]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
Daemonize option, by Anthony Liguori.
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @end itemize
83
84 For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
85
86 @node Installation
87 @chapter Installation
88
89 If you want to compile QEMU yourself, see @ref{compilation}.
90
91 @menu
92 * install_linux:: Linux
93 * install_windows:: Windows
94 * install_mac:: Macintosh
95 @end menu
96
97 @node install_linux
98 @section Linux
99
100 If a precompiled package is available for your distribution - you just
101 have to install it. Otherwise, see @ref{compilation}.
102
103 @node install_windows
104 @section Windows
105
106 Download the experimental binary installer at
107 @url{http://www.free.oszoo.org/@/download.html}.
108
109 @node install_mac
110 @section Mac OS X
111
112 Download the experimental binary installer at
113 @url{http://www.free.oszoo.org/@/download.html}.
114
115 @node QEMU PC System emulator
116 @chapter QEMU PC System emulator
117
118 @menu
119 * pcsys_introduction:: Introduction
120 * pcsys_quickstart:: Quick Start
121 * sec_invocation:: Invocation
122 * pcsys_keys:: Keys
123 * pcsys_monitor:: QEMU Monitor
124 * disk_images:: Disk Images
125 * pcsys_network:: Network emulation
126 * direct_linux_boot:: Direct Linux Boot
127 * pcsys_usb:: USB emulation
128 * gdb_usage:: GDB usage
129 * pcsys_os_specific:: Target OS specific information
130 @end menu
131
132 @node pcsys_introduction
133 @section Introduction
134
135 @c man begin DESCRIPTION
136
137 The QEMU PC System emulator simulates the
138 following peripherals:
139
140 @itemize @minus
141 @item
142 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143 @item
144 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145 extensions (hardware level, including all non standard modes).
146 @item
147 PS/2 mouse and keyboard
148 @item
149 2 PCI IDE interfaces with hard disk and CD-ROM support
150 @item
151 Floppy disk
152 @item
153 NE2000 PCI network adapters
154 @item
155 Serial ports
156 @item
157 Creative SoundBlaster 16 sound card
158 @item
159 ENSONIQ AudioPCI ES1370 sound card
160 @item
161 Adlib(OPL2) - Yamaha YM3812 compatible chip
162 @item
163 PCI UHCI USB controller and a virtual USB hub.
164 @end itemize
165
166 SMP is supported with up to 255 CPUs.
167
168 Note that adlib is only available when QEMU was configured with
169 -enable-adlib
170
171 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172 VGA BIOS.
173
174 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175
176 @c man end
177
178 @node pcsys_quickstart
179 @section Quick Start
180
181 Download and uncompress the linux image (@file{linux.img}) and type:
182
183 @example
184 qemu linux.img
185 @end example
186
187 Linux should boot and give you a prompt.
188
189 @node sec_invocation
190 @section Invocation
191
192 @example
193 @c man begin SYNOPSIS
194 usage: qemu [options] [disk_image]
195 @c man end
196 @end example
197
198 @c man begin OPTIONS
199 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
200
201 General options:
202 @table @option
203 @item -M machine
204 Select the emulated machine (@code{-M ?} for list)
205
206 @item -fda file
207 @item -fdb file
208 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
210
211 @item -hda file
212 @item -hdb file
213 @item -hdc file
214 @item -hdd file
215 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216
217 @item -cdrom file
218 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219 @option{-cdrom} at the same time). You can use the host CD-ROM by
220 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
221
222 @item -boot [a|c|d]
223 Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224 the default.
225
226 @item -snapshot
227 Write to temporary files instead of disk image files. In this case,
228 the raw disk image you use is not written back. You can however force
229 the write back by pressing @key{C-a s} (@pxref{disk_images}).
230
231 @item -no-fd-bootchk
232 Disable boot signature checking for floppy disks in Bochs BIOS. It may
233 be needed to boot from old floppy disks.
234
235 @item -m megs
236 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
237
238 @item -smp n
239 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 CPUs are supported.
241
242 @item -nographic
243
244 Normally, QEMU uses SDL to display the VGA output. With this option,
245 you can totally disable graphical output so that QEMU is a simple
246 command line application. The emulated serial port is redirected on
247 the console. Therefore, you can still use QEMU to debug a Linux kernel
248 with a serial console.
249
250 @item -vnc display
251
252 Normally, QEMU uses SDL to display the VGA output. With this option,
253 you can have QEMU listen on VNC display @var{display} and redirect the VGA
254 display over the VNC session. It is very useful to enable the usb
255 tablet device when using this option (option @option{-usbdevice
256 tablet}). When using the VNC display, you must use the @option{-k}
257 option to set the keyboard layout if you are not using en-us.
258
259 @var{display} may be in the form @var{interface:d}, in which case connections
260 will only be allowed from @var{interface} on display @var{d}. Optionally,
261 @var{interface} can be omitted. @var{display} can also be in the form
262 @var{unix:path} where @var{path} is the location of a unix socket to listen for
263 connections on.
264
265
266 @item -k language
267
268 Use keyboard layout @var{language} (for example @code{fr} for
269 French). This option is only needed where it is not easy to get raw PC
270 keycodes (e.g. on Macs, with some X11 servers or with a VNC
271 display). You don't normally need to use it on PC/Linux or PC/Windows
272 hosts.
273
274 The available layouts are:
275 @example
276 ar de-ch es fo fr-ca hu ja mk no pt-br sv
277 da en-gb et fr fr-ch is lt nl pl ru th
278 de en-us fi fr-be hr it lv nl-be pt sl tr
279 @end example
280
281 The default is @code{en-us}.
282
283 @item -audio-help
284
285 Will show the audio subsystem help: list of drivers, tunable
286 parameters.
287
288 @item -soundhw card1,card2,... or -soundhw all
289
290 Enable audio and selected sound hardware. Use ? to print all
291 available sound hardware.
292
293 @example
294 qemu -soundhw sb16,adlib hda
295 qemu -soundhw es1370 hda
296 qemu -soundhw all hda
297 qemu -soundhw ?
298 @end example
299
300 @item -localtime
301 Set the real time clock to local time (the default is to UTC
302 time). This option is needed to have correct date in MS-DOS or
303 Windows.
304
305 @item -full-screen
306 Start in full screen.
307
308 @item -pidfile file
309 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
310 from a script.
311
312 @item -daemonize
313 Daemonize the QEMU process after initialization. QEMU will not detach from
314 standard IO until it is ready to receive connections on any of its devices.
315 This option is a useful way for external programs to launch QEMU without having
316 to cope with initialization race conditions.
317
318 @item -win2k-hack
319 Use it when installing Windows 2000 to avoid a disk full bug. After
320 Windows 2000 is installed, you no longer need this option (this option
321 slows down the IDE transfers).
322
323 @end table
324
325 USB options:
326 @table @option
327
328 @item -usb
329 Enable the USB driver (will be the default soon)
330
331 @item -usbdevice devname
332 Add the USB device @var{devname}. @xref{usb_devices}.
333 @end table
334
335 Network options:
336
337 @table @option
338
339 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
340 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
341 = 0 is the default). The NIC is currently an NE2000 on the PC
342 target. Optionally, the MAC address can be changed. If no
343 @option{-net} option is specified, a single NIC is created.
344 Qemu can emulate several different models of network card. Valid values for
345 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
346 @code{smc91c111} and @code{lance}. Not all devices are supported on all
347 targets.
348
349 @item -net user[,vlan=n][,hostname=name]
350 Use the user mode network stack which requires no administrator
351 priviledge to run. @option{hostname=name} can be used to specify the client
352 hostname reported by the builtin DHCP server.
353
354 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
355 Connect the host TAP network interface @var{name} to VLAN @var{n} and
356 use the network script @var{file} to configure it. The default
357 network script is @file{/etc/qemu-ifup}. If @var{name} is not
358 provided, the OS automatically provides one. @option{fd=h} can be
359 used to specify the handle of an already opened host TAP interface. Example:
360
361 @example
362 qemu linux.img -net nic -net tap
363 @end example
364
365 More complicated example (two NICs, each one connected to a TAP device)
366 @example
367 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
368 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
369 @end example
370
371
372 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
373
374 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
375 machine using a TCP socket connection. If @option{listen} is
376 specified, QEMU waits for incoming connections on @var{port}
377 (@var{host} is optional). @option{connect} is used to connect to
378 another QEMU instance using the @option{listen} option. @option{fd=h}
379 specifies an already opened TCP socket.
380
381 Example:
382 @example
383 # launch a first QEMU instance
384 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
385 -net socket,listen=:1234
386 # connect the VLAN 0 of this instance to the VLAN 0
387 # of the first instance
388 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
389 -net socket,connect=127.0.0.1:1234
390 @end example
391
392 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
393
394 Create a VLAN @var{n} shared with another QEMU virtual
395 machines using a UDP multicast socket, effectively making a bus for
396 every QEMU with same multicast address @var{maddr} and @var{port}.
397 NOTES:
398 @enumerate
399 @item
400 Several QEMU can be running on different hosts and share same bus (assuming
401 correct multicast setup for these hosts).
402 @item
403 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
404 @url{http://user-mode-linux.sf.net}.
405 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
406 @end enumerate
407
408 Example:
409 @example
410 # launch one QEMU instance
411 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
412 -net socket,mcast=230.0.0.1:1234
413 # launch another QEMU instance on same "bus"
414 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
415 -net socket,mcast=230.0.0.1:1234
416 # launch yet another QEMU instance on same "bus"
417 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
418 -net socket,mcast=230.0.0.1:1234
419 @end example
420
421 Example (User Mode Linux compat.):
422 @example
423 # launch QEMU instance (note mcast address selected
424 # is UML's default)
425 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
426 -net socket,mcast=239.192.168.1:1102
427 # launch UML
428 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
429 @end example
430
431 @item -net none
432 Indicate that no network devices should be configured. It is used to
433 override the default configuration (@option{-net nic -net user}) which
434 is activated if no @option{-net} options are provided.
435
436 @item -tftp prefix
437 When using the user mode network stack, activate a built-in TFTP
438 server. All filenames beginning with @var{prefix} can be downloaded
439 from the host to the guest using a TFTP client. The TFTP client on the
440 guest must be configured in binary mode (use the command @code{bin} of
441 the Unix TFTP client). The host IP address on the guest is as usual
442 10.0.2.2.
443
444 @item -smb dir
445 When using the user mode network stack, activate a built-in SMB
446 server so that Windows OSes can access to the host files in @file{dir}
447 transparently.
448
449 In the guest Windows OS, the line:
450 @example
451 10.0.2.4 smbserver
452 @end example
453 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
454 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
455
456 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
457
458 Note that a SAMBA server must be installed on the host OS in
459 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
460 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
461
462 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
463
464 When using the user mode network stack, redirect incoming TCP or UDP
465 connections to the host port @var{host-port} to the guest
466 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
467 is not specified, its value is 10.0.2.15 (default address given by the
468 built-in DHCP server).
469
470 For example, to redirect host X11 connection from screen 1 to guest
471 screen 0, use the following:
472
473 @example
474 # on the host
475 qemu -redir tcp:6001::6000 [...]
476 # this host xterm should open in the guest X11 server
477 xterm -display :1
478 @end example
479
480 To redirect telnet connections from host port 5555 to telnet port on
481 the guest, use the following:
482
483 @example
484 # on the host
485 qemu -redir tcp:5555::23 [...]
486 telnet localhost 5555
487 @end example
488
489 Then when you use on the host @code{telnet localhost 5555}, you
490 connect to the guest telnet server.
491
492 @end table
493
494 Linux boot specific: When using these options, you can use a given
495 Linux kernel without installing it in the disk image. It can be useful
496 for easier testing of various kernels.
497
498 @table @option
499
500 @item -kernel bzImage
501 Use @var{bzImage} as kernel image.
502
503 @item -append cmdline
504 Use @var{cmdline} as kernel command line
505
506 @item -initrd file
507 Use @var{file} as initial ram disk.
508
509 @end table
510
511 Debug/Expert options:
512 @table @option
513
514 @item -serial dev
515 Redirect the virtual serial port to host character device
516 @var{dev}. The default device is @code{vc} in graphical mode and
517 @code{stdio} in non graphical mode.
518
519 This option can be used several times to simulate up to 4 serials
520 ports.
521
522 Use @code{-serial none} to disable all serial ports.
523
524 Available character devices are:
525 @table @code
526 @item vc
527 Virtual console
528 @item pty
529 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
530 @item none
531 No device is allocated.
532 @item null
533 void device
534 @item /dev/XXX
535 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
536 parameters are set according to the emulated ones.
537 @item /dev/parportN
538 [Linux only, parallel port only] Use host parallel port
539 @var{N}. Currently only SPP parallel port features can be used.
540 @item file:filename
541 Write output to filename. No character can be read.
542 @item stdio
543 [Unix only] standard input/output
544 @item pipe:filename
545 name pipe @var{filename}
546 @item COMn
547 [Windows only] Use host serial port @var{n}
548 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
549 This implements UDP Net Console. When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}. When not using a specifed @var{src_port} a random port is automatically chosen.
550
551 If you just want a simple readonly console you can use @code{netcat} or
552 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
553 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
554 will appear in the netconsole session.
555
556 If you plan to send characters back via netconsole or you want to stop
557 and start qemu a lot of times, you should have qemu use the same
558 source port each time by using something like @code{-serial
559 udp::4555@@:4556} to qemu. Another approach is to use a patched
560 version of netcat which can listen to a TCP port and send and receive
561 characters via udp. If you have a patched version of netcat which
562 activates telnet remote echo and single char transfer, then you can
563 use the following options to step up a netcat redirector to allow
564 telnet on port 5555 to access the qemu port.
565 @table @code
566 @item Qemu Options:
567 -serial udp::4555@@:4556
568 @item netcat options:
569 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
570 @item telnet options:
571 localhost 5555
572 @end table
573
574
575 @item tcp:[host]:port[,server][,nowait]
576 The TCP Net Console has two modes of operation. It can send the serial
577 I/O to a location or wait for a connection from a location. By default
578 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
579 the @var{server} option QEMU will wait for a client socket application
580 to connect to the port before continuing, unless the @code{nowait}
581 option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
582 one TCP connection at a time is accepted. You can use @code{telnet} to
583 connect to the corresponding character device.
584 @table @code
585 @item Example to send tcp console to 192.168.0.2 port 4444
586 -serial tcp:192.168.0.2:4444
587 @item Example to listen and wait on port 4444 for connection
588 -serial tcp::4444,server
589 @item Example to not wait and listen on ip 192.168.0.100 port 4444
590 -serial tcp:192.168.0.100:4444,server,nowait
591 @end table
592
593 @item telnet:host:port[,server][,nowait]
594 The telnet protocol is used instead of raw tcp sockets. The options
595 work the same as if you had specified @code{-serial tcp}. The
596 difference is that the port acts like a telnet server or client using
597 telnet option negotiation. This will also allow you to send the
598 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
599 sequence. Typically in unix telnet you do it with Control-] and then
600 type "send break" followed by pressing the enter key.
601
602 @item unix:path[,server][,nowait]
603 A unix domain socket is used instead of a tcp socket. The option works the
604 same as if you had specified @code{-serial tcp} except the unix domain socket
605 @var{path} is used for connections.
606
607 @end table
608
609 @item -parallel dev
610 Redirect the virtual parallel port to host device @var{dev} (same
611 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
612 be used to use hardware devices connected on the corresponding host
613 parallel port.
614
615 This option can be used several times to simulate up to 3 parallel
616 ports.
617
618 Use @code{-parallel none} to disable all parallel ports.
619
620 @item -monitor dev
621 Redirect the monitor to host device @var{dev} (same devices as the
622 serial port).
623 The default device is @code{vc} in graphical mode and @code{stdio} in
624 non graphical mode.
625
626 @item -s
627 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
628 @item -p port
629 Change gdb connection port.
630 @item -S
631 Do not start CPU at startup (you must type 'c' in the monitor).
632 @item -d
633 Output log in /tmp/qemu.log
634 @item -hdachs c,h,s,[,t]
635 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
636 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
637 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
638 all thoses parameters. This option is useful for old MS-DOS disk
639 images.
640
641 @item -L path
642 Set the directory for the BIOS, VGA BIOS and keymaps.
643
644 @item -std-vga
645 Simulate a standard VGA card with Bochs VBE extensions (default is
646 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
647 VBE extensions (e.g. Windows XP) and if you want to use high
648 resolution modes (>= 1280x1024x16) then you should use this option.
649
650 @item -no-acpi
651 Disable ACPI (Advanced Configuration and Power Interface) support. Use
652 it if your guest OS complains about ACPI problems (PC target machine
653 only).
654
655 @item -no-reboot
656 Exit instead of rebooting.
657
658 @item -loadvm file
659 Start right away with a saved state (@code{loadvm} in monitor)
660 @end table
661
662 @c man end
663
664 @node pcsys_keys
665 @section Keys
666
667 @c man begin OPTIONS
668
669 During the graphical emulation, you can use the following keys:
670 @table @key
671 @item Ctrl-Alt-f
672 Toggle full screen
673
674 @item Ctrl-Alt-n
675 Switch to virtual console 'n'. Standard console mappings are:
676 @table @emph
677 @item 1
678 Target system display
679 @item 2
680 Monitor
681 @item 3
682 Serial port
683 @end table
684
685 @item Ctrl-Alt
686 Toggle mouse and keyboard grab.
687 @end table
688
689 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
690 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
691
692 During emulation, if you are using the @option{-nographic} option, use
693 @key{Ctrl-a h} to get terminal commands:
694
695 @table @key
696 @item Ctrl-a h
697 Print this help
698 @item Ctrl-a x
699 Exit emulator
700 @item Ctrl-a s
701 Save disk data back to file (if -snapshot)
702 @item Ctrl-a b
703 Send break (magic sysrq in Linux)
704 @item Ctrl-a c
705 Switch between console and monitor
706 @item Ctrl-a Ctrl-a
707 Send Ctrl-a
708 @end table
709 @c man end
710
711 @ignore
712
713 @c man begin SEEALSO
714 The HTML documentation of QEMU for more precise information and Linux
715 user mode emulator invocation.
716 @c man end
717
718 @c man begin AUTHOR
719 Fabrice Bellard
720 @c man end
721
722 @end ignore
723
724 @node pcsys_monitor
725 @section QEMU Monitor
726
727 The QEMU monitor is used to give complex commands to the QEMU
728 emulator. You can use it to:
729
730 @itemize @minus
731
732 @item
733 Remove or insert removable medias images
734 (such as CD-ROM or floppies)
735
736 @item
737 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
738 from a disk file.
739
740 @item Inspect the VM state without an external debugger.
741
742 @end itemize
743
744 @subsection Commands
745
746 The following commands are available:
747
748 @table @option
749
750 @item help or ? [cmd]
751 Show the help for all commands or just for command @var{cmd}.
752
753 @item commit
754 Commit changes to the disk images (if -snapshot is used)
755
756 @item info subcommand
757 show various information about the system state
758
759 @table @option
760 @item info network
761 show the various VLANs and the associated devices
762 @item info block
763 show the block devices
764 @item info registers
765 show the cpu registers
766 @item info history
767 show the command line history
768 @item info pci
769 show emulated PCI device
770 @item info usb
771 show USB devices plugged on the virtual USB hub
772 @item info usbhost
773 show all USB host devices
774 @item info capture
775 show information about active capturing
776 @item info snapshots
777 show list of VM snapshots
778 @end table
779
780 @item q or quit
781 Quit the emulator.
782
783 @item eject [-f] device
784 Eject a removable media (use -f to force it).
785
786 @item change device filename
787 Change a removable media.
788
789 @item screendump filename
790 Save screen into PPM image @var{filename}.
791
792 @item wavcapture filename [frequency [bits [channels]]]
793 Capture audio into @var{filename}. Using sample rate @var{frequency}
794 bits per sample @var{bits} and number of channels @var{channels}.
795
796 Defaults:
797 @itemize @minus
798 @item Sample rate = 44100 Hz - CD quality
799 @item Bits = 16
800 @item Number of channels = 2 - Stereo
801 @end itemize
802
803 @item stopcapture index
804 Stop capture with a given @var{index}, index can be obtained with
805 @example
806 info capture
807 @end example
808
809 @item log item1[,...]
810 Activate logging of the specified items to @file{/tmp/qemu.log}.
811
812 @item savevm [tag|id]
813 Create a snapshot of the whole virtual machine. If @var{tag} is
814 provided, it is used as human readable identifier. If there is already
815 a snapshot with the same tag or ID, it is replaced. More info at
816 @ref{vm_snapshots}.
817
818 @item loadvm tag|id
819 Set the whole virtual machine to the snapshot identified by the tag
820 @var{tag} or the unique snapshot ID @var{id}.
821
822 @item delvm tag|id
823 Delete the snapshot identified by @var{tag} or @var{id}.
824
825 @item stop
826 Stop emulation.
827
828 @item c or cont
829 Resume emulation.
830
831 @item gdbserver [port]
832 Start gdbserver session (default port=1234)
833
834 @item x/fmt addr
835 Virtual memory dump starting at @var{addr}.
836
837 @item xp /fmt addr
838 Physical memory dump starting at @var{addr}.
839
840 @var{fmt} is a format which tells the command how to format the
841 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
842
843 @table @var
844 @item count
845 is the number of items to be dumped.
846
847 @item format
848 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
849 c (char) or i (asm instruction).
850
851 @item size
852 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
853 @code{h} or @code{w} can be specified with the @code{i} format to
854 respectively select 16 or 32 bit code instruction size.
855
856 @end table
857
858 Examples:
859 @itemize
860 @item
861 Dump 10 instructions at the current instruction pointer:
862 @example
863 (qemu) x/10i $eip
864 0x90107063: ret
865 0x90107064: sti
866 0x90107065: lea 0x0(%esi,1),%esi
867 0x90107069: lea 0x0(%edi,1),%edi
868 0x90107070: ret
869 0x90107071: jmp 0x90107080
870 0x90107073: nop
871 0x90107074: nop
872 0x90107075: nop
873 0x90107076: nop
874 @end example
875
876 @item
877 Dump 80 16 bit values at the start of the video memory.
878 @smallexample
879 (qemu) xp/80hx 0xb8000
880 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
881 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
882 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
883 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
884 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
885 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
886 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
887 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
888 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
889 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
890 @end smallexample
891 @end itemize
892
893 @item p or print/fmt expr
894
895 Print expression value. Only the @var{format} part of @var{fmt} is
896 used.
897
898 @item sendkey keys
899
900 Send @var{keys} to the emulator. Use @code{-} to press several keys
901 simultaneously. Example:
902 @example
903 sendkey ctrl-alt-f1
904 @end example
905
906 This command is useful to send keys that your graphical user interface
907 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
908
909 @item system_reset
910
911 Reset the system.
912
913 @item usb_add devname
914
915 Add the USB device @var{devname}. For details of available devices see
916 @ref{usb_devices}
917
918 @item usb_del devname
919
920 Remove the USB device @var{devname} from the QEMU virtual USB
921 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
922 command @code{info usb} to see the devices you can remove.
923
924 @end table
925
926 @subsection Integer expressions
927
928 The monitor understands integers expressions for every integer
929 argument. You can use register names to get the value of specifics
930 CPU registers by prefixing them with @emph{$}.
931
932 @node disk_images
933 @section Disk Images
934
935 Since version 0.6.1, QEMU supports many disk image formats, including
936 growable disk images (their size increase as non empty sectors are
937 written), compressed and encrypted disk images. Version 0.8.3 added
938 the new qcow2 disk image format which is essential to support VM
939 snapshots.
940
941 @menu
942 * disk_images_quickstart:: Quick start for disk image creation
943 * disk_images_snapshot_mode:: Snapshot mode
944 * vm_snapshots:: VM snapshots
945 * qemu_img_invocation:: qemu-img Invocation
946 * host_drives:: Using host drives
947 * disk_images_fat_images:: Virtual FAT disk images
948 @end menu
949
950 @node disk_images_quickstart
951 @subsection Quick start for disk image creation
952
953 You can create a disk image with the command:
954 @example
955 qemu-img create myimage.img mysize
956 @end example
957 where @var{myimage.img} is the disk image filename and @var{mysize} is its
958 size in kilobytes. You can add an @code{M} suffix to give the size in
959 megabytes and a @code{G} suffix for gigabytes.
960
961 See @ref{qemu_img_invocation} for more information.
962
963 @node disk_images_snapshot_mode
964 @subsection Snapshot mode
965
966 If you use the option @option{-snapshot}, all disk images are
967 considered as read only. When sectors in written, they are written in
968 a temporary file created in @file{/tmp}. You can however force the
969 write back to the raw disk images by using the @code{commit} monitor
970 command (or @key{C-a s} in the serial console).
971
972 @node vm_snapshots
973 @subsection VM snapshots
974
975 VM snapshots are snapshots of the complete virtual machine including
976 CPU state, RAM, device state and the content of all the writable
977 disks. In order to use VM snapshots, you must have at least one non
978 removable and writable block device using the @code{qcow2} disk image
979 format. Normally this device is the first virtual hard drive.
980
981 Use the monitor command @code{savevm} to create a new VM snapshot or
982 replace an existing one. A human readable name can be assigned to each
983 snapshot in addition to its numerical ID.
984
985 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
986 a VM snapshot. @code{info snapshots} lists the available snapshots
987 with their associated information:
988
989 @example
990 (qemu) info snapshots
991 Snapshot devices: hda
992 Snapshot list (from hda):
993 ID TAG VM SIZE DATE VM CLOCK
994 1 start 41M 2006-08-06 12:38:02 00:00:14.954
995 2 40M 2006-08-06 12:43:29 00:00:18.633
996 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
997 @end example
998
999 A VM snapshot is made of a VM state info (its size is shown in
1000 @code{info snapshots}) and a snapshot of every writable disk image.
1001 The VM state info is stored in the first @code{qcow2} non removable
1002 and writable block device. The disk image snapshots are stored in
1003 every disk image. The size of a snapshot in a disk image is difficult
1004 to evaluate and is not shown by @code{info snapshots} because the
1005 associated disk sectors are shared among all the snapshots to save
1006 disk space (otherwise each snapshot would need a full copy of all the
1007 disk images).
1008
1009 When using the (unrelated) @code{-snapshot} option
1010 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1011 but they are deleted as soon as you exit QEMU.
1012
1013 VM snapshots currently have the following known limitations:
1014 @itemize
1015 @item
1016 They cannot cope with removable devices if they are removed or
1017 inserted after a snapshot is done.
1018 @item
1019 A few device drivers still have incomplete snapshot support so their
1020 state is not saved or restored properly (in particular USB).
1021 @end itemize
1022
1023 @node qemu_img_invocation
1024 @subsection @code{qemu-img} Invocation
1025
1026 @include qemu-img.texi
1027
1028 @node host_drives
1029 @subsection Using host drives
1030
1031 In addition to disk image files, QEMU can directly access host
1032 devices. We describe here the usage for QEMU version >= 0.8.3.
1033
1034 @subsubsection Linux
1035
1036 On Linux, you can directly use the host device filename instead of a
1037 disk image filename provided you have enough proviledge to access
1038 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1039 @file{/dev/fd0} for the floppy.
1040
1041 @table @code
1042 @item CD
1043 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1044 specific code to detect CDROM insertion or removal. CDROM ejection by
1045 the guest OS is supported. Currently only data CDs are supported.
1046 @item Floppy
1047 You can specify a floppy device even if no floppy is loaded. Floppy
1048 removal is currently not detected accurately (if you change floppy
1049 without doing floppy access while the floppy is not loaded, the guest
1050 OS will think that the same floppy is loaded).
1051 @item Hard disks
1052 Hard disks can be used. Normally you must specify the whole disk
1053 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1054 see it as a partitioned disk. WARNING: unless you know what you do, it
1055 is better to only make READ-ONLY accesses to the hard disk otherwise
1056 you may corrupt your host data (use the @option{-snapshot} command
1057 line option or modify the device permissions accordingly).
1058 @end table
1059
1060 @subsubsection Windows
1061
1062 On Windows you can use any host drives as QEMU drive. The prefered
1063 syntax is the driver letter (e.g. @file{d:}). The alternate syntax
1064 @file{\\.\d:} is supported. @file{/dev/cdrom} is supported as an alias
1065 to the first CDROM drive.
1066
1067 Currently there is no specific code to handle removable medias, so it
1068 is better to use the @code{change} or @code{eject} monitor commands to
1069 change or eject media.
1070
1071 @subsubsection Mac OS X
1072
1073 @file{/dev/cdrom} is an alias to the first CDROM.
1074
1075 Currently there is no specific code to handle removable medias, so it
1076 is better to use the @code{change} or @code{eject} monitor commands to
1077 change or eject media.
1078
1079 @node disk_images_fat_images
1080 @subsection Virtual FAT disk images
1081
1082 QEMU can automatically create a virtual FAT disk image from a
1083 directory tree. In order to use it, just type:
1084
1085 @example
1086 qemu linux.img -hdb fat:/my_directory
1087 @end example
1088
1089 Then you access access to all the files in the @file{/my_directory}
1090 directory without having to copy them in a disk image or to export
1091 them via SAMBA or NFS. The default access is @emph{read-only}.
1092
1093 Floppies can be emulated with the @code{:floppy:} option:
1094
1095 @example
1096 qemu linux.img -fda fat:floppy:/my_directory
1097 @end example
1098
1099 A read/write support is available for testing (beta stage) with the
1100 @code{:rw:} option:
1101
1102 @example
1103 qemu linux.img -fda fat:floppy:rw:/my_directory
1104 @end example
1105
1106 What you should @emph{never} do:
1107 @itemize
1108 @item use non-ASCII filenames ;
1109 @item use "-snapshot" together with ":rw:" ;
1110 @item expect it to work when loadvm'ing ;
1111 @item write to the FAT directory on the host system while accessing it with the guest system.
1112 @end itemize
1113
1114 @node pcsys_network
1115 @section Network emulation
1116
1117 QEMU can simulate several networks cards (NE2000 boards on the PC
1118 target) and can connect them to an arbitrary number of Virtual Local
1119 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1120 VLAN. VLAN can be connected between separate instances of QEMU to
1121 simulate large networks. For simpler usage, a non priviledged user mode
1122 network stack can replace the TAP device to have a basic network
1123 connection.
1124
1125 @subsection VLANs
1126
1127 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1128 connection between several network devices. These devices can be for
1129 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1130 (TAP devices).
1131
1132 @subsection Using TAP network interfaces
1133
1134 This is the standard way to connect QEMU to a real network. QEMU adds
1135 a virtual network device on your host (called @code{tapN}), and you
1136 can then configure it as if it was a real ethernet card.
1137
1138 @subsubsection Linux host
1139
1140 As an example, you can download the @file{linux-test-xxx.tar.gz}
1141 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1142 configure properly @code{sudo} so that the command @code{ifconfig}
1143 contained in @file{qemu-ifup} can be executed as root. You must verify
1144 that your host kernel supports the TAP network interfaces: the
1145 device @file{/dev/net/tun} must be present.
1146
1147 See @ref{sec_invocation} to have examples of command lines using the
1148 TAP network interfaces.
1149
1150 @subsubsection Windows host
1151
1152 There is a virtual ethernet driver for Windows 2000/XP systems, called
1153 TAP-Win32. But it is not included in standard QEMU for Windows,
1154 so you will need to get it separately. It is part of OpenVPN package,
1155 so download OpenVPN from : @url{http://openvpn.net/}.
1156
1157 @subsection Using the user mode network stack
1158
1159 By using the option @option{-net user} (default configuration if no
1160 @option{-net} option is specified), QEMU uses a completely user mode
1161 network stack (you don't need root priviledge to use the virtual
1162 network). The virtual network configuration is the following:
1163
1164 @example
1165
1166 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1167 | (10.0.2.2)
1168 |
1169 ----> DNS server (10.0.2.3)
1170 |
1171 ----> SMB server (10.0.2.4)
1172 @end example
1173
1174 The QEMU VM behaves as if it was behind a firewall which blocks all
1175 incoming connections. You can use a DHCP client to automatically
1176 configure the network in the QEMU VM. The DHCP server assign addresses
1177 to the hosts starting from 10.0.2.15.
1178
1179 In order to check that the user mode network is working, you can ping
1180 the address 10.0.2.2 and verify that you got an address in the range
1181 10.0.2.x from the QEMU virtual DHCP server.
1182
1183 Note that @code{ping} is not supported reliably to the internet as it
1184 would require root priviledges. It means you can only ping the local
1185 router (10.0.2.2).
1186
1187 When using the built-in TFTP server, the router is also the TFTP
1188 server.
1189
1190 When using the @option{-redir} option, TCP or UDP connections can be
1191 redirected from the host to the guest. It allows for example to
1192 redirect X11, telnet or SSH connections.
1193
1194 @subsection Connecting VLANs between QEMU instances
1195
1196 Using the @option{-net socket} option, it is possible to make VLANs
1197 that span several QEMU instances. See @ref{sec_invocation} to have a
1198 basic example.
1199
1200 @node direct_linux_boot
1201 @section Direct Linux Boot
1202
1203 This section explains how to launch a Linux kernel inside QEMU without
1204 having to make a full bootable image. It is very useful for fast Linux
1205 kernel testing.
1206
1207 The syntax is:
1208 @example
1209 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1210 @end example
1211
1212 Use @option{-kernel} to provide the Linux kernel image and
1213 @option{-append} to give the kernel command line arguments. The
1214 @option{-initrd} option can be used to provide an INITRD image.
1215
1216 When using the direct Linux boot, a disk image for the first hard disk
1217 @file{hda} is required because its boot sector is used to launch the
1218 Linux kernel.
1219
1220 If you do not need graphical output, you can disable it and redirect
1221 the virtual serial port and the QEMU monitor to the console with the
1222 @option{-nographic} option. The typical command line is:
1223 @example
1224 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1225 -append "root=/dev/hda console=ttyS0" -nographic
1226 @end example
1227
1228 Use @key{Ctrl-a c} to switch between the serial console and the
1229 monitor (@pxref{pcsys_keys}).
1230
1231 @node pcsys_usb
1232 @section USB emulation
1233
1234 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1235 virtual USB devices or real host USB devices (experimental, works only
1236 on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1237 as necessary to connect multiple USB devices.
1238
1239 @menu
1240 * usb_devices::
1241 * host_usb_devices::
1242 @end menu
1243 @node usb_devices
1244 @subsection Connecting USB devices
1245
1246 USB devices can be connected with the @option{-usbdevice} commandline option
1247 or the @code{usb_add} monitor command. Available devices are:
1248
1249 @table @var
1250 @item @code{mouse}
1251 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1252 @item @code{tablet}
1253 Pointer device that uses absolute coordinates (like a touchscreen).
1254 This means qemu is able to report the mouse position without having
1255 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1256 @item @code{disk:file}
1257 Mass storage device based on @var{file} (@pxref{disk_images})
1258 @item @code{host:bus.addr}
1259 Pass through the host device identified by @var{bus.addr}
1260 (Linux only)
1261 @item @code{host:vendor_id:product_id}
1262 Pass through the host device identified by @var{vendor_id:product_id}
1263 (Linux only)
1264 @end table
1265
1266 @node host_usb_devices
1267 @subsection Using host USB devices on a Linux host
1268
1269 WARNING: this is an experimental feature. QEMU will slow down when
1270 using it. USB devices requiring real time streaming (i.e. USB Video
1271 Cameras) are not supported yet.
1272
1273 @enumerate
1274 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1275 is actually using the USB device. A simple way to do that is simply to
1276 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1277 to @file{mydriver.o.disabled}.
1278
1279 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1280 @example
1281 ls /proc/bus/usb
1282 001 devices drivers
1283 @end example
1284
1285 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1286 @example
1287 chown -R myuid /proc/bus/usb
1288 @end example
1289
1290 @item Launch QEMU and do in the monitor:
1291 @example
1292 info usbhost
1293 Device 1.2, speed 480 Mb/s
1294 Class 00: USB device 1234:5678, USB DISK
1295 @end example
1296 You should see the list of the devices you can use (Never try to use
1297 hubs, it won't work).
1298
1299 @item Add the device in QEMU by using:
1300 @example
1301 usb_add host:1234:5678
1302 @end example
1303
1304 Normally the guest OS should report that a new USB device is
1305 plugged. You can use the option @option{-usbdevice} to do the same.
1306
1307 @item Now you can try to use the host USB device in QEMU.
1308
1309 @end enumerate
1310
1311 When relaunching QEMU, you may have to unplug and plug again the USB
1312 device to make it work again (this is a bug).
1313
1314 @node gdb_usage
1315 @section GDB usage
1316
1317 QEMU has a primitive support to work with gdb, so that you can do
1318 'Ctrl-C' while the virtual machine is running and inspect its state.
1319
1320 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1321 gdb connection:
1322 @example
1323 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1324 -append "root=/dev/hda"
1325 Connected to host network interface: tun0
1326 Waiting gdb connection on port 1234
1327 @end example
1328
1329 Then launch gdb on the 'vmlinux' executable:
1330 @example
1331 > gdb vmlinux
1332 @end example
1333
1334 In gdb, connect to QEMU:
1335 @example
1336 (gdb) target remote localhost:1234
1337 @end example
1338
1339 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1340 @example
1341 (gdb) c
1342 @end example
1343
1344 Here are some useful tips in order to use gdb on system code:
1345
1346 @enumerate
1347 @item
1348 Use @code{info reg} to display all the CPU registers.
1349 @item
1350 Use @code{x/10i $eip} to display the code at the PC position.
1351 @item
1352 Use @code{set architecture i8086} to dump 16 bit code. Then use
1353 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1354 @end enumerate
1355
1356 @node pcsys_os_specific
1357 @section Target OS specific information
1358
1359 @subsection Linux
1360
1361 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1362 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1363 color depth in the guest and the host OS.
1364
1365 When using a 2.6 guest Linux kernel, you should add the option
1366 @code{clock=pit} on the kernel command line because the 2.6 Linux
1367 kernels make very strict real time clock checks by default that QEMU
1368 cannot simulate exactly.
1369
1370 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1371 not activated because QEMU is slower with this patch. The QEMU
1372 Accelerator Module is also much slower in this case. Earlier Fedora
1373 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1374 patch by default. Newer kernels don't have it.
1375
1376 @subsection Windows
1377
1378 If you have a slow host, using Windows 95 is better as it gives the
1379 best speed. Windows 2000 is also a good choice.
1380
1381 @subsubsection SVGA graphic modes support
1382
1383 QEMU emulates a Cirrus Logic GD5446 Video
1384 card. All Windows versions starting from Windows 95 should recognize
1385 and use this graphic card. For optimal performances, use 16 bit color
1386 depth in the guest and the host OS.
1387
1388 If you are using Windows XP as guest OS and if you want to use high
1389 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1390 1280x1024x16), then you should use the VESA VBE virtual graphic card
1391 (option @option{-std-vga}).
1392
1393 @subsubsection CPU usage reduction
1394
1395 Windows 9x does not correctly use the CPU HLT
1396 instruction. The result is that it takes host CPU cycles even when
1397 idle. You can install the utility from
1398 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1399 problem. Note that no such tool is needed for NT, 2000 or XP.
1400
1401 @subsubsection Windows 2000 disk full problem
1402
1403 Windows 2000 has a bug which gives a disk full problem during its
1404 installation. When installing it, use the @option{-win2k-hack} QEMU
1405 option to enable a specific workaround. After Windows 2000 is
1406 installed, you no longer need this option (this option slows down the
1407 IDE transfers).
1408
1409 @subsubsection Windows 2000 shutdown
1410
1411 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1412 can. It comes from the fact that Windows 2000 does not automatically
1413 use the APM driver provided by the BIOS.
1414
1415 In order to correct that, do the following (thanks to Struan
1416 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1417 Add/Troubleshoot a device => Add a new device & Next => No, select the
1418 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1419 (again) a few times. Now the driver is installed and Windows 2000 now
1420 correctly instructs QEMU to shutdown at the appropriate moment.
1421
1422 @subsubsection Share a directory between Unix and Windows
1423
1424 See @ref{sec_invocation} about the help of the option @option{-smb}.
1425
1426 @subsubsection Windows XP security problem
1427
1428 Some releases of Windows XP install correctly but give a security
1429 error when booting:
1430 @example
1431 A problem is preventing Windows from accurately checking the
1432 license for this computer. Error code: 0x800703e6.
1433 @end example
1434
1435 The workaround is to install a service pack for XP after a boot in safe
1436 mode. Then reboot, and the problem should go away. Since there is no
1437 network while in safe mode, its recommended to download the full
1438 installation of SP1 or SP2 and transfer that via an ISO or using the
1439 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1440
1441 @subsection MS-DOS and FreeDOS
1442
1443 @subsubsection CPU usage reduction
1444
1445 DOS does not correctly use the CPU HLT instruction. The result is that
1446 it takes host CPU cycles even when idle. You can install the utility
1447 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1448 problem.
1449
1450 @node QEMU System emulator for non PC targets
1451 @chapter QEMU System emulator for non PC targets
1452
1453 QEMU is a generic emulator and it emulates many non PC
1454 machines. Most of the options are similar to the PC emulator. The
1455 differences are mentionned in the following sections.
1456
1457 @menu
1458 * QEMU PowerPC System emulator::
1459 * Sparc32 System emulator invocation::
1460 * Sparc64 System emulator invocation::
1461 * MIPS System emulator invocation::
1462 * ARM System emulator invocation::
1463 @end menu
1464
1465 @node QEMU PowerPC System emulator
1466 @section QEMU PowerPC System emulator
1467
1468 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1469 or PowerMac PowerPC system.
1470
1471 QEMU emulates the following PowerMac peripherals:
1472
1473 @itemize @minus
1474 @item
1475 UniNorth PCI Bridge
1476 @item
1477 PCI VGA compatible card with VESA Bochs Extensions
1478 @item
1479 2 PMAC IDE interfaces with hard disk and CD-ROM support
1480 @item
1481 NE2000 PCI adapters
1482 @item
1483 Non Volatile RAM
1484 @item
1485 VIA-CUDA with ADB keyboard and mouse.
1486 @end itemize
1487
1488 QEMU emulates the following PREP peripherals:
1489
1490 @itemize @minus
1491 @item
1492 PCI Bridge
1493 @item
1494 PCI VGA compatible card with VESA Bochs Extensions
1495 @item
1496 2 IDE interfaces with hard disk and CD-ROM support
1497 @item
1498 Floppy disk
1499 @item
1500 NE2000 network adapters
1501 @item
1502 Serial port
1503 @item
1504 PREP Non Volatile RAM
1505 @item
1506 PC compatible keyboard and mouse.
1507 @end itemize
1508
1509 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1510 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1511
1512 @c man begin OPTIONS
1513
1514 The following options are specific to the PowerPC emulation:
1515
1516 @table @option
1517
1518 @item -g WxH[xDEPTH]
1519
1520 Set the initial VGA graphic mode. The default is 800x600x15.
1521
1522 @end table
1523
1524 @c man end
1525
1526
1527 More information is available at
1528 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1529
1530 @node Sparc32 System emulator invocation
1531 @section Sparc32 System emulator invocation
1532
1533 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1534 (sun4m architecture). The emulation is somewhat complete.
1535
1536 QEMU emulates the following sun4m peripherals:
1537
1538 @itemize @minus
1539 @item
1540 IOMMU
1541 @item
1542 TCX Frame buffer
1543 @item
1544 Lance (Am7990) Ethernet
1545 @item
1546 Non Volatile RAM M48T08
1547 @item
1548 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1549 and power/reset logic
1550 @item
1551 ESP SCSI controller with hard disk and CD-ROM support
1552 @item
1553 Floppy drive
1554 @end itemize
1555
1556 The number of peripherals is fixed in the architecture.
1557
1558 Since version 0.8.2, QEMU uses OpenBIOS
1559 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1560 firmware implementation. The goal is to implement a 100% IEEE
1561 1275-1994 (referred to as Open Firmware) compliant firmware.
1562
1563 A sample Linux 2.6 series kernel and ram disk image are available on
1564 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1565 Solaris kernels don't work.
1566
1567 @c man begin OPTIONS
1568
1569 The following options are specific to the Sparc emulation:
1570
1571 @table @option
1572
1573 @item -g WxH
1574
1575 Set the initial TCX graphic mode. The default is 1024x768.
1576
1577 @end table
1578
1579 @c man end
1580
1581 @node Sparc64 System emulator invocation
1582 @section Sparc64 System emulator invocation
1583
1584 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1585 The emulator is not usable for anything yet.
1586
1587 QEMU emulates the following sun4u peripherals:
1588
1589 @itemize @minus
1590 @item
1591 UltraSparc IIi APB PCI Bridge
1592 @item
1593 PCI VGA compatible card with VESA Bochs Extensions
1594 @item
1595 Non Volatile RAM M48T59
1596 @item
1597 PC-compatible serial ports
1598 @end itemize
1599
1600 @node MIPS System emulator invocation
1601 @section MIPS System emulator invocation
1602
1603 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1604 The emulator is able to boot a Linux kernel and to run a Linux Debian
1605 installation from NFS. The following devices are emulated:
1606
1607 @itemize @minus
1608 @item
1609 MIPS R4K CPU
1610 @item
1611 PC style serial port
1612 @item
1613 NE2000 network card
1614 @end itemize
1615
1616 More information is available in the QEMU mailing-list archive.
1617
1618 @node ARM System emulator invocation
1619 @section ARM System emulator invocation
1620
1621 Use the executable @file{qemu-system-arm} to simulate a ARM
1622 machine. The ARM Integrator/CP board is emulated with the following
1623 devices:
1624
1625 @itemize @minus
1626 @item
1627 ARM926E or ARM1026E CPU
1628 @item
1629 Two PL011 UARTs
1630 @item
1631 SMC 91c111 Ethernet adapter
1632 @item
1633 PL110 LCD controller
1634 @item
1635 PL050 KMI with PS/2 keyboard and mouse.
1636 @end itemize
1637
1638 The ARM Versatile baseboard is emulated with the following devices:
1639
1640 @itemize @minus
1641 @item
1642 ARM926E CPU
1643 @item
1644 PL190 Vectored Interrupt Controller
1645 @item
1646 Four PL011 UARTs
1647 @item
1648 SMC 91c111 Ethernet adapter
1649 @item
1650 PL110 LCD controller
1651 @item
1652 PL050 KMI with PS/2 keyboard and mouse.
1653 @item
1654 PCI host bridge. Note the emulated PCI bridge only provides access to
1655 PCI memory space. It does not provide access to PCI IO space.
1656 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1657 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1658 mapped control registers.
1659 @item
1660 PCI OHCI USB controller.
1661 @item
1662 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1663 @end itemize
1664
1665 A Linux 2.6 test image is available on the QEMU web site. More
1666 information is available in the QEMU mailing-list archive.
1667
1668 @node QEMU Linux User space emulator
1669 @chapter QEMU Linux User space emulator
1670
1671 @menu
1672 * Quick Start::
1673 * Wine launch::
1674 * Command line options::
1675 * Other binaries::
1676 @end menu
1677
1678 @node Quick Start
1679 @section Quick Start
1680
1681 In order to launch a Linux process, QEMU needs the process executable
1682 itself and all the target (x86) dynamic libraries used by it.
1683
1684 @itemize
1685
1686 @item On x86, you can just try to launch any process by using the native
1687 libraries:
1688
1689 @example
1690 qemu-i386 -L / /bin/ls
1691 @end example
1692
1693 @code{-L /} tells that the x86 dynamic linker must be searched with a
1694 @file{/} prefix.
1695
1696 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1697
1698 @example
1699 qemu-i386 -L / qemu-i386 -L / /bin/ls
1700 @end example
1701
1702 @item On non x86 CPUs, you need first to download at least an x86 glibc
1703 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1704 @code{LD_LIBRARY_PATH} is not set:
1705
1706 @example
1707 unset LD_LIBRARY_PATH
1708 @end example
1709
1710 Then you can launch the precompiled @file{ls} x86 executable:
1711
1712 @example
1713 qemu-i386 tests/i386/ls
1714 @end example
1715 You can look at @file{qemu-binfmt-conf.sh} so that
1716 QEMU is automatically launched by the Linux kernel when you try to
1717 launch x86 executables. It requires the @code{binfmt_misc} module in the
1718 Linux kernel.
1719
1720 @item The x86 version of QEMU is also included. You can try weird things such as:
1721 @example
1722 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1723 /usr/local/qemu-i386/bin/ls-i386
1724 @end example
1725
1726 @end itemize
1727
1728 @node Wine launch
1729 @section Wine launch
1730
1731 @itemize
1732
1733 @item Ensure that you have a working QEMU with the x86 glibc
1734 distribution (see previous section). In order to verify it, you must be
1735 able to do:
1736
1737 @example
1738 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1739 @end example
1740
1741 @item Download the binary x86 Wine install
1742 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
1743
1744 @item Configure Wine on your account. Look at the provided script
1745 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1746 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1747
1748 @item Then you can try the example @file{putty.exe}:
1749
1750 @example
1751 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1752 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1753 @end example
1754
1755 @end itemize
1756
1757 @node Command line options
1758 @section Command line options
1759
1760 @example
1761 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1762 @end example
1763
1764 @table @option
1765 @item -h
1766 Print the help
1767 @item -L path
1768 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1769 @item -s size
1770 Set the x86 stack size in bytes (default=524288)
1771 @end table
1772
1773 Debug options:
1774
1775 @table @option
1776 @item -d
1777 Activate log (logfile=/tmp/qemu.log)
1778 @item -p pagesize
1779 Act as if the host page size was 'pagesize' bytes
1780 @end table
1781
1782 @node Other binaries
1783 @section Other binaries
1784
1785 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1786 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1787 configurations), and arm-uclinux bFLT format binaries.
1788
1789 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
1790 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1791 coldfire uClinux bFLT format binaries.
1792
1793 The binary format is detected automatically.
1794
1795 @node compilation
1796 @chapter Compilation from the sources
1797
1798 @menu
1799 * Linux/Unix::
1800 * Windows::
1801 * Cross compilation for Windows with Linux::
1802 * Mac OS X::
1803 @end menu
1804
1805 @node Linux/Unix
1806 @section Linux/Unix
1807
1808 @subsection Compilation
1809
1810 First you must decompress the sources:
1811 @example
1812 cd /tmp
1813 tar zxvf qemu-x.y.z.tar.gz
1814 cd qemu-x.y.z
1815 @end example
1816
1817 Then you configure QEMU and build it (usually no options are needed):
1818 @example
1819 ./configure
1820 make
1821 @end example
1822
1823 Then type as root user:
1824 @example
1825 make install
1826 @end example
1827 to install QEMU in @file{/usr/local}.
1828
1829 @subsection Tested tool versions
1830
1831 In order to compile QEMU successfully, it is very important that you
1832 have the right tools. The most important one is gcc. I cannot guaranty
1833 that QEMU works if you do not use a tested gcc version. Look at
1834 'configure' and 'Makefile' if you want to make a different gcc
1835 version work.
1836
1837 @example
1838 host gcc binutils glibc linux distribution
1839 ----------------------------------------------------------------------
1840 x86 3.2 2.13.2 2.1.3 2.4.18
1841 2.96 2.11.93.0.2 2.2.5 2.4.18 Red Hat 7.3
1842 3.2.2 2.13.90.0.18 2.3.2 2.4.20 Red Hat 9
1843
1844 PowerPC 3.3 [4] 2.13.90.0.18 2.3.1 2.4.20briq
1845 3.2
1846
1847 Alpha 3.3 [1] 2.14.90.0.4 2.2.5 2.2.20 [2] Debian 3.0
1848
1849 Sparc32 2.95.4 2.12.90.0.1 2.2.5 2.4.18 Debian 3.0
1850
1851 ARM 2.95.4 2.12.90.0.1 2.2.5 2.4.9 [3] Debian 3.0
1852
1853 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1854 for gcc version >= 3.3.
1855 [2] Linux >= 2.4.20 is necessary for precise exception support
1856 (untested).
1857 [3] 2.4.9-ac10-rmk2-np1-cerf2
1858
1859 [4] gcc 2.95.x generates invalid code when using too many register
1860 variables. You must use gcc 3.x on PowerPC.
1861 @end example
1862
1863 @node Windows
1864 @section Windows
1865
1866 @itemize
1867 @item Install the current versions of MSYS and MinGW from
1868 @url{http://www.mingw.org/}. You can find detailed installation
1869 instructions in the download section and the FAQ.
1870
1871 @item Download
1872 the MinGW development library of SDL 1.2.x
1873 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1874 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1875 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1876 directory. Edit the @file{sdl-config} script so that it gives the
1877 correct SDL directory when invoked.
1878
1879 @item Extract the current version of QEMU.
1880
1881 @item Start the MSYS shell (file @file{msys.bat}).
1882
1883 @item Change to the QEMU directory. Launch @file{./configure} and
1884 @file{make}. If you have problems using SDL, verify that
1885 @file{sdl-config} can be launched from the MSYS command line.
1886
1887 @item You can install QEMU in @file{Program Files/Qemu} by typing
1888 @file{make install}. Don't forget to copy @file{SDL.dll} in
1889 @file{Program Files/Qemu}.
1890
1891 @end itemize
1892
1893 @node Cross compilation for Windows with Linux
1894 @section Cross compilation for Windows with Linux
1895
1896 @itemize
1897 @item
1898 Install the MinGW cross compilation tools available at
1899 @url{http://www.mingw.org/}.
1900
1901 @item
1902 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1903 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1904 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1905 the QEMU configuration script.
1906
1907 @item
1908 Configure QEMU for Windows cross compilation:
1909 @example
1910 ./configure --enable-mingw32
1911 @end example
1912 If necessary, you can change the cross-prefix according to the prefix
1913 choosen for the MinGW tools with --cross-prefix. You can also use
1914 --prefix to set the Win32 install path.
1915
1916 @item You can install QEMU in the installation directory by typing
1917 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1918 installation directory.
1919
1920 @end itemize
1921
1922 Note: Currently, Wine does not seem able to launch
1923 QEMU for Win32.
1924
1925 @node Mac OS X
1926 @section Mac OS X
1927
1928 The Mac OS X patches are not fully merged in QEMU, so you should look
1929 at the QEMU mailing list archive to have all the necessary
1930 information.
1931
1932 @node Index
1933 @chapter Index
1934 @printindex cp
1935
1936 @bye