo-compressed
3239 #
3240 # @kdump-snappy: kdump-compressed format with snappy-compressed
3241 #
3242 # Since: 2.0
3243 ##
3244 { 'enum': 'DumpGuestMemoryFormat',
3245 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
3246
3247 ##
3248 # @dump-guest-memory:
3249 #
3250 # Dump guest's memory to vmcore. It is a synchronous operation that can take
3251 # very long depending on the amount of guest memory.
3252 #
3253 # @paging: if true, do paging to get guest's memory mapping. This allows
3254 # using gdb to process the core file.
3255 #
3256 # IMPORTANT: this option can make QEMU allocate several gigabytes
3257 # of RAM. This can happen for a large guest, or a
3258 # malicious guest pretending to be large.
3259 #
3260 # Also, paging=true has the following limitations:
3261 #
3262 # 1. The guest may be in a catastrophic state or can have corrupted
3263 # memory, which cannot be trusted
3264 # 2. The guest can be in real-mode even if paging is enabled. For
3265 # example, the guest uses ACPI to sleep, and ACPI sleep state
3266 # goes in real-mode
3267 # 3. Currently only supported on i386 and x86_64.
3268 #
3269 # @protocol: the filename or file descriptor of the vmcore. The supported
3270 # protocols are:
3271 #
3272 # 1. file: the protocol starts with "file:", and the following
3273 # string is the file's path.
3274 # 2. fd: the protocol starts with "fd:", and the following string
3275 # is the fd's name.
3276 #
3277 # @detach: #optional if true, QMP will return immediately rather than
3278 # waiting for the dump to finish. The user can track progress
3279 # using "query-dump". (since 2.6).
3280 #
3281 # @begin: #optional if specified, the starting physical address.
3282 #
3283 # @length: #optional if specified, the memory size, in bytes. If you don't
3284 # want to dump all guest's memory, please specify the start @begin
3285 # and @length
3286 #
3287 # @format: #optional if specified, the format of guest memory dump. But non-elf
3288 # format is conflict with paging and filter, ie. @paging, @begin and
3289 # @length is not allowed to be specified with non-elf @format at the
3290 # same time (since 2.0)
3291 #
3292 # Note: All boolean arguments default to false
3293 #
3294 # Returns: nothing on success
3295 #
3296 # Since: 1.2
3297 #
3298 # Example:
3299 #
3300 # -> { "execute": "dump-guest-memory",
3301 # "arguments": { "protocol": "fd:dump" } }
3302 # <- { "return": {} }
3303 #
3304 ##
3305 { 'command': 'dump-guest-memory',
3306 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
3307 '*begin': 'int', '*length': 'int',
3308 '*format': 'DumpGuestMemoryFormat'} }
3309
3310 ##
3311 # @DumpStatus:
3312 #
3313 # Describe the status of a long-running background guest memory dump.
3314 #
3315 # @none: no dump-guest-memory has started yet.
3316 #
3317 # @active: there is one dump running in background.
3318 #
3319 # @completed: the last dump has finished successfully.
3320 #
3321 # @failed: the last dump has failed.
3322 #
3323 # Since: 2.6
3324 ##
3325 { 'enum': 'DumpStatus',
3326 'data': [ 'none', 'active', 'completed', 'failed' ] }
3327
3328 ##
3329 # @DumpQueryResult:
3330 #
3331 # The result format for 'query-dump'.
3332 #
3333 # @status: enum of @DumpStatus, which shows current dump status
3334 #
3335 # @completed: bytes written in latest dump (uncompressed)
3336 #
3337 # @total: total bytes to be written in latest dump (uncompressed)
3338 #
3339 # Since: 2.6
3340 ##
3341 { 'struct': 'DumpQueryResult',
3342 'data': { 'status': 'DumpStatus',
3343 'completed': 'int',
3344 'total': 'int' } }
3345
3346 ##
3347 # @query-dump:
3348 #
3349 # Query latest dump status.
3350 #
3351 # Returns: A @DumpStatus object showing the dump status.
3352 #
3353 # Since: 2.6
3354 #
3355 # Example:
3356 #
3357 # -> { "execute": "query-dump" }
3358 # <- { "return": { "status": "active", "completed": 1024000,
3359 # "total": 2048000 } }
3360 #
3361 ##
3362 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
3363
3364 ##
3365 # @DumpGuestMemoryCapability:
3366 #
3367 # A list of the available formats for dump-guest-memory
3368 #
3369 # Since: 2.0
3370 ##
3371 { 'struct': 'DumpGuestMemoryCapability',
3372 'data': {
3373 'formats': ['DumpGuestMemoryFormat'] } }
3374
3375 ##
3376 # @query-dump-guest-memory-capability:
3377 #
3378 # Returns the available formats for dump-guest-memory
3379 #
3380 # Returns: A @DumpGuestMemoryCapability object listing available formats for
3381 # dump-guest-memory
3382 #
3383 # Since: 2.0
3384 #
3385 # Example:
3386 #
3387 # -> { "execute": "query-dump-guest-memory-capability" }
3388 # <- { "return": { "formats":
3389 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
3390 #
3391 ##
3392 { 'command': 'query-dump-guest-memory-capability',
3393 'returns': 'DumpGuestMemoryCapability' }
3394
3395 ##
3396 # @dump-skeys:
3397 #
3398 # Dump guest's storage keys
3399 #
3400 # @filename: the path to the file to dump to
3401 #
3402 # This command is only supported on s390 architecture.
3403 #
3404 # Since: 2.5
3405 #
3406 # Example:
3407 #
3408 # -> { "execute": "dump-skeys",
3409 # "arguments": { "filename": "/tmp/skeys" } }
3410 # <- { "return": {} }
3411 #
3412 ##
3413 { 'command': 'dump-skeys',
3414 'data': { 'filename': 'str' } }
3415
3416 ##
3417 # @netdev_add:
3418 #
3419 # Add a network backend.
3420 #
3421 # @type: the type of network backend. Current valid values are 'user', 'tap',
3422 # 'vde', 'socket', 'dump' and 'bridge'
3423 #
3424 # @id: the name of the new network backend
3425 #
3426 # Additional arguments depend on the type.
3427 #
3428 # TODO: This command effectively bypasses QAPI completely due to its
3429 # "additional arguments" business. It shouldn't have been added to
3430 # the schema in this form. It should be qapified properly, or
3431 # replaced by a properly qapified command.
3432 #
3433 # Since: 0.14.0
3434 #
3435 # Returns: Nothing on success
3436 # If @type is not a valid network backend, DeviceNotFound
3437 #
3438 # Example:
3439 #
3440 # -> { "execute": "netdev_add",
3441 # "arguments": { "type": "user", "id": "netdev1",
3442 # "dnssearch": "example.org" } }
3443 # <- { "return": {} }
3444 #
3445 ##
3446 { 'command': 'netdev_add',
3447 'data': {'type': 'str', 'id': 'str'},
3448 'gen': false } # so we can get the additional arguments
3449
3450 ##
3451 # @netdev_del:
3452 #
3453 # Remove a network backend.
3454 #
3455 # @id: the name of the network backend to remove
3456 #
3457 # Returns: Nothing on success
3458 # If @id is not a valid network backend, DeviceNotFound
3459 #
3460 # Since: 0.14.0
3461 #
3462 # Example:
3463 #
3464 # -> { "execute": "netdev_del", "arguments": { "id": "netdev1" } }
3465 # <- { "return": {} }
3466 #
3467 ##
3468 { 'command': 'netdev_del', 'data': {'id': 'str'} }
3469
3470 ##
3471 # @object-add:
3472 #
3473 # Create a QOM object.
3474 #
3475 # @qom-type: the class name for the object to be created
3476 #
3477 # @id: the name of the new object
3478 #
3479 # @props: #optional a dictionary of properties to be passed to the backend
3480 #
3481 # Returns: Nothing on success
3482 # Error if @qom-type is not a valid class name
3483 #
3484 # Since: 2.0
3485 #
3486 # Example:
3487 #
3488 # -> { "execute": "object-add",
3489 # "arguments": { "qom-type": "rng-random", "id": "rng1",
3490 # "props": { "filename": "/dev/hwrng" } } }
3491 # <- { "return": {} }
3492 #
3493 ##
3494 { 'command': 'object-add',
3495 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
3496
3497 ##
3498 # @object-del:
3499 #
3500 # Remove a QOM object.
3501 #
3502 # @id: the name of the QOM object to remove
3503 #
3504 # Returns: Nothing on success
3505 # Error if @id is not a valid id for a QOM object
3506 #
3507 # Since: 2.0
3508 #
3509 # Example:
3510 #
3511 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
3512 # <- { "return": {} }
3513 #
3514 ##
3515 { 'command': 'object-del', 'data': {'id': 'str'} }
3516
3517 ##
3518 # @NetdevNoneOptions:
3519 #
3520 # Use it alone to have zero network devices.
3521 #
3522 # Since: 1.2
3523 ##
3524 { 'struct': 'NetdevNoneOptions',
3525 'data': { } }
3526
3527 ##
3528 # @NetLegacyNicOptions:
3529 #
3530 # Create a new Network Interface Card.
3531 #
3532 # @netdev: #optional id of -netdev to connect to
3533 #
3534 # @macaddr: #optional MAC address
3535 #
3536 # @model: #optional device model (e1000, rtl8139, virtio etc.)
3537 #
3538 # @addr: #optional PCI device address
3539 #
3540 # @vectors: #optional number of MSI-x vectors, 0 to disable MSI-X
3541 #
3542 # Since: 1.2
3543 ##
3544 { 'struct': 'NetLegacyNicOptions',
3545 'data': {
3546 '*netdev': 'str',
3547 '*macaddr': 'str',
3548 '*model': 'str',
3549 '*addr': 'str',
3550 '*vectors': 'uint32' } }
3551
3552 ##
3553 # @String:
3554 #
3555 # A fat type wrapping 'str', to be embedded in lists.
3556 #
3557 # Since: 1.2
3558 ##
3559 { 'struct': 'String',
3560 'data': {
3561 'str': 'str' } }
3562
3563 ##
3564 # @NetdevUserOptions:
3565 #
3566 # Use the user mode network stack which requires no administrator privilege to
3567 # run.
3568 #
3569 # @hostname: #optional client hostname reported by the builtin DHCP server
3570 #
3571 # @restrict: #optional isolate the guest from the host
3572 #
3573 # @ipv4: #optional whether to support IPv4, default true for enabled
3574 # (since 2.6)
3575 #
3576 # @ipv6: #optional whether to support IPv6, default true for enabled
3577 # (since 2.6)
3578 #
3579 # @ip: #optional legacy parameter, use net= instead
3580 #
3581 # @net: #optional IP network address that the guest will see, in the
3582 # form addr[/netmask] The netmask is optional, and can be
3583 # either in the form a.b.c.d or as a number of valid top-most
3584 # bits. Default is 10.0.2.0/24.
3585 #
3586 # @host: #optional guest-visible address of the host
3587 #
3588 # @tftp: #optional root directory of the built-in TFTP server
3589 #
3590 # @bootfile: #optional BOOTP filename, for use with tftp=
3591 #
3592 # @dhcpstart: #optional the first of the 16 IPs the built-in DHCP server can
3593 # assign
3594 #
3595 # @dns: #optional guest-visible address of the virtual nameserver
3596 #
3597 # @dnssearch: #optional list of DNS suffixes to search, passed as DHCP option
3598 # to the guest
3599 #
3600 # @ipv6-prefix: #optional IPv6 network prefix (default is fec0::) (since
3601 # 2.6). The network prefix is given in the usual
3602 # hexadecimal IPv6 address notation.
3603 #
3604 # @ipv6-prefixlen: #optional IPv6 network prefix length (default is 64)
3605 # (since 2.6)
3606 #
3607 # @ipv6-host: #optional guest-visible IPv6 address of the host (since 2.6)
3608 #
3609 # @ipv6-dns: #optional guest-visible IPv6 address of the virtual
3610 # nameserver (since 2.6)
3611 #
3612 # @smb: #optional root directory of the built-in SMB server
3613 #
3614 # @smbserver: #optional IP address of the built-in SMB server
3615 #
3616 # @hostfwd: #optional redirect incoming TCP or UDP host connections to guest
3617 # endpoints
3618 #
3619 # @guestfwd: #optional forward guest TCP connections
3620 #
3621 # Since: 1.2
3622 ##
3623 { 'struct': 'NetdevUserOptions',
3624 'data': {
3625 '*hostname': 'str',
3626 '*restrict': 'bool',
3627 '*ipv4': 'bool',
3628 '*ipv6': 'bool',
3629 '*ip': 'str',
3630 '*net': 'str',
3631 '*host': 'str',
3632 '*tftp': 'str',
3633 '*bootfile': 'str',
3634 '*dhcpstart': 'str',
3635 '*dns': 'str',
3636 '*dnssearch': ['String'],
3637 '*ipv6-prefix': 'str',
3638 '*ipv6-prefixlen': 'int',
3639 '*ipv6-host': 'str',
3640 '*ipv6-dns': 'str',
3641 '*smb': 'str',
3642 '*smbserver': 'str',
3643 '*hostfwd': ['String'],
3644 '*guestfwd': ['String'] } }
3645
3646 ##
3647 # @NetdevTapOptions:
3648 #
3649 # Connect the host TAP network interface name to the VLAN.
3650 #
3651 # @ifname: #optional interface name
3652 #
3653 # @fd: #optional file descriptor of an already opened tap
3654 #
3655 # @fds: #optional multiple file descriptors of already opened multiqueue capable
3656 # tap
3657 #
3658 # @script: #optional script to initialize the interface
3659 #
3660 # @downscript: #optional script to shut down the interface
3661 #
3662 # @br: #optional bridge name (since 2.8)
3663 #
3664 # @helper: #optional command to execute to configure bridge
3665 #
3666 # @sndbuf: #optional send buffer limit. Understands [TGMKkb] suffixes.
3667 #
3668 # @vnet_hdr: #optional enable the IFF_VNET_HDR flag on the tap interface
3669 #
3670 # @vhost: #optional enable vhost-net network accelerator
3671 #
3672 # @vhostfd: #optional file descriptor of an already opened vhost net device
3673 #
3674 # @vhostfds: #optional file descriptors of multiple already opened vhost net
3675 # devices
3676 #
3677 # @vhostforce: #optional vhost on for non-MSIX virtio guests
3678 #
3679 # @queues: #optional number of queues to be created for multiqueue capable tap
3680 #
3681 # @poll-us: #optional maximum number of microseconds that could
3682 # be spent on busy polling for tap (since 2.7)
3683 #
3684 # Since: 1.2
3685 ##
3686 { 'struct': 'NetdevTapOptions',
3687 'data': {
3688 '*ifname': 'str',
3689 '*fd': 'str',
3690 '*fds': 'str',
3691 '*script': 'str',
3692 '*downscript': 'str',
3693 '*br': 'str',
3694 '*helper': 'str',
3695 '*sndbuf': 'size',
3696 '*vnet_hdr': 'bool',
3697 '*vhost': 'bool',
3698 '*vhostfd': 'str',
3699 '*vhostfds': 'str',
3700 '*vhostforce': 'bool',
3701 '*queues': 'uint32',
3702 '*poll-us': 'uint32'} }
3703
3704 ##
3705 # @NetdevSocketOptions:
3706 #
3707 # Connect the VLAN to a remote VLAN in another QEMU virtual machine using a TCP
3708 # socket connection.
3709 #
3710 # @fd: #optional file descriptor of an already opened socket
3711 #
3712 # @listen: #optional port number, and optional hostname, to listen on
3713 #
3714 # @connect: #optional port number, and optional hostname, to connect to
3715 #
3716 # @mcast: #optional UDP multicast address and port number
3717 #
3718 # @localaddr: #optional source address and port for multicast and udp packets
3719 #
3720 # @udp: #optional UDP unicast address and port number
3721 #
3722 # Since: 1.2
3723 ##
3724 { 'struct': 'NetdevSocketOptions',
3725 'data': {
3726 '*fd': 'str',
3727 '*listen': 'str',
3728 '*connect': 'str',
3729 '*mcast': 'str',
3730 '*localaddr': 'str',
3731 '*udp': 'str' } }
3732
3733 ##
3734 # @NetdevL2TPv3Options:
3735 #
3736 # Connect the VLAN to Ethernet over L2TPv3 Static tunnel
3737 #
3738 # @src: source address
3739 #
3740 # @dst: destination address
3741 #
3742 # @srcport: #optional source port - mandatory for udp, optional for ip
3743 #
3744 # @dstport: #optional destination port - mandatory for udp, optional for ip
3745 #
3746 # @ipv6: #optional - force the use of ipv6
3747 #
3748 # @udp: #optional - use the udp version of l2tpv3 encapsulation
3749 #
3750 # @cookie64: #optional - use 64 bit coookies
3751 #
3752 # @counter: #optional have sequence counter
3753 #
3754 # @pincounter: #optional pin sequence counter to zero -
3755 # workaround for buggy implementations or
3756 # networks with packet reorder
3757 #
3758 # @txcookie: #optional 32 or 64 bit transmit cookie
3759 #
3760 # @rxcookie: #optional 32 or 64 bit receive cookie
3761 #
3762 # @txsession: 32 bit transmit session
3763 #
3764 # @rxsession: #optional 32 bit receive session - if not specified
3765 # set to the same value as transmit
3766 #
3767 # @offset: #optional additional offset - allows the insertion of
3768 # additional application-specific data before the packet payload
3769 #
3770 # Since: 2.1
3771 ##
3772 { 'struct': 'NetdevL2TPv3Options',
3773 'data': {
3774 'src': 'str',
3775 'dst': 'str',
3776 '*srcport': 'str',
3777 '*dstport': 'str',
3778 '*ipv6': 'bool',
3779 '*udp': 'bool',
3780 '*cookie64': 'bool',
3781 '*counter': 'bool',
3782 '*pincounter': 'bool',
3783 '*txcookie': 'uint64',
3784 '*rxcookie': 'uint64',
3785 'txsession': 'uint32',
3786 '*rxsession': 'uint32',
3787 '*offset': 'uint32' } }
3788
3789 ##
3790 # @NetdevVdeOptions:
3791 #
3792 # Connect the VLAN to a vde switch running on the host.
3793 #
3794 # @sock: #optional socket path
3795 #
3796 # @port: #optional port number
3797 #
3798 # @group: #optional group owner of socket
3799 #
3800 # @mode: #optional permissions for socket
3801 #
3802 # Since: 1.2
3803 ##
3804 { 'struct': 'NetdevVdeOptions',
3805 'data': {
3806 '*sock': 'str',
3807 '*port': 'uint16',
3808 '*group': 'str',
3809 '*mode': 'uint16' } }
3810
3811 ##
3812 # @NetdevDumpOptions:
3813 #
3814 # Dump VLAN network traffic to a file.
3815 #
3816 # @len: #optional per-packet size limit (64k default). Understands [TGMKkb]
3817 # suffixes.
3818 #
3819 # @file: #optional dump file path (default is qemu-vlan0.pcap)
3820 #
3821 # Since: 1.2
3822 ##
3823 { 'struct': 'NetdevDumpOptions',
3824 'data': {
3825 '*len': 'size',
3826 '*file': 'str' } }
3827
3828 ##
3829 # @NetdevBridgeOptions:
3830 #
3831 # Connect a host TAP network interface to a host bridge device.
3832 #
3833 # @br: #optional bridge name
3834 #
3835 # @helper: #optional command to execute to configure bridge
3836 #
3837 # Since: 1.2
3838 ##
3839 { 'struct': 'NetdevBridgeOptions',
3840 'data': {
3841 '*br': 'str',
3842 '*helper': 'str' } }
3843
3844 ##
3845 # @NetdevHubPortOptions:
3846 #
3847 # Connect two or more net clients through a software hub.
3848 #
3849 # @hubid: hub identifier number
3850 #
3851 # Since: 1.2
3852 ##
3853 { 'struct': 'NetdevHubPortOptions',
3854 'data': {
3855 'hubid': 'int32' } }
3856
3857 ##
3858 # @NetdevNetmapOptions:
3859 #
3860 # Connect a client to a netmap-enabled NIC or to a VALE switch port
3861 #
3862 # @ifname: Either the name of an existing network interface supported by
3863 # netmap, or the name of a VALE port (created on the fly).
3864 # A VALE port name is in the form 'valeXXX:YYY', where XXX and
3865 # YYY are non-negative integers. XXX identifies a switch and
3866 # YYY identifies a port of the switch. VALE ports having the
3867 # same XXX are therefore connected to the same switch.
3868 #
3869 # @devname: #optional path of the netmap device (default: '/dev/netmap').
3870 #
3871 # Since: 2.0
3872 ##
3873 { 'struct': 'NetdevNetmapOptions',
3874 'data': {
3875 'ifname': 'str',
3876 '*devname': 'str' } }
3877
3878 ##
3879 # @NetdevVhostUserOptions:
3880 #
3881 # Vhost-user network backend
3882 #
3883 # @chardev: name of a unix socket chardev
3884 #
3885 # @vhostforce: #optional vhost on for non-MSIX virtio guests (default: false).
3886 #
3887 # @queues: #optional number of queues to be created for multiqueue vhost-user
3888 # (default: 1) (Since 2.5)
3889 #
3890 # Since: 2.1
3891 ##
3892 { 'struct': 'NetdevVhostUserOptions',
3893 'data': {
3894 'chardev': 'str',
3895 '*vhostforce': 'bool',
3896 '*queues': 'int' } }
3897
3898 ##
3899 # @NetClientDriver:
3900 #
3901 # Available netdev drivers.
3902 #
3903 # Since: 2.7
3904 ##
3905 { 'enum': 'NetClientDriver',
3906 'data': [ 'none', 'nic', 'user', 'tap', 'l2tpv3', 'socket', 'vde', 'dump',
3907 'bridge', 'hubport', 'netmap', 'vhost-user' ] }
3908
3909 ##
3910 # @Netdev:
3911 #
3912 # Captures the configuration of a network device.
3913 #
3914 # @id: identifier for monitor commands.
3915 #
3916 # @type: Specify the driver used for interpreting remaining arguments.
3917 #
3918 # Since: 1.2
3919 #
3920 # 'l2tpv3' - since 2.1
3921 ##
3922 { 'union': 'Netdev',
3923 'base': { 'id': 'str', 'type': 'NetClientDriver' },
3924 'discriminator': 'type',
3925 'data': {
3926 'none': 'NetdevNoneOptions',
3927 'nic': 'NetLegacyNicOptions',
3928 'user': 'NetdevUserOptions',
3929 'tap': 'NetdevTapOptions',
3930 'l2tpv3': 'NetdevL2TPv3Options',
3931 'socket': 'NetdevSocketOptions',
3932 'vde': 'NetdevVdeOptions',
3933 'dump': 'NetdevDumpOptions',
3934 'bridge': 'NetdevBridgeOptions',
3935 'hubport': 'NetdevHubPortOptions',
3936 'netmap': 'NetdevNetmapOptions',
3937 'vhost-user': 'NetdevVhostUserOptions' } }
3938
3939 ##
3940 # @NetLegacy:
3941 #
3942 # Captures the configuration of a network device; legacy.
3943 #
3944 # @vlan: #optional vlan number
3945 #
3946 # @id: #optional identifier for monitor commands
3947 #
3948 # @name: #optional identifier for monitor commands, ignored if @id is present
3949 #
3950 # @opts: device type specific properties (legacy)
3951 #
3952 # Since: 1.2
3953 ##
3954 { 'struct': 'NetLegacy',
3955 'data': {
3956 '*vlan': 'int32',
3957 '*id': 'str',
3958 '*name': 'str',
3959 'opts': 'NetLegacyOptions' } }
3960
3961 ##
3962 # @NetLegacyOptionsType:
3963 #
3964 # Since: 1.2
3965 ##
3966 { 'enum': 'NetLegacyOptionsType',
3967 'data': ['none', 'nic', 'user', 'tap', 'l2tpv3', 'socket', 'vde',
3968 'dump', 'bridge', 'netmap', 'vhost-user'] }
3969
3970 ##
3971 # @NetLegacyOptions:
3972 #
3973 # Like Netdev, but for use only by the legacy command line options
3974 #
3975 # Since: 1.2
3976 ##
3977 { 'union': 'NetLegacyOptions',
3978 'base': { 'type': 'NetLegacyOptionsType' },
3979 'discriminator': 'type',
3980 'data': {
3981 'none': 'NetdevNoneOptions',
3982 'nic': 'NetLegacyNicOptions',
3983 'user': 'NetdevUserOptions',
3984 'tap': 'NetdevTapOptions',
3985 'l2tpv3': 'NetdevL2TPv3Options',
3986 'socket': 'NetdevSocketOptions',
3987 'vde': 'NetdevVdeOptions',
3988 'dump': 'NetdevDumpOptions',
3989 'bridge': 'NetdevBridgeOptions',
3990 'netmap': 'NetdevNetmapOptions',
3991 'vhost-user': 'NetdevVhostUserOptions' } }
3992
3993 ##
3994 # @NetFilterDirection:
3995 #
3996 # Indicates whether a netfilter is attached to a netdev's transmit queue or
3997 # receive queue or both.
3998 #
3999 # @all: the filter is attached both to the receive and the transmit
4000 # queue of the netdev (default).
4001 #
4002 # @rx: the filter is attached to the receive queue of the netdev,
4003 # where it will receive packets sent to the netdev.
4004 #
4005 # @tx: the filter is attached to the transmit queue of the netdev,
4006 # where it will receive packets sent by the netdev.
4007 #
4008 # Since: 2.5
4009 ##
4010 { 'enum': 'NetFilterDirection',
4011 'data': [ 'all', 'rx', 'tx' ] }
4012
4013 ##
4014 # @InetSocketAddress:
4015 #
4016 # Captures a socket address or address range in the Internet namespace.
4017 #
4018 # @host: host part of the address
4019 #
4020 # @port: port part of the address, or lowest port if @to is present
4021 #
4022 # @numeric: #optional true if the host/port are guaranteed to be numeric,
4023 # false if name resolution should be attempted. Defaults to false.
4024 # (Since 2.9)
4025 #
4026 # @to: highest port to try
4027 #
4028 # @ipv4: whether to accept IPv4 addresses, default try both IPv4 and IPv6
4029 # #optional
4030 #
4031 # @ipv6: whether to accept IPv6 addresses, default try both IPv4 and IPv6
4032 # #optional
4033 #
4034 # Since: 1.3
4035 ##
4036 { 'struct': 'InetSocketAddress',
4037 'data': {
4038 'host': 'str',
4039 'port': 'str',
4040 '*numeric': 'bool',
4041 '*to': 'uint16',
4042 '*ipv4': 'bool',
4043 '*ipv6': 'bool' } }
4044
4045 ##
4046 # @UnixSocketAddress:
4047 #
4048 # Captures a socket address in the local ("Unix socket") namespace.
4049 #
4050 # @path: filesystem path to use
4051 #
4052 # Since: 1.3
4053 ##
4054 { 'struct': 'UnixSocketAddress',
4055 'data': {
4056 'path': 'str' } }
4057
4058 ##
4059 # @VsockSocketAddress:
4060 #
4061 # Captures a socket address in the vsock namespace.
4062 #
4063 # @cid: unique host identifier
4064 # @port: port
4065 #
4066 # Note: string types are used to allow for possible future hostname or
4067 # service resolution support.
4068 #
4069 # Since: 2.8
4070 ##
4071 { 'struct': 'VsockSocketAddress',
4072 'data': {
4073 'cid': 'str',
4074 'port': 'str' } }
4075
4076 ##
4077 # @SocketAddress:
4078 #
4079 # Captures the address of a socket, which could also be a named file descriptor
4080 #
4081 # Since: 1.3
4082 ##
4083 { 'union': 'SocketAddress',
4084 'data': {
4085 'inet': 'InetSocketAddress',
4086 'unix': 'UnixSocketAddress',
4087 'vsock': 'VsockSocketAddress',
4088 'fd': 'String' } }
4089
4090 ##
4091 # @getfd:
4092 #
4093 # Receive a file descriptor via SCM rights and assign it a name
4094 #
4095 # @fdname: file descriptor name
4096 #
4097 # Returns: Nothing on success
4098 #
4099 # Since: 0.14.0
4100 #
4101 # Notes: If @fdname already exists, the file descriptor assigned to
4102 # it will be closed and replaced by the received file
4103 # descriptor.
4104 #
4105 # The 'closefd' command can be used to explicitly close the
4106 # file descriptor when it is no longer needed.
4107 #
4108 # Example:
4109 #
4110 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
4111 # <- { "return": {} }
4112 #
4113 ##
4114 { 'command': 'getfd', 'data': {'fdname': 'str'} }
4115
4116 ##
4117 # @closefd:
4118 #
4119 # Close a file descriptor previously passed via SCM rights
4120 #
4121 # @fdname: file descriptor name
4122 #
4123 # Returns: Nothing on success
4124 #
4125 # Since: 0.14.0
4126 #
4127 # Example:
4128 #
4129 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
4130 # <- { "return": {} }
4131 #
4132 ##
4133 { 'command': 'closefd', 'data': {'fdname': 'str'} }
4134
4135 ##
4136 # @MachineInfo:
4137 #
4138 # Information describing a machine.
4139 #
4140 # @name: the name of the machine
4141 #
4142 # @alias: #optional an alias for the machine name
4143 #
4144 # @is-default: #optional whether the machine is default
4145 #
4146 # @cpu-max: maximum number of CPUs supported by the machine type
4147 # (since 1.5.0)
4148 #
4149 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
4150 #
4151 # Since: 1.2.0
4152 ##
4153 { 'struct': 'MachineInfo',
4154 'data': { 'name': 'str', '*alias': 'str',
4155 '*is-default': 'bool', 'cpu-max': 'int',
4156 'hotpluggable-cpus': 'bool'} }
4157
4158 ##
4159 # @query-machines:
4160 #
4161 # Return a list of supported machines
4162 #
4163 # Returns: a list of MachineInfo
4164 #
4165 # Since: 1.2.0
4166 ##
4167 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
4168
4169 ##
4170 # @CpuDefinitionInfo:
4171 #
4172 # Virtual CPU definition.
4173 #
4174 # @name: the name of the CPU definition
4175 #
4176 # @migration-safe: #optional whether a CPU definition can be safely used for
4177 # migration in combination with a QEMU compatibility machine
4178 # when migrating between different QMU versions and between
4179 # hosts with different sets of (hardware or software)
4180 # capabilities. If not provided, information is not available
4181 # and callers should not assume the CPU definition to be
4182 # migration-safe. (since 2.8)
4183 #
4184 # @static: whether a CPU definition is static and will not change depending on
4185 # QEMU version, machine type, machine options and accelerator options.
4186 # A static model is always migration-safe. (since 2.8)
4187 #
4188 # @unavailable-features: #optional List of properties that prevent
4189 # the CPU model from running in the current
4190 # host. (since 2.8)
4191 # @typename: Type name that can be used as argument to @device-list-properties,
4192 # to introspect properties configurable using -cpu or -global.
4193 # (since 2.9)
4194 #
4195 # @unavailable-features is a list of QOM property names that
4196 # represent CPU model attributes that prevent the CPU from running.
4197 # If the QOM property is read-only, that means there's no known
4198 # way to make the CPU model run in the current host. Implementations
4199 # that choose not to provide specific information return the
4200 # property name "type".
4201 # If the property is read-write, it means that it MAY be possible
4202 # to run the CPU model in the current host if that property is
4203 # changed. Management software can use it as hints to suggest or
4204 # choose an alternative for the user, or just to generate meaningful
4205 # error messages explaining why the CPU model can't be used.
4206 # If @unavailable-features is an empty list, the CPU model is
4207 # runnable using the current host and machine-type.
4208 # If @unavailable-features is not present, runnability
4209 # information for the CPU is not available.
4210 #
4211 # Since: 1.2.0
4212 ##
4213 { 'struct': 'CpuDefinitionInfo',
4214 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
4215 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
4216
4217 ##
4218 # @query-cpu-definitions:
4219 #
4220 # Return a list of supported virtual CPU definitions
4221 #
4222 # Returns: a list of CpuDefInfo
4223 #
4224 # Since: 1.2.0
4225 ##
4226 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
4227
4228 ##
4229 # @CpuModelInfo:
4230 #
4231 # Virtual CPU model.
4232 #
4233 # A CPU model consists of the name of a CPU definition, to which
4234 # delta changes are applied (e.g. features added/removed). Most magic values
4235 # that an architecture might require should be hidden behind the name.
4236 # However, if required, architectures can expose relevant properties.
4237 #
4238 # @name: the name of the CPU definition the model is based on
4239 # @props: #optional a dictionary of QOM properties to be applied
4240 #
4241 # Since: 2.8.0
4242 ##
4243 { 'struct': 'CpuModelInfo',
4244 'data': { 'name': 'str',
4245 '*props': 'any' } }
4246
4247 ##
4248 # @CpuModelExpansionType:
4249 #
4250 # An enumeration of CPU model expansion types.
4251 #
4252 # @static: Expand to a static CPU model, a combination of a static base
4253 # model name and property delta changes. As the static base model will
4254 # never change, the expanded CPU model will be the same, independant of
4255 # independent of QEMU version, machine type, machine options, and
4256 # accelerator options. Therefore, the resulting model can be used by
4257 # tooling without having to specify a compatibility machine - e.g. when
4258 # displaying the "host" model. static CPU models are migration-safe.
4259 #
4260 # @full: Expand all properties. The produced model is not guaranteed to be
4261 # migration-safe, but allows tooling to get an insight and work with
4262 # model details.
4263 #
4264 # Since: 2.8.0
4265 ##
4266 { 'enum': 'CpuModelExpansionType',
4267 'data': [ 'static', 'full' ] }
4268
4269
4270 ##
4271 # @CpuModelExpansionInfo:
4272 #
4273 # The result of a cpu model expansion.
4274 #
4275 # @model: the expanded CpuModelInfo.
4276 #
4277 # Since: 2.8.0
4278 ##
4279 { 'struct': 'CpuModelExpansionInfo',
4280 'data': { 'model': 'CpuModelInfo' } }
4281
4282
4283 ##
4284 # @query-cpu-model-expansion:
4285 #
4286 # Expands a given CPU model (or a combination of CPU model + additional options)
4287 # to different granularities, allowing tooling to get an understanding what a
4288 # specific CPU model looks like in QEMU under a certain configuration.
4289 #
4290 # This interface can be used to query the "host" CPU model.
4291 #
4292 # The data returned by this command may be affected by:
4293 #
4294 # * QEMU version: CPU models may look different depending on the QEMU version.
4295 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4296 # * machine-type: CPU model may look different depending on the machine-type.
4297 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4298 # * machine options (including accelerator): in some architectures, CPU models
4299 # may look different depending on machine and accelerator options. (Except for
4300 # CPU models reported as "static" in query-cpu-definitions.)
4301 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4302 # global properties may affect expansion of CPU models. Using
4303 # query-cpu-model-expansion while using these is not advised.
4304 #
4305 # Some architectures may not support all expansion types. s390x supports
4306 # "full" and "static".
4307 #
4308 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
4309 # not supported, if the model cannot be expanded, if the model contains
4310 # an unknown CPU definition name, unknown properties or properties
4311 # with a wrong type. Also returns an error if an expansion type is
4312 # not supported.
4313 #
4314 # Since: 2.8.0
4315 ##
4316 { 'command': 'query-cpu-model-expansion',
4317 'data': { 'type': 'CpuModelExpansionType',
4318 'model': 'CpuModelInfo' },
4319 'returns': 'CpuModelExpansionInfo' }
4320
4321 ##
4322 # @CpuModelCompareResult:
4323 #
4324 # An enumeration of CPU model comparation results. The result is usually
4325 # calculated using e.g. CPU features or CPU generations.
4326 #
4327 # @incompatible: If model A is incompatible to model B, model A is not
4328 # guaranteed to run where model B runs and the other way around.
4329 #
4330 # @identical: If model A is identical to model B, model A is guaranteed to run
4331 # where model B runs and the other way around.
4332 #
4333 # @superset: If model A is a superset of model B, model B is guaranteed to run
4334 # where model A runs. There are no guarantees about the other way.
4335 #
4336 # @subset: If model A is a subset of model B, model A is guaranteed to run
4337 # where model B runs. There are no guarantees about the other way.
4338 #
4339 # Since: 2.8.0
4340 ##
4341 { 'enum': 'CpuModelCompareResult',
4342 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
4343
4344 ##
4345 # @CpuModelCompareInfo:
4346 #
4347 # The result of a CPU model comparison.
4348 #
4349 # @result: The result of the compare operation.
4350 # @responsible-properties: List of properties that led to the comparison result
4351 # not being identical.
4352 #
4353 # @responsible-properties is a list of QOM property names that led to
4354 # both CPUs not being detected as identical. For identical models, this
4355 # list is empty.
4356 # If a QOM property is read-only, that means there's no known way to make the
4357 # CPU models identical. If the special property name "type" is included, the
4358 # models are by definition not identical and cannot be made identical.
4359 #
4360 # Since: 2.8.0
4361 ##
4362 { 'struct': 'CpuModelCompareInfo',
4363 'data': {'result': 'CpuModelCompareResult',
4364 'responsible-properties': ['str']
4365 }
4366 }
4367
4368 ##
4369 # @query-cpu-model-comparison:
4370 #
4371 # Compares two CPU models, returning how they compare in a specific
4372 # configuration. The results indicates how both models compare regarding
4373 # runnability. This result can be used by tooling to make decisions if a
4374 # certain CPU model will run in a certain configuration or if a compatible
4375 # CPU model has to be created by baselining.
4376 #
4377 # Usually, a CPU model is compared against the maximum possible CPU model
4378 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
4379 # model is identical or a subset, it will run in that configuration.
4380 #
4381 # The result returned by this command may be affected by:
4382 #
4383 # * QEMU version: CPU models may look different depending on the QEMU version.
4384 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4385 # * machine-type: CPU model may look different depending on the machine-type.
4386 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4387 # * machine options (including accelerator): in some architectures, CPU models
4388 # may look different depending on machine and accelerator options. (Except for
4389 # CPU models reported as "static" in query-cpu-definitions.)
4390 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4391 # global properties may affect expansion of CPU models. Using
4392 # query-cpu-model-expansion while using these is not advised.
4393 #
4394 # Some architectures may not support comparing CPU models. s390x supports
4395 # comparing CPU models.
4396 #
4397 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
4398 # not supported, if a model cannot be used, if a model contains
4399 # an unknown cpu definition name, unknown properties or properties
4400 # with wrong types.
4401 #
4402 # Since: 2.8.0
4403 ##
4404 { 'command': 'query-cpu-model-comparison',
4405 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
4406 'returns': 'CpuModelCompareInfo' }
4407
4408 ##
4409 # @CpuModelBaselineInfo:
4410 #
4411 # The result of a CPU model baseline.
4412 #
4413 # @model: the baselined CpuModelInfo.
4414 #
4415 # Since: 2.8.0
4416 ##
4417 { 'struct': 'CpuModelBaselineInfo',
4418 'data': { 'model': 'CpuModelInfo' } }
4419
4420 ##
4421 # @query-cpu-model-baseline:
4422 #
4423 # Baseline two CPU models, creating a compatible third model. The created
4424 # model will always be a static, migration-safe CPU model (see "static"
4425 # CPU model expansion for details).
4426 #
4427 # This interface can be used by tooling to create a compatible CPU model out
4428 # two CPU models. The created CPU model will be identical to or a subset of
4429 # both CPU models when comparing them. Therefore, the created CPU model is
4430 # guaranteed to run where the given CPU models run.
4431 #
4432 # The result returned by this command may be affected by:
4433 #
4434 # * QEMU version: CPU models may look different depending on the QEMU version.
4435 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4436 # * machine-type: CPU model may look different depending on the machine-type.
4437 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4438 # * machine options (including accelerator): in some architectures, CPU models
4439 # may look different depending on machine and accelerator options. (Except for
4440 # CPU models reported as "static" in query-cpu-definitions.)
4441 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4442 # global properties may affect expansion of CPU models. Using
4443 # query-cpu-model-expansion while using these is not advised.
4444 #
4445 # Some architectures may not support baselining CPU models. s390x supports
4446 # baselining CPU models.
4447 #
4448 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
4449 # not supported, if a model cannot be used, if a model contains
4450 # an unknown cpu definition name, unknown properties or properties
4451 # with wrong types.
4452 #
4453 # Since: 2.8.0
4454 ##
4455 { 'command': 'query-cpu-model-baseline',
4456 'data': { 'modela': 'CpuModelInfo',
4457 'modelb': 'CpuModelInfo' },
4458 'returns': 'CpuModelBaselineInfo' }
4459
4460 ##
4461 # @AddfdInfo:
4462 #
4463 # Information about a file descriptor that was added to an fd set.
4464 #
4465 # @fdset-id: The ID of the fd set that @fd was added to.
4466 #
4467 # @fd: The file descriptor that was received via SCM rights and
4468 # added to the fd set.
4469 #
4470 # Since: 1.2.0
4471 ##
4472 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
4473
4474 ##
4475 # @add-fd:
4476 #
4477 # Add a file descriptor, that was passed via SCM rights, to an fd set.
4478 #
4479 # @fdset-id: #optional The ID of the fd set to add the file descriptor to.
4480 #
4481 # @opaque: #optional A free-form string that can be used to describe the fd.
4482 #
4483 # Returns: @AddfdInfo on success
4484 #
4485 # If file descriptor was not received, FdNotSupplied
4486 #
4487 # If @fdset-id is a negative value, InvalidParameterValue
4488 #
4489 # Notes: The list of fd sets is shared by all monitor connections.
4490 #
4491 # If @fdset-id is not specified, a new fd set will be created.
4492 #
4493 # Since: 1.2.0
4494 #
4495 # Example:
4496 #
4497 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
4498 # <- { "return": { "fdset-id": 1, "fd": 3 } }
4499 #
4500 ##
4501 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
4502 'returns': 'AddfdInfo' }
4503
4504 ##
4505 # @remove-fd:
4506 #
4507 # Remove a file descriptor from an fd set.
4508 #
4509 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
4510 #
4511 # @fd: #optional The file descriptor that is to be removed.
4512 #
4513 # Returns: Nothing on success
4514 # If @fdset-id or @fd is not found, FdNotFound
4515 #
4516 # Since: 1.2.0
4517 #
4518 # Notes: The list of fd sets is shared by all monitor connections.
4519 #
4520 # If @fd is not specified, all file descriptors in @fdset-id
4521 # will be removed.
4522 #
4523 # Example:
4524 #
4525 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
4526 # <- { "return": {} }
4527 #
4528 ##
4529 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
4530
4531 ##
4532 # @FdsetFdInfo:
4533 #
4534 # Information about a file descriptor that belongs to an fd set.
4535 #
4536 # @fd: The file descriptor value.
4537 #
4538 # @opaque: #optional A free-form string that can be used to describe the fd.
4539 #
4540 # Since: 1.2.0
4541 ##
4542 { 'struct': 'FdsetFdInfo',
4543 'data': {'fd': 'int', '*opaque': 'str'} }
4544
4545 ##
4546 # @FdsetInfo:
4547 #
4548 # Information about an fd set.
4549 #
4550 # @fdset-id: The ID of the fd set.
4551 #
4552 # @fds: A list of file descriptors that belong to this fd set.
4553 #
4554 # Since: 1.2.0
4555 ##
4556 { 'struct': 'FdsetInfo',
4557 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
4558
4559 ##
4560 # @query-fdsets:
4561 #
4562 # Return information describing all fd sets.
4563 #
4564 # Returns: A list of @FdsetInfo
4565 #
4566 # Since: 1.2.0
4567 #
4568 # Note: The list of fd sets is shared by all monitor connections.
4569 #
4570 # Example:
4571 #
4572 # -> { "execute": "query-fdsets" }
4573 # <- { "return": [
4574 # {
4575 # "fds": [
4576 # {
4577 # "fd": 30,
4578 # "opaque": "rdonly:/path/to/file"
4579 # },
4580 # {
4581 # "fd": 24,
4582 # "opaque": "rdwr:/path/to/file"
4583 # }
4584 # ],
4585 # "fdset-id": 1
4586 # },
4587 # {
4588 # "fds": [
4589 # {
4590 # "fd": 28
4591 # },
4592 # {
4593 # "fd": 29
4594 # }
4595 # ],
4596 # "fdset-id": 0
4597 # }
4598 # ]
4599 # }
4600 #
4601 ##
4602 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
4603
4604 ##
4605 # @TargetInfo:
4606 #
4607 # Information describing the QEMU target.
4608 #
4609 # @arch: the target architecture (eg "x86_64", "i386", etc)
4610 #
4611 # Since: 1.2.0
4612 ##
4613 { 'struct': 'TargetInfo',
4614 'data': { 'arch': 'str' } }
4615
4616 ##
4617 # @query-target:
4618 #
4619 # Return information about the target for this QEMU
4620 #
4621 # Returns: TargetInfo
4622 #
4623 # Since: 1.2.0
4624 ##
4625 { 'command': 'query-target', 'returns': 'TargetInfo' }
4626
4627 ##
4628 # @QKeyCode:
4629 #
4630 # An enumeration of key name.
4631 #
4632 # This is used by the @send-key command.
4633 #
4634 # @unmapped: since 2.0
4635 # @pause: since 2.0
4636 # @ro: since 2.4
4637 # @kp_comma: since 2.4
4638 # @kp_equals: since 2.6
4639 # @power: since 2.6
4640 # @hiragana: since 2.9
4641 # @henkan: since 2.9
4642 # @yen: since 2.9
4643 #
4644 # Since: 1.3.0
4645 #
4646 ##
4647 { 'enum': 'QKeyCode',
4648 'data': [ 'unmapped',
4649 'shift', 'shift_r', 'alt', 'alt_r', 'altgr', 'altgr_r', 'ctrl',
4650 'ctrl_r', 'menu', 'esc', '1', '2', '3', '4', '5', '6', '7', '8',
4651 '9', '0', 'minus', 'equal', 'backspace', 'tab', 'q', 'w', 'e',
4652 'r', 't', 'y', 'u', 'i', 'o', 'p', 'bracket_left', 'bracket_right',
4653 'ret', 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'semicolon',
4654 'apostrophe', 'grave_accent', 'backslash', 'z', 'x', 'c', 'v', 'b',
4655 'n', 'm', 'comma', 'dot', 'slash', 'asterisk', 'spc', 'caps_lock',
4656 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10',
4657 'num_lock', 'scroll_lock', 'kp_divide', 'kp_multiply',
4658 'kp_subtract', 'kp_add', 'kp_enter', 'kp_decimal', 'sysrq', 'kp_0',
4659 'kp_1', 'kp_2', 'kp_3', 'kp_4', 'kp_5', 'kp_6', 'kp_7', 'kp_8',
4660 'kp_9', 'less', 'f11', 'f12', 'print', 'home', 'pgup', 'pgdn', 'end',
4661 'left', 'up', 'down', 'right', 'insert', 'delete', 'stop', 'again',
4662 'props', 'undo', 'front', 'copy', 'open', 'paste', 'find', 'cut',
4663 'lf', 'help', 'meta_l', 'meta_r', 'compose', 'pause',
4664 'ro', 'hiragana', 'henkan', 'yen',
4665 'kp_comma', 'kp_equals', 'power' ] }
4666
4667 ##
4668 # @KeyValue:
4669 #
4670 # Represents a keyboard key.
4671 #
4672 # Since: 1.3.0
4673 ##
4674 { 'union': 'KeyValue',
4675 'data': {
4676 'number': 'int',
4677 'qcode': 'QKeyCode' } }
4678
4679 ##
4680 # @send-key:
4681 #
4682 # Send keys to guest.
4683 #
4684 # @keys: An array of @KeyValue elements. All @KeyValues in this array are
4685 # simultaneously sent to the guest. A @KeyValue.number value is sent
4686 # directly to the guest, while @KeyValue.qcode must be a valid
4687 # @QKeyCode value
4688 #
4689 # @hold-time: #optional time to delay key up events, milliseconds. Defaults
4690 # to 100
4691 #
4692 # Returns: Nothing on success
4693 # If key is unknown or redundant, InvalidParameter
4694 #
4695 # Since: 1.3.0
4696 #
4697 # Example:
4698 #
4699 # -> { "execute": "send-key",
4700 # "arguments": { "keys": [ { "type": "qcode", "data": "ctrl" },
4701 # { "type": "qcode", "data": "alt" },
4702 # { "type": "qcode", "data": "delete" } ] } }
4703 # <- { "return": {} }
4704 #
4705 ##
4706 { 'command': 'send-key',
4707 'data': { 'keys': ['KeyValue'], '*hold-time': 'int' } }
4708
4709 ##
4710 # @screendump:
4711 #
4712 # Write a PPM of the VGA screen to a file.
4713 #
4714 # @filename: the path of a new PPM file to store the image
4715 #
4716 # Returns: Nothing on success
4717 #
4718 # Since: 0.14.0
4719 #
4720 # Example:
4721 #
4722 # -> { "execute": "screendump",
4723 # "arguments": { "filename": "/tmp/image" } }
4724 # <- { "return": {} }
4725 #
4726 ##
4727 { 'command': 'screendump', 'data': {'filename': 'str'} }
4728
4729
4730 ##
4731 # @ChardevCommon:
4732 #
4733 # Configuration shared across all chardev backends
4734 #
4735 # @logfile: #optional The name of a logfile to save output
4736 # @logappend: #optional true to append instead of truncate
4737 # (default to false to truncate)
4738 #
4739 # Since: 2.6
4740 ##
4741 { 'struct': 'ChardevCommon', 'data': { '*logfile': 'str',
4742 '*logappend': 'bool' } }
4743
4744 ##
4745 # @ChardevFile:
4746 #
4747 # Configuration info for file chardevs.
4748 #
4749 # @in: #optional The name of the input file
4750 # @out: The name of the output file
4751 # @append: #optional Open the file in append mode (default false to
4752 # truncate) (Since 2.6)
4753 #
4754 # Since: 1.4
4755 ##
4756 { 'struct': 'ChardevFile', 'data': { '*in' : 'str',
4757 'out' : 'str',
4758 '*append': 'bool' },
4759 'base': 'ChardevCommon' }
4760
4761 ##
4762 # @ChardevHostdev:
4763 #
4764 # Configuration info for device and pipe chardevs.
4765 #
4766 # @device: The name of the special file for the device,
4767 # i.e. /dev/ttyS0 on Unix or COM1: on Windows
4768 #
4769 # Since: 1.4
4770 ##
4771 { 'struct': 'ChardevHostdev', 'data': { 'device' : 'str' },
4772 'base': 'ChardevCommon' }
4773
4774 ##
4775 # @ChardevSocket:
4776 #
4777 # Configuration info for (stream) socket chardevs.
4778 #
4779 # @addr: socket address to listen on (server=true)
4780 # or connect to (server=false)
4781 # @tls-creds: #optional the ID of the TLS credentials object (since 2.6)
4782 # @server: #optional create server socket (default: true)
4783 # @wait: #optional wait for incoming connection on server
4784 # sockets (default: false).
4785 # @nodelay: #optional set TCP_NODELAY socket option (default: false)
4786 # @telnet: #optional enable telnet protocol on server
4787 # sockets (default: false)
4788 # @reconnect: #optional For a client socket, if a socket is disconnected,
4789 # then attempt a reconnect after the given number of seconds.
4790 # Setting this to zero disables this function. (default: 0)
4791 # (Since: 2.2)
4792 #
4793 # Since: 1.4
4794 ##
4795 { 'struct': 'ChardevSocket', 'data': { 'addr' : 'SocketAddress',
4796 '*tls-creds' : 'str',
4797 '*server' : 'bool',
4798 '*wait' : 'bool',
4799 '*nodelay' : 'bool',
4800 '*telnet' : 'bool',
4801 '*reconnect' : 'int' },
4802 'base': 'ChardevCommon' }
4803
4804 ##
4805 # @ChardevUdp:
4806 #
4807 # Configuration info for datagram socket chardevs.
4808 #
4809 # @remote: remote address
4810 # @local: #optional local address
4811 #
4812 # Since: 1.5
4813 ##
4814 { 'struct': 'ChardevUdp', 'data': { 'remote' : 'SocketAddress',
4815 '*local' : 'SocketAddress' },
4816 'base': 'ChardevCommon' }
4817
4818 ##
4819 # @ChardevMux:
4820 #
4821 # Configuration info for mux chardevs.
4822 #
4823 # @chardev: name of the base chardev.
4824 #
4825 # Since: 1.5
4826 ##
4827 { 'struct': 'ChardevMux', 'data': { 'chardev' : 'str' },
4828 'base': 'ChardevCommon' }
4829
4830 ##
4831 # @ChardevStdio:
4832 #
4833 # Configuration info for stdio chardevs.
4834 #
4835 # @signal: #optional Allow signals (such as SIGINT triggered by ^C)
4836 # be delivered to qemu. Default: true in -nographic mode,
4837 # false otherwise.
4838 #
4839 # Since: 1.5
4840 ##
4841 { 'struct': 'ChardevStdio', 'data': { '*signal' : 'bool' },
4842 'base': 'ChardevCommon' }
4843
4844
4845 ##
4846 # @ChardevSpiceChannel:
4847 #
4848 # Configuration info for spice vm channel chardevs.
4849 #
4850 # @type: kind of channel (for example vdagent).
4851 #
4852 # Since: 1.5
4853 ##
4854 { 'struct': 'ChardevSpiceChannel', 'data': { 'type' : 'str' },
4855 'base': 'ChardevCommon' }
4856
4857 ##
4858 # @ChardevSpicePort:
4859 #
4860 # Configuration info for spice port chardevs.
4861 #
4862 # @fqdn: name of the channel (see docs/spice-port-fqdn.txt)
4863 #
4864 # Since: 1.5
4865 ##
4866 { 'struct': 'ChardevSpicePort', 'data': { 'fqdn' : 'str' },
4867 'base': 'ChardevCommon' }
4868
4869 ##
4870 # @ChardevVC:
4871 #
4872 # Configuration info for virtual console chardevs.
4873 #
4874 # @width: console width, in pixels
4875 # @height: console height, in pixels
4876 # @cols: console width, in chars
4877 # @rows: console height, in chars
4878 #
4879 # Since: 1.5
4880 ##
4881 { 'struct': 'ChardevVC', 'data': { '*width' : 'int',
4882 '*height' : 'int',
4883 '*cols' : 'int',
4884 '*rows' : 'int' },
4885 'base': 'ChardevCommon' }
4886
4887 ##
4888 # @ChardevRingbuf:
4889 #
4890 # Configuration info for ring buffer chardevs.
4891 #
4892 # @size: #optional ring buffer size, must be power of two, default is 65536
4893 #
4894 # Since: 1.5
4895 ##
4896 { 'struct': 'ChardevRingbuf', 'data': { '*size' : 'int' },
4897 'base': 'ChardevCommon' }
4898
4899 ##
4900 # @ChardevBackend:
4901 #
4902 # Configuration info for the new chardev backend.
4903 #
4904 # Since: 1.4 (testdev since 2.2, wctablet since 2.9)
4905 ##
4906 { 'union': 'ChardevBackend', 'data': { 'file' : 'ChardevFile',
4907 'serial' : 'ChardevHostdev',
4908 'parallel': 'ChardevHostdev',
4909 'pipe' : 'ChardevHostdev',
4910 'socket' : 'ChardevSocket',
4911 'udp' : 'ChardevUdp',
4912 'pty' : 'ChardevCommon',
4913 'null' : 'ChardevCommon',
4914 'mux' : 'ChardevMux',
4915 'msmouse': 'ChardevCommon',
4916 'wctablet' : 'ChardevCommon',
4917 'braille': 'ChardevCommon',
4918 'testdev': 'ChardevCommon',
4919 'stdio' : 'ChardevStdio',
4920 'console': 'ChardevCommon',
4921 'spicevmc' : 'ChardevSpiceChannel',
4922 'spiceport' : 'ChardevSpicePort',
4923 'vc' : 'ChardevVC',
4924 'ringbuf': 'ChardevRingbuf',
4925 # next one is just for compatibility
4926 'memory' : 'ChardevRingbuf' } }
4927
4928 ##
4929 # @ChardevReturn:
4930 #
4931 # Return info about the chardev backend just created.
4932 #
4933 # @pty: #optional name of the slave pseudoterminal device, present if
4934 # and only if a chardev of type 'pty' was created
4935 #
4936 # Since: 1.4
4937 ##
4938 { 'struct' : 'ChardevReturn', 'data': { '*pty' : 'str' } }
4939
4940 ##
4941 # @chardev-add:
4942 #
4943 # Add a character device backend
4944 #
4945 # @id: the chardev's ID, must be unique
4946 # @backend: backend type and parameters
4947 #
4948 # Returns: ChardevReturn.
4949 #
4950 # Since: 1.4
4951 #
4952 # Example:
4953 #
4954 # -> { "execute" : "chardev-add",
4955 # "arguments" : { "id" : "foo",
4956 # "backend" : { "type" : "null", "data" : {} } } }
4957 # <- { "return": {} }
4958 #
4959 # -> { "execute" : "chardev-add",
4960 # "arguments" : { "id" : "bar",
4961 # "backend" : { "type" : "file",
4962 # "data" : { "out" : "/tmp/bar.log" } } } }
4963 # <- { "return": {} }
4964 #
4965 # -> { "execute" : "chardev-add",
4966 # "arguments" : { "id" : "baz",
4967 # "backend" : { "type" : "pty", "data" : {} } } }
4968 # <- { "return": { "pty" : "/dev/pty/42" } }
4969 #
4970 ##
4971 { 'command': 'chardev-add', 'data': {'id' : 'str',
4972 'backend' : 'ChardevBackend' },
4973 'returns': 'ChardevReturn' }
4974
4975 ##
4976 # @chardev-remove:
4977 #
4978 # Remove a character device backend
4979 #
4980 # @id: the chardev's ID, must exist and not be in use
4981 #
4982 # Returns: Nothing on success
4983 #
4984 # Since: 1.4
4985 #
4986 # Example:
4987 #
4988 # -> { "execute": "chardev-remove", "arguments": { "id" : "foo" } }
4989 # <- { "return": {} }
4990 #
4991 ##
4992 { 'command': 'chardev-remove', 'data': {'id': 'str'} }
4993
4994 ##
4995 # @TpmModel:
4996 #
4997 # An enumeration of TPM models
4998 #
4999 # @tpm-tis: TPM TIS model
5000 #
5001 # Since: 1.5
5002 ##
5003 { 'enum': 'TpmModel', 'data': [ 'tpm-tis' ] }
5004
5005 ##
5006 # @query-tpm-models:
5007 #
5008 # Return a list of supported TPM models
5009 #
5010 # Returns: a list of TpmModel
5011 #
5012 # Since: 1.5
5013 #
5014 # Example:
5015 #
5016 # -> { "execute": "query-tpm-models" }
5017 # <- { "return": [ "tpm-tis" ] }
5018 #
5019 ##
5020 { 'command': 'query-tpm-models', 'returns': ['TpmModel'] }
5021
5022 ##
5023 # @TpmType:
5024 #
5025 # An enumeration of TPM types
5026 #
5027 # @passthrough: TPM passthrough type
5028 #
5029 # Since: 1.5
5030 ##
5031 { 'enum': 'TpmType', 'data': [ 'passthrough' ] }
5032
5033 ##
5034 # @query-tpm-types:
5035 #
5036 # Return a list of supported TPM types
5037 #
5038 # Returns: a list of TpmType
5039 #
5040 # Since: 1.5
5041 #
5042 # Example:
5043 #
5044 # -> { "execute": "query-tpm-types" }
5045 # <- { "return": [ "passthrough" ] }
5046 #
5047 ##
5048 { 'command': 'query-tpm-types', 'returns': ['TpmType'] }
5049
5050 ##
5051 # @TPMPassthroughOptions:
5052 #
5053 # Information about the TPM passthrough type
5054 #
5055 # @path: #optional string describing the path used for accessing the TPM device
5056 #
5057 # @cancel-path: #optional string showing the TPM's sysfs cancel file
5058 # for cancellation of TPM commands while they are executing
5059 #
5060 # Since: 1.5
5061 ##
5062 { 'struct': 'TPMPassthroughOptions', 'data': { '*path' : 'str',
5063 '*cancel-path' : 'str'} }
5064
5065 ##
5066 # @TpmTypeOptions:
5067 #
5068 # A union referencing different TPM backend types' configuration options
5069 #
5070 # @type: 'passthrough' The configuration options for the TPM passthrough type
5071 #
5072 # Since: 1.5
5073 ##
5074 { 'union': 'TpmTypeOptions',
5075 'data': { 'passthrough' : 'TPMPassthroughOptions' } }
5076
5077 ##
5078 # @TPMInfo:
5079 #
5080 # Information about the TPM
5081 #
5082 # @id: The Id of the TPM
5083 #
5084 # @model: The TPM frontend model
5085 #
5086 # @options: The TPM (backend) type configuration options
5087 #
5088 # Since: 1.5
5089 ##
5090 { 'struct': 'TPMInfo',
5091 'data': {'id': 'str',
5092 'model': 'TpmModel',
5093 'options': 'TpmTypeOptions' } }
5094
5095 ##
5096 # @query-tpm:
5097 #
5098 # Return information about the TPM device
5099 #
5100 # Returns: @TPMInfo on success
5101 #
5102 # Since: 1.5
5103 #
5104 # Example:
5105 #
5106 # -> { "execute": "query-tpm" }
5107 # <- { "return":
5108 # [
5109 # { "model": "tpm-tis",
5110 # "options":
5111 # { "type": "passthrough",
5112 # "data":
5113 # { "cancel-path": "/sys/class/misc/tpm0/device/cancel",
5114 # "path": "/dev/tpm0"
5115 # }
5116 # },
5117 # "id": "tpm0"
5118 # }
5119 # ]
5120 # }
5121 #
5122 ##
5123 { 'command': 'query-tpm', 'returns': ['TPMInfo'] }
5124
5125 ##
5126 # @AcpiTableOptions:
5127 #
5128 # Specify an ACPI table on the command line to load.
5129 #
5130 # At most one of @file and @data can be specified. The list of files specified
5131 # by any one of them is loaded and concatenated in order. If both are omitted,
5132 # @data is implied.
5133 #
5134 # Other fields / optargs can be used to override fields of the generic ACPI
5135 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
5136 # Description Table Header. If a header field is not overridden, then the
5137 # corresponding value from the concatenated blob is used (in case of @file), or
5138 # it is filled in with a hard-coded value (in case of @data).
5139 #
5140 # String fields are copied into the matching ACPI member from lowest address
5141 # upwards, and silently truncated / NUL-padded to length.
5142 #
5143 # @sig: #optional table signature / identifier (4 bytes)
5144 #
5145 # @rev: #optional table revision number (dependent on signature, 1 byte)
5146 #
5147 # @oem_id: #optional OEM identifier (6 bytes)
5148 #
5149 # @oem_table_id: #optional OEM table identifier (8 bytes)
5150 #
5151 # @oem_rev: #optional OEM-supplied revision number (4 bytes)
5152 #
5153 # @asl_compiler_id: #optional identifier of the utility that created the table
5154 # (4 bytes)
5155 #
5156 # @asl_compiler_rev: #optional revision number of the utility that created the
5157 # table (4 bytes)
5158 #
5159 # @file: #optional colon (:) separated list of pathnames to load and
5160 # concatenate as table data. The resultant binary blob is expected to
5161 # have an ACPI table header. At least one file is required. This field
5162 # excludes @data.
5163 #
5164 # @data: #optional colon (:) separated list of pathnames to load and
5165 # concatenate as table data. The resultant binary blob must not have an
5166 # ACPI table header. At least one file is required. This field excludes
5167 # @file.
5168 #
5169 # Since: 1.5
5170 ##
5171 { 'struct': 'AcpiTableOptions',
5172 'data': {
5173 '*sig': 'str',
5174 '*rev': 'uint8',
5175 '*oem_id': 'str',
5176 '*oem_table_id': 'str',
5177 '*oem_rev': 'uint32',
5178 '*asl_compiler_id': 'str',
5179 '*asl_compiler_rev': 'uint32',
5180 '*file': 'str',
5181 '*data': 'str' }}
5182
5183 ##
5184 # @CommandLineParameterType:
5185 #
5186 # Possible types for an option parameter.
5187 #
5188 # @string: accepts a character string
5189 #
5190 # @boolean: accepts "on" or "off"
5191 #
5192 # @number: accepts a number
5193 #
5194 # @size: accepts a number followed by an optional suffix (K)ilo,
5195 # (M)ega, (G)iga, (T)era
5196 #
5197 # Since: 1.5
5198 ##
5199 { 'enum': 'CommandLineParameterType',
5200 'data': ['string', 'boolean', 'number', 'size'] }
5201
5202 ##
5203 # @CommandLineParameterInfo:
5204 #
5205 # Details about a single parameter of a command line option.
5206 #
5207 # @name: parameter name
5208 #
5209 # @type: parameter @CommandLineParameterType
5210 #
5211 # @help: #optional human readable text string, not suitable for parsing.
5212 #
5213 # @default: #optional default value string (since 2.1)
5214 #
5215 # Since: 1.5
5216 ##
5217 { 'struct': 'CommandLineParameterInfo',
5218 'data': { 'name': 'str',
5219 'type': 'CommandLineParameterType',
5220 '*help': 'str',
5221 '*default': 'str' } }
5222
5223 ##
5224 # @CommandLineOptionInfo:
5225 #
5226 # Details about a command line option, including its list of parameter details
5227 #
5228 # @option: option name
5229 #
5230 # @parameters: an array of @CommandLineParameterInfo
5231 #
5232 # Since: 1.5
5233 ##
5234 { 'struct': 'CommandLineOptionInfo',
5235 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
5236
5237 ##
5238 # @query-command-line-options:
5239 #
5240 # Query command line option schema.
5241 #
5242 # @option: #optional option name
5243 #
5244 # Returns: list of @CommandLineOptionInfo for all options (or for the given
5245 # @option). Returns an error if the given @option doesn't exist.
5246 #
5247 # Since: 1.5
5248 #
5249 # Example:
5250 #
5251 # -> { "execute": "query-command-line-options",
5252 # "arguments": { "option": "option-rom" } }
5253 # <- { "return": [
5254 # {
5255 # "parameters": [
5256 # {
5257 # "name": "romfile",
5258 # "type": "string"
5259 # },
5260 # {
5261 # "name": "bootindex",
5262 # "type": "number"
5263 # }
5264 # ],
5265 # "option": "option-rom"
5266 # }
5267 # ]
5268 # }
5269 #
5270 ##
5271 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
5272 'returns': ['CommandLineOptionInfo'] }
5273
5274 ##
5275 # @X86CPURegister32:
5276 #
5277 # A X86 32-bit register
5278 #
5279 # Since: 1.5
5280 ##
5281 { 'enum': 'X86CPURegister32',
5282 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
5283
5284 ##
5285 # @X86CPUFeatureWordInfo:
5286 #
5287 # Information about a X86 CPU feature word
5288 #
5289 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
5290 #
5291 # @cpuid-input-ecx: #optional Input ECX value for CPUID instruction for that
5292 # feature word
5293 #
5294 # @cpuid-register: Output register containing the feature bits
5295 #
5296 # @features: value of output register, containing the feature bits
5297 #
5298 # Since: 1.5
5299 ##
5300 { 'struct': 'X86CPUFeatureWordInfo',
5301 'data': { 'cpuid-input-eax': 'int',
5302 '*cpuid-input-ecx': 'int',
5303 'cpuid-register': 'X86CPURegister32',
5304 'features': 'int' } }
5305
5306 ##
5307 # @DummyForceArrays:
5308 #
5309 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
5310 #
5311 # Since: 2.5
5312 ##
5313 { 'struct': 'DummyForceArrays',
5314 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
5315
5316
5317 ##
5318 # @RxState:
5319 #
5320 # Packets receiving state
5321 #
5322 # @normal: filter assigned packets according to the mac-table
5323 #
5324 # @none: don't receive any assigned packet
5325 #
5326 # @all: receive all assigned packets
5327 #
5328 # Since: 1.6
5329 ##
5330 { 'enum': 'RxState', 'data': [ 'normal', 'none', 'all' ] }
5331
5332 ##
5333 # @RxFilterInfo:
5334 #
5335 # Rx-filter information for a NIC.
5336 #
5337 # @name: net client name
5338 #
5339 # @promiscuous: whether promiscuous mode is enabled
5340 #
5341 # @multicast: multicast receive state
5342 #
5343 # @unicast: unicast receive state
5344 #
5345 # @vlan: vlan receive state (Since 2.0)
5346 #
5347 # @broadcast-allowed: whether to receive broadcast
5348 #
5349 # @multicast-overflow: multicast table is overflowed or not
5350 #
5351 # @unicast-overflow: unicast table is overflowed or not
5352 #
5353 # @main-mac: the main macaddr string
5354 #
5355 # @vlan-table: a list of active vlan id
5356 #
5357 # @unicast-table: a list of unicast macaddr string
5358 #
5359 # @multicast-table: a list of multicast macaddr string
5360 #
5361 # Since: 1.6
5362 ##
5363 { 'struct': 'RxFilterInfo',
5364 'data': {
5365 'name': 'str',
5366 'promiscuous': 'bool',
5367 'multicast': 'RxState',
5368 'unicast': 'RxState',
5369 'vlan': 'RxState',
5370 'broadcast-allowed': 'bool',
5371 'multicast-overflow': 'bool',
5372 'unicast-overflow': 'bool',
5373 'main-mac': 'str',
5374 'vlan-table': ['int'],
5375 'unicast-table': ['str'],
5376 'multicast-table': ['str'] }}
5377
5378 ##
5379 # @query-rx-filter:
5380 #
5381 # Return rx-filter information for all NICs (or for the given NIC).
5382 #
5383 # @name: #optional net client name
5384 #
5385 # Returns: list of @RxFilterInfo for all NICs (or for the given NIC).
5386 # Returns an error if the given @name doesn't exist, or given
5387 # NIC doesn't support rx-filter querying, or given net client
5388 # isn't a NIC.
5389 #
5390 # Since: 1.6
5391 #
5392 # Example:
5393 #
5394 # -> { "execute": "query-rx-filter", "arguments": { "name": "vnet0" } }
5395 # <- { "return": [
5396 # {
5397 # "promiscuous": true,
5398 # "name": "vnet0",
5399 # "main-mac": "52:54:00:12:34:56",
5400 # "unicast": "normal",
5401 # "vlan": "normal",
5402 # "vlan-table": [
5403 # 4,
5404 # 0
5405 # ],
5406 # "unicast-table": [
5407 # ],
5408 # "multicast": "normal",
5409 # "multicast-overflow": false,
5410 # "unicast-overflow": false,
5411 # "multicast-table": [
5412 # "01:00:5e:00:00:01",
5413 # "33:33:00:00:00:01",
5414 # "33:33:ff:12:34:56"
5415 # ],
5416 # "broadcast-allowed": false
5417 # }
5418 # ]
5419 # }
5420 #
5421 ##
5422 { 'command': 'query-rx-filter', 'data': { '*name': 'str' },
5423 'returns': ['RxFilterInfo'] }
5424
5425 ##
5426 # @InputButton:
5427 #
5428 # Button of a pointer input device (mouse, tablet).
5429 #
5430 # @side: front side button of a 5-button mouse (since 2.9)
5431 #
5432 # @extra: rear side button of a 5-button mouse (since 2.9)
5433 #
5434 # Since: 2.0
5435 ##
5436 { 'enum' : 'InputButton',
5437 'data' : [ 'left', 'middle', 'right', 'wheel-up', 'wheel-down', 'side',
5438 'extra' ] }
5439
5440 ##
5441 # @InputAxis:
5442 #
5443 # Position axis of a pointer input device (mouse, tablet).
5444 #
5445 # Since: 2.0
5446 ##
5447 { 'enum' : 'InputAxis',
5448 'data' : [ 'x', 'y' ] }
5449
5450 ##
5451 # @InputKeyEvent:
5452 #
5453 # Keyboard input event.
5454 #
5455 # @key: Which key this event is for.
5456 # @down: True for key-down and false for key-up events.
5457 #
5458 # Since: 2.0
5459 ##
5460 { 'struct' : 'InputKeyEvent',
5461 'data' : { 'key' : 'KeyValue',
5462 'down' : 'bool' } }
5463
5464 ##
5465 # @InputBtnEvent:
5466 #
5467 # Pointer button input event.
5468 #
5469 # @button: Which button this event is for.
5470 # @down: True for key-down and false for key-up events.
5471 #
5472 # Since: 2.0
5473 ##
5474 { 'struct' : 'InputBtnEvent',
5475 'data' : { 'button' : 'InputButton',
5476 'down' : 'bool' } }
5477
5478 ##
5479 # @InputMoveEvent:
5480 #
5481 # Pointer motion input event.
5482 #
5483 # @axis: Which axis is referenced by @value.
5484 # @value: Pointer position. For absolute coordinates the
5485 # valid range is 0 -> 0x7ffff
5486 #
5487 # Since: 2.0
5488 ##
5489 { 'struct' : 'InputMoveEvent',
5490 'data' : { 'axis' : 'InputAxis',
5491 'value' : 'int' } }
5492
5493 ##
5494 # @InputEvent:
5495 #
5496 # Input event union.
5497 #
5498 # @type: the input type, one of:
5499 # - 'key': Input event of Keyboard
5500 # - 'btn': Input event of pointer buttons
5501 # - 'rel': Input event of relative pointer motion
5502 # - 'abs': Input event of absolute pointer motion
5503 #
5504 # Since: 2.0
5505 ##
5506 { 'union' : 'InputEvent',
5507 'data' : { 'key' : 'InputKeyEvent',
5508 'btn' : 'InputBtnEvent',
5509 'rel' : 'InputMoveEvent',
5510 'abs' : 'InputMoveEvent' } }
5511
5512 ##
5513 # @input-send-event:
5514 #
5515 # Send input event(s) to guest.
5516 #
5517 # @device: #optional display device to send event(s) to.
5518 # @head: #optional head to send event(s) to, in case the
5519 # display device supports multiple scanouts.
5520 # @events: List of InputEvent union.
5521 #
5522 # Returns: Nothing on success.
5523 #
5524 # The @device and @head parameters can be used to send the input event
5525 # to specific input devices in case (a) multiple input devices of the
5526 # same kind are added to the virtual machine and (b) you have
5527 # configured input routing (see docs/multiseat.txt) for those input
5528 # devices. The parameters work exactly like the device and head
5529 # properties of input devices. If @device is missing, only devices
5530 # that have no input routing config are admissible. If @device is
5531 # specified, both input devices with and without input routing config
5532 # are admissible, but devices with input routing config take
5533 # precedence.
5534 #
5535 # Since: 2.6
5536 #
5537 # Note: The consoles are visible in the qom tree, under
5538 # /backend/console[$index]. They have a device link and head property,
5539 # so it is possible to map which console belongs to which device and
5540 # display.
5541 #
5542 # Example:
5543 #
5544 # 1. Press left mouse button.
5545 #
5546 # -> { "execute": "input-send-event",
5547 # "arguments": { "device": "video0",
5548 # "events": [ { "type": "btn",
5549 # "data" : { "down": true, "button": "left" } } ] } }
5550 # <- { "return": {} }
5551 #
5552 # -> { "execute": "input-send-event",
5553 # "arguments": { "device": "video0",
5554 # "events": [ { "type": "btn",
5555 # "data" : { "down": false, "button": "left" } } ] } }
5556 # <- { "return": {} }
5557 #
5558 # 2. Press ctrl-alt-del.
5559 #
5560 # -> { "execute": "input-send-event",
5561 # "arguments": { "events": [
5562 # { "type": "key", "data" : { "down": true,
5563 # "key": {"type": "qcode", "data": "ctrl" } } },
5564 # { "type": "key", "data" : { "down": true,
5565 # "key": {"type": "qcode", "data": "alt" } } },
5566 # { "type": "key", "data" : { "down": true,
5567 # "key": {"type": "qcode", "data": "delete" } } } ] } }
5568 # <- { "return": {} }
5569 #
5570 # 3. Move mouse pointer to absolute coordinates (20000, 400).
5571 #
5572 # -> { "execute": "input-send-event" ,
5573 # "arguments": { "events": [
5574 # { "type": "abs", "data" : { "axis": "x", "value" : 20000 } },
5575 # { "type": "abs", "data" : { "axis": "y", "value" : 400 } } ] } }
5576 # <- { "return": {} }
5577 #
5578 ##
5579 { 'command': 'input-send-event',
5580 'data': { '*device': 'str',
5581 '*head' : 'int',
5582 'events' : [ 'InputEvent' ] } }
5583
5584 ##
5585 # @NumaOptionsType:
5586 #
5587 # Since: 2.1
5588 ##
5589 { 'enum': 'NumaOptionsType',
5590 'data': [ 'node' ] }
5591
5592 ##
5593 # @NumaOptions:
5594 #
5595 # A discriminated record of NUMA options. (for OptsVisitor)
5596 #
5597 # Since: 2.1
5598 ##
5599 { 'union': 'NumaOptions',
5600 'base': { 'type': 'NumaOptionsType' },
5601 'discriminator': 'type',
5602 'data': {
5603 'node': 'NumaNodeOptions' }}
5604
5605 ##
5606 # @NumaNodeOptions:
5607 #
5608 # Create a guest NUMA node. (for OptsVisitor)
5609 #
5610 # @nodeid: #optional NUMA node ID (increase by 1 from 0 if omitted)
5611 #
5612 # @cpus: #optional VCPUs belonging to this node (assign VCPUS round-robin
5613 # if omitted)
5614 #
5615 # @mem: #optional memory size of this node; mutually exclusive with @memdev.
5616 # Equally divide total memory among nodes if both @mem and @memdev are
5617 # omitted.
5618 #
5619 # @memdev: #optional memory backend object. If specified for one node,
5620 # it must be specified for all nodes.
5621 #
5622 # Since: 2.1
5623 ##
5624 { 'struct': 'NumaNodeOptions',
5625 'data': {
5626 '*nodeid': 'uint16',
5627 '*cpus': ['uint16'],
5628 '*mem': 'size',
5629 '*memdev': 'str' }}
5630
5631 ##
5632 # @HostMemPolicy:
5633 #
5634 # Host memory policy types
5635 #
5636 # @default: restore default policy, remove any nondefault policy
5637 #
5638 # @preferred: set the preferred host nodes for allocation
5639 #
5640 # @bind: a strict policy that restricts memory allocation to the
5641 # host nodes specified
5642 #
5643 # @interleave: memory allocations are interleaved across the set
5644 # of host nodes specified
5645 #
5646 # Since: 2.1
5647 ##
5648 { 'enum': 'HostMemPolicy',
5649 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
5650
5651 ##
5652 # @Memdev:
5653 #
5654 # Information about memory backend
5655 #
5656 # @id: #optional backend's ID if backend has 'id' property (since 2.9)
5657 #
5658 # @size: memory backend size
5659 #
5660 # @merge: enables or disables memory merge support
5661 #
5662 # @dump: includes memory backend's memory in a core dump or not
5663 #
5664 # @prealloc: enables or disables memory preallocation
5665 #
5666 # @host-nodes: host nodes for its memory policy
5667 #
5668 # @policy: memory policy of memory backend
5669 #
5670 # Since: 2.1
5671 ##
5672 { 'struct': 'Memdev',
5673 'data': {
5674 '*id': 'str',
5675 'size': 'size',
5676 'merge': 'bool',
5677 'dump': 'bool',
5678 'prealloc': 'bool',
5679 'host-nodes': ['uint16'],
5680 'policy': 'HostMemPolicy' }}
5681
5682 ##
5683 # @query-memdev:
5684 #
5685 # Returns information for all memory backends.
5686 #
5687 # Returns: a list of @Memdev.
5688 #
5689 # Since: 2.1
5690 #
5691 # Example:
5692 #
5693 # -> { "execute": "query-memdev" }
5694 # <- { "return": [
5695 # {
5696 # "id": "mem1",
5697 # "size": 536870912,
5698 # "merge": false,
5699 # "dump": true,
5700 # "prealloc": false,
5701 # "host-nodes": [0, 1],
5702 # "policy": "bind"
5703 # },
5704 # {
5705 # "size": 536870912,
5706 # "merge": false,
5707 # "dump": true,
5708 # "prealloc": true,
5709 # "host-nodes": [2, 3],
5710 # "policy": "preferred"
5711 # }
5712 # ]
5713 # }
5714 #
5715 ##
5716 { 'command': 'query-memdev', 'returns': ['Memdev'] }
5717
5718 ##
5719 # @PCDIMMDeviceInfo:
5720 #
5721 # PCDIMMDevice state information
5722 #
5723 # @id: #optional device's ID
5724 #
5725 # @addr: physical address, where device is mapped
5726 #
5727 # @size: size of memory that the device provides
5728 #
5729 # @slot: slot number at which device is plugged in
5730 #
5731 # @node: NUMA node number where device is plugged in
5732 #
5733 # @memdev: memory backend linked with device
5734 #
5735 # @hotplugged: true if device was hotplugged
5736 #
5737 # @hotpluggable: true if device if could be added/removed while machine is running
5738 #
5739 # Since: 2.1
5740 ##
5741 { 'struct': 'PCDIMMDeviceInfo',
5742 'data': { '*id': 'str',
5743 'addr': 'int',
5744 'size': 'int',
5745 'slot': 'int',
5746 'node': 'int',
5747 'memdev': 'str',
5748 'hotplugged': 'bool',
5749 'hotpluggable': 'bool'
5750 }
5751 }
5752
5753 ##
5754 # @MemoryDeviceInfo:
5755 #
5756 # Union containing information about a memory device
5757 #
5758 # Since: 2.1
5759 ##
5760 { 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
5761
5762 ##
5763 # @query-memory-devices:
5764 #
5765 # Lists available memory devices and their state
5766 #
5767 # Since: 2.1
5768 #
5769 # Example:
5770 #
5771 # -> { "execute": "query-memory-devices" }
5772 # <- { "return": [ { "data":
5773 # { "addr": 5368709120,
5774 # "hotpluggable": true,
5775 # "hotplugged": true,
5776 # "id": "d1",
5777 # "memdev": "/objects/memX",
5778 # "node": 0,
5779 # "size": 1073741824,
5780 # "slot": 0},
5781 # "type": "dimm"
5782 # } ] }
5783 #
5784 ##
5785 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
5786
5787 ##
5788 # @ACPISlotType:
5789 #
5790 # @DIMM: memory slot
5791 # @CPU: logical CPU slot (since 2.7)
5792 ##
5793 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
5794
5795 ##
5796 # @ACPIOSTInfo:
5797 #
5798 # OSPM Status Indication for a device
5799 # For description of possible values of @source and @status fields
5800 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
5801 #
5802 # @device: #optional device ID associated with slot
5803 #
5804 # @slot: slot ID, unique per slot of a given @slot-type
5805 #
5806 # @slot-type: type of the slot
5807 #
5808 # @source: an integer containing the source event
5809 #
5810 # @status: an integer containing the status code
5811 #
5812 # Since: 2.1
5813 ##
5814 { 'struct': 'ACPIOSTInfo',
5815 'data' : { '*device': 'str',
5816 'slot': 'str',
5817 'slot-type': 'ACPISlotType',
5818 'source': 'int',
5819 'status': 'int' } }
5820
5821 ##
5822 # @query-acpi-ospm-status:
5823 #
5824 # Return a list of ACPIOSTInfo for devices that support status
5825 # reporting via ACPI _OST method.
5826 #
5827 # Since: 2.1
5828 #
5829 # Example:
5830 #
5831 # -> { "execute": "query-acpi-ospm-status" }
5832 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
5833 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
5834 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
5835 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
5836 # ]}
5837 #
5838 ##
5839 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
5840
5841 ##
5842 # @WatchdogExpirationAction:
5843 #
5844 # An enumeration of the actions taken when the watchdog device's timer is
5845 # expired
5846 #
5847 # @reset: system resets
5848 #
5849 # @shutdown: system shutdown, note that it is similar to @powerdown, which
5850 # tries to set to system status and notify guest
5851 #
5852 # @poweroff: system poweroff, the emulator program exits
5853 #
5854 # @pause: system pauses, similar to @stop
5855 #
5856 # @debug: system enters debug state
5857 #
5858 # @none: nothing is done
5859 #
5860 # @inject-nmi: a non-maskable interrupt is injected into the first VCPU (all
5861 # VCPUS on x86) (since 2.4)
5862 #
5863 # Since: 2.1
5864 ##
5865 { 'enum': 'WatchdogExpirationAction',
5866 'data': [ 'reset', 'shutdown', 'poweroff', 'pause', 'debug', 'none',
5867 'inject-nmi' ] }
5868
5869 ##
5870 # @IoOperationType:
5871 #
5872 # An enumeration of the I/O operation types
5873 #
5874 # @read: read operation
5875 #
5876 # @write: write operation
5877 #
5878 # Since: 2.1
5879 ##
5880 { 'enum': 'IoOperationType',
5881 'data': [ 'read', 'write' ] }
5882
5883 ##
5884 # @GuestPanicAction:
5885 #
5886 # An enumeration of the actions taken when guest OS panic is detected
5887 #
5888 # @pause: system pauses
5889 #
5890 # Since: 2.1 (poweroff since 2.8)
5891 ##
5892 { 'enum': 'GuestPanicAction',
5893 'data': [ 'pause', 'poweroff' ] }
5894
5895 ##
5896 # @GuestPanicInformation:
5897 #
5898 # Information about a guest panic
5899 #
5900 # Since: 2.9
5901 ##
5902 {'union': 'GuestPanicInformation',
5903 'data': { 'hyper-v': 'GuestPanicInformationHyperV' } }
5904
5905 ##
5906 # @GuestPanicInformationHyperV:
5907 #
5908 # Hyper-V specific guest panic information (HV crash MSRs)
5909 #
5910 # Since: 2.9
5911 ##
5912 {'struct': 'GuestPanicInformationHyperV',
5913 'data': { 'arg1': 'uint64',
5914 'arg2': 'uint64',
5915 'arg3': 'uint64',
5916 'arg4': 'uint64',
5917 'arg5': 'uint64' } }
5918
5919 ##
5920 # @rtc-reset-reinjection:
5921 #
5922 # This command will reset the RTC interrupt reinjection backlog.
5923 # Can be used if another mechanism to synchronize guest time
5924 # is in effect, for example QEMU guest agent's guest-set-time
5925 # command.
5926 #
5927 # Since: 2.1
5928 #
5929 # Example:
5930 #
5931 # -> { "execute": "rtc-reset-reinjection" }
5932 # <- { "return": {} }
5933 #
5934 ##
5935 { 'command': 'rtc-reset-reinjection' }
5936
5937 # Rocker ethernet network switch
5938 { 'include': 'qapi/rocker.json' }
5939
5940 ##
5941 # @ReplayMode:
5942 #
5943 # Mode of the replay subsystem.
5944 #
5945 # @none: normal execution mode. Replay or record are not enabled.
5946 #
5947 # @record: record mode. All non-deterministic data is written into the
5948 # replay log.
5949 #
5950 # @play: replay mode. Non-deterministic data required for system execution
5951 # is read from the log.
5952 #
5953 # Since: 2.5
5954 ##
5955 { 'enum': 'ReplayMode',
5956 'data': [ 'none', 'record', 'play' ] }
5957
5958 ##
5959 # @xen-load-devices-state:
5960 #
5961 # Load the state of all devices from file. The RAM and the block devices
5962 # of the VM are not loaded by this command.
5963 #
5964 # @filename: the file to load the state of the devices from as binary
5965 # data. See xen-save-devices-state.txt for a description of the binary
5966 # format.
5967 #
5968 # Since: 2.7
5969 #
5970 # Example:
5971 #
5972 # -> { "execute": "xen-load-devices-state",
5973 # "arguments": { "filename": "/tmp/resume" } }
5974 # <- { "return": {} }
5975 #
5976 ##
5977 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
5978
5979 ##
5980 # @GICCapability:
5981 #
5982 # The struct describes capability for a specific GIC (Generic
5983 # Interrupt Controller) version. These bits are not only decided by
5984 # QEMU/KVM software version, but also decided by the hardware that
5985 # the program is running upon.
5986 #
5987 # @version: version of GIC to be described. Currently, only 2 and 3
5988 # are supported.
5989 #
5990 # @emulated: whether current QEMU/hardware supports emulated GIC
5991 # device in user space.
5992 #
5993 # @kernel: whether current QEMU/hardware supports hardware
5994 # accelerated GIC device in kernel.
5995 #
5996 # Since: 2.6
5997 ##
5998 { 'struct': 'GICCapability',
5999 'data': { 'version': 'int',
6000 'emulated': 'bool',
6001 'kernel': 'bool' } }
6002
6003 ##
6004 # @query-gic-capabilities:
6005 #
6006 # This command is ARM-only. It will return a list of GICCapability
6007 # objects that describe its capability bits.
6008 #
6009 # Returns: a list of GICCapability objects.
6010 #
6011 # Since: 2.6
6012 #
6013 # Example:
6014 #
6015 # -> { "execute": "query-gic-capabilities" }
6016 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
6017 # { "version": 3, "emulated": false, "kernel": true } ] }
6018 #
6019 ##
6020 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
6021
6022 ##
6023 # @CpuInstanceProperties:
6024 #
6025 # List of properties to be used for hotplugging a CPU instance,
6026 # it should be passed by management with device_add command when
6027 # a CPU is being hotplugged.
6028 #
6029 # @node-id: #optional NUMA node ID the CPU belongs to
6030 # @socket-id: #optional socket number within node/board the CPU belongs to
6031 # @core-id: #optional core number within socket the CPU belongs to
6032 # @thread-id: #optional thread number within core the CPU belongs to
6033 #
6034 # Note: currently there are 4 properties that could be present
6035 # but management should be prepared to pass through other
6036 # properties with device_add command to allow for future
6037 # interface extension. This also requires the filed names to be kept in
6038 # sync with the properties passed to -device/device_add.
6039 #
6040 # Since: 2.7
6041 ##
6042 { 'struct': 'CpuInstanceProperties',
6043 'data': { '*node-id': 'int',
6044 '*socket-id': 'int',
6045 '*core-id': 'int',
6046 '*thread-id': 'int'
6047 }
6048 }
6049
6050 ##
6051 # @HotpluggableCPU:
6052 #
6053 # @type: CPU object type for usage with device_add command
6054 # @props: list of properties to be used for hotplugging CPU
6055 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
6056 # @qom-path: #optional link to existing CPU object if CPU is present or
6057 # omitted if CPU is not present.
6058 #
6059 # Since: 2.7
6060 ##
6061 { 'struct': 'HotpluggableCPU',
6062 'data': { 'type': 'str',
6063 'vcpus-count': 'int',
6064 'props': 'CpuInstanceProperties',
6065 '*qom-path': 'str'
6066 }
6067 }
6068
6069 ##
6070 # @query-hotpluggable-cpus:
6071 #
6072 # Returns: a list of HotpluggableCPU objects.
6073 #
6074 # Since: 2.7
6075 #
6076 # Example:
6077 #
6078 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
6079 #
6080 # -> { "execute": "query-hotpluggable-cpus" }
6081 # <- {"return": [
6082 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
6083 # "vcpus-count": 1 },
6084 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
6085 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
6086 # ]}'
6087 #
6088 # For pc machine type started with -smp 1,maxcpus=2:
6089 #
6090 # -> { "execute": "query-hotpluggable-cpus" }
6091 # <- {"return": [
6092 # {
6093 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
6094 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
6095 # },
6096 # {
6097 # "qom-path": "/machine/unattached/device[0]",
6098 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
6099 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
6100 # }
6101 # ]}
6102 #
6103 ##
6104 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }