]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
Rework ipv6 options
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4
5 @documentlanguage en
6 @documentencoding UTF-8
7
8 @settitle QEMU Emulator User Documentation
9 @exampleindent 0
10 @paragraphindent 0
11 @c %**end of header
12
13 @ifinfo
14 @direntry
15 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16 @end direntry
17 @end ifinfo
18
19 @iftex
20 @titlepage
21 @sp 7
22 @center @titlefont{QEMU Emulator}
23 @sp 1
24 @center @titlefont{User Documentation}
25 @sp 3
26 @end titlepage
27 @end iftex
28
29 @ifnottex
30 @node Top
31 @top
32
33 @menu
34 * Introduction::
35 * Installation::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU User space emulator::
39 * compilation:: Compilation from the sources
40 * License::
41 * Index::
42 @end menu
43 @end ifnottex
44
45 @contents
46
47 @node Introduction
48 @chapter Introduction
49
50 @menu
51 * intro_features:: Features
52 @end menu
53
54 @node intro_features
55 @section Features
56
57 QEMU is a FAST! processor emulator using dynamic translation to
58 achieve good emulation speed.
59
60 QEMU has two operating modes:
61
62 @itemize
63 @cindex operating modes
64
65 @item
66 @cindex system emulation
67 Full system emulation. In this mode, QEMU emulates a full system (for
68 example a PC), including one or several processors and various
69 peripherals. It can be used to launch different Operating Systems
70 without rebooting the PC or to debug system code.
71
72 @item
73 @cindex user mode emulation
74 User mode emulation. In this mode, QEMU can launch
75 processes compiled for one CPU on another CPU. It can be used to
76 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 to ease cross-compilation and cross-debugging.
78
79 @end itemize
80
81 QEMU can run without a host kernel driver and yet gives acceptable
82 performance.
83
84 For system emulation, the following hardware targets are supported:
85 @itemize
86 @cindex emulated target systems
87 @cindex supported target systems
88 @item PC (x86 or x86_64 processor)
89 @item ISA PC (old style PC without PCI bus)
90 @item PREP (PowerPC processor)
91 @item G3 Beige PowerMac (PowerPC processor)
92 @item Mac99 PowerMac (PowerPC processor, in progress)
93 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 @item Malta board (32-bit and 64-bit MIPS processors)
96 @item MIPS Magnum (64-bit MIPS processor)
97 @item ARM Integrator/CP (ARM)
98 @item ARM Versatile baseboard (ARM)
99 @item ARM RealView Emulation/Platform baseboard (ARM)
100 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 @item Freescale MCF5208EVB (ColdFire V2).
104 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 @item Palm Tungsten|E PDA (OMAP310 processor)
106 @item N800 and N810 tablets (OMAP2420 processor)
107 @item MusicPal (MV88W8618 ARM processor)
108 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 @item Siemens SX1 smartphone (OMAP310 processor)
110 @item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111 @item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112 @item Avnet LX60/LX110/LX200 boards (Xtensa)
113 @end itemize
114
115 @cindex supported user mode targets
116 For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119
120 @node Installation
121 @chapter Installation
122
123 If you want to compile QEMU yourself, see @ref{compilation}.
124
125 @menu
126 * install_linux:: Linux
127 * install_windows:: Windows
128 * install_mac:: Macintosh
129 @end menu
130
131 @node install_linux
132 @section Linux
133 @cindex installation (Linux)
134
135 If a precompiled package is available for your distribution - you just
136 have to install it. Otherwise, see @ref{compilation}.
137
138 @node install_windows
139 @section Windows
140 @cindex installation (Windows)
141
142 Download the experimental binary installer at
143 @url{http://www.free.oszoo.org/@/download.html}.
144 TODO (no longer available)
145
146 @node install_mac
147 @section Mac OS X
148
149 Download the experimental binary installer at
150 @url{http://www.free.oszoo.org/@/download.html}.
151 TODO (no longer available)
152
153 @node QEMU PC System emulator
154 @chapter QEMU PC System emulator
155 @cindex system emulation (PC)
156
157 @menu
158 * pcsys_introduction:: Introduction
159 * pcsys_quickstart:: Quick Start
160 * sec_invocation:: Invocation
161 * pcsys_keys:: Keys in the graphical frontends
162 * mux_keys:: Keys in the character backend multiplexer
163 * pcsys_monitor:: QEMU Monitor
164 * disk_images:: Disk Images
165 * pcsys_network:: Network emulation
166 * pcsys_other_devs:: Other Devices
167 * direct_linux_boot:: Direct Linux Boot
168 * pcsys_usb:: USB emulation
169 * vnc_security:: VNC security
170 * gdb_usage:: GDB usage
171 * pcsys_os_specific:: Target OS specific information
172 @end menu
173
174 @node pcsys_introduction
175 @section Introduction
176
177 @c man begin DESCRIPTION
178
179 The QEMU PC System emulator simulates the
180 following peripherals:
181
182 @itemize @minus
183 @item
184 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
185 @item
186 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
187 extensions (hardware level, including all non standard modes).
188 @item
189 PS/2 mouse and keyboard
190 @item
191 2 PCI IDE interfaces with hard disk and CD-ROM support
192 @item
193 Floppy disk
194 @item
195 PCI and ISA network adapters
196 @item
197 Serial ports
198 @item
199 IPMI BMC, either and internal or external one
200 @item
201 Creative SoundBlaster 16 sound card
202 @item
203 ENSONIQ AudioPCI ES1370 sound card
204 @item
205 Intel 82801AA AC97 Audio compatible sound card
206 @item
207 Intel HD Audio Controller and HDA codec
208 @item
209 Adlib (OPL2) - Yamaha YM3812 compatible chip
210 @item
211 Gravis Ultrasound GF1 sound card
212 @item
213 CS4231A compatible sound card
214 @item
215 PCI UHCI USB controller and a virtual USB hub.
216 @end itemize
217
218 SMP is supported with up to 255 CPUs.
219
220 QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
221 VGA BIOS.
222
223 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
224
225 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
226 by Tibor "TS" Schütz.
227
228 Note that, by default, GUS shares IRQ(7) with parallel ports and so
229 QEMU must be told to not have parallel ports to have working GUS.
230
231 @example
232 qemu-system-i386 dos.img -soundhw gus -parallel none
233 @end example
234
235 Alternatively:
236 @example
237 qemu-system-i386 dos.img -device gus,irq=5
238 @end example
239
240 Or some other unclaimed IRQ.
241
242 CS4231A is the chip used in Windows Sound System and GUSMAX products
243
244 @c man end
245
246 @node pcsys_quickstart
247 @section Quick Start
248 @cindex quick start
249
250 Download and uncompress the linux image (@file{linux.img}) and type:
251
252 @example
253 qemu-system-i386 linux.img
254 @end example
255
256 Linux should boot and give you a prompt.
257
258 @node sec_invocation
259 @section Invocation
260
261 @example
262 @c man begin SYNOPSIS
263 @command{qemu-system-i386} [@var{options}] [@var{disk_image}]
264 @c man end
265 @end example
266
267 @c man begin OPTIONS
268 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
269 targets do not need a disk image.
270
271 @include qemu-options.texi
272
273 @c man end
274
275 @node pcsys_keys
276 @section Keys in the graphical frontends
277
278 @c man begin OPTIONS
279
280 During the graphical emulation, you can use special key combinations to change
281 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
282 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
283 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
284
285 @table @key
286 @item Ctrl-Alt-f
287 @kindex Ctrl-Alt-f
288 Toggle full screen
289
290 @item Ctrl-Alt-+
291 @kindex Ctrl-Alt-+
292 Enlarge the screen
293
294 @item Ctrl-Alt--
295 @kindex Ctrl-Alt--
296 Shrink the screen
297
298 @item Ctrl-Alt-u
299 @kindex Ctrl-Alt-u
300 Restore the screen's un-scaled dimensions
301
302 @item Ctrl-Alt-n
303 @kindex Ctrl-Alt-n
304 Switch to virtual console 'n'. Standard console mappings are:
305 @table @emph
306 @item 1
307 Target system display
308 @item 2
309 Monitor
310 @item 3
311 Serial port
312 @end table
313
314 @item Ctrl-Alt
315 @kindex Ctrl-Alt
316 Toggle mouse and keyboard grab.
317 @end table
318
319 @kindex Ctrl-Up
320 @kindex Ctrl-Down
321 @kindex Ctrl-PageUp
322 @kindex Ctrl-PageDown
323 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
324 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
325
326 @c man end
327
328 @node mux_keys
329 @section Keys in the character backend multiplexer
330
331 @c man begin OPTIONS
332
333 During emulation, if you are using a character backend multiplexer
334 (which is the default if you are using @option{-nographic}) then
335 several commands are available via an escape sequence. These
336 key sequences all start with an escape character, which is @key{Ctrl-a}
337 by default, but can be changed with @option{-echr}. The list below assumes
338 you're using the default.
339
340 @table @key
341 @item Ctrl-a h
342 @kindex Ctrl-a h
343 Print this help
344 @item Ctrl-a x
345 @kindex Ctrl-a x
346 Exit emulator
347 @item Ctrl-a s
348 @kindex Ctrl-a s
349 Save disk data back to file (if -snapshot)
350 @item Ctrl-a t
351 @kindex Ctrl-a t
352 Toggle console timestamps
353 @item Ctrl-a b
354 @kindex Ctrl-a b
355 Send break (magic sysrq in Linux)
356 @item Ctrl-a c
357 @kindex Ctrl-a c
358 Rotate between the frontends connected to the multiplexer (usually
359 this switches between the monitor and the console)
360 @item Ctrl-a Ctrl-a
361 @kindex Ctrl-a Ctrl-a
362 Send the escape character to the frontend
363 @end table
364 @c man end
365
366 @ignore
367
368 @c man begin SEEALSO
369 The HTML documentation of QEMU for more precise information and Linux
370 user mode emulator invocation.
371 @c man end
372
373 @c man begin AUTHOR
374 Fabrice Bellard
375 @c man end
376
377 @end ignore
378
379 @node pcsys_monitor
380 @section QEMU Monitor
381 @cindex QEMU monitor
382
383 The QEMU monitor is used to give complex commands to the QEMU
384 emulator. You can use it to:
385
386 @itemize @minus
387
388 @item
389 Remove or insert removable media images
390 (such as CD-ROM or floppies).
391
392 @item
393 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
394 from a disk file.
395
396 @item Inspect the VM state without an external debugger.
397
398 @end itemize
399
400 @subsection Commands
401
402 The following commands are available:
403
404 @include qemu-monitor.texi
405
406 @include qemu-monitor-info.texi
407
408 @subsection Integer expressions
409
410 The monitor understands integers expressions for every integer
411 argument. You can use register names to get the value of specifics
412 CPU registers by prefixing them with @emph{$}.
413
414 @node disk_images
415 @section Disk Images
416
417 Since version 0.6.1, QEMU supports many disk image formats, including
418 growable disk images (their size increase as non empty sectors are
419 written), compressed and encrypted disk images. Version 0.8.3 added
420 the new qcow2 disk image format which is essential to support VM
421 snapshots.
422
423 @menu
424 * disk_images_quickstart:: Quick start for disk image creation
425 * disk_images_snapshot_mode:: Snapshot mode
426 * vm_snapshots:: VM snapshots
427 * qemu_img_invocation:: qemu-img Invocation
428 * qemu_nbd_invocation:: qemu-nbd Invocation
429 * qemu_ga_invocation:: qemu-ga Invocation
430 * disk_images_formats:: Disk image file formats
431 * host_drives:: Using host drives
432 * disk_images_fat_images:: Virtual FAT disk images
433 * disk_images_nbd:: NBD access
434 * disk_images_sheepdog:: Sheepdog disk images
435 * disk_images_iscsi:: iSCSI LUNs
436 * disk_images_gluster:: GlusterFS disk images
437 * disk_images_ssh:: Secure Shell (ssh) disk images
438 @end menu
439
440 @node disk_images_quickstart
441 @subsection Quick start for disk image creation
442
443 You can create a disk image with the command:
444 @example
445 qemu-img create myimage.img mysize
446 @end example
447 where @var{myimage.img} is the disk image filename and @var{mysize} is its
448 size in kilobytes. You can add an @code{M} suffix to give the size in
449 megabytes and a @code{G} suffix for gigabytes.
450
451 See @ref{qemu_img_invocation} for more information.
452
453 @node disk_images_snapshot_mode
454 @subsection Snapshot mode
455
456 If you use the option @option{-snapshot}, all disk images are
457 considered as read only. When sectors in written, they are written in
458 a temporary file created in @file{/tmp}. You can however force the
459 write back to the raw disk images by using the @code{commit} monitor
460 command (or @key{C-a s} in the serial console).
461
462 @node vm_snapshots
463 @subsection VM snapshots
464
465 VM snapshots are snapshots of the complete virtual machine including
466 CPU state, RAM, device state and the content of all the writable
467 disks. In order to use VM snapshots, you must have at least one non
468 removable and writable block device using the @code{qcow2} disk image
469 format. Normally this device is the first virtual hard drive.
470
471 Use the monitor command @code{savevm} to create a new VM snapshot or
472 replace an existing one. A human readable name can be assigned to each
473 snapshot in addition to its numerical ID.
474
475 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
476 a VM snapshot. @code{info snapshots} lists the available snapshots
477 with their associated information:
478
479 @example
480 (qemu) info snapshots
481 Snapshot devices: hda
482 Snapshot list (from hda):
483 ID TAG VM SIZE DATE VM CLOCK
484 1 start 41M 2006-08-06 12:38:02 00:00:14.954
485 2 40M 2006-08-06 12:43:29 00:00:18.633
486 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
487 @end example
488
489 A VM snapshot is made of a VM state info (its size is shown in
490 @code{info snapshots}) and a snapshot of every writable disk image.
491 The VM state info is stored in the first @code{qcow2} non removable
492 and writable block device. The disk image snapshots are stored in
493 every disk image. The size of a snapshot in a disk image is difficult
494 to evaluate and is not shown by @code{info snapshots} because the
495 associated disk sectors are shared among all the snapshots to save
496 disk space (otherwise each snapshot would need a full copy of all the
497 disk images).
498
499 When using the (unrelated) @code{-snapshot} option
500 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
501 but they are deleted as soon as you exit QEMU.
502
503 VM snapshots currently have the following known limitations:
504 @itemize
505 @item
506 They cannot cope with removable devices if they are removed or
507 inserted after a snapshot is done.
508 @item
509 A few device drivers still have incomplete snapshot support so their
510 state is not saved or restored properly (in particular USB).
511 @end itemize
512
513 @node qemu_img_invocation
514 @subsection @code{qemu-img} Invocation
515
516 @include qemu-img.texi
517
518 @node qemu_nbd_invocation
519 @subsection @code{qemu-nbd} Invocation
520
521 @include qemu-nbd.texi
522
523 @node qemu_ga_invocation
524 @subsection @code{qemu-ga} Invocation
525
526 @include qemu-ga.texi
527
528 @node disk_images_formats
529 @subsection Disk image file formats
530
531 QEMU supports many image file formats that can be used with VMs as well as with
532 any of the tools (like @code{qemu-img}). This includes the preferred formats
533 raw and qcow2 as well as formats that are supported for compatibility with
534 older QEMU versions or other hypervisors.
535
536 Depending on the image format, different options can be passed to
537 @code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
538 This section describes each format and the options that are supported for it.
539
540 @table @option
541 @item raw
542
543 Raw disk image format. This format has the advantage of
544 being simple and easily exportable to all other emulators. If your
545 file system supports @emph{holes} (for example in ext2 or ext3 on
546 Linux or NTFS on Windows), then only the written sectors will reserve
547 space. Use @code{qemu-img info} to know the real size used by the
548 image or @code{ls -ls} on Unix/Linux.
549
550 Supported options:
551 @table @code
552 @item preallocation
553 Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
554 @code{falloc} mode preallocates space for image by calling posix_fallocate().
555 @code{full} mode preallocates space for image by writing zeros to underlying
556 storage.
557 @end table
558
559 @item qcow2
560 QEMU image format, the most versatile format. Use it to have smaller
561 images (useful if your filesystem does not supports holes, for example
562 on Windows), zlib based compression and support of multiple VM
563 snapshots.
564
565 Supported options:
566 @table @code
567 @item compat
568 Determines the qcow2 version to use. @code{compat=0.10} uses the
569 traditional image format that can be read by any QEMU since 0.10.
570 @code{compat=1.1} enables image format extensions that only QEMU 1.1 and
571 newer understand (this is the default). Amongst others, this includes
572 zero clusters, which allow efficient copy-on-read for sparse images.
573
574 @item backing_file
575 File name of a base image (see @option{create} subcommand)
576 @item backing_fmt
577 Image format of the base image
578 @item encryption
579 If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
580
581 The use of encryption in qcow and qcow2 images is considered to be flawed by
582 modern cryptography standards, suffering from a number of design problems:
583
584 @itemize @minus
585 @item The AES-CBC cipher is used with predictable initialization vectors based
586 on the sector number. This makes it vulnerable to chosen plaintext attacks
587 which can reveal the existence of encrypted data.
588 @item The user passphrase is directly used as the encryption key. A poorly
589 chosen or short passphrase will compromise the security of the encryption.
590 @item In the event of the passphrase being compromised there is no way to
591 change the passphrase to protect data in any qcow images. The files must
592 be cloned, using a different encryption passphrase in the new file. The
593 original file must then be securely erased using a program like shred,
594 though even this is ineffective with many modern storage technologies.
595 @end itemize
596
597 Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
598 it will go away in a future release. Users are recommended to use an
599 alternative encryption technology such as the Linux dm-crypt / LUKS
600 system.
601
602 @item cluster_size
603 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
604 sizes can improve the image file size whereas larger cluster sizes generally
605 provide better performance.
606
607 @item preallocation
608 Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
609 @code{full}). An image with preallocated metadata is initially larger but can
610 improve performance when the image needs to grow. @code{falloc} and @code{full}
611 preallocations are like the same options of @code{raw} format, but sets up
612 metadata also.
613
614 @item lazy_refcounts
615 If this option is set to @code{on}, reference count updates are postponed with
616 the goal of avoiding metadata I/O and improving performance. This is
617 particularly interesting with @option{cache=writethrough} which doesn't batch
618 metadata updates. The tradeoff is that after a host crash, the reference count
619 tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
620 check -r all} is required, which may take some time.
621
622 This option can only be enabled if @code{compat=1.1} is specified.
623
624 @item nocow
625 If this option is set to @code{on}, it will turn off COW of the file. It's only
626 valid on btrfs, no effect on other file systems.
627
628 Btrfs has low performance when hosting a VM image file, even more when the guest
629 on the VM also using btrfs as file system. Turning off COW is a way to mitigate
630 this bad performance. Generally there are two ways to turn off COW on btrfs:
631 a) Disable it by mounting with nodatacow, then all newly created files will be
632 NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
633 does.
634
635 Note: this option is only valid to new or empty files. If there is an existing
636 file which is COW and has data blocks already, it couldn't be changed to NOCOW
637 by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
638 the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
639
640 @end table
641
642 @item qed
643 Old QEMU image format with support for backing files and compact image files
644 (when your filesystem or transport medium does not support holes).
645
646 When converting QED images to qcow2, you might want to consider using the
647 @code{lazy_refcounts=on} option to get a more QED-like behaviour.
648
649 Supported options:
650 @table @code
651 @item backing_file
652 File name of a base image (see @option{create} subcommand).
653 @item backing_fmt
654 Image file format of backing file (optional). Useful if the format cannot be
655 autodetected because it has no header, like some vhd/vpc files.
656 @item cluster_size
657 Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
658 cluster sizes can improve the image file size whereas larger cluster sizes
659 generally provide better performance.
660 @item table_size
661 Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
662 and 16). There is normally no need to change this value but this option can be
663 used for performance benchmarking.
664 @end table
665
666 @item qcow
667 Old QEMU image format with support for backing files, compact image files,
668 encryption and compression.
669
670 Supported options:
671 @table @code
672 @item backing_file
673 File name of a base image (see @option{create} subcommand)
674 @item encryption
675 If this option is set to @code{on}, the image is encrypted.
676 @end table
677
678 @item vdi
679 VirtualBox 1.1 compatible image format.
680 Supported options:
681 @table @code
682 @item static
683 If this option is set to @code{on}, the image is created with metadata
684 preallocation.
685 @end table
686
687 @item vmdk
688 VMware 3 and 4 compatible image format.
689
690 Supported options:
691 @table @code
692 @item backing_file
693 File name of a base image (see @option{create} subcommand).
694 @item compat6
695 Create a VMDK version 6 image (instead of version 4)
696 @item subformat
697 Specifies which VMDK subformat to use. Valid options are
698 @code{monolithicSparse} (default),
699 @code{monolithicFlat},
700 @code{twoGbMaxExtentSparse},
701 @code{twoGbMaxExtentFlat} and
702 @code{streamOptimized}.
703 @end table
704
705 @item vpc
706 VirtualPC compatible image format (VHD).
707 Supported options:
708 @table @code
709 @item subformat
710 Specifies which VHD subformat to use. Valid options are
711 @code{dynamic} (default) and @code{fixed}.
712 @end table
713
714 @item VHDX
715 Hyper-V compatible image format (VHDX).
716 Supported options:
717 @table @code
718 @item subformat
719 Specifies which VHDX subformat to use. Valid options are
720 @code{dynamic} (default) and @code{fixed}.
721 @item block_state_zero
722 Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
723 or @code{off}. When set to @code{off}, new blocks will be created as
724 @code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
725 arbitrary data for those blocks. Do not set to @code{off} when using
726 @code{qemu-img convert} with @code{subformat=dynamic}.
727 @item block_size
728 Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
729 @item log_size
730 Log size; min 1 MB.
731 @end table
732 @end table
733
734 @subsubsection Read-only formats
735 More disk image file formats are supported in a read-only mode.
736 @table @option
737 @item bochs
738 Bochs images of @code{growing} type.
739 @item cloop
740 Linux Compressed Loop image, useful only to reuse directly compressed
741 CD-ROM images present for example in the Knoppix CD-ROMs.
742 @item dmg
743 Apple disk image.
744 @item parallels
745 Parallels disk image format.
746 @end table
747
748
749 @node host_drives
750 @subsection Using host drives
751
752 In addition to disk image files, QEMU can directly access host
753 devices. We describe here the usage for QEMU version >= 0.8.3.
754
755 @subsubsection Linux
756
757 On Linux, you can directly use the host device filename instead of a
758 disk image filename provided you have enough privileges to access
759 it. For example, use @file{/dev/cdrom} to access to the CDROM.
760
761 @table @code
762 @item CD
763 You can specify a CDROM device even if no CDROM is loaded. QEMU has
764 specific code to detect CDROM insertion or removal. CDROM ejection by
765 the guest OS is supported. Currently only data CDs are supported.
766 @item Floppy
767 You can specify a floppy device even if no floppy is loaded. Floppy
768 removal is currently not detected accurately (if you change floppy
769 without doing floppy access while the floppy is not loaded, the guest
770 OS will think that the same floppy is loaded).
771 Use of the host's floppy device is deprecated, and support for it will
772 be removed in a future release.
773 @item Hard disks
774 Hard disks can be used. Normally you must specify the whole disk
775 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
776 see it as a partitioned disk. WARNING: unless you know what you do, it
777 is better to only make READ-ONLY accesses to the hard disk otherwise
778 you may corrupt your host data (use the @option{-snapshot} command
779 line option or modify the device permissions accordingly).
780 @end table
781
782 @subsubsection Windows
783
784 @table @code
785 @item CD
786 The preferred syntax is the drive letter (e.g. @file{d:}). The
787 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
788 supported as an alias to the first CDROM drive.
789
790 Currently there is no specific code to handle removable media, so it
791 is better to use the @code{change} or @code{eject} monitor commands to
792 change or eject media.
793 @item Hard disks
794 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
795 where @var{N} is the drive number (0 is the first hard disk).
796
797 WARNING: unless you know what you do, it is better to only make
798 READ-ONLY accesses to the hard disk otherwise you may corrupt your
799 host data (use the @option{-snapshot} command line so that the
800 modifications are written in a temporary file).
801 @end table
802
803
804 @subsubsection Mac OS X
805
806 @file{/dev/cdrom} is an alias to the first CDROM.
807
808 Currently there is no specific code to handle removable media, so it
809 is better to use the @code{change} or @code{eject} monitor commands to
810 change or eject media.
811
812 @node disk_images_fat_images
813 @subsection Virtual FAT disk images
814
815 QEMU can automatically create a virtual FAT disk image from a
816 directory tree. In order to use it, just type:
817
818 @example
819 qemu-system-i386 linux.img -hdb fat:/my_directory
820 @end example
821
822 Then you access access to all the files in the @file{/my_directory}
823 directory without having to copy them in a disk image or to export
824 them via SAMBA or NFS. The default access is @emph{read-only}.
825
826 Floppies can be emulated with the @code{:floppy:} option:
827
828 @example
829 qemu-system-i386 linux.img -fda fat:floppy:/my_directory
830 @end example
831
832 A read/write support is available for testing (beta stage) with the
833 @code{:rw:} option:
834
835 @example
836 qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
837 @end example
838
839 What you should @emph{never} do:
840 @itemize
841 @item use non-ASCII filenames ;
842 @item use "-snapshot" together with ":rw:" ;
843 @item expect it to work when loadvm'ing ;
844 @item write to the FAT directory on the host system while accessing it with the guest system.
845 @end itemize
846
847 @node disk_images_nbd
848 @subsection NBD access
849
850 QEMU can access directly to block device exported using the Network Block Device
851 protocol.
852
853 @example
854 qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
855 @end example
856
857 If the NBD server is located on the same host, you can use an unix socket instead
858 of an inet socket:
859
860 @example
861 qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
862 @end example
863
864 In this case, the block device must be exported using qemu-nbd:
865
866 @example
867 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
868 @end example
869
870 The use of qemu-nbd allows sharing of a disk between several guests:
871 @example
872 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
873 @end example
874
875 @noindent
876 and then you can use it with two guests:
877 @example
878 qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
879 qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
880 @end example
881
882 If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
883 own embedded NBD server), you must specify an export name in the URI:
884 @example
885 qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
886 qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
887 @end example
888
889 The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
890 also available. Here are some example of the older syntax:
891 @example
892 qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
893 qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
894 qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
895 @end example
896
897 @node disk_images_sheepdog
898 @subsection Sheepdog disk images
899
900 Sheepdog is a distributed storage system for QEMU. It provides highly
901 available block level storage volumes that can be attached to
902 QEMU-based virtual machines.
903
904 You can create a Sheepdog disk image with the command:
905 @example
906 qemu-img create sheepdog:///@var{image} @var{size}
907 @end example
908 where @var{image} is the Sheepdog image name and @var{size} is its
909 size.
910
911 To import the existing @var{filename} to Sheepdog, you can use a
912 convert command.
913 @example
914 qemu-img convert @var{filename} sheepdog:///@var{image}
915 @end example
916
917 You can boot from the Sheepdog disk image with the command:
918 @example
919 qemu-system-i386 sheepdog:///@var{image}
920 @end example
921
922 You can also create a snapshot of the Sheepdog image like qcow2.
923 @example
924 qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
925 @end example
926 where @var{tag} is a tag name of the newly created snapshot.
927
928 To boot from the Sheepdog snapshot, specify the tag name of the
929 snapshot.
930 @example
931 qemu-system-i386 sheepdog:///@var{image}#@var{tag}
932 @end example
933
934 You can create a cloned image from the existing snapshot.
935 @example
936 qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
937 @end example
938 where @var{base} is a image name of the source snapshot and @var{tag}
939 is its tag name.
940
941 You can use an unix socket instead of an inet socket:
942
943 @example
944 qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
945 @end example
946
947 If the Sheepdog daemon doesn't run on the local host, you need to
948 specify one of the Sheepdog servers to connect to.
949 @example
950 qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
951 qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
952 @end example
953
954 @node disk_images_iscsi
955 @subsection iSCSI LUNs
956
957 iSCSI is a popular protocol used to access SCSI devices across a computer
958 network.
959
960 There are two different ways iSCSI devices can be used by QEMU.
961
962 The first method is to mount the iSCSI LUN on the host, and make it appear as
963 any other ordinary SCSI device on the host and then to access this device as a
964 /dev/sd device from QEMU. How to do this differs between host OSes.
965
966 The second method involves using the iSCSI initiator that is built into
967 QEMU. This provides a mechanism that works the same way regardless of which
968 host OS you are running QEMU on. This section will describe this second method
969 of using iSCSI together with QEMU.
970
971 In QEMU, iSCSI devices are described using special iSCSI URLs
972
973 @example
974 URL syntax:
975 iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
976 @end example
977
978 Username and password are optional and only used if your target is set up
979 using CHAP authentication for access control.
980 Alternatively the username and password can also be set via environment
981 variables to have these not show up in the process list
982
983 @example
984 export LIBISCSI_CHAP_USERNAME=<username>
985 export LIBISCSI_CHAP_PASSWORD=<password>
986 iscsi://<host>/<target-iqn-name>/<lun>
987 @end example
988
989 Various session related parameters can be set via special options, either
990 in a configuration file provided via '-readconfig' or directly on the
991 command line.
992
993 If the initiator-name is not specified qemu will use a default name
994 of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
995 virtual machine.
996
997
998 @example
999 Setting a specific initiator name to use when logging in to the target
1000 -iscsi initiator-name=iqn.qemu.test:my-initiator
1001 @end example
1002
1003 @example
1004 Controlling which type of header digest to negotiate with the target
1005 -iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1006 @end example
1007
1008 These can also be set via a configuration file
1009 @example
1010 [iscsi]
1011 user = "CHAP username"
1012 password = "CHAP password"
1013 initiator-name = "iqn.qemu.test:my-initiator"
1014 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1015 header-digest = "CRC32C"
1016 @end example
1017
1018
1019 Setting the target name allows different options for different targets
1020 @example
1021 [iscsi "iqn.target.name"]
1022 user = "CHAP username"
1023 password = "CHAP password"
1024 initiator-name = "iqn.qemu.test:my-initiator"
1025 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1026 header-digest = "CRC32C"
1027 @end example
1028
1029
1030 Howto use a configuration file to set iSCSI configuration options:
1031 @example
1032 cat >iscsi.conf <<EOF
1033 [iscsi]
1034 user = "me"
1035 password = "my password"
1036 initiator-name = "iqn.qemu.test:my-initiator"
1037 header-digest = "CRC32C"
1038 EOF
1039
1040 qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1041 -readconfig iscsi.conf
1042 @end example
1043
1044
1045 Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1046 @example
1047 This example shows how to set up an iSCSI target with one CDROM and one DISK
1048 using the Linux STGT software target. This target is available on Red Hat based
1049 systems as the package 'scsi-target-utils'.
1050
1051 tgtd --iscsi portal=127.0.0.1:3260
1052 tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1053 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1054 -b /IMAGES/disk.img --device-type=disk
1055 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1056 -b /IMAGES/cd.iso --device-type=cd
1057 tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1058
1059 qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1060 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1061 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1062 @end example
1063
1064 @node disk_images_gluster
1065 @subsection GlusterFS disk images
1066
1067 GlusterFS is an user space distributed file system.
1068
1069 You can boot from the GlusterFS disk image with the command:
1070 @example
1071 qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1072 @end example
1073
1074 @var{gluster} is the protocol.
1075
1076 @var{transport} specifies the transport type used to connect to gluster
1077 management daemon (glusterd). Valid transport types are
1078 tcp, unix and rdma. If a transport type isn't specified, then tcp
1079 type is assumed.
1080
1081 @var{server} specifies the server where the volume file specification for
1082 the given volume resides. This can be either hostname, ipv4 address
1083 or ipv6 address. ipv6 address needs to be within square brackets [ ].
1084 If transport type is unix, then @var{server} field should not be specified.
1085 Instead @var{socket} field needs to be populated with the path to unix domain
1086 socket.
1087
1088 @var{port} is the port number on which glusterd is listening. This is optional
1089 and if not specified, QEMU will send 0 which will make gluster to use the
1090 default port. If the transport type is unix, then @var{port} should not be
1091 specified.
1092
1093 @var{volname} is the name of the gluster volume which contains the disk image.
1094
1095 @var{image} is the path to the actual disk image that resides on gluster volume.
1096
1097 You can create a GlusterFS disk image with the command:
1098 @example
1099 qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1100 @end example
1101
1102 Examples
1103 @example
1104 qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1105 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1106 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1107 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1108 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1109 qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1110 qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1111 qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1112 @end example
1113
1114 @node disk_images_ssh
1115 @subsection Secure Shell (ssh) disk images
1116
1117 You can access disk images located on a remote ssh server
1118 by using the ssh protocol:
1119
1120 @example
1121 qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1122 @end example
1123
1124 Alternative syntax using properties:
1125
1126 @example
1127 qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1128 @end example
1129
1130 @var{ssh} is the protocol.
1131
1132 @var{user} is the remote user. If not specified, then the local
1133 username is tried.
1134
1135 @var{server} specifies the remote ssh server. Any ssh server can be
1136 used, but it must implement the sftp-server protocol. Most Unix/Linux
1137 systems should work without requiring any extra configuration.
1138
1139 @var{port} is the port number on which sshd is listening. By default
1140 the standard ssh port (22) is used.
1141
1142 @var{path} is the path to the disk image.
1143
1144 The optional @var{host_key_check} parameter controls how the remote
1145 host's key is checked. The default is @code{yes} which means to use
1146 the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1147 turns off known-hosts checking. Or you can check that the host key
1148 matches a specific fingerprint:
1149 @code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1150 (@code{sha1:} can also be used as a prefix, but note that OpenSSH
1151 tools only use MD5 to print fingerprints).
1152
1153 Currently authentication must be done using ssh-agent. Other
1154 authentication methods may be supported in future.
1155
1156 Note: Many ssh servers do not support an @code{fsync}-style operation.
1157 The ssh driver cannot guarantee that disk flush requests are
1158 obeyed, and this causes a risk of disk corruption if the remote
1159 server or network goes down during writes. The driver will
1160 print a warning when @code{fsync} is not supported:
1161
1162 warning: ssh server @code{ssh.example.com:22} does not support fsync
1163
1164 With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1165 supported.
1166
1167 @node pcsys_network
1168 @section Network emulation
1169
1170 QEMU can simulate several network cards (PCI or ISA cards on the PC
1171 target) and can connect them to an arbitrary number of Virtual Local
1172 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1173 VLAN. VLAN can be connected between separate instances of QEMU to
1174 simulate large networks. For simpler usage, a non privileged user mode
1175 network stack can replace the TAP device to have a basic network
1176 connection.
1177
1178 @subsection VLANs
1179
1180 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1181 connection between several network devices. These devices can be for
1182 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1183 (TAP devices).
1184
1185 @subsection Using TAP network interfaces
1186
1187 This is the standard way to connect QEMU to a real network. QEMU adds
1188 a virtual network device on your host (called @code{tapN}), and you
1189 can then configure it as if it was a real ethernet card.
1190
1191 @subsubsection Linux host
1192
1193 As an example, you can download the @file{linux-test-xxx.tar.gz}
1194 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1195 configure properly @code{sudo} so that the command @code{ifconfig}
1196 contained in @file{qemu-ifup} can be executed as root. You must verify
1197 that your host kernel supports the TAP network interfaces: the
1198 device @file{/dev/net/tun} must be present.
1199
1200 See @ref{sec_invocation} to have examples of command lines using the
1201 TAP network interfaces.
1202
1203 @subsubsection Windows host
1204
1205 There is a virtual ethernet driver for Windows 2000/XP systems, called
1206 TAP-Win32. But it is not included in standard QEMU for Windows,
1207 so you will need to get it separately. It is part of OpenVPN package,
1208 so download OpenVPN from : @url{http://openvpn.net/}.
1209
1210 @subsection Using the user mode network stack
1211
1212 By using the option @option{-net user} (default configuration if no
1213 @option{-net} option is specified), QEMU uses a completely user mode
1214 network stack (you don't need root privilege to use the virtual
1215 network). The virtual network configuration is the following:
1216
1217 @example
1218
1219 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1220 | (10.0.2.2)
1221 |
1222 ----> DNS server (10.0.2.3)
1223 |
1224 ----> SMB server (10.0.2.4)
1225 @end example
1226
1227 The QEMU VM behaves as if it was behind a firewall which blocks all
1228 incoming connections. You can use a DHCP client to automatically
1229 configure the network in the QEMU VM. The DHCP server assign addresses
1230 to the hosts starting from 10.0.2.15.
1231
1232 In order to check that the user mode network is working, you can ping
1233 the address 10.0.2.2 and verify that you got an address in the range
1234 10.0.2.x from the QEMU virtual DHCP server.
1235
1236 Note that ICMP traffic in general does not work with user mode networking.
1237 @code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1238 however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1239 ping sockets to allow @code{ping} to the Internet. The host admin has to set
1240 the ping_group_range in order to grant access to those sockets. To allow ping
1241 for GID 100 (usually users group):
1242
1243 @example
1244 echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1245 @end example
1246
1247 When using the built-in TFTP server, the router is also the TFTP
1248 server.
1249
1250 When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1251 connections can be redirected from the host to the guest. It allows for
1252 example to redirect X11, telnet or SSH connections.
1253
1254 @subsection Connecting VLANs between QEMU instances
1255
1256 Using the @option{-net socket} option, it is possible to make VLANs
1257 that span several QEMU instances. See @ref{sec_invocation} to have a
1258 basic example.
1259
1260 @node pcsys_other_devs
1261 @section Other Devices
1262
1263 @subsection Inter-VM Shared Memory device
1264
1265 With KVM enabled on a Linux host, a shared memory device is available. Guests
1266 map a POSIX shared memory region into the guest as a PCI device that enables
1267 zero-copy communication to the application level of the guests. The basic
1268 syntax is:
1269
1270 @example
1271 qemu-system-i386 -device ivshmem,size=@var{size},shm=@var{shm-name}
1272 @end example
1273
1274 If desired, interrupts can be sent between guest VMs accessing the same shared
1275 memory region. Interrupt support requires using a shared memory server and
1276 using a chardev socket to connect to it. The code for the shared memory server
1277 is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1278 memory server is:
1279
1280 @example
1281 # First start the ivshmem server once and for all
1282 ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
1283
1284 # Then start your qemu instances with matching arguments
1285 qemu-system-i386 -device ivshmem,size=@var{shm-size},vectors=@var{vectors},chardev=@var{id}
1286 [,msi=on][,ioeventfd=on][,role=peer|master]
1287 -chardev socket,path=@var{path},id=@var{id}
1288 @end example
1289
1290 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1291 using the same server to communicate via interrupts. Guests can read their
1292 VM ID from a device register (see example code). Since receiving the shared
1293 memory region from the server is asynchronous, there is a (small) chance the
1294 guest may boot before the shared memory is attached. To allow an application
1295 to ensure shared memory is attached, the VM ID register will return -1 (an
1296 invalid VM ID) until the memory is attached. Once the shared memory is
1297 attached, the VM ID will return the guest's valid VM ID. With these semantics,
1298 the guest application can check to ensure the shared memory is attached to the
1299 guest before proceeding.
1300
1301 The @option{role} argument can be set to either master or peer and will affect
1302 how the shared memory is migrated. With @option{role=master}, the guest will
1303 copy the shared memory on migration to the destination host. With
1304 @option{role=peer}, the guest will not be able to migrate with the device attached.
1305 With the @option{peer} case, the device should be detached and then reattached
1306 after migration using the PCI hotplug support.
1307
1308 @subsubsection ivshmem and hugepages
1309
1310 Instead of specifying the <shm size> using POSIX shm, you may specify
1311 a memory backend that has hugepage support:
1312
1313 @example
1314 qemu-system-i386 -object memory-backend-file,size=1G,mem-path=/mnt/hugepages/my-shmem-file,id=mb1
1315 -device ivshmem,x-memdev=mb1
1316 @end example
1317
1318 ivshmem-server also supports hugepages mount points with the
1319 @option{-m} memory path argument.
1320
1321 @node direct_linux_boot
1322 @section Direct Linux Boot
1323
1324 This section explains how to launch a Linux kernel inside QEMU without
1325 having to make a full bootable image. It is very useful for fast Linux
1326 kernel testing.
1327
1328 The syntax is:
1329 @example
1330 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1331 @end example
1332
1333 Use @option{-kernel} to provide the Linux kernel image and
1334 @option{-append} to give the kernel command line arguments. The
1335 @option{-initrd} option can be used to provide an INITRD image.
1336
1337 When using the direct Linux boot, a disk image for the first hard disk
1338 @file{hda} is required because its boot sector is used to launch the
1339 Linux kernel.
1340
1341 If you do not need graphical output, you can disable it and redirect
1342 the virtual serial port and the QEMU monitor to the console with the
1343 @option{-nographic} option. The typical command line is:
1344 @example
1345 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1346 -append "root=/dev/hda console=ttyS0" -nographic
1347 @end example
1348
1349 Use @key{Ctrl-a c} to switch between the serial console and the
1350 monitor (@pxref{pcsys_keys}).
1351
1352 @node pcsys_usb
1353 @section USB emulation
1354
1355 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1356 virtual USB devices or real host USB devices (experimental, works only
1357 on Linux hosts). QEMU will automatically create and connect virtual USB hubs
1358 as necessary to connect multiple USB devices.
1359
1360 @menu
1361 * usb_devices::
1362 * host_usb_devices::
1363 @end menu
1364 @node usb_devices
1365 @subsection Connecting USB devices
1366
1367 USB devices can be connected with the @option{-usbdevice} commandline option
1368 or the @code{usb_add} monitor command. Available devices are:
1369
1370 @table @code
1371 @item mouse
1372 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1373 @item tablet
1374 Pointer device that uses absolute coordinates (like a touchscreen).
1375 This means QEMU is able to report the mouse position without having
1376 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1377 @item disk:@var{file}
1378 Mass storage device based on @var{file} (@pxref{disk_images})
1379 @item host:@var{bus.addr}
1380 Pass through the host device identified by @var{bus.addr}
1381 (Linux only)
1382 @item host:@var{vendor_id:product_id}
1383 Pass through the host device identified by @var{vendor_id:product_id}
1384 (Linux only)
1385 @item wacom-tablet
1386 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1387 above but it can be used with the tslib library because in addition to touch
1388 coordinates it reports touch pressure.
1389 @item keyboard
1390 Standard USB keyboard. Will override the PS/2 keyboard (if present).
1391 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1392 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1393 device @var{dev}. The available character devices are the same as for the
1394 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1395 used to override the default 0403:6001. For instance,
1396 @example
1397 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1398 @end example
1399 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1400 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1401 @item braille
1402 Braille device. This will use BrlAPI to display the braille output on a real
1403 or fake device.
1404 @item net:@var{options}
1405 Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1406 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1407 For instance, user-mode networking can be used with
1408 @example
1409 qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1410 @end example
1411 Currently this cannot be used in machines that support PCI NICs.
1412 @item bt[:@var{hci-type}]
1413 Bluetooth dongle whose type is specified in the same format as with
1414 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1415 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1416 This USB device implements the USB Transport Layer of HCI. Example
1417 usage:
1418 @example
1419 @command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
1420 @end example
1421 @end table
1422
1423 @node host_usb_devices
1424 @subsection Using host USB devices on a Linux host
1425
1426 WARNING: this is an experimental feature. QEMU will slow down when
1427 using it. USB devices requiring real time streaming (i.e. USB Video
1428 Cameras) are not supported yet.
1429
1430 @enumerate
1431 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1432 is actually using the USB device. A simple way to do that is simply to
1433 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1434 to @file{mydriver.o.disabled}.
1435
1436 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1437 @example
1438 ls /proc/bus/usb
1439 001 devices drivers
1440 @end example
1441
1442 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1443 @example
1444 chown -R myuid /proc/bus/usb
1445 @end example
1446
1447 @item Launch QEMU and do in the monitor:
1448 @example
1449 info usbhost
1450 Device 1.2, speed 480 Mb/s
1451 Class 00: USB device 1234:5678, USB DISK
1452 @end example
1453 You should see the list of the devices you can use (Never try to use
1454 hubs, it won't work).
1455
1456 @item Add the device in QEMU by using:
1457 @example
1458 usb_add host:1234:5678
1459 @end example
1460
1461 Normally the guest OS should report that a new USB device is
1462 plugged. You can use the option @option{-usbdevice} to do the same.
1463
1464 @item Now you can try to use the host USB device in QEMU.
1465
1466 @end enumerate
1467
1468 When relaunching QEMU, you may have to unplug and plug again the USB
1469 device to make it work again (this is a bug).
1470
1471 @node vnc_security
1472 @section VNC security
1473
1474 The VNC server capability provides access to the graphical console
1475 of the guest VM across the network. This has a number of security
1476 considerations depending on the deployment scenarios.
1477
1478 @menu
1479 * vnc_sec_none::
1480 * vnc_sec_password::
1481 * vnc_sec_certificate::
1482 * vnc_sec_certificate_verify::
1483 * vnc_sec_certificate_pw::
1484 * vnc_sec_sasl::
1485 * vnc_sec_certificate_sasl::
1486 * vnc_generate_cert::
1487 * vnc_setup_sasl::
1488 @end menu
1489 @node vnc_sec_none
1490 @subsection Without passwords
1491
1492 The simplest VNC server setup does not include any form of authentication.
1493 For this setup it is recommended to restrict it to listen on a UNIX domain
1494 socket only. For example
1495
1496 @example
1497 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1498 @end example
1499
1500 This ensures that only users on local box with read/write access to that
1501 path can access the VNC server. To securely access the VNC server from a
1502 remote machine, a combination of netcat+ssh can be used to provide a secure
1503 tunnel.
1504
1505 @node vnc_sec_password
1506 @subsection With passwords
1507
1508 The VNC protocol has limited support for password based authentication. Since
1509 the protocol limits passwords to 8 characters it should not be considered
1510 to provide high security. The password can be fairly easily brute-forced by
1511 a client making repeat connections. For this reason, a VNC server using password
1512 authentication should be restricted to only listen on the loopback interface
1513 or UNIX domain sockets. Password authentication is not supported when operating
1514 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1515 authentication is requested with the @code{password} option, and then once QEMU
1516 is running the password is set with the monitor. Until the monitor is used to
1517 set the password all clients will be rejected.
1518
1519 @example
1520 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1521 (qemu) change vnc password
1522 Password: ********
1523 (qemu)
1524 @end example
1525
1526 @node vnc_sec_certificate
1527 @subsection With x509 certificates
1528
1529 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1530 TLS for encryption of the session, and x509 certificates for authentication.
1531 The use of x509 certificates is strongly recommended, because TLS on its
1532 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1533 support provides a secure session, but no authentication. This allows any
1534 client to connect, and provides an encrypted session.
1535
1536 @example
1537 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1538 @end example
1539
1540 In the above example @code{/etc/pki/qemu} should contain at least three files,
1541 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1542 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1543 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1544 only be readable by the user owning it.
1545
1546 @node vnc_sec_certificate_verify
1547 @subsection With x509 certificates and client verification
1548
1549 Certificates can also provide a means to authenticate the client connecting.
1550 The server will request that the client provide a certificate, which it will
1551 then validate against the CA certificate. This is a good choice if deploying
1552 in an environment with a private internal certificate authority.
1553
1554 @example
1555 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1556 @end example
1557
1558
1559 @node vnc_sec_certificate_pw
1560 @subsection With x509 certificates, client verification and passwords
1561
1562 Finally, the previous method can be combined with VNC password authentication
1563 to provide two layers of authentication for clients.
1564
1565 @example
1566 qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1567 (qemu) change vnc password
1568 Password: ********
1569 (qemu)
1570 @end example
1571
1572
1573 @node vnc_sec_sasl
1574 @subsection With SASL authentication
1575
1576 The SASL authentication method is a VNC extension, that provides an
1577 easily extendable, pluggable authentication method. This allows for
1578 integration with a wide range of authentication mechanisms, such as
1579 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1580 The strength of the authentication depends on the exact mechanism
1581 configured. If the chosen mechanism also provides a SSF layer, then
1582 it will encrypt the datastream as well.
1583
1584 Refer to the later docs on how to choose the exact SASL mechanism
1585 used for authentication, but assuming use of one supporting SSF,
1586 then QEMU can be launched with:
1587
1588 @example
1589 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1590 @end example
1591
1592 @node vnc_sec_certificate_sasl
1593 @subsection With x509 certificates and SASL authentication
1594
1595 If the desired SASL authentication mechanism does not supported
1596 SSF layers, then it is strongly advised to run it in combination
1597 with TLS and x509 certificates. This provides securely encrypted
1598 data stream, avoiding risk of compromising of the security
1599 credentials. This can be enabled, by combining the 'sasl' option
1600 with the aforementioned TLS + x509 options:
1601
1602 @example
1603 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1604 @end example
1605
1606
1607 @node vnc_generate_cert
1608 @subsection Generating certificates for VNC
1609
1610 The GNU TLS packages provides a command called @code{certtool} which can
1611 be used to generate certificates and keys in PEM format. At a minimum it
1612 is necessary to setup a certificate authority, and issue certificates to
1613 each server. If using certificates for authentication, then each client
1614 will also need to be issued a certificate. The recommendation is for the
1615 server to keep its certificates in either @code{/etc/pki/qemu} or for
1616 unprivileged users in @code{$HOME/.pki/qemu}.
1617
1618 @menu
1619 * vnc_generate_ca::
1620 * vnc_generate_server::
1621 * vnc_generate_client::
1622 @end menu
1623 @node vnc_generate_ca
1624 @subsubsection Setup the Certificate Authority
1625
1626 This step only needs to be performed once per organization / organizational
1627 unit. First the CA needs a private key. This key must be kept VERY secret
1628 and secure. If this key is compromised the entire trust chain of the certificates
1629 issued with it is lost.
1630
1631 @example
1632 # certtool --generate-privkey > ca-key.pem
1633 @end example
1634
1635 A CA needs to have a public certificate. For simplicity it can be a self-signed
1636 certificate, or one issue by a commercial certificate issuing authority. To
1637 generate a self-signed certificate requires one core piece of information, the
1638 name of the organization.
1639
1640 @example
1641 # cat > ca.info <<EOF
1642 cn = Name of your organization
1643 ca
1644 cert_signing_key
1645 EOF
1646 # certtool --generate-self-signed \
1647 --load-privkey ca-key.pem
1648 --template ca.info \
1649 --outfile ca-cert.pem
1650 @end example
1651
1652 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1653 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1654
1655 @node vnc_generate_server
1656 @subsubsection Issuing server certificates
1657
1658 Each server (or host) needs to be issued with a key and certificate. When connecting
1659 the certificate is sent to the client which validates it against the CA certificate.
1660 The core piece of information for a server certificate is the hostname. This should
1661 be the fully qualified hostname that the client will connect with, since the client
1662 will typically also verify the hostname in the certificate. On the host holding the
1663 secure CA private key:
1664
1665 @example
1666 # cat > server.info <<EOF
1667 organization = Name of your organization
1668 cn = server.foo.example.com
1669 tls_www_server
1670 encryption_key
1671 signing_key
1672 EOF
1673 # certtool --generate-privkey > server-key.pem
1674 # certtool --generate-certificate \
1675 --load-ca-certificate ca-cert.pem \
1676 --load-ca-privkey ca-key.pem \
1677 --load-privkey server-key.pem \
1678 --template server.info \
1679 --outfile server-cert.pem
1680 @end example
1681
1682 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1683 to the server for which they were generated. The @code{server-key.pem} is security
1684 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1685
1686 @node vnc_generate_client
1687 @subsubsection Issuing client certificates
1688
1689 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1690 certificates as its authentication mechanism, each client also needs to be issued
1691 a certificate. The client certificate contains enough metadata to uniquely identify
1692 the client, typically organization, state, city, building, etc. On the host holding
1693 the secure CA private key:
1694
1695 @example
1696 # cat > client.info <<EOF
1697 country = GB
1698 state = London
1699 locality = London
1700 organization = Name of your organization
1701 cn = client.foo.example.com
1702 tls_www_client
1703 encryption_key
1704 signing_key
1705 EOF
1706 # certtool --generate-privkey > client-key.pem
1707 # certtool --generate-certificate \
1708 --load-ca-certificate ca-cert.pem \
1709 --load-ca-privkey ca-key.pem \
1710 --load-privkey client-key.pem \
1711 --template client.info \
1712 --outfile client-cert.pem
1713 @end example
1714
1715 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1716 copied to the client for which they were generated.
1717
1718
1719 @node vnc_setup_sasl
1720
1721 @subsection Configuring SASL mechanisms
1722
1723 The following documentation assumes use of the Cyrus SASL implementation on a
1724 Linux host, but the principals should apply to any other SASL impl. When SASL
1725 is enabled, the mechanism configuration will be loaded from system default
1726 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1727 unprivileged user, an environment variable SASL_CONF_PATH can be used
1728 to make it search alternate locations for the service config.
1729
1730 The default configuration might contain
1731
1732 @example
1733 mech_list: digest-md5
1734 sasldb_path: /etc/qemu/passwd.db
1735 @end example
1736
1737 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1738 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1739 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1740 command. While this mechanism is easy to configure and use, it is not
1741 considered secure by modern standards, so only suitable for developers /
1742 ad-hoc testing.
1743
1744 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1745 mechanism
1746
1747 @example
1748 mech_list: gssapi
1749 keytab: /etc/qemu/krb5.tab
1750 @end example
1751
1752 For this to work the administrator of your KDC must generate a Kerberos
1753 principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1754 replacing 'somehost.example.com' with the fully qualified host name of the
1755 machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1756
1757 Other configurations will be left as an exercise for the reader. It should
1758 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1759 encryption. For all other mechanisms, VNC should always be configured to
1760 use TLS and x509 certificates to protect security credentials from snooping.
1761
1762 @node gdb_usage
1763 @section GDB usage
1764
1765 QEMU has a primitive support to work with gdb, so that you can do
1766 'Ctrl-C' while the virtual machine is running and inspect its state.
1767
1768 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1769 gdb connection:
1770 @example
1771 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1772 -append "root=/dev/hda"
1773 Connected to host network interface: tun0
1774 Waiting gdb connection on port 1234
1775 @end example
1776
1777 Then launch gdb on the 'vmlinux' executable:
1778 @example
1779 > gdb vmlinux
1780 @end example
1781
1782 In gdb, connect to QEMU:
1783 @example
1784 (gdb) target remote localhost:1234
1785 @end example
1786
1787 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1788 @example
1789 (gdb) c
1790 @end example
1791
1792 Here are some useful tips in order to use gdb on system code:
1793
1794 @enumerate
1795 @item
1796 Use @code{info reg} to display all the CPU registers.
1797 @item
1798 Use @code{x/10i $eip} to display the code at the PC position.
1799 @item
1800 Use @code{set architecture i8086} to dump 16 bit code. Then use
1801 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1802 @end enumerate
1803
1804 Advanced debugging options:
1805
1806 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1807 @table @code
1808 @item maintenance packet qqemu.sstepbits
1809
1810 This will display the MASK bits used to control the single stepping IE:
1811 @example
1812 (gdb) maintenance packet qqemu.sstepbits
1813 sending: "qqemu.sstepbits"
1814 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1815 @end example
1816 @item maintenance packet qqemu.sstep
1817
1818 This will display the current value of the mask used when single stepping IE:
1819 @example
1820 (gdb) maintenance packet qqemu.sstep
1821 sending: "qqemu.sstep"
1822 received: "0x7"
1823 @end example
1824 @item maintenance packet Qqemu.sstep=HEX_VALUE
1825
1826 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1827 @example
1828 (gdb) maintenance packet Qqemu.sstep=0x5
1829 sending: "qemu.sstep=0x5"
1830 received: "OK"
1831 @end example
1832 @end table
1833
1834 @node pcsys_os_specific
1835 @section Target OS specific information
1836
1837 @subsection Linux
1838
1839 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1840 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1841 color depth in the guest and the host OS.
1842
1843 When using a 2.6 guest Linux kernel, you should add the option
1844 @code{clock=pit} on the kernel command line because the 2.6 Linux
1845 kernels make very strict real time clock checks by default that QEMU
1846 cannot simulate exactly.
1847
1848 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1849 not activated because QEMU is slower with this patch. The QEMU
1850 Accelerator Module is also much slower in this case. Earlier Fedora
1851 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1852 patch by default. Newer kernels don't have it.
1853
1854 @subsection Windows
1855
1856 If you have a slow host, using Windows 95 is better as it gives the
1857 best speed. Windows 2000 is also a good choice.
1858
1859 @subsubsection SVGA graphic modes support
1860
1861 QEMU emulates a Cirrus Logic GD5446 Video
1862 card. All Windows versions starting from Windows 95 should recognize
1863 and use this graphic card. For optimal performances, use 16 bit color
1864 depth in the guest and the host OS.
1865
1866 If you are using Windows XP as guest OS and if you want to use high
1867 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1868 1280x1024x16), then you should use the VESA VBE virtual graphic card
1869 (option @option{-std-vga}).
1870
1871 @subsubsection CPU usage reduction
1872
1873 Windows 9x does not correctly use the CPU HLT
1874 instruction. The result is that it takes host CPU cycles even when
1875 idle. You can install the utility from
1876 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1877 problem. Note that no such tool is needed for NT, 2000 or XP.
1878
1879 @subsubsection Windows 2000 disk full problem
1880
1881 Windows 2000 has a bug which gives a disk full problem during its
1882 installation. When installing it, use the @option{-win2k-hack} QEMU
1883 option to enable a specific workaround. After Windows 2000 is
1884 installed, you no longer need this option (this option slows down the
1885 IDE transfers).
1886
1887 @subsubsection Windows 2000 shutdown
1888
1889 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1890 can. It comes from the fact that Windows 2000 does not automatically
1891 use the APM driver provided by the BIOS.
1892
1893 In order to correct that, do the following (thanks to Struan
1894 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1895 Add/Troubleshoot a device => Add a new device & Next => No, select the
1896 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1897 (again) a few times. Now the driver is installed and Windows 2000 now
1898 correctly instructs QEMU to shutdown at the appropriate moment.
1899
1900 @subsubsection Share a directory between Unix and Windows
1901
1902 See @ref{sec_invocation} about the help of the option
1903 @option{'-netdev user,smb=...'}.
1904
1905 @subsubsection Windows XP security problem
1906
1907 Some releases of Windows XP install correctly but give a security
1908 error when booting:
1909 @example
1910 A problem is preventing Windows from accurately checking the
1911 license for this computer. Error code: 0x800703e6.
1912 @end example
1913
1914 The workaround is to install a service pack for XP after a boot in safe
1915 mode. Then reboot, and the problem should go away. Since there is no
1916 network while in safe mode, its recommended to download the full
1917 installation of SP1 or SP2 and transfer that via an ISO or using the
1918 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1919
1920 @subsection MS-DOS and FreeDOS
1921
1922 @subsubsection CPU usage reduction
1923
1924 DOS does not correctly use the CPU HLT instruction. The result is that
1925 it takes host CPU cycles even when idle. You can install the utility
1926 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1927 problem.
1928
1929 @node QEMU System emulator for non PC targets
1930 @chapter QEMU System emulator for non PC targets
1931
1932 QEMU is a generic emulator and it emulates many non PC
1933 machines. Most of the options are similar to the PC emulator. The
1934 differences are mentioned in the following sections.
1935
1936 @menu
1937 * PowerPC System emulator::
1938 * Sparc32 System emulator::
1939 * Sparc64 System emulator::
1940 * MIPS System emulator::
1941 * ARM System emulator::
1942 * ColdFire System emulator::
1943 * Cris System emulator::
1944 * Microblaze System emulator::
1945 * SH4 System emulator::
1946 * Xtensa System emulator::
1947 @end menu
1948
1949 @node PowerPC System emulator
1950 @section PowerPC System emulator
1951 @cindex system emulation (PowerPC)
1952
1953 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1954 or PowerMac PowerPC system.
1955
1956 QEMU emulates the following PowerMac peripherals:
1957
1958 @itemize @minus
1959 @item
1960 UniNorth or Grackle PCI Bridge
1961 @item
1962 PCI VGA compatible card with VESA Bochs Extensions
1963 @item
1964 2 PMAC IDE interfaces with hard disk and CD-ROM support
1965 @item
1966 NE2000 PCI adapters
1967 @item
1968 Non Volatile RAM
1969 @item
1970 VIA-CUDA with ADB keyboard and mouse.
1971 @end itemize
1972
1973 QEMU emulates the following PREP peripherals:
1974
1975 @itemize @minus
1976 @item
1977 PCI Bridge
1978 @item
1979 PCI VGA compatible card with VESA Bochs Extensions
1980 @item
1981 2 IDE interfaces with hard disk and CD-ROM support
1982 @item
1983 Floppy disk
1984 @item
1985 NE2000 network adapters
1986 @item
1987 Serial port
1988 @item
1989 PREP Non Volatile RAM
1990 @item
1991 PC compatible keyboard and mouse.
1992 @end itemize
1993
1994 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1995 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1996
1997 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1998 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1999 v2) portable firmware implementation. The goal is to implement a 100%
2000 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
2001
2002 @c man begin OPTIONS
2003
2004 The following options are specific to the PowerPC emulation:
2005
2006 @table @option
2007
2008 @item -g @var{W}x@var{H}[x@var{DEPTH}]
2009
2010 Set the initial VGA graphic mode. The default is 800x600x32.
2011
2012 @item -prom-env @var{string}
2013
2014 Set OpenBIOS variables in NVRAM, for example:
2015
2016 @example
2017 qemu-system-ppc -prom-env 'auto-boot?=false' \
2018 -prom-env 'boot-device=hd:2,\yaboot' \
2019 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2020 @end example
2021
2022 These variables are not used by Open Hack'Ware.
2023
2024 @end table
2025
2026 @c man end
2027
2028
2029 More information is available at
2030 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2031
2032 @node Sparc32 System emulator
2033 @section Sparc32 System emulator
2034 @cindex system emulation (Sparc32)
2035
2036 Use the executable @file{qemu-system-sparc} to simulate the following
2037 Sun4m architecture machines:
2038 @itemize @minus
2039 @item
2040 SPARCstation 4
2041 @item
2042 SPARCstation 5
2043 @item
2044 SPARCstation 10
2045 @item
2046 SPARCstation 20
2047 @item
2048 SPARCserver 600MP
2049 @item
2050 SPARCstation LX
2051 @item
2052 SPARCstation Voyager
2053 @item
2054 SPARCclassic
2055 @item
2056 SPARCbook
2057 @end itemize
2058
2059 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2060 but Linux limits the number of usable CPUs to 4.
2061
2062 QEMU emulates the following sun4m peripherals:
2063
2064 @itemize @minus
2065 @item
2066 IOMMU
2067 @item
2068 TCX or cgthree Frame buffer
2069 @item
2070 Lance (Am7990) Ethernet
2071 @item
2072 Non Volatile RAM M48T02/M48T08
2073 @item
2074 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2075 and power/reset logic
2076 @item
2077 ESP SCSI controller with hard disk and CD-ROM support
2078 @item
2079 Floppy drive (not on SS-600MP)
2080 @item
2081 CS4231 sound device (only on SS-5, not working yet)
2082 @end itemize
2083
2084 The number of peripherals is fixed in the architecture. Maximum
2085 memory size depends on the machine type, for SS-5 it is 256MB and for
2086 others 2047MB.
2087
2088 Since version 0.8.2, QEMU uses OpenBIOS
2089 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2090 firmware implementation. The goal is to implement a 100% IEEE
2091 1275-1994 (referred to as Open Firmware) compliant firmware.
2092
2093 A sample Linux 2.6 series kernel and ram disk image are available on
2094 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2095 most kernel versions work. Please note that currently older Solaris kernels
2096 don't work probably due to interface issues between OpenBIOS and
2097 Solaris.
2098
2099 @c man begin OPTIONS
2100
2101 The following options are specific to the Sparc32 emulation:
2102
2103 @table @option
2104
2105 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
2106
2107 Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2108 option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2109 of 1152x900x8 for people who wish to use OBP.
2110
2111 @item -prom-env @var{string}
2112
2113 Set OpenBIOS variables in NVRAM, for example:
2114
2115 @example
2116 qemu-system-sparc -prom-env 'auto-boot?=false' \
2117 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2118 @end example
2119
2120 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2121
2122 Set the emulated machine type. Default is SS-5.
2123
2124 @end table
2125
2126 @c man end
2127
2128 @node Sparc64 System emulator
2129 @section Sparc64 System emulator
2130 @cindex system emulation (Sparc64)
2131
2132 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2133 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2134 Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2135 able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2136 Sun4v and Niagara emulators are still a work in progress.
2137
2138 QEMU emulates the following peripherals:
2139
2140 @itemize @minus
2141 @item
2142 UltraSparc IIi APB PCI Bridge
2143 @item
2144 PCI VGA compatible card with VESA Bochs Extensions
2145 @item
2146 PS/2 mouse and keyboard
2147 @item
2148 Non Volatile RAM M48T59
2149 @item
2150 PC-compatible serial ports
2151 @item
2152 2 PCI IDE interfaces with hard disk and CD-ROM support
2153 @item
2154 Floppy disk
2155 @end itemize
2156
2157 @c man begin OPTIONS
2158
2159 The following options are specific to the Sparc64 emulation:
2160
2161 @table @option
2162
2163 @item -prom-env @var{string}
2164
2165 Set OpenBIOS variables in NVRAM, for example:
2166
2167 @example
2168 qemu-system-sparc64 -prom-env 'auto-boot?=false'
2169 @end example
2170
2171 @item -M [sun4u|sun4v|Niagara]
2172
2173 Set the emulated machine type. The default is sun4u.
2174
2175 @end table
2176
2177 @c man end
2178
2179 @node MIPS System emulator
2180 @section MIPS System emulator
2181 @cindex system emulation (MIPS)
2182
2183 Four executables cover simulation of 32 and 64-bit MIPS systems in
2184 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2185 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2186 Five different machine types are emulated:
2187
2188 @itemize @minus
2189 @item
2190 A generic ISA PC-like machine "mips"
2191 @item
2192 The MIPS Malta prototype board "malta"
2193 @item
2194 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2195 @item
2196 MIPS emulator pseudo board "mipssim"
2197 @item
2198 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2199 @end itemize
2200
2201 The generic emulation is supported by Debian 'Etch' and is able to
2202 install Debian into a virtual disk image. The following devices are
2203 emulated:
2204
2205 @itemize @minus
2206 @item
2207 A range of MIPS CPUs, default is the 24Kf
2208 @item
2209 PC style serial port
2210 @item
2211 PC style IDE disk
2212 @item
2213 NE2000 network card
2214 @end itemize
2215
2216 The Malta emulation supports the following devices:
2217
2218 @itemize @minus
2219 @item
2220 Core board with MIPS 24Kf CPU and Galileo system controller
2221 @item
2222 PIIX4 PCI/USB/SMbus controller
2223 @item
2224 The Multi-I/O chip's serial device
2225 @item
2226 PCI network cards (PCnet32 and others)
2227 @item
2228 Malta FPGA serial device
2229 @item
2230 Cirrus (default) or any other PCI VGA graphics card
2231 @end itemize
2232
2233 The ACER Pica emulation supports:
2234
2235 @itemize @minus
2236 @item
2237 MIPS R4000 CPU
2238 @item
2239 PC-style IRQ and DMA controllers
2240 @item
2241 PC Keyboard
2242 @item
2243 IDE controller
2244 @end itemize
2245
2246 The mipssim pseudo board emulation provides an environment similar
2247 to what the proprietary MIPS emulator uses for running Linux.
2248 It supports:
2249
2250 @itemize @minus
2251 @item
2252 A range of MIPS CPUs, default is the 24Kf
2253 @item
2254 PC style serial port
2255 @item
2256 MIPSnet network emulation
2257 @end itemize
2258
2259 The MIPS Magnum R4000 emulation supports:
2260
2261 @itemize @minus
2262 @item
2263 MIPS R4000 CPU
2264 @item
2265 PC-style IRQ controller
2266 @item
2267 PC Keyboard
2268 @item
2269 SCSI controller
2270 @item
2271 G364 framebuffer
2272 @end itemize
2273
2274
2275 @node ARM System emulator
2276 @section ARM System emulator
2277 @cindex system emulation (ARM)
2278
2279 Use the executable @file{qemu-system-arm} to simulate a ARM
2280 machine. The ARM Integrator/CP board is emulated with the following
2281 devices:
2282
2283 @itemize @minus
2284 @item
2285 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2286 @item
2287 Two PL011 UARTs
2288 @item
2289 SMC 91c111 Ethernet adapter
2290 @item
2291 PL110 LCD controller
2292 @item
2293 PL050 KMI with PS/2 keyboard and mouse.
2294 @item
2295 PL181 MultiMedia Card Interface with SD card.
2296 @end itemize
2297
2298 The ARM Versatile baseboard is emulated with the following devices:
2299
2300 @itemize @minus
2301 @item
2302 ARM926E, ARM1136 or Cortex-A8 CPU
2303 @item
2304 PL190 Vectored Interrupt Controller
2305 @item
2306 Four PL011 UARTs
2307 @item
2308 SMC 91c111 Ethernet adapter
2309 @item
2310 PL110 LCD controller
2311 @item
2312 PL050 KMI with PS/2 keyboard and mouse.
2313 @item
2314 PCI host bridge. Note the emulated PCI bridge only provides access to
2315 PCI memory space. It does not provide access to PCI IO space.
2316 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2317 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2318 mapped control registers.
2319 @item
2320 PCI OHCI USB controller.
2321 @item
2322 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2323 @item
2324 PL181 MultiMedia Card Interface with SD card.
2325 @end itemize
2326
2327 Several variants of the ARM RealView baseboard are emulated,
2328 including the EB, PB-A8 and PBX-A9. Due to interactions with the
2329 bootloader, only certain Linux kernel configurations work out
2330 of the box on these boards.
2331
2332 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2333 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2334 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2335 disabled and expect 1024M RAM.
2336
2337 The following devices are emulated:
2338
2339 @itemize @minus
2340 @item
2341 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2342 @item
2343 ARM AMBA Generic/Distributed Interrupt Controller
2344 @item
2345 Four PL011 UARTs
2346 @item
2347 SMC 91c111 or SMSC LAN9118 Ethernet adapter
2348 @item
2349 PL110 LCD controller
2350 @item
2351 PL050 KMI with PS/2 keyboard and mouse
2352 @item
2353 PCI host bridge
2354 @item
2355 PCI OHCI USB controller
2356 @item
2357 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2358 @item
2359 PL181 MultiMedia Card Interface with SD card.
2360 @end itemize
2361
2362 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2363 and "Terrier") emulation includes the following peripherals:
2364
2365 @itemize @minus
2366 @item
2367 Intel PXA270 System-on-chip (ARM V5TE core)
2368 @item
2369 NAND Flash memory
2370 @item
2371 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2372 @item
2373 On-chip OHCI USB controller
2374 @item
2375 On-chip LCD controller
2376 @item
2377 On-chip Real Time Clock
2378 @item
2379 TI ADS7846 touchscreen controller on SSP bus
2380 @item
2381 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2382 @item
2383 GPIO-connected keyboard controller and LEDs
2384 @item
2385 Secure Digital card connected to PXA MMC/SD host
2386 @item
2387 Three on-chip UARTs
2388 @item
2389 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2390 @end itemize
2391
2392 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2393 following elements:
2394
2395 @itemize @minus
2396 @item
2397 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2398 @item
2399 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2400 @item
2401 On-chip LCD controller
2402 @item
2403 On-chip Real Time Clock
2404 @item
2405 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2406 CODEC, connected through MicroWire and I@math{^2}S busses
2407 @item
2408 GPIO-connected matrix keypad
2409 @item
2410 Secure Digital card connected to OMAP MMC/SD host
2411 @item
2412 Three on-chip UARTs
2413 @end itemize
2414
2415 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2416 emulation supports the following elements:
2417
2418 @itemize @minus
2419 @item
2420 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2421 @item
2422 RAM and non-volatile OneNAND Flash memories
2423 @item
2424 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2425 display controller and a LS041y3 MIPI DBI-C controller
2426 @item
2427 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2428 driven through SPI bus
2429 @item
2430 National Semiconductor LM8323-controlled qwerty keyboard driven
2431 through I@math{^2}C bus
2432 @item
2433 Secure Digital card connected to OMAP MMC/SD host
2434 @item
2435 Three OMAP on-chip UARTs and on-chip STI debugging console
2436 @item
2437 A Bluetooth(R) transceiver and HCI connected to an UART
2438 @item
2439 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2440 TUSB6010 chip - only USB host mode is supported
2441 @item
2442 TI TMP105 temperature sensor driven through I@math{^2}C bus
2443 @item
2444 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2445 @item
2446 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2447 through CBUS
2448 @end itemize
2449
2450 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2451 devices:
2452
2453 @itemize @minus
2454 @item
2455 Cortex-M3 CPU core.
2456 @item
2457 64k Flash and 8k SRAM.
2458 @item
2459 Timers, UARTs, ADC and I@math{^2}C interface.
2460 @item
2461 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2462 @end itemize
2463
2464 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2465 devices:
2466
2467 @itemize @minus
2468 @item
2469 Cortex-M3 CPU core.
2470 @item
2471 256k Flash and 64k SRAM.
2472 @item
2473 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2474 @item
2475 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2476 @end itemize
2477
2478 The Freecom MusicPal internet radio emulation includes the following
2479 elements:
2480
2481 @itemize @minus
2482 @item
2483 Marvell MV88W8618 ARM core.
2484 @item
2485 32 MB RAM, 256 KB SRAM, 8 MB flash.
2486 @item
2487 Up to 2 16550 UARTs
2488 @item
2489 MV88W8xx8 Ethernet controller
2490 @item
2491 MV88W8618 audio controller, WM8750 CODEC and mixer
2492 @item
2493 128×64 display with brightness control
2494 @item
2495 2 buttons, 2 navigation wheels with button function
2496 @end itemize
2497
2498 The Siemens SX1 models v1 and v2 (default) basic emulation.
2499 The emulation includes the following elements:
2500
2501 @itemize @minus
2502 @item
2503 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2504 @item
2505 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2506 V1
2507 1 Flash of 16MB and 1 Flash of 8MB
2508 V2
2509 1 Flash of 32MB
2510 @item
2511 On-chip LCD controller
2512 @item
2513 On-chip Real Time Clock
2514 @item
2515 Secure Digital card connected to OMAP MMC/SD host
2516 @item
2517 Three on-chip UARTs
2518 @end itemize
2519
2520 A Linux 2.6 test image is available on the QEMU web site. More
2521 information is available in the QEMU mailing-list archive.
2522
2523 @c man begin OPTIONS
2524
2525 The following options are specific to the ARM emulation:
2526
2527 @table @option
2528
2529 @item -semihosting
2530 Enable semihosting syscall emulation.
2531
2532 On ARM this implements the "Angel" interface.
2533
2534 Note that this allows guest direct access to the host filesystem,
2535 so should only be used with trusted guest OS.
2536
2537 @end table
2538
2539 @node ColdFire System emulator
2540 @section ColdFire System emulator
2541 @cindex system emulation (ColdFire)
2542 @cindex system emulation (M68K)
2543
2544 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2545 The emulator is able to boot a uClinux kernel.
2546
2547 The M5208EVB emulation includes the following devices:
2548
2549 @itemize @minus
2550 @item
2551 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2552 @item
2553 Three Two on-chip UARTs.
2554 @item
2555 Fast Ethernet Controller (FEC)
2556 @end itemize
2557
2558 The AN5206 emulation includes the following devices:
2559
2560 @itemize @minus
2561 @item
2562 MCF5206 ColdFire V2 Microprocessor.
2563 @item
2564 Two on-chip UARTs.
2565 @end itemize
2566
2567 @c man begin OPTIONS
2568
2569 The following options are specific to the ColdFire emulation:
2570
2571 @table @option
2572
2573 @item -semihosting
2574 Enable semihosting syscall emulation.
2575
2576 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2577
2578 Note that this allows guest direct access to the host filesystem,
2579 so should only be used with trusted guest OS.
2580
2581 @end table
2582
2583 @node Cris System emulator
2584 @section Cris System emulator
2585 @cindex system emulation (Cris)
2586
2587 TODO
2588
2589 @node Microblaze System emulator
2590 @section Microblaze System emulator
2591 @cindex system emulation (Microblaze)
2592
2593 TODO
2594
2595 @node SH4 System emulator
2596 @section SH4 System emulator
2597 @cindex system emulation (SH4)
2598
2599 TODO
2600
2601 @node Xtensa System emulator
2602 @section Xtensa System emulator
2603 @cindex system emulation (Xtensa)
2604
2605 Two executables cover simulation of both Xtensa endian options,
2606 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2607 Two different machine types are emulated:
2608
2609 @itemize @minus
2610 @item
2611 Xtensa emulator pseudo board "sim"
2612 @item
2613 Avnet LX60/LX110/LX200 board
2614 @end itemize
2615
2616 The sim pseudo board emulation provides an environment similar
2617 to one provided by the proprietary Tensilica ISS.
2618 It supports:
2619
2620 @itemize @minus
2621 @item
2622 A range of Xtensa CPUs, default is the DC232B
2623 @item
2624 Console and filesystem access via semihosting calls
2625 @end itemize
2626
2627 The Avnet LX60/LX110/LX200 emulation supports:
2628
2629 @itemize @minus
2630 @item
2631 A range of Xtensa CPUs, default is the DC232B
2632 @item
2633 16550 UART
2634 @item
2635 OpenCores 10/100 Mbps Ethernet MAC
2636 @end itemize
2637
2638 @c man begin OPTIONS
2639
2640 The following options are specific to the Xtensa emulation:
2641
2642 @table @option
2643
2644 @item -semihosting
2645 Enable semihosting syscall emulation.
2646
2647 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2648 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2649
2650 Note that this allows guest direct access to the host filesystem,
2651 so should only be used with trusted guest OS.
2652
2653 @end table
2654 @node QEMU User space emulator
2655 @chapter QEMU User space emulator
2656
2657 @menu
2658 * Supported Operating Systems ::
2659 * Linux User space emulator::
2660 * BSD User space emulator ::
2661 @end menu
2662
2663 @node Supported Operating Systems
2664 @section Supported Operating Systems
2665
2666 The following OS are supported in user space emulation:
2667
2668 @itemize @minus
2669 @item
2670 Linux (referred as qemu-linux-user)
2671 @item
2672 BSD (referred as qemu-bsd-user)
2673 @end itemize
2674
2675 @node Linux User space emulator
2676 @section Linux User space emulator
2677
2678 @menu
2679 * Quick Start::
2680 * Wine launch::
2681 * Command line options::
2682 * Other binaries::
2683 @end menu
2684
2685 @node Quick Start
2686 @subsection Quick Start
2687
2688 In order to launch a Linux process, QEMU needs the process executable
2689 itself and all the target (x86) dynamic libraries used by it.
2690
2691 @itemize
2692
2693 @item On x86, you can just try to launch any process by using the native
2694 libraries:
2695
2696 @example
2697 qemu-i386 -L / /bin/ls
2698 @end example
2699
2700 @code{-L /} tells that the x86 dynamic linker must be searched with a
2701 @file{/} prefix.
2702
2703 @item Since QEMU is also a linux process, you can launch QEMU with
2704 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2705
2706 @example
2707 qemu-i386 -L / qemu-i386 -L / /bin/ls
2708 @end example
2709
2710 @item On non x86 CPUs, you need first to download at least an x86 glibc
2711 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2712 @code{LD_LIBRARY_PATH} is not set:
2713
2714 @example
2715 unset LD_LIBRARY_PATH
2716 @end example
2717
2718 Then you can launch the precompiled @file{ls} x86 executable:
2719
2720 @example
2721 qemu-i386 tests/i386/ls
2722 @end example
2723 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2724 QEMU is automatically launched by the Linux kernel when you try to
2725 launch x86 executables. It requires the @code{binfmt_misc} module in the
2726 Linux kernel.
2727
2728 @item The x86 version of QEMU is also included. You can try weird things such as:
2729 @example
2730 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2731 /usr/local/qemu-i386/bin/ls-i386
2732 @end example
2733
2734 @end itemize
2735
2736 @node Wine launch
2737 @subsection Wine launch
2738
2739 @itemize
2740
2741 @item Ensure that you have a working QEMU with the x86 glibc
2742 distribution (see previous section). In order to verify it, you must be
2743 able to do:
2744
2745 @example
2746 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2747 @end example
2748
2749 @item Download the binary x86 Wine install
2750 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2751
2752 @item Configure Wine on your account. Look at the provided script
2753 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2754 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2755
2756 @item Then you can try the example @file{putty.exe}:
2757
2758 @example
2759 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2760 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2761 @end example
2762
2763 @end itemize
2764
2765 @node Command line options
2766 @subsection Command line options
2767
2768 @example
2769 @command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2770 @end example
2771
2772 @table @option
2773 @item -h
2774 Print the help
2775 @item -L path
2776 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2777 @item -s size
2778 Set the x86 stack size in bytes (default=524288)
2779 @item -cpu model
2780 Select CPU model (-cpu help for list and additional feature selection)
2781 @item -E @var{var}=@var{value}
2782 Set environment @var{var} to @var{value}.
2783 @item -U @var{var}
2784 Remove @var{var} from the environment.
2785 @item -B offset
2786 Offset guest address by the specified number of bytes. This is useful when
2787 the address region required by guest applications is reserved on the host.
2788 This option is currently only supported on some hosts.
2789 @item -R size
2790 Pre-allocate a guest virtual address space of the given size (in bytes).
2791 "G", "M", and "k" suffixes may be used when specifying the size.
2792 @end table
2793
2794 Debug options:
2795
2796 @table @option
2797 @item -d item1,...
2798 Activate logging of the specified items (use '-d help' for a list of log items)
2799 @item -p pagesize
2800 Act as if the host page size was 'pagesize' bytes
2801 @item -g port
2802 Wait gdb connection to port
2803 @item -singlestep
2804 Run the emulation in single step mode.
2805 @end table
2806
2807 Environment variables:
2808
2809 @table @env
2810 @item QEMU_STRACE
2811 Print system calls and arguments similar to the 'strace' program
2812 (NOTE: the actual 'strace' program will not work because the user
2813 space emulator hasn't implemented ptrace). At the moment this is
2814 incomplete. All system calls that don't have a specific argument
2815 format are printed with information for six arguments. Many
2816 flag-style arguments don't have decoders and will show up as numbers.
2817 @end table
2818
2819 @node Other binaries
2820 @subsection Other binaries
2821
2822 @cindex user mode (Alpha)
2823 @command{qemu-alpha} TODO.
2824
2825 @cindex user mode (ARM)
2826 @command{qemu-armeb} TODO.
2827
2828 @cindex user mode (ARM)
2829 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2830 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2831 configurations), and arm-uclinux bFLT format binaries.
2832
2833 @cindex user mode (ColdFire)
2834 @cindex user mode (M68K)
2835 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2836 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2837 coldfire uClinux bFLT format binaries.
2838
2839 The binary format is detected automatically.
2840
2841 @cindex user mode (Cris)
2842 @command{qemu-cris} TODO.
2843
2844 @cindex user mode (i386)
2845 @command{qemu-i386} TODO.
2846 @command{qemu-x86_64} TODO.
2847
2848 @cindex user mode (Microblaze)
2849 @command{qemu-microblaze} TODO.
2850
2851 @cindex user mode (MIPS)
2852 @command{qemu-mips} TODO.
2853 @command{qemu-mipsel} TODO.
2854
2855 @cindex user mode (PowerPC)
2856 @command{qemu-ppc64abi32} TODO.
2857 @command{qemu-ppc64} TODO.
2858 @command{qemu-ppc} TODO.
2859
2860 @cindex user mode (SH4)
2861 @command{qemu-sh4eb} TODO.
2862 @command{qemu-sh4} TODO.
2863
2864 @cindex user mode (SPARC)
2865 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2866
2867 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2868 (Sparc64 CPU, 32 bit ABI).
2869
2870 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2871 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2872
2873 @node BSD User space emulator
2874 @section BSD User space emulator
2875
2876 @menu
2877 * BSD Status::
2878 * BSD Quick Start::
2879 * BSD Command line options::
2880 @end menu
2881
2882 @node BSD Status
2883 @subsection BSD Status
2884
2885 @itemize @minus
2886 @item
2887 target Sparc64 on Sparc64: Some trivial programs work.
2888 @end itemize
2889
2890 @node BSD Quick Start
2891 @subsection Quick Start
2892
2893 In order to launch a BSD process, QEMU needs the process executable
2894 itself and all the target dynamic libraries used by it.
2895
2896 @itemize
2897
2898 @item On Sparc64, you can just try to launch any process by using the native
2899 libraries:
2900
2901 @example
2902 qemu-sparc64 /bin/ls
2903 @end example
2904
2905 @end itemize
2906
2907 @node BSD Command line options
2908 @subsection Command line options
2909
2910 @example
2911 @command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2912 @end example
2913
2914 @table @option
2915 @item -h
2916 Print the help
2917 @item -L path
2918 Set the library root path (default=/)
2919 @item -s size
2920 Set the stack size in bytes (default=524288)
2921 @item -ignore-environment
2922 Start with an empty environment. Without this option,
2923 the initial environment is a copy of the caller's environment.
2924 @item -E @var{var}=@var{value}
2925 Set environment @var{var} to @var{value}.
2926 @item -U @var{var}
2927 Remove @var{var} from the environment.
2928 @item -bsd type
2929 Set the type of the emulated BSD Operating system. Valid values are
2930 FreeBSD, NetBSD and OpenBSD (default).
2931 @end table
2932
2933 Debug options:
2934
2935 @table @option
2936 @item -d item1,...
2937 Activate logging of the specified items (use '-d help' for a list of log items)
2938 @item -p pagesize
2939 Act as if the host page size was 'pagesize' bytes
2940 @item -singlestep
2941 Run the emulation in single step mode.
2942 @end table
2943
2944 @node compilation
2945 @chapter Compilation from the sources
2946
2947 @menu
2948 * Linux/Unix::
2949 * Windows::
2950 * Cross compilation for Windows with Linux::
2951 * Mac OS X::
2952 * Make targets::
2953 @end menu
2954
2955 @node Linux/Unix
2956 @section Linux/Unix
2957
2958 @subsection Compilation
2959
2960 First you must decompress the sources:
2961 @example
2962 cd /tmp
2963 tar zxvf qemu-x.y.z.tar.gz
2964 cd qemu-x.y.z
2965 @end example
2966
2967 Then you configure QEMU and build it (usually no options are needed):
2968 @example
2969 ./configure
2970 make
2971 @end example
2972
2973 Then type as root user:
2974 @example
2975 make install
2976 @end example
2977 to install QEMU in @file{/usr/local}.
2978
2979 @node Windows
2980 @section Windows
2981
2982 @itemize
2983 @item Install the current versions of MSYS and MinGW from
2984 @url{http://www.mingw.org/}. You can find detailed installation
2985 instructions in the download section and the FAQ.
2986
2987 @item Download
2988 the MinGW development library of SDL 1.2.x
2989 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2990 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2991 edit the @file{sdl-config} script so that it gives the
2992 correct SDL directory when invoked.
2993
2994 @item Install the MinGW version of zlib and make sure
2995 @file{zlib.h} and @file{libz.dll.a} are in
2996 MinGW's default header and linker search paths.
2997
2998 @item Extract the current version of QEMU.
2999
3000 @item Start the MSYS shell (file @file{msys.bat}).
3001
3002 @item Change to the QEMU directory. Launch @file{./configure} and
3003 @file{make}. If you have problems using SDL, verify that
3004 @file{sdl-config} can be launched from the MSYS command line.
3005
3006 @item You can install QEMU in @file{Program Files/QEMU} by typing
3007 @file{make install}. Don't forget to copy @file{SDL.dll} in
3008 @file{Program Files/QEMU}.
3009
3010 @end itemize
3011
3012 @node Cross compilation for Windows with Linux
3013 @section Cross compilation for Windows with Linux
3014
3015 @itemize
3016 @item
3017 Install the MinGW cross compilation tools available at
3018 @url{http://www.mingw.org/}.
3019
3020 @item Download
3021 the MinGW development library of SDL 1.2.x
3022 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3023 @url{http://www.libsdl.org}. Unpack it in a temporary place and
3024 edit the @file{sdl-config} script so that it gives the
3025 correct SDL directory when invoked. Set up the @code{PATH} environment
3026 variable so that @file{sdl-config} can be launched by
3027 the QEMU configuration script.
3028
3029 @item Install the MinGW version of zlib and make sure
3030 @file{zlib.h} and @file{libz.dll.a} are in
3031 MinGW's default header and linker search paths.
3032
3033 @item
3034 Configure QEMU for Windows cross compilation:
3035 @example
3036 PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3037 @end example
3038 The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3039 MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
3040 We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
3041 use --cross-prefix to specify the name of the cross compiler.
3042 You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
3043
3044 Under Fedora Linux, you can run:
3045 @example
3046 yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
3047 @end example
3048 to get a suitable cross compilation environment.
3049
3050 @item You can install QEMU in the installation directory by typing
3051 @code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
3052 installation directory.
3053
3054 @end itemize
3055
3056 Wine can be used to launch the resulting qemu-system-i386.exe
3057 and all other qemu-system-@var{target}.exe compiled for Win32.
3058
3059 @node Mac OS X
3060 @section Mac OS X
3061
3062 System Requirements:
3063 @itemize
3064 @item Mac OS 10.5 or higher
3065 @item The clang compiler shipped with Xcode 4.2 or higher,
3066 or GCC 4.3 or higher
3067 @end itemize
3068
3069 Additional Requirements (install in order):
3070 @enumerate
3071 @item libffi: @uref{https://sourceware.org/libffi/}
3072 @item gettext: @uref{http://www.gnu.org/software/gettext/}
3073 @item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3074 @item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3075 @item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3076 @item automake: @uref{http://www.gnu.org/software/automake/}
3077 @item pixman: @uref{http://www.pixman.org/}
3078 @end enumerate
3079
3080 * You may find it easiest to get these from a third-party packager
3081 such as Homebrew, Macports, or Fink.
3082
3083 After downloading the QEMU source code, double-click it to expand it.
3084
3085 Then configure and make QEMU:
3086 @example
3087 ./configure
3088 make
3089 @end example
3090
3091 If you have a recent version of Mac OS X (OSX 10.7 or better
3092 with Xcode 4.2 or better) we recommend building QEMU with the
3093 default compiler provided by Apple, for your version of Mac OS X
3094 (which will be 'clang'). The configure script will
3095 automatically pick this.
3096
3097 Note: If after the configure step you see a message like this:
3098 @example
3099 ERROR: Your compiler does not support the __thread specifier for
3100 Thread-Local Storage (TLS). Please upgrade to a version that does.
3101 @end example
3102 you may have to build your own version of gcc from source. Expect that to take
3103 several hours. More information can be found here:
3104 @uref{https://gcc.gnu.org/install/} @*
3105
3106 These are some of the third party binaries of gcc available for download:
3107 @itemize
3108 @item Homebrew: @uref{http://brew.sh/}
3109 @item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3110 @item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3111 @end itemize
3112
3113 You can have several versions of GCC on your system. To specify a certain version,
3114 use the --cc and --cxx options.
3115 @example
3116 ./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3117 @end example
3118
3119 @node Make targets
3120 @section Make targets
3121
3122 @table @code
3123
3124 @item make
3125 @item make all
3126 Make everything which is typically needed.
3127
3128 @item install
3129 TODO
3130
3131 @item install-doc
3132 TODO
3133
3134 @item make clean
3135 Remove most files which were built during make.
3136
3137 @item make distclean
3138 Remove everything which was built during make.
3139
3140 @item make dvi
3141 @item make html
3142 @item make info
3143 @item make pdf
3144 Create documentation in dvi, html, info or pdf format.
3145
3146 @item make cscope
3147 TODO
3148
3149 @item make defconfig
3150 (Re-)create some build configuration files.
3151 User made changes will be overwritten.
3152
3153 @item tar
3154 @item tarbin
3155 TODO
3156
3157 @end table
3158
3159 @node License
3160 @appendix License
3161
3162 QEMU is a trademark of Fabrice Bellard.
3163
3164 QEMU is released under the GNU General Public License (TODO: add link).
3165 Parts of QEMU have specific licenses, see file LICENSE.
3166
3167 TODO (refer to file LICENSE, include it, include the GPL?)
3168
3169 @node Index
3170 @appendix Index
3171 @menu
3172 * Concept Index::
3173 * Function Index::
3174 * Keystroke Index::
3175 * Program Index::
3176 * Data Type Index::
3177 * Variable Index::
3178 @end menu
3179
3180 @node Concept Index
3181 @section Concept Index
3182 This is the main index. Should we combine all keywords in one index? TODO
3183 @printindex cp
3184
3185 @node Function Index
3186 @section Function Index
3187 This index could be used for command line options and monitor functions.
3188 @printindex fn
3189
3190 @node Keystroke Index
3191 @section Keystroke Index
3192
3193 This is a list of all keystrokes which have a special function
3194 in system emulation.
3195
3196 @printindex ky
3197
3198 @node Program Index
3199 @section Program Index
3200 @printindex pg
3201
3202 @node Data Type Index
3203 @section Data Type Index
3204
3205 This index could be used for qdev device names and options.
3206
3207 @printindex tp
3208
3209 @node Variable Index
3210 @section Variable Index
3211 @printindex vr
3212
3213 @bye