]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
Merge remote-tracking branch 'remotes/thibault/tags/samuel-thibault' into staging
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @include version.texi
5
6 @documentlanguage en
7 @documentencoding UTF-8
8
9 @settitle QEMU version @value{VERSION} User Documentation
10 @exampleindent 0
11 @paragraphindent 0
12 @c %**end of header
13
14 @ifinfo
15 @direntry
16 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17 @end direntry
18 @end ifinfo
19
20 @iftex
21 @titlepage
22 @sp 7
23 @center @titlefont{QEMU version @value{VERSION}}
24 @sp 1
25 @center @titlefont{User Documentation}
26 @sp 3
27 @end titlepage
28 @end iftex
29
30 @ifnottex
31 @node Top
32 @top
33
34 @menu
35 * Introduction::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU Guest Agent::
39 * QEMU User space emulator::
40 * Implementation notes::
41 * Deprecated features::
42 * License::
43 * Index::
44 @end menu
45 @end ifnottex
46
47 @contents
48
49 @node Introduction
50 @chapter Introduction
51
52 @menu
53 * intro_features:: Features
54 @end menu
55
56 @node intro_features
57 @section Features
58
59 QEMU is a FAST! processor emulator using dynamic translation to
60 achieve good emulation speed.
61
62 @cindex operating modes
63 QEMU has two operating modes:
64
65 @itemize
66 @cindex system emulation
67 @item Full system emulation. In this mode, QEMU emulates a full system (for
68 example a PC), including one or several processors and various
69 peripherals. It can be used to launch different Operating Systems
70 without rebooting the PC or to debug system code.
71
72 @cindex user mode emulation
73 @item User mode emulation. In this mode, QEMU can launch
74 processes compiled for one CPU on another CPU. It can be used to
75 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
76 to ease cross-compilation and cross-debugging.
77
78 @end itemize
79
80 QEMU has the following features:
81
82 @itemize
83 @item QEMU can run without a host kernel driver and yet gives acceptable
84 performance. It uses dynamic translation to native code for reasonable speed,
85 with support for self-modifying code and precise exceptions.
86
87 @item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
88 Windows) and architectures.
89
90 @item It performs accurate software emulation of the FPU.
91 @end itemize
92
93 QEMU user mode emulation has the following features:
94 @itemize
95 @item Generic Linux system call converter, including most ioctls.
96
97 @item clone() emulation using native CPU clone() to use Linux scheduler for threads.
98
99 @item Accurate signal handling by remapping host signals to target signals.
100 @end itemize
101
102 QEMU full system emulation has the following features:
103 @itemize
104 @item
105 QEMU uses a full software MMU for maximum portability.
106
107 @item
108 QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
109 execute most of the guest code natively, while
110 continuing to emulate the rest of the machine.
111
112 @item
113 Various hardware devices can be emulated and in some cases, host
114 devices (e.g. serial and parallel ports, USB, drives) can be used
115 transparently by the guest Operating System. Host device passthrough
116 can be used for talking to external physical peripherals (e.g. a
117 webcam, modem or tape drive).
118
119 @item
120 Symmetric multiprocessing (SMP) support. Currently, an in-kernel
121 accelerator is required to use more than one host CPU for emulation.
122
123 @end itemize
124
125
126 @node QEMU PC System emulator
127 @chapter QEMU PC System emulator
128 @cindex system emulation (PC)
129
130 @menu
131 * pcsys_introduction:: Introduction
132 * pcsys_quickstart:: Quick Start
133 * sec_invocation:: Invocation
134 * pcsys_keys:: Keys in the graphical frontends
135 * mux_keys:: Keys in the character backend multiplexer
136 * pcsys_monitor:: QEMU Monitor
137 * disk_images:: Disk Images
138 * pcsys_network:: Network emulation
139 * pcsys_other_devs:: Other Devices
140 * direct_linux_boot:: Direct Linux Boot
141 * pcsys_usb:: USB emulation
142 * vnc_security:: VNC security
143 * gdb_usage:: GDB usage
144 * pcsys_os_specific:: Target OS specific information
145 @end menu
146
147 @node pcsys_introduction
148 @section Introduction
149
150 @c man begin DESCRIPTION
151
152 The QEMU PC System emulator simulates the
153 following peripherals:
154
155 @itemize @minus
156 @item
157 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
158 @item
159 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
160 extensions (hardware level, including all non standard modes).
161 @item
162 PS/2 mouse and keyboard
163 @item
164 2 PCI IDE interfaces with hard disk and CD-ROM support
165 @item
166 Floppy disk
167 @item
168 PCI and ISA network adapters
169 @item
170 Serial ports
171 @item
172 IPMI BMC, either and internal or external one
173 @item
174 Creative SoundBlaster 16 sound card
175 @item
176 ENSONIQ AudioPCI ES1370 sound card
177 @item
178 Intel 82801AA AC97 Audio compatible sound card
179 @item
180 Intel HD Audio Controller and HDA codec
181 @item
182 Adlib (OPL2) - Yamaha YM3812 compatible chip
183 @item
184 Gravis Ultrasound GF1 sound card
185 @item
186 CS4231A compatible sound card
187 @item
188 PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
189 @end itemize
190
191 SMP is supported with up to 255 CPUs.
192
193 QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
194 VGA BIOS.
195
196 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
197
198 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
199 by Tibor "TS" Schütz.
200
201 Note that, by default, GUS shares IRQ(7) with parallel ports and so
202 QEMU must be told to not have parallel ports to have working GUS.
203
204 @example
205 qemu-system-i386 dos.img -soundhw gus -parallel none
206 @end example
207
208 Alternatively:
209 @example
210 qemu-system-i386 dos.img -device gus,irq=5
211 @end example
212
213 Or some other unclaimed IRQ.
214
215 CS4231A is the chip used in Windows Sound System and GUSMAX products
216
217 @c man end
218
219 @node pcsys_quickstart
220 @section Quick Start
221 @cindex quick start
222
223 Download and uncompress the linux image (@file{linux.img}) and type:
224
225 @example
226 qemu-system-i386 linux.img
227 @end example
228
229 Linux should boot and give you a prompt.
230
231 @node sec_invocation
232 @section Invocation
233
234 @example
235 @c man begin SYNOPSIS
236 @command{qemu-system-i386} [@var{options}] [@var{disk_image}]
237 @c man end
238 @end example
239
240 @c man begin OPTIONS
241 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
242 targets do not need a disk image.
243
244 @include qemu-options.texi
245
246 @c man end
247
248 @node pcsys_keys
249 @section Keys in the graphical frontends
250
251 @c man begin OPTIONS
252
253 During the graphical emulation, you can use special key combinations to change
254 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
255 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
256 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
257
258 @table @key
259 @item Ctrl-Alt-f
260 @kindex Ctrl-Alt-f
261 Toggle full screen
262
263 @item Ctrl-Alt-+
264 @kindex Ctrl-Alt-+
265 Enlarge the screen
266
267 @item Ctrl-Alt--
268 @kindex Ctrl-Alt--
269 Shrink the screen
270
271 @item Ctrl-Alt-u
272 @kindex Ctrl-Alt-u
273 Restore the screen's un-scaled dimensions
274
275 @item Ctrl-Alt-n
276 @kindex Ctrl-Alt-n
277 Switch to virtual console 'n'. Standard console mappings are:
278 @table @emph
279 @item 1
280 Target system display
281 @item 2
282 Monitor
283 @item 3
284 Serial port
285 @end table
286
287 @item Ctrl-Alt
288 @kindex Ctrl-Alt
289 Toggle mouse and keyboard grab.
290 @end table
291
292 @kindex Ctrl-Up
293 @kindex Ctrl-Down
294 @kindex Ctrl-PageUp
295 @kindex Ctrl-PageDown
296 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
297 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
298
299 @c man end
300
301 @node mux_keys
302 @section Keys in the character backend multiplexer
303
304 @c man begin OPTIONS
305
306 During emulation, if you are using a character backend multiplexer
307 (which is the default if you are using @option{-nographic}) then
308 several commands are available via an escape sequence. These
309 key sequences all start with an escape character, which is @key{Ctrl-a}
310 by default, but can be changed with @option{-echr}. The list below assumes
311 you're using the default.
312
313 @table @key
314 @item Ctrl-a h
315 @kindex Ctrl-a h
316 Print this help
317 @item Ctrl-a x
318 @kindex Ctrl-a x
319 Exit emulator
320 @item Ctrl-a s
321 @kindex Ctrl-a s
322 Save disk data back to file (if -snapshot)
323 @item Ctrl-a t
324 @kindex Ctrl-a t
325 Toggle console timestamps
326 @item Ctrl-a b
327 @kindex Ctrl-a b
328 Send break (magic sysrq in Linux)
329 @item Ctrl-a c
330 @kindex Ctrl-a c
331 Rotate between the frontends connected to the multiplexer (usually
332 this switches between the monitor and the console)
333 @item Ctrl-a Ctrl-a
334 @kindex Ctrl-a Ctrl-a
335 Send the escape character to the frontend
336 @end table
337 @c man end
338
339 @ignore
340
341 @c man begin SEEALSO
342 The HTML documentation of QEMU for more precise information and Linux
343 user mode emulator invocation.
344 @c man end
345
346 @c man begin AUTHOR
347 Fabrice Bellard
348 @c man end
349
350 @end ignore
351
352 @node pcsys_monitor
353 @section QEMU Monitor
354 @cindex QEMU monitor
355
356 The QEMU monitor is used to give complex commands to the QEMU
357 emulator. You can use it to:
358
359 @itemize @minus
360
361 @item
362 Remove or insert removable media images
363 (such as CD-ROM or floppies).
364
365 @item
366 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
367 from a disk file.
368
369 @item Inspect the VM state without an external debugger.
370
371 @end itemize
372
373 @subsection Commands
374
375 The following commands are available:
376
377 @include qemu-monitor.texi
378
379 @include qemu-monitor-info.texi
380
381 @subsection Integer expressions
382
383 The monitor understands integers expressions for every integer
384 argument. You can use register names to get the value of specifics
385 CPU registers by prefixing them with @emph{$}.
386
387 @node disk_images
388 @section Disk Images
389
390 QEMU supports many disk image formats, including growable disk images
391 (their size increase as non empty sectors are written), compressed and
392 encrypted disk images.
393
394 @menu
395 * disk_images_quickstart:: Quick start for disk image creation
396 * disk_images_snapshot_mode:: Snapshot mode
397 * vm_snapshots:: VM snapshots
398 * qemu_img_invocation:: qemu-img Invocation
399 * qemu_nbd_invocation:: qemu-nbd Invocation
400 * disk_images_formats:: Disk image file formats
401 * host_drives:: Using host drives
402 * disk_images_fat_images:: Virtual FAT disk images
403 * disk_images_nbd:: NBD access
404 * disk_images_sheepdog:: Sheepdog disk images
405 * disk_images_iscsi:: iSCSI LUNs
406 * disk_images_gluster:: GlusterFS disk images
407 * disk_images_ssh:: Secure Shell (ssh) disk images
408 @end menu
409
410 @node disk_images_quickstart
411 @subsection Quick start for disk image creation
412
413 You can create a disk image with the command:
414 @example
415 qemu-img create myimage.img mysize
416 @end example
417 where @var{myimage.img} is the disk image filename and @var{mysize} is its
418 size in kilobytes. You can add an @code{M} suffix to give the size in
419 megabytes and a @code{G} suffix for gigabytes.
420
421 See @ref{qemu_img_invocation} for more information.
422
423 @node disk_images_snapshot_mode
424 @subsection Snapshot mode
425
426 If you use the option @option{-snapshot}, all disk images are
427 considered as read only. When sectors in written, they are written in
428 a temporary file created in @file{/tmp}. You can however force the
429 write back to the raw disk images by using the @code{commit} monitor
430 command (or @key{C-a s} in the serial console).
431
432 @node vm_snapshots
433 @subsection VM snapshots
434
435 VM snapshots are snapshots of the complete virtual machine including
436 CPU state, RAM, device state and the content of all the writable
437 disks. In order to use VM snapshots, you must have at least one non
438 removable and writable block device using the @code{qcow2} disk image
439 format. Normally this device is the first virtual hard drive.
440
441 Use the monitor command @code{savevm} to create a new VM snapshot or
442 replace an existing one. A human readable name can be assigned to each
443 snapshot in addition to its numerical ID.
444
445 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
446 a VM snapshot. @code{info snapshots} lists the available snapshots
447 with their associated information:
448
449 @example
450 (qemu) info snapshots
451 Snapshot devices: hda
452 Snapshot list (from hda):
453 ID TAG VM SIZE DATE VM CLOCK
454 1 start 41M 2006-08-06 12:38:02 00:00:14.954
455 2 40M 2006-08-06 12:43:29 00:00:18.633
456 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
457 @end example
458
459 A VM snapshot is made of a VM state info (its size is shown in
460 @code{info snapshots}) and a snapshot of every writable disk image.
461 The VM state info is stored in the first @code{qcow2} non removable
462 and writable block device. The disk image snapshots are stored in
463 every disk image. The size of a snapshot in a disk image is difficult
464 to evaluate and is not shown by @code{info snapshots} because the
465 associated disk sectors are shared among all the snapshots to save
466 disk space (otherwise each snapshot would need a full copy of all the
467 disk images).
468
469 When using the (unrelated) @code{-snapshot} option
470 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
471 but they are deleted as soon as you exit QEMU.
472
473 VM snapshots currently have the following known limitations:
474 @itemize
475 @item
476 They cannot cope with removable devices if they are removed or
477 inserted after a snapshot is done.
478 @item
479 A few device drivers still have incomplete snapshot support so their
480 state is not saved or restored properly (in particular USB).
481 @end itemize
482
483 @node qemu_img_invocation
484 @subsection @code{qemu-img} Invocation
485
486 @include qemu-img.texi
487
488 @node qemu_nbd_invocation
489 @subsection @code{qemu-nbd} Invocation
490
491 @include qemu-nbd.texi
492
493 @include docs/qemu-block-drivers.texi
494
495 @node pcsys_network
496 @section Network emulation
497
498 QEMU can simulate several network cards (PCI or ISA cards on the PC
499 target) and can connect them to an arbitrary number of Virtual Local
500 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
501 VLAN. VLAN can be connected between separate instances of QEMU to
502 simulate large networks. For simpler usage, a non privileged user mode
503 network stack can replace the TAP device to have a basic network
504 connection.
505
506 @subsection VLANs
507
508 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
509 connection between several network devices. These devices can be for
510 example QEMU virtual Ethernet cards or virtual Host ethernet devices
511 (TAP devices).
512
513 @subsection Using TAP network interfaces
514
515 This is the standard way to connect QEMU to a real network. QEMU adds
516 a virtual network device on your host (called @code{tapN}), and you
517 can then configure it as if it was a real ethernet card.
518
519 @subsubsection Linux host
520
521 As an example, you can download the @file{linux-test-xxx.tar.gz}
522 archive and copy the script @file{qemu-ifup} in @file{/etc} and
523 configure properly @code{sudo} so that the command @code{ifconfig}
524 contained in @file{qemu-ifup} can be executed as root. You must verify
525 that your host kernel supports the TAP network interfaces: the
526 device @file{/dev/net/tun} must be present.
527
528 See @ref{sec_invocation} to have examples of command lines using the
529 TAP network interfaces.
530
531 @subsubsection Windows host
532
533 There is a virtual ethernet driver for Windows 2000/XP systems, called
534 TAP-Win32. But it is not included in standard QEMU for Windows,
535 so you will need to get it separately. It is part of OpenVPN package,
536 so download OpenVPN from : @url{http://openvpn.net/}.
537
538 @subsection Using the user mode network stack
539
540 By using the option @option{-net user} (default configuration if no
541 @option{-net} option is specified), QEMU uses a completely user mode
542 network stack (you don't need root privilege to use the virtual
543 network). The virtual network configuration is the following:
544
545 @example
546
547 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
548 | (10.0.2.2)
549 |
550 ----> DNS server (10.0.2.3)
551 |
552 ----> SMB server (10.0.2.4)
553 @end example
554
555 The QEMU VM behaves as if it was behind a firewall which blocks all
556 incoming connections. You can use a DHCP client to automatically
557 configure the network in the QEMU VM. The DHCP server assign addresses
558 to the hosts starting from 10.0.2.15.
559
560 In order to check that the user mode network is working, you can ping
561 the address 10.0.2.2 and verify that you got an address in the range
562 10.0.2.x from the QEMU virtual DHCP server.
563
564 Note that ICMP traffic in general does not work with user mode networking.
565 @code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
566 however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
567 ping sockets to allow @code{ping} to the Internet. The host admin has to set
568 the ping_group_range in order to grant access to those sockets. To allow ping
569 for GID 100 (usually users group):
570
571 @example
572 echo 100 100 > /proc/sys/net/ipv4/ping_group_range
573 @end example
574
575 When using the built-in TFTP server, the router is also the TFTP
576 server.
577
578 When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
579 connections can be redirected from the host to the guest. It allows for
580 example to redirect X11, telnet or SSH connections.
581
582 @subsection Connecting VLANs between QEMU instances
583
584 Using the @option{-net socket} option, it is possible to make VLANs
585 that span several QEMU instances. See @ref{sec_invocation} to have a
586 basic example.
587
588 @node pcsys_other_devs
589 @section Other Devices
590
591 @subsection Inter-VM Shared Memory device
592
593 On Linux hosts, a shared memory device is available. The basic syntax
594 is:
595
596 @example
597 qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
598 @end example
599
600 where @var{hostmem} names a host memory backend. For a POSIX shared
601 memory backend, use something like
602
603 @example
604 -object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
605 @end example
606
607 If desired, interrupts can be sent between guest VMs accessing the same shared
608 memory region. Interrupt support requires using a shared memory server and
609 using a chardev socket to connect to it. The code for the shared memory server
610 is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
611 memory server is:
612
613 @example
614 # First start the ivshmem server once and for all
615 ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
616
617 # Then start your qemu instances with matching arguments
618 qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
619 -chardev socket,path=@var{path},id=@var{id}
620 @end example
621
622 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
623 using the same server to communicate via interrupts. Guests can read their
624 VM ID from a device register (see ivshmem-spec.txt).
625
626 @subsubsection Migration with ivshmem
627
628 With device property @option{master=on}, the guest will copy the shared
629 memory on migration to the destination host. With @option{master=off},
630 the guest will not be able to migrate with the device attached. In the
631 latter case, the device should be detached and then reattached after
632 migration using the PCI hotplug support.
633
634 At most one of the devices sharing the same memory can be master. The
635 master must complete migration before you plug back the other devices.
636
637 @subsubsection ivshmem and hugepages
638
639 Instead of specifying the <shm size> using POSIX shm, you may specify
640 a memory backend that has hugepage support:
641
642 @example
643 qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
644 -device ivshmem-plain,memdev=mb1
645 @end example
646
647 ivshmem-server also supports hugepages mount points with the
648 @option{-m} memory path argument.
649
650 @node direct_linux_boot
651 @section Direct Linux Boot
652
653 This section explains how to launch a Linux kernel inside QEMU without
654 having to make a full bootable image. It is very useful for fast Linux
655 kernel testing.
656
657 The syntax is:
658 @example
659 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
660 @end example
661
662 Use @option{-kernel} to provide the Linux kernel image and
663 @option{-append} to give the kernel command line arguments. The
664 @option{-initrd} option can be used to provide an INITRD image.
665
666 When using the direct Linux boot, a disk image for the first hard disk
667 @file{hda} is required because its boot sector is used to launch the
668 Linux kernel.
669
670 If you do not need graphical output, you can disable it and redirect
671 the virtual serial port and the QEMU monitor to the console with the
672 @option{-nographic} option. The typical command line is:
673 @example
674 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
675 -append "root=/dev/hda console=ttyS0" -nographic
676 @end example
677
678 Use @key{Ctrl-a c} to switch between the serial console and the
679 monitor (@pxref{pcsys_keys}).
680
681 @node pcsys_usb
682 @section USB emulation
683
684 QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
685 plug virtual USB devices or real host USB devices (only works with certain
686 host operating systems). QEMU will automatically create and connect virtual
687 USB hubs as necessary to connect multiple USB devices.
688
689 @menu
690 * usb_devices::
691 * host_usb_devices::
692 @end menu
693 @node usb_devices
694 @subsection Connecting USB devices
695
696 USB devices can be connected with the @option{-device usb-...} command line
697 option or the @code{device_add} monitor command. Available devices are:
698
699 @table @code
700 @item usb-mouse
701 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
702 @item usb-tablet
703 Pointer device that uses absolute coordinates (like a touchscreen).
704 This means QEMU is able to report the mouse position without having
705 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
706 @item usb-storage,drive=@var{drive_id}
707 Mass storage device backed by @var{drive_id} (@pxref{disk_images})
708 @item usb-uas
709 USB attached SCSI device, see
710 @url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
711 for details
712 @item usb-bot
713 Bulk-only transport storage device, see
714 @url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
715 for details here, too
716 @item usb-mtp,x-root=@var{dir}
717 Media transfer protocol device, using @var{dir} as root of the file tree
718 that is presented to the guest.
719 @item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
720 Pass through the host device identified by @var{bus} and @var{addr}
721 @item usb-host,vendorid=@var{vendor},productid=@var{product}
722 Pass through the host device identified by @var{vendor} and @var{product} ID
723 @item usb-wacom-tablet
724 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
725 above but it can be used with the tslib library because in addition to touch
726 coordinates it reports touch pressure.
727 @item usb-kbd
728 Standard USB keyboard. Will override the PS/2 keyboard (if present).
729 @item usb-serial,chardev=@var{id}
730 Serial converter. This emulates an FTDI FT232BM chip connected to host character
731 device @var{id}.
732 @item usb-braille,chardev=@var{id}
733 Braille device. This will use BrlAPI to display the braille output on a real
734 or fake device referenced by @var{id}.
735 @item usb-net[,netdev=@var{id}]
736 Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
737 specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
738 For instance, user-mode networking can be used with
739 @example
740 qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
741 @end example
742 @item usb-ccid
743 Smartcard reader device
744 @item usb-audio
745 USB audio device
746 @item usb-bt-dongle
747 Bluetooth dongle for the transport layer of HCI. It is connected to HCI
748 scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
749 Note that the syntax for the @code{-device usb-bt-dongle} option is not as
750 useful yet as it was with the legacy @code{-usbdevice} option. So to
751 configure an USB bluetooth device, you might need to use
752 "@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
753 bluetooth dongle whose type is specified in the same format as with
754 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
755 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
756 This USB device implements the USB Transport Layer of HCI. Example
757 usage:
758 @example
759 @command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
760 @end example
761 @end table
762
763 @node host_usb_devices
764 @subsection Using host USB devices on a Linux host
765
766 WARNING: this is an experimental feature. QEMU will slow down when
767 using it. USB devices requiring real time streaming (i.e. USB Video
768 Cameras) are not supported yet.
769
770 @enumerate
771 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
772 is actually using the USB device. A simple way to do that is simply to
773 disable the corresponding kernel module by renaming it from @file{mydriver.o}
774 to @file{mydriver.o.disabled}.
775
776 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
777 @example
778 ls /proc/bus/usb
779 001 devices drivers
780 @end example
781
782 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
783 @example
784 chown -R myuid /proc/bus/usb
785 @end example
786
787 @item Launch QEMU and do in the monitor:
788 @example
789 info usbhost
790 Device 1.2, speed 480 Mb/s
791 Class 00: USB device 1234:5678, USB DISK
792 @end example
793 You should see the list of the devices you can use (Never try to use
794 hubs, it won't work).
795
796 @item Add the device in QEMU by using:
797 @example
798 device_add usb-host,vendorid=0x1234,productid=0x5678
799 @end example
800
801 Normally the guest OS should report that a new USB device is plugged.
802 You can use the option @option{-device usb-host,...} to do the same.
803
804 @item Now you can try to use the host USB device in QEMU.
805
806 @end enumerate
807
808 When relaunching QEMU, you may have to unplug and plug again the USB
809 device to make it work again (this is a bug).
810
811 @node vnc_security
812 @section VNC security
813
814 The VNC server capability provides access to the graphical console
815 of the guest VM across the network. This has a number of security
816 considerations depending on the deployment scenarios.
817
818 @menu
819 * vnc_sec_none::
820 * vnc_sec_password::
821 * vnc_sec_certificate::
822 * vnc_sec_certificate_verify::
823 * vnc_sec_certificate_pw::
824 * vnc_sec_sasl::
825 * vnc_sec_certificate_sasl::
826 * vnc_generate_cert::
827 * vnc_setup_sasl::
828 @end menu
829 @node vnc_sec_none
830 @subsection Without passwords
831
832 The simplest VNC server setup does not include any form of authentication.
833 For this setup it is recommended to restrict it to listen on a UNIX domain
834 socket only. For example
835
836 @example
837 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
838 @end example
839
840 This ensures that only users on local box with read/write access to that
841 path can access the VNC server. To securely access the VNC server from a
842 remote machine, a combination of netcat+ssh can be used to provide a secure
843 tunnel.
844
845 @node vnc_sec_password
846 @subsection With passwords
847
848 The VNC protocol has limited support for password based authentication. Since
849 the protocol limits passwords to 8 characters it should not be considered
850 to provide high security. The password can be fairly easily brute-forced by
851 a client making repeat connections. For this reason, a VNC server using password
852 authentication should be restricted to only listen on the loopback interface
853 or UNIX domain sockets. Password authentication is not supported when operating
854 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
855 authentication is requested with the @code{password} option, and then once QEMU
856 is running the password is set with the monitor. Until the monitor is used to
857 set the password all clients will be rejected.
858
859 @example
860 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
861 (qemu) change vnc password
862 Password: ********
863 (qemu)
864 @end example
865
866 @node vnc_sec_certificate
867 @subsection With x509 certificates
868
869 The QEMU VNC server also implements the VeNCrypt extension allowing use of
870 TLS for encryption of the session, and x509 certificates for authentication.
871 The use of x509 certificates is strongly recommended, because TLS on its
872 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
873 support provides a secure session, but no authentication. This allows any
874 client to connect, and provides an encrypted session.
875
876 @example
877 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
878 @end example
879
880 In the above example @code{/etc/pki/qemu} should contain at least three files,
881 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
882 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
883 NB the @code{server-key.pem} file should be protected with file mode 0600 to
884 only be readable by the user owning it.
885
886 @node vnc_sec_certificate_verify
887 @subsection With x509 certificates and client verification
888
889 Certificates can also provide a means to authenticate the client connecting.
890 The server will request that the client provide a certificate, which it will
891 then validate against the CA certificate. This is a good choice if deploying
892 in an environment with a private internal certificate authority.
893
894 @example
895 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
896 @end example
897
898
899 @node vnc_sec_certificate_pw
900 @subsection With x509 certificates, client verification and passwords
901
902 Finally, the previous method can be combined with VNC password authentication
903 to provide two layers of authentication for clients.
904
905 @example
906 qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
907 (qemu) change vnc password
908 Password: ********
909 (qemu)
910 @end example
911
912
913 @node vnc_sec_sasl
914 @subsection With SASL authentication
915
916 The SASL authentication method is a VNC extension, that provides an
917 easily extendable, pluggable authentication method. This allows for
918 integration with a wide range of authentication mechanisms, such as
919 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
920 The strength of the authentication depends on the exact mechanism
921 configured. If the chosen mechanism also provides a SSF layer, then
922 it will encrypt the datastream as well.
923
924 Refer to the later docs on how to choose the exact SASL mechanism
925 used for authentication, but assuming use of one supporting SSF,
926 then QEMU can be launched with:
927
928 @example
929 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
930 @end example
931
932 @node vnc_sec_certificate_sasl
933 @subsection With x509 certificates and SASL authentication
934
935 If the desired SASL authentication mechanism does not supported
936 SSF layers, then it is strongly advised to run it in combination
937 with TLS and x509 certificates. This provides securely encrypted
938 data stream, avoiding risk of compromising of the security
939 credentials. This can be enabled, by combining the 'sasl' option
940 with the aforementioned TLS + x509 options:
941
942 @example
943 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
944 @end example
945
946
947 @node vnc_generate_cert
948 @subsection Generating certificates for VNC
949
950 The GNU TLS packages provides a command called @code{certtool} which can
951 be used to generate certificates and keys in PEM format. At a minimum it
952 is necessary to setup a certificate authority, and issue certificates to
953 each server. If using certificates for authentication, then each client
954 will also need to be issued a certificate. The recommendation is for the
955 server to keep its certificates in either @code{/etc/pki/qemu} or for
956 unprivileged users in @code{$HOME/.pki/qemu}.
957
958 @menu
959 * vnc_generate_ca::
960 * vnc_generate_server::
961 * vnc_generate_client::
962 @end menu
963 @node vnc_generate_ca
964 @subsubsection Setup the Certificate Authority
965
966 This step only needs to be performed once per organization / organizational
967 unit. First the CA needs a private key. This key must be kept VERY secret
968 and secure. If this key is compromised the entire trust chain of the certificates
969 issued with it is lost.
970
971 @example
972 # certtool --generate-privkey > ca-key.pem
973 @end example
974
975 A CA needs to have a public certificate. For simplicity it can be a self-signed
976 certificate, or one issue by a commercial certificate issuing authority. To
977 generate a self-signed certificate requires one core piece of information, the
978 name of the organization.
979
980 @example
981 # cat > ca.info <<EOF
982 cn = Name of your organization
983 ca
984 cert_signing_key
985 EOF
986 # certtool --generate-self-signed \
987 --load-privkey ca-key.pem
988 --template ca.info \
989 --outfile ca-cert.pem
990 @end example
991
992 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
993 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
994
995 @node vnc_generate_server
996 @subsubsection Issuing server certificates
997
998 Each server (or host) needs to be issued with a key and certificate. When connecting
999 the certificate is sent to the client which validates it against the CA certificate.
1000 The core piece of information for a server certificate is the hostname. This should
1001 be the fully qualified hostname that the client will connect with, since the client
1002 will typically also verify the hostname in the certificate. On the host holding the
1003 secure CA private key:
1004
1005 @example
1006 # cat > server.info <<EOF
1007 organization = Name of your organization
1008 cn = server.foo.example.com
1009 tls_www_server
1010 encryption_key
1011 signing_key
1012 EOF
1013 # certtool --generate-privkey > server-key.pem
1014 # certtool --generate-certificate \
1015 --load-ca-certificate ca-cert.pem \
1016 --load-ca-privkey ca-key.pem \
1017 --load-privkey server-key.pem \
1018 --template server.info \
1019 --outfile server-cert.pem
1020 @end example
1021
1022 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1023 to the server for which they were generated. The @code{server-key.pem} is security
1024 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1025
1026 @node vnc_generate_client
1027 @subsubsection Issuing client certificates
1028
1029 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1030 certificates as its authentication mechanism, each client also needs to be issued
1031 a certificate. The client certificate contains enough metadata to uniquely identify
1032 the client, typically organization, state, city, building, etc. On the host holding
1033 the secure CA private key:
1034
1035 @example
1036 # cat > client.info <<EOF
1037 country = GB
1038 state = London
1039 locality = London
1040 organization = Name of your organization
1041 cn = client.foo.example.com
1042 tls_www_client
1043 encryption_key
1044 signing_key
1045 EOF
1046 # certtool --generate-privkey > client-key.pem
1047 # certtool --generate-certificate \
1048 --load-ca-certificate ca-cert.pem \
1049 --load-ca-privkey ca-key.pem \
1050 --load-privkey client-key.pem \
1051 --template client.info \
1052 --outfile client-cert.pem
1053 @end example
1054
1055 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1056 copied to the client for which they were generated.
1057
1058
1059 @node vnc_setup_sasl
1060
1061 @subsection Configuring SASL mechanisms
1062
1063 The following documentation assumes use of the Cyrus SASL implementation on a
1064 Linux host, but the principals should apply to any other SASL impl. When SASL
1065 is enabled, the mechanism configuration will be loaded from system default
1066 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1067 unprivileged user, an environment variable SASL_CONF_PATH can be used
1068 to make it search alternate locations for the service config.
1069
1070 If the TLS option is enabled for VNC, then it will provide session encryption,
1071 otherwise the SASL mechanism will have to provide encryption. In the latter
1072 case the list of possible plugins that can be used is drastically reduced. In
1073 fact only the GSSAPI SASL mechanism provides an acceptable level of security
1074 by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1075 mechanism, however, it has multiple serious flaws described in detail in
1076 RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1077 provides a simple username/password auth facility similar to DIGEST-MD5, but
1078 does not support session encryption, so can only be used in combination with
1079 TLS.
1080
1081 When not using TLS the recommended configuration is
1082
1083 @example
1084 mech_list: gssapi
1085 keytab: /etc/qemu/krb5.tab
1086 @end example
1087
1088 This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1089 the server principal stored in /etc/qemu/krb5.tab. For this to work the
1090 administrator of your KDC must generate a Kerberos principal for the server,
1091 with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1092 'somehost.example.com' with the fully qualified host name of the machine
1093 running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1094
1095 When using TLS, if username+password authentication is desired, then a
1096 reasonable configuration is
1097
1098 @example
1099 mech_list: scram-sha-1
1100 sasldb_path: /etc/qemu/passwd.db
1101 @end example
1102
1103 The saslpasswd2 program can be used to populate the passwd.db file with
1104 accounts.
1105
1106 Other SASL configurations will be left as an exercise for the reader. Note that
1107 all mechanisms except GSSAPI, should be combined with use of TLS to ensure a
1108 secure data channel.
1109
1110 @node gdb_usage
1111 @section GDB usage
1112
1113 QEMU has a primitive support to work with gdb, so that you can do
1114 'Ctrl-C' while the virtual machine is running and inspect its state.
1115
1116 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1117 gdb connection:
1118 @example
1119 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1120 -append "root=/dev/hda"
1121 Connected to host network interface: tun0
1122 Waiting gdb connection on port 1234
1123 @end example
1124
1125 Then launch gdb on the 'vmlinux' executable:
1126 @example
1127 > gdb vmlinux
1128 @end example
1129
1130 In gdb, connect to QEMU:
1131 @example
1132 (gdb) target remote localhost:1234
1133 @end example
1134
1135 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1136 @example
1137 (gdb) c
1138 @end example
1139
1140 Here are some useful tips in order to use gdb on system code:
1141
1142 @enumerate
1143 @item
1144 Use @code{info reg} to display all the CPU registers.
1145 @item
1146 Use @code{x/10i $eip} to display the code at the PC position.
1147 @item
1148 Use @code{set architecture i8086} to dump 16 bit code. Then use
1149 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1150 @end enumerate
1151
1152 Advanced debugging options:
1153
1154 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1155 @table @code
1156 @item maintenance packet qqemu.sstepbits
1157
1158 This will display the MASK bits used to control the single stepping IE:
1159 @example
1160 (gdb) maintenance packet qqemu.sstepbits
1161 sending: "qqemu.sstepbits"
1162 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1163 @end example
1164 @item maintenance packet qqemu.sstep
1165
1166 This will display the current value of the mask used when single stepping IE:
1167 @example
1168 (gdb) maintenance packet qqemu.sstep
1169 sending: "qqemu.sstep"
1170 received: "0x7"
1171 @end example
1172 @item maintenance packet Qqemu.sstep=HEX_VALUE
1173
1174 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1175 @example
1176 (gdb) maintenance packet Qqemu.sstep=0x5
1177 sending: "qemu.sstep=0x5"
1178 received: "OK"
1179 @end example
1180 @end table
1181
1182 @node pcsys_os_specific
1183 @section Target OS specific information
1184
1185 @subsection Linux
1186
1187 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1188 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1189 color depth in the guest and the host OS.
1190
1191 When using a 2.6 guest Linux kernel, you should add the option
1192 @code{clock=pit} on the kernel command line because the 2.6 Linux
1193 kernels make very strict real time clock checks by default that QEMU
1194 cannot simulate exactly.
1195
1196 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1197 not activated because QEMU is slower with this patch. The QEMU
1198 Accelerator Module is also much slower in this case. Earlier Fedora
1199 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1200 patch by default. Newer kernels don't have it.
1201
1202 @subsection Windows
1203
1204 If you have a slow host, using Windows 95 is better as it gives the
1205 best speed. Windows 2000 is also a good choice.
1206
1207 @subsubsection SVGA graphic modes support
1208
1209 QEMU emulates a Cirrus Logic GD5446 Video
1210 card. All Windows versions starting from Windows 95 should recognize
1211 and use this graphic card. For optimal performances, use 16 bit color
1212 depth in the guest and the host OS.
1213
1214 If you are using Windows XP as guest OS and if you want to use high
1215 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1216 1280x1024x16), then you should use the VESA VBE virtual graphic card
1217 (option @option{-std-vga}).
1218
1219 @subsubsection CPU usage reduction
1220
1221 Windows 9x does not correctly use the CPU HLT
1222 instruction. The result is that it takes host CPU cycles even when
1223 idle. You can install the utility from
1224 @url{http://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
1225 to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1226
1227 @subsubsection Windows 2000 disk full problem
1228
1229 Windows 2000 has a bug which gives a disk full problem during its
1230 installation. When installing it, use the @option{-win2k-hack} QEMU
1231 option to enable a specific workaround. After Windows 2000 is
1232 installed, you no longer need this option (this option slows down the
1233 IDE transfers).
1234
1235 @subsubsection Windows 2000 shutdown
1236
1237 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1238 can. It comes from the fact that Windows 2000 does not automatically
1239 use the APM driver provided by the BIOS.
1240
1241 In order to correct that, do the following (thanks to Struan
1242 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1243 Add/Troubleshoot a device => Add a new device & Next => No, select the
1244 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1245 (again) a few times. Now the driver is installed and Windows 2000 now
1246 correctly instructs QEMU to shutdown at the appropriate moment.
1247
1248 @subsubsection Share a directory between Unix and Windows
1249
1250 See @ref{sec_invocation} about the help of the option
1251 @option{'-netdev user,smb=...'}.
1252
1253 @subsubsection Windows XP security problem
1254
1255 Some releases of Windows XP install correctly but give a security
1256 error when booting:
1257 @example
1258 A problem is preventing Windows from accurately checking the
1259 license for this computer. Error code: 0x800703e6.
1260 @end example
1261
1262 The workaround is to install a service pack for XP after a boot in safe
1263 mode. Then reboot, and the problem should go away. Since there is no
1264 network while in safe mode, its recommended to download the full
1265 installation of SP1 or SP2 and transfer that via an ISO or using the
1266 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1267
1268 @subsection MS-DOS and FreeDOS
1269
1270 @subsubsection CPU usage reduction
1271
1272 DOS does not correctly use the CPU HLT instruction. The result is that
1273 it takes host CPU cycles even when idle. You can install the utility from
1274 @url{http://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
1275 to solve this problem.
1276
1277 @node QEMU System emulator for non PC targets
1278 @chapter QEMU System emulator for non PC targets
1279
1280 QEMU is a generic emulator and it emulates many non PC
1281 machines. Most of the options are similar to the PC emulator. The
1282 differences are mentioned in the following sections.
1283
1284 @menu
1285 * PowerPC System emulator::
1286 * Sparc32 System emulator::
1287 * Sparc64 System emulator::
1288 * MIPS System emulator::
1289 * ARM System emulator::
1290 * ColdFire System emulator::
1291 * Cris System emulator::
1292 * Microblaze System emulator::
1293 * SH4 System emulator::
1294 * Xtensa System emulator::
1295 @end menu
1296
1297 @node PowerPC System emulator
1298 @section PowerPC System emulator
1299 @cindex system emulation (PowerPC)
1300
1301 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1302 or PowerMac PowerPC system.
1303
1304 QEMU emulates the following PowerMac peripherals:
1305
1306 @itemize @minus
1307 @item
1308 UniNorth or Grackle PCI Bridge
1309 @item
1310 PCI VGA compatible card with VESA Bochs Extensions
1311 @item
1312 2 PMAC IDE interfaces with hard disk and CD-ROM support
1313 @item
1314 NE2000 PCI adapters
1315 @item
1316 Non Volatile RAM
1317 @item
1318 VIA-CUDA with ADB keyboard and mouse.
1319 @end itemize
1320
1321 QEMU emulates the following PREP peripherals:
1322
1323 @itemize @minus
1324 @item
1325 PCI Bridge
1326 @item
1327 PCI VGA compatible card with VESA Bochs Extensions
1328 @item
1329 2 IDE interfaces with hard disk and CD-ROM support
1330 @item
1331 Floppy disk
1332 @item
1333 NE2000 network adapters
1334 @item
1335 Serial port
1336 @item
1337 PREP Non Volatile RAM
1338 @item
1339 PC compatible keyboard and mouse.
1340 @end itemize
1341
1342 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1343 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1344
1345 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1346 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1347 v2) portable firmware implementation. The goal is to implement a 100%
1348 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1349
1350 @c man begin OPTIONS
1351
1352 The following options are specific to the PowerPC emulation:
1353
1354 @table @option
1355
1356 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1357
1358 Set the initial VGA graphic mode. The default is 800x600x32.
1359
1360 @item -prom-env @var{string}
1361
1362 Set OpenBIOS variables in NVRAM, for example:
1363
1364 @example
1365 qemu-system-ppc -prom-env 'auto-boot?=false' \
1366 -prom-env 'boot-device=hd:2,\yaboot' \
1367 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1368 @end example
1369
1370 These variables are not used by Open Hack'Ware.
1371
1372 @end table
1373
1374 @c man end
1375
1376
1377 More information is available at
1378 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1379
1380 @node Sparc32 System emulator
1381 @section Sparc32 System emulator
1382 @cindex system emulation (Sparc32)
1383
1384 Use the executable @file{qemu-system-sparc} to simulate the following
1385 Sun4m architecture machines:
1386 @itemize @minus
1387 @item
1388 SPARCstation 4
1389 @item
1390 SPARCstation 5
1391 @item
1392 SPARCstation 10
1393 @item
1394 SPARCstation 20
1395 @item
1396 SPARCserver 600MP
1397 @item
1398 SPARCstation LX
1399 @item
1400 SPARCstation Voyager
1401 @item
1402 SPARCclassic
1403 @item
1404 SPARCbook
1405 @end itemize
1406
1407 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1408 but Linux limits the number of usable CPUs to 4.
1409
1410 QEMU emulates the following sun4m peripherals:
1411
1412 @itemize @minus
1413 @item
1414 IOMMU
1415 @item
1416 TCX or cgthree Frame buffer
1417 @item
1418 Lance (Am7990) Ethernet
1419 @item
1420 Non Volatile RAM M48T02/M48T08
1421 @item
1422 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1423 and power/reset logic
1424 @item
1425 ESP SCSI controller with hard disk and CD-ROM support
1426 @item
1427 Floppy drive (not on SS-600MP)
1428 @item
1429 CS4231 sound device (only on SS-5, not working yet)
1430 @end itemize
1431
1432 The number of peripherals is fixed in the architecture. Maximum
1433 memory size depends on the machine type, for SS-5 it is 256MB and for
1434 others 2047MB.
1435
1436 Since version 0.8.2, QEMU uses OpenBIOS
1437 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1438 firmware implementation. The goal is to implement a 100% IEEE
1439 1275-1994 (referred to as Open Firmware) compliant firmware.
1440
1441 A sample Linux 2.6 series kernel and ram disk image are available on
1442 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1443 most kernel versions work. Please note that currently older Solaris kernels
1444 don't work probably due to interface issues between OpenBIOS and
1445 Solaris.
1446
1447 @c man begin OPTIONS
1448
1449 The following options are specific to the Sparc32 emulation:
1450
1451 @table @option
1452
1453 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
1454
1455 Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1456 option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1457 of 1152x900x8 for people who wish to use OBP.
1458
1459 @item -prom-env @var{string}
1460
1461 Set OpenBIOS variables in NVRAM, for example:
1462
1463 @example
1464 qemu-system-sparc -prom-env 'auto-boot?=false' \
1465 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1466 @end example
1467
1468 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
1469
1470 Set the emulated machine type. Default is SS-5.
1471
1472 @end table
1473
1474 @c man end
1475
1476 @node Sparc64 System emulator
1477 @section Sparc64 System emulator
1478 @cindex system emulation (Sparc64)
1479
1480 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1481 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1482 Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1483 able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
1484 Sun4v emulator is still a work in progress.
1485
1486 The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1487 of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1488 and is able to boot the disk.s10hw2 Solaris image.
1489 @example
1490 qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1491 -nographic -m 256 \
1492 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1493 @end example
1494
1495
1496 QEMU emulates the following peripherals:
1497
1498 @itemize @minus
1499 @item
1500 UltraSparc IIi APB PCI Bridge
1501 @item
1502 PCI VGA compatible card with VESA Bochs Extensions
1503 @item
1504 PS/2 mouse and keyboard
1505 @item
1506 Non Volatile RAM M48T59
1507 @item
1508 PC-compatible serial ports
1509 @item
1510 2 PCI IDE interfaces with hard disk and CD-ROM support
1511 @item
1512 Floppy disk
1513 @end itemize
1514
1515 @c man begin OPTIONS
1516
1517 The following options are specific to the Sparc64 emulation:
1518
1519 @table @option
1520
1521 @item -prom-env @var{string}
1522
1523 Set OpenBIOS variables in NVRAM, for example:
1524
1525 @example
1526 qemu-system-sparc64 -prom-env 'auto-boot?=false'
1527 @end example
1528
1529 @item -M [sun4u|sun4v|niagara]
1530
1531 Set the emulated machine type. The default is sun4u.
1532
1533 @end table
1534
1535 @c man end
1536
1537 @node MIPS System emulator
1538 @section MIPS System emulator
1539 @cindex system emulation (MIPS)
1540
1541 Four executables cover simulation of 32 and 64-bit MIPS systems in
1542 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1543 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1544 Five different machine types are emulated:
1545
1546 @itemize @minus
1547 @item
1548 A generic ISA PC-like machine "mips"
1549 @item
1550 The MIPS Malta prototype board "malta"
1551 @item
1552 An ACER Pica "pica61". This machine needs the 64-bit emulator.
1553 @item
1554 MIPS emulator pseudo board "mipssim"
1555 @item
1556 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1557 @end itemize
1558
1559 The generic emulation is supported by Debian 'Etch' and is able to
1560 install Debian into a virtual disk image. The following devices are
1561 emulated:
1562
1563 @itemize @minus
1564 @item
1565 A range of MIPS CPUs, default is the 24Kf
1566 @item
1567 PC style serial port
1568 @item
1569 PC style IDE disk
1570 @item
1571 NE2000 network card
1572 @end itemize
1573
1574 The Malta emulation supports the following devices:
1575
1576 @itemize @minus
1577 @item
1578 Core board with MIPS 24Kf CPU and Galileo system controller
1579 @item
1580 PIIX4 PCI/USB/SMbus controller
1581 @item
1582 The Multi-I/O chip's serial device
1583 @item
1584 PCI network cards (PCnet32 and others)
1585 @item
1586 Malta FPGA serial device
1587 @item
1588 Cirrus (default) or any other PCI VGA graphics card
1589 @end itemize
1590
1591 The ACER Pica emulation supports:
1592
1593 @itemize @minus
1594 @item
1595 MIPS R4000 CPU
1596 @item
1597 PC-style IRQ and DMA controllers
1598 @item
1599 PC Keyboard
1600 @item
1601 IDE controller
1602 @end itemize
1603
1604 The mipssim pseudo board emulation provides an environment similar
1605 to what the proprietary MIPS emulator uses for running Linux.
1606 It supports:
1607
1608 @itemize @minus
1609 @item
1610 A range of MIPS CPUs, default is the 24Kf
1611 @item
1612 PC style serial port
1613 @item
1614 MIPSnet network emulation
1615 @end itemize
1616
1617 The MIPS Magnum R4000 emulation supports:
1618
1619 @itemize @minus
1620 @item
1621 MIPS R4000 CPU
1622 @item
1623 PC-style IRQ controller
1624 @item
1625 PC Keyboard
1626 @item
1627 SCSI controller
1628 @item
1629 G364 framebuffer
1630 @end itemize
1631
1632
1633 @node ARM System emulator
1634 @section ARM System emulator
1635 @cindex system emulation (ARM)
1636
1637 Use the executable @file{qemu-system-arm} to simulate a ARM
1638 machine. The ARM Integrator/CP board is emulated with the following
1639 devices:
1640
1641 @itemize @minus
1642 @item
1643 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1644 @item
1645 Two PL011 UARTs
1646 @item
1647 SMC 91c111 Ethernet adapter
1648 @item
1649 PL110 LCD controller
1650 @item
1651 PL050 KMI with PS/2 keyboard and mouse.
1652 @item
1653 PL181 MultiMedia Card Interface with SD card.
1654 @end itemize
1655
1656 The ARM Versatile baseboard is emulated with the following devices:
1657
1658 @itemize @minus
1659 @item
1660 ARM926E, ARM1136 or Cortex-A8 CPU
1661 @item
1662 PL190 Vectored Interrupt Controller
1663 @item
1664 Four PL011 UARTs
1665 @item
1666 SMC 91c111 Ethernet adapter
1667 @item
1668 PL110 LCD controller
1669 @item
1670 PL050 KMI with PS/2 keyboard and mouse.
1671 @item
1672 PCI host bridge. Note the emulated PCI bridge only provides access to
1673 PCI memory space. It does not provide access to PCI IO space.
1674 This means some devices (eg. ne2k_pci NIC) are not usable, and others
1675 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1676 mapped control registers.
1677 @item
1678 PCI OHCI USB controller.
1679 @item
1680 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1681 @item
1682 PL181 MultiMedia Card Interface with SD card.
1683 @end itemize
1684
1685 Several variants of the ARM RealView baseboard are emulated,
1686 including the EB, PB-A8 and PBX-A9. Due to interactions with the
1687 bootloader, only certain Linux kernel configurations work out
1688 of the box on these boards.
1689
1690 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1691 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1692 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1693 disabled and expect 1024M RAM.
1694
1695 The following devices are emulated:
1696
1697 @itemize @minus
1698 @item
1699 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1700 @item
1701 ARM AMBA Generic/Distributed Interrupt Controller
1702 @item
1703 Four PL011 UARTs
1704 @item
1705 SMC 91c111 or SMSC LAN9118 Ethernet adapter
1706 @item
1707 PL110 LCD controller
1708 @item
1709 PL050 KMI with PS/2 keyboard and mouse
1710 @item
1711 PCI host bridge
1712 @item
1713 PCI OHCI USB controller
1714 @item
1715 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1716 @item
1717 PL181 MultiMedia Card Interface with SD card.
1718 @end itemize
1719
1720 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1721 and "Terrier") emulation includes the following peripherals:
1722
1723 @itemize @minus
1724 @item
1725 Intel PXA270 System-on-chip (ARM V5TE core)
1726 @item
1727 NAND Flash memory
1728 @item
1729 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1730 @item
1731 On-chip OHCI USB controller
1732 @item
1733 On-chip LCD controller
1734 @item
1735 On-chip Real Time Clock
1736 @item
1737 TI ADS7846 touchscreen controller on SSP bus
1738 @item
1739 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1740 @item
1741 GPIO-connected keyboard controller and LEDs
1742 @item
1743 Secure Digital card connected to PXA MMC/SD host
1744 @item
1745 Three on-chip UARTs
1746 @item
1747 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1748 @end itemize
1749
1750 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1751 following elements:
1752
1753 @itemize @minus
1754 @item
1755 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1756 @item
1757 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1758 @item
1759 On-chip LCD controller
1760 @item
1761 On-chip Real Time Clock
1762 @item
1763 TI TSC2102i touchscreen controller / analog-digital converter / Audio
1764 CODEC, connected through MicroWire and I@math{^2}S busses
1765 @item
1766 GPIO-connected matrix keypad
1767 @item
1768 Secure Digital card connected to OMAP MMC/SD host
1769 @item
1770 Three on-chip UARTs
1771 @end itemize
1772
1773 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1774 emulation supports the following elements:
1775
1776 @itemize @minus
1777 @item
1778 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1779 @item
1780 RAM and non-volatile OneNAND Flash memories
1781 @item
1782 Display connected to EPSON remote framebuffer chip and OMAP on-chip
1783 display controller and a LS041y3 MIPI DBI-C controller
1784 @item
1785 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1786 driven through SPI bus
1787 @item
1788 National Semiconductor LM8323-controlled qwerty keyboard driven
1789 through I@math{^2}C bus
1790 @item
1791 Secure Digital card connected to OMAP MMC/SD host
1792 @item
1793 Three OMAP on-chip UARTs and on-chip STI debugging console
1794 @item
1795 A Bluetooth(R) transceiver and HCI connected to an UART
1796 @item
1797 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1798 TUSB6010 chip - only USB host mode is supported
1799 @item
1800 TI TMP105 temperature sensor driven through I@math{^2}C bus
1801 @item
1802 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1803 @item
1804 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1805 through CBUS
1806 @end itemize
1807
1808 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1809 devices:
1810
1811 @itemize @minus
1812 @item
1813 Cortex-M3 CPU core.
1814 @item
1815 64k Flash and 8k SRAM.
1816 @item
1817 Timers, UARTs, ADC and I@math{^2}C interface.
1818 @item
1819 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1820 @end itemize
1821
1822 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1823 devices:
1824
1825 @itemize @minus
1826 @item
1827 Cortex-M3 CPU core.
1828 @item
1829 256k Flash and 64k SRAM.
1830 @item
1831 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1832 @item
1833 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1834 @end itemize
1835
1836 The Freecom MusicPal internet radio emulation includes the following
1837 elements:
1838
1839 @itemize @minus
1840 @item
1841 Marvell MV88W8618 ARM core.
1842 @item
1843 32 MB RAM, 256 KB SRAM, 8 MB flash.
1844 @item
1845 Up to 2 16550 UARTs
1846 @item
1847 MV88W8xx8 Ethernet controller
1848 @item
1849 MV88W8618 audio controller, WM8750 CODEC and mixer
1850 @item
1851 128×64 display with brightness control
1852 @item
1853 2 buttons, 2 navigation wheels with button function
1854 @end itemize
1855
1856 The Siemens SX1 models v1 and v2 (default) basic emulation.
1857 The emulation includes the following elements:
1858
1859 @itemize @minus
1860 @item
1861 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1862 @item
1863 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1864 V1
1865 1 Flash of 16MB and 1 Flash of 8MB
1866 V2
1867 1 Flash of 32MB
1868 @item
1869 On-chip LCD controller
1870 @item
1871 On-chip Real Time Clock
1872 @item
1873 Secure Digital card connected to OMAP MMC/SD host
1874 @item
1875 Three on-chip UARTs
1876 @end itemize
1877
1878 A Linux 2.6 test image is available on the QEMU web site. More
1879 information is available in the QEMU mailing-list archive.
1880
1881 @c man begin OPTIONS
1882
1883 The following options are specific to the ARM emulation:
1884
1885 @table @option
1886
1887 @item -semihosting
1888 Enable semihosting syscall emulation.
1889
1890 On ARM this implements the "Angel" interface.
1891
1892 Note that this allows guest direct access to the host filesystem,
1893 so should only be used with trusted guest OS.
1894
1895 @end table
1896
1897 @c man end
1898
1899 @node ColdFire System emulator
1900 @section ColdFire System emulator
1901 @cindex system emulation (ColdFire)
1902 @cindex system emulation (M68K)
1903
1904 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1905 The emulator is able to boot a uClinux kernel.
1906
1907 The M5208EVB emulation includes the following devices:
1908
1909 @itemize @minus
1910 @item
1911 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1912 @item
1913 Three Two on-chip UARTs.
1914 @item
1915 Fast Ethernet Controller (FEC)
1916 @end itemize
1917
1918 The AN5206 emulation includes the following devices:
1919
1920 @itemize @minus
1921 @item
1922 MCF5206 ColdFire V2 Microprocessor.
1923 @item
1924 Two on-chip UARTs.
1925 @end itemize
1926
1927 @c man begin OPTIONS
1928
1929 The following options are specific to the ColdFire emulation:
1930
1931 @table @option
1932
1933 @item -semihosting
1934 Enable semihosting syscall emulation.
1935
1936 On M68K this implements the "ColdFire GDB" interface used by libgloss.
1937
1938 Note that this allows guest direct access to the host filesystem,
1939 so should only be used with trusted guest OS.
1940
1941 @end table
1942
1943 @c man end
1944
1945 @node Cris System emulator
1946 @section Cris System emulator
1947 @cindex system emulation (Cris)
1948
1949 TODO
1950
1951 @node Microblaze System emulator
1952 @section Microblaze System emulator
1953 @cindex system emulation (Microblaze)
1954
1955 TODO
1956
1957 @node SH4 System emulator
1958 @section SH4 System emulator
1959 @cindex system emulation (SH4)
1960
1961 TODO
1962
1963 @node Xtensa System emulator
1964 @section Xtensa System emulator
1965 @cindex system emulation (Xtensa)
1966
1967 Two executables cover simulation of both Xtensa endian options,
1968 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
1969 Two different machine types are emulated:
1970
1971 @itemize @minus
1972 @item
1973 Xtensa emulator pseudo board "sim"
1974 @item
1975 Avnet LX60/LX110/LX200 board
1976 @end itemize
1977
1978 The sim pseudo board emulation provides an environment similar
1979 to one provided by the proprietary Tensilica ISS.
1980 It supports:
1981
1982 @itemize @minus
1983 @item
1984 A range of Xtensa CPUs, default is the DC232B
1985 @item
1986 Console and filesystem access via semihosting calls
1987 @end itemize
1988
1989 The Avnet LX60/LX110/LX200 emulation supports:
1990
1991 @itemize @minus
1992 @item
1993 A range of Xtensa CPUs, default is the DC232B
1994 @item
1995 16550 UART
1996 @item
1997 OpenCores 10/100 Mbps Ethernet MAC
1998 @end itemize
1999
2000 @c man begin OPTIONS
2001
2002 The following options are specific to the Xtensa emulation:
2003
2004 @table @option
2005
2006 @item -semihosting
2007 Enable semihosting syscall emulation.
2008
2009 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2010 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2011
2012 Note that this allows guest direct access to the host filesystem,
2013 so should only be used with trusted guest OS.
2014
2015 @end table
2016
2017 @c man end
2018
2019 @node QEMU Guest Agent
2020 @chapter QEMU Guest Agent invocation
2021
2022 @include qemu-ga.texi
2023
2024 @node QEMU User space emulator
2025 @chapter QEMU User space emulator
2026
2027 @menu
2028 * Supported Operating Systems ::
2029 * Features::
2030 * Linux User space emulator::
2031 * BSD User space emulator ::
2032 @end menu
2033
2034 @node Supported Operating Systems
2035 @section Supported Operating Systems
2036
2037 The following OS are supported in user space emulation:
2038
2039 @itemize @minus
2040 @item
2041 Linux (referred as qemu-linux-user)
2042 @item
2043 BSD (referred as qemu-bsd-user)
2044 @end itemize
2045
2046 @node Features
2047 @section Features
2048
2049 QEMU user space emulation has the following notable features:
2050
2051 @table @strong
2052 @item System call translation:
2053 QEMU includes a generic system call translator. This means that
2054 the parameters of the system calls can be converted to fix
2055 endianness and 32/64-bit mismatches between hosts and targets.
2056 IOCTLs can be converted too.
2057
2058 @item POSIX signal handling:
2059 QEMU can redirect to the running program all signals coming from
2060 the host (such as @code{SIGALRM}), as well as synthesize signals from
2061 virtual CPU exceptions (for example @code{SIGFPE} when the program
2062 executes a division by zero).
2063
2064 QEMU relies on the host kernel to emulate most signal system
2065 calls, for example to emulate the signal mask. On Linux, QEMU
2066 supports both normal and real-time signals.
2067
2068 @item Threading:
2069 On Linux, QEMU can emulate the @code{clone} syscall and create a real
2070 host thread (with a separate virtual CPU) for each emulated thread.
2071 Note that not all targets currently emulate atomic operations correctly.
2072 x86 and ARM use a global lock in order to preserve their semantics.
2073 @end table
2074
2075 QEMU was conceived so that ultimately it can emulate itself. Although
2076 it is not very useful, it is an important test to show the power of the
2077 emulator.
2078
2079 @node Linux User space emulator
2080 @section Linux User space emulator
2081
2082 @menu
2083 * Quick Start::
2084 * Wine launch::
2085 * Command line options::
2086 * Other binaries::
2087 @end menu
2088
2089 @node Quick Start
2090 @subsection Quick Start
2091
2092 In order to launch a Linux process, QEMU needs the process executable
2093 itself and all the target (x86) dynamic libraries used by it.
2094
2095 @itemize
2096
2097 @item On x86, you can just try to launch any process by using the native
2098 libraries:
2099
2100 @example
2101 qemu-i386 -L / /bin/ls
2102 @end example
2103
2104 @code{-L /} tells that the x86 dynamic linker must be searched with a
2105 @file{/} prefix.
2106
2107 @item Since QEMU is also a linux process, you can launch QEMU with
2108 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2109
2110 @example
2111 qemu-i386 -L / qemu-i386 -L / /bin/ls
2112 @end example
2113
2114 @item On non x86 CPUs, you need first to download at least an x86 glibc
2115 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2116 @code{LD_LIBRARY_PATH} is not set:
2117
2118 @example
2119 unset LD_LIBRARY_PATH
2120 @end example
2121
2122 Then you can launch the precompiled @file{ls} x86 executable:
2123
2124 @example
2125 qemu-i386 tests/i386/ls
2126 @end example
2127 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2128 QEMU is automatically launched by the Linux kernel when you try to
2129 launch x86 executables. It requires the @code{binfmt_misc} module in the
2130 Linux kernel.
2131
2132 @item The x86 version of QEMU is also included. You can try weird things such as:
2133 @example
2134 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2135 /usr/local/qemu-i386/bin/ls-i386
2136 @end example
2137
2138 @end itemize
2139
2140 @node Wine launch
2141 @subsection Wine launch
2142
2143 @itemize
2144
2145 @item Ensure that you have a working QEMU with the x86 glibc
2146 distribution (see previous section). In order to verify it, you must be
2147 able to do:
2148
2149 @example
2150 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2151 @end example
2152
2153 @item Download the binary x86 Wine install
2154 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2155
2156 @item Configure Wine on your account. Look at the provided script
2157 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2158 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2159
2160 @item Then you can try the example @file{putty.exe}:
2161
2162 @example
2163 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2164 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2165 @end example
2166
2167 @end itemize
2168
2169 @node Command line options
2170 @subsection Command line options
2171
2172 @example
2173 @command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2174 @end example
2175
2176 @table @option
2177 @item -h
2178 Print the help
2179 @item -L path
2180 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2181 @item -s size
2182 Set the x86 stack size in bytes (default=524288)
2183 @item -cpu model
2184 Select CPU model (-cpu help for list and additional feature selection)
2185 @item -E @var{var}=@var{value}
2186 Set environment @var{var} to @var{value}.
2187 @item -U @var{var}
2188 Remove @var{var} from the environment.
2189 @item -B offset
2190 Offset guest address by the specified number of bytes. This is useful when
2191 the address region required by guest applications is reserved on the host.
2192 This option is currently only supported on some hosts.
2193 @item -R size
2194 Pre-allocate a guest virtual address space of the given size (in bytes).
2195 "G", "M", and "k" suffixes may be used when specifying the size.
2196 @end table
2197
2198 Debug options:
2199
2200 @table @option
2201 @item -d item1,...
2202 Activate logging of the specified items (use '-d help' for a list of log items)
2203 @item -p pagesize
2204 Act as if the host page size was 'pagesize' bytes
2205 @item -g port
2206 Wait gdb connection to port
2207 @item -singlestep
2208 Run the emulation in single step mode.
2209 @end table
2210
2211 Environment variables:
2212
2213 @table @env
2214 @item QEMU_STRACE
2215 Print system calls and arguments similar to the 'strace' program
2216 (NOTE: the actual 'strace' program will not work because the user
2217 space emulator hasn't implemented ptrace). At the moment this is
2218 incomplete. All system calls that don't have a specific argument
2219 format are printed with information for six arguments. Many
2220 flag-style arguments don't have decoders and will show up as numbers.
2221 @end table
2222
2223 @node Other binaries
2224 @subsection Other binaries
2225
2226 @cindex user mode (Alpha)
2227 @command{qemu-alpha} TODO.
2228
2229 @cindex user mode (ARM)
2230 @command{qemu-armeb} TODO.
2231
2232 @cindex user mode (ARM)
2233 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2234 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2235 configurations), and arm-uclinux bFLT format binaries.
2236
2237 @cindex user mode (ColdFire)
2238 @cindex user mode (M68K)
2239 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2240 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2241 coldfire uClinux bFLT format binaries.
2242
2243 The binary format is detected automatically.
2244
2245 @cindex user mode (Cris)
2246 @command{qemu-cris} TODO.
2247
2248 @cindex user mode (i386)
2249 @command{qemu-i386} TODO.
2250 @command{qemu-x86_64} TODO.
2251
2252 @cindex user mode (Microblaze)
2253 @command{qemu-microblaze} TODO.
2254
2255 @cindex user mode (MIPS)
2256 @command{qemu-mips} TODO.
2257 @command{qemu-mipsel} TODO.
2258
2259 @cindex user mode (NiosII)
2260 @command{qemu-nios2} TODO.
2261
2262 @cindex user mode (PowerPC)
2263 @command{qemu-ppc64abi32} TODO.
2264 @command{qemu-ppc64} TODO.
2265 @command{qemu-ppc} TODO.
2266
2267 @cindex user mode (SH4)
2268 @command{qemu-sh4eb} TODO.
2269 @command{qemu-sh4} TODO.
2270
2271 @cindex user mode (SPARC)
2272 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2273
2274 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2275 (Sparc64 CPU, 32 bit ABI).
2276
2277 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2278 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2279
2280 @node BSD User space emulator
2281 @section BSD User space emulator
2282
2283 @menu
2284 * BSD Status::
2285 * BSD Quick Start::
2286 * BSD Command line options::
2287 @end menu
2288
2289 @node BSD Status
2290 @subsection BSD Status
2291
2292 @itemize @minus
2293 @item
2294 target Sparc64 on Sparc64: Some trivial programs work.
2295 @end itemize
2296
2297 @node BSD Quick Start
2298 @subsection Quick Start
2299
2300 In order to launch a BSD process, QEMU needs the process executable
2301 itself and all the target dynamic libraries used by it.
2302
2303 @itemize
2304
2305 @item On Sparc64, you can just try to launch any process by using the native
2306 libraries:
2307
2308 @example
2309 qemu-sparc64 /bin/ls
2310 @end example
2311
2312 @end itemize
2313
2314 @node BSD Command line options
2315 @subsection Command line options
2316
2317 @example
2318 @command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2319 @end example
2320
2321 @table @option
2322 @item -h
2323 Print the help
2324 @item -L path
2325 Set the library root path (default=/)
2326 @item -s size
2327 Set the stack size in bytes (default=524288)
2328 @item -ignore-environment
2329 Start with an empty environment. Without this option,
2330 the initial environment is a copy of the caller's environment.
2331 @item -E @var{var}=@var{value}
2332 Set environment @var{var} to @var{value}.
2333 @item -U @var{var}
2334 Remove @var{var} from the environment.
2335 @item -bsd type
2336 Set the type of the emulated BSD Operating system. Valid values are
2337 FreeBSD, NetBSD and OpenBSD (default).
2338 @end table
2339
2340 Debug options:
2341
2342 @table @option
2343 @item -d item1,...
2344 Activate logging of the specified items (use '-d help' for a list of log items)
2345 @item -p pagesize
2346 Act as if the host page size was 'pagesize' bytes
2347 @item -singlestep
2348 Run the emulation in single step mode.
2349 @end table
2350
2351
2352 @include qemu-tech.texi
2353
2354 @node Deprecated features
2355 @appendix Deprecated features
2356
2357 In general features are intended to be supported indefinitely once
2358 introduced into QEMU. In the event that a feature needs to be removed,
2359 it will be listed in this appendix. The feature will remain functional
2360 for 2 releases prior to actual removal. Deprecated features may also
2361 generate warnings on the console when QEMU starts up, or if activated
2362 via a monitor command, however, this is not a mandatory requirement.
2363
2364 Prior to the 2.10.0 release there was no official policy on how
2365 long features would be deprecated prior to their removal, nor
2366 any documented list of which features were deprecated. Thus
2367 any features deprecated prior to 2.10.0 will be treated as if
2368 they were first deprecated in the 2.10.0 release.
2369
2370 What follows is a list of all features currently marked as
2371 deprecated.
2372
2373 @section System emulator command line arguments
2374
2375 @subsection -drive boot=on|off (since 1.3.0)
2376
2377 The ``boot=on|off'' option to the ``-drive'' argument is
2378 ignored. Applications should use the ``bootindex=N'' parameter
2379 to set an absolute ordering between devices instead.
2380
2381 @subsection -tdf (since 1.3.0)
2382
2383 The ``-tdf'' argument is ignored. The behaviour implemented
2384 by this argument is now the default when using the KVM PIT,
2385 but can be requested explicitly using
2386 ``-global kvm-pit.lost_tick_policy=slew''.
2387
2388 @subsection -no-kvm-pit-reinjection (since 1.3.0)
2389
2390 The ``-no-kvm-pit-reinjection'' argument is now a
2391 synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
2392
2393 @subsection -no-kvm-irqchip (since 1.3.0)
2394
2395 The ``-no-kvm-irqchip'' argument is now a synonym for
2396 setting ``-machine kernel_irqchip=off''.
2397
2398 @subsection -no-kvm-pit (since 1.3.0)
2399
2400 The ``-no-kvm-pit'' argument is ignored. It is no longer
2401 possible to disable the KVM PIT directly.
2402
2403 @subsection -no-kvm (since 1.3.0)
2404
2405 The ``-no-kvm'' argument is now a synonym for setting
2406 ``-machine accel=tcg''.
2407
2408 @subsection -mon default=on (since 2.4.0)
2409
2410 The ``default'' option to the ``-mon'' argument is
2411 now ignored. When multiple monitors were enabled, it
2412 indicated which monitor would receive log messages
2413 from the various subsystems. This feature is no longer
2414 required as messages are now only sent to the monitor
2415 in response to explicitly monitor commands.
2416
2417 @subsection -vnc tls (since 2.5.0)
2418
2419 The ``-vnc tls'' argument is now a synonym for setting
2420 ``-object tls-creds-anon,id=tls0'' combined with
2421 ``-vnc tls-creds=tls0'
2422
2423 @subsection -vnc x509 (since 2.5.0)
2424
2425 The ``-vnc x509=/path/to/certs'' argument is now a
2426 synonym for setting
2427 ``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
2428 combined with ``-vnc tls-creds=tls0'
2429
2430 @subsection -vnc x509verify (since 2.5.0)
2431
2432 The ``-vnc x509verify=/path/to/certs'' argument is now a
2433 synonym for setting
2434 ``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
2435 combined with ``-vnc tls-creds=tls0'
2436
2437 @subsection -tftp (since 2.6.0)
2438
2439 The ``-tftp /some/dir'' argument is now a synonym for setting
2440 the ``-netdev user,tftp=/some/dir' argument. The new syntax
2441 allows different settings to be provided per NIC.
2442
2443 @subsection -bootp (since 2.6.0)
2444
2445 The ``-bootp /some/file'' argument is now a synonym for setting
2446 the ``-netdev user,bootp=/some/file' argument. The new syntax
2447 allows different settings to be provided per NIC.
2448
2449 @subsection -redir (since 2.6.0)
2450
2451 The ``-redir ARGS'' argument is now a synonym for setting
2452 the ``-netdev user,hostfwd=ARGS'' argument instead. The new
2453 syntax allows different settings to be provided per NIC.
2454
2455 @subsection -smb (since 2.6.0)
2456
2457 The ``-smb /some/dir'' argument is now a synonym for setting
2458 the ``-netdev user,smb=/some/dir'' argument instead. The new
2459 syntax allows different settings to be provided per NIC.
2460
2461 @subsection -net channel (since 2.6.0)
2462
2463 The ``--net channel,ARGS'' argument is now a synonym for setting
2464 the ``-netdev user,guestfwd=ARGS'' argument instead.
2465
2466 @subsection -net vlan (since 2.9.0)
2467
2468 The ``-net vlan=NN'' argument is partially replaced with the
2469 new ``-netdev'' argument. The remaining use cases will no
2470 longer be directly supported in QEMU.
2471
2472 @subsection -drive if=scsi (since 2.9.0)
2473
2474 The ``-drive if=scsi'' argument is replaced by the the
2475 ``-device BUS-TYPE'' argument combined with ``-drive if=none''.
2476
2477 @subsection -net dump (since 2.10.0)
2478
2479 The ``--net dump'' argument is now replaced with the
2480 ``-object filter-dump'' argument which works in combination
2481 with the modern ``-netdev`` backends instead.
2482
2483 @subsection -hdachs (since 2.10.0)
2484
2485 The ``-hdachs'' argument is now a synonym for setting
2486 the ``cyls'', ``heads'', ``secs'', and ``trans'' properties
2487 on the ``ide-hd'' device using the ``-device'' argument.
2488 The new syntax allows different settings to be provided
2489 per disk.
2490
2491 @subsection -usbdevice (since 2.10.0)
2492
2493 The ``-usbdevice DEV'' argument is now a synonym for setting
2494 the ``-device usb-DEV'' argument instead. The deprecated syntax
2495 would automatically enable USB support on the machine type.
2496 If using the new syntax, USB support must be explicitly
2497 enabled via the ``-machine usb=on'' argument.
2498
2499 @subsection -nodefconfig (since 2.11.0)
2500
2501 The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
2502
2503 @section qemu-img command line arguments
2504
2505 @subsection convert -s (since 2.0.0)
2506
2507 The ``convert -s snapshot_id_or_name'' argument is obsoleted
2508 by the ``convert -l snapshot_param'' argument instead.
2509
2510 @section System emulator human monitor commands
2511
2512 @subsection host_net_add (since 2.10.0)
2513
2514 The ``host_net_add'' command is replaced by the ``netdev_add'' command.
2515
2516 @subsection host_net_remove (since 2.10.0)
2517
2518 The ``host_net_remove'' command is replaced by the ``netdev_del'' command.
2519
2520 @subsection usb_add (since 2.10.0)
2521
2522 The ``usb_add'' command is replaced by the ``device_add'' command.
2523
2524 @subsection usb_del (since 2.10.0)
2525
2526 The ``usb_del'' command is replaced by the ``device_del'' command.
2527
2528 @section System emulator devices
2529
2530 @subsection ivshmem (since 2.6.0)
2531
2532 The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
2533 or ``ivshmem-doorbell`` device types.
2534
2535 @subsection spapr-pci-vfio-host-bridge (since 2.6.0)
2536
2537 The ``spapr-pci-vfio-host-bridge'' device type is replaced by
2538 the ``spapr-pci-host-bridge'' device type.
2539
2540 @node License
2541 @appendix License
2542
2543 QEMU is a trademark of Fabrice Bellard.
2544
2545 QEMU is released under the
2546 @url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2547 version 2. Parts of QEMU have specific licenses, see file
2548 @url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
2549
2550 @node Index
2551 @appendix Index
2552 @menu
2553 * Concept Index::
2554 * Function Index::
2555 * Keystroke Index::
2556 * Program Index::
2557 * Data Type Index::
2558 * Variable Index::
2559 @end menu
2560
2561 @node Concept Index
2562 @section Concept Index
2563 This is the main index. Should we combine all keywords in one index? TODO
2564 @printindex cp
2565
2566 @node Function Index
2567 @section Function Index
2568 This index could be used for command line options and monitor functions.
2569 @printindex fn
2570
2571 @node Keystroke Index
2572 @section Keystroke Index
2573
2574 This is a list of all keystrokes which have a special function
2575 in system emulation.
2576
2577 @printindex ky
2578
2579 @node Program Index
2580 @section Program Index
2581 @printindex pg
2582
2583 @node Data Type Index
2584 @section Data Type Index
2585
2586 This index could be used for qdev device names and options.
2587
2588 @printindex tp
2589
2590 @node Variable Index
2591 @section Variable Index
2592 @printindex vr
2593
2594 @bye