]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
Sparc64 linux-user build fix
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @item ARM RealView Emulation baseboard (ARM926EJ-S)
83 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
85 @end itemize
86
87 For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
88
89 @node Installation
90 @chapter Installation
91
92 If you want to compile QEMU yourself, see @ref{compilation}.
93
94 @menu
95 * install_linux:: Linux
96 * install_windows:: Windows
97 * install_mac:: Macintosh
98 @end menu
99
100 @node install_linux
101 @section Linux
102
103 If a precompiled package is available for your distribution - you just
104 have to install it. Otherwise, see @ref{compilation}.
105
106 @node install_windows
107 @section Windows
108
109 Download the experimental binary installer at
110 @url{http://www.free.oszoo.org/@/download.html}.
111
112 @node install_mac
113 @section Mac OS X
114
115 Download the experimental binary installer at
116 @url{http://www.free.oszoo.org/@/download.html}.
117
118 @node QEMU PC System emulator
119 @chapter QEMU PC System emulator
120
121 @menu
122 * pcsys_introduction:: Introduction
123 * pcsys_quickstart:: Quick Start
124 * sec_invocation:: Invocation
125 * pcsys_keys:: Keys
126 * pcsys_monitor:: QEMU Monitor
127 * disk_images:: Disk Images
128 * pcsys_network:: Network emulation
129 * direct_linux_boot:: Direct Linux Boot
130 * pcsys_usb:: USB emulation
131 * gdb_usage:: GDB usage
132 * pcsys_os_specific:: Target OS specific information
133 @end menu
134
135 @node pcsys_introduction
136 @section Introduction
137
138 @c man begin DESCRIPTION
139
140 The QEMU PC System emulator simulates the
141 following peripherals:
142
143 @itemize @minus
144 @item
145 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
146 @item
147 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
148 extensions (hardware level, including all non standard modes).
149 @item
150 PS/2 mouse and keyboard
151 @item
152 2 PCI IDE interfaces with hard disk and CD-ROM support
153 @item
154 Floppy disk
155 @item
156 PCI/ISA PCI network adapters
157 @item
158 Serial ports
159 @item
160 Creative SoundBlaster 16 sound card
161 @item
162 ENSONIQ AudioPCI ES1370 sound card
163 @item
164 Adlib(OPL2) - Yamaha YM3812 compatible chip
165 @item
166 PCI UHCI USB controller and a virtual USB hub.
167 @end itemize
168
169 SMP is supported with up to 255 CPUs.
170
171 Note that adlib is only available when QEMU was configured with
172 -enable-adlib
173
174 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
175 VGA BIOS.
176
177 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
178
179 @c man end
180
181 @node pcsys_quickstart
182 @section Quick Start
183
184 Download and uncompress the linux image (@file{linux.img}) and type:
185
186 @example
187 qemu linux.img
188 @end example
189
190 Linux should boot and give you a prompt.
191
192 @node sec_invocation
193 @section Invocation
194
195 @example
196 @c man begin SYNOPSIS
197 usage: qemu [options] [disk_image]
198 @c man end
199 @end example
200
201 @c man begin OPTIONS
202 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
203
204 General options:
205 @table @option
206 @item -M machine
207 Select the emulated machine (@code{-M ?} for list)
208
209 @item -fda file
210 @item -fdb file
211 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
212 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
213
214 @item -hda file
215 @item -hdb file
216 @item -hdc file
217 @item -hdd file
218 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
219
220 @item -cdrom file
221 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
222 @option{-cdrom} at the same time). You can use the host CD-ROM by
223 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
224
225 @item -boot [a|c|d|n]
226 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
227 is the default.
228
229 @item -snapshot
230 Write to temporary files instead of disk image files. In this case,
231 the raw disk image you use is not written back. You can however force
232 the write back by pressing @key{C-a s} (@pxref{disk_images}).
233
234 @item -no-fd-bootchk
235 Disable boot signature checking for floppy disks in Bochs BIOS. It may
236 be needed to boot from old floppy disks.
237
238 @item -m megs
239 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
240
241 @item -smp n
242 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
243 CPUs are supported.
244
245 @item -nographic
246
247 Normally, QEMU uses SDL to display the VGA output. With this option,
248 you can totally disable graphical output so that QEMU is a simple
249 command line application. The emulated serial port is redirected on
250 the console. Therefore, you can still use QEMU to debug a Linux kernel
251 with a serial console.
252
253 @item -no-frame
254
255 Do not use decorations for SDL windows and start them using the whole
256 available screen space. This makes the using QEMU in a dedicated desktop
257 workspace more convenient.
258
259 @item -vnc display
260
261 Normally, QEMU uses SDL to display the VGA output. With this option,
262 you can have QEMU listen on VNC display @var{display} and redirect the VGA
263 display over the VNC session. It is very useful to enable the usb
264 tablet device when using this option (option @option{-usbdevice
265 tablet}). When using the VNC display, you must use the @option{-k}
266 option to set the keyboard layout if you are not using en-us.
267
268 @var{display} may be in the form @var{interface:d}, in which case connections
269 will only be allowed from @var{interface} on display @var{d}. Optionally,
270 @var{interface} can be omitted. @var{display} can also be in the form
271 @var{unix:path} where @var{path} is the location of a unix socket to listen for
272 connections on.
273
274
275 @item -k language
276
277 Use keyboard layout @var{language} (for example @code{fr} for
278 French). This option is only needed where it is not easy to get raw PC
279 keycodes (e.g. on Macs, with some X11 servers or with a VNC
280 display). You don't normally need to use it on PC/Linux or PC/Windows
281 hosts.
282
283 The available layouts are:
284 @example
285 ar de-ch es fo fr-ca hu ja mk no pt-br sv
286 da en-gb et fr fr-ch is lt nl pl ru th
287 de en-us fi fr-be hr it lv nl-be pt sl tr
288 @end example
289
290 The default is @code{en-us}.
291
292 @item -audio-help
293
294 Will show the audio subsystem help: list of drivers, tunable
295 parameters.
296
297 @item -soundhw card1,card2,... or -soundhw all
298
299 Enable audio and selected sound hardware. Use ? to print all
300 available sound hardware.
301
302 @example
303 qemu -soundhw sb16,adlib hda
304 qemu -soundhw es1370 hda
305 qemu -soundhw all hda
306 qemu -soundhw ?
307 @end example
308
309 @item -localtime
310 Set the real time clock to local time (the default is to UTC
311 time). This option is needed to have correct date in MS-DOS or
312 Windows.
313
314 @item -full-screen
315 Start in full screen.
316
317 @item -pidfile file
318 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
319 from a script.
320
321 @item -daemonize
322 Daemonize the QEMU process after initialization. QEMU will not detach from
323 standard IO until it is ready to receive connections on any of its devices.
324 This option is a useful way for external programs to launch QEMU without having
325 to cope with initialization race conditions.
326
327 @item -win2k-hack
328 Use it when installing Windows 2000 to avoid a disk full bug. After
329 Windows 2000 is installed, you no longer need this option (this option
330 slows down the IDE transfers).
331
332 @item -option-rom file
333 Load the contents of file as an option ROM. This option is useful to load
334 things like EtherBoot.
335
336 @item -name string
337 Sets the name of the guest. This name will be display in the SDL window
338 caption. The name will also be used for the VNC server.
339
340 @end table
341
342 USB options:
343 @table @option
344
345 @item -usb
346 Enable the USB driver (will be the default soon)
347
348 @item -usbdevice devname
349 Add the USB device @var{devname}. @xref{usb_devices}.
350 @end table
351
352 Network options:
353
354 @table @option
355
356 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
357 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
358 = 0 is the default). The NIC is an ne2k_pci by default on the PC
359 target. Optionally, the MAC address can be changed. If no
360 @option{-net} option is specified, a single NIC is created.
361 Qemu can emulate several different models of network card.
362 Valid values for @var{type} are
363 @code{i82551}, @code{i82557b}, @code{i82559er},
364 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
365 @code{smc91c111} and @code{lance}.
366 Not all devices are supported on all targets. Use -net nic,model=?
367 for a list of available devices for your target.
368
369 @item -net user[,vlan=n][,hostname=name]
370 Use the user mode network stack which requires no administrator
371 priviledge to run. @option{hostname=name} can be used to specify the client
372 hostname reported by the builtin DHCP server.
373
374 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
375 Connect the host TAP network interface @var{name} to VLAN @var{n} and
376 use the network script @var{file} to configure it. The default
377 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
378 disable script execution. If @var{name} is not
379 provided, the OS automatically provides one. @option{fd=h} can be
380 used to specify the handle of an already opened host TAP interface. Example:
381
382 @example
383 qemu linux.img -net nic -net tap
384 @end example
385
386 More complicated example (two NICs, each one connected to a TAP device)
387 @example
388 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
389 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
390 @end example
391
392
393 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
394
395 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
396 machine using a TCP socket connection. If @option{listen} is
397 specified, QEMU waits for incoming connections on @var{port}
398 (@var{host} is optional). @option{connect} is used to connect to
399 another QEMU instance using the @option{listen} option. @option{fd=h}
400 specifies an already opened TCP socket.
401
402 Example:
403 @example
404 # launch a first QEMU instance
405 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
406 -net socket,listen=:1234
407 # connect the VLAN 0 of this instance to the VLAN 0
408 # of the first instance
409 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
410 -net socket,connect=127.0.0.1:1234
411 @end example
412
413 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
414
415 Create a VLAN @var{n} shared with another QEMU virtual
416 machines using a UDP multicast socket, effectively making a bus for
417 every QEMU with same multicast address @var{maddr} and @var{port}.
418 NOTES:
419 @enumerate
420 @item
421 Several QEMU can be running on different hosts and share same bus (assuming
422 correct multicast setup for these hosts).
423 @item
424 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
425 @url{http://user-mode-linux.sf.net}.
426 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
427 @end enumerate
428
429 Example:
430 @example
431 # launch one QEMU instance
432 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
433 -net socket,mcast=230.0.0.1:1234
434 # launch another QEMU instance on same "bus"
435 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
436 -net socket,mcast=230.0.0.1:1234
437 # launch yet another QEMU instance on same "bus"
438 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
439 -net socket,mcast=230.0.0.1:1234
440 @end example
441
442 Example (User Mode Linux compat.):
443 @example
444 # launch QEMU instance (note mcast address selected
445 # is UML's default)
446 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
447 -net socket,mcast=239.192.168.1:1102
448 # launch UML
449 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
450 @end example
451
452 @item -net none
453 Indicate that no network devices should be configured. It is used to
454 override the default configuration (@option{-net nic -net user}) which
455 is activated if no @option{-net} options are provided.
456
457 @item -tftp dir
458 When using the user mode network stack, activate a built-in TFTP
459 server. The files in @var{dir} will be exposed as the root of a TFTP server.
460 The TFTP client on the guest must be configured in binary mode (use the command
461 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
462 usual 10.0.2.2.
463
464 @item -bootp file
465 When using the user mode network stack, broadcast @var{file} as the BOOTP
466 filename. In conjunction with @option{-tftp}, this can be used to network boot
467 a guest from a local directory.
468
469 Example (using pxelinux):
470 @example
471 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
472 @end example
473
474 @item -smb dir
475 When using the user mode network stack, activate a built-in SMB
476 server so that Windows OSes can access to the host files in @file{dir}
477 transparently.
478
479 In the guest Windows OS, the line:
480 @example
481 10.0.2.4 smbserver
482 @end example
483 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
484 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
485
486 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
487
488 Note that a SAMBA server must be installed on the host OS in
489 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
490 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
491
492 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
493
494 When using the user mode network stack, redirect incoming TCP or UDP
495 connections to the host port @var{host-port} to the guest
496 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
497 is not specified, its value is 10.0.2.15 (default address given by the
498 built-in DHCP server).
499
500 For example, to redirect host X11 connection from screen 1 to guest
501 screen 0, use the following:
502
503 @example
504 # on the host
505 qemu -redir tcp:6001::6000 [...]
506 # this host xterm should open in the guest X11 server
507 xterm -display :1
508 @end example
509
510 To redirect telnet connections from host port 5555 to telnet port on
511 the guest, use the following:
512
513 @example
514 # on the host
515 qemu -redir tcp:5555::23 [...]
516 telnet localhost 5555
517 @end example
518
519 Then when you use on the host @code{telnet localhost 5555}, you
520 connect to the guest telnet server.
521
522 @end table
523
524 Linux boot specific: When using these options, you can use a given
525 Linux kernel without installing it in the disk image. It can be useful
526 for easier testing of various kernels.
527
528 @table @option
529
530 @item -kernel bzImage
531 Use @var{bzImage} as kernel image.
532
533 @item -append cmdline
534 Use @var{cmdline} as kernel command line
535
536 @item -initrd file
537 Use @var{file} as initial ram disk.
538
539 @end table
540
541 Debug/Expert options:
542 @table @option
543
544 @item -serial dev
545 Redirect the virtual serial port to host character device
546 @var{dev}. The default device is @code{vc} in graphical mode and
547 @code{stdio} in non graphical mode.
548
549 This option can be used several times to simulate up to 4 serials
550 ports.
551
552 Use @code{-serial none} to disable all serial ports.
553
554 Available character devices are:
555 @table @code
556 @item vc
557 Virtual console
558 @item pty
559 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
560 @item none
561 No device is allocated.
562 @item null
563 void device
564 @item /dev/XXX
565 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
566 parameters are set according to the emulated ones.
567 @item /dev/parportN
568 [Linux only, parallel port only] Use host parallel port
569 @var{N}. Currently SPP and EPP parallel port features can be used.
570 @item file:filename
571 Write output to filename. No character can be read.
572 @item stdio
573 [Unix only] standard input/output
574 @item pipe:filename
575 name pipe @var{filename}
576 @item COMn
577 [Windows only] Use host serial port @var{n}
578 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
579 This implements UDP Net Console. When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}. When not using a specifed @var{src_port} a random port is automatically chosen.
580
581 If you just want a simple readonly console you can use @code{netcat} or
582 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
583 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
584 will appear in the netconsole session.
585
586 If you plan to send characters back via netconsole or you want to stop
587 and start qemu a lot of times, you should have qemu use the same
588 source port each time by using something like @code{-serial
589 udp::4555@@:4556} to qemu. Another approach is to use a patched
590 version of netcat which can listen to a TCP port and send and receive
591 characters via udp. If you have a patched version of netcat which
592 activates telnet remote echo and single char transfer, then you can
593 use the following options to step up a netcat redirector to allow
594 telnet on port 5555 to access the qemu port.
595 @table @code
596 @item Qemu Options:
597 -serial udp::4555@@:4556
598 @item netcat options:
599 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
600 @item telnet options:
601 localhost 5555
602 @end table
603
604
605 @item tcp:[host]:port[,server][,nowait][,nodelay]
606 The TCP Net Console has two modes of operation. It can send the serial
607 I/O to a location or wait for a connection from a location. By default
608 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
609 the @var{server} option QEMU will wait for a client socket application
610 to connect to the port before continuing, unless the @code{nowait}
611 option was specified. The @code{nodelay} option disables the Nagle buffering
612 algoritm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
613 one TCP connection at a time is accepted. You can use @code{telnet} to
614 connect to the corresponding character device.
615 @table @code
616 @item Example to send tcp console to 192.168.0.2 port 4444
617 -serial tcp:192.168.0.2:4444
618 @item Example to listen and wait on port 4444 for connection
619 -serial tcp::4444,server
620 @item Example to not wait and listen on ip 192.168.0.100 port 4444
621 -serial tcp:192.168.0.100:4444,server,nowait
622 @end table
623
624 @item telnet:host:port[,server][,nowait][,nodelay]
625 The telnet protocol is used instead of raw tcp sockets. The options
626 work the same as if you had specified @code{-serial tcp}. The
627 difference is that the port acts like a telnet server or client using
628 telnet option negotiation. This will also allow you to send the
629 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
630 sequence. Typically in unix telnet you do it with Control-] and then
631 type "send break" followed by pressing the enter key.
632
633 @item unix:path[,server][,nowait]
634 A unix domain socket is used instead of a tcp socket. The option works the
635 same as if you had specified @code{-serial tcp} except the unix domain socket
636 @var{path} is used for connections.
637
638 @item mon:dev_string
639 This is a special option to allow the monitor to be multiplexed onto
640 another serial port. The monitor is accessed with key sequence of
641 @key{Control-a} and then pressing @key{c}. See monitor access
642 @ref{pcsys_keys} in the -nographic section for more keys.
643 @var{dev_string} should be any one of the serial devices specified
644 above. An example to multiplex the monitor onto a telnet server
645 listening on port 4444 would be:
646 @table @code
647 @item -serial mon:telnet::4444,server,nowait
648 @end table
649
650 @end table
651
652 @item -parallel dev
653 Redirect the virtual parallel port to host device @var{dev} (same
654 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
655 be used to use hardware devices connected on the corresponding host
656 parallel port.
657
658 This option can be used several times to simulate up to 3 parallel
659 ports.
660
661 Use @code{-parallel none} to disable all parallel ports.
662
663 @item -monitor dev
664 Redirect the monitor to host device @var{dev} (same devices as the
665 serial port).
666 The default device is @code{vc} in graphical mode and @code{stdio} in
667 non graphical mode.
668
669 @item -echr numeric_ascii_value
670 Change the escape character used for switching to the monitor when using
671 monitor and serial sharing. The default is @code{0x01} when using the
672 @code{-nographic} option. @code{0x01} is equal to pressing
673 @code{Control-a}. You can select a different character from the ascii
674 control keys where 1 through 26 map to Control-a through Control-z. For
675 instance you could use the either of the following to change the escape
676 character to Control-t.
677 @table @code
678 @item -echr 0x14
679 @item -echr 20
680 @end table
681
682 @item -s
683 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
684 @item -p port
685 Change gdb connection port. @var{port} can be either a decimal number
686 to specify a TCP port, or a host device (same devices as the serial port).
687 @item -S
688 Do not start CPU at startup (you must type 'c' in the monitor).
689 @item -d
690 Output log in /tmp/qemu.log
691 @item -hdachs c,h,s,[,t]
692 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
693 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
694 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
695 all thoses parameters. This option is useful for old MS-DOS disk
696 images.
697
698 @item -L path
699 Set the directory for the BIOS, VGA BIOS and keymaps.
700
701 @item -std-vga
702 Simulate a standard VGA card with Bochs VBE extensions (default is
703 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
704 VBE extensions (e.g. Windows XP) and if you want to use high
705 resolution modes (>= 1280x1024x16) then you should use this option.
706
707 @item -no-acpi
708 Disable ACPI (Advanced Configuration and Power Interface) support. Use
709 it if your guest OS complains about ACPI problems (PC target machine
710 only).
711
712 @item -no-reboot
713 Exit instead of rebooting.
714
715 @item -loadvm file
716 Start right away with a saved state (@code{loadvm} in monitor)
717
718 @item -semihosting
719 Enable semihosting syscall emulation (ARM and M68K target machines only).
720
721 On ARM this implements the "Angel" interface.
722 On M68K this implements the "ColdFire GDB" interface used by libgloss.
723
724 Note that this allows guest direct access to the host filesystem,
725 so should only be used with trusted guest OS.
726 @end table
727
728 @c man end
729
730 @node pcsys_keys
731 @section Keys
732
733 @c man begin OPTIONS
734
735 During the graphical emulation, you can use the following keys:
736 @table @key
737 @item Ctrl-Alt-f
738 Toggle full screen
739
740 @item Ctrl-Alt-n
741 Switch to virtual console 'n'. Standard console mappings are:
742 @table @emph
743 @item 1
744 Target system display
745 @item 2
746 Monitor
747 @item 3
748 Serial port
749 @end table
750
751 @item Ctrl-Alt
752 Toggle mouse and keyboard grab.
753 @end table
754
755 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
756 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
757
758 During emulation, if you are using the @option{-nographic} option, use
759 @key{Ctrl-a h} to get terminal commands:
760
761 @table @key
762 @item Ctrl-a h
763 Print this help
764 @item Ctrl-a x
765 Exit emulator
766 @item Ctrl-a s
767 Save disk data back to file (if -snapshot)
768 @item Ctrl-a t
769 toggle console timestamps
770 @item Ctrl-a b
771 Send break (magic sysrq in Linux)
772 @item Ctrl-a c
773 Switch between console and monitor
774 @item Ctrl-a Ctrl-a
775 Send Ctrl-a
776 @end table
777 @c man end
778
779 @ignore
780
781 @c man begin SEEALSO
782 The HTML documentation of QEMU for more precise information and Linux
783 user mode emulator invocation.
784 @c man end
785
786 @c man begin AUTHOR
787 Fabrice Bellard
788 @c man end
789
790 @end ignore
791
792 @node pcsys_monitor
793 @section QEMU Monitor
794
795 The QEMU monitor is used to give complex commands to the QEMU
796 emulator. You can use it to:
797
798 @itemize @minus
799
800 @item
801 Remove or insert removable media images
802 (such as CD-ROM or floppies)
803
804 @item
805 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
806 from a disk file.
807
808 @item Inspect the VM state without an external debugger.
809
810 @end itemize
811
812 @subsection Commands
813
814 The following commands are available:
815
816 @table @option
817
818 @item help or ? [cmd]
819 Show the help for all commands or just for command @var{cmd}.
820
821 @item commit
822 Commit changes to the disk images (if -snapshot is used)
823
824 @item info subcommand
825 show various information about the system state
826
827 @table @option
828 @item info network
829 show the various VLANs and the associated devices
830 @item info block
831 show the block devices
832 @item info registers
833 show the cpu registers
834 @item info history
835 show the command line history
836 @item info pci
837 show emulated PCI device
838 @item info usb
839 show USB devices plugged on the virtual USB hub
840 @item info usbhost
841 show all USB host devices
842 @item info capture
843 show information about active capturing
844 @item info snapshots
845 show list of VM snapshots
846 @item info mice
847 show which guest mouse is receiving events
848 @end table
849
850 @item q or quit
851 Quit the emulator.
852
853 @item eject [-f] device
854 Eject a removable medium (use -f to force it).
855
856 @item change device filename
857 Change a removable medium.
858
859 @item screendump filename
860 Save screen into PPM image @var{filename}.
861
862 @item mouse_move dx dy [dz]
863 Move the active mouse to the specified coordinates @var{dx} @var{dy}
864 with optional scroll axis @var{dz}.
865
866 @item mouse_button val
867 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
868
869 @item mouse_set index
870 Set which mouse device receives events at given @var{index}, index
871 can be obtained with
872 @example
873 info mice
874 @end example
875
876 @item wavcapture filename [frequency [bits [channels]]]
877 Capture audio into @var{filename}. Using sample rate @var{frequency}
878 bits per sample @var{bits} and number of channels @var{channels}.
879
880 Defaults:
881 @itemize @minus
882 @item Sample rate = 44100 Hz - CD quality
883 @item Bits = 16
884 @item Number of channels = 2 - Stereo
885 @end itemize
886
887 @item stopcapture index
888 Stop capture with a given @var{index}, index can be obtained with
889 @example
890 info capture
891 @end example
892
893 @item log item1[,...]
894 Activate logging of the specified items to @file{/tmp/qemu.log}.
895
896 @item savevm [tag|id]
897 Create a snapshot of the whole virtual machine. If @var{tag} is
898 provided, it is used as human readable identifier. If there is already
899 a snapshot with the same tag or ID, it is replaced. More info at
900 @ref{vm_snapshots}.
901
902 @item loadvm tag|id
903 Set the whole virtual machine to the snapshot identified by the tag
904 @var{tag} or the unique snapshot ID @var{id}.
905
906 @item delvm tag|id
907 Delete the snapshot identified by @var{tag} or @var{id}.
908
909 @item stop
910 Stop emulation.
911
912 @item c or cont
913 Resume emulation.
914
915 @item gdbserver [port]
916 Start gdbserver session (default port=1234)
917
918 @item x/fmt addr
919 Virtual memory dump starting at @var{addr}.
920
921 @item xp /fmt addr
922 Physical memory dump starting at @var{addr}.
923
924 @var{fmt} is a format which tells the command how to format the
925 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
926
927 @table @var
928 @item count
929 is the number of items to be dumped.
930
931 @item format
932 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
933 c (char) or i (asm instruction).
934
935 @item size
936 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
937 @code{h} or @code{w} can be specified with the @code{i} format to
938 respectively select 16 or 32 bit code instruction size.
939
940 @end table
941
942 Examples:
943 @itemize
944 @item
945 Dump 10 instructions at the current instruction pointer:
946 @example
947 (qemu) x/10i $eip
948 0x90107063: ret
949 0x90107064: sti
950 0x90107065: lea 0x0(%esi,1),%esi
951 0x90107069: lea 0x0(%edi,1),%edi
952 0x90107070: ret
953 0x90107071: jmp 0x90107080
954 0x90107073: nop
955 0x90107074: nop
956 0x90107075: nop
957 0x90107076: nop
958 @end example
959
960 @item
961 Dump 80 16 bit values at the start of the video memory.
962 @smallexample
963 (qemu) xp/80hx 0xb8000
964 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
965 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
966 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
967 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
968 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
969 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
970 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
971 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
972 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
973 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
974 @end smallexample
975 @end itemize
976
977 @item p or print/fmt expr
978
979 Print expression value. Only the @var{format} part of @var{fmt} is
980 used.
981
982 @item sendkey keys
983
984 Send @var{keys} to the emulator. Use @code{-} to press several keys
985 simultaneously. Example:
986 @example
987 sendkey ctrl-alt-f1
988 @end example
989
990 This command is useful to send keys that your graphical user interface
991 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
992
993 @item system_reset
994
995 Reset the system.
996
997 @item usb_add devname
998
999 Add the USB device @var{devname}. For details of available devices see
1000 @ref{usb_devices}
1001
1002 @item usb_del devname
1003
1004 Remove the USB device @var{devname} from the QEMU virtual USB
1005 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1006 command @code{info usb} to see the devices you can remove.
1007
1008 @end table
1009
1010 @subsection Integer expressions
1011
1012 The monitor understands integers expressions for every integer
1013 argument. You can use register names to get the value of specifics
1014 CPU registers by prefixing them with @emph{$}.
1015
1016 @node disk_images
1017 @section Disk Images
1018
1019 Since version 0.6.1, QEMU supports many disk image formats, including
1020 growable disk images (their size increase as non empty sectors are
1021 written), compressed and encrypted disk images. Version 0.8.3 added
1022 the new qcow2 disk image format which is essential to support VM
1023 snapshots.
1024
1025 @menu
1026 * disk_images_quickstart:: Quick start for disk image creation
1027 * disk_images_snapshot_mode:: Snapshot mode
1028 * vm_snapshots:: VM snapshots
1029 * qemu_img_invocation:: qemu-img Invocation
1030 * host_drives:: Using host drives
1031 * disk_images_fat_images:: Virtual FAT disk images
1032 @end menu
1033
1034 @node disk_images_quickstart
1035 @subsection Quick start for disk image creation
1036
1037 You can create a disk image with the command:
1038 @example
1039 qemu-img create myimage.img mysize
1040 @end example
1041 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1042 size in kilobytes. You can add an @code{M} suffix to give the size in
1043 megabytes and a @code{G} suffix for gigabytes.
1044
1045 See @ref{qemu_img_invocation} for more information.
1046
1047 @node disk_images_snapshot_mode
1048 @subsection Snapshot mode
1049
1050 If you use the option @option{-snapshot}, all disk images are
1051 considered as read only. When sectors in written, they are written in
1052 a temporary file created in @file{/tmp}. You can however force the
1053 write back to the raw disk images by using the @code{commit} monitor
1054 command (or @key{C-a s} in the serial console).
1055
1056 @node vm_snapshots
1057 @subsection VM snapshots
1058
1059 VM snapshots are snapshots of the complete virtual machine including
1060 CPU state, RAM, device state and the content of all the writable
1061 disks. In order to use VM snapshots, you must have at least one non
1062 removable and writable block device using the @code{qcow2} disk image
1063 format. Normally this device is the first virtual hard drive.
1064
1065 Use the monitor command @code{savevm} to create a new VM snapshot or
1066 replace an existing one. A human readable name can be assigned to each
1067 snapshot in addition to its numerical ID.
1068
1069 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1070 a VM snapshot. @code{info snapshots} lists the available snapshots
1071 with their associated information:
1072
1073 @example
1074 (qemu) info snapshots
1075 Snapshot devices: hda
1076 Snapshot list (from hda):
1077 ID TAG VM SIZE DATE VM CLOCK
1078 1 start 41M 2006-08-06 12:38:02 00:00:14.954
1079 2 40M 2006-08-06 12:43:29 00:00:18.633
1080 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
1081 @end example
1082
1083 A VM snapshot is made of a VM state info (its size is shown in
1084 @code{info snapshots}) and a snapshot of every writable disk image.
1085 The VM state info is stored in the first @code{qcow2} non removable
1086 and writable block device. The disk image snapshots are stored in
1087 every disk image. The size of a snapshot in a disk image is difficult
1088 to evaluate and is not shown by @code{info snapshots} because the
1089 associated disk sectors are shared among all the snapshots to save
1090 disk space (otherwise each snapshot would need a full copy of all the
1091 disk images).
1092
1093 When using the (unrelated) @code{-snapshot} option
1094 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1095 but they are deleted as soon as you exit QEMU.
1096
1097 VM snapshots currently have the following known limitations:
1098 @itemize
1099 @item
1100 They cannot cope with removable devices if they are removed or
1101 inserted after a snapshot is done.
1102 @item
1103 A few device drivers still have incomplete snapshot support so their
1104 state is not saved or restored properly (in particular USB).
1105 @end itemize
1106
1107 @node qemu_img_invocation
1108 @subsection @code{qemu-img} Invocation
1109
1110 @include qemu-img.texi
1111
1112 @node host_drives
1113 @subsection Using host drives
1114
1115 In addition to disk image files, QEMU can directly access host
1116 devices. We describe here the usage for QEMU version >= 0.8.3.
1117
1118 @subsubsection Linux
1119
1120 On Linux, you can directly use the host device filename instead of a
1121 disk image filename provided you have enough proviledge to access
1122 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1123 @file{/dev/fd0} for the floppy.
1124
1125 @table @code
1126 @item CD
1127 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1128 specific code to detect CDROM insertion or removal. CDROM ejection by
1129 the guest OS is supported. Currently only data CDs are supported.
1130 @item Floppy
1131 You can specify a floppy device even if no floppy is loaded. Floppy
1132 removal is currently not detected accurately (if you change floppy
1133 without doing floppy access while the floppy is not loaded, the guest
1134 OS will think that the same floppy is loaded).
1135 @item Hard disks
1136 Hard disks can be used. Normally you must specify the whole disk
1137 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1138 see it as a partitioned disk. WARNING: unless you know what you do, it
1139 is better to only make READ-ONLY accesses to the hard disk otherwise
1140 you may corrupt your host data (use the @option{-snapshot} command
1141 line option or modify the device permissions accordingly).
1142 @end table
1143
1144 @subsubsection Windows
1145
1146 @table @code
1147 @item CD
1148 The prefered syntax is the drive letter (e.g. @file{d:}). The
1149 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1150 supported as an alias to the first CDROM drive.
1151
1152 Currently there is no specific code to handle removable media, so it
1153 is better to use the @code{change} or @code{eject} monitor commands to
1154 change or eject media.
1155 @item Hard disks
1156 Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1157 where @var{N} is the drive number (0 is the first hard disk).
1158
1159 WARNING: unless you know what you do, it is better to only make
1160 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1161 host data (use the @option{-snapshot} command line so that the
1162 modifications are written in a temporary file).
1163 @end table
1164
1165
1166 @subsubsection Mac OS X
1167
1168 @file{/dev/cdrom} is an alias to the first CDROM.
1169
1170 Currently there is no specific code to handle removable media, so it
1171 is better to use the @code{change} or @code{eject} monitor commands to
1172 change or eject media.
1173
1174 @node disk_images_fat_images
1175 @subsection Virtual FAT disk images
1176
1177 QEMU can automatically create a virtual FAT disk image from a
1178 directory tree. In order to use it, just type:
1179
1180 @example
1181 qemu linux.img -hdb fat:/my_directory
1182 @end example
1183
1184 Then you access access to all the files in the @file{/my_directory}
1185 directory without having to copy them in a disk image or to export
1186 them via SAMBA or NFS. The default access is @emph{read-only}.
1187
1188 Floppies can be emulated with the @code{:floppy:} option:
1189
1190 @example
1191 qemu linux.img -fda fat:floppy:/my_directory
1192 @end example
1193
1194 A read/write support is available for testing (beta stage) with the
1195 @code{:rw:} option:
1196
1197 @example
1198 qemu linux.img -fda fat:floppy:rw:/my_directory
1199 @end example
1200
1201 What you should @emph{never} do:
1202 @itemize
1203 @item use non-ASCII filenames ;
1204 @item use "-snapshot" together with ":rw:" ;
1205 @item expect it to work when loadvm'ing ;
1206 @item write to the FAT directory on the host system while accessing it with the guest system.
1207 @end itemize
1208
1209 @node pcsys_network
1210 @section Network emulation
1211
1212 QEMU can simulate several networks cards (PCI or ISA cards on the PC
1213 target) and can connect them to an arbitrary number of Virtual Local
1214 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1215 VLAN. VLAN can be connected between separate instances of QEMU to
1216 simulate large networks. For simpler usage, a non priviledged user mode
1217 network stack can replace the TAP device to have a basic network
1218 connection.
1219
1220 @subsection VLANs
1221
1222 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1223 connection between several network devices. These devices can be for
1224 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1225 (TAP devices).
1226
1227 @subsection Using TAP network interfaces
1228
1229 This is the standard way to connect QEMU to a real network. QEMU adds
1230 a virtual network device on your host (called @code{tapN}), and you
1231 can then configure it as if it was a real ethernet card.
1232
1233 @subsubsection Linux host
1234
1235 As an example, you can download the @file{linux-test-xxx.tar.gz}
1236 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1237 configure properly @code{sudo} so that the command @code{ifconfig}
1238 contained in @file{qemu-ifup} can be executed as root. You must verify
1239 that your host kernel supports the TAP network interfaces: the
1240 device @file{/dev/net/tun} must be present.
1241
1242 See @ref{sec_invocation} to have examples of command lines using the
1243 TAP network interfaces.
1244
1245 @subsubsection Windows host
1246
1247 There is a virtual ethernet driver for Windows 2000/XP systems, called
1248 TAP-Win32. But it is not included in standard QEMU for Windows,
1249 so you will need to get it separately. It is part of OpenVPN package,
1250 so download OpenVPN from : @url{http://openvpn.net/}.
1251
1252 @subsection Using the user mode network stack
1253
1254 By using the option @option{-net user} (default configuration if no
1255 @option{-net} option is specified), QEMU uses a completely user mode
1256 network stack (you don't need root priviledge to use the virtual
1257 network). The virtual network configuration is the following:
1258
1259 @example
1260
1261 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1262 | (10.0.2.2)
1263 |
1264 ----> DNS server (10.0.2.3)
1265 |
1266 ----> SMB server (10.0.2.4)
1267 @end example
1268
1269 The QEMU VM behaves as if it was behind a firewall which blocks all
1270 incoming connections. You can use a DHCP client to automatically
1271 configure the network in the QEMU VM. The DHCP server assign addresses
1272 to the hosts starting from 10.0.2.15.
1273
1274 In order to check that the user mode network is working, you can ping
1275 the address 10.0.2.2 and verify that you got an address in the range
1276 10.0.2.x from the QEMU virtual DHCP server.
1277
1278 Note that @code{ping} is not supported reliably to the internet as it
1279 would require root priviledges. It means you can only ping the local
1280 router (10.0.2.2).
1281
1282 When using the built-in TFTP server, the router is also the TFTP
1283 server.
1284
1285 When using the @option{-redir} option, TCP or UDP connections can be
1286 redirected from the host to the guest. It allows for example to
1287 redirect X11, telnet or SSH connections.
1288
1289 @subsection Connecting VLANs between QEMU instances
1290
1291 Using the @option{-net socket} option, it is possible to make VLANs
1292 that span several QEMU instances. See @ref{sec_invocation} to have a
1293 basic example.
1294
1295 @node direct_linux_boot
1296 @section Direct Linux Boot
1297
1298 This section explains how to launch a Linux kernel inside QEMU without
1299 having to make a full bootable image. It is very useful for fast Linux
1300 kernel testing.
1301
1302 The syntax is:
1303 @example
1304 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1305 @end example
1306
1307 Use @option{-kernel} to provide the Linux kernel image and
1308 @option{-append} to give the kernel command line arguments. The
1309 @option{-initrd} option can be used to provide an INITRD image.
1310
1311 When using the direct Linux boot, a disk image for the first hard disk
1312 @file{hda} is required because its boot sector is used to launch the
1313 Linux kernel.
1314
1315 If you do not need graphical output, you can disable it and redirect
1316 the virtual serial port and the QEMU monitor to the console with the
1317 @option{-nographic} option. The typical command line is:
1318 @example
1319 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1320 -append "root=/dev/hda console=ttyS0" -nographic
1321 @end example
1322
1323 Use @key{Ctrl-a c} to switch between the serial console and the
1324 monitor (@pxref{pcsys_keys}).
1325
1326 @node pcsys_usb
1327 @section USB emulation
1328
1329 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1330 virtual USB devices or real host USB devices (experimental, works only
1331 on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1332 as necessary to connect multiple USB devices.
1333
1334 @menu
1335 * usb_devices::
1336 * host_usb_devices::
1337 @end menu
1338 @node usb_devices
1339 @subsection Connecting USB devices
1340
1341 USB devices can be connected with the @option{-usbdevice} commandline option
1342 or the @code{usb_add} monitor command. Available devices are:
1343
1344 @table @var
1345 @item @code{mouse}
1346 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1347 @item @code{tablet}
1348 Pointer device that uses absolute coordinates (like a touchscreen).
1349 This means qemu is able to report the mouse position without having
1350 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1351 @item @code{disk:file}
1352 Mass storage device based on @var{file} (@pxref{disk_images})
1353 @item @code{host:bus.addr}
1354 Pass through the host device identified by @var{bus.addr}
1355 (Linux only)
1356 @item @code{host:vendor_id:product_id}
1357 Pass through the host device identified by @var{vendor_id:product_id}
1358 (Linux only)
1359 @end table
1360
1361 @node host_usb_devices
1362 @subsection Using host USB devices on a Linux host
1363
1364 WARNING: this is an experimental feature. QEMU will slow down when
1365 using it. USB devices requiring real time streaming (i.e. USB Video
1366 Cameras) are not supported yet.
1367
1368 @enumerate
1369 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1370 is actually using the USB device. A simple way to do that is simply to
1371 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1372 to @file{mydriver.o.disabled}.
1373
1374 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1375 @example
1376 ls /proc/bus/usb
1377 001 devices drivers
1378 @end example
1379
1380 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1381 @example
1382 chown -R myuid /proc/bus/usb
1383 @end example
1384
1385 @item Launch QEMU and do in the monitor:
1386 @example
1387 info usbhost
1388 Device 1.2, speed 480 Mb/s
1389 Class 00: USB device 1234:5678, USB DISK
1390 @end example
1391 You should see the list of the devices you can use (Never try to use
1392 hubs, it won't work).
1393
1394 @item Add the device in QEMU by using:
1395 @example
1396 usb_add host:1234:5678
1397 @end example
1398
1399 Normally the guest OS should report that a new USB device is
1400 plugged. You can use the option @option{-usbdevice} to do the same.
1401
1402 @item Now you can try to use the host USB device in QEMU.
1403
1404 @end enumerate
1405
1406 When relaunching QEMU, you may have to unplug and plug again the USB
1407 device to make it work again (this is a bug).
1408
1409 @node gdb_usage
1410 @section GDB usage
1411
1412 QEMU has a primitive support to work with gdb, so that you can do
1413 'Ctrl-C' while the virtual machine is running and inspect its state.
1414
1415 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1416 gdb connection:
1417 @example
1418 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1419 -append "root=/dev/hda"
1420 Connected to host network interface: tun0
1421 Waiting gdb connection on port 1234
1422 @end example
1423
1424 Then launch gdb on the 'vmlinux' executable:
1425 @example
1426 > gdb vmlinux
1427 @end example
1428
1429 In gdb, connect to QEMU:
1430 @example
1431 (gdb) target remote localhost:1234
1432 @end example
1433
1434 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1435 @example
1436 (gdb) c
1437 @end example
1438
1439 Here are some useful tips in order to use gdb on system code:
1440
1441 @enumerate
1442 @item
1443 Use @code{info reg} to display all the CPU registers.
1444 @item
1445 Use @code{x/10i $eip} to display the code at the PC position.
1446 @item
1447 Use @code{set architecture i8086} to dump 16 bit code. Then use
1448 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1449 @end enumerate
1450
1451 @node pcsys_os_specific
1452 @section Target OS specific information
1453
1454 @subsection Linux
1455
1456 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1457 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1458 color depth in the guest and the host OS.
1459
1460 When using a 2.6 guest Linux kernel, you should add the option
1461 @code{clock=pit} on the kernel command line because the 2.6 Linux
1462 kernels make very strict real time clock checks by default that QEMU
1463 cannot simulate exactly.
1464
1465 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1466 not activated because QEMU is slower with this patch. The QEMU
1467 Accelerator Module is also much slower in this case. Earlier Fedora
1468 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1469 patch by default. Newer kernels don't have it.
1470
1471 @subsection Windows
1472
1473 If you have a slow host, using Windows 95 is better as it gives the
1474 best speed. Windows 2000 is also a good choice.
1475
1476 @subsubsection SVGA graphic modes support
1477
1478 QEMU emulates a Cirrus Logic GD5446 Video
1479 card. All Windows versions starting from Windows 95 should recognize
1480 and use this graphic card. For optimal performances, use 16 bit color
1481 depth in the guest and the host OS.
1482
1483 If you are using Windows XP as guest OS and if you want to use high
1484 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1485 1280x1024x16), then you should use the VESA VBE virtual graphic card
1486 (option @option{-std-vga}).
1487
1488 @subsubsection CPU usage reduction
1489
1490 Windows 9x does not correctly use the CPU HLT
1491 instruction. The result is that it takes host CPU cycles even when
1492 idle. You can install the utility from
1493 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1494 problem. Note that no such tool is needed for NT, 2000 or XP.
1495
1496 @subsubsection Windows 2000 disk full problem
1497
1498 Windows 2000 has a bug which gives a disk full problem during its
1499 installation. When installing it, use the @option{-win2k-hack} QEMU
1500 option to enable a specific workaround. After Windows 2000 is
1501 installed, you no longer need this option (this option slows down the
1502 IDE transfers).
1503
1504 @subsubsection Windows 2000 shutdown
1505
1506 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1507 can. It comes from the fact that Windows 2000 does not automatically
1508 use the APM driver provided by the BIOS.
1509
1510 In order to correct that, do the following (thanks to Struan
1511 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1512 Add/Troubleshoot a device => Add a new device & Next => No, select the
1513 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1514 (again) a few times. Now the driver is installed and Windows 2000 now
1515 correctly instructs QEMU to shutdown at the appropriate moment.
1516
1517 @subsubsection Share a directory between Unix and Windows
1518
1519 See @ref{sec_invocation} about the help of the option @option{-smb}.
1520
1521 @subsubsection Windows XP security problem
1522
1523 Some releases of Windows XP install correctly but give a security
1524 error when booting:
1525 @example
1526 A problem is preventing Windows from accurately checking the
1527 license for this computer. Error code: 0x800703e6.
1528 @end example
1529
1530 The workaround is to install a service pack for XP after a boot in safe
1531 mode. Then reboot, and the problem should go away. Since there is no
1532 network while in safe mode, its recommended to download the full
1533 installation of SP1 or SP2 and transfer that via an ISO or using the
1534 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1535
1536 @subsection MS-DOS and FreeDOS
1537
1538 @subsubsection CPU usage reduction
1539
1540 DOS does not correctly use the CPU HLT instruction. The result is that
1541 it takes host CPU cycles even when idle. You can install the utility
1542 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1543 problem.
1544
1545 @node QEMU System emulator for non PC targets
1546 @chapter QEMU System emulator for non PC targets
1547
1548 QEMU is a generic emulator and it emulates many non PC
1549 machines. Most of the options are similar to the PC emulator. The
1550 differences are mentionned in the following sections.
1551
1552 @menu
1553 * QEMU PowerPC System emulator::
1554 * Sparc32 System emulator invocation::
1555 * Sparc64 System emulator invocation::
1556 * MIPS System emulator invocation::
1557 * ARM System emulator invocation::
1558 * ColdFire System emulator invocation::
1559 @end menu
1560
1561 @node QEMU PowerPC System emulator
1562 @section QEMU PowerPC System emulator
1563
1564 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1565 or PowerMac PowerPC system.
1566
1567 QEMU emulates the following PowerMac peripherals:
1568
1569 @itemize @minus
1570 @item
1571 UniNorth PCI Bridge
1572 @item
1573 PCI VGA compatible card with VESA Bochs Extensions
1574 @item
1575 2 PMAC IDE interfaces with hard disk and CD-ROM support
1576 @item
1577 NE2000 PCI adapters
1578 @item
1579 Non Volatile RAM
1580 @item
1581 VIA-CUDA with ADB keyboard and mouse.
1582 @end itemize
1583
1584 QEMU emulates the following PREP peripherals:
1585
1586 @itemize @minus
1587 @item
1588 PCI Bridge
1589 @item
1590 PCI VGA compatible card with VESA Bochs Extensions
1591 @item
1592 2 IDE interfaces with hard disk and CD-ROM support
1593 @item
1594 Floppy disk
1595 @item
1596 NE2000 network adapters
1597 @item
1598 Serial port
1599 @item
1600 PREP Non Volatile RAM
1601 @item
1602 PC compatible keyboard and mouse.
1603 @end itemize
1604
1605 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1606 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1607
1608 @c man begin OPTIONS
1609
1610 The following options are specific to the PowerPC emulation:
1611
1612 @table @option
1613
1614 @item -g WxH[xDEPTH]
1615
1616 Set the initial VGA graphic mode. The default is 800x600x15.
1617
1618 @end table
1619
1620 @c man end
1621
1622
1623 More information is available at
1624 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1625
1626 @node Sparc32 System emulator invocation
1627 @section Sparc32 System emulator invocation
1628
1629 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1630 (sun4m architecture). The emulation is somewhat complete.
1631
1632 QEMU emulates the following sun4m peripherals:
1633
1634 @itemize @minus
1635 @item
1636 IOMMU
1637 @item
1638 TCX Frame buffer
1639 @item
1640 Lance (Am7990) Ethernet
1641 @item
1642 Non Volatile RAM M48T08
1643 @item
1644 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1645 and power/reset logic
1646 @item
1647 ESP SCSI controller with hard disk and CD-ROM support
1648 @item
1649 Floppy drive
1650 @end itemize
1651
1652 The number of peripherals is fixed in the architecture.
1653
1654 Since version 0.8.2, QEMU uses OpenBIOS
1655 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1656 firmware implementation. The goal is to implement a 100% IEEE
1657 1275-1994 (referred to as Open Firmware) compliant firmware.
1658
1659 A sample Linux 2.6 series kernel and ram disk image are available on
1660 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1661 Solaris kernels don't work.
1662
1663 @c man begin OPTIONS
1664
1665 The following options are specific to the Sparc emulation:
1666
1667 @table @option
1668
1669 @item -g WxH
1670
1671 Set the initial TCX graphic mode. The default is 1024x768.
1672
1673 @item -prom-env string
1674
1675 Set OpenBIOS variables in NVRAM, for example:
1676
1677 @example
1678 qemu-system-sparc -prom-env 'auto-boot?=false' \
1679 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1680 @end example
1681
1682 @end table
1683
1684 @c man end
1685
1686 @node Sparc64 System emulator invocation
1687 @section Sparc64 System emulator invocation
1688
1689 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1690 The emulator is not usable for anything yet.
1691
1692 QEMU emulates the following sun4u peripherals:
1693
1694 @itemize @minus
1695 @item
1696 UltraSparc IIi APB PCI Bridge
1697 @item
1698 PCI VGA compatible card with VESA Bochs Extensions
1699 @item
1700 Non Volatile RAM M48T59
1701 @item
1702 PC-compatible serial ports
1703 @end itemize
1704
1705 @node MIPS System emulator invocation
1706 @section MIPS System emulator invocation
1707
1708 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1709 The emulator is able to boot a Linux kernel and to run a Linux Debian
1710 installation from NFS. The following devices are emulated:
1711
1712 @itemize @minus
1713 @item
1714 MIPS R4K CPU
1715 @item
1716 PC style serial port
1717 @item
1718 NE2000 network card
1719 @end itemize
1720
1721 More information is available in the QEMU mailing-list archive.
1722
1723 @node ARM System emulator invocation
1724 @section ARM System emulator invocation
1725
1726 Use the executable @file{qemu-system-arm} to simulate a ARM
1727 machine. The ARM Integrator/CP board is emulated with the following
1728 devices:
1729
1730 @itemize @minus
1731 @item
1732 ARM926E, ARM1026E or ARM946E CPU
1733 @item
1734 Two PL011 UARTs
1735 @item
1736 SMC 91c111 Ethernet adapter
1737 @item
1738 PL110 LCD controller
1739 @item
1740 PL050 KMI with PS/2 keyboard and mouse.
1741 @item
1742 PL181 MultiMedia Card Interface with SD card.
1743 @end itemize
1744
1745 The ARM Versatile baseboard is emulated with the following devices:
1746
1747 @itemize @minus
1748 @item
1749 ARM926E CPU
1750 @item
1751 PL190 Vectored Interrupt Controller
1752 @item
1753 Four PL011 UARTs
1754 @item
1755 SMC 91c111 Ethernet adapter
1756 @item
1757 PL110 LCD controller
1758 @item
1759 PL050 KMI with PS/2 keyboard and mouse.
1760 @item
1761 PCI host bridge. Note the emulated PCI bridge only provides access to
1762 PCI memory space. It does not provide access to PCI IO space.
1763 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1764 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1765 mapped control registers.
1766 @item
1767 PCI OHCI USB controller.
1768 @item
1769 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1770 @item
1771 PL181 MultiMedia Card Interface with SD card.
1772 @end itemize
1773
1774 The ARM RealView Emulation baseboard is emulated with the following devices:
1775
1776 @itemize @minus
1777 @item
1778 ARM926E CPU
1779 @item
1780 ARM AMBA Generic/Distributed Interrupt Controller
1781 @item
1782 Four PL011 UARTs
1783 @item
1784 SMC 91c111 Ethernet adapter
1785 @item
1786 PL110 LCD controller
1787 @item
1788 PL050 KMI with PS/2 keyboard and mouse
1789 @item
1790 PCI host bridge
1791 @item
1792 PCI OHCI USB controller
1793 @item
1794 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1795 @item
1796 PL181 MultiMedia Card Interface with SD card.
1797 @end itemize
1798
1799 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1800 and "Terrier") emulation includes the following peripherals:
1801
1802 @itemize @minus
1803 @item
1804 Intel PXA270 System-on-chip (ARM V5TE core)
1805 @item
1806 NAND Flash memory
1807 @item
1808 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1809 @item
1810 On-chip OHCI USB controller
1811 @item
1812 On-chip LCD controller
1813 @item
1814 On-chip Real Time Clock
1815 @item
1816 TI ADS7846 touchscreen controller on SSP bus
1817 @item
1818 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1819 @item
1820 GPIO-connected keyboard controller and LEDs
1821 @item
1822 Secure Digital card connected to PXA MMC/SD host
1823 @item
1824 Three on-chip UARTs
1825 @item
1826 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1827 @end itemize
1828
1829 A Linux 2.6 test image is available on the QEMU web site. More
1830 information is available in the QEMU mailing-list archive.
1831
1832 @node ColdFire System emulator invocation
1833 @section ColdFire System emulator invocation
1834
1835 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1836 The emulator is able to boot a uClinux kernel.
1837 The following devices are emulated:
1838
1839 @itemize @minus
1840 @item
1841 MCF5206 ColdFire V2 Microprocessor.
1842 @item
1843 Two on-chip UARTs.
1844 @end itemize
1845
1846 @node QEMU User space emulator
1847 @chapter QEMU User space emulator
1848
1849 @menu
1850 * Supported Operating Systems ::
1851 * Linux User space emulator::
1852 * Mac OS X/Darwin User space emulator ::
1853 @end menu
1854
1855 @node Supported Operating Systems
1856 @section Supported Operating Systems
1857
1858 The following OS are supported in user space emulation:
1859
1860 @itemize @minus
1861 @item
1862 Linux (refered as qemu-linux-user)
1863 @item
1864 Mac OS X/Darwin (refered as qemu-darwin-user)
1865 @end itemize
1866
1867 @node Linux User space emulator
1868 @section Linux User space emulator
1869
1870 @menu
1871 * Quick Start::
1872 * Wine launch::
1873 * Command line options::
1874 * Other binaries::
1875 @end menu
1876
1877 @node Quick Start
1878 @subsection Quick Start
1879
1880 In order to launch a Linux process, QEMU needs the process executable
1881 itself and all the target (x86) dynamic libraries used by it.
1882
1883 @itemize
1884
1885 @item On x86, you can just try to launch any process by using the native
1886 libraries:
1887
1888 @example
1889 qemu-i386 -L / /bin/ls
1890 @end example
1891
1892 @code{-L /} tells that the x86 dynamic linker must be searched with a
1893 @file{/} prefix.
1894
1895 @item Since QEMU is also a linux process, you can launch qemu with
1896 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1897
1898 @example
1899 qemu-i386 -L / qemu-i386 -L / /bin/ls
1900 @end example
1901
1902 @item On non x86 CPUs, you need first to download at least an x86 glibc
1903 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1904 @code{LD_LIBRARY_PATH} is not set:
1905
1906 @example
1907 unset LD_LIBRARY_PATH
1908 @end example
1909
1910 Then you can launch the precompiled @file{ls} x86 executable:
1911
1912 @example
1913 qemu-i386 tests/i386/ls
1914 @end example
1915 You can look at @file{qemu-binfmt-conf.sh} so that
1916 QEMU is automatically launched by the Linux kernel when you try to
1917 launch x86 executables. It requires the @code{binfmt_misc} module in the
1918 Linux kernel.
1919
1920 @item The x86 version of QEMU is also included. You can try weird things such as:
1921 @example
1922 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1923 /usr/local/qemu-i386/bin/ls-i386
1924 @end example
1925
1926 @end itemize
1927
1928 @node Wine launch
1929 @subsection Wine launch
1930
1931 @itemize
1932
1933 @item Ensure that you have a working QEMU with the x86 glibc
1934 distribution (see previous section). In order to verify it, you must be
1935 able to do:
1936
1937 @example
1938 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1939 @end example
1940
1941 @item Download the binary x86 Wine install
1942 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
1943
1944 @item Configure Wine on your account. Look at the provided script
1945 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1946 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1947
1948 @item Then you can try the example @file{putty.exe}:
1949
1950 @example
1951 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1952 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1953 @end example
1954
1955 @end itemize
1956
1957 @node Command line options
1958 @subsection Command line options
1959
1960 @example
1961 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1962 @end example
1963
1964 @table @option
1965 @item -h
1966 Print the help
1967 @item -L path
1968 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1969 @item -s size
1970 Set the x86 stack size in bytes (default=524288)
1971 @end table
1972
1973 Debug options:
1974
1975 @table @option
1976 @item -d
1977 Activate log (logfile=/tmp/qemu.log)
1978 @item -p pagesize
1979 Act as if the host page size was 'pagesize' bytes
1980 @end table
1981
1982 @node Other binaries
1983 @subsection Other binaries
1984
1985 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1986 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1987 configurations), and arm-uclinux bFLT format binaries.
1988
1989 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
1990 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1991 coldfire uClinux bFLT format binaries.
1992
1993 The binary format is detected automatically.
1994
1995 @node Mac OS X/Darwin User space emulator
1996 @section Mac OS X/Darwin User space emulator
1997
1998 @menu
1999 * Mac OS X/Darwin Status::
2000 * Mac OS X/Darwin Quick Start::
2001 * Mac OS X/Darwin Command line options::
2002 @end menu
2003
2004 @node Mac OS X/Darwin Status
2005 @subsection Mac OS X/Darwin Status
2006
2007 @itemize @minus
2008 @item
2009 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2010 @item
2011 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2012 @item
2013 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2014 @item
2015 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2016 @end itemize
2017
2018 [1] If you're host commpage can be executed by qemu.
2019
2020 @node Mac OS X/Darwin Quick Start
2021 @subsection Quick Start
2022
2023 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2024 itself and all the target dynamic libraries used by it. If you don't have the FAT
2025 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2026 CD or compile them by hand.
2027
2028 @itemize
2029
2030 @item On x86, you can just try to launch any process by using the native
2031 libraries:
2032
2033 @example
2034 qemu-i386 /bin/ls
2035 @end example
2036
2037 or to run the ppc version of the executable:
2038
2039 @example
2040 qemu-ppc /bin/ls
2041 @end example
2042
2043 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2044 are installed:
2045
2046 @example
2047 qemu-i386 -L /opt/x86_root/ /bin/ls
2048 @end example
2049
2050 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2051 @file{/opt/x86_root/usr/bin/dyld}.
2052
2053 @end itemize
2054
2055 @node Mac OS X/Darwin Command line options
2056 @subsection Command line options
2057
2058 @example
2059 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2060 @end example
2061
2062 @table @option
2063 @item -h
2064 Print the help
2065 @item -L path
2066 Set the library root path (default=/)
2067 @item -s size
2068 Set the stack size in bytes (default=524288)
2069 @end table
2070
2071 Debug options:
2072
2073 @table @option
2074 @item -d
2075 Activate log (logfile=/tmp/qemu.log)
2076 @item -p pagesize
2077 Act as if the host page size was 'pagesize' bytes
2078 @end table
2079
2080 @node compilation
2081 @chapter Compilation from the sources
2082
2083 @menu
2084 * Linux/Unix::
2085 * Windows::
2086 * Cross compilation for Windows with Linux::
2087 * Mac OS X::
2088 @end menu
2089
2090 @node Linux/Unix
2091 @section Linux/Unix
2092
2093 @subsection Compilation
2094
2095 First you must decompress the sources:
2096 @example
2097 cd /tmp
2098 tar zxvf qemu-x.y.z.tar.gz
2099 cd qemu-x.y.z
2100 @end example
2101
2102 Then you configure QEMU and build it (usually no options are needed):
2103 @example
2104 ./configure
2105 make
2106 @end example
2107
2108 Then type as root user:
2109 @example
2110 make install
2111 @end example
2112 to install QEMU in @file{/usr/local}.
2113
2114 @subsection GCC version
2115
2116 In order to compile QEMU successfully, it is very important that you
2117 have the right tools. The most important one is gcc. On most hosts and
2118 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2119 Linux distribution includes a gcc 4.x compiler, you can usually
2120 install an older version (it is invoked by @code{gcc32} or
2121 @code{gcc34}). The QEMU configure script automatically probes for
2122 these older versions so that usally you don't have to do anything.
2123
2124 @node Windows
2125 @section Windows
2126
2127 @itemize
2128 @item Install the current versions of MSYS and MinGW from
2129 @url{http://www.mingw.org/}. You can find detailed installation
2130 instructions in the download section and the FAQ.
2131
2132 @item Download
2133 the MinGW development library of SDL 1.2.x
2134 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2135 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
2136 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2137 directory. Edit the @file{sdl-config} script so that it gives the
2138 correct SDL directory when invoked.
2139
2140 @item Extract the current version of QEMU.
2141
2142 @item Start the MSYS shell (file @file{msys.bat}).
2143
2144 @item Change to the QEMU directory. Launch @file{./configure} and
2145 @file{make}. If you have problems using SDL, verify that
2146 @file{sdl-config} can be launched from the MSYS command line.
2147
2148 @item You can install QEMU in @file{Program Files/Qemu} by typing
2149 @file{make install}. Don't forget to copy @file{SDL.dll} in
2150 @file{Program Files/Qemu}.
2151
2152 @end itemize
2153
2154 @node Cross compilation for Windows with Linux
2155 @section Cross compilation for Windows with Linux
2156
2157 @itemize
2158 @item
2159 Install the MinGW cross compilation tools available at
2160 @url{http://www.mingw.org/}.
2161
2162 @item
2163 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2164 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2165 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2166 the QEMU configuration script.
2167
2168 @item
2169 Configure QEMU for Windows cross compilation:
2170 @example
2171 ./configure --enable-mingw32
2172 @end example
2173 If necessary, you can change the cross-prefix according to the prefix
2174 choosen for the MinGW tools with --cross-prefix. You can also use
2175 --prefix to set the Win32 install path.
2176
2177 @item You can install QEMU in the installation directory by typing
2178 @file{make install}. Don't forget to copy @file{SDL.dll} in the
2179 installation directory.
2180
2181 @end itemize
2182
2183 Note: Currently, Wine does not seem able to launch
2184 QEMU for Win32.
2185
2186 @node Mac OS X
2187 @section Mac OS X
2188
2189 The Mac OS X patches are not fully merged in QEMU, so you should look
2190 at the QEMU mailing list archive to have all the necessary
2191 information.
2192
2193 @node Index
2194 @chapter Index
2195 @printindex cp
2196
2197 @bye