]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
qemu-doc: replace introduction with the one from the internals manual
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4
5 @documentlanguage en
6 @documentencoding UTF-8
7
8 @settitle QEMU Emulator User Documentation
9 @exampleindent 0
10 @paragraphindent 0
11 @c %**end of header
12
13 @ifinfo
14 @direntry
15 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16 @end direntry
17 @end ifinfo
18
19 @iftex
20 @titlepage
21 @sp 7
22 @center @titlefont{QEMU Emulator}
23 @sp 1
24 @center @titlefont{User Documentation}
25 @sp 3
26 @end titlepage
27 @end iftex
28
29 @ifnottex
30 @node Top
31 @top
32
33 @menu
34 * Introduction::
35 * Installation::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU User space emulator::
39 * compilation:: Compilation from the sources
40 * License::
41 * Index::
42 @end menu
43 @end ifnottex
44
45 @contents
46
47 @node Introduction
48 @chapter Introduction
49
50 @menu
51 * intro_features:: Features
52 @end menu
53
54 @node intro_features
55 @section Features
56
57 QEMU is a FAST! processor emulator using dynamic translation to
58 achieve good emulation speed.
59
60 @cindex operating modes
61 QEMU has two operating modes:
62
63 @itemize
64 @cindex system emulation
65 @item Full system emulation. In this mode, QEMU emulates a full system (for
66 example a PC), including one or several processors and various
67 peripherals. It can be used to launch different Operating Systems
68 without rebooting the PC or to debug system code.
69
70 @cindex user mode emulation
71 @item User mode emulation. In this mode, QEMU can launch
72 processes compiled for one CPU on another CPU. It can be used to
73 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
74 to ease cross-compilation and cross-debugging.
75
76 @end itemize
77
78 QEMU has the following features:
79
80 @itemize
81 @item QEMU can run without a host kernel driver and yet gives acceptable
82 performance. It uses dynamic translation to native code for reasonable speed,
83 with support for self-modifying code and precise exceptions.
84
85 @item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
86 Windows) and architectures.
87
88 @item It performs accurate software emulation of the FPU.
89 @end itemize
90
91 QEMU user mode emulation has the following features:
92 @itemize
93 @item Generic Linux system call converter, including most ioctls.
94
95 @item clone() emulation using native CPU clone() to use Linux scheduler for threads.
96
97 @item Accurate signal handling by remapping host signals to target signals.
98 @end itemize
99
100 QEMU full system emulation has the following features:
101 @itemize
102 @item
103 QEMU uses a full software MMU for maximum portability.
104
105 @item
106 QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
107 execute most of the guest code natively, while
108 continuing to emulate the rest of the machine.
109
110 @item
111 Various hardware devices can be emulated and in some cases, host
112 devices (e.g. serial and parallel ports, USB, drives) can be used
113 transparently by the guest Operating System. Host device passthrough
114 can be used for talking to external physical peripherals (e.g. a
115 webcam, modem or tape drive).
116
117 @item
118 Symmetric multiprocessing (SMP) support. Currently, an in-kernel
119 accelerator is required to use more than one host CPU for emulation.
120
121 @end itemize
122
123
124 @node Installation
125 @chapter Installation
126
127 If you want to compile QEMU yourself, see @ref{compilation}.
128
129 @menu
130 * install_linux:: Linux
131 * install_windows:: Windows
132 * install_mac:: Macintosh
133 @end menu
134
135 @node install_linux
136 @section Linux
137 @cindex installation (Linux)
138
139 If a precompiled package is available for your distribution - you just
140 have to install it. Otherwise, see @ref{compilation}.
141
142 @node install_windows
143 @section Windows
144 @cindex installation (Windows)
145
146 Download the experimental binary installer at
147 @url{http://www.free.oszoo.org/@/download.html}.
148 TODO (no longer available)
149
150 @node install_mac
151 @section Mac OS X
152
153 Download the experimental binary installer at
154 @url{http://www.free.oszoo.org/@/download.html}.
155 TODO (no longer available)
156
157 @node QEMU PC System emulator
158 @chapter QEMU PC System emulator
159 @cindex system emulation (PC)
160
161 @menu
162 * pcsys_introduction:: Introduction
163 * pcsys_quickstart:: Quick Start
164 * sec_invocation:: Invocation
165 * pcsys_keys:: Keys in the graphical frontends
166 * mux_keys:: Keys in the character backend multiplexer
167 * pcsys_monitor:: QEMU Monitor
168 * disk_images:: Disk Images
169 * pcsys_network:: Network emulation
170 * pcsys_other_devs:: Other Devices
171 * direct_linux_boot:: Direct Linux Boot
172 * pcsys_usb:: USB emulation
173 * vnc_security:: VNC security
174 * gdb_usage:: GDB usage
175 * pcsys_os_specific:: Target OS specific information
176 @end menu
177
178 @node pcsys_introduction
179 @section Introduction
180
181 @c man begin DESCRIPTION
182
183 The QEMU PC System emulator simulates the
184 following peripherals:
185
186 @itemize @minus
187 @item
188 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
189 @item
190 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
191 extensions (hardware level, including all non standard modes).
192 @item
193 PS/2 mouse and keyboard
194 @item
195 2 PCI IDE interfaces with hard disk and CD-ROM support
196 @item
197 Floppy disk
198 @item
199 PCI and ISA network adapters
200 @item
201 Serial ports
202 @item
203 IPMI BMC, either and internal or external one
204 @item
205 Creative SoundBlaster 16 sound card
206 @item
207 ENSONIQ AudioPCI ES1370 sound card
208 @item
209 Intel 82801AA AC97 Audio compatible sound card
210 @item
211 Intel HD Audio Controller and HDA codec
212 @item
213 Adlib (OPL2) - Yamaha YM3812 compatible chip
214 @item
215 Gravis Ultrasound GF1 sound card
216 @item
217 CS4231A compatible sound card
218 @item
219 PCI UHCI USB controller and a virtual USB hub.
220 @end itemize
221
222 SMP is supported with up to 255 CPUs.
223
224 QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
225 VGA BIOS.
226
227 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
228
229 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
230 by Tibor "TS" Schütz.
231
232 Note that, by default, GUS shares IRQ(7) with parallel ports and so
233 QEMU must be told to not have parallel ports to have working GUS.
234
235 @example
236 qemu-system-i386 dos.img -soundhw gus -parallel none
237 @end example
238
239 Alternatively:
240 @example
241 qemu-system-i386 dos.img -device gus,irq=5
242 @end example
243
244 Or some other unclaimed IRQ.
245
246 CS4231A is the chip used in Windows Sound System and GUSMAX products
247
248 @c man end
249
250 @node pcsys_quickstart
251 @section Quick Start
252 @cindex quick start
253
254 Download and uncompress the linux image (@file{linux.img}) and type:
255
256 @example
257 qemu-system-i386 linux.img
258 @end example
259
260 Linux should boot and give you a prompt.
261
262 @node sec_invocation
263 @section Invocation
264
265 @example
266 @c man begin SYNOPSIS
267 @command{qemu-system-i386} [@var{options}] [@var{disk_image}]
268 @c man end
269 @end example
270
271 @c man begin OPTIONS
272 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
273 targets do not need a disk image.
274
275 @include qemu-options.texi
276
277 @c man end
278
279 @node pcsys_keys
280 @section Keys in the graphical frontends
281
282 @c man begin OPTIONS
283
284 During the graphical emulation, you can use special key combinations to change
285 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
286 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
287 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
288
289 @table @key
290 @item Ctrl-Alt-f
291 @kindex Ctrl-Alt-f
292 Toggle full screen
293
294 @item Ctrl-Alt-+
295 @kindex Ctrl-Alt-+
296 Enlarge the screen
297
298 @item Ctrl-Alt--
299 @kindex Ctrl-Alt--
300 Shrink the screen
301
302 @item Ctrl-Alt-u
303 @kindex Ctrl-Alt-u
304 Restore the screen's un-scaled dimensions
305
306 @item Ctrl-Alt-n
307 @kindex Ctrl-Alt-n
308 Switch to virtual console 'n'. Standard console mappings are:
309 @table @emph
310 @item 1
311 Target system display
312 @item 2
313 Monitor
314 @item 3
315 Serial port
316 @end table
317
318 @item Ctrl-Alt
319 @kindex Ctrl-Alt
320 Toggle mouse and keyboard grab.
321 @end table
322
323 @kindex Ctrl-Up
324 @kindex Ctrl-Down
325 @kindex Ctrl-PageUp
326 @kindex Ctrl-PageDown
327 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
328 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
329
330 @c man end
331
332 @node mux_keys
333 @section Keys in the character backend multiplexer
334
335 @c man begin OPTIONS
336
337 During emulation, if you are using a character backend multiplexer
338 (which is the default if you are using @option{-nographic}) then
339 several commands are available via an escape sequence. These
340 key sequences all start with an escape character, which is @key{Ctrl-a}
341 by default, but can be changed with @option{-echr}. The list below assumes
342 you're using the default.
343
344 @table @key
345 @item Ctrl-a h
346 @kindex Ctrl-a h
347 Print this help
348 @item Ctrl-a x
349 @kindex Ctrl-a x
350 Exit emulator
351 @item Ctrl-a s
352 @kindex Ctrl-a s
353 Save disk data back to file (if -snapshot)
354 @item Ctrl-a t
355 @kindex Ctrl-a t
356 Toggle console timestamps
357 @item Ctrl-a b
358 @kindex Ctrl-a b
359 Send break (magic sysrq in Linux)
360 @item Ctrl-a c
361 @kindex Ctrl-a c
362 Rotate between the frontends connected to the multiplexer (usually
363 this switches between the monitor and the console)
364 @item Ctrl-a Ctrl-a
365 @kindex Ctrl-a Ctrl-a
366 Send the escape character to the frontend
367 @end table
368 @c man end
369
370 @ignore
371
372 @c man begin SEEALSO
373 The HTML documentation of QEMU for more precise information and Linux
374 user mode emulator invocation.
375 @c man end
376
377 @c man begin AUTHOR
378 Fabrice Bellard
379 @c man end
380
381 @end ignore
382
383 @node pcsys_monitor
384 @section QEMU Monitor
385 @cindex QEMU monitor
386
387 The QEMU monitor is used to give complex commands to the QEMU
388 emulator. You can use it to:
389
390 @itemize @minus
391
392 @item
393 Remove or insert removable media images
394 (such as CD-ROM or floppies).
395
396 @item
397 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
398 from a disk file.
399
400 @item Inspect the VM state without an external debugger.
401
402 @end itemize
403
404 @subsection Commands
405
406 The following commands are available:
407
408 @include qemu-monitor.texi
409
410 @include qemu-monitor-info.texi
411
412 @subsection Integer expressions
413
414 The monitor understands integers expressions for every integer
415 argument. You can use register names to get the value of specifics
416 CPU registers by prefixing them with @emph{$}.
417
418 @node disk_images
419 @section Disk Images
420
421 Since version 0.6.1, QEMU supports many disk image formats, including
422 growable disk images (their size increase as non empty sectors are
423 written), compressed and encrypted disk images. Version 0.8.3 added
424 the new qcow2 disk image format which is essential to support VM
425 snapshots.
426
427 @menu
428 * disk_images_quickstart:: Quick start for disk image creation
429 * disk_images_snapshot_mode:: Snapshot mode
430 * vm_snapshots:: VM snapshots
431 * qemu_img_invocation:: qemu-img Invocation
432 * qemu_nbd_invocation:: qemu-nbd Invocation
433 * qemu_ga_invocation:: qemu-ga Invocation
434 * disk_images_formats:: Disk image file formats
435 * host_drives:: Using host drives
436 * disk_images_fat_images:: Virtual FAT disk images
437 * disk_images_nbd:: NBD access
438 * disk_images_sheepdog:: Sheepdog disk images
439 * disk_images_iscsi:: iSCSI LUNs
440 * disk_images_gluster:: GlusterFS disk images
441 * disk_images_ssh:: Secure Shell (ssh) disk images
442 @end menu
443
444 @node disk_images_quickstart
445 @subsection Quick start for disk image creation
446
447 You can create a disk image with the command:
448 @example
449 qemu-img create myimage.img mysize
450 @end example
451 where @var{myimage.img} is the disk image filename and @var{mysize} is its
452 size in kilobytes. You can add an @code{M} suffix to give the size in
453 megabytes and a @code{G} suffix for gigabytes.
454
455 See @ref{qemu_img_invocation} for more information.
456
457 @node disk_images_snapshot_mode
458 @subsection Snapshot mode
459
460 If you use the option @option{-snapshot}, all disk images are
461 considered as read only. When sectors in written, they are written in
462 a temporary file created in @file{/tmp}. You can however force the
463 write back to the raw disk images by using the @code{commit} monitor
464 command (or @key{C-a s} in the serial console).
465
466 @node vm_snapshots
467 @subsection VM snapshots
468
469 VM snapshots are snapshots of the complete virtual machine including
470 CPU state, RAM, device state and the content of all the writable
471 disks. In order to use VM snapshots, you must have at least one non
472 removable and writable block device using the @code{qcow2} disk image
473 format. Normally this device is the first virtual hard drive.
474
475 Use the monitor command @code{savevm} to create a new VM snapshot or
476 replace an existing one. A human readable name can be assigned to each
477 snapshot in addition to its numerical ID.
478
479 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
480 a VM snapshot. @code{info snapshots} lists the available snapshots
481 with their associated information:
482
483 @example
484 (qemu) info snapshots
485 Snapshot devices: hda
486 Snapshot list (from hda):
487 ID TAG VM SIZE DATE VM CLOCK
488 1 start 41M 2006-08-06 12:38:02 00:00:14.954
489 2 40M 2006-08-06 12:43:29 00:00:18.633
490 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
491 @end example
492
493 A VM snapshot is made of a VM state info (its size is shown in
494 @code{info snapshots}) and a snapshot of every writable disk image.
495 The VM state info is stored in the first @code{qcow2} non removable
496 and writable block device. The disk image snapshots are stored in
497 every disk image. The size of a snapshot in a disk image is difficult
498 to evaluate and is not shown by @code{info snapshots} because the
499 associated disk sectors are shared among all the snapshots to save
500 disk space (otherwise each snapshot would need a full copy of all the
501 disk images).
502
503 When using the (unrelated) @code{-snapshot} option
504 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
505 but they are deleted as soon as you exit QEMU.
506
507 VM snapshots currently have the following known limitations:
508 @itemize
509 @item
510 They cannot cope with removable devices if they are removed or
511 inserted after a snapshot is done.
512 @item
513 A few device drivers still have incomplete snapshot support so their
514 state is not saved or restored properly (in particular USB).
515 @end itemize
516
517 @node qemu_img_invocation
518 @subsection @code{qemu-img} Invocation
519
520 @include qemu-img.texi
521
522 @node qemu_nbd_invocation
523 @subsection @code{qemu-nbd} Invocation
524
525 @include qemu-nbd.texi
526
527 @node qemu_ga_invocation
528 @subsection @code{qemu-ga} Invocation
529
530 @include qemu-ga.texi
531
532 @node disk_images_formats
533 @subsection Disk image file formats
534
535 QEMU supports many image file formats that can be used with VMs as well as with
536 any of the tools (like @code{qemu-img}). This includes the preferred formats
537 raw and qcow2 as well as formats that are supported for compatibility with
538 older QEMU versions or other hypervisors.
539
540 Depending on the image format, different options can be passed to
541 @code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
542 This section describes each format and the options that are supported for it.
543
544 @table @option
545 @item raw
546
547 Raw disk image format. This format has the advantage of
548 being simple and easily exportable to all other emulators. If your
549 file system supports @emph{holes} (for example in ext2 or ext3 on
550 Linux or NTFS on Windows), then only the written sectors will reserve
551 space. Use @code{qemu-img info} to know the real size used by the
552 image or @code{ls -ls} on Unix/Linux.
553
554 Supported options:
555 @table @code
556 @item preallocation
557 Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
558 @code{falloc} mode preallocates space for image by calling posix_fallocate().
559 @code{full} mode preallocates space for image by writing zeros to underlying
560 storage.
561 @end table
562
563 @item qcow2
564 QEMU image format, the most versatile format. Use it to have smaller
565 images (useful if your filesystem does not supports holes, for example
566 on Windows), zlib based compression and support of multiple VM
567 snapshots.
568
569 Supported options:
570 @table @code
571 @item compat
572 Determines the qcow2 version to use. @code{compat=0.10} uses the
573 traditional image format that can be read by any QEMU since 0.10.
574 @code{compat=1.1} enables image format extensions that only QEMU 1.1 and
575 newer understand (this is the default). Amongst others, this includes
576 zero clusters, which allow efficient copy-on-read for sparse images.
577
578 @item backing_file
579 File name of a base image (see @option{create} subcommand)
580 @item backing_fmt
581 Image format of the base image
582 @item encryption
583 If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
584
585 The use of encryption in qcow and qcow2 images is considered to be flawed by
586 modern cryptography standards, suffering from a number of design problems:
587
588 @itemize @minus
589 @item The AES-CBC cipher is used with predictable initialization vectors based
590 on the sector number. This makes it vulnerable to chosen plaintext attacks
591 which can reveal the existence of encrypted data.
592 @item The user passphrase is directly used as the encryption key. A poorly
593 chosen or short passphrase will compromise the security of the encryption.
594 @item In the event of the passphrase being compromised there is no way to
595 change the passphrase to protect data in any qcow images. The files must
596 be cloned, using a different encryption passphrase in the new file. The
597 original file must then be securely erased using a program like shred,
598 though even this is ineffective with many modern storage technologies.
599 @end itemize
600
601 Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
602 it will go away in a future release. Users are recommended to use an
603 alternative encryption technology such as the Linux dm-crypt / LUKS
604 system.
605
606 @item cluster_size
607 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
608 sizes can improve the image file size whereas larger cluster sizes generally
609 provide better performance.
610
611 @item preallocation
612 Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
613 @code{full}). An image with preallocated metadata is initially larger but can
614 improve performance when the image needs to grow. @code{falloc} and @code{full}
615 preallocations are like the same options of @code{raw} format, but sets up
616 metadata also.
617
618 @item lazy_refcounts
619 If this option is set to @code{on}, reference count updates are postponed with
620 the goal of avoiding metadata I/O and improving performance. This is
621 particularly interesting with @option{cache=writethrough} which doesn't batch
622 metadata updates. The tradeoff is that after a host crash, the reference count
623 tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
624 check -r all} is required, which may take some time.
625
626 This option can only be enabled if @code{compat=1.1} is specified.
627
628 @item nocow
629 If this option is set to @code{on}, it will turn off COW of the file. It's only
630 valid on btrfs, no effect on other file systems.
631
632 Btrfs has low performance when hosting a VM image file, even more when the guest
633 on the VM also using btrfs as file system. Turning off COW is a way to mitigate
634 this bad performance. Generally there are two ways to turn off COW on btrfs:
635 a) Disable it by mounting with nodatacow, then all newly created files will be
636 NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
637 does.
638
639 Note: this option is only valid to new or empty files. If there is an existing
640 file which is COW and has data blocks already, it couldn't be changed to NOCOW
641 by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
642 the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
643
644 @end table
645
646 @item qed
647 Old QEMU image format with support for backing files and compact image files
648 (when your filesystem or transport medium does not support holes).
649
650 When converting QED images to qcow2, you might want to consider using the
651 @code{lazy_refcounts=on} option to get a more QED-like behaviour.
652
653 Supported options:
654 @table @code
655 @item backing_file
656 File name of a base image (see @option{create} subcommand).
657 @item backing_fmt
658 Image file format of backing file (optional). Useful if the format cannot be
659 autodetected because it has no header, like some vhd/vpc files.
660 @item cluster_size
661 Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
662 cluster sizes can improve the image file size whereas larger cluster sizes
663 generally provide better performance.
664 @item table_size
665 Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
666 and 16). There is normally no need to change this value but this option can be
667 used for performance benchmarking.
668 @end table
669
670 @item qcow
671 Old QEMU image format with support for backing files, compact image files,
672 encryption and compression.
673
674 Supported options:
675 @table @code
676 @item backing_file
677 File name of a base image (see @option{create} subcommand)
678 @item encryption
679 If this option is set to @code{on}, the image is encrypted.
680 @end table
681
682 @item vdi
683 VirtualBox 1.1 compatible image format.
684 Supported options:
685 @table @code
686 @item static
687 If this option is set to @code{on}, the image is created with metadata
688 preallocation.
689 @end table
690
691 @item vmdk
692 VMware 3 and 4 compatible image format.
693
694 Supported options:
695 @table @code
696 @item backing_file
697 File name of a base image (see @option{create} subcommand).
698 @item compat6
699 Create a VMDK version 6 image (instead of version 4)
700 @item hwversion
701 Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
702 if hwversion is specified.
703 @item subformat
704 Specifies which VMDK subformat to use. Valid options are
705 @code{monolithicSparse} (default),
706 @code{monolithicFlat},
707 @code{twoGbMaxExtentSparse},
708 @code{twoGbMaxExtentFlat} and
709 @code{streamOptimized}.
710 @end table
711
712 @item vpc
713 VirtualPC compatible image format (VHD).
714 Supported options:
715 @table @code
716 @item subformat
717 Specifies which VHD subformat to use. Valid options are
718 @code{dynamic} (default) and @code{fixed}.
719 @end table
720
721 @item VHDX
722 Hyper-V compatible image format (VHDX).
723 Supported options:
724 @table @code
725 @item subformat
726 Specifies which VHDX subformat to use. Valid options are
727 @code{dynamic} (default) and @code{fixed}.
728 @item block_state_zero
729 Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
730 or @code{off}. When set to @code{off}, new blocks will be created as
731 @code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
732 arbitrary data for those blocks. Do not set to @code{off} when using
733 @code{qemu-img convert} with @code{subformat=dynamic}.
734 @item block_size
735 Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
736 @item log_size
737 Log size; min 1 MB.
738 @end table
739 @end table
740
741 @subsubsection Read-only formats
742 More disk image file formats are supported in a read-only mode.
743 @table @option
744 @item bochs
745 Bochs images of @code{growing} type.
746 @item cloop
747 Linux Compressed Loop image, useful only to reuse directly compressed
748 CD-ROM images present for example in the Knoppix CD-ROMs.
749 @item dmg
750 Apple disk image.
751 @item parallels
752 Parallels disk image format.
753 @end table
754
755
756 @node host_drives
757 @subsection Using host drives
758
759 In addition to disk image files, QEMU can directly access host
760 devices. We describe here the usage for QEMU version >= 0.8.3.
761
762 @subsubsection Linux
763
764 On Linux, you can directly use the host device filename instead of a
765 disk image filename provided you have enough privileges to access
766 it. For example, use @file{/dev/cdrom} to access to the CDROM.
767
768 @table @code
769 @item CD
770 You can specify a CDROM device even if no CDROM is loaded. QEMU has
771 specific code to detect CDROM insertion or removal. CDROM ejection by
772 the guest OS is supported. Currently only data CDs are supported.
773 @item Floppy
774 You can specify a floppy device even if no floppy is loaded. Floppy
775 removal is currently not detected accurately (if you change floppy
776 without doing floppy access while the floppy is not loaded, the guest
777 OS will think that the same floppy is loaded).
778 Use of the host's floppy device is deprecated, and support for it will
779 be removed in a future release.
780 @item Hard disks
781 Hard disks can be used. Normally you must specify the whole disk
782 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
783 see it as a partitioned disk. WARNING: unless you know what you do, it
784 is better to only make READ-ONLY accesses to the hard disk otherwise
785 you may corrupt your host data (use the @option{-snapshot} command
786 line option or modify the device permissions accordingly).
787 @end table
788
789 @subsubsection Windows
790
791 @table @code
792 @item CD
793 The preferred syntax is the drive letter (e.g. @file{d:}). The
794 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
795 supported as an alias to the first CDROM drive.
796
797 Currently there is no specific code to handle removable media, so it
798 is better to use the @code{change} or @code{eject} monitor commands to
799 change or eject media.
800 @item Hard disks
801 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
802 where @var{N} is the drive number (0 is the first hard disk).
803
804 WARNING: unless you know what you do, it is better to only make
805 READ-ONLY accesses to the hard disk otherwise you may corrupt your
806 host data (use the @option{-snapshot} command line so that the
807 modifications are written in a temporary file).
808 @end table
809
810
811 @subsubsection Mac OS X
812
813 @file{/dev/cdrom} is an alias to the first CDROM.
814
815 Currently there is no specific code to handle removable media, so it
816 is better to use the @code{change} or @code{eject} monitor commands to
817 change or eject media.
818
819 @node disk_images_fat_images
820 @subsection Virtual FAT disk images
821
822 QEMU can automatically create a virtual FAT disk image from a
823 directory tree. In order to use it, just type:
824
825 @example
826 qemu-system-i386 linux.img -hdb fat:/my_directory
827 @end example
828
829 Then you access access to all the files in the @file{/my_directory}
830 directory without having to copy them in a disk image or to export
831 them via SAMBA or NFS. The default access is @emph{read-only}.
832
833 Floppies can be emulated with the @code{:floppy:} option:
834
835 @example
836 qemu-system-i386 linux.img -fda fat:floppy:/my_directory
837 @end example
838
839 A read/write support is available for testing (beta stage) with the
840 @code{:rw:} option:
841
842 @example
843 qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
844 @end example
845
846 What you should @emph{never} do:
847 @itemize
848 @item use non-ASCII filenames ;
849 @item use "-snapshot" together with ":rw:" ;
850 @item expect it to work when loadvm'ing ;
851 @item write to the FAT directory on the host system while accessing it with the guest system.
852 @end itemize
853
854 @node disk_images_nbd
855 @subsection NBD access
856
857 QEMU can access directly to block device exported using the Network Block Device
858 protocol.
859
860 @example
861 qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
862 @end example
863
864 If the NBD server is located on the same host, you can use an unix socket instead
865 of an inet socket:
866
867 @example
868 qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
869 @end example
870
871 In this case, the block device must be exported using qemu-nbd:
872
873 @example
874 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
875 @end example
876
877 The use of qemu-nbd allows sharing of a disk between several guests:
878 @example
879 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
880 @end example
881
882 @noindent
883 and then you can use it with two guests:
884 @example
885 qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
886 qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
887 @end example
888
889 If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
890 own embedded NBD server), you must specify an export name in the URI:
891 @example
892 qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
893 qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
894 @end example
895
896 The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
897 also available. Here are some example of the older syntax:
898 @example
899 qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
900 qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
901 qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
902 @end example
903
904 @node disk_images_sheepdog
905 @subsection Sheepdog disk images
906
907 Sheepdog is a distributed storage system for QEMU. It provides highly
908 available block level storage volumes that can be attached to
909 QEMU-based virtual machines.
910
911 You can create a Sheepdog disk image with the command:
912 @example
913 qemu-img create sheepdog:///@var{image} @var{size}
914 @end example
915 where @var{image} is the Sheepdog image name and @var{size} is its
916 size.
917
918 To import the existing @var{filename} to Sheepdog, you can use a
919 convert command.
920 @example
921 qemu-img convert @var{filename} sheepdog:///@var{image}
922 @end example
923
924 You can boot from the Sheepdog disk image with the command:
925 @example
926 qemu-system-i386 sheepdog:///@var{image}
927 @end example
928
929 You can also create a snapshot of the Sheepdog image like qcow2.
930 @example
931 qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
932 @end example
933 where @var{tag} is a tag name of the newly created snapshot.
934
935 To boot from the Sheepdog snapshot, specify the tag name of the
936 snapshot.
937 @example
938 qemu-system-i386 sheepdog:///@var{image}#@var{tag}
939 @end example
940
941 You can create a cloned image from the existing snapshot.
942 @example
943 qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
944 @end example
945 where @var{base} is a image name of the source snapshot and @var{tag}
946 is its tag name.
947
948 You can use an unix socket instead of an inet socket:
949
950 @example
951 qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
952 @end example
953
954 If the Sheepdog daemon doesn't run on the local host, you need to
955 specify one of the Sheepdog servers to connect to.
956 @example
957 qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
958 qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
959 @end example
960
961 @node disk_images_iscsi
962 @subsection iSCSI LUNs
963
964 iSCSI is a popular protocol used to access SCSI devices across a computer
965 network.
966
967 There are two different ways iSCSI devices can be used by QEMU.
968
969 The first method is to mount the iSCSI LUN on the host, and make it appear as
970 any other ordinary SCSI device on the host and then to access this device as a
971 /dev/sd device from QEMU. How to do this differs between host OSes.
972
973 The second method involves using the iSCSI initiator that is built into
974 QEMU. This provides a mechanism that works the same way regardless of which
975 host OS you are running QEMU on. This section will describe this second method
976 of using iSCSI together with QEMU.
977
978 In QEMU, iSCSI devices are described using special iSCSI URLs
979
980 @example
981 URL syntax:
982 iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
983 @end example
984
985 Username and password are optional and only used if your target is set up
986 using CHAP authentication for access control.
987 Alternatively the username and password can also be set via environment
988 variables to have these not show up in the process list
989
990 @example
991 export LIBISCSI_CHAP_USERNAME=<username>
992 export LIBISCSI_CHAP_PASSWORD=<password>
993 iscsi://<host>/<target-iqn-name>/<lun>
994 @end example
995
996 Various session related parameters can be set via special options, either
997 in a configuration file provided via '-readconfig' or directly on the
998 command line.
999
1000 If the initiator-name is not specified qemu will use a default name
1001 of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
1002 virtual machine.
1003
1004
1005 @example
1006 Setting a specific initiator name to use when logging in to the target
1007 -iscsi initiator-name=iqn.qemu.test:my-initiator
1008 @end example
1009
1010 @example
1011 Controlling which type of header digest to negotiate with the target
1012 -iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1013 @end example
1014
1015 These can also be set via a configuration file
1016 @example
1017 [iscsi]
1018 user = "CHAP username"
1019 password = "CHAP password"
1020 initiator-name = "iqn.qemu.test:my-initiator"
1021 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1022 header-digest = "CRC32C"
1023 @end example
1024
1025
1026 Setting the target name allows different options for different targets
1027 @example
1028 [iscsi "iqn.target.name"]
1029 user = "CHAP username"
1030 password = "CHAP password"
1031 initiator-name = "iqn.qemu.test:my-initiator"
1032 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1033 header-digest = "CRC32C"
1034 @end example
1035
1036
1037 Howto use a configuration file to set iSCSI configuration options:
1038 @example
1039 cat >iscsi.conf <<EOF
1040 [iscsi]
1041 user = "me"
1042 password = "my password"
1043 initiator-name = "iqn.qemu.test:my-initiator"
1044 header-digest = "CRC32C"
1045 EOF
1046
1047 qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1048 -readconfig iscsi.conf
1049 @end example
1050
1051
1052 Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1053 @example
1054 This example shows how to set up an iSCSI target with one CDROM and one DISK
1055 using the Linux STGT software target. This target is available on Red Hat based
1056 systems as the package 'scsi-target-utils'.
1057
1058 tgtd --iscsi portal=127.0.0.1:3260
1059 tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1060 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1061 -b /IMAGES/disk.img --device-type=disk
1062 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1063 -b /IMAGES/cd.iso --device-type=cd
1064 tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1065
1066 qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1067 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1068 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1069 @end example
1070
1071 @node disk_images_gluster
1072 @subsection GlusterFS disk images
1073
1074 GlusterFS is an user space distributed file system.
1075
1076 You can boot from the GlusterFS disk image with the command:
1077 @example
1078 qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1079 @end example
1080
1081 @var{gluster} is the protocol.
1082
1083 @var{transport} specifies the transport type used to connect to gluster
1084 management daemon (glusterd). Valid transport types are
1085 tcp, unix and rdma. If a transport type isn't specified, then tcp
1086 type is assumed.
1087
1088 @var{server} specifies the server where the volume file specification for
1089 the given volume resides. This can be either hostname, ipv4 address
1090 or ipv6 address. ipv6 address needs to be within square brackets [ ].
1091 If transport type is unix, then @var{server} field should not be specified.
1092 Instead @var{socket} field needs to be populated with the path to unix domain
1093 socket.
1094
1095 @var{port} is the port number on which glusterd is listening. This is optional
1096 and if not specified, QEMU will send 0 which will make gluster to use the
1097 default port. If the transport type is unix, then @var{port} should not be
1098 specified.
1099
1100 @var{volname} is the name of the gluster volume which contains the disk image.
1101
1102 @var{image} is the path to the actual disk image that resides on gluster volume.
1103
1104 You can create a GlusterFS disk image with the command:
1105 @example
1106 qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1107 @end example
1108
1109 Examples
1110 @example
1111 qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1112 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1113 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1114 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1115 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1116 qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1117 qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1118 qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1119 @end example
1120
1121 @node disk_images_ssh
1122 @subsection Secure Shell (ssh) disk images
1123
1124 You can access disk images located on a remote ssh server
1125 by using the ssh protocol:
1126
1127 @example
1128 qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1129 @end example
1130
1131 Alternative syntax using properties:
1132
1133 @example
1134 qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1135 @end example
1136
1137 @var{ssh} is the protocol.
1138
1139 @var{user} is the remote user. If not specified, then the local
1140 username is tried.
1141
1142 @var{server} specifies the remote ssh server. Any ssh server can be
1143 used, but it must implement the sftp-server protocol. Most Unix/Linux
1144 systems should work without requiring any extra configuration.
1145
1146 @var{port} is the port number on which sshd is listening. By default
1147 the standard ssh port (22) is used.
1148
1149 @var{path} is the path to the disk image.
1150
1151 The optional @var{host_key_check} parameter controls how the remote
1152 host's key is checked. The default is @code{yes} which means to use
1153 the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1154 turns off known-hosts checking. Or you can check that the host key
1155 matches a specific fingerprint:
1156 @code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1157 (@code{sha1:} can also be used as a prefix, but note that OpenSSH
1158 tools only use MD5 to print fingerprints).
1159
1160 Currently authentication must be done using ssh-agent. Other
1161 authentication methods may be supported in future.
1162
1163 Note: Many ssh servers do not support an @code{fsync}-style operation.
1164 The ssh driver cannot guarantee that disk flush requests are
1165 obeyed, and this causes a risk of disk corruption if the remote
1166 server or network goes down during writes. The driver will
1167 print a warning when @code{fsync} is not supported:
1168
1169 warning: ssh server @code{ssh.example.com:22} does not support fsync
1170
1171 With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1172 supported.
1173
1174 @node pcsys_network
1175 @section Network emulation
1176
1177 QEMU can simulate several network cards (PCI or ISA cards on the PC
1178 target) and can connect them to an arbitrary number of Virtual Local
1179 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1180 VLAN. VLAN can be connected between separate instances of QEMU to
1181 simulate large networks. For simpler usage, a non privileged user mode
1182 network stack can replace the TAP device to have a basic network
1183 connection.
1184
1185 @subsection VLANs
1186
1187 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1188 connection between several network devices. These devices can be for
1189 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1190 (TAP devices).
1191
1192 @subsection Using TAP network interfaces
1193
1194 This is the standard way to connect QEMU to a real network. QEMU adds
1195 a virtual network device on your host (called @code{tapN}), and you
1196 can then configure it as if it was a real ethernet card.
1197
1198 @subsubsection Linux host
1199
1200 As an example, you can download the @file{linux-test-xxx.tar.gz}
1201 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1202 configure properly @code{sudo} so that the command @code{ifconfig}
1203 contained in @file{qemu-ifup} can be executed as root. You must verify
1204 that your host kernel supports the TAP network interfaces: the
1205 device @file{/dev/net/tun} must be present.
1206
1207 See @ref{sec_invocation} to have examples of command lines using the
1208 TAP network interfaces.
1209
1210 @subsubsection Windows host
1211
1212 There is a virtual ethernet driver for Windows 2000/XP systems, called
1213 TAP-Win32. But it is not included in standard QEMU for Windows,
1214 so you will need to get it separately. It is part of OpenVPN package,
1215 so download OpenVPN from : @url{http://openvpn.net/}.
1216
1217 @subsection Using the user mode network stack
1218
1219 By using the option @option{-net user} (default configuration if no
1220 @option{-net} option is specified), QEMU uses a completely user mode
1221 network stack (you don't need root privilege to use the virtual
1222 network). The virtual network configuration is the following:
1223
1224 @example
1225
1226 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1227 | (10.0.2.2)
1228 |
1229 ----> DNS server (10.0.2.3)
1230 |
1231 ----> SMB server (10.0.2.4)
1232 @end example
1233
1234 The QEMU VM behaves as if it was behind a firewall which blocks all
1235 incoming connections. You can use a DHCP client to automatically
1236 configure the network in the QEMU VM. The DHCP server assign addresses
1237 to the hosts starting from 10.0.2.15.
1238
1239 In order to check that the user mode network is working, you can ping
1240 the address 10.0.2.2 and verify that you got an address in the range
1241 10.0.2.x from the QEMU virtual DHCP server.
1242
1243 Note that ICMP traffic in general does not work with user mode networking.
1244 @code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1245 however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1246 ping sockets to allow @code{ping} to the Internet. The host admin has to set
1247 the ping_group_range in order to grant access to those sockets. To allow ping
1248 for GID 100 (usually users group):
1249
1250 @example
1251 echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1252 @end example
1253
1254 When using the built-in TFTP server, the router is also the TFTP
1255 server.
1256
1257 When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1258 connections can be redirected from the host to the guest. It allows for
1259 example to redirect X11, telnet or SSH connections.
1260
1261 @subsection Connecting VLANs between QEMU instances
1262
1263 Using the @option{-net socket} option, it is possible to make VLANs
1264 that span several QEMU instances. See @ref{sec_invocation} to have a
1265 basic example.
1266
1267 @node pcsys_other_devs
1268 @section Other Devices
1269
1270 @subsection Inter-VM Shared Memory device
1271
1272 On Linux hosts, a shared memory device is available. The basic syntax
1273 is:
1274
1275 @example
1276 qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1277 @end example
1278
1279 where @var{hostmem} names a host memory backend. For a POSIX shared
1280 memory backend, use something like
1281
1282 @example
1283 -object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
1284 @end example
1285
1286 If desired, interrupts can be sent between guest VMs accessing the same shared
1287 memory region. Interrupt support requires using a shared memory server and
1288 using a chardev socket to connect to it. The code for the shared memory server
1289 is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1290 memory server is:
1291
1292 @example
1293 # First start the ivshmem server once and for all
1294 ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
1295
1296 # Then start your qemu instances with matching arguments
1297 qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
1298 -chardev socket,path=@var{path},id=@var{id}
1299 @end example
1300
1301 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1302 using the same server to communicate via interrupts. Guests can read their
1303 VM ID from a device register (see ivshmem-spec.txt).
1304
1305 @subsubsection Migration with ivshmem
1306
1307 With device property @option{master=on}, the guest will copy the shared
1308 memory on migration to the destination host. With @option{master=off},
1309 the guest will not be able to migrate with the device attached. In the
1310 latter case, the device should be detached and then reattached after
1311 migration using the PCI hotplug support.
1312
1313 At most one of the devices sharing the same memory can be master. The
1314 master must complete migration before you plug back the other devices.
1315
1316 @subsubsection ivshmem and hugepages
1317
1318 Instead of specifying the <shm size> using POSIX shm, you may specify
1319 a memory backend that has hugepage support:
1320
1321 @example
1322 qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1323 -device ivshmem-plain,memdev=mb1
1324 @end example
1325
1326 ivshmem-server also supports hugepages mount points with the
1327 @option{-m} memory path argument.
1328
1329 @node direct_linux_boot
1330 @section Direct Linux Boot
1331
1332 This section explains how to launch a Linux kernel inside QEMU without
1333 having to make a full bootable image. It is very useful for fast Linux
1334 kernel testing.
1335
1336 The syntax is:
1337 @example
1338 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1339 @end example
1340
1341 Use @option{-kernel} to provide the Linux kernel image and
1342 @option{-append} to give the kernel command line arguments. The
1343 @option{-initrd} option can be used to provide an INITRD image.
1344
1345 When using the direct Linux boot, a disk image for the first hard disk
1346 @file{hda} is required because its boot sector is used to launch the
1347 Linux kernel.
1348
1349 If you do not need graphical output, you can disable it and redirect
1350 the virtual serial port and the QEMU monitor to the console with the
1351 @option{-nographic} option. The typical command line is:
1352 @example
1353 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1354 -append "root=/dev/hda console=ttyS0" -nographic
1355 @end example
1356
1357 Use @key{Ctrl-a c} to switch between the serial console and the
1358 monitor (@pxref{pcsys_keys}).
1359
1360 @node pcsys_usb
1361 @section USB emulation
1362
1363 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1364 virtual USB devices or real host USB devices (experimental, works only
1365 on Linux hosts). QEMU will automatically create and connect virtual USB hubs
1366 as necessary to connect multiple USB devices.
1367
1368 @menu
1369 * usb_devices::
1370 * host_usb_devices::
1371 @end menu
1372 @node usb_devices
1373 @subsection Connecting USB devices
1374
1375 USB devices can be connected with the @option{-usbdevice} commandline option
1376 or the @code{usb_add} monitor command. Available devices are:
1377
1378 @table @code
1379 @item mouse
1380 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1381 @item tablet
1382 Pointer device that uses absolute coordinates (like a touchscreen).
1383 This means QEMU is able to report the mouse position without having
1384 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1385 @item disk:@var{file}
1386 Mass storage device based on @var{file} (@pxref{disk_images})
1387 @item host:@var{bus.addr}
1388 Pass through the host device identified by @var{bus.addr}
1389 (Linux only)
1390 @item host:@var{vendor_id:product_id}
1391 Pass through the host device identified by @var{vendor_id:product_id}
1392 (Linux only)
1393 @item wacom-tablet
1394 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1395 above but it can be used with the tslib library because in addition to touch
1396 coordinates it reports touch pressure.
1397 @item keyboard
1398 Standard USB keyboard. Will override the PS/2 keyboard (if present).
1399 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1400 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1401 device @var{dev}. The available character devices are the same as for the
1402 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1403 used to override the default 0403:6001. For instance,
1404 @example
1405 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1406 @end example
1407 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1408 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1409 @item braille
1410 Braille device. This will use BrlAPI to display the braille output on a real
1411 or fake device.
1412 @item net:@var{options}
1413 Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1414 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1415 For instance, user-mode networking can be used with
1416 @example
1417 qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1418 @end example
1419 Currently this cannot be used in machines that support PCI NICs.
1420 @item bt[:@var{hci-type}]
1421 Bluetooth dongle whose type is specified in the same format as with
1422 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1423 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1424 This USB device implements the USB Transport Layer of HCI. Example
1425 usage:
1426 @example
1427 @command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
1428 @end example
1429 @end table
1430
1431 @node host_usb_devices
1432 @subsection Using host USB devices on a Linux host
1433
1434 WARNING: this is an experimental feature. QEMU will slow down when
1435 using it. USB devices requiring real time streaming (i.e. USB Video
1436 Cameras) are not supported yet.
1437
1438 @enumerate
1439 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1440 is actually using the USB device. A simple way to do that is simply to
1441 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1442 to @file{mydriver.o.disabled}.
1443
1444 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1445 @example
1446 ls /proc/bus/usb
1447 001 devices drivers
1448 @end example
1449
1450 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1451 @example
1452 chown -R myuid /proc/bus/usb
1453 @end example
1454
1455 @item Launch QEMU and do in the monitor:
1456 @example
1457 info usbhost
1458 Device 1.2, speed 480 Mb/s
1459 Class 00: USB device 1234:5678, USB DISK
1460 @end example
1461 You should see the list of the devices you can use (Never try to use
1462 hubs, it won't work).
1463
1464 @item Add the device in QEMU by using:
1465 @example
1466 usb_add host:1234:5678
1467 @end example
1468
1469 Normally the guest OS should report that a new USB device is
1470 plugged. You can use the option @option{-usbdevice} to do the same.
1471
1472 @item Now you can try to use the host USB device in QEMU.
1473
1474 @end enumerate
1475
1476 When relaunching QEMU, you may have to unplug and plug again the USB
1477 device to make it work again (this is a bug).
1478
1479 @node vnc_security
1480 @section VNC security
1481
1482 The VNC server capability provides access to the graphical console
1483 of the guest VM across the network. This has a number of security
1484 considerations depending on the deployment scenarios.
1485
1486 @menu
1487 * vnc_sec_none::
1488 * vnc_sec_password::
1489 * vnc_sec_certificate::
1490 * vnc_sec_certificate_verify::
1491 * vnc_sec_certificate_pw::
1492 * vnc_sec_sasl::
1493 * vnc_sec_certificate_sasl::
1494 * vnc_generate_cert::
1495 * vnc_setup_sasl::
1496 @end menu
1497 @node vnc_sec_none
1498 @subsection Without passwords
1499
1500 The simplest VNC server setup does not include any form of authentication.
1501 For this setup it is recommended to restrict it to listen on a UNIX domain
1502 socket only. For example
1503
1504 @example
1505 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1506 @end example
1507
1508 This ensures that only users on local box with read/write access to that
1509 path can access the VNC server. To securely access the VNC server from a
1510 remote machine, a combination of netcat+ssh can be used to provide a secure
1511 tunnel.
1512
1513 @node vnc_sec_password
1514 @subsection With passwords
1515
1516 The VNC protocol has limited support for password based authentication. Since
1517 the protocol limits passwords to 8 characters it should not be considered
1518 to provide high security. The password can be fairly easily brute-forced by
1519 a client making repeat connections. For this reason, a VNC server using password
1520 authentication should be restricted to only listen on the loopback interface
1521 or UNIX domain sockets. Password authentication is not supported when operating
1522 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1523 authentication is requested with the @code{password} option, and then once QEMU
1524 is running the password is set with the monitor. Until the monitor is used to
1525 set the password all clients will be rejected.
1526
1527 @example
1528 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1529 (qemu) change vnc password
1530 Password: ********
1531 (qemu)
1532 @end example
1533
1534 @node vnc_sec_certificate
1535 @subsection With x509 certificates
1536
1537 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1538 TLS for encryption of the session, and x509 certificates for authentication.
1539 The use of x509 certificates is strongly recommended, because TLS on its
1540 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1541 support provides a secure session, but no authentication. This allows any
1542 client to connect, and provides an encrypted session.
1543
1544 @example
1545 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1546 @end example
1547
1548 In the above example @code{/etc/pki/qemu} should contain at least three files,
1549 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1550 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1551 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1552 only be readable by the user owning it.
1553
1554 @node vnc_sec_certificate_verify
1555 @subsection With x509 certificates and client verification
1556
1557 Certificates can also provide a means to authenticate the client connecting.
1558 The server will request that the client provide a certificate, which it will
1559 then validate against the CA certificate. This is a good choice if deploying
1560 in an environment with a private internal certificate authority.
1561
1562 @example
1563 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1564 @end example
1565
1566
1567 @node vnc_sec_certificate_pw
1568 @subsection With x509 certificates, client verification and passwords
1569
1570 Finally, the previous method can be combined with VNC password authentication
1571 to provide two layers of authentication for clients.
1572
1573 @example
1574 qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1575 (qemu) change vnc password
1576 Password: ********
1577 (qemu)
1578 @end example
1579
1580
1581 @node vnc_sec_sasl
1582 @subsection With SASL authentication
1583
1584 The SASL authentication method is a VNC extension, that provides an
1585 easily extendable, pluggable authentication method. This allows for
1586 integration with a wide range of authentication mechanisms, such as
1587 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1588 The strength of the authentication depends on the exact mechanism
1589 configured. If the chosen mechanism also provides a SSF layer, then
1590 it will encrypt the datastream as well.
1591
1592 Refer to the later docs on how to choose the exact SASL mechanism
1593 used for authentication, but assuming use of one supporting SSF,
1594 then QEMU can be launched with:
1595
1596 @example
1597 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1598 @end example
1599
1600 @node vnc_sec_certificate_sasl
1601 @subsection With x509 certificates and SASL authentication
1602
1603 If the desired SASL authentication mechanism does not supported
1604 SSF layers, then it is strongly advised to run it in combination
1605 with TLS and x509 certificates. This provides securely encrypted
1606 data stream, avoiding risk of compromising of the security
1607 credentials. This can be enabled, by combining the 'sasl' option
1608 with the aforementioned TLS + x509 options:
1609
1610 @example
1611 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1612 @end example
1613
1614
1615 @node vnc_generate_cert
1616 @subsection Generating certificates for VNC
1617
1618 The GNU TLS packages provides a command called @code{certtool} which can
1619 be used to generate certificates and keys in PEM format. At a minimum it
1620 is necessary to setup a certificate authority, and issue certificates to
1621 each server. If using certificates for authentication, then each client
1622 will also need to be issued a certificate. The recommendation is for the
1623 server to keep its certificates in either @code{/etc/pki/qemu} or for
1624 unprivileged users in @code{$HOME/.pki/qemu}.
1625
1626 @menu
1627 * vnc_generate_ca::
1628 * vnc_generate_server::
1629 * vnc_generate_client::
1630 @end menu
1631 @node vnc_generate_ca
1632 @subsubsection Setup the Certificate Authority
1633
1634 This step only needs to be performed once per organization / organizational
1635 unit. First the CA needs a private key. This key must be kept VERY secret
1636 and secure. If this key is compromised the entire trust chain of the certificates
1637 issued with it is lost.
1638
1639 @example
1640 # certtool --generate-privkey > ca-key.pem
1641 @end example
1642
1643 A CA needs to have a public certificate. For simplicity it can be a self-signed
1644 certificate, or one issue by a commercial certificate issuing authority. To
1645 generate a self-signed certificate requires one core piece of information, the
1646 name of the organization.
1647
1648 @example
1649 # cat > ca.info <<EOF
1650 cn = Name of your organization
1651 ca
1652 cert_signing_key
1653 EOF
1654 # certtool --generate-self-signed \
1655 --load-privkey ca-key.pem
1656 --template ca.info \
1657 --outfile ca-cert.pem
1658 @end example
1659
1660 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1661 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1662
1663 @node vnc_generate_server
1664 @subsubsection Issuing server certificates
1665
1666 Each server (or host) needs to be issued with a key and certificate. When connecting
1667 the certificate is sent to the client which validates it against the CA certificate.
1668 The core piece of information for a server certificate is the hostname. This should
1669 be the fully qualified hostname that the client will connect with, since the client
1670 will typically also verify the hostname in the certificate. On the host holding the
1671 secure CA private key:
1672
1673 @example
1674 # cat > server.info <<EOF
1675 organization = Name of your organization
1676 cn = server.foo.example.com
1677 tls_www_server
1678 encryption_key
1679 signing_key
1680 EOF
1681 # certtool --generate-privkey > server-key.pem
1682 # certtool --generate-certificate \
1683 --load-ca-certificate ca-cert.pem \
1684 --load-ca-privkey ca-key.pem \
1685 --load-privkey server-key.pem \
1686 --template server.info \
1687 --outfile server-cert.pem
1688 @end example
1689
1690 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1691 to the server for which they were generated. The @code{server-key.pem} is security
1692 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1693
1694 @node vnc_generate_client
1695 @subsubsection Issuing client certificates
1696
1697 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1698 certificates as its authentication mechanism, each client also needs to be issued
1699 a certificate. The client certificate contains enough metadata to uniquely identify
1700 the client, typically organization, state, city, building, etc. On the host holding
1701 the secure CA private key:
1702
1703 @example
1704 # cat > client.info <<EOF
1705 country = GB
1706 state = London
1707 locality = London
1708 organization = Name of your organization
1709 cn = client.foo.example.com
1710 tls_www_client
1711 encryption_key
1712 signing_key
1713 EOF
1714 # certtool --generate-privkey > client-key.pem
1715 # certtool --generate-certificate \
1716 --load-ca-certificate ca-cert.pem \
1717 --load-ca-privkey ca-key.pem \
1718 --load-privkey client-key.pem \
1719 --template client.info \
1720 --outfile client-cert.pem
1721 @end example
1722
1723 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1724 copied to the client for which they were generated.
1725
1726
1727 @node vnc_setup_sasl
1728
1729 @subsection Configuring SASL mechanisms
1730
1731 The following documentation assumes use of the Cyrus SASL implementation on a
1732 Linux host, but the principals should apply to any other SASL impl. When SASL
1733 is enabled, the mechanism configuration will be loaded from system default
1734 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1735 unprivileged user, an environment variable SASL_CONF_PATH can be used
1736 to make it search alternate locations for the service config.
1737
1738 The default configuration might contain
1739
1740 @example
1741 mech_list: digest-md5
1742 sasldb_path: /etc/qemu/passwd.db
1743 @end example
1744
1745 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1746 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1747 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1748 command. While this mechanism is easy to configure and use, it is not
1749 considered secure by modern standards, so only suitable for developers /
1750 ad-hoc testing.
1751
1752 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1753 mechanism
1754
1755 @example
1756 mech_list: gssapi
1757 keytab: /etc/qemu/krb5.tab
1758 @end example
1759
1760 For this to work the administrator of your KDC must generate a Kerberos
1761 principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1762 replacing 'somehost.example.com' with the fully qualified host name of the
1763 machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1764
1765 Other configurations will be left as an exercise for the reader. It should
1766 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1767 encryption. For all other mechanisms, VNC should always be configured to
1768 use TLS and x509 certificates to protect security credentials from snooping.
1769
1770 @node gdb_usage
1771 @section GDB usage
1772
1773 QEMU has a primitive support to work with gdb, so that you can do
1774 'Ctrl-C' while the virtual machine is running and inspect its state.
1775
1776 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1777 gdb connection:
1778 @example
1779 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1780 -append "root=/dev/hda"
1781 Connected to host network interface: tun0
1782 Waiting gdb connection on port 1234
1783 @end example
1784
1785 Then launch gdb on the 'vmlinux' executable:
1786 @example
1787 > gdb vmlinux
1788 @end example
1789
1790 In gdb, connect to QEMU:
1791 @example
1792 (gdb) target remote localhost:1234
1793 @end example
1794
1795 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1796 @example
1797 (gdb) c
1798 @end example
1799
1800 Here are some useful tips in order to use gdb on system code:
1801
1802 @enumerate
1803 @item
1804 Use @code{info reg} to display all the CPU registers.
1805 @item
1806 Use @code{x/10i $eip} to display the code at the PC position.
1807 @item
1808 Use @code{set architecture i8086} to dump 16 bit code. Then use
1809 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1810 @end enumerate
1811
1812 Advanced debugging options:
1813
1814 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1815 @table @code
1816 @item maintenance packet qqemu.sstepbits
1817
1818 This will display the MASK bits used to control the single stepping IE:
1819 @example
1820 (gdb) maintenance packet qqemu.sstepbits
1821 sending: "qqemu.sstepbits"
1822 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1823 @end example
1824 @item maintenance packet qqemu.sstep
1825
1826 This will display the current value of the mask used when single stepping IE:
1827 @example
1828 (gdb) maintenance packet qqemu.sstep
1829 sending: "qqemu.sstep"
1830 received: "0x7"
1831 @end example
1832 @item maintenance packet Qqemu.sstep=HEX_VALUE
1833
1834 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1835 @example
1836 (gdb) maintenance packet Qqemu.sstep=0x5
1837 sending: "qemu.sstep=0x5"
1838 received: "OK"
1839 @end example
1840 @end table
1841
1842 @node pcsys_os_specific
1843 @section Target OS specific information
1844
1845 @subsection Linux
1846
1847 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1848 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1849 color depth in the guest and the host OS.
1850
1851 When using a 2.6 guest Linux kernel, you should add the option
1852 @code{clock=pit} on the kernel command line because the 2.6 Linux
1853 kernels make very strict real time clock checks by default that QEMU
1854 cannot simulate exactly.
1855
1856 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1857 not activated because QEMU is slower with this patch. The QEMU
1858 Accelerator Module is also much slower in this case. Earlier Fedora
1859 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1860 patch by default. Newer kernels don't have it.
1861
1862 @subsection Windows
1863
1864 If you have a slow host, using Windows 95 is better as it gives the
1865 best speed. Windows 2000 is also a good choice.
1866
1867 @subsubsection SVGA graphic modes support
1868
1869 QEMU emulates a Cirrus Logic GD5446 Video
1870 card. All Windows versions starting from Windows 95 should recognize
1871 and use this graphic card. For optimal performances, use 16 bit color
1872 depth in the guest and the host OS.
1873
1874 If you are using Windows XP as guest OS and if you want to use high
1875 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1876 1280x1024x16), then you should use the VESA VBE virtual graphic card
1877 (option @option{-std-vga}).
1878
1879 @subsubsection CPU usage reduction
1880
1881 Windows 9x does not correctly use the CPU HLT
1882 instruction. The result is that it takes host CPU cycles even when
1883 idle. You can install the utility from
1884 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1885 problem. Note that no such tool is needed for NT, 2000 or XP.
1886
1887 @subsubsection Windows 2000 disk full problem
1888
1889 Windows 2000 has a bug which gives a disk full problem during its
1890 installation. When installing it, use the @option{-win2k-hack} QEMU
1891 option to enable a specific workaround. After Windows 2000 is
1892 installed, you no longer need this option (this option slows down the
1893 IDE transfers).
1894
1895 @subsubsection Windows 2000 shutdown
1896
1897 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1898 can. It comes from the fact that Windows 2000 does not automatically
1899 use the APM driver provided by the BIOS.
1900
1901 In order to correct that, do the following (thanks to Struan
1902 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1903 Add/Troubleshoot a device => Add a new device & Next => No, select the
1904 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1905 (again) a few times. Now the driver is installed and Windows 2000 now
1906 correctly instructs QEMU to shutdown at the appropriate moment.
1907
1908 @subsubsection Share a directory between Unix and Windows
1909
1910 See @ref{sec_invocation} about the help of the option
1911 @option{'-netdev user,smb=...'}.
1912
1913 @subsubsection Windows XP security problem
1914
1915 Some releases of Windows XP install correctly but give a security
1916 error when booting:
1917 @example
1918 A problem is preventing Windows from accurately checking the
1919 license for this computer. Error code: 0x800703e6.
1920 @end example
1921
1922 The workaround is to install a service pack for XP after a boot in safe
1923 mode. Then reboot, and the problem should go away. Since there is no
1924 network while in safe mode, its recommended to download the full
1925 installation of SP1 or SP2 and transfer that via an ISO or using the
1926 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1927
1928 @subsection MS-DOS and FreeDOS
1929
1930 @subsubsection CPU usage reduction
1931
1932 DOS does not correctly use the CPU HLT instruction. The result is that
1933 it takes host CPU cycles even when idle. You can install the utility
1934 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1935 problem.
1936
1937 @node QEMU System emulator for non PC targets
1938 @chapter QEMU System emulator for non PC targets
1939
1940 QEMU is a generic emulator and it emulates many non PC
1941 machines. Most of the options are similar to the PC emulator. The
1942 differences are mentioned in the following sections.
1943
1944 @menu
1945 * PowerPC System emulator::
1946 * Sparc32 System emulator::
1947 * Sparc64 System emulator::
1948 * MIPS System emulator::
1949 * ARM System emulator::
1950 * ColdFire System emulator::
1951 * Cris System emulator::
1952 * Microblaze System emulator::
1953 * SH4 System emulator::
1954 * Xtensa System emulator::
1955 @end menu
1956
1957 @node PowerPC System emulator
1958 @section PowerPC System emulator
1959 @cindex system emulation (PowerPC)
1960
1961 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1962 or PowerMac PowerPC system.
1963
1964 QEMU emulates the following PowerMac peripherals:
1965
1966 @itemize @minus
1967 @item
1968 UniNorth or Grackle PCI Bridge
1969 @item
1970 PCI VGA compatible card with VESA Bochs Extensions
1971 @item
1972 2 PMAC IDE interfaces with hard disk and CD-ROM support
1973 @item
1974 NE2000 PCI adapters
1975 @item
1976 Non Volatile RAM
1977 @item
1978 VIA-CUDA with ADB keyboard and mouse.
1979 @end itemize
1980
1981 QEMU emulates the following PREP peripherals:
1982
1983 @itemize @minus
1984 @item
1985 PCI Bridge
1986 @item
1987 PCI VGA compatible card with VESA Bochs Extensions
1988 @item
1989 2 IDE interfaces with hard disk and CD-ROM support
1990 @item
1991 Floppy disk
1992 @item
1993 NE2000 network adapters
1994 @item
1995 Serial port
1996 @item
1997 PREP Non Volatile RAM
1998 @item
1999 PC compatible keyboard and mouse.
2000 @end itemize
2001
2002 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2003 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2004
2005 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2006 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2007 v2) portable firmware implementation. The goal is to implement a 100%
2008 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
2009
2010 @c man begin OPTIONS
2011
2012 The following options are specific to the PowerPC emulation:
2013
2014 @table @option
2015
2016 @item -g @var{W}x@var{H}[x@var{DEPTH}]
2017
2018 Set the initial VGA graphic mode. The default is 800x600x32.
2019
2020 @item -prom-env @var{string}
2021
2022 Set OpenBIOS variables in NVRAM, for example:
2023
2024 @example
2025 qemu-system-ppc -prom-env 'auto-boot?=false' \
2026 -prom-env 'boot-device=hd:2,\yaboot' \
2027 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2028 @end example
2029
2030 These variables are not used by Open Hack'Ware.
2031
2032 @end table
2033
2034 @c man end
2035
2036
2037 More information is available at
2038 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2039
2040 @node Sparc32 System emulator
2041 @section Sparc32 System emulator
2042 @cindex system emulation (Sparc32)
2043
2044 Use the executable @file{qemu-system-sparc} to simulate the following
2045 Sun4m architecture machines:
2046 @itemize @minus
2047 @item
2048 SPARCstation 4
2049 @item
2050 SPARCstation 5
2051 @item
2052 SPARCstation 10
2053 @item
2054 SPARCstation 20
2055 @item
2056 SPARCserver 600MP
2057 @item
2058 SPARCstation LX
2059 @item
2060 SPARCstation Voyager
2061 @item
2062 SPARCclassic
2063 @item
2064 SPARCbook
2065 @end itemize
2066
2067 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2068 but Linux limits the number of usable CPUs to 4.
2069
2070 QEMU emulates the following sun4m peripherals:
2071
2072 @itemize @minus
2073 @item
2074 IOMMU
2075 @item
2076 TCX or cgthree Frame buffer
2077 @item
2078 Lance (Am7990) Ethernet
2079 @item
2080 Non Volatile RAM M48T02/M48T08
2081 @item
2082 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2083 and power/reset logic
2084 @item
2085 ESP SCSI controller with hard disk and CD-ROM support
2086 @item
2087 Floppy drive (not on SS-600MP)
2088 @item
2089 CS4231 sound device (only on SS-5, not working yet)
2090 @end itemize
2091
2092 The number of peripherals is fixed in the architecture. Maximum
2093 memory size depends on the machine type, for SS-5 it is 256MB and for
2094 others 2047MB.
2095
2096 Since version 0.8.2, QEMU uses OpenBIOS
2097 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2098 firmware implementation. The goal is to implement a 100% IEEE
2099 1275-1994 (referred to as Open Firmware) compliant firmware.
2100
2101 A sample Linux 2.6 series kernel and ram disk image are available on
2102 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2103 most kernel versions work. Please note that currently older Solaris kernels
2104 don't work probably due to interface issues between OpenBIOS and
2105 Solaris.
2106
2107 @c man begin OPTIONS
2108
2109 The following options are specific to the Sparc32 emulation:
2110
2111 @table @option
2112
2113 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
2114
2115 Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2116 option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2117 of 1152x900x8 for people who wish to use OBP.
2118
2119 @item -prom-env @var{string}
2120
2121 Set OpenBIOS variables in NVRAM, for example:
2122
2123 @example
2124 qemu-system-sparc -prom-env 'auto-boot?=false' \
2125 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2126 @end example
2127
2128 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2129
2130 Set the emulated machine type. Default is SS-5.
2131
2132 @end table
2133
2134 @c man end
2135
2136 @node Sparc64 System emulator
2137 @section Sparc64 System emulator
2138 @cindex system emulation (Sparc64)
2139
2140 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2141 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2142 Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2143 able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2144 Sun4v and Niagara emulators are still a work in progress.
2145
2146 QEMU emulates the following peripherals:
2147
2148 @itemize @minus
2149 @item
2150 UltraSparc IIi APB PCI Bridge
2151 @item
2152 PCI VGA compatible card with VESA Bochs Extensions
2153 @item
2154 PS/2 mouse and keyboard
2155 @item
2156 Non Volatile RAM M48T59
2157 @item
2158 PC-compatible serial ports
2159 @item
2160 2 PCI IDE interfaces with hard disk and CD-ROM support
2161 @item
2162 Floppy disk
2163 @end itemize
2164
2165 @c man begin OPTIONS
2166
2167 The following options are specific to the Sparc64 emulation:
2168
2169 @table @option
2170
2171 @item -prom-env @var{string}
2172
2173 Set OpenBIOS variables in NVRAM, for example:
2174
2175 @example
2176 qemu-system-sparc64 -prom-env 'auto-boot?=false'
2177 @end example
2178
2179 @item -M [sun4u|sun4v|Niagara]
2180
2181 Set the emulated machine type. The default is sun4u.
2182
2183 @end table
2184
2185 @c man end
2186
2187 @node MIPS System emulator
2188 @section MIPS System emulator
2189 @cindex system emulation (MIPS)
2190
2191 Four executables cover simulation of 32 and 64-bit MIPS systems in
2192 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2193 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2194 Five different machine types are emulated:
2195
2196 @itemize @minus
2197 @item
2198 A generic ISA PC-like machine "mips"
2199 @item
2200 The MIPS Malta prototype board "malta"
2201 @item
2202 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2203 @item
2204 MIPS emulator pseudo board "mipssim"
2205 @item
2206 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2207 @end itemize
2208
2209 The generic emulation is supported by Debian 'Etch' and is able to
2210 install Debian into a virtual disk image. The following devices are
2211 emulated:
2212
2213 @itemize @minus
2214 @item
2215 A range of MIPS CPUs, default is the 24Kf
2216 @item
2217 PC style serial port
2218 @item
2219 PC style IDE disk
2220 @item
2221 NE2000 network card
2222 @end itemize
2223
2224 The Malta emulation supports the following devices:
2225
2226 @itemize @minus
2227 @item
2228 Core board with MIPS 24Kf CPU and Galileo system controller
2229 @item
2230 PIIX4 PCI/USB/SMbus controller
2231 @item
2232 The Multi-I/O chip's serial device
2233 @item
2234 PCI network cards (PCnet32 and others)
2235 @item
2236 Malta FPGA serial device
2237 @item
2238 Cirrus (default) or any other PCI VGA graphics card
2239 @end itemize
2240
2241 The ACER Pica emulation supports:
2242
2243 @itemize @minus
2244 @item
2245 MIPS R4000 CPU
2246 @item
2247 PC-style IRQ and DMA controllers
2248 @item
2249 PC Keyboard
2250 @item
2251 IDE controller
2252 @end itemize
2253
2254 The mipssim pseudo board emulation provides an environment similar
2255 to what the proprietary MIPS emulator uses for running Linux.
2256 It supports:
2257
2258 @itemize @minus
2259 @item
2260 A range of MIPS CPUs, default is the 24Kf
2261 @item
2262 PC style serial port
2263 @item
2264 MIPSnet network emulation
2265 @end itemize
2266
2267 The MIPS Magnum R4000 emulation supports:
2268
2269 @itemize @minus
2270 @item
2271 MIPS R4000 CPU
2272 @item
2273 PC-style IRQ controller
2274 @item
2275 PC Keyboard
2276 @item
2277 SCSI controller
2278 @item
2279 G364 framebuffer
2280 @end itemize
2281
2282
2283 @node ARM System emulator
2284 @section ARM System emulator
2285 @cindex system emulation (ARM)
2286
2287 Use the executable @file{qemu-system-arm} to simulate a ARM
2288 machine. The ARM Integrator/CP board is emulated with the following
2289 devices:
2290
2291 @itemize @minus
2292 @item
2293 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2294 @item
2295 Two PL011 UARTs
2296 @item
2297 SMC 91c111 Ethernet adapter
2298 @item
2299 PL110 LCD controller
2300 @item
2301 PL050 KMI with PS/2 keyboard and mouse.
2302 @item
2303 PL181 MultiMedia Card Interface with SD card.
2304 @end itemize
2305
2306 The ARM Versatile baseboard is emulated with the following devices:
2307
2308 @itemize @minus
2309 @item
2310 ARM926E, ARM1136 or Cortex-A8 CPU
2311 @item
2312 PL190 Vectored Interrupt Controller
2313 @item
2314 Four PL011 UARTs
2315 @item
2316 SMC 91c111 Ethernet adapter
2317 @item
2318 PL110 LCD controller
2319 @item
2320 PL050 KMI with PS/2 keyboard and mouse.
2321 @item
2322 PCI host bridge. Note the emulated PCI bridge only provides access to
2323 PCI memory space. It does not provide access to PCI IO space.
2324 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2325 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2326 mapped control registers.
2327 @item
2328 PCI OHCI USB controller.
2329 @item
2330 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2331 @item
2332 PL181 MultiMedia Card Interface with SD card.
2333 @end itemize
2334
2335 Several variants of the ARM RealView baseboard are emulated,
2336 including the EB, PB-A8 and PBX-A9. Due to interactions with the
2337 bootloader, only certain Linux kernel configurations work out
2338 of the box on these boards.
2339
2340 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2341 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2342 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2343 disabled and expect 1024M RAM.
2344
2345 The following devices are emulated:
2346
2347 @itemize @minus
2348 @item
2349 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2350 @item
2351 ARM AMBA Generic/Distributed Interrupt Controller
2352 @item
2353 Four PL011 UARTs
2354 @item
2355 SMC 91c111 or SMSC LAN9118 Ethernet adapter
2356 @item
2357 PL110 LCD controller
2358 @item
2359 PL050 KMI with PS/2 keyboard and mouse
2360 @item
2361 PCI host bridge
2362 @item
2363 PCI OHCI USB controller
2364 @item
2365 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2366 @item
2367 PL181 MultiMedia Card Interface with SD card.
2368 @end itemize
2369
2370 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2371 and "Terrier") emulation includes the following peripherals:
2372
2373 @itemize @minus
2374 @item
2375 Intel PXA270 System-on-chip (ARM V5TE core)
2376 @item
2377 NAND Flash memory
2378 @item
2379 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2380 @item
2381 On-chip OHCI USB controller
2382 @item
2383 On-chip LCD controller
2384 @item
2385 On-chip Real Time Clock
2386 @item
2387 TI ADS7846 touchscreen controller on SSP bus
2388 @item
2389 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2390 @item
2391 GPIO-connected keyboard controller and LEDs
2392 @item
2393 Secure Digital card connected to PXA MMC/SD host
2394 @item
2395 Three on-chip UARTs
2396 @item
2397 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2398 @end itemize
2399
2400 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2401 following elements:
2402
2403 @itemize @minus
2404 @item
2405 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2406 @item
2407 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2408 @item
2409 On-chip LCD controller
2410 @item
2411 On-chip Real Time Clock
2412 @item
2413 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2414 CODEC, connected through MicroWire and I@math{^2}S busses
2415 @item
2416 GPIO-connected matrix keypad
2417 @item
2418 Secure Digital card connected to OMAP MMC/SD host
2419 @item
2420 Three on-chip UARTs
2421 @end itemize
2422
2423 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2424 emulation supports the following elements:
2425
2426 @itemize @minus
2427 @item
2428 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2429 @item
2430 RAM and non-volatile OneNAND Flash memories
2431 @item
2432 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2433 display controller and a LS041y3 MIPI DBI-C controller
2434 @item
2435 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2436 driven through SPI bus
2437 @item
2438 National Semiconductor LM8323-controlled qwerty keyboard driven
2439 through I@math{^2}C bus
2440 @item
2441 Secure Digital card connected to OMAP MMC/SD host
2442 @item
2443 Three OMAP on-chip UARTs and on-chip STI debugging console
2444 @item
2445 A Bluetooth(R) transceiver and HCI connected to an UART
2446 @item
2447 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2448 TUSB6010 chip - only USB host mode is supported
2449 @item
2450 TI TMP105 temperature sensor driven through I@math{^2}C bus
2451 @item
2452 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2453 @item
2454 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2455 through CBUS
2456 @end itemize
2457
2458 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2459 devices:
2460
2461 @itemize @minus
2462 @item
2463 Cortex-M3 CPU core.
2464 @item
2465 64k Flash and 8k SRAM.
2466 @item
2467 Timers, UARTs, ADC and I@math{^2}C interface.
2468 @item
2469 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2470 @end itemize
2471
2472 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2473 devices:
2474
2475 @itemize @minus
2476 @item
2477 Cortex-M3 CPU core.
2478 @item
2479 256k Flash and 64k SRAM.
2480 @item
2481 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2482 @item
2483 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2484 @end itemize
2485
2486 The Freecom MusicPal internet radio emulation includes the following
2487 elements:
2488
2489 @itemize @minus
2490 @item
2491 Marvell MV88W8618 ARM core.
2492 @item
2493 32 MB RAM, 256 KB SRAM, 8 MB flash.
2494 @item
2495 Up to 2 16550 UARTs
2496 @item
2497 MV88W8xx8 Ethernet controller
2498 @item
2499 MV88W8618 audio controller, WM8750 CODEC and mixer
2500 @item
2501 128×64 display with brightness control
2502 @item
2503 2 buttons, 2 navigation wheels with button function
2504 @end itemize
2505
2506 The Siemens SX1 models v1 and v2 (default) basic emulation.
2507 The emulation includes the following elements:
2508
2509 @itemize @minus
2510 @item
2511 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2512 @item
2513 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2514 V1
2515 1 Flash of 16MB and 1 Flash of 8MB
2516 V2
2517 1 Flash of 32MB
2518 @item
2519 On-chip LCD controller
2520 @item
2521 On-chip Real Time Clock
2522 @item
2523 Secure Digital card connected to OMAP MMC/SD host
2524 @item
2525 Three on-chip UARTs
2526 @end itemize
2527
2528 A Linux 2.6 test image is available on the QEMU web site. More
2529 information is available in the QEMU mailing-list archive.
2530
2531 @c man begin OPTIONS
2532
2533 The following options are specific to the ARM emulation:
2534
2535 @table @option
2536
2537 @item -semihosting
2538 Enable semihosting syscall emulation.
2539
2540 On ARM this implements the "Angel" interface.
2541
2542 Note that this allows guest direct access to the host filesystem,
2543 so should only be used with trusted guest OS.
2544
2545 @end table
2546
2547 @node ColdFire System emulator
2548 @section ColdFire System emulator
2549 @cindex system emulation (ColdFire)
2550 @cindex system emulation (M68K)
2551
2552 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2553 The emulator is able to boot a uClinux kernel.
2554
2555 The M5208EVB emulation includes the following devices:
2556
2557 @itemize @minus
2558 @item
2559 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2560 @item
2561 Three Two on-chip UARTs.
2562 @item
2563 Fast Ethernet Controller (FEC)
2564 @end itemize
2565
2566 The AN5206 emulation includes the following devices:
2567
2568 @itemize @minus
2569 @item
2570 MCF5206 ColdFire V2 Microprocessor.
2571 @item
2572 Two on-chip UARTs.
2573 @end itemize
2574
2575 @c man begin OPTIONS
2576
2577 The following options are specific to the ColdFire emulation:
2578
2579 @table @option
2580
2581 @item -semihosting
2582 Enable semihosting syscall emulation.
2583
2584 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2585
2586 Note that this allows guest direct access to the host filesystem,
2587 so should only be used with trusted guest OS.
2588
2589 @end table
2590
2591 @node Cris System emulator
2592 @section Cris System emulator
2593 @cindex system emulation (Cris)
2594
2595 TODO
2596
2597 @node Microblaze System emulator
2598 @section Microblaze System emulator
2599 @cindex system emulation (Microblaze)
2600
2601 TODO
2602
2603 @node SH4 System emulator
2604 @section SH4 System emulator
2605 @cindex system emulation (SH4)
2606
2607 TODO
2608
2609 @node Xtensa System emulator
2610 @section Xtensa System emulator
2611 @cindex system emulation (Xtensa)
2612
2613 Two executables cover simulation of both Xtensa endian options,
2614 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2615 Two different machine types are emulated:
2616
2617 @itemize @minus
2618 @item
2619 Xtensa emulator pseudo board "sim"
2620 @item
2621 Avnet LX60/LX110/LX200 board
2622 @end itemize
2623
2624 The sim pseudo board emulation provides an environment similar
2625 to one provided by the proprietary Tensilica ISS.
2626 It supports:
2627
2628 @itemize @minus
2629 @item
2630 A range of Xtensa CPUs, default is the DC232B
2631 @item
2632 Console and filesystem access via semihosting calls
2633 @end itemize
2634
2635 The Avnet LX60/LX110/LX200 emulation supports:
2636
2637 @itemize @minus
2638 @item
2639 A range of Xtensa CPUs, default is the DC232B
2640 @item
2641 16550 UART
2642 @item
2643 OpenCores 10/100 Mbps Ethernet MAC
2644 @end itemize
2645
2646 @c man begin OPTIONS
2647
2648 The following options are specific to the Xtensa emulation:
2649
2650 @table @option
2651
2652 @item -semihosting
2653 Enable semihosting syscall emulation.
2654
2655 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2656 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2657
2658 Note that this allows guest direct access to the host filesystem,
2659 so should only be used with trusted guest OS.
2660
2661 @end table
2662 @node QEMU User space emulator
2663 @chapter QEMU User space emulator
2664
2665 @menu
2666 * Supported Operating Systems ::
2667 * Linux User space emulator::
2668 * BSD User space emulator ::
2669 @end menu
2670
2671 @node Supported Operating Systems
2672 @section Supported Operating Systems
2673
2674 The following OS are supported in user space emulation:
2675
2676 @itemize @minus
2677 @item
2678 Linux (referred as qemu-linux-user)
2679 @item
2680 BSD (referred as qemu-bsd-user)
2681 @end itemize
2682
2683 @node Linux User space emulator
2684 @section Linux User space emulator
2685
2686 @menu
2687 * Quick Start::
2688 * Wine launch::
2689 * Command line options::
2690 * Other binaries::
2691 @end menu
2692
2693 @node Quick Start
2694 @subsection Quick Start
2695
2696 In order to launch a Linux process, QEMU needs the process executable
2697 itself and all the target (x86) dynamic libraries used by it.
2698
2699 @itemize
2700
2701 @item On x86, you can just try to launch any process by using the native
2702 libraries:
2703
2704 @example
2705 qemu-i386 -L / /bin/ls
2706 @end example
2707
2708 @code{-L /} tells that the x86 dynamic linker must be searched with a
2709 @file{/} prefix.
2710
2711 @item Since QEMU is also a linux process, you can launch QEMU with
2712 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2713
2714 @example
2715 qemu-i386 -L / qemu-i386 -L / /bin/ls
2716 @end example
2717
2718 @item On non x86 CPUs, you need first to download at least an x86 glibc
2719 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2720 @code{LD_LIBRARY_PATH} is not set:
2721
2722 @example
2723 unset LD_LIBRARY_PATH
2724 @end example
2725
2726 Then you can launch the precompiled @file{ls} x86 executable:
2727
2728 @example
2729 qemu-i386 tests/i386/ls
2730 @end example
2731 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2732 QEMU is automatically launched by the Linux kernel when you try to
2733 launch x86 executables. It requires the @code{binfmt_misc} module in the
2734 Linux kernel.
2735
2736 @item The x86 version of QEMU is also included. You can try weird things such as:
2737 @example
2738 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2739 /usr/local/qemu-i386/bin/ls-i386
2740 @end example
2741
2742 @end itemize
2743
2744 @node Wine launch
2745 @subsection Wine launch
2746
2747 @itemize
2748
2749 @item Ensure that you have a working QEMU with the x86 glibc
2750 distribution (see previous section). In order to verify it, you must be
2751 able to do:
2752
2753 @example
2754 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2755 @end example
2756
2757 @item Download the binary x86 Wine install
2758 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2759
2760 @item Configure Wine on your account. Look at the provided script
2761 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2762 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2763
2764 @item Then you can try the example @file{putty.exe}:
2765
2766 @example
2767 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2768 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2769 @end example
2770
2771 @end itemize
2772
2773 @node Command line options
2774 @subsection Command line options
2775
2776 @example
2777 @command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2778 @end example
2779
2780 @table @option
2781 @item -h
2782 Print the help
2783 @item -L path
2784 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2785 @item -s size
2786 Set the x86 stack size in bytes (default=524288)
2787 @item -cpu model
2788 Select CPU model (-cpu help for list and additional feature selection)
2789 @item -E @var{var}=@var{value}
2790 Set environment @var{var} to @var{value}.
2791 @item -U @var{var}
2792 Remove @var{var} from the environment.
2793 @item -B offset
2794 Offset guest address by the specified number of bytes. This is useful when
2795 the address region required by guest applications is reserved on the host.
2796 This option is currently only supported on some hosts.
2797 @item -R size
2798 Pre-allocate a guest virtual address space of the given size (in bytes).
2799 "G", "M", and "k" suffixes may be used when specifying the size.
2800 @end table
2801
2802 Debug options:
2803
2804 @table @option
2805 @item -d item1,...
2806 Activate logging of the specified items (use '-d help' for a list of log items)
2807 @item -p pagesize
2808 Act as if the host page size was 'pagesize' bytes
2809 @item -g port
2810 Wait gdb connection to port
2811 @item -singlestep
2812 Run the emulation in single step mode.
2813 @end table
2814
2815 Environment variables:
2816
2817 @table @env
2818 @item QEMU_STRACE
2819 Print system calls and arguments similar to the 'strace' program
2820 (NOTE: the actual 'strace' program will not work because the user
2821 space emulator hasn't implemented ptrace). At the moment this is
2822 incomplete. All system calls that don't have a specific argument
2823 format are printed with information for six arguments. Many
2824 flag-style arguments don't have decoders and will show up as numbers.
2825 @end table
2826
2827 @node Other binaries
2828 @subsection Other binaries
2829
2830 @cindex user mode (Alpha)
2831 @command{qemu-alpha} TODO.
2832
2833 @cindex user mode (ARM)
2834 @command{qemu-armeb} TODO.
2835
2836 @cindex user mode (ARM)
2837 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2838 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2839 configurations), and arm-uclinux bFLT format binaries.
2840
2841 @cindex user mode (ColdFire)
2842 @cindex user mode (M68K)
2843 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2844 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2845 coldfire uClinux bFLT format binaries.
2846
2847 The binary format is detected automatically.
2848
2849 @cindex user mode (Cris)
2850 @command{qemu-cris} TODO.
2851
2852 @cindex user mode (i386)
2853 @command{qemu-i386} TODO.
2854 @command{qemu-x86_64} TODO.
2855
2856 @cindex user mode (Microblaze)
2857 @command{qemu-microblaze} TODO.
2858
2859 @cindex user mode (MIPS)
2860 @command{qemu-mips} TODO.
2861 @command{qemu-mipsel} TODO.
2862
2863 @cindex user mode (PowerPC)
2864 @command{qemu-ppc64abi32} TODO.
2865 @command{qemu-ppc64} TODO.
2866 @command{qemu-ppc} TODO.
2867
2868 @cindex user mode (SH4)
2869 @command{qemu-sh4eb} TODO.
2870 @command{qemu-sh4} TODO.
2871
2872 @cindex user mode (SPARC)
2873 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2874
2875 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2876 (Sparc64 CPU, 32 bit ABI).
2877
2878 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2879 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2880
2881 @node BSD User space emulator
2882 @section BSD User space emulator
2883
2884 @menu
2885 * BSD Status::
2886 * BSD Quick Start::
2887 * BSD Command line options::
2888 @end menu
2889
2890 @node BSD Status
2891 @subsection BSD Status
2892
2893 @itemize @minus
2894 @item
2895 target Sparc64 on Sparc64: Some trivial programs work.
2896 @end itemize
2897
2898 @node BSD Quick Start
2899 @subsection Quick Start
2900
2901 In order to launch a BSD process, QEMU needs the process executable
2902 itself and all the target dynamic libraries used by it.
2903
2904 @itemize
2905
2906 @item On Sparc64, you can just try to launch any process by using the native
2907 libraries:
2908
2909 @example
2910 qemu-sparc64 /bin/ls
2911 @end example
2912
2913 @end itemize
2914
2915 @node BSD Command line options
2916 @subsection Command line options
2917
2918 @example
2919 @command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2920 @end example
2921
2922 @table @option
2923 @item -h
2924 Print the help
2925 @item -L path
2926 Set the library root path (default=/)
2927 @item -s size
2928 Set the stack size in bytes (default=524288)
2929 @item -ignore-environment
2930 Start with an empty environment. Without this option,
2931 the initial environment is a copy of the caller's environment.
2932 @item -E @var{var}=@var{value}
2933 Set environment @var{var} to @var{value}.
2934 @item -U @var{var}
2935 Remove @var{var} from the environment.
2936 @item -bsd type
2937 Set the type of the emulated BSD Operating system. Valid values are
2938 FreeBSD, NetBSD and OpenBSD (default).
2939 @end table
2940
2941 Debug options:
2942
2943 @table @option
2944 @item -d item1,...
2945 Activate logging of the specified items (use '-d help' for a list of log items)
2946 @item -p pagesize
2947 Act as if the host page size was 'pagesize' bytes
2948 @item -singlestep
2949 Run the emulation in single step mode.
2950 @end table
2951
2952 @node compilation
2953 @chapter Compilation from the sources
2954
2955 @menu
2956 * Linux/Unix::
2957 * Windows::
2958 * Cross compilation for Windows with Linux::
2959 * Mac OS X::
2960 * Make targets::
2961 @end menu
2962
2963 @node Linux/Unix
2964 @section Linux/Unix
2965
2966 @subsection Compilation
2967
2968 First you must decompress the sources:
2969 @example
2970 cd /tmp
2971 tar zxvf qemu-x.y.z.tar.gz
2972 cd qemu-x.y.z
2973 @end example
2974
2975 Then you configure QEMU and build it (usually no options are needed):
2976 @example
2977 ./configure
2978 make
2979 @end example
2980
2981 Then type as root user:
2982 @example
2983 make install
2984 @end example
2985 to install QEMU in @file{/usr/local}.
2986
2987 @node Windows
2988 @section Windows
2989
2990 @itemize
2991 @item Install the current versions of MSYS and MinGW from
2992 @url{http://www.mingw.org/}. You can find detailed installation
2993 instructions in the download section and the FAQ.
2994
2995 @item Download
2996 the MinGW development library of SDL 1.2.x
2997 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2998 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2999 edit the @file{sdl-config} script so that it gives the
3000 correct SDL directory when invoked.
3001
3002 @item Install the MinGW version of zlib and make sure
3003 @file{zlib.h} and @file{libz.dll.a} are in
3004 MinGW's default header and linker search paths.
3005
3006 @item Extract the current version of QEMU.
3007
3008 @item Start the MSYS shell (file @file{msys.bat}).
3009
3010 @item Change to the QEMU directory. Launch @file{./configure} and
3011 @file{make}. If you have problems using SDL, verify that
3012 @file{sdl-config} can be launched from the MSYS command line.
3013
3014 @item You can install QEMU in @file{Program Files/QEMU} by typing
3015 @file{make install}. Don't forget to copy @file{SDL.dll} in
3016 @file{Program Files/QEMU}.
3017
3018 @end itemize
3019
3020 @node Cross compilation for Windows with Linux
3021 @section Cross compilation for Windows with Linux
3022
3023 @itemize
3024 @item
3025 Install the MinGW cross compilation tools available at
3026 @url{http://www.mingw.org/}.
3027
3028 @item Download
3029 the MinGW development library of SDL 1.2.x
3030 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3031 @url{http://www.libsdl.org}. Unpack it in a temporary place and
3032 edit the @file{sdl-config} script so that it gives the
3033 correct SDL directory when invoked. Set up the @code{PATH} environment
3034 variable so that @file{sdl-config} can be launched by
3035 the QEMU configuration script.
3036
3037 @item Install the MinGW version of zlib and make sure
3038 @file{zlib.h} and @file{libz.dll.a} are in
3039 MinGW's default header and linker search paths.
3040
3041 @item
3042 Configure QEMU for Windows cross compilation:
3043 @example
3044 PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3045 @end example
3046 The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3047 MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
3048 We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
3049 use --cross-prefix to specify the name of the cross compiler.
3050 You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
3051
3052 Under Fedora Linux, you can run:
3053 @example
3054 yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
3055 @end example
3056 to get a suitable cross compilation environment.
3057
3058 @item You can install QEMU in the installation directory by typing
3059 @code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
3060 installation directory.
3061
3062 @end itemize
3063
3064 Wine can be used to launch the resulting qemu-system-i386.exe
3065 and all other qemu-system-@var{target}.exe compiled for Win32.
3066
3067 @node Mac OS X
3068 @section Mac OS X
3069
3070 System Requirements:
3071 @itemize
3072 @item Mac OS 10.5 or higher
3073 @item The clang compiler shipped with Xcode 4.2 or higher,
3074 or GCC 4.3 or higher
3075 @end itemize
3076
3077 Additional Requirements (install in order):
3078 @enumerate
3079 @item libffi: @uref{https://sourceware.org/libffi/}
3080 @item gettext: @uref{http://www.gnu.org/software/gettext/}
3081 @item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3082 @item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3083 @item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3084 @item automake: @uref{http://www.gnu.org/software/automake/}
3085 @item pixman: @uref{http://www.pixman.org/}
3086 @end enumerate
3087
3088 * You may find it easiest to get these from a third-party packager
3089 such as Homebrew, Macports, or Fink.
3090
3091 After downloading the QEMU source code, double-click it to expand it.
3092
3093 Then configure and make QEMU:
3094 @example
3095 ./configure
3096 make
3097 @end example
3098
3099 If you have a recent version of Mac OS X (OSX 10.7 or better
3100 with Xcode 4.2 or better) we recommend building QEMU with the
3101 default compiler provided by Apple, for your version of Mac OS X
3102 (which will be 'clang'). The configure script will
3103 automatically pick this.
3104
3105 Note: If after the configure step you see a message like this:
3106 @example
3107 ERROR: Your compiler does not support the __thread specifier for
3108 Thread-Local Storage (TLS). Please upgrade to a version that does.
3109 @end example
3110 you may have to build your own version of gcc from source. Expect that to take
3111 several hours. More information can be found here:
3112 @uref{https://gcc.gnu.org/install/} @*
3113
3114 These are some of the third party binaries of gcc available for download:
3115 @itemize
3116 @item Homebrew: @uref{http://brew.sh/}
3117 @item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3118 @item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3119 @end itemize
3120
3121 You can have several versions of GCC on your system. To specify a certain version,
3122 use the --cc and --cxx options.
3123 @example
3124 ./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3125 @end example
3126
3127 @node Make targets
3128 @section Make targets
3129
3130 @table @code
3131
3132 @item make
3133 @item make all
3134 Make everything which is typically needed.
3135
3136 @item install
3137 TODO
3138
3139 @item install-doc
3140 TODO
3141
3142 @item make clean
3143 Remove most files which were built during make.
3144
3145 @item make distclean
3146 Remove everything which was built during make.
3147
3148 @item make dvi
3149 @item make html
3150 @item make info
3151 @item make pdf
3152 Create documentation in dvi, html, info or pdf format.
3153
3154 @item make cscope
3155 TODO
3156
3157 @item make defconfig
3158 (Re-)create some build configuration files.
3159 User made changes will be overwritten.
3160
3161 @item tar
3162 @item tarbin
3163 TODO
3164
3165 @end table
3166
3167 @node License
3168 @appendix License
3169
3170 QEMU is a trademark of Fabrice Bellard.
3171
3172 QEMU is released under the GNU General Public License (TODO: add link).
3173 Parts of QEMU have specific licenses, see file LICENSE.
3174
3175 TODO (refer to file LICENSE, include it, include the GPL?)
3176
3177 @node Index
3178 @appendix Index
3179 @menu
3180 * Concept Index::
3181 * Function Index::
3182 * Keystroke Index::
3183 * Program Index::
3184 * Data Type Index::
3185 * Variable Index::
3186 @end menu
3187
3188 @node Concept Index
3189 @section Concept Index
3190 This is the main index. Should we combine all keywords in one index? TODO
3191 @printindex cp
3192
3193 @node Function Index
3194 @section Function Index
3195 This index could be used for command line options and monitor functions.
3196 @printindex fn
3197
3198 @node Keystroke Index
3199 @section Keystroke Index
3200
3201 This is a list of all keystrokes which have a special function
3202 in system emulation.
3203
3204 @printindex ky
3205
3206 @node Program Index
3207 @section Program Index
3208 @printindex pg
3209
3210 @node Data Type Index
3211 @section Data Type Index
3212
3213 This index could be used for qdev device names and options.
3214
3215 @printindex tp
3216
3217 @node Variable Index
3218 @section Variable Index
3219 @printindex vr
3220
3221 @bye