]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
ivshmem: Split ivshmem-plain, ivshmem-doorbell off ivshmem
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4
5 @documentlanguage en
6 @documentencoding UTF-8
7
8 @settitle QEMU Emulator User Documentation
9 @exampleindent 0
10 @paragraphindent 0
11 @c %**end of header
12
13 @ifinfo
14 @direntry
15 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16 @end direntry
17 @end ifinfo
18
19 @iftex
20 @titlepage
21 @sp 7
22 @center @titlefont{QEMU Emulator}
23 @sp 1
24 @center @titlefont{User Documentation}
25 @sp 3
26 @end titlepage
27 @end iftex
28
29 @ifnottex
30 @node Top
31 @top
32
33 @menu
34 * Introduction::
35 * Installation::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU User space emulator::
39 * compilation:: Compilation from the sources
40 * License::
41 * Index::
42 @end menu
43 @end ifnottex
44
45 @contents
46
47 @node Introduction
48 @chapter Introduction
49
50 @menu
51 * intro_features:: Features
52 @end menu
53
54 @node intro_features
55 @section Features
56
57 QEMU is a FAST! processor emulator using dynamic translation to
58 achieve good emulation speed.
59
60 QEMU has two operating modes:
61
62 @itemize
63 @cindex operating modes
64
65 @item
66 @cindex system emulation
67 Full system emulation. In this mode, QEMU emulates a full system (for
68 example a PC), including one or several processors and various
69 peripherals. It can be used to launch different Operating Systems
70 without rebooting the PC or to debug system code.
71
72 @item
73 @cindex user mode emulation
74 User mode emulation. In this mode, QEMU can launch
75 processes compiled for one CPU on another CPU. It can be used to
76 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 to ease cross-compilation and cross-debugging.
78
79 @end itemize
80
81 QEMU can run without a host kernel driver and yet gives acceptable
82 performance.
83
84 For system emulation, the following hardware targets are supported:
85 @itemize
86 @cindex emulated target systems
87 @cindex supported target systems
88 @item PC (x86 or x86_64 processor)
89 @item ISA PC (old style PC without PCI bus)
90 @item PREP (PowerPC processor)
91 @item G3 Beige PowerMac (PowerPC processor)
92 @item Mac99 PowerMac (PowerPC processor, in progress)
93 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 @item Malta board (32-bit and 64-bit MIPS processors)
96 @item MIPS Magnum (64-bit MIPS processor)
97 @item ARM Integrator/CP (ARM)
98 @item ARM Versatile baseboard (ARM)
99 @item ARM RealView Emulation/Platform baseboard (ARM)
100 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 @item Freescale MCF5208EVB (ColdFire V2).
104 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 @item Palm Tungsten|E PDA (OMAP310 processor)
106 @item N800 and N810 tablets (OMAP2420 processor)
107 @item MusicPal (MV88W8618 ARM processor)
108 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 @item Siemens SX1 smartphone (OMAP310 processor)
110 @item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111 @item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112 @item Avnet LX60/LX110/LX200 boards (Xtensa)
113 @end itemize
114
115 @cindex supported user mode targets
116 For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119
120 @node Installation
121 @chapter Installation
122
123 If you want to compile QEMU yourself, see @ref{compilation}.
124
125 @menu
126 * install_linux:: Linux
127 * install_windows:: Windows
128 * install_mac:: Macintosh
129 @end menu
130
131 @node install_linux
132 @section Linux
133 @cindex installation (Linux)
134
135 If a precompiled package is available for your distribution - you just
136 have to install it. Otherwise, see @ref{compilation}.
137
138 @node install_windows
139 @section Windows
140 @cindex installation (Windows)
141
142 Download the experimental binary installer at
143 @url{http://www.free.oszoo.org/@/download.html}.
144 TODO (no longer available)
145
146 @node install_mac
147 @section Mac OS X
148
149 Download the experimental binary installer at
150 @url{http://www.free.oszoo.org/@/download.html}.
151 TODO (no longer available)
152
153 @node QEMU PC System emulator
154 @chapter QEMU PC System emulator
155 @cindex system emulation (PC)
156
157 @menu
158 * pcsys_introduction:: Introduction
159 * pcsys_quickstart:: Quick Start
160 * sec_invocation:: Invocation
161 * pcsys_keys:: Keys in the graphical frontends
162 * mux_keys:: Keys in the character backend multiplexer
163 * pcsys_monitor:: QEMU Monitor
164 * disk_images:: Disk Images
165 * pcsys_network:: Network emulation
166 * pcsys_other_devs:: Other Devices
167 * direct_linux_boot:: Direct Linux Boot
168 * pcsys_usb:: USB emulation
169 * vnc_security:: VNC security
170 * gdb_usage:: GDB usage
171 * pcsys_os_specific:: Target OS specific information
172 @end menu
173
174 @node pcsys_introduction
175 @section Introduction
176
177 @c man begin DESCRIPTION
178
179 The QEMU PC System emulator simulates the
180 following peripherals:
181
182 @itemize @minus
183 @item
184 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
185 @item
186 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
187 extensions (hardware level, including all non standard modes).
188 @item
189 PS/2 mouse and keyboard
190 @item
191 2 PCI IDE interfaces with hard disk and CD-ROM support
192 @item
193 Floppy disk
194 @item
195 PCI and ISA network adapters
196 @item
197 Serial ports
198 @item
199 IPMI BMC, either and internal or external one
200 @item
201 Creative SoundBlaster 16 sound card
202 @item
203 ENSONIQ AudioPCI ES1370 sound card
204 @item
205 Intel 82801AA AC97 Audio compatible sound card
206 @item
207 Intel HD Audio Controller and HDA codec
208 @item
209 Adlib (OPL2) - Yamaha YM3812 compatible chip
210 @item
211 Gravis Ultrasound GF1 sound card
212 @item
213 CS4231A compatible sound card
214 @item
215 PCI UHCI USB controller and a virtual USB hub.
216 @end itemize
217
218 SMP is supported with up to 255 CPUs.
219
220 QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
221 VGA BIOS.
222
223 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
224
225 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
226 by Tibor "TS" Schütz.
227
228 Note that, by default, GUS shares IRQ(7) with parallel ports and so
229 QEMU must be told to not have parallel ports to have working GUS.
230
231 @example
232 qemu-system-i386 dos.img -soundhw gus -parallel none
233 @end example
234
235 Alternatively:
236 @example
237 qemu-system-i386 dos.img -device gus,irq=5
238 @end example
239
240 Or some other unclaimed IRQ.
241
242 CS4231A is the chip used in Windows Sound System and GUSMAX products
243
244 @c man end
245
246 @node pcsys_quickstart
247 @section Quick Start
248 @cindex quick start
249
250 Download and uncompress the linux image (@file{linux.img}) and type:
251
252 @example
253 qemu-system-i386 linux.img
254 @end example
255
256 Linux should boot and give you a prompt.
257
258 @node sec_invocation
259 @section Invocation
260
261 @example
262 @c man begin SYNOPSIS
263 @command{qemu-system-i386} [@var{options}] [@var{disk_image}]
264 @c man end
265 @end example
266
267 @c man begin OPTIONS
268 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
269 targets do not need a disk image.
270
271 @include qemu-options.texi
272
273 @c man end
274
275 @node pcsys_keys
276 @section Keys in the graphical frontends
277
278 @c man begin OPTIONS
279
280 During the graphical emulation, you can use special key combinations to change
281 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
282 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
283 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
284
285 @table @key
286 @item Ctrl-Alt-f
287 @kindex Ctrl-Alt-f
288 Toggle full screen
289
290 @item Ctrl-Alt-+
291 @kindex Ctrl-Alt-+
292 Enlarge the screen
293
294 @item Ctrl-Alt--
295 @kindex Ctrl-Alt--
296 Shrink the screen
297
298 @item Ctrl-Alt-u
299 @kindex Ctrl-Alt-u
300 Restore the screen's un-scaled dimensions
301
302 @item Ctrl-Alt-n
303 @kindex Ctrl-Alt-n
304 Switch to virtual console 'n'. Standard console mappings are:
305 @table @emph
306 @item 1
307 Target system display
308 @item 2
309 Monitor
310 @item 3
311 Serial port
312 @end table
313
314 @item Ctrl-Alt
315 @kindex Ctrl-Alt
316 Toggle mouse and keyboard grab.
317 @end table
318
319 @kindex Ctrl-Up
320 @kindex Ctrl-Down
321 @kindex Ctrl-PageUp
322 @kindex Ctrl-PageDown
323 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
324 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
325
326 @c man end
327
328 @node mux_keys
329 @section Keys in the character backend multiplexer
330
331 @c man begin OPTIONS
332
333 During emulation, if you are using a character backend multiplexer
334 (which is the default if you are using @option{-nographic}) then
335 several commands are available via an escape sequence. These
336 key sequences all start with an escape character, which is @key{Ctrl-a}
337 by default, but can be changed with @option{-echr}. The list below assumes
338 you're using the default.
339
340 @table @key
341 @item Ctrl-a h
342 @kindex Ctrl-a h
343 Print this help
344 @item Ctrl-a x
345 @kindex Ctrl-a x
346 Exit emulator
347 @item Ctrl-a s
348 @kindex Ctrl-a s
349 Save disk data back to file (if -snapshot)
350 @item Ctrl-a t
351 @kindex Ctrl-a t
352 Toggle console timestamps
353 @item Ctrl-a b
354 @kindex Ctrl-a b
355 Send break (magic sysrq in Linux)
356 @item Ctrl-a c
357 @kindex Ctrl-a c
358 Rotate between the frontends connected to the multiplexer (usually
359 this switches between the monitor and the console)
360 @item Ctrl-a Ctrl-a
361 @kindex Ctrl-a Ctrl-a
362 Send the escape character to the frontend
363 @end table
364 @c man end
365
366 @ignore
367
368 @c man begin SEEALSO
369 The HTML documentation of QEMU for more precise information and Linux
370 user mode emulator invocation.
371 @c man end
372
373 @c man begin AUTHOR
374 Fabrice Bellard
375 @c man end
376
377 @end ignore
378
379 @node pcsys_monitor
380 @section QEMU Monitor
381 @cindex QEMU monitor
382
383 The QEMU monitor is used to give complex commands to the QEMU
384 emulator. You can use it to:
385
386 @itemize @minus
387
388 @item
389 Remove or insert removable media images
390 (such as CD-ROM or floppies).
391
392 @item
393 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
394 from a disk file.
395
396 @item Inspect the VM state without an external debugger.
397
398 @end itemize
399
400 @subsection Commands
401
402 The following commands are available:
403
404 @include qemu-monitor.texi
405
406 @include qemu-monitor-info.texi
407
408 @subsection Integer expressions
409
410 The monitor understands integers expressions for every integer
411 argument. You can use register names to get the value of specifics
412 CPU registers by prefixing them with @emph{$}.
413
414 @node disk_images
415 @section Disk Images
416
417 Since version 0.6.1, QEMU supports many disk image formats, including
418 growable disk images (their size increase as non empty sectors are
419 written), compressed and encrypted disk images. Version 0.8.3 added
420 the new qcow2 disk image format which is essential to support VM
421 snapshots.
422
423 @menu
424 * disk_images_quickstart:: Quick start for disk image creation
425 * disk_images_snapshot_mode:: Snapshot mode
426 * vm_snapshots:: VM snapshots
427 * qemu_img_invocation:: qemu-img Invocation
428 * qemu_nbd_invocation:: qemu-nbd Invocation
429 * qemu_ga_invocation:: qemu-ga Invocation
430 * disk_images_formats:: Disk image file formats
431 * host_drives:: Using host drives
432 * disk_images_fat_images:: Virtual FAT disk images
433 * disk_images_nbd:: NBD access
434 * disk_images_sheepdog:: Sheepdog disk images
435 * disk_images_iscsi:: iSCSI LUNs
436 * disk_images_gluster:: GlusterFS disk images
437 * disk_images_ssh:: Secure Shell (ssh) disk images
438 @end menu
439
440 @node disk_images_quickstart
441 @subsection Quick start for disk image creation
442
443 You can create a disk image with the command:
444 @example
445 qemu-img create myimage.img mysize
446 @end example
447 where @var{myimage.img} is the disk image filename and @var{mysize} is its
448 size in kilobytes. You can add an @code{M} suffix to give the size in
449 megabytes and a @code{G} suffix for gigabytes.
450
451 See @ref{qemu_img_invocation} for more information.
452
453 @node disk_images_snapshot_mode
454 @subsection Snapshot mode
455
456 If you use the option @option{-snapshot}, all disk images are
457 considered as read only. When sectors in written, they are written in
458 a temporary file created in @file{/tmp}. You can however force the
459 write back to the raw disk images by using the @code{commit} monitor
460 command (or @key{C-a s} in the serial console).
461
462 @node vm_snapshots
463 @subsection VM snapshots
464
465 VM snapshots are snapshots of the complete virtual machine including
466 CPU state, RAM, device state and the content of all the writable
467 disks. In order to use VM snapshots, you must have at least one non
468 removable and writable block device using the @code{qcow2} disk image
469 format. Normally this device is the first virtual hard drive.
470
471 Use the monitor command @code{savevm} to create a new VM snapshot or
472 replace an existing one. A human readable name can be assigned to each
473 snapshot in addition to its numerical ID.
474
475 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
476 a VM snapshot. @code{info snapshots} lists the available snapshots
477 with their associated information:
478
479 @example
480 (qemu) info snapshots
481 Snapshot devices: hda
482 Snapshot list (from hda):
483 ID TAG VM SIZE DATE VM CLOCK
484 1 start 41M 2006-08-06 12:38:02 00:00:14.954
485 2 40M 2006-08-06 12:43:29 00:00:18.633
486 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
487 @end example
488
489 A VM snapshot is made of a VM state info (its size is shown in
490 @code{info snapshots}) and a snapshot of every writable disk image.
491 The VM state info is stored in the first @code{qcow2} non removable
492 and writable block device. The disk image snapshots are stored in
493 every disk image. The size of a snapshot in a disk image is difficult
494 to evaluate and is not shown by @code{info snapshots} because the
495 associated disk sectors are shared among all the snapshots to save
496 disk space (otherwise each snapshot would need a full copy of all the
497 disk images).
498
499 When using the (unrelated) @code{-snapshot} option
500 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
501 but they are deleted as soon as you exit QEMU.
502
503 VM snapshots currently have the following known limitations:
504 @itemize
505 @item
506 They cannot cope with removable devices if they are removed or
507 inserted after a snapshot is done.
508 @item
509 A few device drivers still have incomplete snapshot support so their
510 state is not saved or restored properly (in particular USB).
511 @end itemize
512
513 @node qemu_img_invocation
514 @subsection @code{qemu-img} Invocation
515
516 @include qemu-img.texi
517
518 @node qemu_nbd_invocation
519 @subsection @code{qemu-nbd} Invocation
520
521 @include qemu-nbd.texi
522
523 @node qemu_ga_invocation
524 @subsection @code{qemu-ga} Invocation
525
526 @include qemu-ga.texi
527
528 @node disk_images_formats
529 @subsection Disk image file formats
530
531 QEMU supports many image file formats that can be used with VMs as well as with
532 any of the tools (like @code{qemu-img}). This includes the preferred formats
533 raw and qcow2 as well as formats that are supported for compatibility with
534 older QEMU versions or other hypervisors.
535
536 Depending on the image format, different options can be passed to
537 @code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
538 This section describes each format and the options that are supported for it.
539
540 @table @option
541 @item raw
542
543 Raw disk image format. This format has the advantage of
544 being simple and easily exportable to all other emulators. If your
545 file system supports @emph{holes} (for example in ext2 or ext3 on
546 Linux or NTFS on Windows), then only the written sectors will reserve
547 space. Use @code{qemu-img info} to know the real size used by the
548 image or @code{ls -ls} on Unix/Linux.
549
550 Supported options:
551 @table @code
552 @item preallocation
553 Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
554 @code{falloc} mode preallocates space for image by calling posix_fallocate().
555 @code{full} mode preallocates space for image by writing zeros to underlying
556 storage.
557 @end table
558
559 @item qcow2
560 QEMU image format, the most versatile format. Use it to have smaller
561 images (useful if your filesystem does not supports holes, for example
562 on Windows), zlib based compression and support of multiple VM
563 snapshots.
564
565 Supported options:
566 @table @code
567 @item compat
568 Determines the qcow2 version to use. @code{compat=0.10} uses the
569 traditional image format that can be read by any QEMU since 0.10.
570 @code{compat=1.1} enables image format extensions that only QEMU 1.1 and
571 newer understand (this is the default). Amongst others, this includes
572 zero clusters, which allow efficient copy-on-read for sparse images.
573
574 @item backing_file
575 File name of a base image (see @option{create} subcommand)
576 @item backing_fmt
577 Image format of the base image
578 @item encryption
579 If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
580
581 The use of encryption in qcow and qcow2 images is considered to be flawed by
582 modern cryptography standards, suffering from a number of design problems:
583
584 @itemize @minus
585 @item The AES-CBC cipher is used with predictable initialization vectors based
586 on the sector number. This makes it vulnerable to chosen plaintext attacks
587 which can reveal the existence of encrypted data.
588 @item The user passphrase is directly used as the encryption key. A poorly
589 chosen or short passphrase will compromise the security of the encryption.
590 @item In the event of the passphrase being compromised there is no way to
591 change the passphrase to protect data in any qcow images. The files must
592 be cloned, using a different encryption passphrase in the new file. The
593 original file must then be securely erased using a program like shred,
594 though even this is ineffective with many modern storage technologies.
595 @end itemize
596
597 Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
598 it will go away in a future release. Users are recommended to use an
599 alternative encryption technology such as the Linux dm-crypt / LUKS
600 system.
601
602 @item cluster_size
603 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
604 sizes can improve the image file size whereas larger cluster sizes generally
605 provide better performance.
606
607 @item preallocation
608 Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
609 @code{full}). An image with preallocated metadata is initially larger but can
610 improve performance when the image needs to grow. @code{falloc} and @code{full}
611 preallocations are like the same options of @code{raw} format, but sets up
612 metadata also.
613
614 @item lazy_refcounts
615 If this option is set to @code{on}, reference count updates are postponed with
616 the goal of avoiding metadata I/O and improving performance. This is
617 particularly interesting with @option{cache=writethrough} which doesn't batch
618 metadata updates. The tradeoff is that after a host crash, the reference count
619 tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
620 check -r all} is required, which may take some time.
621
622 This option can only be enabled if @code{compat=1.1} is specified.
623
624 @item nocow
625 If this option is set to @code{on}, it will turn off COW of the file. It's only
626 valid on btrfs, no effect on other file systems.
627
628 Btrfs has low performance when hosting a VM image file, even more when the guest
629 on the VM also using btrfs as file system. Turning off COW is a way to mitigate
630 this bad performance. Generally there are two ways to turn off COW on btrfs:
631 a) Disable it by mounting with nodatacow, then all newly created files will be
632 NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
633 does.
634
635 Note: this option is only valid to new or empty files. If there is an existing
636 file which is COW and has data blocks already, it couldn't be changed to NOCOW
637 by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
638 the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
639
640 @end table
641
642 @item qed
643 Old QEMU image format with support for backing files and compact image files
644 (when your filesystem or transport medium does not support holes).
645
646 When converting QED images to qcow2, you might want to consider using the
647 @code{lazy_refcounts=on} option to get a more QED-like behaviour.
648
649 Supported options:
650 @table @code
651 @item backing_file
652 File name of a base image (see @option{create} subcommand).
653 @item backing_fmt
654 Image file format of backing file (optional). Useful if the format cannot be
655 autodetected because it has no header, like some vhd/vpc files.
656 @item cluster_size
657 Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
658 cluster sizes can improve the image file size whereas larger cluster sizes
659 generally provide better performance.
660 @item table_size
661 Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
662 and 16). There is normally no need to change this value but this option can be
663 used for performance benchmarking.
664 @end table
665
666 @item qcow
667 Old QEMU image format with support for backing files, compact image files,
668 encryption and compression.
669
670 Supported options:
671 @table @code
672 @item backing_file
673 File name of a base image (see @option{create} subcommand)
674 @item encryption
675 If this option is set to @code{on}, the image is encrypted.
676 @end table
677
678 @item vdi
679 VirtualBox 1.1 compatible image format.
680 Supported options:
681 @table @code
682 @item static
683 If this option is set to @code{on}, the image is created with metadata
684 preallocation.
685 @end table
686
687 @item vmdk
688 VMware 3 and 4 compatible image format.
689
690 Supported options:
691 @table @code
692 @item backing_file
693 File name of a base image (see @option{create} subcommand).
694 @item compat6
695 Create a VMDK version 6 image (instead of version 4)
696 @item subformat
697 Specifies which VMDK subformat to use. Valid options are
698 @code{monolithicSparse} (default),
699 @code{monolithicFlat},
700 @code{twoGbMaxExtentSparse},
701 @code{twoGbMaxExtentFlat} and
702 @code{streamOptimized}.
703 @end table
704
705 @item vpc
706 VirtualPC compatible image format (VHD).
707 Supported options:
708 @table @code
709 @item subformat
710 Specifies which VHD subformat to use. Valid options are
711 @code{dynamic} (default) and @code{fixed}.
712 @end table
713
714 @item VHDX
715 Hyper-V compatible image format (VHDX).
716 Supported options:
717 @table @code
718 @item subformat
719 Specifies which VHDX subformat to use. Valid options are
720 @code{dynamic} (default) and @code{fixed}.
721 @item block_state_zero
722 Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
723 or @code{off}. When set to @code{off}, new blocks will be created as
724 @code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
725 arbitrary data for those blocks. Do not set to @code{off} when using
726 @code{qemu-img convert} with @code{subformat=dynamic}.
727 @item block_size
728 Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
729 @item log_size
730 Log size; min 1 MB.
731 @end table
732 @end table
733
734 @subsubsection Read-only formats
735 More disk image file formats are supported in a read-only mode.
736 @table @option
737 @item bochs
738 Bochs images of @code{growing} type.
739 @item cloop
740 Linux Compressed Loop image, useful only to reuse directly compressed
741 CD-ROM images present for example in the Knoppix CD-ROMs.
742 @item dmg
743 Apple disk image.
744 @item parallels
745 Parallels disk image format.
746 @end table
747
748
749 @node host_drives
750 @subsection Using host drives
751
752 In addition to disk image files, QEMU can directly access host
753 devices. We describe here the usage for QEMU version >= 0.8.3.
754
755 @subsubsection Linux
756
757 On Linux, you can directly use the host device filename instead of a
758 disk image filename provided you have enough privileges to access
759 it. For example, use @file{/dev/cdrom} to access to the CDROM.
760
761 @table @code
762 @item CD
763 You can specify a CDROM device even if no CDROM is loaded. QEMU has
764 specific code to detect CDROM insertion or removal. CDROM ejection by
765 the guest OS is supported. Currently only data CDs are supported.
766 @item Floppy
767 You can specify a floppy device even if no floppy is loaded. Floppy
768 removal is currently not detected accurately (if you change floppy
769 without doing floppy access while the floppy is not loaded, the guest
770 OS will think that the same floppy is loaded).
771 Use of the host's floppy device is deprecated, and support for it will
772 be removed in a future release.
773 @item Hard disks
774 Hard disks can be used. Normally you must specify the whole disk
775 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
776 see it as a partitioned disk. WARNING: unless you know what you do, it
777 is better to only make READ-ONLY accesses to the hard disk otherwise
778 you may corrupt your host data (use the @option{-snapshot} command
779 line option or modify the device permissions accordingly).
780 @end table
781
782 @subsubsection Windows
783
784 @table @code
785 @item CD
786 The preferred syntax is the drive letter (e.g. @file{d:}). The
787 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
788 supported as an alias to the first CDROM drive.
789
790 Currently there is no specific code to handle removable media, so it
791 is better to use the @code{change} or @code{eject} monitor commands to
792 change or eject media.
793 @item Hard disks
794 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
795 where @var{N} is the drive number (0 is the first hard disk).
796
797 WARNING: unless you know what you do, it is better to only make
798 READ-ONLY accesses to the hard disk otherwise you may corrupt your
799 host data (use the @option{-snapshot} command line so that the
800 modifications are written in a temporary file).
801 @end table
802
803
804 @subsubsection Mac OS X
805
806 @file{/dev/cdrom} is an alias to the first CDROM.
807
808 Currently there is no specific code to handle removable media, so it
809 is better to use the @code{change} or @code{eject} monitor commands to
810 change or eject media.
811
812 @node disk_images_fat_images
813 @subsection Virtual FAT disk images
814
815 QEMU can automatically create a virtual FAT disk image from a
816 directory tree. In order to use it, just type:
817
818 @example
819 qemu-system-i386 linux.img -hdb fat:/my_directory
820 @end example
821
822 Then you access access to all the files in the @file{/my_directory}
823 directory without having to copy them in a disk image or to export
824 them via SAMBA or NFS. The default access is @emph{read-only}.
825
826 Floppies can be emulated with the @code{:floppy:} option:
827
828 @example
829 qemu-system-i386 linux.img -fda fat:floppy:/my_directory
830 @end example
831
832 A read/write support is available for testing (beta stage) with the
833 @code{:rw:} option:
834
835 @example
836 qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
837 @end example
838
839 What you should @emph{never} do:
840 @itemize
841 @item use non-ASCII filenames ;
842 @item use "-snapshot" together with ":rw:" ;
843 @item expect it to work when loadvm'ing ;
844 @item write to the FAT directory on the host system while accessing it with the guest system.
845 @end itemize
846
847 @node disk_images_nbd
848 @subsection NBD access
849
850 QEMU can access directly to block device exported using the Network Block Device
851 protocol.
852
853 @example
854 qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
855 @end example
856
857 If the NBD server is located on the same host, you can use an unix socket instead
858 of an inet socket:
859
860 @example
861 qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
862 @end example
863
864 In this case, the block device must be exported using qemu-nbd:
865
866 @example
867 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
868 @end example
869
870 The use of qemu-nbd allows sharing of a disk between several guests:
871 @example
872 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
873 @end example
874
875 @noindent
876 and then you can use it with two guests:
877 @example
878 qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
879 qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
880 @end example
881
882 If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
883 own embedded NBD server), you must specify an export name in the URI:
884 @example
885 qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
886 qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
887 @end example
888
889 The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
890 also available. Here are some example of the older syntax:
891 @example
892 qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
893 qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
894 qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
895 @end example
896
897 @node disk_images_sheepdog
898 @subsection Sheepdog disk images
899
900 Sheepdog is a distributed storage system for QEMU. It provides highly
901 available block level storage volumes that can be attached to
902 QEMU-based virtual machines.
903
904 You can create a Sheepdog disk image with the command:
905 @example
906 qemu-img create sheepdog:///@var{image} @var{size}
907 @end example
908 where @var{image} is the Sheepdog image name and @var{size} is its
909 size.
910
911 To import the existing @var{filename} to Sheepdog, you can use a
912 convert command.
913 @example
914 qemu-img convert @var{filename} sheepdog:///@var{image}
915 @end example
916
917 You can boot from the Sheepdog disk image with the command:
918 @example
919 qemu-system-i386 sheepdog:///@var{image}
920 @end example
921
922 You can also create a snapshot of the Sheepdog image like qcow2.
923 @example
924 qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
925 @end example
926 where @var{tag} is a tag name of the newly created snapshot.
927
928 To boot from the Sheepdog snapshot, specify the tag name of the
929 snapshot.
930 @example
931 qemu-system-i386 sheepdog:///@var{image}#@var{tag}
932 @end example
933
934 You can create a cloned image from the existing snapshot.
935 @example
936 qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
937 @end example
938 where @var{base} is a image name of the source snapshot and @var{tag}
939 is its tag name.
940
941 You can use an unix socket instead of an inet socket:
942
943 @example
944 qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
945 @end example
946
947 If the Sheepdog daemon doesn't run on the local host, you need to
948 specify one of the Sheepdog servers to connect to.
949 @example
950 qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
951 qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
952 @end example
953
954 @node disk_images_iscsi
955 @subsection iSCSI LUNs
956
957 iSCSI is a popular protocol used to access SCSI devices across a computer
958 network.
959
960 There are two different ways iSCSI devices can be used by QEMU.
961
962 The first method is to mount the iSCSI LUN on the host, and make it appear as
963 any other ordinary SCSI device on the host and then to access this device as a
964 /dev/sd device from QEMU. How to do this differs between host OSes.
965
966 The second method involves using the iSCSI initiator that is built into
967 QEMU. This provides a mechanism that works the same way regardless of which
968 host OS you are running QEMU on. This section will describe this second method
969 of using iSCSI together with QEMU.
970
971 In QEMU, iSCSI devices are described using special iSCSI URLs
972
973 @example
974 URL syntax:
975 iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
976 @end example
977
978 Username and password are optional and only used if your target is set up
979 using CHAP authentication for access control.
980 Alternatively the username and password can also be set via environment
981 variables to have these not show up in the process list
982
983 @example
984 export LIBISCSI_CHAP_USERNAME=<username>
985 export LIBISCSI_CHAP_PASSWORD=<password>
986 iscsi://<host>/<target-iqn-name>/<lun>
987 @end example
988
989 Various session related parameters can be set via special options, either
990 in a configuration file provided via '-readconfig' or directly on the
991 command line.
992
993 If the initiator-name is not specified qemu will use a default name
994 of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
995 virtual machine.
996
997
998 @example
999 Setting a specific initiator name to use when logging in to the target
1000 -iscsi initiator-name=iqn.qemu.test:my-initiator
1001 @end example
1002
1003 @example
1004 Controlling which type of header digest to negotiate with the target
1005 -iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1006 @end example
1007
1008 These can also be set via a configuration file
1009 @example
1010 [iscsi]
1011 user = "CHAP username"
1012 password = "CHAP password"
1013 initiator-name = "iqn.qemu.test:my-initiator"
1014 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1015 header-digest = "CRC32C"
1016 @end example
1017
1018
1019 Setting the target name allows different options for different targets
1020 @example
1021 [iscsi "iqn.target.name"]
1022 user = "CHAP username"
1023 password = "CHAP password"
1024 initiator-name = "iqn.qemu.test:my-initiator"
1025 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1026 header-digest = "CRC32C"
1027 @end example
1028
1029
1030 Howto use a configuration file to set iSCSI configuration options:
1031 @example
1032 cat >iscsi.conf <<EOF
1033 [iscsi]
1034 user = "me"
1035 password = "my password"
1036 initiator-name = "iqn.qemu.test:my-initiator"
1037 header-digest = "CRC32C"
1038 EOF
1039
1040 qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1041 -readconfig iscsi.conf
1042 @end example
1043
1044
1045 Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1046 @example
1047 This example shows how to set up an iSCSI target with one CDROM and one DISK
1048 using the Linux STGT software target. This target is available on Red Hat based
1049 systems as the package 'scsi-target-utils'.
1050
1051 tgtd --iscsi portal=127.0.0.1:3260
1052 tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1053 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1054 -b /IMAGES/disk.img --device-type=disk
1055 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1056 -b /IMAGES/cd.iso --device-type=cd
1057 tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1058
1059 qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1060 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1061 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1062 @end example
1063
1064 @node disk_images_gluster
1065 @subsection GlusterFS disk images
1066
1067 GlusterFS is an user space distributed file system.
1068
1069 You can boot from the GlusterFS disk image with the command:
1070 @example
1071 qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1072 @end example
1073
1074 @var{gluster} is the protocol.
1075
1076 @var{transport} specifies the transport type used to connect to gluster
1077 management daemon (glusterd). Valid transport types are
1078 tcp, unix and rdma. If a transport type isn't specified, then tcp
1079 type is assumed.
1080
1081 @var{server} specifies the server where the volume file specification for
1082 the given volume resides. This can be either hostname, ipv4 address
1083 or ipv6 address. ipv6 address needs to be within square brackets [ ].
1084 If transport type is unix, then @var{server} field should not be specified.
1085 Instead @var{socket} field needs to be populated with the path to unix domain
1086 socket.
1087
1088 @var{port} is the port number on which glusterd is listening. This is optional
1089 and if not specified, QEMU will send 0 which will make gluster to use the
1090 default port. If the transport type is unix, then @var{port} should not be
1091 specified.
1092
1093 @var{volname} is the name of the gluster volume which contains the disk image.
1094
1095 @var{image} is the path to the actual disk image that resides on gluster volume.
1096
1097 You can create a GlusterFS disk image with the command:
1098 @example
1099 qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1100 @end example
1101
1102 Examples
1103 @example
1104 qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1105 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1106 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1107 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1108 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1109 qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1110 qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1111 qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1112 @end example
1113
1114 @node disk_images_ssh
1115 @subsection Secure Shell (ssh) disk images
1116
1117 You can access disk images located on a remote ssh server
1118 by using the ssh protocol:
1119
1120 @example
1121 qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1122 @end example
1123
1124 Alternative syntax using properties:
1125
1126 @example
1127 qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1128 @end example
1129
1130 @var{ssh} is the protocol.
1131
1132 @var{user} is the remote user. If not specified, then the local
1133 username is tried.
1134
1135 @var{server} specifies the remote ssh server. Any ssh server can be
1136 used, but it must implement the sftp-server protocol. Most Unix/Linux
1137 systems should work without requiring any extra configuration.
1138
1139 @var{port} is the port number on which sshd is listening. By default
1140 the standard ssh port (22) is used.
1141
1142 @var{path} is the path to the disk image.
1143
1144 The optional @var{host_key_check} parameter controls how the remote
1145 host's key is checked. The default is @code{yes} which means to use
1146 the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1147 turns off known-hosts checking. Or you can check that the host key
1148 matches a specific fingerprint:
1149 @code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1150 (@code{sha1:} can also be used as a prefix, but note that OpenSSH
1151 tools only use MD5 to print fingerprints).
1152
1153 Currently authentication must be done using ssh-agent. Other
1154 authentication methods may be supported in future.
1155
1156 Note: Many ssh servers do not support an @code{fsync}-style operation.
1157 The ssh driver cannot guarantee that disk flush requests are
1158 obeyed, and this causes a risk of disk corruption if the remote
1159 server or network goes down during writes. The driver will
1160 print a warning when @code{fsync} is not supported:
1161
1162 warning: ssh server @code{ssh.example.com:22} does not support fsync
1163
1164 With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1165 supported.
1166
1167 @node pcsys_network
1168 @section Network emulation
1169
1170 QEMU can simulate several network cards (PCI or ISA cards on the PC
1171 target) and can connect them to an arbitrary number of Virtual Local
1172 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1173 VLAN. VLAN can be connected between separate instances of QEMU to
1174 simulate large networks. For simpler usage, a non privileged user mode
1175 network stack can replace the TAP device to have a basic network
1176 connection.
1177
1178 @subsection VLANs
1179
1180 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1181 connection between several network devices. These devices can be for
1182 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1183 (TAP devices).
1184
1185 @subsection Using TAP network interfaces
1186
1187 This is the standard way to connect QEMU to a real network. QEMU adds
1188 a virtual network device on your host (called @code{tapN}), and you
1189 can then configure it as if it was a real ethernet card.
1190
1191 @subsubsection Linux host
1192
1193 As an example, you can download the @file{linux-test-xxx.tar.gz}
1194 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1195 configure properly @code{sudo} so that the command @code{ifconfig}
1196 contained in @file{qemu-ifup} can be executed as root. You must verify
1197 that your host kernel supports the TAP network interfaces: the
1198 device @file{/dev/net/tun} must be present.
1199
1200 See @ref{sec_invocation} to have examples of command lines using the
1201 TAP network interfaces.
1202
1203 @subsubsection Windows host
1204
1205 There is a virtual ethernet driver for Windows 2000/XP systems, called
1206 TAP-Win32. But it is not included in standard QEMU for Windows,
1207 so you will need to get it separately. It is part of OpenVPN package,
1208 so download OpenVPN from : @url{http://openvpn.net/}.
1209
1210 @subsection Using the user mode network stack
1211
1212 By using the option @option{-net user} (default configuration if no
1213 @option{-net} option is specified), QEMU uses a completely user mode
1214 network stack (you don't need root privilege to use the virtual
1215 network). The virtual network configuration is the following:
1216
1217 @example
1218
1219 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1220 | (10.0.2.2)
1221 |
1222 ----> DNS server (10.0.2.3)
1223 |
1224 ----> SMB server (10.0.2.4)
1225 @end example
1226
1227 The QEMU VM behaves as if it was behind a firewall which blocks all
1228 incoming connections. You can use a DHCP client to automatically
1229 configure the network in the QEMU VM. The DHCP server assign addresses
1230 to the hosts starting from 10.0.2.15.
1231
1232 In order to check that the user mode network is working, you can ping
1233 the address 10.0.2.2 and verify that you got an address in the range
1234 10.0.2.x from the QEMU virtual DHCP server.
1235
1236 Note that ICMP traffic in general does not work with user mode networking.
1237 @code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1238 however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1239 ping sockets to allow @code{ping} to the Internet. The host admin has to set
1240 the ping_group_range in order to grant access to those sockets. To allow ping
1241 for GID 100 (usually users group):
1242
1243 @example
1244 echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1245 @end example
1246
1247 When using the built-in TFTP server, the router is also the TFTP
1248 server.
1249
1250 When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1251 connections can be redirected from the host to the guest. It allows for
1252 example to redirect X11, telnet or SSH connections.
1253
1254 @subsection Connecting VLANs between QEMU instances
1255
1256 Using the @option{-net socket} option, it is possible to make VLANs
1257 that span several QEMU instances. See @ref{sec_invocation} to have a
1258 basic example.
1259
1260 @node pcsys_other_devs
1261 @section Other Devices
1262
1263 @subsection Inter-VM Shared Memory device
1264
1265 On Linux hosts, a shared memory device is available. The basic syntax
1266 is:
1267
1268 @example
1269 qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1270 @end example
1271
1272 where @var{hostmem} names a host memory backend. For a POSIX shared
1273 memory backend, use something like
1274
1275 @example
1276 -object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
1277 @end example
1278
1279 If desired, interrupts can be sent between guest VMs accessing the same shared
1280 memory region. Interrupt support requires using a shared memory server and
1281 using a chardev socket to connect to it. The code for the shared memory server
1282 is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1283 memory server is:
1284
1285 @example
1286 # First start the ivshmem server once and for all
1287 ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
1288
1289 # Then start your qemu instances with matching arguments
1290 qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
1291 -chardev socket,path=@var{path},id=@var{id}
1292 @end example
1293
1294 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1295 using the same server to communicate via interrupts. Guests can read their
1296 VM ID from a device register (see ivshmem-spec.txt).
1297
1298 With device property @option{master=on}, the guest will copy the shared
1299 memory on migration to the destination host. With @option{master=off},
1300 the guest will not be able to migrate with the device attached. In the
1301 latter case, the device should be detached and then reattached after
1302 migration using the PCI hotplug support.
1303
1304 @subsubsection ivshmem and hugepages
1305
1306 Instead of specifying the <shm size> using POSIX shm, you may specify
1307 a memory backend that has hugepage support:
1308
1309 @example
1310 qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1311 -device ivshmem-plain,memdev=mb1
1312 @end example
1313
1314 ivshmem-server also supports hugepages mount points with the
1315 @option{-m} memory path argument.
1316
1317 @node direct_linux_boot
1318 @section Direct Linux Boot
1319
1320 This section explains how to launch a Linux kernel inside QEMU without
1321 having to make a full bootable image. It is very useful for fast Linux
1322 kernel testing.
1323
1324 The syntax is:
1325 @example
1326 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1327 @end example
1328
1329 Use @option{-kernel} to provide the Linux kernel image and
1330 @option{-append} to give the kernel command line arguments. The
1331 @option{-initrd} option can be used to provide an INITRD image.
1332
1333 When using the direct Linux boot, a disk image for the first hard disk
1334 @file{hda} is required because its boot sector is used to launch the
1335 Linux kernel.
1336
1337 If you do not need graphical output, you can disable it and redirect
1338 the virtual serial port and the QEMU monitor to the console with the
1339 @option{-nographic} option. The typical command line is:
1340 @example
1341 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1342 -append "root=/dev/hda console=ttyS0" -nographic
1343 @end example
1344
1345 Use @key{Ctrl-a c} to switch between the serial console and the
1346 monitor (@pxref{pcsys_keys}).
1347
1348 @node pcsys_usb
1349 @section USB emulation
1350
1351 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1352 virtual USB devices or real host USB devices (experimental, works only
1353 on Linux hosts). QEMU will automatically create and connect virtual USB hubs
1354 as necessary to connect multiple USB devices.
1355
1356 @menu
1357 * usb_devices::
1358 * host_usb_devices::
1359 @end menu
1360 @node usb_devices
1361 @subsection Connecting USB devices
1362
1363 USB devices can be connected with the @option{-usbdevice} commandline option
1364 or the @code{usb_add} monitor command. Available devices are:
1365
1366 @table @code
1367 @item mouse
1368 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1369 @item tablet
1370 Pointer device that uses absolute coordinates (like a touchscreen).
1371 This means QEMU is able to report the mouse position without having
1372 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1373 @item disk:@var{file}
1374 Mass storage device based on @var{file} (@pxref{disk_images})
1375 @item host:@var{bus.addr}
1376 Pass through the host device identified by @var{bus.addr}
1377 (Linux only)
1378 @item host:@var{vendor_id:product_id}
1379 Pass through the host device identified by @var{vendor_id:product_id}
1380 (Linux only)
1381 @item wacom-tablet
1382 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1383 above but it can be used with the tslib library because in addition to touch
1384 coordinates it reports touch pressure.
1385 @item keyboard
1386 Standard USB keyboard. Will override the PS/2 keyboard (if present).
1387 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1388 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1389 device @var{dev}. The available character devices are the same as for the
1390 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1391 used to override the default 0403:6001. For instance,
1392 @example
1393 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1394 @end example
1395 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1396 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1397 @item braille
1398 Braille device. This will use BrlAPI to display the braille output on a real
1399 or fake device.
1400 @item net:@var{options}
1401 Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1402 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1403 For instance, user-mode networking can be used with
1404 @example
1405 qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1406 @end example
1407 Currently this cannot be used in machines that support PCI NICs.
1408 @item bt[:@var{hci-type}]
1409 Bluetooth dongle whose type is specified in the same format as with
1410 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1411 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1412 This USB device implements the USB Transport Layer of HCI. Example
1413 usage:
1414 @example
1415 @command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
1416 @end example
1417 @end table
1418
1419 @node host_usb_devices
1420 @subsection Using host USB devices on a Linux host
1421
1422 WARNING: this is an experimental feature. QEMU will slow down when
1423 using it. USB devices requiring real time streaming (i.e. USB Video
1424 Cameras) are not supported yet.
1425
1426 @enumerate
1427 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1428 is actually using the USB device. A simple way to do that is simply to
1429 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1430 to @file{mydriver.o.disabled}.
1431
1432 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1433 @example
1434 ls /proc/bus/usb
1435 001 devices drivers
1436 @end example
1437
1438 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1439 @example
1440 chown -R myuid /proc/bus/usb
1441 @end example
1442
1443 @item Launch QEMU and do in the monitor:
1444 @example
1445 info usbhost
1446 Device 1.2, speed 480 Mb/s
1447 Class 00: USB device 1234:5678, USB DISK
1448 @end example
1449 You should see the list of the devices you can use (Never try to use
1450 hubs, it won't work).
1451
1452 @item Add the device in QEMU by using:
1453 @example
1454 usb_add host:1234:5678
1455 @end example
1456
1457 Normally the guest OS should report that a new USB device is
1458 plugged. You can use the option @option{-usbdevice} to do the same.
1459
1460 @item Now you can try to use the host USB device in QEMU.
1461
1462 @end enumerate
1463
1464 When relaunching QEMU, you may have to unplug and plug again the USB
1465 device to make it work again (this is a bug).
1466
1467 @node vnc_security
1468 @section VNC security
1469
1470 The VNC server capability provides access to the graphical console
1471 of the guest VM across the network. This has a number of security
1472 considerations depending on the deployment scenarios.
1473
1474 @menu
1475 * vnc_sec_none::
1476 * vnc_sec_password::
1477 * vnc_sec_certificate::
1478 * vnc_sec_certificate_verify::
1479 * vnc_sec_certificate_pw::
1480 * vnc_sec_sasl::
1481 * vnc_sec_certificate_sasl::
1482 * vnc_generate_cert::
1483 * vnc_setup_sasl::
1484 @end menu
1485 @node vnc_sec_none
1486 @subsection Without passwords
1487
1488 The simplest VNC server setup does not include any form of authentication.
1489 For this setup it is recommended to restrict it to listen on a UNIX domain
1490 socket only. For example
1491
1492 @example
1493 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1494 @end example
1495
1496 This ensures that only users on local box with read/write access to that
1497 path can access the VNC server. To securely access the VNC server from a
1498 remote machine, a combination of netcat+ssh can be used to provide a secure
1499 tunnel.
1500
1501 @node vnc_sec_password
1502 @subsection With passwords
1503
1504 The VNC protocol has limited support for password based authentication. Since
1505 the protocol limits passwords to 8 characters it should not be considered
1506 to provide high security. The password can be fairly easily brute-forced by
1507 a client making repeat connections. For this reason, a VNC server using password
1508 authentication should be restricted to only listen on the loopback interface
1509 or UNIX domain sockets. Password authentication is not supported when operating
1510 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1511 authentication is requested with the @code{password} option, and then once QEMU
1512 is running the password is set with the monitor. Until the monitor is used to
1513 set the password all clients will be rejected.
1514
1515 @example
1516 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1517 (qemu) change vnc password
1518 Password: ********
1519 (qemu)
1520 @end example
1521
1522 @node vnc_sec_certificate
1523 @subsection With x509 certificates
1524
1525 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1526 TLS for encryption of the session, and x509 certificates for authentication.
1527 The use of x509 certificates is strongly recommended, because TLS on its
1528 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1529 support provides a secure session, but no authentication. This allows any
1530 client to connect, and provides an encrypted session.
1531
1532 @example
1533 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1534 @end example
1535
1536 In the above example @code{/etc/pki/qemu} should contain at least three files,
1537 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1538 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1539 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1540 only be readable by the user owning it.
1541
1542 @node vnc_sec_certificate_verify
1543 @subsection With x509 certificates and client verification
1544
1545 Certificates can also provide a means to authenticate the client connecting.
1546 The server will request that the client provide a certificate, which it will
1547 then validate against the CA certificate. This is a good choice if deploying
1548 in an environment with a private internal certificate authority.
1549
1550 @example
1551 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1552 @end example
1553
1554
1555 @node vnc_sec_certificate_pw
1556 @subsection With x509 certificates, client verification and passwords
1557
1558 Finally, the previous method can be combined with VNC password authentication
1559 to provide two layers of authentication for clients.
1560
1561 @example
1562 qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1563 (qemu) change vnc password
1564 Password: ********
1565 (qemu)
1566 @end example
1567
1568
1569 @node vnc_sec_sasl
1570 @subsection With SASL authentication
1571
1572 The SASL authentication method is a VNC extension, that provides an
1573 easily extendable, pluggable authentication method. This allows for
1574 integration with a wide range of authentication mechanisms, such as
1575 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1576 The strength of the authentication depends on the exact mechanism
1577 configured. If the chosen mechanism also provides a SSF layer, then
1578 it will encrypt the datastream as well.
1579
1580 Refer to the later docs on how to choose the exact SASL mechanism
1581 used for authentication, but assuming use of one supporting SSF,
1582 then QEMU can be launched with:
1583
1584 @example
1585 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1586 @end example
1587
1588 @node vnc_sec_certificate_sasl
1589 @subsection With x509 certificates and SASL authentication
1590
1591 If the desired SASL authentication mechanism does not supported
1592 SSF layers, then it is strongly advised to run it in combination
1593 with TLS and x509 certificates. This provides securely encrypted
1594 data stream, avoiding risk of compromising of the security
1595 credentials. This can be enabled, by combining the 'sasl' option
1596 with the aforementioned TLS + x509 options:
1597
1598 @example
1599 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1600 @end example
1601
1602
1603 @node vnc_generate_cert
1604 @subsection Generating certificates for VNC
1605
1606 The GNU TLS packages provides a command called @code{certtool} which can
1607 be used to generate certificates and keys in PEM format. At a minimum it
1608 is necessary to setup a certificate authority, and issue certificates to
1609 each server. If using certificates for authentication, then each client
1610 will also need to be issued a certificate. The recommendation is for the
1611 server to keep its certificates in either @code{/etc/pki/qemu} or for
1612 unprivileged users in @code{$HOME/.pki/qemu}.
1613
1614 @menu
1615 * vnc_generate_ca::
1616 * vnc_generate_server::
1617 * vnc_generate_client::
1618 @end menu
1619 @node vnc_generate_ca
1620 @subsubsection Setup the Certificate Authority
1621
1622 This step only needs to be performed once per organization / organizational
1623 unit. First the CA needs a private key. This key must be kept VERY secret
1624 and secure. If this key is compromised the entire trust chain of the certificates
1625 issued with it is lost.
1626
1627 @example
1628 # certtool --generate-privkey > ca-key.pem
1629 @end example
1630
1631 A CA needs to have a public certificate. For simplicity it can be a self-signed
1632 certificate, or one issue by a commercial certificate issuing authority. To
1633 generate a self-signed certificate requires one core piece of information, the
1634 name of the organization.
1635
1636 @example
1637 # cat > ca.info <<EOF
1638 cn = Name of your organization
1639 ca
1640 cert_signing_key
1641 EOF
1642 # certtool --generate-self-signed \
1643 --load-privkey ca-key.pem
1644 --template ca.info \
1645 --outfile ca-cert.pem
1646 @end example
1647
1648 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1649 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1650
1651 @node vnc_generate_server
1652 @subsubsection Issuing server certificates
1653
1654 Each server (or host) needs to be issued with a key and certificate. When connecting
1655 the certificate is sent to the client which validates it against the CA certificate.
1656 The core piece of information for a server certificate is the hostname. This should
1657 be the fully qualified hostname that the client will connect with, since the client
1658 will typically also verify the hostname in the certificate. On the host holding the
1659 secure CA private key:
1660
1661 @example
1662 # cat > server.info <<EOF
1663 organization = Name of your organization
1664 cn = server.foo.example.com
1665 tls_www_server
1666 encryption_key
1667 signing_key
1668 EOF
1669 # certtool --generate-privkey > server-key.pem
1670 # certtool --generate-certificate \
1671 --load-ca-certificate ca-cert.pem \
1672 --load-ca-privkey ca-key.pem \
1673 --load-privkey server-key.pem \
1674 --template server.info \
1675 --outfile server-cert.pem
1676 @end example
1677
1678 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1679 to the server for which they were generated. The @code{server-key.pem} is security
1680 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1681
1682 @node vnc_generate_client
1683 @subsubsection Issuing client certificates
1684
1685 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1686 certificates as its authentication mechanism, each client also needs to be issued
1687 a certificate. The client certificate contains enough metadata to uniquely identify
1688 the client, typically organization, state, city, building, etc. On the host holding
1689 the secure CA private key:
1690
1691 @example
1692 # cat > client.info <<EOF
1693 country = GB
1694 state = London
1695 locality = London
1696 organization = Name of your organization
1697 cn = client.foo.example.com
1698 tls_www_client
1699 encryption_key
1700 signing_key
1701 EOF
1702 # certtool --generate-privkey > client-key.pem
1703 # certtool --generate-certificate \
1704 --load-ca-certificate ca-cert.pem \
1705 --load-ca-privkey ca-key.pem \
1706 --load-privkey client-key.pem \
1707 --template client.info \
1708 --outfile client-cert.pem
1709 @end example
1710
1711 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1712 copied to the client for which they were generated.
1713
1714
1715 @node vnc_setup_sasl
1716
1717 @subsection Configuring SASL mechanisms
1718
1719 The following documentation assumes use of the Cyrus SASL implementation on a
1720 Linux host, but the principals should apply to any other SASL impl. When SASL
1721 is enabled, the mechanism configuration will be loaded from system default
1722 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1723 unprivileged user, an environment variable SASL_CONF_PATH can be used
1724 to make it search alternate locations for the service config.
1725
1726 The default configuration might contain
1727
1728 @example
1729 mech_list: digest-md5
1730 sasldb_path: /etc/qemu/passwd.db
1731 @end example
1732
1733 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1734 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1735 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1736 command. While this mechanism is easy to configure and use, it is not
1737 considered secure by modern standards, so only suitable for developers /
1738 ad-hoc testing.
1739
1740 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1741 mechanism
1742
1743 @example
1744 mech_list: gssapi
1745 keytab: /etc/qemu/krb5.tab
1746 @end example
1747
1748 For this to work the administrator of your KDC must generate a Kerberos
1749 principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1750 replacing 'somehost.example.com' with the fully qualified host name of the
1751 machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1752
1753 Other configurations will be left as an exercise for the reader. It should
1754 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1755 encryption. For all other mechanisms, VNC should always be configured to
1756 use TLS and x509 certificates to protect security credentials from snooping.
1757
1758 @node gdb_usage
1759 @section GDB usage
1760
1761 QEMU has a primitive support to work with gdb, so that you can do
1762 'Ctrl-C' while the virtual machine is running and inspect its state.
1763
1764 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1765 gdb connection:
1766 @example
1767 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1768 -append "root=/dev/hda"
1769 Connected to host network interface: tun0
1770 Waiting gdb connection on port 1234
1771 @end example
1772
1773 Then launch gdb on the 'vmlinux' executable:
1774 @example
1775 > gdb vmlinux
1776 @end example
1777
1778 In gdb, connect to QEMU:
1779 @example
1780 (gdb) target remote localhost:1234
1781 @end example
1782
1783 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1784 @example
1785 (gdb) c
1786 @end example
1787
1788 Here are some useful tips in order to use gdb on system code:
1789
1790 @enumerate
1791 @item
1792 Use @code{info reg} to display all the CPU registers.
1793 @item
1794 Use @code{x/10i $eip} to display the code at the PC position.
1795 @item
1796 Use @code{set architecture i8086} to dump 16 bit code. Then use
1797 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1798 @end enumerate
1799
1800 Advanced debugging options:
1801
1802 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1803 @table @code
1804 @item maintenance packet qqemu.sstepbits
1805
1806 This will display the MASK bits used to control the single stepping IE:
1807 @example
1808 (gdb) maintenance packet qqemu.sstepbits
1809 sending: "qqemu.sstepbits"
1810 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1811 @end example
1812 @item maintenance packet qqemu.sstep
1813
1814 This will display the current value of the mask used when single stepping IE:
1815 @example
1816 (gdb) maintenance packet qqemu.sstep
1817 sending: "qqemu.sstep"
1818 received: "0x7"
1819 @end example
1820 @item maintenance packet Qqemu.sstep=HEX_VALUE
1821
1822 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1823 @example
1824 (gdb) maintenance packet Qqemu.sstep=0x5
1825 sending: "qemu.sstep=0x5"
1826 received: "OK"
1827 @end example
1828 @end table
1829
1830 @node pcsys_os_specific
1831 @section Target OS specific information
1832
1833 @subsection Linux
1834
1835 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1836 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1837 color depth in the guest and the host OS.
1838
1839 When using a 2.6 guest Linux kernel, you should add the option
1840 @code{clock=pit} on the kernel command line because the 2.6 Linux
1841 kernels make very strict real time clock checks by default that QEMU
1842 cannot simulate exactly.
1843
1844 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1845 not activated because QEMU is slower with this patch. The QEMU
1846 Accelerator Module is also much slower in this case. Earlier Fedora
1847 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1848 patch by default. Newer kernels don't have it.
1849
1850 @subsection Windows
1851
1852 If you have a slow host, using Windows 95 is better as it gives the
1853 best speed. Windows 2000 is also a good choice.
1854
1855 @subsubsection SVGA graphic modes support
1856
1857 QEMU emulates a Cirrus Logic GD5446 Video
1858 card. All Windows versions starting from Windows 95 should recognize
1859 and use this graphic card. For optimal performances, use 16 bit color
1860 depth in the guest and the host OS.
1861
1862 If you are using Windows XP as guest OS and if you want to use high
1863 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1864 1280x1024x16), then you should use the VESA VBE virtual graphic card
1865 (option @option{-std-vga}).
1866
1867 @subsubsection CPU usage reduction
1868
1869 Windows 9x does not correctly use the CPU HLT
1870 instruction. The result is that it takes host CPU cycles even when
1871 idle. You can install the utility from
1872 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1873 problem. Note that no such tool is needed for NT, 2000 or XP.
1874
1875 @subsubsection Windows 2000 disk full problem
1876
1877 Windows 2000 has a bug which gives a disk full problem during its
1878 installation. When installing it, use the @option{-win2k-hack} QEMU
1879 option to enable a specific workaround. After Windows 2000 is
1880 installed, you no longer need this option (this option slows down the
1881 IDE transfers).
1882
1883 @subsubsection Windows 2000 shutdown
1884
1885 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1886 can. It comes from the fact that Windows 2000 does not automatically
1887 use the APM driver provided by the BIOS.
1888
1889 In order to correct that, do the following (thanks to Struan
1890 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1891 Add/Troubleshoot a device => Add a new device & Next => No, select the
1892 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1893 (again) a few times. Now the driver is installed and Windows 2000 now
1894 correctly instructs QEMU to shutdown at the appropriate moment.
1895
1896 @subsubsection Share a directory between Unix and Windows
1897
1898 See @ref{sec_invocation} about the help of the option
1899 @option{'-netdev user,smb=...'}.
1900
1901 @subsubsection Windows XP security problem
1902
1903 Some releases of Windows XP install correctly but give a security
1904 error when booting:
1905 @example
1906 A problem is preventing Windows from accurately checking the
1907 license for this computer. Error code: 0x800703e6.
1908 @end example
1909
1910 The workaround is to install a service pack for XP after a boot in safe
1911 mode. Then reboot, and the problem should go away. Since there is no
1912 network while in safe mode, its recommended to download the full
1913 installation of SP1 or SP2 and transfer that via an ISO or using the
1914 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1915
1916 @subsection MS-DOS and FreeDOS
1917
1918 @subsubsection CPU usage reduction
1919
1920 DOS does not correctly use the CPU HLT instruction. The result is that
1921 it takes host CPU cycles even when idle. You can install the utility
1922 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1923 problem.
1924
1925 @node QEMU System emulator for non PC targets
1926 @chapter QEMU System emulator for non PC targets
1927
1928 QEMU is a generic emulator and it emulates many non PC
1929 machines. Most of the options are similar to the PC emulator. The
1930 differences are mentioned in the following sections.
1931
1932 @menu
1933 * PowerPC System emulator::
1934 * Sparc32 System emulator::
1935 * Sparc64 System emulator::
1936 * MIPS System emulator::
1937 * ARM System emulator::
1938 * ColdFire System emulator::
1939 * Cris System emulator::
1940 * Microblaze System emulator::
1941 * SH4 System emulator::
1942 * Xtensa System emulator::
1943 @end menu
1944
1945 @node PowerPC System emulator
1946 @section PowerPC System emulator
1947 @cindex system emulation (PowerPC)
1948
1949 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1950 or PowerMac PowerPC system.
1951
1952 QEMU emulates the following PowerMac peripherals:
1953
1954 @itemize @minus
1955 @item
1956 UniNorth or Grackle PCI Bridge
1957 @item
1958 PCI VGA compatible card with VESA Bochs Extensions
1959 @item
1960 2 PMAC IDE interfaces with hard disk and CD-ROM support
1961 @item
1962 NE2000 PCI adapters
1963 @item
1964 Non Volatile RAM
1965 @item
1966 VIA-CUDA with ADB keyboard and mouse.
1967 @end itemize
1968
1969 QEMU emulates the following PREP peripherals:
1970
1971 @itemize @minus
1972 @item
1973 PCI Bridge
1974 @item
1975 PCI VGA compatible card with VESA Bochs Extensions
1976 @item
1977 2 IDE interfaces with hard disk and CD-ROM support
1978 @item
1979 Floppy disk
1980 @item
1981 NE2000 network adapters
1982 @item
1983 Serial port
1984 @item
1985 PREP Non Volatile RAM
1986 @item
1987 PC compatible keyboard and mouse.
1988 @end itemize
1989
1990 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1991 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1992
1993 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1994 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1995 v2) portable firmware implementation. The goal is to implement a 100%
1996 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1997
1998 @c man begin OPTIONS
1999
2000 The following options are specific to the PowerPC emulation:
2001
2002 @table @option
2003
2004 @item -g @var{W}x@var{H}[x@var{DEPTH}]
2005
2006 Set the initial VGA graphic mode. The default is 800x600x32.
2007
2008 @item -prom-env @var{string}
2009
2010 Set OpenBIOS variables in NVRAM, for example:
2011
2012 @example
2013 qemu-system-ppc -prom-env 'auto-boot?=false' \
2014 -prom-env 'boot-device=hd:2,\yaboot' \
2015 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2016 @end example
2017
2018 These variables are not used by Open Hack'Ware.
2019
2020 @end table
2021
2022 @c man end
2023
2024
2025 More information is available at
2026 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2027
2028 @node Sparc32 System emulator
2029 @section Sparc32 System emulator
2030 @cindex system emulation (Sparc32)
2031
2032 Use the executable @file{qemu-system-sparc} to simulate the following
2033 Sun4m architecture machines:
2034 @itemize @minus
2035 @item
2036 SPARCstation 4
2037 @item
2038 SPARCstation 5
2039 @item
2040 SPARCstation 10
2041 @item
2042 SPARCstation 20
2043 @item
2044 SPARCserver 600MP
2045 @item
2046 SPARCstation LX
2047 @item
2048 SPARCstation Voyager
2049 @item
2050 SPARCclassic
2051 @item
2052 SPARCbook
2053 @end itemize
2054
2055 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2056 but Linux limits the number of usable CPUs to 4.
2057
2058 QEMU emulates the following sun4m peripherals:
2059
2060 @itemize @minus
2061 @item
2062 IOMMU
2063 @item
2064 TCX or cgthree Frame buffer
2065 @item
2066 Lance (Am7990) Ethernet
2067 @item
2068 Non Volatile RAM M48T02/M48T08
2069 @item
2070 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2071 and power/reset logic
2072 @item
2073 ESP SCSI controller with hard disk and CD-ROM support
2074 @item
2075 Floppy drive (not on SS-600MP)
2076 @item
2077 CS4231 sound device (only on SS-5, not working yet)
2078 @end itemize
2079
2080 The number of peripherals is fixed in the architecture. Maximum
2081 memory size depends on the machine type, for SS-5 it is 256MB and for
2082 others 2047MB.
2083
2084 Since version 0.8.2, QEMU uses OpenBIOS
2085 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2086 firmware implementation. The goal is to implement a 100% IEEE
2087 1275-1994 (referred to as Open Firmware) compliant firmware.
2088
2089 A sample Linux 2.6 series kernel and ram disk image are available on
2090 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2091 most kernel versions work. Please note that currently older Solaris kernels
2092 don't work probably due to interface issues between OpenBIOS and
2093 Solaris.
2094
2095 @c man begin OPTIONS
2096
2097 The following options are specific to the Sparc32 emulation:
2098
2099 @table @option
2100
2101 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
2102
2103 Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2104 option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2105 of 1152x900x8 for people who wish to use OBP.
2106
2107 @item -prom-env @var{string}
2108
2109 Set OpenBIOS variables in NVRAM, for example:
2110
2111 @example
2112 qemu-system-sparc -prom-env 'auto-boot?=false' \
2113 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2114 @end example
2115
2116 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2117
2118 Set the emulated machine type. Default is SS-5.
2119
2120 @end table
2121
2122 @c man end
2123
2124 @node Sparc64 System emulator
2125 @section Sparc64 System emulator
2126 @cindex system emulation (Sparc64)
2127
2128 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2129 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2130 Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2131 able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2132 Sun4v and Niagara emulators are still a work in progress.
2133
2134 QEMU emulates the following peripherals:
2135
2136 @itemize @minus
2137 @item
2138 UltraSparc IIi APB PCI Bridge
2139 @item
2140 PCI VGA compatible card with VESA Bochs Extensions
2141 @item
2142 PS/2 mouse and keyboard
2143 @item
2144 Non Volatile RAM M48T59
2145 @item
2146 PC-compatible serial ports
2147 @item
2148 2 PCI IDE interfaces with hard disk and CD-ROM support
2149 @item
2150 Floppy disk
2151 @end itemize
2152
2153 @c man begin OPTIONS
2154
2155 The following options are specific to the Sparc64 emulation:
2156
2157 @table @option
2158
2159 @item -prom-env @var{string}
2160
2161 Set OpenBIOS variables in NVRAM, for example:
2162
2163 @example
2164 qemu-system-sparc64 -prom-env 'auto-boot?=false'
2165 @end example
2166
2167 @item -M [sun4u|sun4v|Niagara]
2168
2169 Set the emulated machine type. The default is sun4u.
2170
2171 @end table
2172
2173 @c man end
2174
2175 @node MIPS System emulator
2176 @section MIPS System emulator
2177 @cindex system emulation (MIPS)
2178
2179 Four executables cover simulation of 32 and 64-bit MIPS systems in
2180 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2181 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2182 Five different machine types are emulated:
2183
2184 @itemize @minus
2185 @item
2186 A generic ISA PC-like machine "mips"
2187 @item
2188 The MIPS Malta prototype board "malta"
2189 @item
2190 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2191 @item
2192 MIPS emulator pseudo board "mipssim"
2193 @item
2194 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2195 @end itemize
2196
2197 The generic emulation is supported by Debian 'Etch' and is able to
2198 install Debian into a virtual disk image. The following devices are
2199 emulated:
2200
2201 @itemize @minus
2202 @item
2203 A range of MIPS CPUs, default is the 24Kf
2204 @item
2205 PC style serial port
2206 @item
2207 PC style IDE disk
2208 @item
2209 NE2000 network card
2210 @end itemize
2211
2212 The Malta emulation supports the following devices:
2213
2214 @itemize @minus
2215 @item
2216 Core board with MIPS 24Kf CPU and Galileo system controller
2217 @item
2218 PIIX4 PCI/USB/SMbus controller
2219 @item
2220 The Multi-I/O chip's serial device
2221 @item
2222 PCI network cards (PCnet32 and others)
2223 @item
2224 Malta FPGA serial device
2225 @item
2226 Cirrus (default) or any other PCI VGA graphics card
2227 @end itemize
2228
2229 The ACER Pica emulation supports:
2230
2231 @itemize @minus
2232 @item
2233 MIPS R4000 CPU
2234 @item
2235 PC-style IRQ and DMA controllers
2236 @item
2237 PC Keyboard
2238 @item
2239 IDE controller
2240 @end itemize
2241
2242 The mipssim pseudo board emulation provides an environment similar
2243 to what the proprietary MIPS emulator uses for running Linux.
2244 It supports:
2245
2246 @itemize @minus
2247 @item
2248 A range of MIPS CPUs, default is the 24Kf
2249 @item
2250 PC style serial port
2251 @item
2252 MIPSnet network emulation
2253 @end itemize
2254
2255 The MIPS Magnum R4000 emulation supports:
2256
2257 @itemize @minus
2258 @item
2259 MIPS R4000 CPU
2260 @item
2261 PC-style IRQ controller
2262 @item
2263 PC Keyboard
2264 @item
2265 SCSI controller
2266 @item
2267 G364 framebuffer
2268 @end itemize
2269
2270
2271 @node ARM System emulator
2272 @section ARM System emulator
2273 @cindex system emulation (ARM)
2274
2275 Use the executable @file{qemu-system-arm} to simulate a ARM
2276 machine. The ARM Integrator/CP board is emulated with the following
2277 devices:
2278
2279 @itemize @minus
2280 @item
2281 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2282 @item
2283 Two PL011 UARTs
2284 @item
2285 SMC 91c111 Ethernet adapter
2286 @item
2287 PL110 LCD controller
2288 @item
2289 PL050 KMI with PS/2 keyboard and mouse.
2290 @item
2291 PL181 MultiMedia Card Interface with SD card.
2292 @end itemize
2293
2294 The ARM Versatile baseboard is emulated with the following devices:
2295
2296 @itemize @minus
2297 @item
2298 ARM926E, ARM1136 or Cortex-A8 CPU
2299 @item
2300 PL190 Vectored Interrupt Controller
2301 @item
2302 Four PL011 UARTs
2303 @item
2304 SMC 91c111 Ethernet adapter
2305 @item
2306 PL110 LCD controller
2307 @item
2308 PL050 KMI with PS/2 keyboard and mouse.
2309 @item
2310 PCI host bridge. Note the emulated PCI bridge only provides access to
2311 PCI memory space. It does not provide access to PCI IO space.
2312 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2313 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2314 mapped control registers.
2315 @item
2316 PCI OHCI USB controller.
2317 @item
2318 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2319 @item
2320 PL181 MultiMedia Card Interface with SD card.
2321 @end itemize
2322
2323 Several variants of the ARM RealView baseboard are emulated,
2324 including the EB, PB-A8 and PBX-A9. Due to interactions with the
2325 bootloader, only certain Linux kernel configurations work out
2326 of the box on these boards.
2327
2328 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2329 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2330 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2331 disabled and expect 1024M RAM.
2332
2333 The following devices are emulated:
2334
2335 @itemize @minus
2336 @item
2337 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2338 @item
2339 ARM AMBA Generic/Distributed Interrupt Controller
2340 @item
2341 Four PL011 UARTs
2342 @item
2343 SMC 91c111 or SMSC LAN9118 Ethernet adapter
2344 @item
2345 PL110 LCD controller
2346 @item
2347 PL050 KMI with PS/2 keyboard and mouse
2348 @item
2349 PCI host bridge
2350 @item
2351 PCI OHCI USB controller
2352 @item
2353 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2354 @item
2355 PL181 MultiMedia Card Interface with SD card.
2356 @end itemize
2357
2358 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2359 and "Terrier") emulation includes the following peripherals:
2360
2361 @itemize @minus
2362 @item
2363 Intel PXA270 System-on-chip (ARM V5TE core)
2364 @item
2365 NAND Flash memory
2366 @item
2367 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2368 @item
2369 On-chip OHCI USB controller
2370 @item
2371 On-chip LCD controller
2372 @item
2373 On-chip Real Time Clock
2374 @item
2375 TI ADS7846 touchscreen controller on SSP bus
2376 @item
2377 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2378 @item
2379 GPIO-connected keyboard controller and LEDs
2380 @item
2381 Secure Digital card connected to PXA MMC/SD host
2382 @item
2383 Three on-chip UARTs
2384 @item
2385 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2386 @end itemize
2387
2388 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2389 following elements:
2390
2391 @itemize @minus
2392 @item
2393 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2394 @item
2395 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2396 @item
2397 On-chip LCD controller
2398 @item
2399 On-chip Real Time Clock
2400 @item
2401 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2402 CODEC, connected through MicroWire and I@math{^2}S busses
2403 @item
2404 GPIO-connected matrix keypad
2405 @item
2406 Secure Digital card connected to OMAP MMC/SD host
2407 @item
2408 Three on-chip UARTs
2409 @end itemize
2410
2411 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2412 emulation supports the following elements:
2413
2414 @itemize @minus
2415 @item
2416 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2417 @item
2418 RAM and non-volatile OneNAND Flash memories
2419 @item
2420 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2421 display controller and a LS041y3 MIPI DBI-C controller
2422 @item
2423 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2424 driven through SPI bus
2425 @item
2426 National Semiconductor LM8323-controlled qwerty keyboard driven
2427 through I@math{^2}C bus
2428 @item
2429 Secure Digital card connected to OMAP MMC/SD host
2430 @item
2431 Three OMAP on-chip UARTs and on-chip STI debugging console
2432 @item
2433 A Bluetooth(R) transceiver and HCI connected to an UART
2434 @item
2435 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2436 TUSB6010 chip - only USB host mode is supported
2437 @item
2438 TI TMP105 temperature sensor driven through I@math{^2}C bus
2439 @item
2440 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2441 @item
2442 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2443 through CBUS
2444 @end itemize
2445
2446 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2447 devices:
2448
2449 @itemize @minus
2450 @item
2451 Cortex-M3 CPU core.
2452 @item
2453 64k Flash and 8k SRAM.
2454 @item
2455 Timers, UARTs, ADC and I@math{^2}C interface.
2456 @item
2457 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2458 @end itemize
2459
2460 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2461 devices:
2462
2463 @itemize @minus
2464 @item
2465 Cortex-M3 CPU core.
2466 @item
2467 256k Flash and 64k SRAM.
2468 @item
2469 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2470 @item
2471 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2472 @end itemize
2473
2474 The Freecom MusicPal internet radio emulation includes the following
2475 elements:
2476
2477 @itemize @minus
2478 @item
2479 Marvell MV88W8618 ARM core.
2480 @item
2481 32 MB RAM, 256 KB SRAM, 8 MB flash.
2482 @item
2483 Up to 2 16550 UARTs
2484 @item
2485 MV88W8xx8 Ethernet controller
2486 @item
2487 MV88W8618 audio controller, WM8750 CODEC and mixer
2488 @item
2489 128×64 display with brightness control
2490 @item
2491 2 buttons, 2 navigation wheels with button function
2492 @end itemize
2493
2494 The Siemens SX1 models v1 and v2 (default) basic emulation.
2495 The emulation includes the following elements:
2496
2497 @itemize @minus
2498 @item
2499 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2500 @item
2501 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2502 V1
2503 1 Flash of 16MB and 1 Flash of 8MB
2504 V2
2505 1 Flash of 32MB
2506 @item
2507 On-chip LCD controller
2508 @item
2509 On-chip Real Time Clock
2510 @item
2511 Secure Digital card connected to OMAP MMC/SD host
2512 @item
2513 Three on-chip UARTs
2514 @end itemize
2515
2516 A Linux 2.6 test image is available on the QEMU web site. More
2517 information is available in the QEMU mailing-list archive.
2518
2519 @c man begin OPTIONS
2520
2521 The following options are specific to the ARM emulation:
2522
2523 @table @option
2524
2525 @item -semihosting
2526 Enable semihosting syscall emulation.
2527
2528 On ARM this implements the "Angel" interface.
2529
2530 Note that this allows guest direct access to the host filesystem,
2531 so should only be used with trusted guest OS.
2532
2533 @end table
2534
2535 @node ColdFire System emulator
2536 @section ColdFire System emulator
2537 @cindex system emulation (ColdFire)
2538 @cindex system emulation (M68K)
2539
2540 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2541 The emulator is able to boot a uClinux kernel.
2542
2543 The M5208EVB emulation includes the following devices:
2544
2545 @itemize @minus
2546 @item
2547 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2548 @item
2549 Three Two on-chip UARTs.
2550 @item
2551 Fast Ethernet Controller (FEC)
2552 @end itemize
2553
2554 The AN5206 emulation includes the following devices:
2555
2556 @itemize @minus
2557 @item
2558 MCF5206 ColdFire V2 Microprocessor.
2559 @item
2560 Two on-chip UARTs.
2561 @end itemize
2562
2563 @c man begin OPTIONS
2564
2565 The following options are specific to the ColdFire emulation:
2566
2567 @table @option
2568
2569 @item -semihosting
2570 Enable semihosting syscall emulation.
2571
2572 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2573
2574 Note that this allows guest direct access to the host filesystem,
2575 so should only be used with trusted guest OS.
2576
2577 @end table
2578
2579 @node Cris System emulator
2580 @section Cris System emulator
2581 @cindex system emulation (Cris)
2582
2583 TODO
2584
2585 @node Microblaze System emulator
2586 @section Microblaze System emulator
2587 @cindex system emulation (Microblaze)
2588
2589 TODO
2590
2591 @node SH4 System emulator
2592 @section SH4 System emulator
2593 @cindex system emulation (SH4)
2594
2595 TODO
2596
2597 @node Xtensa System emulator
2598 @section Xtensa System emulator
2599 @cindex system emulation (Xtensa)
2600
2601 Two executables cover simulation of both Xtensa endian options,
2602 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2603 Two different machine types are emulated:
2604
2605 @itemize @minus
2606 @item
2607 Xtensa emulator pseudo board "sim"
2608 @item
2609 Avnet LX60/LX110/LX200 board
2610 @end itemize
2611
2612 The sim pseudo board emulation provides an environment similar
2613 to one provided by the proprietary Tensilica ISS.
2614 It supports:
2615
2616 @itemize @minus
2617 @item
2618 A range of Xtensa CPUs, default is the DC232B
2619 @item
2620 Console and filesystem access via semihosting calls
2621 @end itemize
2622
2623 The Avnet LX60/LX110/LX200 emulation supports:
2624
2625 @itemize @minus
2626 @item
2627 A range of Xtensa CPUs, default is the DC232B
2628 @item
2629 16550 UART
2630 @item
2631 OpenCores 10/100 Mbps Ethernet MAC
2632 @end itemize
2633
2634 @c man begin OPTIONS
2635
2636 The following options are specific to the Xtensa emulation:
2637
2638 @table @option
2639
2640 @item -semihosting
2641 Enable semihosting syscall emulation.
2642
2643 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2644 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2645
2646 Note that this allows guest direct access to the host filesystem,
2647 so should only be used with trusted guest OS.
2648
2649 @end table
2650 @node QEMU User space emulator
2651 @chapter QEMU User space emulator
2652
2653 @menu
2654 * Supported Operating Systems ::
2655 * Linux User space emulator::
2656 * BSD User space emulator ::
2657 @end menu
2658
2659 @node Supported Operating Systems
2660 @section Supported Operating Systems
2661
2662 The following OS are supported in user space emulation:
2663
2664 @itemize @minus
2665 @item
2666 Linux (referred as qemu-linux-user)
2667 @item
2668 BSD (referred as qemu-bsd-user)
2669 @end itemize
2670
2671 @node Linux User space emulator
2672 @section Linux User space emulator
2673
2674 @menu
2675 * Quick Start::
2676 * Wine launch::
2677 * Command line options::
2678 * Other binaries::
2679 @end menu
2680
2681 @node Quick Start
2682 @subsection Quick Start
2683
2684 In order to launch a Linux process, QEMU needs the process executable
2685 itself and all the target (x86) dynamic libraries used by it.
2686
2687 @itemize
2688
2689 @item On x86, you can just try to launch any process by using the native
2690 libraries:
2691
2692 @example
2693 qemu-i386 -L / /bin/ls
2694 @end example
2695
2696 @code{-L /} tells that the x86 dynamic linker must be searched with a
2697 @file{/} prefix.
2698
2699 @item Since QEMU is also a linux process, you can launch QEMU with
2700 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2701
2702 @example
2703 qemu-i386 -L / qemu-i386 -L / /bin/ls
2704 @end example
2705
2706 @item On non x86 CPUs, you need first to download at least an x86 glibc
2707 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2708 @code{LD_LIBRARY_PATH} is not set:
2709
2710 @example
2711 unset LD_LIBRARY_PATH
2712 @end example
2713
2714 Then you can launch the precompiled @file{ls} x86 executable:
2715
2716 @example
2717 qemu-i386 tests/i386/ls
2718 @end example
2719 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2720 QEMU is automatically launched by the Linux kernel when you try to
2721 launch x86 executables. It requires the @code{binfmt_misc} module in the
2722 Linux kernel.
2723
2724 @item The x86 version of QEMU is also included. You can try weird things such as:
2725 @example
2726 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2727 /usr/local/qemu-i386/bin/ls-i386
2728 @end example
2729
2730 @end itemize
2731
2732 @node Wine launch
2733 @subsection Wine launch
2734
2735 @itemize
2736
2737 @item Ensure that you have a working QEMU with the x86 glibc
2738 distribution (see previous section). In order to verify it, you must be
2739 able to do:
2740
2741 @example
2742 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2743 @end example
2744
2745 @item Download the binary x86 Wine install
2746 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2747
2748 @item Configure Wine on your account. Look at the provided script
2749 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2750 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2751
2752 @item Then you can try the example @file{putty.exe}:
2753
2754 @example
2755 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2756 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2757 @end example
2758
2759 @end itemize
2760
2761 @node Command line options
2762 @subsection Command line options
2763
2764 @example
2765 @command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2766 @end example
2767
2768 @table @option
2769 @item -h
2770 Print the help
2771 @item -L path
2772 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2773 @item -s size
2774 Set the x86 stack size in bytes (default=524288)
2775 @item -cpu model
2776 Select CPU model (-cpu help for list and additional feature selection)
2777 @item -E @var{var}=@var{value}
2778 Set environment @var{var} to @var{value}.
2779 @item -U @var{var}
2780 Remove @var{var} from the environment.
2781 @item -B offset
2782 Offset guest address by the specified number of bytes. This is useful when
2783 the address region required by guest applications is reserved on the host.
2784 This option is currently only supported on some hosts.
2785 @item -R size
2786 Pre-allocate a guest virtual address space of the given size (in bytes).
2787 "G", "M", and "k" suffixes may be used when specifying the size.
2788 @end table
2789
2790 Debug options:
2791
2792 @table @option
2793 @item -d item1,...
2794 Activate logging of the specified items (use '-d help' for a list of log items)
2795 @item -p pagesize
2796 Act as if the host page size was 'pagesize' bytes
2797 @item -g port
2798 Wait gdb connection to port
2799 @item -singlestep
2800 Run the emulation in single step mode.
2801 @end table
2802
2803 Environment variables:
2804
2805 @table @env
2806 @item QEMU_STRACE
2807 Print system calls and arguments similar to the 'strace' program
2808 (NOTE: the actual 'strace' program will not work because the user
2809 space emulator hasn't implemented ptrace). At the moment this is
2810 incomplete. All system calls that don't have a specific argument
2811 format are printed with information for six arguments. Many
2812 flag-style arguments don't have decoders and will show up as numbers.
2813 @end table
2814
2815 @node Other binaries
2816 @subsection Other binaries
2817
2818 @cindex user mode (Alpha)
2819 @command{qemu-alpha} TODO.
2820
2821 @cindex user mode (ARM)
2822 @command{qemu-armeb} TODO.
2823
2824 @cindex user mode (ARM)
2825 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2826 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2827 configurations), and arm-uclinux bFLT format binaries.
2828
2829 @cindex user mode (ColdFire)
2830 @cindex user mode (M68K)
2831 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2832 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2833 coldfire uClinux bFLT format binaries.
2834
2835 The binary format is detected automatically.
2836
2837 @cindex user mode (Cris)
2838 @command{qemu-cris} TODO.
2839
2840 @cindex user mode (i386)
2841 @command{qemu-i386} TODO.
2842 @command{qemu-x86_64} TODO.
2843
2844 @cindex user mode (Microblaze)
2845 @command{qemu-microblaze} TODO.
2846
2847 @cindex user mode (MIPS)
2848 @command{qemu-mips} TODO.
2849 @command{qemu-mipsel} TODO.
2850
2851 @cindex user mode (PowerPC)
2852 @command{qemu-ppc64abi32} TODO.
2853 @command{qemu-ppc64} TODO.
2854 @command{qemu-ppc} TODO.
2855
2856 @cindex user mode (SH4)
2857 @command{qemu-sh4eb} TODO.
2858 @command{qemu-sh4} TODO.
2859
2860 @cindex user mode (SPARC)
2861 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2862
2863 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2864 (Sparc64 CPU, 32 bit ABI).
2865
2866 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2867 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2868
2869 @node BSD User space emulator
2870 @section BSD User space emulator
2871
2872 @menu
2873 * BSD Status::
2874 * BSD Quick Start::
2875 * BSD Command line options::
2876 @end menu
2877
2878 @node BSD Status
2879 @subsection BSD Status
2880
2881 @itemize @minus
2882 @item
2883 target Sparc64 on Sparc64: Some trivial programs work.
2884 @end itemize
2885
2886 @node BSD Quick Start
2887 @subsection Quick Start
2888
2889 In order to launch a BSD process, QEMU needs the process executable
2890 itself and all the target dynamic libraries used by it.
2891
2892 @itemize
2893
2894 @item On Sparc64, you can just try to launch any process by using the native
2895 libraries:
2896
2897 @example
2898 qemu-sparc64 /bin/ls
2899 @end example
2900
2901 @end itemize
2902
2903 @node BSD Command line options
2904 @subsection Command line options
2905
2906 @example
2907 @command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2908 @end example
2909
2910 @table @option
2911 @item -h
2912 Print the help
2913 @item -L path
2914 Set the library root path (default=/)
2915 @item -s size
2916 Set the stack size in bytes (default=524288)
2917 @item -ignore-environment
2918 Start with an empty environment. Without this option,
2919 the initial environment is a copy of the caller's environment.
2920 @item -E @var{var}=@var{value}
2921 Set environment @var{var} to @var{value}.
2922 @item -U @var{var}
2923 Remove @var{var} from the environment.
2924 @item -bsd type
2925 Set the type of the emulated BSD Operating system. Valid values are
2926 FreeBSD, NetBSD and OpenBSD (default).
2927 @end table
2928
2929 Debug options:
2930
2931 @table @option
2932 @item -d item1,...
2933 Activate logging of the specified items (use '-d help' for a list of log items)
2934 @item -p pagesize
2935 Act as if the host page size was 'pagesize' bytes
2936 @item -singlestep
2937 Run the emulation in single step mode.
2938 @end table
2939
2940 @node compilation
2941 @chapter Compilation from the sources
2942
2943 @menu
2944 * Linux/Unix::
2945 * Windows::
2946 * Cross compilation for Windows with Linux::
2947 * Mac OS X::
2948 * Make targets::
2949 @end menu
2950
2951 @node Linux/Unix
2952 @section Linux/Unix
2953
2954 @subsection Compilation
2955
2956 First you must decompress the sources:
2957 @example
2958 cd /tmp
2959 tar zxvf qemu-x.y.z.tar.gz
2960 cd qemu-x.y.z
2961 @end example
2962
2963 Then you configure QEMU and build it (usually no options are needed):
2964 @example
2965 ./configure
2966 make
2967 @end example
2968
2969 Then type as root user:
2970 @example
2971 make install
2972 @end example
2973 to install QEMU in @file{/usr/local}.
2974
2975 @node Windows
2976 @section Windows
2977
2978 @itemize
2979 @item Install the current versions of MSYS and MinGW from
2980 @url{http://www.mingw.org/}. You can find detailed installation
2981 instructions in the download section and the FAQ.
2982
2983 @item Download
2984 the MinGW development library of SDL 1.2.x
2985 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2986 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2987 edit the @file{sdl-config} script so that it gives the
2988 correct SDL directory when invoked.
2989
2990 @item Install the MinGW version of zlib and make sure
2991 @file{zlib.h} and @file{libz.dll.a} are in
2992 MinGW's default header and linker search paths.
2993
2994 @item Extract the current version of QEMU.
2995
2996 @item Start the MSYS shell (file @file{msys.bat}).
2997
2998 @item Change to the QEMU directory. Launch @file{./configure} and
2999 @file{make}. If you have problems using SDL, verify that
3000 @file{sdl-config} can be launched from the MSYS command line.
3001
3002 @item You can install QEMU in @file{Program Files/QEMU} by typing
3003 @file{make install}. Don't forget to copy @file{SDL.dll} in
3004 @file{Program Files/QEMU}.
3005
3006 @end itemize
3007
3008 @node Cross compilation for Windows with Linux
3009 @section Cross compilation for Windows with Linux
3010
3011 @itemize
3012 @item
3013 Install the MinGW cross compilation tools available at
3014 @url{http://www.mingw.org/}.
3015
3016 @item Download
3017 the MinGW development library of SDL 1.2.x
3018 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3019 @url{http://www.libsdl.org}. Unpack it in a temporary place and
3020 edit the @file{sdl-config} script so that it gives the
3021 correct SDL directory when invoked. Set up the @code{PATH} environment
3022 variable so that @file{sdl-config} can be launched by
3023 the QEMU configuration script.
3024
3025 @item Install the MinGW version of zlib and make sure
3026 @file{zlib.h} and @file{libz.dll.a} are in
3027 MinGW's default header and linker search paths.
3028
3029 @item
3030 Configure QEMU for Windows cross compilation:
3031 @example
3032 PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3033 @end example
3034 The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3035 MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
3036 We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
3037 use --cross-prefix to specify the name of the cross compiler.
3038 You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
3039
3040 Under Fedora Linux, you can run:
3041 @example
3042 yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
3043 @end example
3044 to get a suitable cross compilation environment.
3045
3046 @item You can install QEMU in the installation directory by typing
3047 @code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
3048 installation directory.
3049
3050 @end itemize
3051
3052 Wine can be used to launch the resulting qemu-system-i386.exe
3053 and all other qemu-system-@var{target}.exe compiled for Win32.
3054
3055 @node Mac OS X
3056 @section Mac OS X
3057
3058 System Requirements:
3059 @itemize
3060 @item Mac OS 10.5 or higher
3061 @item The clang compiler shipped with Xcode 4.2 or higher,
3062 or GCC 4.3 or higher
3063 @end itemize
3064
3065 Additional Requirements (install in order):
3066 @enumerate
3067 @item libffi: @uref{https://sourceware.org/libffi/}
3068 @item gettext: @uref{http://www.gnu.org/software/gettext/}
3069 @item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3070 @item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3071 @item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3072 @item automake: @uref{http://www.gnu.org/software/automake/}
3073 @item pixman: @uref{http://www.pixman.org/}
3074 @end enumerate
3075
3076 * You may find it easiest to get these from a third-party packager
3077 such as Homebrew, Macports, or Fink.
3078
3079 After downloading the QEMU source code, double-click it to expand it.
3080
3081 Then configure and make QEMU:
3082 @example
3083 ./configure
3084 make
3085 @end example
3086
3087 If you have a recent version of Mac OS X (OSX 10.7 or better
3088 with Xcode 4.2 or better) we recommend building QEMU with the
3089 default compiler provided by Apple, for your version of Mac OS X
3090 (which will be 'clang'). The configure script will
3091 automatically pick this.
3092
3093 Note: If after the configure step you see a message like this:
3094 @example
3095 ERROR: Your compiler does not support the __thread specifier for
3096 Thread-Local Storage (TLS). Please upgrade to a version that does.
3097 @end example
3098 you may have to build your own version of gcc from source. Expect that to take
3099 several hours. More information can be found here:
3100 @uref{https://gcc.gnu.org/install/} @*
3101
3102 These are some of the third party binaries of gcc available for download:
3103 @itemize
3104 @item Homebrew: @uref{http://brew.sh/}
3105 @item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3106 @item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3107 @end itemize
3108
3109 You can have several versions of GCC on your system. To specify a certain version,
3110 use the --cc and --cxx options.
3111 @example
3112 ./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3113 @end example
3114
3115 @node Make targets
3116 @section Make targets
3117
3118 @table @code
3119
3120 @item make
3121 @item make all
3122 Make everything which is typically needed.
3123
3124 @item install
3125 TODO
3126
3127 @item install-doc
3128 TODO
3129
3130 @item make clean
3131 Remove most files which were built during make.
3132
3133 @item make distclean
3134 Remove everything which was built during make.
3135
3136 @item make dvi
3137 @item make html
3138 @item make info
3139 @item make pdf
3140 Create documentation in dvi, html, info or pdf format.
3141
3142 @item make cscope
3143 TODO
3144
3145 @item make defconfig
3146 (Re-)create some build configuration files.
3147 User made changes will be overwritten.
3148
3149 @item tar
3150 @item tarbin
3151 TODO
3152
3153 @end table
3154
3155 @node License
3156 @appendix License
3157
3158 QEMU is a trademark of Fabrice Bellard.
3159
3160 QEMU is released under the GNU General Public License (TODO: add link).
3161 Parts of QEMU have specific licenses, see file LICENSE.
3162
3163 TODO (refer to file LICENSE, include it, include the GPL?)
3164
3165 @node Index
3166 @appendix Index
3167 @menu
3168 * Concept Index::
3169 * Function Index::
3170 * Keystroke Index::
3171 * Program Index::
3172 * Data Type Index::
3173 * Variable Index::
3174 @end menu
3175
3176 @node Concept Index
3177 @section Concept Index
3178 This is the main index. Should we combine all keywords in one index? TODO
3179 @printindex cp
3180
3181 @node Function Index
3182 @section Function Index
3183 This index could be used for command line options and monitor functions.
3184 @printindex fn
3185
3186 @node Keystroke Index
3187 @section Keystroke Index
3188
3189 This is a list of all keystrokes which have a special function
3190 in system emulation.
3191
3192 @printindex ky
3193
3194 @node Program Index
3195 @section Program Index
3196 @printindex pg
3197
3198 @node Data Type Index
3199 @section Data Type Index
3200
3201 This index could be used for qdev device names and options.
3202
3203 @printindex tp
3204
3205 @node Variable Index
3206 @section Variable Index
3207 @printindex vr
3208
3209 @bye