]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
UDP char device (initial patch by Jason Wessel) - TCP char device
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU CPU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU CPU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @end itemize
83
84 For user emulation, x86, PowerPC, ARM, MIPS, and Sparc32/64 CPUs are supported.
85
86 @node Installation
87 @chapter Installation
88
89 If you want to compile QEMU yourself, see @ref{compilation}.
90
91 @menu
92 * install_linux:: Linux
93 * install_windows:: Windows
94 * install_mac:: Macintosh
95 @end menu
96
97 @node install_linux
98 @section Linux
99
100 If a precompiled package is available for your distribution - you just
101 have to install it. Otherwise, see @ref{compilation}.
102
103 @node install_windows
104 @section Windows
105
106 Download the experimental binary installer at
107 @url{http://www.free.oszoo.org/@/download.html}.
108
109 @node install_mac
110 @section Mac OS X
111
112 Download the experimental binary installer at
113 @url{http://www.free.oszoo.org/@/download.html}.
114
115 @node QEMU PC System emulator
116 @chapter QEMU PC System emulator
117
118 @menu
119 * pcsys_introduction:: Introduction
120 * pcsys_quickstart:: Quick Start
121 * sec_invocation:: Invocation
122 * pcsys_keys:: Keys
123 * pcsys_monitor:: QEMU Monitor
124 * disk_images:: Disk Images
125 * pcsys_network:: Network emulation
126 * direct_linux_boot:: Direct Linux Boot
127 * pcsys_usb:: USB emulation
128 * gdb_usage:: GDB usage
129 * pcsys_os_specific:: Target OS specific information
130 @end menu
131
132 @node pcsys_introduction
133 @section Introduction
134
135 @c man begin DESCRIPTION
136
137 The QEMU PC System emulator simulates the
138 following peripherals:
139
140 @itemize @minus
141 @item
142 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143 @item
144 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145 extensions (hardware level, including all non standard modes).
146 @item
147 PS/2 mouse and keyboard
148 @item
149 2 PCI IDE interfaces with hard disk and CD-ROM support
150 @item
151 Floppy disk
152 @item
153 NE2000 PCI network adapters
154 @item
155 Serial ports
156 @item
157 Creative SoundBlaster 16 sound card
158 @item
159 ENSONIQ AudioPCI ES1370 sound card
160 @item
161 Adlib(OPL2) - Yamaha YM3812 compatible chip
162 @item
163 PCI UHCI USB controller and a virtual USB hub.
164 @end itemize
165
166 SMP is supported with up to 255 CPUs.
167
168 Note that adlib is only available when QEMU was configured with
169 -enable-adlib
170
171 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172 VGA BIOS.
173
174 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175
176 @c man end
177
178 @node pcsys_quickstart
179 @section Quick Start
180
181 Download and uncompress the linux image (@file{linux.img}) and type:
182
183 @example
184 qemu linux.img
185 @end example
186
187 Linux should boot and give you a prompt.
188
189 @node sec_invocation
190 @section Invocation
191
192 @example
193 @c man begin SYNOPSIS
194 usage: qemu [options] [disk_image]
195 @c man end
196 @end example
197
198 @c man begin OPTIONS
199 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
200
201 General options:
202 @table @option
203 @item -M machine
204 Select the emulated machine (@code{-M ?} for list)
205
206 @item -fda file
207 @item -fdb file
208 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209 use the host floppy by using @file{/dev/fd0} as filename.
210
211 @item -hda file
212 @item -hdb file
213 @item -hdc file
214 @item -hdd file
215 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216
217 @item -cdrom file
218 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219 @option{-cdrom} at the same time). You can use the host CD-ROM by
220 using @file{/dev/cdrom} as filename.
221
222 @item -boot [a|c|d]
223 Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224 the default.
225
226 @item -snapshot
227 Write to temporary files instead of disk image files. In this case,
228 the raw disk image you use is not written back. You can however force
229 the write back by pressing @key{C-a s} (@pxref{disk_images}).
230
231 @item -no-fd-bootchk
232 Disable boot signature checking for floppy disks in Bochs BIOS. It may
233 be needed to boot from old floppy disks.
234
235 @item -m megs
236 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
237
238 @item -smp n
239 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 CPUs are supported.
241
242 @item -nographic
243
244 Normally, QEMU uses SDL to display the VGA output. With this option,
245 you can totally disable graphical output so that QEMU is a simple
246 command line application. The emulated serial port is redirected on
247 the console. Therefore, you can still use QEMU to debug a Linux kernel
248 with a serial console.
249
250 @item -vnc d
251
252 Normally, QEMU uses SDL to display the VGA output. With this option,
253 you can have QEMU listen on VNC display d and redirect the VGA display
254 over the VNC session. It is very useful to enable the usb tablet device
255 when using this option (option @option{-usbdevice tablet}).
256
257 @item -k language
258
259 Use keyboard layout @var{language} (for example @code{fr} for
260 French). This option is only needed where it is not easy to get raw PC
261 keycodes (e.g. on Macs or with some X11 servers). You don't need to
262 use it on PC/Linux or PC/Windows hosts.
263
264 The available layouts are:
265 @example
266 ar de-ch es fo fr-ca hu ja mk no pt-br sv
267 da en-gb et fr fr-ch is lt nl pl ru th
268 de en-us fi fr-be hr it lv nl-be pt sl tr
269 @end example
270
271 The default is @code{en-us}.
272
273 @item -audio-help
274
275 Will show the audio subsystem help: list of drivers, tunable
276 parameters.
277
278 @item -soundhw card1,card2,... or -soundhw all
279
280 Enable audio and selected sound hardware. Use ? to print all
281 available sound hardware.
282
283 @example
284 qemu -soundhw sb16,adlib hda
285 qemu -soundhw es1370 hda
286 qemu -soundhw all hda
287 qemu -soundhw ?
288 @end example
289
290 @item -localtime
291 Set the real time clock to local time (the default is to UTC
292 time). This option is needed to have correct date in MS-DOS or
293 Windows.
294
295 @item -full-screen
296 Start in full screen.
297
298 @item -pidfile file
299 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
300 from a script.
301
302 @item -win2k-hack
303 Use it when installing Windows 2000 to avoid a disk full bug. After
304 Windows 2000 is installed, you no longer need this option (this option
305 slows down the IDE transfers).
306
307 @end table
308
309 USB options:
310 @table @option
311
312 @item -usb
313 Enable the USB driver (will be the default soon)
314
315 @item -usbdevice devname
316 Add the USB device @var{devname}. @xref{usb_devices}.
317 @end table
318
319 Network options:
320
321 @table @option
322
323 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
324 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
325 = 0 is the default). The NIC is currently an NE2000 on the PC
326 target. Optionally, the MAC address can be changed. If no
327 @option{-net} option is specified, a single NIC is created.
328 Qemu can emulate several different models of network card. Valid values for
329 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
330 @code{smc91c111} and @code{lance}. Not all devices are supported on all
331 targets.
332
333 @item -net user[,vlan=n][,hostname=name]
334 Use the user mode network stack which requires no administrator
335 priviledge to run. @option{hostname=name} can be used to specify the client
336 hostname reported by the builtin DHCP server.
337
338 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
339 Connect the host TAP network interface @var{name} to VLAN @var{n} and
340 use the network script @var{file} to configure it. The default
341 network script is @file{/etc/qemu-ifup}. If @var{name} is not
342 provided, the OS automatically provides one. @option{fd=h} can be
343 used to specify the handle of an already opened host TAP interface. Example:
344
345 @example
346 qemu linux.img -net nic -net tap
347 @end example
348
349 More complicated example (two NICs, each one connected to a TAP device)
350 @example
351 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
352 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
353 @end example
354
355
356 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
357
358 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
359 machine using a TCP socket connection. If @option{listen} is
360 specified, QEMU waits for incoming connections on @var{port}
361 (@var{host} is optional). @option{connect} is used to connect to
362 another QEMU instance using the @option{listen} option. @option{fd=h}
363 specifies an already opened TCP socket.
364
365 Example:
366 @example
367 # launch a first QEMU instance
368 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
369 -net socket,listen=:1234
370 # connect the VLAN 0 of this instance to the VLAN 0
371 # of the first instance
372 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
373 -net socket,connect=127.0.0.1:1234
374 @end example
375
376 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
377
378 Create a VLAN @var{n} shared with another QEMU virtual
379 machines using a UDP multicast socket, effectively making a bus for
380 every QEMU with same multicast address @var{maddr} and @var{port}.
381 NOTES:
382 @enumerate
383 @item
384 Several QEMU can be running on different hosts and share same bus (assuming
385 correct multicast setup for these hosts).
386 @item
387 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
388 @url{http://user-mode-linux.sf.net}.
389 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
390 @end enumerate
391
392 Example:
393 @example
394 # launch one QEMU instance
395 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
396 -net socket,mcast=230.0.0.1:1234
397 # launch another QEMU instance on same "bus"
398 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
399 -net socket,mcast=230.0.0.1:1234
400 # launch yet another QEMU instance on same "bus"
401 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
402 -net socket,mcast=230.0.0.1:1234
403 @end example
404
405 Example (User Mode Linux compat.):
406 @example
407 # launch QEMU instance (note mcast address selected
408 # is UML's default)
409 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
410 -net socket,mcast=239.192.168.1:1102
411 # launch UML
412 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
413 @end example
414
415 @item -net none
416 Indicate that no network devices should be configured. It is used to
417 override the default configuration (@option{-net nic -net user}) which
418 is activated if no @option{-net} options are provided.
419
420 @item -tftp prefix
421 When using the user mode network stack, activate a built-in TFTP
422 server. All filenames beginning with @var{prefix} can be downloaded
423 from the host to the guest using a TFTP client. The TFTP client on the
424 guest must be configured in binary mode (use the command @code{bin} of
425 the Unix TFTP client). The host IP address on the guest is as usual
426 10.0.2.2.
427
428 @item -smb dir
429 When using the user mode network stack, activate a built-in SMB
430 server so that Windows OSes can access to the host files in @file{dir}
431 transparently.
432
433 In the guest Windows OS, the line:
434 @example
435 10.0.2.4 smbserver
436 @end example
437 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
438 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
439
440 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
441
442 Note that a SAMBA server must be installed on the host OS in
443 @file{/usr/sbin/smbd}. QEMU was tested succesfully with smbd version
444 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
445
446 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
447
448 When using the user mode network stack, redirect incoming TCP or UDP
449 connections to the host port @var{host-port} to the guest
450 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
451 is not specified, its value is 10.0.2.15 (default address given by the
452 built-in DHCP server).
453
454 For example, to redirect host X11 connection from screen 1 to guest
455 screen 0, use the following:
456
457 @example
458 # on the host
459 qemu -redir tcp:6001::6000 [...]
460 # this host xterm should open in the guest X11 server
461 xterm -display :1
462 @end example
463
464 To redirect telnet connections from host port 5555 to telnet port on
465 the guest, use the following:
466
467 @example
468 # on the host
469 qemu -redir tcp:5555::23 [...]
470 telnet localhost 5555
471 @end example
472
473 Then when you use on the host @code{telnet localhost 5555}, you
474 connect to the guest telnet server.
475
476 @end table
477
478 Linux boot specific: When using these options, you can use a given
479 Linux kernel without installing it in the disk image. It can be useful
480 for easier testing of various kernels.
481
482 @table @option
483
484 @item -kernel bzImage
485 Use @var{bzImage} as kernel image.
486
487 @item -append cmdline
488 Use @var{cmdline} as kernel command line
489
490 @item -initrd file
491 Use @var{file} as initial ram disk.
492
493 @end table
494
495 Debug/Expert options:
496 @table @option
497
498 @item -serial dev
499 Redirect the virtual serial port to host character device
500 @var{dev}. The default device is @code{vc} in graphical mode and
501 @code{stdio} in non graphical mode.
502
503 This option can be used several times to simulate up to 4 serials
504 ports.
505
506 Available character devices are:
507 @table @code
508 @item vc
509 Virtual console
510 @item pty
511 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
512 @item null
513 void device
514 @item /dev/XXX
515 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
516 parameters are set according to the emulated ones.
517 @item /dev/parportN
518 [Linux only, parallel port only] Use host parallel port
519 @var{N}. Currently only SPP parallel port features can be used.
520 @item file:filename
521 Write output to filename. No character can be read.
522 @item stdio
523 [Unix only] standard input/output
524 @item pipe:filename
525 name pipe @var{filename}
526 @item COMn
527 [Windows only] Use host serial port @var{n}
528 @item udp:remote_port
529 UDP Net Console sent to locahost at remote_port
530 @item udp:remote_host:remote_port
531 UDP Net Console sent to remote_host at remote_port
532 @item udp:src_port:remote_host:remote_port
533 UDP Net Console sent from src_port to remote_host at the remote_port.
534
535 The udp:* sub options are primary intended for netconsole. If you
536 just want a simple readonly console you can use @code{netcat} or
537 @code{nc}, by starting qemu with: @code{-serial udp:4555} and nc as:
538 @code{nc -u -l -p 4555}. Any time qemu writes something to that port
539 it will appear in the netconsole session.
540
541 If you plan to send characters back via netconsole or you want to stop
542 and start qemu a lot of times, you should have qemu use the same
543 source port each time by using something like @code{-serial
544 udp:4556:localhost:4555} to qemu. Another approach is to use a patched
545 version of netcat which can listen to a TCP port and send and receive
546 characters via udp. If you have a patched version of netcat which
547 activates telnet remote echo and single char transfer, then you can
548 use the following options to step up a netcat redirector to allow
549 telnet on port 5555 to access the qemu port.
550 @table @code
551 @item Qemu Options
552 -serial udp:4556:localhost:4555
553 @item netcat options
554 -u -P 4555 -L localhost:4556 -t -p 5555 -I -T
555 @end table
556
557
558 @item tcp:remote_host:remote_port
559 TCP Net Console sent to remote_host at the remote_port
560 @item tcpl:host:port
561 TCP Net Console: wait for connection on @var{host} on the local port
562 @var{port}. If host is omitted, 0.0.0.0 is assumed. Only one TCP
563 connection at a time is accepted. You can use @code{telnet} to connect
564 to the corresponding character device.
565 @end table
566
567 @item -parallel dev
568 Redirect the virtual parallel port to host device @var{dev} (same
569 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
570 be used to use hardware devices connected on the corresponding host
571 parallel port.
572
573 This option can be used several times to simulate up to 3 parallel
574 ports.
575
576 @item -monitor dev
577 Redirect the monitor to host device @var{dev} (same devices as the
578 serial port).
579 The default device is @code{vc} in graphical mode and @code{stdio} in
580 non graphical mode.
581
582 @item -s
583 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
584 @item -p port
585 Change gdb connection port.
586 @item -S
587 Do not start CPU at startup (you must type 'c' in the monitor).
588 @item -d
589 Output log in /tmp/qemu.log
590 @item -hdachs c,h,s,[,t]
591 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
592 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
593 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
594 all thoses parameters. This option is useful for old MS-DOS disk
595 images.
596
597 @item -std-vga
598 Simulate a standard VGA card with Bochs VBE extensions (default is
599 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
600 VBE extensions (e.g. Windows XP) and if you want to use high
601 resolution modes (>= 1280x1024x16) then you should use this option.
602
603 @item -loadvm file
604 Start right away with a saved state (@code{loadvm} in monitor)
605 @end table
606
607 @c man end
608
609 @node pcsys_keys
610 @section Keys
611
612 @c man begin OPTIONS
613
614 During the graphical emulation, you can use the following keys:
615 @table @key
616 @item Ctrl-Alt-f
617 Toggle full screen
618
619 @item Ctrl-Alt-n
620 Switch to virtual console 'n'. Standard console mappings are:
621 @table @emph
622 @item 1
623 Target system display
624 @item 2
625 Monitor
626 @item 3
627 Serial port
628 @end table
629
630 @item Ctrl-Alt
631 Toggle mouse and keyboard grab.
632 @end table
633
634 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
635 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
636
637 During emulation, if you are using the @option{-nographic} option, use
638 @key{Ctrl-a h} to get terminal commands:
639
640 @table @key
641 @item Ctrl-a h
642 Print this help
643 @item Ctrl-a x
644 Exit emulatior
645 @item Ctrl-a s
646 Save disk data back to file (if -snapshot)
647 @item Ctrl-a b
648 Send break (magic sysrq in Linux)
649 @item Ctrl-a c
650 Switch between console and monitor
651 @item Ctrl-a Ctrl-a
652 Send Ctrl-a
653 @end table
654 @c man end
655
656 @ignore
657
658 @c man begin SEEALSO
659 The HTML documentation of QEMU for more precise information and Linux
660 user mode emulator invocation.
661 @c man end
662
663 @c man begin AUTHOR
664 Fabrice Bellard
665 @c man end
666
667 @end ignore
668
669 @node pcsys_monitor
670 @section QEMU Monitor
671
672 The QEMU monitor is used to give complex commands to the QEMU
673 emulator. You can use it to:
674
675 @itemize @minus
676
677 @item
678 Remove or insert removable medias images
679 (such as CD-ROM or floppies)
680
681 @item
682 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
683 from a disk file.
684
685 @item Inspect the VM state without an external debugger.
686
687 @end itemize
688
689 @subsection Commands
690
691 The following commands are available:
692
693 @table @option
694
695 @item help or ? [cmd]
696 Show the help for all commands or just for command @var{cmd}.
697
698 @item commit
699 Commit changes to the disk images (if -snapshot is used)
700
701 @item info subcommand
702 show various information about the system state
703
704 @table @option
705 @item info network
706 show the various VLANs and the associated devices
707 @item info block
708 show the block devices
709 @item info registers
710 show the cpu registers
711 @item info history
712 show the command line history
713 @item info pci
714 show emulated PCI device
715 @item info usb
716 show USB devices plugged on the virtual USB hub
717 @item info usbhost
718 show all USB host devices
719 @end table
720
721 @item q or quit
722 Quit the emulator.
723
724 @item eject [-f] device
725 Eject a removable media (use -f to force it).
726
727 @item change device filename
728 Change a removable media.
729
730 @item screendump filename
731 Save screen into PPM image @var{filename}.
732
733 @item log item1[,...]
734 Activate logging of the specified items to @file{/tmp/qemu.log}.
735
736 @item savevm filename
737 Save the whole virtual machine state to @var{filename}.
738
739 @item loadvm filename
740 Restore the whole virtual machine state from @var{filename}.
741
742 @item stop
743 Stop emulation.
744
745 @item c or cont
746 Resume emulation.
747
748 @item gdbserver [port]
749 Start gdbserver session (default port=1234)
750
751 @item x/fmt addr
752 Virtual memory dump starting at @var{addr}.
753
754 @item xp /fmt addr
755 Physical memory dump starting at @var{addr}.
756
757 @var{fmt} is a format which tells the command how to format the
758 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
759
760 @table @var
761 @item count
762 is the number of items to be dumped.
763
764 @item format
765 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
766 c (char) or i (asm instruction).
767
768 @item size
769 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
770 @code{h} or @code{w} can be specified with the @code{i} format to
771 respectively select 16 or 32 bit code instruction size.
772
773 @end table
774
775 Examples:
776 @itemize
777 @item
778 Dump 10 instructions at the current instruction pointer:
779 @example
780 (qemu) x/10i $eip
781 0x90107063: ret
782 0x90107064: sti
783 0x90107065: lea 0x0(%esi,1),%esi
784 0x90107069: lea 0x0(%edi,1),%edi
785 0x90107070: ret
786 0x90107071: jmp 0x90107080
787 0x90107073: nop
788 0x90107074: nop
789 0x90107075: nop
790 0x90107076: nop
791 @end example
792
793 @item
794 Dump 80 16 bit values at the start of the video memory.
795 @smallexample
796 (qemu) xp/80hx 0xb8000
797 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
798 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
799 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
800 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
801 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
802 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
803 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
804 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
805 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
806 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
807 @end smallexample
808 @end itemize
809
810 @item p or print/fmt expr
811
812 Print expression value. Only the @var{format} part of @var{fmt} is
813 used.
814
815 @item sendkey keys
816
817 Send @var{keys} to the emulator. Use @code{-} to press several keys
818 simultaneously. Example:
819 @example
820 sendkey ctrl-alt-f1
821 @end example
822
823 This command is useful to send keys that your graphical user interface
824 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
825
826 @item system_reset
827
828 Reset the system.
829
830 @item usb_add devname
831
832 Add the USB device @var{devname}. For details of available devices see
833 @ref{usb_devices}
834
835 @item usb_del devname
836
837 Remove the USB device @var{devname} from the QEMU virtual USB
838 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
839 command @code{info usb} to see the devices you can remove.
840
841 @end table
842
843 @subsection Integer expressions
844
845 The monitor understands integers expressions for every integer
846 argument. You can use register names to get the value of specifics
847 CPU registers by prefixing them with @emph{$}.
848
849 @node disk_images
850 @section Disk Images
851
852 Since version 0.6.1, QEMU supports many disk image formats, including
853 growable disk images (their size increase as non empty sectors are
854 written), compressed and encrypted disk images.
855
856 @menu
857 * disk_images_quickstart:: Quick start for disk image creation
858 * disk_images_snapshot_mode:: Snapshot mode
859 * qemu_img_invocation:: qemu-img Invocation
860 * disk_images_fat_images:: Virtual FAT disk images
861 @end menu
862
863 @node disk_images_quickstart
864 @subsection Quick start for disk image creation
865
866 You can create a disk image with the command:
867 @example
868 qemu-img create myimage.img mysize
869 @end example
870 where @var{myimage.img} is the disk image filename and @var{mysize} is its
871 size in kilobytes. You can add an @code{M} suffix to give the size in
872 megabytes and a @code{G} suffix for gigabytes.
873
874 See @ref{qemu_img_invocation} for more information.
875
876 @node disk_images_snapshot_mode
877 @subsection Snapshot mode
878
879 If you use the option @option{-snapshot}, all disk images are
880 considered as read only. When sectors in written, they are written in
881 a temporary file created in @file{/tmp}. You can however force the
882 write back to the raw disk images by using the @code{commit} monitor
883 command (or @key{C-a s} in the serial console).
884
885 @node qemu_img_invocation
886 @subsection @code{qemu-img} Invocation
887
888 @include qemu-img.texi
889
890 @node disk_images_fat_images
891 @subsection Virtual FAT disk images
892
893 QEMU can automatically create a virtual FAT disk image from a
894 directory tree. In order to use it, just type:
895
896 @example
897 qemu linux.img -hdb fat:/my_directory
898 @end example
899
900 Then you access access to all the files in the @file{/my_directory}
901 directory without having to copy them in a disk image or to export
902 them via SAMBA or NFS. The default access is @emph{read-only}.
903
904 Floppies can be emulated with the @code{:floppy:} option:
905
906 @example
907 qemu linux.img -fda fat:floppy:/my_directory
908 @end example
909
910 A read/write support is available for testing (beta stage) with the
911 @code{:rw:} option:
912
913 @example
914 qemu linux.img -fda fat:floppy:rw:/my_directory
915 @end example
916
917 What you should @emph{never} do:
918 @itemize
919 @item use non-ASCII filenames ;
920 @item use "-snapshot" together with ":rw:" ;
921 @item expect it to work when loadvm'ing ;
922 @item write to the FAT directory on the host system while accessing it with the guest system.
923 @end itemize
924
925 @node pcsys_network
926 @section Network emulation
927
928 QEMU can simulate several networks cards (NE2000 boards on the PC
929 target) and can connect them to an arbitrary number of Virtual Local
930 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
931 VLAN. VLAN can be connected between separate instances of QEMU to
932 simulate large networks. For simpler usage, a non priviledged user mode
933 network stack can replace the TAP device to have a basic network
934 connection.
935
936 @subsection VLANs
937
938 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
939 connection between several network devices. These devices can be for
940 example QEMU virtual Ethernet cards or virtual Host ethernet devices
941 (TAP devices).
942
943 @subsection Using TAP network interfaces
944
945 This is the standard way to connect QEMU to a real network. QEMU adds
946 a virtual network device on your host (called @code{tapN}), and you
947 can then configure it as if it was a real ethernet card.
948
949 As an example, you can download the @file{linux-test-xxx.tar.gz}
950 archive and copy the script @file{qemu-ifup} in @file{/etc} and
951 configure properly @code{sudo} so that the command @code{ifconfig}
952 contained in @file{qemu-ifup} can be executed as root. You must verify
953 that your host kernel supports the TAP network interfaces: the
954 device @file{/dev/net/tun} must be present.
955
956 See @ref{direct_linux_boot} to have an example of network use with a
957 Linux distribution and @ref{sec_invocation} to have examples of
958 command lines using the TAP network interfaces.
959
960 @subsection Using the user mode network stack
961
962 By using the option @option{-net user} (default configuration if no
963 @option{-net} option is specified), QEMU uses a completely user mode
964 network stack (you don't need root priviledge to use the virtual
965 network). The virtual network configuration is the following:
966
967 @example
968
969 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
970 | (10.0.2.2)
971 |
972 ----> DNS server (10.0.2.3)
973 |
974 ----> SMB server (10.0.2.4)
975 @end example
976
977 The QEMU VM behaves as if it was behind a firewall which blocks all
978 incoming connections. You can use a DHCP client to automatically
979 configure the network in the QEMU VM. The DHCP server assign addresses
980 to the hosts starting from 10.0.2.15.
981
982 In order to check that the user mode network is working, you can ping
983 the address 10.0.2.2 and verify that you got an address in the range
984 10.0.2.x from the QEMU virtual DHCP server.
985
986 Note that @code{ping} is not supported reliably to the internet as it
987 would require root priviledges. It means you can only ping the local
988 router (10.0.2.2).
989
990 When using the built-in TFTP server, the router is also the TFTP
991 server.
992
993 When using the @option{-redir} option, TCP or UDP connections can be
994 redirected from the host to the guest. It allows for example to
995 redirect X11, telnet or SSH connections.
996
997 @subsection Connecting VLANs between QEMU instances
998
999 Using the @option{-net socket} option, it is possible to make VLANs
1000 that span several QEMU instances. See @ref{sec_invocation} to have a
1001 basic example.
1002
1003 @node direct_linux_boot
1004 @section Direct Linux Boot
1005
1006 This section explains how to launch a Linux kernel inside QEMU without
1007 having to make a full bootable image. It is very useful for fast Linux
1008 kernel testing. The QEMU network configuration is also explained.
1009
1010 @enumerate
1011 @item
1012 Download the archive @file{linux-test-xxx.tar.gz} containing a Linux
1013 kernel and a disk image.
1014
1015 @item Optional: If you want network support (for example to launch X11 examples), you
1016 must copy the script @file{qemu-ifup} in @file{/etc} and configure
1017 properly @code{sudo} so that the command @code{ifconfig} contained in
1018 @file{qemu-ifup} can be executed as root. You must verify that your host
1019 kernel supports the TUN/TAP network interfaces: the device
1020 @file{/dev/net/tun} must be present.
1021
1022 When network is enabled, there is a virtual network connection between
1023 the host kernel and the emulated kernel. The emulated kernel is seen
1024 from the host kernel at IP address 172.20.0.2 and the host kernel is
1025 seen from the emulated kernel at IP address 172.20.0.1.
1026
1027 @item Launch @code{qemu.sh}. You should have the following output:
1028
1029 @smallexample
1030 > ./qemu.sh
1031 Connected to host network interface: tun0
1032 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1033 BIOS-provided physical RAM map:
1034 BIOS-e801: 0000000000000000 - 000000000009f000 (usable)
1035 BIOS-e801: 0000000000100000 - 0000000002000000 (usable)
1036 32MB LOWMEM available.
1037 On node 0 totalpages: 8192
1038 zone(0): 4096 pages.
1039 zone(1): 4096 pages.
1040 zone(2): 0 pages.
1041 Kernel command line: root=/dev/hda sb=0x220,5,1,5 ide2=noprobe ide3=noprobe ide4=noprobe @/ide5=noprobe console=ttyS0
1042 ide_setup: ide2=noprobe
1043 ide_setup: ide3=noprobe
1044 ide_setup: ide4=noprobe
1045 ide_setup: ide5=noprobe
1046 Initializing CPU#0
1047 Detected 2399.621 MHz processor.
1048 Console: colour EGA 80x25
1049 Calibrating delay loop... 4744.80 BogoMIPS
1050 Memory: 28872k/32768k available (1210k kernel code, 3508k reserved, 266k data, 64k init, @/0k highmem)
1051 Dentry cache hash table entries: 4096 (order: 3, 32768 bytes)
1052 Inode cache hash table entries: 2048 (order: 2, 16384 bytes)
1053 Mount cache hash table entries: 512 (order: 0, 4096 bytes)
1054 Buffer-cache hash table entries: 1024 (order: 0, 4096 bytes)
1055 Page-cache hash table entries: 8192 (order: 3, 32768 bytes)
1056 CPU: Intel Pentium Pro stepping 03
1057 Checking 'hlt' instruction... OK.
1058 POSIX conformance testing by UNIFIX
1059 Linux NET4.0 for Linux 2.4
1060 Based upon Swansea University Computer Society NET3.039
1061 Initializing RT netlink socket
1062 apm: BIOS not found.
1063 Starting kswapd
1064 Journalled Block Device driver loaded
1065 Detected PS/2 Mouse Port.
1066 pty: 256 Unix98 ptys configured
1067 Serial driver version 5.05c (2001-07-08) with no serial options enabled
1068 ttyS00 at 0x03f8 (irq = 4) is a 16450
1069 ne.c:v1.10 9/23/94 Donald Becker (becker@@scyld.com)
1070 Last modified Nov 1, 2000 by Paul Gortmaker
1071 NE*000 ethercard probe at 0x300: 52 54 00 12 34 56
1072 eth0: NE2000 found at 0x300, using IRQ 9.
1073 RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
1074 Uniform Multi-Platform E-IDE driver Revision: 7.00beta4-2.4
1075 ide: Assuming 50MHz system bus speed for PIO modes; override with idebus=xx
1076 hda: QEMU HARDDISK, ATA DISK drive
1077 ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
1078 hda: attached ide-disk driver.
1079 hda: 20480 sectors (10 MB) w/256KiB Cache, CHS=20/16/63
1080 Partition check:
1081 hda:
1082 Soundblaster audio driver Copyright (C) by Hannu Savolainen 1993-1996
1083 NET4: Linux TCP/IP 1.0 for NET4.0
1084 IP Protocols: ICMP, UDP, TCP, IGMP
1085 IP: routing cache hash table of 512 buckets, 4Kbytes
1086 TCP: Hash tables configured (established 2048 bind 4096)
1087 NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
1088 EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended
1089 VFS: Mounted root (ext2 filesystem).
1090 Freeing unused kernel memory: 64k freed
1091
1092 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1093
1094 QEMU Linux test distribution (based on Redhat 9)
1095
1096 Type 'exit' to halt the system
1097
1098 sh-2.05b#
1099 @end smallexample
1100
1101 @item
1102 Then you can play with the kernel inside the virtual serial console. You
1103 can launch @code{ls} for example. Type @key{Ctrl-a h} to have an help
1104 about the keys you can type inside the virtual serial console. In
1105 particular, use @key{Ctrl-a x} to exit QEMU and use @key{Ctrl-a b} as
1106 the Magic SysRq key.
1107
1108 @item
1109 If the network is enabled, launch the script @file{/etc/linuxrc} in the
1110 emulator (don't forget the leading dot):
1111 @example
1112 . /etc/linuxrc
1113 @end example
1114
1115 Then enable X11 connections on your PC from the emulated Linux:
1116 @example
1117 xhost +172.20.0.2
1118 @end example
1119
1120 You can now launch @file{xterm} or @file{xlogo} and verify that you have
1121 a real Virtual Linux system !
1122
1123 @end enumerate
1124
1125 NOTES:
1126 @enumerate
1127 @item
1128 A 2.5.74 kernel is also included in the archive. Just
1129 replace the bzImage in qemu.sh to try it.
1130
1131 @item
1132 In order to exit cleanly from qemu, you can do a @emph{shutdown} inside
1133 qemu. qemu will automatically exit when the Linux shutdown is done.
1134
1135 @item
1136 You can boot slightly faster by disabling the probe of non present IDE
1137 interfaces. To do so, add the following options on the kernel command
1138 line:
1139 @example
1140 ide1=noprobe ide2=noprobe ide3=noprobe ide4=noprobe ide5=noprobe
1141 @end example
1142
1143 @item
1144 The example disk image is a modified version of the one made by Kevin
1145 Lawton for the plex86 Project (@url{www.plex86.org}).
1146
1147 @end enumerate
1148
1149 @node pcsys_usb
1150 @section USB emulation
1151
1152 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1153 virtual USB devices or real host USB devices (experimental, works only
1154 on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1155 as neccessary to connect multiple USB devices.
1156
1157 @menu
1158 * usb_devices::
1159 * host_usb_devices::
1160 @end menu
1161 @node usb_devices
1162 @subsection Connecting USB devices
1163
1164 USB devices can be connected with the @option{-usbdevice} commandline option
1165 or the @code{usb_add} monitor command. Available devices are:
1166
1167 @table @var
1168 @item @code{mouse}
1169 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1170 @item @code{tablet}
1171 Pointer device that uses abolsute coordinates (like a touchscreen).
1172 This means qemu is able to report the mouse position without having
1173 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1174 @item @code{disk:file}
1175 Mass storage device based on @var{file} (@pxref{disk_images})
1176 @item @code{host:bus.addr}
1177 Pass through the host device identified by @var{bus.addr}
1178 (Linux only)
1179 @item @code{host:vendor_id:product_id}
1180 Pass through the host device identified by @var{vendor_id:product_id}
1181 (Linux only)
1182 @end table
1183
1184 @node host_usb_devices
1185 @subsection Using host USB devices on a Linux host
1186
1187 WARNING: this is an experimental feature. QEMU will slow down when
1188 using it. USB devices requiring real time streaming (i.e. USB Video
1189 Cameras) are not supported yet.
1190
1191 @enumerate
1192 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1193 is actually using the USB device. A simple way to do that is simply to
1194 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1195 to @file{mydriver.o.disabled}.
1196
1197 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1198 @example
1199 ls /proc/bus/usb
1200 001 devices drivers
1201 @end example
1202
1203 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1204 @example
1205 chown -R myuid /proc/bus/usb
1206 @end example
1207
1208 @item Launch QEMU and do in the monitor:
1209 @example
1210 info usbhost
1211 Device 1.2, speed 480 Mb/s
1212 Class 00: USB device 1234:5678, USB DISK
1213 @end example
1214 You should see the list of the devices you can use (Never try to use
1215 hubs, it won't work).
1216
1217 @item Add the device in QEMU by using:
1218 @example
1219 usb_add host:1234:5678
1220 @end example
1221
1222 Normally the guest OS should report that a new USB device is
1223 plugged. You can use the option @option{-usbdevice} to do the same.
1224
1225 @item Now you can try to use the host USB device in QEMU.
1226
1227 @end enumerate
1228
1229 When relaunching QEMU, you may have to unplug and plug again the USB
1230 device to make it work again (this is a bug).
1231
1232 @node gdb_usage
1233 @section GDB usage
1234
1235 QEMU has a primitive support to work with gdb, so that you can do
1236 'Ctrl-C' while the virtual machine is running and inspect its state.
1237
1238 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1239 gdb connection:
1240 @example
1241 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1242 -append "root=/dev/hda"
1243 Connected to host network interface: tun0
1244 Waiting gdb connection on port 1234
1245 @end example
1246
1247 Then launch gdb on the 'vmlinux' executable:
1248 @example
1249 > gdb vmlinux
1250 @end example
1251
1252 In gdb, connect to QEMU:
1253 @example
1254 (gdb) target remote localhost:1234
1255 @end example
1256
1257 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1258 @example
1259 (gdb) c
1260 @end example
1261
1262 Here are some useful tips in order to use gdb on system code:
1263
1264 @enumerate
1265 @item
1266 Use @code{info reg} to display all the CPU registers.
1267 @item
1268 Use @code{x/10i $eip} to display the code at the PC position.
1269 @item
1270 Use @code{set architecture i8086} to dump 16 bit code. Then use
1271 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1272 @end enumerate
1273
1274 @node pcsys_os_specific
1275 @section Target OS specific information
1276
1277 @subsection Linux
1278
1279 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1280 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1281 color depth in the guest and the host OS.
1282
1283 When using a 2.6 guest Linux kernel, you should add the option
1284 @code{clock=pit} on the kernel command line because the 2.6 Linux
1285 kernels make very strict real time clock checks by default that QEMU
1286 cannot simulate exactly.
1287
1288 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1289 not activated because QEMU is slower with this patch. The QEMU
1290 Accelerator Module is also much slower in this case. Earlier Fedora
1291 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1292 patch by default. Newer kernels don't have it.
1293
1294 @subsection Windows
1295
1296 If you have a slow host, using Windows 95 is better as it gives the
1297 best speed. Windows 2000 is also a good choice.
1298
1299 @subsubsection SVGA graphic modes support
1300
1301 QEMU emulates a Cirrus Logic GD5446 Video
1302 card. All Windows versions starting from Windows 95 should recognize
1303 and use this graphic card. For optimal performances, use 16 bit color
1304 depth in the guest and the host OS.
1305
1306 If you are using Windows XP as guest OS and if you want to use high
1307 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1308 1280x1024x16), then you should use the VESA VBE virtual graphic card
1309 (option @option{-std-vga}).
1310
1311 @subsubsection CPU usage reduction
1312
1313 Windows 9x does not correctly use the CPU HLT
1314 instruction. The result is that it takes host CPU cycles even when
1315 idle. You can install the utility from
1316 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1317 problem. Note that no such tool is needed for NT, 2000 or XP.
1318
1319 @subsubsection Windows 2000 disk full problem
1320
1321 Windows 2000 has a bug which gives a disk full problem during its
1322 installation. When installing it, use the @option{-win2k-hack} QEMU
1323 option to enable a specific workaround. After Windows 2000 is
1324 installed, you no longer need this option (this option slows down the
1325 IDE transfers).
1326
1327 @subsubsection Windows 2000 shutdown
1328
1329 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1330 can. It comes from the fact that Windows 2000 does not automatically
1331 use the APM driver provided by the BIOS.
1332
1333 In order to correct that, do the following (thanks to Struan
1334 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1335 Add/Troubleshoot a device => Add a new device & Next => No, select the
1336 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1337 (again) a few times. Now the driver is installed and Windows 2000 now
1338 correctly instructs QEMU to shutdown at the appropriate moment.
1339
1340 @subsubsection Share a directory between Unix and Windows
1341
1342 See @ref{sec_invocation} about the help of the option @option{-smb}.
1343
1344 @subsubsection Windows XP security problems
1345
1346 Some releases of Windows XP install correctly but give a security
1347 error when booting:
1348 @example
1349 A problem is preventing Windows from accurately checking the
1350 license for this computer. Error code: 0x800703e6.
1351 @end example
1352 The only known workaround is to boot in Safe mode
1353 without networking support.
1354
1355 Future QEMU releases are likely to correct this bug.
1356
1357 @subsection MS-DOS and FreeDOS
1358
1359 @subsubsection CPU usage reduction
1360
1361 DOS does not correctly use the CPU HLT instruction. The result is that
1362 it takes host CPU cycles even when idle. You can install the utility
1363 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1364 problem.
1365
1366 @node QEMU System emulator for non PC targets
1367 @chapter QEMU System emulator for non PC targets
1368
1369 QEMU is a generic emulator and it emulates many non PC
1370 machines. Most of the options are similar to the PC emulator. The
1371 differences are mentionned in the following sections.
1372
1373 @menu
1374 * QEMU PowerPC System emulator::
1375 * Sparc32 System emulator invocation::
1376 * Sparc64 System emulator invocation::
1377 * MIPS System emulator invocation::
1378 * ARM System emulator invocation::
1379 @end menu
1380
1381 @node QEMU PowerPC System emulator
1382 @section QEMU PowerPC System emulator
1383
1384 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1385 or PowerMac PowerPC system.
1386
1387 QEMU emulates the following PowerMac peripherals:
1388
1389 @itemize @minus
1390 @item
1391 UniNorth PCI Bridge
1392 @item
1393 PCI VGA compatible card with VESA Bochs Extensions
1394 @item
1395 2 PMAC IDE interfaces with hard disk and CD-ROM support
1396 @item
1397 NE2000 PCI adapters
1398 @item
1399 Non Volatile RAM
1400 @item
1401 VIA-CUDA with ADB keyboard and mouse.
1402 @end itemize
1403
1404 QEMU emulates the following PREP peripherals:
1405
1406 @itemize @minus
1407 @item
1408 PCI Bridge
1409 @item
1410 PCI VGA compatible card with VESA Bochs Extensions
1411 @item
1412 2 IDE interfaces with hard disk and CD-ROM support
1413 @item
1414 Floppy disk
1415 @item
1416 NE2000 network adapters
1417 @item
1418 Serial port
1419 @item
1420 PREP Non Volatile RAM
1421 @item
1422 PC compatible keyboard and mouse.
1423 @end itemize
1424
1425 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1426 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1427
1428 @c man begin OPTIONS
1429
1430 The following options are specific to the PowerPC emulation:
1431
1432 @table @option
1433
1434 @item -g WxH[xDEPTH]
1435
1436 Set the initial VGA graphic mode. The default is 800x600x15.
1437
1438 @end table
1439
1440 @c man end
1441
1442
1443 More information is available at
1444 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1445
1446 @node Sparc32 System emulator invocation
1447 @section Sparc32 System emulator invocation
1448
1449 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1450 (sun4m architecture). The emulation is somewhat complete.
1451
1452 QEMU emulates the following sun4m peripherals:
1453
1454 @itemize @minus
1455 @item
1456 IOMMU
1457 @item
1458 TCX Frame buffer
1459 @item
1460 Lance (Am7990) Ethernet
1461 @item
1462 Non Volatile RAM M48T08
1463 @item
1464 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1465 and power/reset logic
1466 @item
1467 ESP SCSI controller with hard disk and CD-ROM support
1468 @item
1469 Floppy drive
1470 @end itemize
1471
1472 The number of peripherals is fixed in the architecture.
1473
1474 Since version 0.8.2, QEMU uses OpenBIOS
1475 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1476 firmware implementation. The goal is to implement a 100% IEEE
1477 1275-1994 (referred to as Open Firmware) compliant firmware.
1478
1479 A sample Linux 2.6 series kernel and ram disk image are available on
1480 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1481 Solaris kernels don't work.
1482
1483 @c man begin OPTIONS
1484
1485 The following options are specific to the Sparc emulation:
1486
1487 @table @option
1488
1489 @item -g WxH
1490
1491 Set the initial TCX graphic mode. The default is 1024x768.
1492
1493 @end table
1494
1495 @c man end
1496
1497 @node Sparc64 System emulator invocation
1498 @section Sparc64 System emulator invocation
1499
1500 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1501 The emulator is not usable for anything yet.
1502
1503 QEMU emulates the following sun4u peripherals:
1504
1505 @itemize @minus
1506 @item
1507 UltraSparc IIi APB PCI Bridge
1508 @item
1509 PCI VGA compatible card with VESA Bochs Extensions
1510 @item
1511 Non Volatile RAM M48T59
1512 @item
1513 PC-compatible serial ports
1514 @end itemize
1515
1516 @node MIPS System emulator invocation
1517 @section MIPS System emulator invocation
1518
1519 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1520 The emulator is able to boot a Linux kernel and to run a Linux Debian
1521 installation from NFS. The following devices are emulated:
1522
1523 @itemize @minus
1524 @item
1525 MIPS R4K CPU
1526 @item
1527 PC style serial port
1528 @item
1529 NE2000 network card
1530 @end itemize
1531
1532 More information is available in the QEMU mailing-list archive.
1533
1534 @node ARM System emulator invocation
1535 @section ARM System emulator invocation
1536
1537 Use the executable @file{qemu-system-arm} to simulate a ARM
1538 machine. The ARM Integrator/CP board is emulated with the following
1539 devices:
1540
1541 @itemize @minus
1542 @item
1543 ARM926E or ARM1026E CPU
1544 @item
1545 Two PL011 UARTs
1546 @item
1547 SMC 91c111 Ethernet adapter
1548 @item
1549 PL110 LCD controller
1550 @item
1551 PL050 KMI with PS/2 keyboard and mouse.
1552 @end itemize
1553
1554 The ARM Versatile baseboard is emulated with the following devices:
1555
1556 @itemize @minus
1557 @item
1558 ARM926E CPU
1559 @item
1560 PL190 Vectored Interrupt Controller
1561 @item
1562 Four PL011 UARTs
1563 @item
1564 SMC 91c111 Ethernet adapter
1565 @item
1566 PL110 LCD controller
1567 @item
1568 PL050 KMI with PS/2 keyboard and mouse.
1569 @item
1570 PCI host bridge. Note the emulated PCI bridge only provides access to
1571 PCI memory space. It does not provide access to PCI IO space.
1572 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1573 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1574 mapped control registers.
1575 @item
1576 PCI OHCI USB controller.
1577 @item
1578 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1579 @end itemize
1580
1581 A Linux 2.6 test image is available on the QEMU web site. More
1582 information is available in the QEMU mailing-list archive.
1583
1584 @node QEMU Linux User space emulator
1585 @chapter QEMU Linux User space emulator
1586
1587 @menu
1588 * Quick Start::
1589 * Wine launch::
1590 * Command line options::
1591 * Other binaries::
1592 @end menu
1593
1594 @node Quick Start
1595 @section Quick Start
1596
1597 In order to launch a Linux process, QEMU needs the process executable
1598 itself and all the target (x86) dynamic libraries used by it.
1599
1600 @itemize
1601
1602 @item On x86, you can just try to launch any process by using the native
1603 libraries:
1604
1605 @example
1606 qemu-i386 -L / /bin/ls
1607 @end example
1608
1609 @code{-L /} tells that the x86 dynamic linker must be searched with a
1610 @file{/} prefix.
1611
1612 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1613
1614 @example
1615 qemu-i386 -L / qemu-i386 -L / /bin/ls
1616 @end example
1617
1618 @item On non x86 CPUs, you need first to download at least an x86 glibc
1619 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1620 @code{LD_LIBRARY_PATH} is not set:
1621
1622 @example
1623 unset LD_LIBRARY_PATH
1624 @end example
1625
1626 Then you can launch the precompiled @file{ls} x86 executable:
1627
1628 @example
1629 qemu-i386 tests/i386/ls
1630 @end example
1631 You can look at @file{qemu-binfmt-conf.sh} so that
1632 QEMU is automatically launched by the Linux kernel when you try to
1633 launch x86 executables. It requires the @code{binfmt_misc} module in the
1634 Linux kernel.
1635
1636 @item The x86 version of QEMU is also included. You can try weird things such as:
1637 @example
1638 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1639 /usr/local/qemu-i386/bin/ls-i386
1640 @end example
1641
1642 @end itemize
1643
1644 @node Wine launch
1645 @section Wine launch
1646
1647 @itemize
1648
1649 @item Ensure that you have a working QEMU with the x86 glibc
1650 distribution (see previous section). In order to verify it, you must be
1651 able to do:
1652
1653 @example
1654 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1655 @end example
1656
1657 @item Download the binary x86 Wine install
1658 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
1659
1660 @item Configure Wine on your account. Look at the provided script
1661 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1662 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1663
1664 @item Then you can try the example @file{putty.exe}:
1665
1666 @example
1667 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1668 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1669 @end example
1670
1671 @end itemize
1672
1673 @node Command line options
1674 @section Command line options
1675
1676 @example
1677 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1678 @end example
1679
1680 @table @option
1681 @item -h
1682 Print the help
1683 @item -L path
1684 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1685 @item -s size
1686 Set the x86 stack size in bytes (default=524288)
1687 @end table
1688
1689 Debug options:
1690
1691 @table @option
1692 @item -d
1693 Activate log (logfile=/tmp/qemu.log)
1694 @item -p pagesize
1695 Act as if the host page size was 'pagesize' bytes
1696 @end table
1697
1698 @node Other binaries
1699 @section Other binaries
1700
1701 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1702 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1703 configurations), and arm-uclinux bFLT format binaries.
1704
1705 The binary format is detected automatically.
1706
1707 @node compilation
1708 @chapter Compilation from the sources
1709
1710 @menu
1711 * Linux/Unix::
1712 * Windows::
1713 * Cross compilation for Windows with Linux::
1714 * Mac OS X::
1715 @end menu
1716
1717 @node Linux/Unix
1718 @section Linux/Unix
1719
1720 @subsection Compilation
1721
1722 First you must decompress the sources:
1723 @example
1724 cd /tmp
1725 tar zxvf qemu-x.y.z.tar.gz
1726 cd qemu-x.y.z
1727 @end example
1728
1729 Then you configure QEMU and build it (usually no options are needed):
1730 @example
1731 ./configure
1732 make
1733 @end example
1734
1735 Then type as root user:
1736 @example
1737 make install
1738 @end example
1739 to install QEMU in @file{/usr/local}.
1740
1741 @subsection Tested tool versions
1742
1743 In order to compile QEMU succesfully, it is very important that you
1744 have the right tools. The most important one is gcc. I cannot guaranty
1745 that QEMU works if you do not use a tested gcc version. Look at
1746 'configure' and 'Makefile' if you want to make a different gcc
1747 version work.
1748
1749 @example
1750 host gcc binutils glibc linux distribution
1751 ----------------------------------------------------------------------
1752 x86 3.2 2.13.2 2.1.3 2.4.18
1753 2.96 2.11.93.0.2 2.2.5 2.4.18 Red Hat 7.3
1754 3.2.2 2.13.90.0.18 2.3.2 2.4.20 Red Hat 9
1755
1756 PowerPC 3.3 [4] 2.13.90.0.18 2.3.1 2.4.20briq
1757 3.2
1758
1759 Alpha 3.3 [1] 2.14.90.0.4 2.2.5 2.2.20 [2] Debian 3.0
1760
1761 Sparc32 2.95.4 2.12.90.0.1 2.2.5 2.4.18 Debian 3.0
1762
1763 ARM 2.95.4 2.12.90.0.1 2.2.5 2.4.9 [3] Debian 3.0
1764
1765 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1766 for gcc version >= 3.3.
1767 [2] Linux >= 2.4.20 is necessary for precise exception support
1768 (untested).
1769 [3] 2.4.9-ac10-rmk2-np1-cerf2
1770
1771 [4] gcc 2.95.x generates invalid code when using too many register
1772 variables. You must use gcc 3.x on PowerPC.
1773 @end example
1774
1775 @node Windows
1776 @section Windows
1777
1778 @itemize
1779 @item Install the current versions of MSYS and MinGW from
1780 @url{http://www.mingw.org/}. You can find detailed installation
1781 instructions in the download section and the FAQ.
1782
1783 @item Download
1784 the MinGW development library of SDL 1.2.x
1785 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1786 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1787 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1788 directory. Edit the @file{sdl-config} script so that it gives the
1789 correct SDL directory when invoked.
1790
1791 @item Extract the current version of QEMU.
1792
1793 @item Start the MSYS shell (file @file{msys.bat}).
1794
1795 @item Change to the QEMU directory. Launch @file{./configure} and
1796 @file{make}. If you have problems using SDL, verify that
1797 @file{sdl-config} can be launched from the MSYS command line.
1798
1799 @item You can install QEMU in @file{Program Files/Qemu} by typing
1800 @file{make install}. Don't forget to copy @file{SDL.dll} in
1801 @file{Program Files/Qemu}.
1802
1803 @end itemize
1804
1805 @node Cross compilation for Windows with Linux
1806 @section Cross compilation for Windows with Linux
1807
1808 @itemize
1809 @item
1810 Install the MinGW cross compilation tools available at
1811 @url{http://www.mingw.org/}.
1812
1813 @item
1814 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1815 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1816 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1817 the QEMU configuration script.
1818
1819 @item
1820 Configure QEMU for Windows cross compilation:
1821 @example
1822 ./configure --enable-mingw32
1823 @end example
1824 If necessary, you can change the cross-prefix according to the prefix
1825 choosen for the MinGW tools with --cross-prefix. You can also use
1826 --prefix to set the Win32 install path.
1827
1828 @item You can install QEMU in the installation directory by typing
1829 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1830 installation directory.
1831
1832 @end itemize
1833
1834 Note: Currently, Wine does not seem able to launch
1835 QEMU for Win32.
1836
1837 @node Mac OS X
1838 @section Mac OS X
1839
1840 The Mac OS X patches are not fully merged in QEMU, so you should look
1841 at the QEMU mailing list archive to have all the necessary
1842 information.
1843
1844 @node Index
1845 @chapter Index
1846 @printindex cp
1847
1848 @bye