]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
SCSI emulation improvements, by Chuck Brazie.
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @end itemize
83
84 For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
85
86 @node Installation
87 @chapter Installation
88
89 If you want to compile QEMU yourself, see @ref{compilation}.
90
91 @menu
92 * install_linux:: Linux
93 * install_windows:: Windows
94 * install_mac:: Macintosh
95 @end menu
96
97 @node install_linux
98 @section Linux
99
100 If a precompiled package is available for your distribution - you just
101 have to install it. Otherwise, see @ref{compilation}.
102
103 @node install_windows
104 @section Windows
105
106 Download the experimental binary installer at
107 @url{http://www.free.oszoo.org/@/download.html}.
108
109 @node install_mac
110 @section Mac OS X
111
112 Download the experimental binary installer at
113 @url{http://www.free.oszoo.org/@/download.html}.
114
115 @node QEMU PC System emulator
116 @chapter QEMU PC System emulator
117
118 @menu
119 * pcsys_introduction:: Introduction
120 * pcsys_quickstart:: Quick Start
121 * sec_invocation:: Invocation
122 * pcsys_keys:: Keys
123 * pcsys_monitor:: QEMU Monitor
124 * disk_images:: Disk Images
125 * pcsys_network:: Network emulation
126 * direct_linux_boot:: Direct Linux Boot
127 * pcsys_usb:: USB emulation
128 * gdb_usage:: GDB usage
129 * pcsys_os_specific:: Target OS specific information
130 @end menu
131
132 @node pcsys_introduction
133 @section Introduction
134
135 @c man begin DESCRIPTION
136
137 The QEMU PC System emulator simulates the
138 following peripherals:
139
140 @itemize @minus
141 @item
142 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143 @item
144 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145 extensions (hardware level, including all non standard modes).
146 @item
147 PS/2 mouse and keyboard
148 @item
149 2 PCI IDE interfaces with hard disk and CD-ROM support
150 @item
151 Floppy disk
152 @item
153 NE2000 PCI network adapters
154 @item
155 Serial ports
156 @item
157 Creative SoundBlaster 16 sound card
158 @item
159 ENSONIQ AudioPCI ES1370 sound card
160 @item
161 Adlib(OPL2) - Yamaha YM3812 compatible chip
162 @item
163 PCI UHCI USB controller and a virtual USB hub.
164 @end itemize
165
166 SMP is supported with up to 255 CPUs.
167
168 Note that adlib is only available when QEMU was configured with
169 -enable-adlib
170
171 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172 VGA BIOS.
173
174 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175
176 @c man end
177
178 @node pcsys_quickstart
179 @section Quick Start
180
181 Download and uncompress the linux image (@file{linux.img}) and type:
182
183 @example
184 qemu linux.img
185 @end example
186
187 Linux should boot and give you a prompt.
188
189 @node sec_invocation
190 @section Invocation
191
192 @example
193 @c man begin SYNOPSIS
194 usage: qemu [options] [disk_image]
195 @c man end
196 @end example
197
198 @c man begin OPTIONS
199 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
200
201 General options:
202 @table @option
203 @item -M machine
204 Select the emulated machine (@code{-M ?} for list)
205
206 @item -fda file
207 @item -fdb file
208 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
210
211 @item -hda file
212 @item -hdb file
213 @item -hdc file
214 @item -hdd file
215 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216
217 @item -cdrom file
218 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219 @option{-cdrom} at the same time). You can use the host CD-ROM by
220 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
221
222 @item -boot [a|c|d]
223 Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224 the default.
225
226 @item -disk ide,img=file[,hdx=a..dd][,type=disk|cdrom]
227 Use @var{file} as the IDE disk/CD-ROM image. The defaults are: hdx=a,type=disk
228
229 @item -disk scsi,img=file[,sdx=a..g][,type=disk|cdrom][,id=n]
230 Use @var{file} as the SCSI disk/CD-ROM image. The defaults are: sdx=a,type=disk,id='auto assign'
231
232 @item -snapshot
233 Write to temporary files instead of disk image files. In this case,
234 the raw disk image you use is not written back. You can however force
235 the write back by pressing @key{C-a s} (@pxref{disk_images}).
236
237 @item -no-fd-bootchk
238 Disable boot signature checking for floppy disks in Bochs BIOS. It may
239 be needed to boot from old floppy disks.
240
241 @item -m megs
242 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
243
244 @item -smp n
245 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
246 CPUs are supported.
247
248 @item -nographic
249
250 Normally, QEMU uses SDL to display the VGA output. With this option,
251 you can totally disable graphical output so that QEMU is a simple
252 command line application. The emulated serial port is redirected on
253 the console. Therefore, you can still use QEMU to debug a Linux kernel
254 with a serial console.
255
256 @item -vnc display
257
258 Normally, QEMU uses SDL to display the VGA output. With this option,
259 you can have QEMU listen on VNC display @var{display} and redirect the VGA
260 display over the VNC session. It is very useful to enable the usb
261 tablet device when using this option (option @option{-usbdevice
262 tablet}). When using the VNC display, you must use the @option{-k}
263 option to set the keyboard layout if you are not using en-us.
264
265 @var{display} may be in the form @var{interface:d}, in which case connections
266 will only be allowed from @var{interface} on display @var{d}. Optionally,
267 @var{interface} can be omitted. @var{display} can also be in the form
268 @var{unix:path} where @var{path} is the location of a unix socket to listen for
269 connections on.
270
271
272 @item -k language
273
274 Use keyboard layout @var{language} (for example @code{fr} for
275 French). This option is only needed where it is not easy to get raw PC
276 keycodes (e.g. on Macs, with some X11 servers or with a VNC
277 display). You don't normally need to use it on PC/Linux or PC/Windows
278 hosts.
279
280 The available layouts are:
281 @example
282 ar de-ch es fo fr-ca hu ja mk no pt-br sv
283 da en-gb et fr fr-ch is lt nl pl ru th
284 de en-us fi fr-be hr it lv nl-be pt sl tr
285 @end example
286
287 The default is @code{en-us}.
288
289 @item -audio-help
290
291 Will show the audio subsystem help: list of drivers, tunable
292 parameters.
293
294 @item -soundhw card1,card2,... or -soundhw all
295
296 Enable audio and selected sound hardware. Use ? to print all
297 available sound hardware.
298
299 @example
300 qemu -soundhw sb16,adlib hda
301 qemu -soundhw es1370 hda
302 qemu -soundhw all hda
303 qemu -soundhw ?
304 @end example
305
306 @item -localtime
307 Set the real time clock to local time (the default is to UTC
308 time). This option is needed to have correct date in MS-DOS or
309 Windows.
310
311 @item -full-screen
312 Start in full screen.
313
314 @item -pidfile file
315 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
316 from a script.
317
318 @item -daemonize
319 Daemonize the QEMU process after initialization. QEMU will not detach from
320 standard IO until it is ready to receive connections on any of its devices.
321 This option is a useful way for external programs to launch QEMU without having
322 to cope with initialization race conditions.
323
324 @item -win2k-hack
325 Use it when installing Windows 2000 to avoid a disk full bug. After
326 Windows 2000 is installed, you no longer need this option (this option
327 slows down the IDE transfers).
328
329 @end table
330
331 USB options:
332 @table @option
333
334 @item -usb
335 Enable the USB driver (will be the default soon)
336
337 @item -usbdevice devname
338 Add the USB device @var{devname}. @xref{usb_devices}.
339 @end table
340
341 Network options:
342
343 @table @option
344
345 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
346 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
347 = 0 is the default). The NIC is currently an NE2000 on the PC
348 target. Optionally, the MAC address can be changed. If no
349 @option{-net} option is specified, a single NIC is created.
350 Qemu can emulate several different models of network card. Valid values for
351 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
352 @code{smc91c111} and @code{lance}. Not all devices are supported on all
353 targets.
354
355 @item -net user[,vlan=n][,hostname=name]
356 Use the user mode network stack which requires no administrator
357 priviledge to run. @option{hostname=name} can be used to specify the client
358 hostname reported by the builtin DHCP server.
359
360 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
361 Connect the host TAP network interface @var{name} to VLAN @var{n} and
362 use the network script @var{file} to configure it. The default
363 network script is @file{/etc/qemu-ifup}. If @var{name} is not
364 provided, the OS automatically provides one. @option{fd=h} can be
365 used to specify the handle of an already opened host TAP interface. Example:
366
367 @example
368 qemu linux.img -net nic -net tap
369 @end example
370
371 More complicated example (two NICs, each one connected to a TAP device)
372 @example
373 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
374 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
375 @end example
376
377
378 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
379
380 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
381 machine using a TCP socket connection. If @option{listen} is
382 specified, QEMU waits for incoming connections on @var{port}
383 (@var{host} is optional). @option{connect} is used to connect to
384 another QEMU instance using the @option{listen} option. @option{fd=h}
385 specifies an already opened TCP socket.
386
387 Example:
388 @example
389 # launch a first QEMU instance
390 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
391 -net socket,listen=:1234
392 # connect the VLAN 0 of this instance to the VLAN 0
393 # of the first instance
394 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
395 -net socket,connect=127.0.0.1:1234
396 @end example
397
398 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
399
400 Create a VLAN @var{n} shared with another QEMU virtual
401 machines using a UDP multicast socket, effectively making a bus for
402 every QEMU with same multicast address @var{maddr} and @var{port}.
403 NOTES:
404 @enumerate
405 @item
406 Several QEMU can be running on different hosts and share same bus (assuming
407 correct multicast setup for these hosts).
408 @item
409 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
410 @url{http://user-mode-linux.sf.net}.
411 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
412 @end enumerate
413
414 Example:
415 @example
416 # launch one QEMU instance
417 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
418 -net socket,mcast=230.0.0.1:1234
419 # launch another QEMU instance on same "bus"
420 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
421 -net socket,mcast=230.0.0.1:1234
422 # launch yet another QEMU instance on same "bus"
423 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
424 -net socket,mcast=230.0.0.1:1234
425 @end example
426
427 Example (User Mode Linux compat.):
428 @example
429 # launch QEMU instance (note mcast address selected
430 # is UML's default)
431 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
432 -net socket,mcast=239.192.168.1:1102
433 # launch UML
434 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
435 @end example
436
437 @item -net none
438 Indicate that no network devices should be configured. It is used to
439 override the default configuration (@option{-net nic -net user}) which
440 is activated if no @option{-net} options are provided.
441
442 @item -tftp prefix
443 When using the user mode network stack, activate a built-in TFTP
444 server. All filenames beginning with @var{prefix} can be downloaded
445 from the host to the guest using a TFTP client. The TFTP client on the
446 guest must be configured in binary mode (use the command @code{bin} of
447 the Unix TFTP client). The host IP address on the guest is as usual
448 10.0.2.2.
449
450 @item -smb dir
451 When using the user mode network stack, activate a built-in SMB
452 server so that Windows OSes can access to the host files in @file{dir}
453 transparently.
454
455 In the guest Windows OS, the line:
456 @example
457 10.0.2.4 smbserver
458 @end example
459 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
460 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
461
462 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
463
464 Note that a SAMBA server must be installed on the host OS in
465 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
466 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
467
468 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
469
470 When using the user mode network stack, redirect incoming TCP or UDP
471 connections to the host port @var{host-port} to the guest
472 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
473 is not specified, its value is 10.0.2.15 (default address given by the
474 built-in DHCP server).
475
476 For example, to redirect host X11 connection from screen 1 to guest
477 screen 0, use the following:
478
479 @example
480 # on the host
481 qemu -redir tcp:6001::6000 [...]
482 # this host xterm should open in the guest X11 server
483 xterm -display :1
484 @end example
485
486 To redirect telnet connections from host port 5555 to telnet port on
487 the guest, use the following:
488
489 @example
490 # on the host
491 qemu -redir tcp:5555::23 [...]
492 telnet localhost 5555
493 @end example
494
495 Then when you use on the host @code{telnet localhost 5555}, you
496 connect to the guest telnet server.
497
498 @end table
499
500 Linux boot specific: When using these options, you can use a given
501 Linux kernel without installing it in the disk image. It can be useful
502 for easier testing of various kernels.
503
504 @table @option
505
506 @item -kernel bzImage
507 Use @var{bzImage} as kernel image.
508
509 @item -append cmdline
510 Use @var{cmdline} as kernel command line
511
512 @item -initrd file
513 Use @var{file} as initial ram disk.
514
515 @end table
516
517 Debug/Expert options:
518 @table @option
519
520 @item -serial dev
521 Redirect the virtual serial port to host character device
522 @var{dev}. The default device is @code{vc} in graphical mode and
523 @code{stdio} in non graphical mode.
524
525 This option can be used several times to simulate up to 4 serials
526 ports.
527
528 Use @code{-serial none} to disable all serial ports.
529
530 Available character devices are:
531 @table @code
532 @item vc
533 Virtual console
534 @item pty
535 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
536 @item none
537 No device is allocated.
538 @item null
539 void device
540 @item /dev/XXX
541 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
542 parameters are set according to the emulated ones.
543 @item /dev/parportN
544 [Linux only, parallel port only] Use host parallel port
545 @var{N}. Currently only SPP parallel port features can be used.
546 @item file:filename
547 Write output to filename. No character can be read.
548 @item stdio
549 [Unix only] standard input/output
550 @item pipe:filename
551 name pipe @var{filename}
552 @item COMn
553 [Windows only] Use host serial port @var{n}
554 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
555 This implements UDP Net Console. When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}. When not using a specifed @var{src_port} a random port is automatically chosen.
556
557 If you just want a simple readonly console you can use @code{netcat} or
558 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
559 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
560 will appear in the netconsole session.
561
562 If you plan to send characters back via netconsole or you want to stop
563 and start qemu a lot of times, you should have qemu use the same
564 source port each time by using something like @code{-serial
565 udp::4555@@:4556} to qemu. Another approach is to use a patched
566 version of netcat which can listen to a TCP port and send and receive
567 characters via udp. If you have a patched version of netcat which
568 activates telnet remote echo and single char transfer, then you can
569 use the following options to step up a netcat redirector to allow
570 telnet on port 5555 to access the qemu port.
571 @table @code
572 @item Qemu Options:
573 -serial udp::4555@@:4556
574 @item netcat options:
575 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
576 @item telnet options:
577 localhost 5555
578 @end table
579
580
581 @item tcp:[host]:port[,server][,nowait]
582 The TCP Net Console has two modes of operation. It can send the serial
583 I/O to a location or wait for a connection from a location. By default
584 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
585 the @var{server} option QEMU will wait for a client socket application
586 to connect to the port before continuing, unless the @code{nowait}
587 option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
588 one TCP connection at a time is accepted. You can use @code{telnet} to
589 connect to the corresponding character device.
590 @table @code
591 @item Example to send tcp console to 192.168.0.2 port 4444
592 -serial tcp:192.168.0.2:4444
593 @item Example to listen and wait on port 4444 for connection
594 -serial tcp::4444,server
595 @item Example to not wait and listen on ip 192.168.0.100 port 4444
596 -serial tcp:192.168.0.100:4444,server,nowait
597 @end table
598
599 @item telnet:host:port[,server][,nowait]
600 The telnet protocol is used instead of raw tcp sockets. The options
601 work the same as if you had specified @code{-serial tcp}. The
602 difference is that the port acts like a telnet server or client using
603 telnet option negotiation. This will also allow you to send the
604 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
605 sequence. Typically in unix telnet you do it with Control-] and then
606 type "send break" followed by pressing the enter key.
607
608 @item unix:path[,server][,nowait]
609 A unix domain socket is used instead of a tcp socket. The option works the
610 same as if you had specified @code{-serial tcp} except the unix domain socket
611 @var{path} is used for connections.
612
613 @end table
614
615 @item -parallel dev
616 Redirect the virtual parallel port to host device @var{dev} (same
617 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
618 be used to use hardware devices connected on the corresponding host
619 parallel port.
620
621 This option can be used several times to simulate up to 3 parallel
622 ports.
623
624 Use @code{-parallel none} to disable all parallel ports.
625
626 @item -monitor dev
627 Redirect the monitor to host device @var{dev} (same devices as the
628 serial port).
629 The default device is @code{vc} in graphical mode and @code{stdio} in
630 non graphical mode.
631
632 @item -s
633 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
634 @item -p port
635 Change gdb connection port.
636 @item -S
637 Do not start CPU at startup (you must type 'c' in the monitor).
638 @item -d
639 Output log in /tmp/qemu.log
640 @item -hdachs c,h,s,[,t]
641 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
642 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
643 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
644 all thoses parameters. This option is useful for old MS-DOS disk
645 images.
646
647 @item -L path
648 Set the directory for the BIOS, VGA BIOS and keymaps.
649
650 @item -std-vga
651 Simulate a standard VGA card with Bochs VBE extensions (default is
652 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
653 VBE extensions (e.g. Windows XP) and if you want to use high
654 resolution modes (>= 1280x1024x16) then you should use this option.
655
656 @item -no-acpi
657 Disable ACPI (Advanced Configuration and Power Interface) support. Use
658 it if your guest OS complains about ACPI problems (PC target machine
659 only).
660
661 @item -no-reboot
662 Exit instead of rebooting.
663
664 @item -loadvm file
665 Start right away with a saved state (@code{loadvm} in monitor)
666 @end table
667
668 @c man end
669
670 @node pcsys_keys
671 @section Keys
672
673 @c man begin OPTIONS
674
675 During the graphical emulation, you can use the following keys:
676 @table @key
677 @item Ctrl-Alt-f
678 Toggle full screen
679
680 @item Ctrl-Alt-n
681 Switch to virtual console 'n'. Standard console mappings are:
682 @table @emph
683 @item 1
684 Target system display
685 @item 2
686 Monitor
687 @item 3
688 Serial port
689 @end table
690
691 @item Ctrl-Alt
692 Toggle mouse and keyboard grab.
693 @end table
694
695 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
696 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
697
698 During emulation, if you are using the @option{-nographic} option, use
699 @key{Ctrl-a h} to get terminal commands:
700
701 @table @key
702 @item Ctrl-a h
703 Print this help
704 @item Ctrl-a x
705 Exit emulator
706 @item Ctrl-a s
707 Save disk data back to file (if -snapshot)
708 @item Ctrl-a b
709 Send break (magic sysrq in Linux)
710 @item Ctrl-a c
711 Switch between console and monitor
712 @item Ctrl-a Ctrl-a
713 Send Ctrl-a
714 @end table
715 @c man end
716
717 @ignore
718
719 @c man begin SEEALSO
720 The HTML documentation of QEMU for more precise information and Linux
721 user mode emulator invocation.
722 @c man end
723
724 @c man begin AUTHOR
725 Fabrice Bellard
726 @c man end
727
728 @end ignore
729
730 @node pcsys_monitor
731 @section QEMU Monitor
732
733 The QEMU monitor is used to give complex commands to the QEMU
734 emulator. You can use it to:
735
736 @itemize @minus
737
738 @item
739 Remove or insert removable medias images
740 (such as CD-ROM or floppies)
741
742 @item
743 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
744 from a disk file.
745
746 @item Inspect the VM state without an external debugger.
747
748 @end itemize
749
750 @subsection Commands
751
752 The following commands are available:
753
754 @table @option
755
756 @item help or ? [cmd]
757 Show the help for all commands or just for command @var{cmd}.
758
759 @item commit
760 Commit changes to the disk images (if -snapshot is used)
761
762 @item info subcommand
763 show various information about the system state
764
765 @table @option
766 @item info network
767 show the various VLANs and the associated devices
768 @item info block
769 show the block devices
770 @item info registers
771 show the cpu registers
772 @item info history
773 show the command line history
774 @item info pci
775 show emulated PCI device
776 @item info usb
777 show USB devices plugged on the virtual USB hub
778 @item info usbhost
779 show all USB host devices
780 @item info capture
781 show information about active capturing
782 @item info snapshots
783 show list of VM snapshots
784 @end table
785
786 @item q or quit
787 Quit the emulator.
788
789 @item eject [-f] device
790 Eject a removable media (use -f to force it).
791
792 @item change device filename
793 Change a removable media.
794
795 @item screendump filename
796 Save screen into PPM image @var{filename}.
797
798 @item wavcapture filename [frequency [bits [channels]]]
799 Capture audio into @var{filename}. Using sample rate @var{frequency}
800 bits per sample @var{bits} and number of channels @var{channels}.
801
802 Defaults:
803 @itemize @minus
804 @item Sample rate = 44100 Hz - CD quality
805 @item Bits = 16
806 @item Number of channels = 2 - Stereo
807 @end itemize
808
809 @item stopcapture index
810 Stop capture with a given @var{index}, index can be obtained with
811 @example
812 info capture
813 @end example
814
815 @item log item1[,...]
816 Activate logging of the specified items to @file{/tmp/qemu.log}.
817
818 @item savevm [tag|id]
819 Create a snapshot of the whole virtual machine. If @var{tag} is
820 provided, it is used as human readable identifier. If there is already
821 a snapshot with the same tag or ID, it is replaced. More info at
822 @ref{vm_snapshots}.
823
824 @item loadvm tag|id
825 Set the whole virtual machine to the snapshot identified by the tag
826 @var{tag} or the unique snapshot ID @var{id}.
827
828 @item delvm tag|id
829 Delete the snapshot identified by @var{tag} or @var{id}.
830
831 @item stop
832 Stop emulation.
833
834 @item c or cont
835 Resume emulation.
836
837 @item gdbserver [port]
838 Start gdbserver session (default port=1234)
839
840 @item x/fmt addr
841 Virtual memory dump starting at @var{addr}.
842
843 @item xp /fmt addr
844 Physical memory dump starting at @var{addr}.
845
846 @var{fmt} is a format which tells the command how to format the
847 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
848
849 @table @var
850 @item count
851 is the number of items to be dumped.
852
853 @item format
854 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
855 c (char) or i (asm instruction).
856
857 @item size
858 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
859 @code{h} or @code{w} can be specified with the @code{i} format to
860 respectively select 16 or 32 bit code instruction size.
861
862 @end table
863
864 Examples:
865 @itemize
866 @item
867 Dump 10 instructions at the current instruction pointer:
868 @example
869 (qemu) x/10i $eip
870 0x90107063: ret
871 0x90107064: sti
872 0x90107065: lea 0x0(%esi,1),%esi
873 0x90107069: lea 0x0(%edi,1),%edi
874 0x90107070: ret
875 0x90107071: jmp 0x90107080
876 0x90107073: nop
877 0x90107074: nop
878 0x90107075: nop
879 0x90107076: nop
880 @end example
881
882 @item
883 Dump 80 16 bit values at the start of the video memory.
884 @smallexample
885 (qemu) xp/80hx 0xb8000
886 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
887 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
888 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
889 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
890 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
891 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
892 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
893 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
894 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
895 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
896 @end smallexample
897 @end itemize
898
899 @item p or print/fmt expr
900
901 Print expression value. Only the @var{format} part of @var{fmt} is
902 used.
903
904 @item sendkey keys
905
906 Send @var{keys} to the emulator. Use @code{-} to press several keys
907 simultaneously. Example:
908 @example
909 sendkey ctrl-alt-f1
910 @end example
911
912 This command is useful to send keys that your graphical user interface
913 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
914
915 @item system_reset
916
917 Reset the system.
918
919 @item usb_add devname
920
921 Add the USB device @var{devname}. For details of available devices see
922 @ref{usb_devices}
923
924 @item usb_del devname
925
926 Remove the USB device @var{devname} from the QEMU virtual USB
927 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
928 command @code{info usb} to see the devices you can remove.
929
930 @end table
931
932 @subsection Integer expressions
933
934 The monitor understands integers expressions for every integer
935 argument. You can use register names to get the value of specifics
936 CPU registers by prefixing them with @emph{$}.
937
938 @node disk_images
939 @section Disk Images
940
941 Since version 0.6.1, QEMU supports many disk image formats, including
942 growable disk images (their size increase as non empty sectors are
943 written), compressed and encrypted disk images. Version 0.8.3 added
944 the new qcow2 disk image format which is essential to support VM
945 snapshots.
946
947 @menu
948 * disk_images_quickstart:: Quick start for disk image creation
949 * disk_images_snapshot_mode:: Snapshot mode
950 * vm_snapshots:: VM snapshots
951 * qemu_img_invocation:: qemu-img Invocation
952 * host_drives:: Using host drives
953 * disk_images_fat_images:: Virtual FAT disk images
954 @end menu
955
956 @node disk_images_quickstart
957 @subsection Quick start for disk image creation
958
959 You can create a disk image with the command:
960 @example
961 qemu-img create myimage.img mysize
962 @end example
963 where @var{myimage.img} is the disk image filename and @var{mysize} is its
964 size in kilobytes. You can add an @code{M} suffix to give the size in
965 megabytes and a @code{G} suffix for gigabytes.
966
967 See @ref{qemu_img_invocation} for more information.
968
969 @node disk_images_snapshot_mode
970 @subsection Snapshot mode
971
972 If you use the option @option{-snapshot}, all disk images are
973 considered as read only. When sectors in written, they are written in
974 a temporary file created in @file{/tmp}. You can however force the
975 write back to the raw disk images by using the @code{commit} monitor
976 command (or @key{C-a s} in the serial console).
977
978 @node vm_snapshots
979 @subsection VM snapshots
980
981 VM snapshots are snapshots of the complete virtual machine including
982 CPU state, RAM, device state and the content of all the writable
983 disks. In order to use VM snapshots, you must have at least one non
984 removable and writable block device using the @code{qcow2} disk image
985 format. Normally this device is the first virtual hard drive.
986
987 Use the monitor command @code{savevm} to create a new VM snapshot or
988 replace an existing one. A human readable name can be assigned to each
989 snapshot in addition to its numerical ID.
990
991 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
992 a VM snapshot. @code{info snapshots} lists the available snapshots
993 with their associated information:
994
995 @example
996 (qemu) info snapshots
997 Snapshot devices: hda
998 Snapshot list (from hda):
999 ID TAG VM SIZE DATE VM CLOCK
1000 1 start 41M 2006-08-06 12:38:02 00:00:14.954
1001 2 40M 2006-08-06 12:43:29 00:00:18.633
1002 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
1003 @end example
1004
1005 A VM snapshot is made of a VM state info (its size is shown in
1006 @code{info snapshots}) and a snapshot of every writable disk image.
1007 The VM state info is stored in the first @code{qcow2} non removable
1008 and writable block device. The disk image snapshots are stored in
1009 every disk image. The size of a snapshot in a disk image is difficult
1010 to evaluate and is not shown by @code{info snapshots} because the
1011 associated disk sectors are shared among all the snapshots to save
1012 disk space (otherwise each snapshot would need a full copy of all the
1013 disk images).
1014
1015 When using the (unrelated) @code{-snapshot} option
1016 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1017 but they are deleted as soon as you exit QEMU.
1018
1019 VM snapshots currently have the following known limitations:
1020 @itemize
1021 @item
1022 They cannot cope with removable devices if they are removed or
1023 inserted after a snapshot is done.
1024 @item
1025 A few device drivers still have incomplete snapshot support so their
1026 state is not saved or restored properly (in particular USB).
1027 @end itemize
1028
1029 @node qemu_img_invocation
1030 @subsection @code{qemu-img} Invocation
1031
1032 @include qemu-img.texi
1033
1034 @node host_drives
1035 @subsection Using host drives
1036
1037 In addition to disk image files, QEMU can directly access host
1038 devices. We describe here the usage for QEMU version >= 0.8.3.
1039
1040 @subsubsection Linux
1041
1042 On Linux, you can directly use the host device filename instead of a
1043 disk image filename provided you have enough proviledge to access
1044 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1045 @file{/dev/fd0} for the floppy.
1046
1047 @table @code
1048 @item CD
1049 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1050 specific code to detect CDROM insertion or removal. CDROM ejection by
1051 the guest OS is supported. Currently only data CDs are supported.
1052 @item Floppy
1053 You can specify a floppy device even if no floppy is loaded. Floppy
1054 removal is currently not detected accurately (if you change floppy
1055 without doing floppy access while the floppy is not loaded, the guest
1056 OS will think that the same floppy is loaded).
1057 @item Hard disks
1058 Hard disks can be used. Normally you must specify the whole disk
1059 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1060 see it as a partitioned disk. WARNING: unless you know what you do, it
1061 is better to only make READ-ONLY accesses to the hard disk otherwise
1062 you may corrupt your host data (use the @option{-snapshot} command
1063 line option or modify the device permissions accordingly).
1064 @end table
1065
1066 @subsubsection Windows
1067
1068 On Windows you can use any host drives as QEMU drive. The prefered
1069 syntax is the driver letter (e.g. @file{d:}). The alternate syntax
1070 @file{\\.\d:} is supported. @file{/dev/cdrom} is supported as an alias
1071 to the first CDROM drive.
1072
1073 Currently there is no specific code to handle removable medias, so it
1074 is better to use the @code{change} or @code{eject} monitor commands to
1075 change or eject media.
1076
1077 @subsubsection Mac OS X
1078
1079 @file{/dev/cdrom} is an alias to the first CDROM.
1080
1081 Currently there is no specific code to handle removable medias, so it
1082 is better to use the @code{change} or @code{eject} monitor commands to
1083 change or eject media.
1084
1085 @node disk_images_fat_images
1086 @subsection Virtual FAT disk images
1087
1088 QEMU can automatically create a virtual FAT disk image from a
1089 directory tree. In order to use it, just type:
1090
1091 @example
1092 qemu linux.img -hdb fat:/my_directory
1093 @end example
1094
1095 Then you access access to all the files in the @file{/my_directory}
1096 directory without having to copy them in a disk image or to export
1097 them via SAMBA or NFS. The default access is @emph{read-only}.
1098
1099 Floppies can be emulated with the @code{:floppy:} option:
1100
1101 @example
1102 qemu linux.img -fda fat:floppy:/my_directory
1103 @end example
1104
1105 A read/write support is available for testing (beta stage) with the
1106 @code{:rw:} option:
1107
1108 @example
1109 qemu linux.img -fda fat:floppy:rw:/my_directory
1110 @end example
1111
1112 What you should @emph{never} do:
1113 @itemize
1114 @item use non-ASCII filenames ;
1115 @item use "-snapshot" together with ":rw:" ;
1116 @item expect it to work when loadvm'ing ;
1117 @item write to the FAT directory on the host system while accessing it with the guest system.
1118 @end itemize
1119
1120 @node pcsys_network
1121 @section Network emulation
1122
1123 QEMU can simulate several networks cards (NE2000 boards on the PC
1124 target) and can connect them to an arbitrary number of Virtual Local
1125 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1126 VLAN. VLAN can be connected between separate instances of QEMU to
1127 simulate large networks. For simpler usage, a non priviledged user mode
1128 network stack can replace the TAP device to have a basic network
1129 connection.
1130
1131 @subsection VLANs
1132
1133 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1134 connection between several network devices. These devices can be for
1135 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1136 (TAP devices).
1137
1138 @subsection Using TAP network interfaces
1139
1140 This is the standard way to connect QEMU to a real network. QEMU adds
1141 a virtual network device on your host (called @code{tapN}), and you
1142 can then configure it as if it was a real ethernet card.
1143
1144 @subsubsection Linux host
1145
1146 As an example, you can download the @file{linux-test-xxx.tar.gz}
1147 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1148 configure properly @code{sudo} so that the command @code{ifconfig}
1149 contained in @file{qemu-ifup} can be executed as root. You must verify
1150 that your host kernel supports the TAP network interfaces: the
1151 device @file{/dev/net/tun} must be present.
1152
1153 See @ref{sec_invocation} to have examples of command lines using the
1154 TAP network interfaces.
1155
1156 @subsubsection Windows host
1157
1158 There is a virtual ethernet driver for Windows 2000/XP systems, called
1159 TAP-Win32. But it is not included in standard QEMU for Windows,
1160 so you will need to get it separately. It is part of OpenVPN package,
1161 so download OpenVPN from : @url{http://openvpn.net/}.
1162
1163 @subsection Using the user mode network stack
1164
1165 By using the option @option{-net user} (default configuration if no
1166 @option{-net} option is specified), QEMU uses a completely user mode
1167 network stack (you don't need root priviledge to use the virtual
1168 network). The virtual network configuration is the following:
1169
1170 @example
1171
1172 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1173 | (10.0.2.2)
1174 |
1175 ----> DNS server (10.0.2.3)
1176 |
1177 ----> SMB server (10.0.2.4)
1178 @end example
1179
1180 The QEMU VM behaves as if it was behind a firewall which blocks all
1181 incoming connections. You can use a DHCP client to automatically
1182 configure the network in the QEMU VM. The DHCP server assign addresses
1183 to the hosts starting from 10.0.2.15.
1184
1185 In order to check that the user mode network is working, you can ping
1186 the address 10.0.2.2 and verify that you got an address in the range
1187 10.0.2.x from the QEMU virtual DHCP server.
1188
1189 Note that @code{ping} is not supported reliably to the internet as it
1190 would require root priviledges. It means you can only ping the local
1191 router (10.0.2.2).
1192
1193 When using the built-in TFTP server, the router is also the TFTP
1194 server.
1195
1196 When using the @option{-redir} option, TCP or UDP connections can be
1197 redirected from the host to the guest. It allows for example to
1198 redirect X11, telnet or SSH connections.
1199
1200 @subsection Connecting VLANs between QEMU instances
1201
1202 Using the @option{-net socket} option, it is possible to make VLANs
1203 that span several QEMU instances. See @ref{sec_invocation} to have a
1204 basic example.
1205
1206 @node direct_linux_boot
1207 @section Direct Linux Boot
1208
1209 This section explains how to launch a Linux kernel inside QEMU without
1210 having to make a full bootable image. It is very useful for fast Linux
1211 kernel testing.
1212
1213 The syntax is:
1214 @example
1215 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1216 @end example
1217
1218 Use @option{-kernel} to provide the Linux kernel image and
1219 @option{-append} to give the kernel command line arguments. The
1220 @option{-initrd} option can be used to provide an INITRD image.
1221
1222 When using the direct Linux boot, a disk image for the first hard disk
1223 @file{hda} is required because its boot sector is used to launch the
1224 Linux kernel.
1225
1226 If you do not need graphical output, you can disable it and redirect
1227 the virtual serial port and the QEMU monitor to the console with the
1228 @option{-nographic} option. The typical command line is:
1229 @example
1230 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1231 -append "root=/dev/hda console=ttyS0" -nographic
1232 @end example
1233
1234 Use @key{Ctrl-a c} to switch between the serial console and the
1235 monitor (@pxref{pcsys_keys}).
1236
1237 @node pcsys_usb
1238 @section USB emulation
1239
1240 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1241 virtual USB devices or real host USB devices (experimental, works only
1242 on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1243 as necessary to connect multiple USB devices.
1244
1245 @menu
1246 * usb_devices::
1247 * host_usb_devices::
1248 @end menu
1249 @node usb_devices
1250 @subsection Connecting USB devices
1251
1252 USB devices can be connected with the @option{-usbdevice} commandline option
1253 or the @code{usb_add} monitor command. Available devices are:
1254
1255 @table @var
1256 @item @code{mouse}
1257 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1258 @item @code{tablet}
1259 Pointer device that uses absolute coordinates (like a touchscreen).
1260 This means qemu is able to report the mouse position without having
1261 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1262 @item @code{disk:file}
1263 Mass storage device based on @var{file} (@pxref{disk_images})
1264 @item @code{host:bus.addr}
1265 Pass through the host device identified by @var{bus.addr}
1266 (Linux only)
1267 @item @code{host:vendor_id:product_id}
1268 Pass through the host device identified by @var{vendor_id:product_id}
1269 (Linux only)
1270 @end table
1271
1272 @node host_usb_devices
1273 @subsection Using host USB devices on a Linux host
1274
1275 WARNING: this is an experimental feature. QEMU will slow down when
1276 using it. USB devices requiring real time streaming (i.e. USB Video
1277 Cameras) are not supported yet.
1278
1279 @enumerate
1280 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1281 is actually using the USB device. A simple way to do that is simply to
1282 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1283 to @file{mydriver.o.disabled}.
1284
1285 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1286 @example
1287 ls /proc/bus/usb
1288 001 devices drivers
1289 @end example
1290
1291 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1292 @example
1293 chown -R myuid /proc/bus/usb
1294 @end example
1295
1296 @item Launch QEMU and do in the monitor:
1297 @example
1298 info usbhost
1299 Device 1.2, speed 480 Mb/s
1300 Class 00: USB device 1234:5678, USB DISK
1301 @end example
1302 You should see the list of the devices you can use (Never try to use
1303 hubs, it won't work).
1304
1305 @item Add the device in QEMU by using:
1306 @example
1307 usb_add host:1234:5678
1308 @end example
1309
1310 Normally the guest OS should report that a new USB device is
1311 plugged. You can use the option @option{-usbdevice} to do the same.
1312
1313 @item Now you can try to use the host USB device in QEMU.
1314
1315 @end enumerate
1316
1317 When relaunching QEMU, you may have to unplug and plug again the USB
1318 device to make it work again (this is a bug).
1319
1320 @node gdb_usage
1321 @section GDB usage
1322
1323 QEMU has a primitive support to work with gdb, so that you can do
1324 'Ctrl-C' while the virtual machine is running and inspect its state.
1325
1326 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1327 gdb connection:
1328 @example
1329 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1330 -append "root=/dev/hda"
1331 Connected to host network interface: tun0
1332 Waiting gdb connection on port 1234
1333 @end example
1334
1335 Then launch gdb on the 'vmlinux' executable:
1336 @example
1337 > gdb vmlinux
1338 @end example
1339
1340 In gdb, connect to QEMU:
1341 @example
1342 (gdb) target remote localhost:1234
1343 @end example
1344
1345 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1346 @example
1347 (gdb) c
1348 @end example
1349
1350 Here are some useful tips in order to use gdb on system code:
1351
1352 @enumerate
1353 @item
1354 Use @code{info reg} to display all the CPU registers.
1355 @item
1356 Use @code{x/10i $eip} to display the code at the PC position.
1357 @item
1358 Use @code{set architecture i8086} to dump 16 bit code. Then use
1359 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1360 @end enumerate
1361
1362 @node pcsys_os_specific
1363 @section Target OS specific information
1364
1365 @subsection Linux
1366
1367 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1368 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1369 color depth in the guest and the host OS.
1370
1371 When using a 2.6 guest Linux kernel, you should add the option
1372 @code{clock=pit} on the kernel command line because the 2.6 Linux
1373 kernels make very strict real time clock checks by default that QEMU
1374 cannot simulate exactly.
1375
1376 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1377 not activated because QEMU is slower with this patch. The QEMU
1378 Accelerator Module is also much slower in this case. Earlier Fedora
1379 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1380 patch by default. Newer kernels don't have it.
1381
1382 @subsection Windows
1383
1384 If you have a slow host, using Windows 95 is better as it gives the
1385 best speed. Windows 2000 is also a good choice.
1386
1387 @subsubsection SVGA graphic modes support
1388
1389 QEMU emulates a Cirrus Logic GD5446 Video
1390 card. All Windows versions starting from Windows 95 should recognize
1391 and use this graphic card. For optimal performances, use 16 bit color
1392 depth in the guest and the host OS.
1393
1394 If you are using Windows XP as guest OS and if you want to use high
1395 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1396 1280x1024x16), then you should use the VESA VBE virtual graphic card
1397 (option @option{-std-vga}).
1398
1399 @subsubsection CPU usage reduction
1400
1401 Windows 9x does not correctly use the CPU HLT
1402 instruction. The result is that it takes host CPU cycles even when
1403 idle. You can install the utility from
1404 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1405 problem. Note that no such tool is needed for NT, 2000 or XP.
1406
1407 @subsubsection Windows 2000 disk full problem
1408
1409 Windows 2000 has a bug which gives a disk full problem during its
1410 installation. When installing it, use the @option{-win2k-hack} QEMU
1411 option to enable a specific workaround. After Windows 2000 is
1412 installed, you no longer need this option (this option slows down the
1413 IDE transfers).
1414
1415 @subsubsection Windows 2000 shutdown
1416
1417 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1418 can. It comes from the fact that Windows 2000 does not automatically
1419 use the APM driver provided by the BIOS.
1420
1421 In order to correct that, do the following (thanks to Struan
1422 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1423 Add/Troubleshoot a device => Add a new device & Next => No, select the
1424 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1425 (again) a few times. Now the driver is installed and Windows 2000 now
1426 correctly instructs QEMU to shutdown at the appropriate moment.
1427
1428 @subsubsection Share a directory between Unix and Windows
1429
1430 See @ref{sec_invocation} about the help of the option @option{-smb}.
1431
1432 @subsubsection Windows XP security problem
1433
1434 Some releases of Windows XP install correctly but give a security
1435 error when booting:
1436 @example
1437 A problem is preventing Windows from accurately checking the
1438 license for this computer. Error code: 0x800703e6.
1439 @end example
1440
1441 The workaround is to install a service pack for XP after a boot in safe
1442 mode. Then reboot, and the problem should go away. Since there is no
1443 network while in safe mode, its recommended to download the full
1444 installation of SP1 or SP2 and transfer that via an ISO or using the
1445 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1446
1447 @subsection MS-DOS and FreeDOS
1448
1449 @subsubsection CPU usage reduction
1450
1451 DOS does not correctly use the CPU HLT instruction. The result is that
1452 it takes host CPU cycles even when idle. You can install the utility
1453 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1454 problem.
1455
1456 @node QEMU System emulator for non PC targets
1457 @chapter QEMU System emulator for non PC targets
1458
1459 QEMU is a generic emulator and it emulates many non PC
1460 machines. Most of the options are similar to the PC emulator. The
1461 differences are mentionned in the following sections.
1462
1463 @menu
1464 * QEMU PowerPC System emulator::
1465 * Sparc32 System emulator invocation::
1466 * Sparc64 System emulator invocation::
1467 * MIPS System emulator invocation::
1468 * ARM System emulator invocation::
1469 @end menu
1470
1471 @node QEMU PowerPC System emulator
1472 @section QEMU PowerPC System emulator
1473
1474 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1475 or PowerMac PowerPC system.
1476
1477 QEMU emulates the following PowerMac peripherals:
1478
1479 @itemize @minus
1480 @item
1481 UniNorth PCI Bridge
1482 @item
1483 PCI VGA compatible card with VESA Bochs Extensions
1484 @item
1485 2 PMAC IDE interfaces with hard disk and CD-ROM support
1486 @item
1487 NE2000 PCI adapters
1488 @item
1489 Non Volatile RAM
1490 @item
1491 VIA-CUDA with ADB keyboard and mouse.
1492 @end itemize
1493
1494 QEMU emulates the following PREP peripherals:
1495
1496 @itemize @minus
1497 @item
1498 PCI Bridge
1499 @item
1500 PCI VGA compatible card with VESA Bochs Extensions
1501 @item
1502 2 IDE interfaces with hard disk and CD-ROM support
1503 @item
1504 Floppy disk
1505 @item
1506 NE2000 network adapters
1507 @item
1508 Serial port
1509 @item
1510 PREP Non Volatile RAM
1511 @item
1512 PC compatible keyboard and mouse.
1513 @end itemize
1514
1515 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1516 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1517
1518 @c man begin OPTIONS
1519
1520 The following options are specific to the PowerPC emulation:
1521
1522 @table @option
1523
1524 @item -g WxH[xDEPTH]
1525
1526 Set the initial VGA graphic mode. The default is 800x600x15.
1527
1528 @end table
1529
1530 @c man end
1531
1532
1533 More information is available at
1534 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1535
1536 @node Sparc32 System emulator invocation
1537 @section Sparc32 System emulator invocation
1538
1539 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1540 (sun4m architecture). The emulation is somewhat complete.
1541
1542 QEMU emulates the following sun4m peripherals:
1543
1544 @itemize @minus
1545 @item
1546 IOMMU
1547 @item
1548 TCX Frame buffer
1549 @item
1550 Lance (Am7990) Ethernet
1551 @item
1552 Non Volatile RAM M48T08
1553 @item
1554 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1555 and power/reset logic
1556 @item
1557 ESP SCSI controller with hard disk and CD-ROM support
1558 @item
1559 Floppy drive
1560 @end itemize
1561
1562 The number of peripherals is fixed in the architecture.
1563
1564 Since version 0.8.2, QEMU uses OpenBIOS
1565 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1566 firmware implementation. The goal is to implement a 100% IEEE
1567 1275-1994 (referred to as Open Firmware) compliant firmware.
1568
1569 A sample Linux 2.6 series kernel and ram disk image are available on
1570 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1571 Solaris kernels don't work.
1572
1573 @c man begin OPTIONS
1574
1575 The following options are specific to the Sparc emulation:
1576
1577 @table @option
1578
1579 @item -g WxH
1580
1581 Set the initial TCX graphic mode. The default is 1024x768.
1582
1583 @end table
1584
1585 @c man end
1586
1587 @node Sparc64 System emulator invocation
1588 @section Sparc64 System emulator invocation
1589
1590 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1591 The emulator is not usable for anything yet.
1592
1593 QEMU emulates the following sun4u peripherals:
1594
1595 @itemize @minus
1596 @item
1597 UltraSparc IIi APB PCI Bridge
1598 @item
1599 PCI VGA compatible card with VESA Bochs Extensions
1600 @item
1601 Non Volatile RAM M48T59
1602 @item
1603 PC-compatible serial ports
1604 @end itemize
1605
1606 @node MIPS System emulator invocation
1607 @section MIPS System emulator invocation
1608
1609 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1610 The emulator is able to boot a Linux kernel and to run a Linux Debian
1611 installation from NFS. The following devices are emulated:
1612
1613 @itemize @minus
1614 @item
1615 MIPS R4K CPU
1616 @item
1617 PC style serial port
1618 @item
1619 NE2000 network card
1620 @end itemize
1621
1622 More information is available in the QEMU mailing-list archive.
1623
1624 @node ARM System emulator invocation
1625 @section ARM System emulator invocation
1626
1627 Use the executable @file{qemu-system-arm} to simulate a ARM
1628 machine. The ARM Integrator/CP board is emulated with the following
1629 devices:
1630
1631 @itemize @minus
1632 @item
1633 ARM926E or ARM1026E CPU
1634 @item
1635 Two PL011 UARTs
1636 @item
1637 SMC 91c111 Ethernet adapter
1638 @item
1639 PL110 LCD controller
1640 @item
1641 PL050 KMI with PS/2 keyboard and mouse.
1642 @end itemize
1643
1644 The ARM Versatile baseboard is emulated with the following devices:
1645
1646 @itemize @minus
1647 @item
1648 ARM926E CPU
1649 @item
1650 PL190 Vectored Interrupt Controller
1651 @item
1652 Four PL011 UARTs
1653 @item
1654 SMC 91c111 Ethernet adapter
1655 @item
1656 PL110 LCD controller
1657 @item
1658 PL050 KMI with PS/2 keyboard and mouse.
1659 @item
1660 PCI host bridge. Note the emulated PCI bridge only provides access to
1661 PCI memory space. It does not provide access to PCI IO space.
1662 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1663 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1664 mapped control registers.
1665 @item
1666 PCI OHCI USB controller.
1667 @item
1668 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1669 @end itemize
1670
1671 A Linux 2.6 test image is available on the QEMU web site. More
1672 information is available in the QEMU mailing-list archive.
1673
1674 @node QEMU Linux User space emulator
1675 @chapter QEMU Linux User space emulator
1676
1677 @menu
1678 * Quick Start::
1679 * Wine launch::
1680 * Command line options::
1681 * Other binaries::
1682 @end menu
1683
1684 @node Quick Start
1685 @section Quick Start
1686
1687 In order to launch a Linux process, QEMU needs the process executable
1688 itself and all the target (x86) dynamic libraries used by it.
1689
1690 @itemize
1691
1692 @item On x86, you can just try to launch any process by using the native
1693 libraries:
1694
1695 @example
1696 qemu-i386 -L / /bin/ls
1697 @end example
1698
1699 @code{-L /} tells that the x86 dynamic linker must be searched with a
1700 @file{/} prefix.
1701
1702 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1703
1704 @example
1705 qemu-i386 -L / qemu-i386 -L / /bin/ls
1706 @end example
1707
1708 @item On non x86 CPUs, you need first to download at least an x86 glibc
1709 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1710 @code{LD_LIBRARY_PATH} is not set:
1711
1712 @example
1713 unset LD_LIBRARY_PATH
1714 @end example
1715
1716 Then you can launch the precompiled @file{ls} x86 executable:
1717
1718 @example
1719 qemu-i386 tests/i386/ls
1720 @end example
1721 You can look at @file{qemu-binfmt-conf.sh} so that
1722 QEMU is automatically launched by the Linux kernel when you try to
1723 launch x86 executables. It requires the @code{binfmt_misc} module in the
1724 Linux kernel.
1725
1726 @item The x86 version of QEMU is also included. You can try weird things such as:
1727 @example
1728 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1729 /usr/local/qemu-i386/bin/ls-i386
1730 @end example
1731
1732 @end itemize
1733
1734 @node Wine launch
1735 @section Wine launch
1736
1737 @itemize
1738
1739 @item Ensure that you have a working QEMU with the x86 glibc
1740 distribution (see previous section). In order to verify it, you must be
1741 able to do:
1742
1743 @example
1744 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1745 @end example
1746
1747 @item Download the binary x86 Wine install
1748 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
1749
1750 @item Configure Wine on your account. Look at the provided script
1751 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1752 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1753
1754 @item Then you can try the example @file{putty.exe}:
1755
1756 @example
1757 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1758 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1759 @end example
1760
1761 @end itemize
1762
1763 @node Command line options
1764 @section Command line options
1765
1766 @example
1767 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1768 @end example
1769
1770 @table @option
1771 @item -h
1772 Print the help
1773 @item -L path
1774 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1775 @item -s size
1776 Set the x86 stack size in bytes (default=524288)
1777 @end table
1778
1779 Debug options:
1780
1781 @table @option
1782 @item -d
1783 Activate log (logfile=/tmp/qemu.log)
1784 @item -p pagesize
1785 Act as if the host page size was 'pagesize' bytes
1786 @end table
1787
1788 @node Other binaries
1789 @section Other binaries
1790
1791 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1792 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1793 configurations), and arm-uclinux bFLT format binaries.
1794
1795 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
1796 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1797 coldfire uClinux bFLT format binaries.
1798
1799 The binary format is detected automatically.
1800
1801 @node compilation
1802 @chapter Compilation from the sources
1803
1804 @menu
1805 * Linux/Unix::
1806 * Windows::
1807 * Cross compilation for Windows with Linux::
1808 * Mac OS X::
1809 @end menu
1810
1811 @node Linux/Unix
1812 @section Linux/Unix
1813
1814 @subsection Compilation
1815
1816 First you must decompress the sources:
1817 @example
1818 cd /tmp
1819 tar zxvf qemu-x.y.z.tar.gz
1820 cd qemu-x.y.z
1821 @end example
1822
1823 Then you configure QEMU and build it (usually no options are needed):
1824 @example
1825 ./configure
1826 make
1827 @end example
1828
1829 Then type as root user:
1830 @example
1831 make install
1832 @end example
1833 to install QEMU in @file{/usr/local}.
1834
1835 @subsection Tested tool versions
1836
1837 In order to compile QEMU successfully, it is very important that you
1838 have the right tools. The most important one is gcc. I cannot guaranty
1839 that QEMU works if you do not use a tested gcc version. Look at
1840 'configure' and 'Makefile' if you want to make a different gcc
1841 version work.
1842
1843 @example
1844 host gcc binutils glibc linux distribution
1845 ----------------------------------------------------------------------
1846 x86 3.2 2.13.2 2.1.3 2.4.18
1847 2.96 2.11.93.0.2 2.2.5 2.4.18 Red Hat 7.3
1848 3.2.2 2.13.90.0.18 2.3.2 2.4.20 Red Hat 9
1849
1850 PowerPC 3.3 [4] 2.13.90.0.18 2.3.1 2.4.20briq
1851 3.2
1852
1853 Alpha 3.3 [1] 2.14.90.0.4 2.2.5 2.2.20 [2] Debian 3.0
1854
1855 Sparc32 2.95.4 2.12.90.0.1 2.2.5 2.4.18 Debian 3.0
1856
1857 ARM 2.95.4 2.12.90.0.1 2.2.5 2.4.9 [3] Debian 3.0
1858
1859 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1860 for gcc version >= 3.3.
1861 [2] Linux >= 2.4.20 is necessary for precise exception support
1862 (untested).
1863 [3] 2.4.9-ac10-rmk2-np1-cerf2
1864
1865 [4] gcc 2.95.x generates invalid code when using too many register
1866 variables. You must use gcc 3.x on PowerPC.
1867 @end example
1868
1869 @node Windows
1870 @section Windows
1871
1872 @itemize
1873 @item Install the current versions of MSYS and MinGW from
1874 @url{http://www.mingw.org/}. You can find detailed installation
1875 instructions in the download section and the FAQ.
1876
1877 @item Download
1878 the MinGW development library of SDL 1.2.x
1879 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1880 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1881 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1882 directory. Edit the @file{sdl-config} script so that it gives the
1883 correct SDL directory when invoked.
1884
1885 @item Extract the current version of QEMU.
1886
1887 @item Start the MSYS shell (file @file{msys.bat}).
1888
1889 @item Change to the QEMU directory. Launch @file{./configure} and
1890 @file{make}. If you have problems using SDL, verify that
1891 @file{sdl-config} can be launched from the MSYS command line.
1892
1893 @item You can install QEMU in @file{Program Files/Qemu} by typing
1894 @file{make install}. Don't forget to copy @file{SDL.dll} in
1895 @file{Program Files/Qemu}.
1896
1897 @end itemize
1898
1899 @node Cross compilation for Windows with Linux
1900 @section Cross compilation for Windows with Linux
1901
1902 @itemize
1903 @item
1904 Install the MinGW cross compilation tools available at
1905 @url{http://www.mingw.org/}.
1906
1907 @item
1908 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1909 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1910 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1911 the QEMU configuration script.
1912
1913 @item
1914 Configure QEMU for Windows cross compilation:
1915 @example
1916 ./configure --enable-mingw32
1917 @end example
1918 If necessary, you can change the cross-prefix according to the prefix
1919 choosen for the MinGW tools with --cross-prefix. You can also use
1920 --prefix to set the Win32 install path.
1921
1922 @item You can install QEMU in the installation directory by typing
1923 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1924 installation directory.
1925
1926 @end itemize
1927
1928 Note: Currently, Wine does not seem able to launch
1929 QEMU for Win32.
1930
1931 @node Mac OS X
1932 @section Mac OS X
1933
1934 The Mac OS X patches are not fully merged in QEMU, so you should look
1935 at the QEMU mailing list archive to have all the necessary
1936 information.
1937
1938 @node Index
1939 @chapter Index
1940 @printindex cp
1941
1942 @bye