]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
qemu-doc: drop installation and compilation notes
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4
5 @documentlanguage en
6 @documentencoding UTF-8
7
8 @settitle QEMU Emulator User Documentation
9 @exampleindent 0
10 @paragraphindent 0
11 @c %**end of header
12
13 @ifinfo
14 @direntry
15 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16 @end direntry
17 @end ifinfo
18
19 @iftex
20 @titlepage
21 @sp 7
22 @center @titlefont{QEMU Emulator}
23 @sp 1
24 @center @titlefont{User Documentation}
25 @sp 3
26 @end titlepage
27 @end iftex
28
29 @ifnottex
30 @node Top
31 @top
32
33 @menu
34 * Introduction::
35 * QEMU PC System emulator::
36 * QEMU System emulator for non PC targets::
37 * QEMU User space emulator::
38 * License::
39 * Index::
40 @end menu
41 @end ifnottex
42
43 @contents
44
45 @node Introduction
46 @chapter Introduction
47
48 @menu
49 * intro_features:: Features
50 @end menu
51
52 @node intro_features
53 @section Features
54
55 QEMU is a FAST! processor emulator using dynamic translation to
56 achieve good emulation speed.
57
58 @cindex operating modes
59 QEMU has two operating modes:
60
61 @itemize
62 @cindex system emulation
63 @item Full system emulation. In this mode, QEMU emulates a full system (for
64 example a PC), including one or several processors and various
65 peripherals. It can be used to launch different Operating Systems
66 without rebooting the PC or to debug system code.
67
68 @cindex user mode emulation
69 @item User mode emulation. In this mode, QEMU can launch
70 processes compiled for one CPU on another CPU. It can be used to
71 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
72 to ease cross-compilation and cross-debugging.
73
74 @end itemize
75
76 QEMU has the following features:
77
78 @itemize
79 @item QEMU can run without a host kernel driver and yet gives acceptable
80 performance. It uses dynamic translation to native code for reasonable speed,
81 with support for self-modifying code and precise exceptions.
82
83 @item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
84 Windows) and architectures.
85
86 @item It performs accurate software emulation of the FPU.
87 @end itemize
88
89 QEMU user mode emulation has the following features:
90 @itemize
91 @item Generic Linux system call converter, including most ioctls.
92
93 @item clone() emulation using native CPU clone() to use Linux scheduler for threads.
94
95 @item Accurate signal handling by remapping host signals to target signals.
96 @end itemize
97
98 QEMU full system emulation has the following features:
99 @itemize
100 @item
101 QEMU uses a full software MMU for maximum portability.
102
103 @item
104 QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
105 execute most of the guest code natively, while
106 continuing to emulate the rest of the machine.
107
108 @item
109 Various hardware devices can be emulated and in some cases, host
110 devices (e.g. serial and parallel ports, USB, drives) can be used
111 transparently by the guest Operating System. Host device passthrough
112 can be used for talking to external physical peripherals (e.g. a
113 webcam, modem or tape drive).
114
115 @item
116 Symmetric multiprocessing (SMP) support. Currently, an in-kernel
117 accelerator is required to use more than one host CPU for emulation.
118
119 @end itemize
120
121
122 @node QEMU PC System emulator
123 @chapter QEMU PC System emulator
124 @cindex system emulation (PC)
125
126 @menu
127 * pcsys_introduction:: Introduction
128 * pcsys_quickstart:: Quick Start
129 * sec_invocation:: Invocation
130 * pcsys_keys:: Keys in the graphical frontends
131 * mux_keys:: Keys in the character backend multiplexer
132 * pcsys_monitor:: QEMU Monitor
133 * disk_images:: Disk Images
134 * pcsys_network:: Network emulation
135 * pcsys_other_devs:: Other Devices
136 * direct_linux_boot:: Direct Linux Boot
137 * pcsys_usb:: USB emulation
138 * vnc_security:: VNC security
139 * gdb_usage:: GDB usage
140 * pcsys_os_specific:: Target OS specific information
141 @end menu
142
143 @node pcsys_introduction
144 @section Introduction
145
146 @c man begin DESCRIPTION
147
148 The QEMU PC System emulator simulates the
149 following peripherals:
150
151 @itemize @minus
152 @item
153 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154 @item
155 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156 extensions (hardware level, including all non standard modes).
157 @item
158 PS/2 mouse and keyboard
159 @item
160 2 PCI IDE interfaces with hard disk and CD-ROM support
161 @item
162 Floppy disk
163 @item
164 PCI and ISA network adapters
165 @item
166 Serial ports
167 @item
168 IPMI BMC, either and internal or external one
169 @item
170 Creative SoundBlaster 16 sound card
171 @item
172 ENSONIQ AudioPCI ES1370 sound card
173 @item
174 Intel 82801AA AC97 Audio compatible sound card
175 @item
176 Intel HD Audio Controller and HDA codec
177 @item
178 Adlib (OPL2) - Yamaha YM3812 compatible chip
179 @item
180 Gravis Ultrasound GF1 sound card
181 @item
182 CS4231A compatible sound card
183 @item
184 PCI UHCI USB controller and a virtual USB hub.
185 @end itemize
186
187 SMP is supported with up to 255 CPUs.
188
189 QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
190 VGA BIOS.
191
192 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193
194 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195 by Tibor "TS" Schütz.
196
197 Note that, by default, GUS shares IRQ(7) with parallel ports and so
198 QEMU must be told to not have parallel ports to have working GUS.
199
200 @example
201 qemu-system-i386 dos.img -soundhw gus -parallel none
202 @end example
203
204 Alternatively:
205 @example
206 qemu-system-i386 dos.img -device gus,irq=5
207 @end example
208
209 Or some other unclaimed IRQ.
210
211 CS4231A is the chip used in Windows Sound System and GUSMAX products
212
213 @c man end
214
215 @node pcsys_quickstart
216 @section Quick Start
217 @cindex quick start
218
219 Download and uncompress the linux image (@file{linux.img}) and type:
220
221 @example
222 qemu-system-i386 linux.img
223 @end example
224
225 Linux should boot and give you a prompt.
226
227 @node sec_invocation
228 @section Invocation
229
230 @example
231 @c man begin SYNOPSIS
232 @command{qemu-system-i386} [@var{options}] [@var{disk_image}]
233 @c man end
234 @end example
235
236 @c man begin OPTIONS
237 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
238 targets do not need a disk image.
239
240 @include qemu-options.texi
241
242 @c man end
243
244 @node pcsys_keys
245 @section Keys in the graphical frontends
246
247 @c man begin OPTIONS
248
249 During the graphical emulation, you can use special key combinations to change
250 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
251 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
252 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
253
254 @table @key
255 @item Ctrl-Alt-f
256 @kindex Ctrl-Alt-f
257 Toggle full screen
258
259 @item Ctrl-Alt-+
260 @kindex Ctrl-Alt-+
261 Enlarge the screen
262
263 @item Ctrl-Alt--
264 @kindex Ctrl-Alt--
265 Shrink the screen
266
267 @item Ctrl-Alt-u
268 @kindex Ctrl-Alt-u
269 Restore the screen's un-scaled dimensions
270
271 @item Ctrl-Alt-n
272 @kindex Ctrl-Alt-n
273 Switch to virtual console 'n'. Standard console mappings are:
274 @table @emph
275 @item 1
276 Target system display
277 @item 2
278 Monitor
279 @item 3
280 Serial port
281 @end table
282
283 @item Ctrl-Alt
284 @kindex Ctrl-Alt
285 Toggle mouse and keyboard grab.
286 @end table
287
288 @kindex Ctrl-Up
289 @kindex Ctrl-Down
290 @kindex Ctrl-PageUp
291 @kindex Ctrl-PageDown
292 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
293 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
294
295 @c man end
296
297 @node mux_keys
298 @section Keys in the character backend multiplexer
299
300 @c man begin OPTIONS
301
302 During emulation, if you are using a character backend multiplexer
303 (which is the default if you are using @option{-nographic}) then
304 several commands are available via an escape sequence. These
305 key sequences all start with an escape character, which is @key{Ctrl-a}
306 by default, but can be changed with @option{-echr}. The list below assumes
307 you're using the default.
308
309 @table @key
310 @item Ctrl-a h
311 @kindex Ctrl-a h
312 Print this help
313 @item Ctrl-a x
314 @kindex Ctrl-a x
315 Exit emulator
316 @item Ctrl-a s
317 @kindex Ctrl-a s
318 Save disk data back to file (if -snapshot)
319 @item Ctrl-a t
320 @kindex Ctrl-a t
321 Toggle console timestamps
322 @item Ctrl-a b
323 @kindex Ctrl-a b
324 Send break (magic sysrq in Linux)
325 @item Ctrl-a c
326 @kindex Ctrl-a c
327 Rotate between the frontends connected to the multiplexer (usually
328 this switches between the monitor and the console)
329 @item Ctrl-a Ctrl-a
330 @kindex Ctrl-a Ctrl-a
331 Send the escape character to the frontend
332 @end table
333 @c man end
334
335 @ignore
336
337 @c man begin SEEALSO
338 The HTML documentation of QEMU for more precise information and Linux
339 user mode emulator invocation.
340 @c man end
341
342 @c man begin AUTHOR
343 Fabrice Bellard
344 @c man end
345
346 @end ignore
347
348 @node pcsys_monitor
349 @section QEMU Monitor
350 @cindex QEMU monitor
351
352 The QEMU monitor is used to give complex commands to the QEMU
353 emulator. You can use it to:
354
355 @itemize @minus
356
357 @item
358 Remove or insert removable media images
359 (such as CD-ROM or floppies).
360
361 @item
362 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
363 from a disk file.
364
365 @item Inspect the VM state without an external debugger.
366
367 @end itemize
368
369 @subsection Commands
370
371 The following commands are available:
372
373 @include qemu-monitor.texi
374
375 @include qemu-monitor-info.texi
376
377 @subsection Integer expressions
378
379 The monitor understands integers expressions for every integer
380 argument. You can use register names to get the value of specifics
381 CPU registers by prefixing them with @emph{$}.
382
383 @node disk_images
384 @section Disk Images
385
386 Since version 0.6.1, QEMU supports many disk image formats, including
387 growable disk images (their size increase as non empty sectors are
388 written), compressed and encrypted disk images. Version 0.8.3 added
389 the new qcow2 disk image format which is essential to support VM
390 snapshots.
391
392 @menu
393 * disk_images_quickstart:: Quick start for disk image creation
394 * disk_images_snapshot_mode:: Snapshot mode
395 * vm_snapshots:: VM snapshots
396 * qemu_img_invocation:: qemu-img Invocation
397 * qemu_nbd_invocation:: qemu-nbd Invocation
398 * qemu_ga_invocation:: qemu-ga Invocation
399 * disk_images_formats:: Disk image file formats
400 * host_drives:: Using host drives
401 * disk_images_fat_images:: Virtual FAT disk images
402 * disk_images_nbd:: NBD access
403 * disk_images_sheepdog:: Sheepdog disk images
404 * disk_images_iscsi:: iSCSI LUNs
405 * disk_images_gluster:: GlusterFS disk images
406 * disk_images_ssh:: Secure Shell (ssh) disk images
407 @end menu
408
409 @node disk_images_quickstart
410 @subsection Quick start for disk image creation
411
412 You can create a disk image with the command:
413 @example
414 qemu-img create myimage.img mysize
415 @end example
416 where @var{myimage.img} is the disk image filename and @var{mysize} is its
417 size in kilobytes. You can add an @code{M} suffix to give the size in
418 megabytes and a @code{G} suffix for gigabytes.
419
420 See @ref{qemu_img_invocation} for more information.
421
422 @node disk_images_snapshot_mode
423 @subsection Snapshot mode
424
425 If you use the option @option{-snapshot}, all disk images are
426 considered as read only. When sectors in written, they are written in
427 a temporary file created in @file{/tmp}. You can however force the
428 write back to the raw disk images by using the @code{commit} monitor
429 command (or @key{C-a s} in the serial console).
430
431 @node vm_snapshots
432 @subsection VM snapshots
433
434 VM snapshots are snapshots of the complete virtual machine including
435 CPU state, RAM, device state and the content of all the writable
436 disks. In order to use VM snapshots, you must have at least one non
437 removable and writable block device using the @code{qcow2} disk image
438 format. Normally this device is the first virtual hard drive.
439
440 Use the monitor command @code{savevm} to create a new VM snapshot or
441 replace an existing one. A human readable name can be assigned to each
442 snapshot in addition to its numerical ID.
443
444 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
445 a VM snapshot. @code{info snapshots} lists the available snapshots
446 with their associated information:
447
448 @example
449 (qemu) info snapshots
450 Snapshot devices: hda
451 Snapshot list (from hda):
452 ID TAG VM SIZE DATE VM CLOCK
453 1 start 41M 2006-08-06 12:38:02 00:00:14.954
454 2 40M 2006-08-06 12:43:29 00:00:18.633
455 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
456 @end example
457
458 A VM snapshot is made of a VM state info (its size is shown in
459 @code{info snapshots}) and a snapshot of every writable disk image.
460 The VM state info is stored in the first @code{qcow2} non removable
461 and writable block device. The disk image snapshots are stored in
462 every disk image. The size of a snapshot in a disk image is difficult
463 to evaluate and is not shown by @code{info snapshots} because the
464 associated disk sectors are shared among all the snapshots to save
465 disk space (otherwise each snapshot would need a full copy of all the
466 disk images).
467
468 When using the (unrelated) @code{-snapshot} option
469 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
470 but they are deleted as soon as you exit QEMU.
471
472 VM snapshots currently have the following known limitations:
473 @itemize
474 @item
475 They cannot cope with removable devices if they are removed or
476 inserted after a snapshot is done.
477 @item
478 A few device drivers still have incomplete snapshot support so their
479 state is not saved or restored properly (in particular USB).
480 @end itemize
481
482 @node qemu_img_invocation
483 @subsection @code{qemu-img} Invocation
484
485 @include qemu-img.texi
486
487 @node qemu_nbd_invocation
488 @subsection @code{qemu-nbd} Invocation
489
490 @include qemu-nbd.texi
491
492 @node qemu_ga_invocation
493 @subsection @code{qemu-ga} Invocation
494
495 @include qemu-ga.texi
496
497 @node disk_images_formats
498 @subsection Disk image file formats
499
500 QEMU supports many image file formats that can be used with VMs as well as with
501 any of the tools (like @code{qemu-img}). This includes the preferred formats
502 raw and qcow2 as well as formats that are supported for compatibility with
503 older QEMU versions or other hypervisors.
504
505 Depending on the image format, different options can be passed to
506 @code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
507 This section describes each format and the options that are supported for it.
508
509 @table @option
510 @item raw
511
512 Raw disk image format. This format has the advantage of
513 being simple and easily exportable to all other emulators. If your
514 file system supports @emph{holes} (for example in ext2 or ext3 on
515 Linux or NTFS on Windows), then only the written sectors will reserve
516 space. Use @code{qemu-img info} to know the real size used by the
517 image or @code{ls -ls} on Unix/Linux.
518
519 Supported options:
520 @table @code
521 @item preallocation
522 Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
523 @code{falloc} mode preallocates space for image by calling posix_fallocate().
524 @code{full} mode preallocates space for image by writing zeros to underlying
525 storage.
526 @end table
527
528 @item qcow2
529 QEMU image format, the most versatile format. Use it to have smaller
530 images (useful if your filesystem does not supports holes, for example
531 on Windows), zlib based compression and support of multiple VM
532 snapshots.
533
534 Supported options:
535 @table @code
536 @item compat
537 Determines the qcow2 version to use. @code{compat=0.10} uses the
538 traditional image format that can be read by any QEMU since 0.10.
539 @code{compat=1.1} enables image format extensions that only QEMU 1.1 and
540 newer understand (this is the default). Amongst others, this includes
541 zero clusters, which allow efficient copy-on-read for sparse images.
542
543 @item backing_file
544 File name of a base image (see @option{create} subcommand)
545 @item backing_fmt
546 Image format of the base image
547 @item encryption
548 If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
549
550 The use of encryption in qcow and qcow2 images is considered to be flawed by
551 modern cryptography standards, suffering from a number of design problems:
552
553 @itemize @minus
554 @item The AES-CBC cipher is used with predictable initialization vectors based
555 on the sector number. This makes it vulnerable to chosen plaintext attacks
556 which can reveal the existence of encrypted data.
557 @item The user passphrase is directly used as the encryption key. A poorly
558 chosen or short passphrase will compromise the security of the encryption.
559 @item In the event of the passphrase being compromised there is no way to
560 change the passphrase to protect data in any qcow images. The files must
561 be cloned, using a different encryption passphrase in the new file. The
562 original file must then be securely erased using a program like shred,
563 though even this is ineffective with many modern storage technologies.
564 @end itemize
565
566 Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
567 it will go away in a future release. Users are recommended to use an
568 alternative encryption technology such as the Linux dm-crypt / LUKS
569 system.
570
571 @item cluster_size
572 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
573 sizes can improve the image file size whereas larger cluster sizes generally
574 provide better performance.
575
576 @item preallocation
577 Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
578 @code{full}). An image with preallocated metadata is initially larger but can
579 improve performance when the image needs to grow. @code{falloc} and @code{full}
580 preallocations are like the same options of @code{raw} format, but sets up
581 metadata also.
582
583 @item lazy_refcounts
584 If this option is set to @code{on}, reference count updates are postponed with
585 the goal of avoiding metadata I/O and improving performance. This is
586 particularly interesting with @option{cache=writethrough} which doesn't batch
587 metadata updates. The tradeoff is that after a host crash, the reference count
588 tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
589 check -r all} is required, which may take some time.
590
591 This option can only be enabled if @code{compat=1.1} is specified.
592
593 @item nocow
594 If this option is set to @code{on}, it will turn off COW of the file. It's only
595 valid on btrfs, no effect on other file systems.
596
597 Btrfs has low performance when hosting a VM image file, even more when the guest
598 on the VM also using btrfs as file system. Turning off COW is a way to mitigate
599 this bad performance. Generally there are two ways to turn off COW on btrfs:
600 a) Disable it by mounting with nodatacow, then all newly created files will be
601 NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
602 does.
603
604 Note: this option is only valid to new or empty files. If there is an existing
605 file which is COW and has data blocks already, it couldn't be changed to NOCOW
606 by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
607 the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
608
609 @end table
610
611 @item qed
612 Old QEMU image format with support for backing files and compact image files
613 (when your filesystem or transport medium does not support holes).
614
615 When converting QED images to qcow2, you might want to consider using the
616 @code{lazy_refcounts=on} option to get a more QED-like behaviour.
617
618 Supported options:
619 @table @code
620 @item backing_file
621 File name of a base image (see @option{create} subcommand).
622 @item backing_fmt
623 Image file format of backing file (optional). Useful if the format cannot be
624 autodetected because it has no header, like some vhd/vpc files.
625 @item cluster_size
626 Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
627 cluster sizes can improve the image file size whereas larger cluster sizes
628 generally provide better performance.
629 @item table_size
630 Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
631 and 16). There is normally no need to change this value but this option can be
632 used for performance benchmarking.
633 @end table
634
635 @item qcow
636 Old QEMU image format with support for backing files, compact image files,
637 encryption and compression.
638
639 Supported options:
640 @table @code
641 @item backing_file
642 File name of a base image (see @option{create} subcommand)
643 @item encryption
644 If this option is set to @code{on}, the image is encrypted.
645 @end table
646
647 @item vdi
648 VirtualBox 1.1 compatible image format.
649 Supported options:
650 @table @code
651 @item static
652 If this option is set to @code{on}, the image is created with metadata
653 preallocation.
654 @end table
655
656 @item vmdk
657 VMware 3 and 4 compatible image format.
658
659 Supported options:
660 @table @code
661 @item backing_file
662 File name of a base image (see @option{create} subcommand).
663 @item compat6
664 Create a VMDK version 6 image (instead of version 4)
665 @item hwversion
666 Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
667 if hwversion is specified.
668 @item subformat
669 Specifies which VMDK subformat to use. Valid options are
670 @code{monolithicSparse} (default),
671 @code{monolithicFlat},
672 @code{twoGbMaxExtentSparse},
673 @code{twoGbMaxExtentFlat} and
674 @code{streamOptimized}.
675 @end table
676
677 @item vpc
678 VirtualPC compatible image format (VHD).
679 Supported options:
680 @table @code
681 @item subformat
682 Specifies which VHD subformat to use. Valid options are
683 @code{dynamic} (default) and @code{fixed}.
684 @end table
685
686 @item VHDX
687 Hyper-V compatible image format (VHDX).
688 Supported options:
689 @table @code
690 @item subformat
691 Specifies which VHDX subformat to use. Valid options are
692 @code{dynamic} (default) and @code{fixed}.
693 @item block_state_zero
694 Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
695 or @code{off}. When set to @code{off}, new blocks will be created as
696 @code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
697 arbitrary data for those blocks. Do not set to @code{off} when using
698 @code{qemu-img convert} with @code{subformat=dynamic}.
699 @item block_size
700 Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
701 @item log_size
702 Log size; min 1 MB.
703 @end table
704 @end table
705
706 @subsubsection Read-only formats
707 More disk image file formats are supported in a read-only mode.
708 @table @option
709 @item bochs
710 Bochs images of @code{growing} type.
711 @item cloop
712 Linux Compressed Loop image, useful only to reuse directly compressed
713 CD-ROM images present for example in the Knoppix CD-ROMs.
714 @item dmg
715 Apple disk image.
716 @item parallels
717 Parallels disk image format.
718 @end table
719
720
721 @node host_drives
722 @subsection Using host drives
723
724 In addition to disk image files, QEMU can directly access host
725 devices. We describe here the usage for QEMU version >= 0.8.3.
726
727 @subsubsection Linux
728
729 On Linux, you can directly use the host device filename instead of a
730 disk image filename provided you have enough privileges to access
731 it. For example, use @file{/dev/cdrom} to access to the CDROM.
732
733 @table @code
734 @item CD
735 You can specify a CDROM device even if no CDROM is loaded. QEMU has
736 specific code to detect CDROM insertion or removal. CDROM ejection by
737 the guest OS is supported. Currently only data CDs are supported.
738 @item Floppy
739 You can specify a floppy device even if no floppy is loaded. Floppy
740 removal is currently not detected accurately (if you change floppy
741 without doing floppy access while the floppy is not loaded, the guest
742 OS will think that the same floppy is loaded).
743 Use of the host's floppy device is deprecated, and support for it will
744 be removed in a future release.
745 @item Hard disks
746 Hard disks can be used. Normally you must specify the whole disk
747 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
748 see it as a partitioned disk. WARNING: unless you know what you do, it
749 is better to only make READ-ONLY accesses to the hard disk otherwise
750 you may corrupt your host data (use the @option{-snapshot} command
751 line option or modify the device permissions accordingly).
752 @end table
753
754 @subsubsection Windows
755
756 @table @code
757 @item CD
758 The preferred syntax is the drive letter (e.g. @file{d:}). The
759 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
760 supported as an alias to the first CDROM drive.
761
762 Currently there is no specific code to handle removable media, so it
763 is better to use the @code{change} or @code{eject} monitor commands to
764 change or eject media.
765 @item Hard disks
766 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
767 where @var{N} is the drive number (0 is the first hard disk).
768
769 WARNING: unless you know what you do, it is better to only make
770 READ-ONLY accesses to the hard disk otherwise you may corrupt your
771 host data (use the @option{-snapshot} command line so that the
772 modifications are written in a temporary file).
773 @end table
774
775
776 @subsubsection Mac OS X
777
778 @file{/dev/cdrom} is an alias to the first CDROM.
779
780 Currently there is no specific code to handle removable media, so it
781 is better to use the @code{change} or @code{eject} monitor commands to
782 change or eject media.
783
784 @node disk_images_fat_images
785 @subsection Virtual FAT disk images
786
787 QEMU can automatically create a virtual FAT disk image from a
788 directory tree. In order to use it, just type:
789
790 @example
791 qemu-system-i386 linux.img -hdb fat:/my_directory
792 @end example
793
794 Then you access access to all the files in the @file{/my_directory}
795 directory without having to copy them in a disk image or to export
796 them via SAMBA or NFS. The default access is @emph{read-only}.
797
798 Floppies can be emulated with the @code{:floppy:} option:
799
800 @example
801 qemu-system-i386 linux.img -fda fat:floppy:/my_directory
802 @end example
803
804 A read/write support is available for testing (beta stage) with the
805 @code{:rw:} option:
806
807 @example
808 qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
809 @end example
810
811 What you should @emph{never} do:
812 @itemize
813 @item use non-ASCII filenames ;
814 @item use "-snapshot" together with ":rw:" ;
815 @item expect it to work when loadvm'ing ;
816 @item write to the FAT directory on the host system while accessing it with the guest system.
817 @end itemize
818
819 @node disk_images_nbd
820 @subsection NBD access
821
822 QEMU can access directly to block device exported using the Network Block Device
823 protocol.
824
825 @example
826 qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
827 @end example
828
829 If the NBD server is located on the same host, you can use an unix socket instead
830 of an inet socket:
831
832 @example
833 qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
834 @end example
835
836 In this case, the block device must be exported using qemu-nbd:
837
838 @example
839 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
840 @end example
841
842 The use of qemu-nbd allows sharing of a disk between several guests:
843 @example
844 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
845 @end example
846
847 @noindent
848 and then you can use it with two guests:
849 @example
850 qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
851 qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
852 @end example
853
854 If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
855 own embedded NBD server), you must specify an export name in the URI:
856 @example
857 qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
858 qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
859 @end example
860
861 The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
862 also available. Here are some example of the older syntax:
863 @example
864 qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
865 qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
866 qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
867 @end example
868
869 @node disk_images_sheepdog
870 @subsection Sheepdog disk images
871
872 Sheepdog is a distributed storage system for QEMU. It provides highly
873 available block level storage volumes that can be attached to
874 QEMU-based virtual machines.
875
876 You can create a Sheepdog disk image with the command:
877 @example
878 qemu-img create sheepdog:///@var{image} @var{size}
879 @end example
880 where @var{image} is the Sheepdog image name and @var{size} is its
881 size.
882
883 To import the existing @var{filename} to Sheepdog, you can use a
884 convert command.
885 @example
886 qemu-img convert @var{filename} sheepdog:///@var{image}
887 @end example
888
889 You can boot from the Sheepdog disk image with the command:
890 @example
891 qemu-system-i386 sheepdog:///@var{image}
892 @end example
893
894 You can also create a snapshot of the Sheepdog image like qcow2.
895 @example
896 qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
897 @end example
898 where @var{tag} is a tag name of the newly created snapshot.
899
900 To boot from the Sheepdog snapshot, specify the tag name of the
901 snapshot.
902 @example
903 qemu-system-i386 sheepdog:///@var{image}#@var{tag}
904 @end example
905
906 You can create a cloned image from the existing snapshot.
907 @example
908 qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
909 @end example
910 where @var{base} is a image name of the source snapshot and @var{tag}
911 is its tag name.
912
913 You can use an unix socket instead of an inet socket:
914
915 @example
916 qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
917 @end example
918
919 If the Sheepdog daemon doesn't run on the local host, you need to
920 specify one of the Sheepdog servers to connect to.
921 @example
922 qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
923 qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
924 @end example
925
926 @node disk_images_iscsi
927 @subsection iSCSI LUNs
928
929 iSCSI is a popular protocol used to access SCSI devices across a computer
930 network.
931
932 There are two different ways iSCSI devices can be used by QEMU.
933
934 The first method is to mount the iSCSI LUN on the host, and make it appear as
935 any other ordinary SCSI device on the host and then to access this device as a
936 /dev/sd device from QEMU. How to do this differs between host OSes.
937
938 The second method involves using the iSCSI initiator that is built into
939 QEMU. This provides a mechanism that works the same way regardless of which
940 host OS you are running QEMU on. This section will describe this second method
941 of using iSCSI together with QEMU.
942
943 In QEMU, iSCSI devices are described using special iSCSI URLs
944
945 @example
946 URL syntax:
947 iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
948 @end example
949
950 Username and password are optional and only used if your target is set up
951 using CHAP authentication for access control.
952 Alternatively the username and password can also be set via environment
953 variables to have these not show up in the process list
954
955 @example
956 export LIBISCSI_CHAP_USERNAME=<username>
957 export LIBISCSI_CHAP_PASSWORD=<password>
958 iscsi://<host>/<target-iqn-name>/<lun>
959 @end example
960
961 Various session related parameters can be set via special options, either
962 in a configuration file provided via '-readconfig' or directly on the
963 command line.
964
965 If the initiator-name is not specified qemu will use a default name
966 of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
967 virtual machine.
968
969
970 @example
971 Setting a specific initiator name to use when logging in to the target
972 -iscsi initiator-name=iqn.qemu.test:my-initiator
973 @end example
974
975 @example
976 Controlling which type of header digest to negotiate with the target
977 -iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
978 @end example
979
980 These can also be set via a configuration file
981 @example
982 [iscsi]
983 user = "CHAP username"
984 password = "CHAP password"
985 initiator-name = "iqn.qemu.test:my-initiator"
986 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
987 header-digest = "CRC32C"
988 @end example
989
990
991 Setting the target name allows different options for different targets
992 @example
993 [iscsi "iqn.target.name"]
994 user = "CHAP username"
995 password = "CHAP password"
996 initiator-name = "iqn.qemu.test:my-initiator"
997 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
998 header-digest = "CRC32C"
999 @end example
1000
1001
1002 Howto use a configuration file to set iSCSI configuration options:
1003 @example
1004 cat >iscsi.conf <<EOF
1005 [iscsi]
1006 user = "me"
1007 password = "my password"
1008 initiator-name = "iqn.qemu.test:my-initiator"
1009 header-digest = "CRC32C"
1010 EOF
1011
1012 qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1013 -readconfig iscsi.conf
1014 @end example
1015
1016
1017 Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1018 @example
1019 This example shows how to set up an iSCSI target with one CDROM and one DISK
1020 using the Linux STGT software target. This target is available on Red Hat based
1021 systems as the package 'scsi-target-utils'.
1022
1023 tgtd --iscsi portal=127.0.0.1:3260
1024 tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1025 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1026 -b /IMAGES/disk.img --device-type=disk
1027 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1028 -b /IMAGES/cd.iso --device-type=cd
1029 tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1030
1031 qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1032 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1033 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1034 @end example
1035
1036 @node disk_images_gluster
1037 @subsection GlusterFS disk images
1038
1039 GlusterFS is an user space distributed file system.
1040
1041 You can boot from the GlusterFS disk image with the command:
1042 @example
1043 qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1044 @end example
1045
1046 @var{gluster} is the protocol.
1047
1048 @var{transport} specifies the transport type used to connect to gluster
1049 management daemon (glusterd). Valid transport types are
1050 tcp, unix and rdma. If a transport type isn't specified, then tcp
1051 type is assumed.
1052
1053 @var{server} specifies the server where the volume file specification for
1054 the given volume resides. This can be either hostname, ipv4 address
1055 or ipv6 address. ipv6 address needs to be within square brackets [ ].
1056 If transport type is unix, then @var{server} field should not be specified.
1057 Instead @var{socket} field needs to be populated with the path to unix domain
1058 socket.
1059
1060 @var{port} is the port number on which glusterd is listening. This is optional
1061 and if not specified, QEMU will send 0 which will make gluster to use the
1062 default port. If the transport type is unix, then @var{port} should not be
1063 specified.
1064
1065 @var{volname} is the name of the gluster volume which contains the disk image.
1066
1067 @var{image} is the path to the actual disk image that resides on gluster volume.
1068
1069 You can create a GlusterFS disk image with the command:
1070 @example
1071 qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1072 @end example
1073
1074 Examples
1075 @example
1076 qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1077 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1078 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1079 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1080 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1081 qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1082 qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1083 qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1084 @end example
1085
1086 @node disk_images_ssh
1087 @subsection Secure Shell (ssh) disk images
1088
1089 You can access disk images located on a remote ssh server
1090 by using the ssh protocol:
1091
1092 @example
1093 qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1094 @end example
1095
1096 Alternative syntax using properties:
1097
1098 @example
1099 qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1100 @end example
1101
1102 @var{ssh} is the protocol.
1103
1104 @var{user} is the remote user. If not specified, then the local
1105 username is tried.
1106
1107 @var{server} specifies the remote ssh server. Any ssh server can be
1108 used, but it must implement the sftp-server protocol. Most Unix/Linux
1109 systems should work without requiring any extra configuration.
1110
1111 @var{port} is the port number on which sshd is listening. By default
1112 the standard ssh port (22) is used.
1113
1114 @var{path} is the path to the disk image.
1115
1116 The optional @var{host_key_check} parameter controls how the remote
1117 host's key is checked. The default is @code{yes} which means to use
1118 the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1119 turns off known-hosts checking. Or you can check that the host key
1120 matches a specific fingerprint:
1121 @code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1122 (@code{sha1:} can also be used as a prefix, but note that OpenSSH
1123 tools only use MD5 to print fingerprints).
1124
1125 Currently authentication must be done using ssh-agent. Other
1126 authentication methods may be supported in future.
1127
1128 Note: Many ssh servers do not support an @code{fsync}-style operation.
1129 The ssh driver cannot guarantee that disk flush requests are
1130 obeyed, and this causes a risk of disk corruption if the remote
1131 server or network goes down during writes. The driver will
1132 print a warning when @code{fsync} is not supported:
1133
1134 warning: ssh server @code{ssh.example.com:22} does not support fsync
1135
1136 With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1137 supported.
1138
1139 @node pcsys_network
1140 @section Network emulation
1141
1142 QEMU can simulate several network cards (PCI or ISA cards on the PC
1143 target) and can connect them to an arbitrary number of Virtual Local
1144 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1145 VLAN. VLAN can be connected between separate instances of QEMU to
1146 simulate large networks. For simpler usage, a non privileged user mode
1147 network stack can replace the TAP device to have a basic network
1148 connection.
1149
1150 @subsection VLANs
1151
1152 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1153 connection between several network devices. These devices can be for
1154 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1155 (TAP devices).
1156
1157 @subsection Using TAP network interfaces
1158
1159 This is the standard way to connect QEMU to a real network. QEMU adds
1160 a virtual network device on your host (called @code{tapN}), and you
1161 can then configure it as if it was a real ethernet card.
1162
1163 @subsubsection Linux host
1164
1165 As an example, you can download the @file{linux-test-xxx.tar.gz}
1166 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1167 configure properly @code{sudo} so that the command @code{ifconfig}
1168 contained in @file{qemu-ifup} can be executed as root. You must verify
1169 that your host kernel supports the TAP network interfaces: the
1170 device @file{/dev/net/tun} must be present.
1171
1172 See @ref{sec_invocation} to have examples of command lines using the
1173 TAP network interfaces.
1174
1175 @subsubsection Windows host
1176
1177 There is a virtual ethernet driver for Windows 2000/XP systems, called
1178 TAP-Win32. But it is not included in standard QEMU for Windows,
1179 so you will need to get it separately. It is part of OpenVPN package,
1180 so download OpenVPN from : @url{http://openvpn.net/}.
1181
1182 @subsection Using the user mode network stack
1183
1184 By using the option @option{-net user} (default configuration if no
1185 @option{-net} option is specified), QEMU uses a completely user mode
1186 network stack (you don't need root privilege to use the virtual
1187 network). The virtual network configuration is the following:
1188
1189 @example
1190
1191 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1192 | (10.0.2.2)
1193 |
1194 ----> DNS server (10.0.2.3)
1195 |
1196 ----> SMB server (10.0.2.4)
1197 @end example
1198
1199 The QEMU VM behaves as if it was behind a firewall which blocks all
1200 incoming connections. You can use a DHCP client to automatically
1201 configure the network in the QEMU VM. The DHCP server assign addresses
1202 to the hosts starting from 10.0.2.15.
1203
1204 In order to check that the user mode network is working, you can ping
1205 the address 10.0.2.2 and verify that you got an address in the range
1206 10.0.2.x from the QEMU virtual DHCP server.
1207
1208 Note that ICMP traffic in general does not work with user mode networking.
1209 @code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1210 however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1211 ping sockets to allow @code{ping} to the Internet. The host admin has to set
1212 the ping_group_range in order to grant access to those sockets. To allow ping
1213 for GID 100 (usually users group):
1214
1215 @example
1216 echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1217 @end example
1218
1219 When using the built-in TFTP server, the router is also the TFTP
1220 server.
1221
1222 When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1223 connections can be redirected from the host to the guest. It allows for
1224 example to redirect X11, telnet or SSH connections.
1225
1226 @subsection Connecting VLANs between QEMU instances
1227
1228 Using the @option{-net socket} option, it is possible to make VLANs
1229 that span several QEMU instances. See @ref{sec_invocation} to have a
1230 basic example.
1231
1232 @node pcsys_other_devs
1233 @section Other Devices
1234
1235 @subsection Inter-VM Shared Memory device
1236
1237 On Linux hosts, a shared memory device is available. The basic syntax
1238 is:
1239
1240 @example
1241 qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1242 @end example
1243
1244 where @var{hostmem} names a host memory backend. For a POSIX shared
1245 memory backend, use something like
1246
1247 @example
1248 -object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
1249 @end example
1250
1251 If desired, interrupts can be sent between guest VMs accessing the same shared
1252 memory region. Interrupt support requires using a shared memory server and
1253 using a chardev socket to connect to it. The code for the shared memory server
1254 is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1255 memory server is:
1256
1257 @example
1258 # First start the ivshmem server once and for all
1259 ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
1260
1261 # Then start your qemu instances with matching arguments
1262 qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
1263 -chardev socket,path=@var{path},id=@var{id}
1264 @end example
1265
1266 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1267 using the same server to communicate via interrupts. Guests can read their
1268 VM ID from a device register (see ivshmem-spec.txt).
1269
1270 @subsubsection Migration with ivshmem
1271
1272 With device property @option{master=on}, the guest will copy the shared
1273 memory on migration to the destination host. With @option{master=off},
1274 the guest will not be able to migrate with the device attached. In the
1275 latter case, the device should be detached and then reattached after
1276 migration using the PCI hotplug support.
1277
1278 At most one of the devices sharing the same memory can be master. The
1279 master must complete migration before you plug back the other devices.
1280
1281 @subsubsection ivshmem and hugepages
1282
1283 Instead of specifying the <shm size> using POSIX shm, you may specify
1284 a memory backend that has hugepage support:
1285
1286 @example
1287 qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1288 -device ivshmem-plain,memdev=mb1
1289 @end example
1290
1291 ivshmem-server also supports hugepages mount points with the
1292 @option{-m} memory path argument.
1293
1294 @node direct_linux_boot
1295 @section Direct Linux Boot
1296
1297 This section explains how to launch a Linux kernel inside QEMU without
1298 having to make a full bootable image. It is very useful for fast Linux
1299 kernel testing.
1300
1301 The syntax is:
1302 @example
1303 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1304 @end example
1305
1306 Use @option{-kernel} to provide the Linux kernel image and
1307 @option{-append} to give the kernel command line arguments. The
1308 @option{-initrd} option can be used to provide an INITRD image.
1309
1310 When using the direct Linux boot, a disk image for the first hard disk
1311 @file{hda} is required because its boot sector is used to launch the
1312 Linux kernel.
1313
1314 If you do not need graphical output, you can disable it and redirect
1315 the virtual serial port and the QEMU monitor to the console with the
1316 @option{-nographic} option. The typical command line is:
1317 @example
1318 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1319 -append "root=/dev/hda console=ttyS0" -nographic
1320 @end example
1321
1322 Use @key{Ctrl-a c} to switch between the serial console and the
1323 monitor (@pxref{pcsys_keys}).
1324
1325 @node pcsys_usb
1326 @section USB emulation
1327
1328 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1329 virtual USB devices or real host USB devices (experimental, works only
1330 on Linux hosts). QEMU will automatically create and connect virtual USB hubs
1331 as necessary to connect multiple USB devices.
1332
1333 @menu
1334 * usb_devices::
1335 * host_usb_devices::
1336 @end menu
1337 @node usb_devices
1338 @subsection Connecting USB devices
1339
1340 USB devices can be connected with the @option{-usbdevice} commandline option
1341 or the @code{usb_add} monitor command. Available devices are:
1342
1343 @table @code
1344 @item mouse
1345 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1346 @item tablet
1347 Pointer device that uses absolute coordinates (like a touchscreen).
1348 This means QEMU is able to report the mouse position without having
1349 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1350 @item disk:@var{file}
1351 Mass storage device based on @var{file} (@pxref{disk_images})
1352 @item host:@var{bus.addr}
1353 Pass through the host device identified by @var{bus.addr}
1354 (Linux only)
1355 @item host:@var{vendor_id:product_id}
1356 Pass through the host device identified by @var{vendor_id:product_id}
1357 (Linux only)
1358 @item wacom-tablet
1359 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1360 above but it can be used with the tslib library because in addition to touch
1361 coordinates it reports touch pressure.
1362 @item keyboard
1363 Standard USB keyboard. Will override the PS/2 keyboard (if present).
1364 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1365 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1366 device @var{dev}. The available character devices are the same as for the
1367 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1368 used to override the default 0403:6001. For instance,
1369 @example
1370 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1371 @end example
1372 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1373 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1374 @item braille
1375 Braille device. This will use BrlAPI to display the braille output on a real
1376 or fake device.
1377 @item net:@var{options}
1378 Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1379 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1380 For instance, user-mode networking can be used with
1381 @example
1382 qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1383 @end example
1384 Currently this cannot be used in machines that support PCI NICs.
1385 @item bt[:@var{hci-type}]
1386 Bluetooth dongle whose type is specified in the same format as with
1387 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1388 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1389 This USB device implements the USB Transport Layer of HCI. Example
1390 usage:
1391 @example
1392 @command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
1393 @end example
1394 @end table
1395
1396 @node host_usb_devices
1397 @subsection Using host USB devices on a Linux host
1398
1399 WARNING: this is an experimental feature. QEMU will slow down when
1400 using it. USB devices requiring real time streaming (i.e. USB Video
1401 Cameras) are not supported yet.
1402
1403 @enumerate
1404 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1405 is actually using the USB device. A simple way to do that is simply to
1406 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1407 to @file{mydriver.o.disabled}.
1408
1409 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1410 @example
1411 ls /proc/bus/usb
1412 001 devices drivers
1413 @end example
1414
1415 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1416 @example
1417 chown -R myuid /proc/bus/usb
1418 @end example
1419
1420 @item Launch QEMU and do in the monitor:
1421 @example
1422 info usbhost
1423 Device 1.2, speed 480 Mb/s
1424 Class 00: USB device 1234:5678, USB DISK
1425 @end example
1426 You should see the list of the devices you can use (Never try to use
1427 hubs, it won't work).
1428
1429 @item Add the device in QEMU by using:
1430 @example
1431 usb_add host:1234:5678
1432 @end example
1433
1434 Normally the guest OS should report that a new USB device is
1435 plugged. You can use the option @option{-usbdevice} to do the same.
1436
1437 @item Now you can try to use the host USB device in QEMU.
1438
1439 @end enumerate
1440
1441 When relaunching QEMU, you may have to unplug and plug again the USB
1442 device to make it work again (this is a bug).
1443
1444 @node vnc_security
1445 @section VNC security
1446
1447 The VNC server capability provides access to the graphical console
1448 of the guest VM across the network. This has a number of security
1449 considerations depending on the deployment scenarios.
1450
1451 @menu
1452 * vnc_sec_none::
1453 * vnc_sec_password::
1454 * vnc_sec_certificate::
1455 * vnc_sec_certificate_verify::
1456 * vnc_sec_certificate_pw::
1457 * vnc_sec_sasl::
1458 * vnc_sec_certificate_sasl::
1459 * vnc_generate_cert::
1460 * vnc_setup_sasl::
1461 @end menu
1462 @node vnc_sec_none
1463 @subsection Without passwords
1464
1465 The simplest VNC server setup does not include any form of authentication.
1466 For this setup it is recommended to restrict it to listen on a UNIX domain
1467 socket only. For example
1468
1469 @example
1470 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1471 @end example
1472
1473 This ensures that only users on local box with read/write access to that
1474 path can access the VNC server. To securely access the VNC server from a
1475 remote machine, a combination of netcat+ssh can be used to provide a secure
1476 tunnel.
1477
1478 @node vnc_sec_password
1479 @subsection With passwords
1480
1481 The VNC protocol has limited support for password based authentication. Since
1482 the protocol limits passwords to 8 characters it should not be considered
1483 to provide high security. The password can be fairly easily brute-forced by
1484 a client making repeat connections. For this reason, a VNC server using password
1485 authentication should be restricted to only listen on the loopback interface
1486 or UNIX domain sockets. Password authentication is not supported when operating
1487 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1488 authentication is requested with the @code{password} option, and then once QEMU
1489 is running the password is set with the monitor. Until the monitor is used to
1490 set the password all clients will be rejected.
1491
1492 @example
1493 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1494 (qemu) change vnc password
1495 Password: ********
1496 (qemu)
1497 @end example
1498
1499 @node vnc_sec_certificate
1500 @subsection With x509 certificates
1501
1502 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1503 TLS for encryption of the session, and x509 certificates for authentication.
1504 The use of x509 certificates is strongly recommended, because TLS on its
1505 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1506 support provides a secure session, but no authentication. This allows any
1507 client to connect, and provides an encrypted session.
1508
1509 @example
1510 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1511 @end example
1512
1513 In the above example @code{/etc/pki/qemu} should contain at least three files,
1514 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1515 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1516 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1517 only be readable by the user owning it.
1518
1519 @node vnc_sec_certificate_verify
1520 @subsection With x509 certificates and client verification
1521
1522 Certificates can also provide a means to authenticate the client connecting.
1523 The server will request that the client provide a certificate, which it will
1524 then validate against the CA certificate. This is a good choice if deploying
1525 in an environment with a private internal certificate authority.
1526
1527 @example
1528 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1529 @end example
1530
1531
1532 @node vnc_sec_certificate_pw
1533 @subsection With x509 certificates, client verification and passwords
1534
1535 Finally, the previous method can be combined with VNC password authentication
1536 to provide two layers of authentication for clients.
1537
1538 @example
1539 qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1540 (qemu) change vnc password
1541 Password: ********
1542 (qemu)
1543 @end example
1544
1545
1546 @node vnc_sec_sasl
1547 @subsection With SASL authentication
1548
1549 The SASL authentication method is a VNC extension, that provides an
1550 easily extendable, pluggable authentication method. This allows for
1551 integration with a wide range of authentication mechanisms, such as
1552 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1553 The strength of the authentication depends on the exact mechanism
1554 configured. If the chosen mechanism also provides a SSF layer, then
1555 it will encrypt the datastream as well.
1556
1557 Refer to the later docs on how to choose the exact SASL mechanism
1558 used for authentication, but assuming use of one supporting SSF,
1559 then QEMU can be launched with:
1560
1561 @example
1562 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1563 @end example
1564
1565 @node vnc_sec_certificate_sasl
1566 @subsection With x509 certificates and SASL authentication
1567
1568 If the desired SASL authentication mechanism does not supported
1569 SSF layers, then it is strongly advised to run it in combination
1570 with TLS and x509 certificates. This provides securely encrypted
1571 data stream, avoiding risk of compromising of the security
1572 credentials. This can be enabled, by combining the 'sasl' option
1573 with the aforementioned TLS + x509 options:
1574
1575 @example
1576 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1577 @end example
1578
1579
1580 @node vnc_generate_cert
1581 @subsection Generating certificates for VNC
1582
1583 The GNU TLS packages provides a command called @code{certtool} which can
1584 be used to generate certificates and keys in PEM format. At a minimum it
1585 is necessary to setup a certificate authority, and issue certificates to
1586 each server. If using certificates for authentication, then each client
1587 will also need to be issued a certificate. The recommendation is for the
1588 server to keep its certificates in either @code{/etc/pki/qemu} or for
1589 unprivileged users in @code{$HOME/.pki/qemu}.
1590
1591 @menu
1592 * vnc_generate_ca::
1593 * vnc_generate_server::
1594 * vnc_generate_client::
1595 @end menu
1596 @node vnc_generate_ca
1597 @subsubsection Setup the Certificate Authority
1598
1599 This step only needs to be performed once per organization / organizational
1600 unit. First the CA needs a private key. This key must be kept VERY secret
1601 and secure. If this key is compromised the entire trust chain of the certificates
1602 issued with it is lost.
1603
1604 @example
1605 # certtool --generate-privkey > ca-key.pem
1606 @end example
1607
1608 A CA needs to have a public certificate. For simplicity it can be a self-signed
1609 certificate, or one issue by a commercial certificate issuing authority. To
1610 generate a self-signed certificate requires one core piece of information, the
1611 name of the organization.
1612
1613 @example
1614 # cat > ca.info <<EOF
1615 cn = Name of your organization
1616 ca
1617 cert_signing_key
1618 EOF
1619 # certtool --generate-self-signed \
1620 --load-privkey ca-key.pem
1621 --template ca.info \
1622 --outfile ca-cert.pem
1623 @end example
1624
1625 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1626 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1627
1628 @node vnc_generate_server
1629 @subsubsection Issuing server certificates
1630
1631 Each server (or host) needs to be issued with a key and certificate. When connecting
1632 the certificate is sent to the client which validates it against the CA certificate.
1633 The core piece of information for a server certificate is the hostname. This should
1634 be the fully qualified hostname that the client will connect with, since the client
1635 will typically also verify the hostname in the certificate. On the host holding the
1636 secure CA private key:
1637
1638 @example
1639 # cat > server.info <<EOF
1640 organization = Name of your organization
1641 cn = server.foo.example.com
1642 tls_www_server
1643 encryption_key
1644 signing_key
1645 EOF
1646 # certtool --generate-privkey > server-key.pem
1647 # certtool --generate-certificate \
1648 --load-ca-certificate ca-cert.pem \
1649 --load-ca-privkey ca-key.pem \
1650 --load-privkey server-key.pem \
1651 --template server.info \
1652 --outfile server-cert.pem
1653 @end example
1654
1655 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1656 to the server for which they were generated. The @code{server-key.pem} is security
1657 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1658
1659 @node vnc_generate_client
1660 @subsubsection Issuing client certificates
1661
1662 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1663 certificates as its authentication mechanism, each client also needs to be issued
1664 a certificate. The client certificate contains enough metadata to uniquely identify
1665 the client, typically organization, state, city, building, etc. On the host holding
1666 the secure CA private key:
1667
1668 @example
1669 # cat > client.info <<EOF
1670 country = GB
1671 state = London
1672 locality = London
1673 organization = Name of your organization
1674 cn = client.foo.example.com
1675 tls_www_client
1676 encryption_key
1677 signing_key
1678 EOF
1679 # certtool --generate-privkey > client-key.pem
1680 # certtool --generate-certificate \
1681 --load-ca-certificate ca-cert.pem \
1682 --load-ca-privkey ca-key.pem \
1683 --load-privkey client-key.pem \
1684 --template client.info \
1685 --outfile client-cert.pem
1686 @end example
1687
1688 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1689 copied to the client for which they were generated.
1690
1691
1692 @node vnc_setup_sasl
1693
1694 @subsection Configuring SASL mechanisms
1695
1696 The following documentation assumes use of the Cyrus SASL implementation on a
1697 Linux host, but the principals should apply to any other SASL impl. When SASL
1698 is enabled, the mechanism configuration will be loaded from system default
1699 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1700 unprivileged user, an environment variable SASL_CONF_PATH can be used
1701 to make it search alternate locations for the service config.
1702
1703 The default configuration might contain
1704
1705 @example
1706 mech_list: digest-md5
1707 sasldb_path: /etc/qemu/passwd.db
1708 @end example
1709
1710 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1711 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1712 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1713 command. While this mechanism is easy to configure and use, it is not
1714 considered secure by modern standards, so only suitable for developers /
1715 ad-hoc testing.
1716
1717 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1718 mechanism
1719
1720 @example
1721 mech_list: gssapi
1722 keytab: /etc/qemu/krb5.tab
1723 @end example
1724
1725 For this to work the administrator of your KDC must generate a Kerberos
1726 principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1727 replacing 'somehost.example.com' with the fully qualified host name of the
1728 machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1729
1730 Other configurations will be left as an exercise for the reader. It should
1731 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1732 encryption. For all other mechanisms, VNC should always be configured to
1733 use TLS and x509 certificates to protect security credentials from snooping.
1734
1735 @node gdb_usage
1736 @section GDB usage
1737
1738 QEMU has a primitive support to work with gdb, so that you can do
1739 'Ctrl-C' while the virtual machine is running and inspect its state.
1740
1741 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1742 gdb connection:
1743 @example
1744 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1745 -append "root=/dev/hda"
1746 Connected to host network interface: tun0
1747 Waiting gdb connection on port 1234
1748 @end example
1749
1750 Then launch gdb on the 'vmlinux' executable:
1751 @example
1752 > gdb vmlinux
1753 @end example
1754
1755 In gdb, connect to QEMU:
1756 @example
1757 (gdb) target remote localhost:1234
1758 @end example
1759
1760 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1761 @example
1762 (gdb) c
1763 @end example
1764
1765 Here are some useful tips in order to use gdb on system code:
1766
1767 @enumerate
1768 @item
1769 Use @code{info reg} to display all the CPU registers.
1770 @item
1771 Use @code{x/10i $eip} to display the code at the PC position.
1772 @item
1773 Use @code{set architecture i8086} to dump 16 bit code. Then use
1774 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1775 @end enumerate
1776
1777 Advanced debugging options:
1778
1779 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1780 @table @code
1781 @item maintenance packet qqemu.sstepbits
1782
1783 This will display the MASK bits used to control the single stepping IE:
1784 @example
1785 (gdb) maintenance packet qqemu.sstepbits
1786 sending: "qqemu.sstepbits"
1787 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1788 @end example
1789 @item maintenance packet qqemu.sstep
1790
1791 This will display the current value of the mask used when single stepping IE:
1792 @example
1793 (gdb) maintenance packet qqemu.sstep
1794 sending: "qqemu.sstep"
1795 received: "0x7"
1796 @end example
1797 @item maintenance packet Qqemu.sstep=HEX_VALUE
1798
1799 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1800 @example
1801 (gdb) maintenance packet Qqemu.sstep=0x5
1802 sending: "qemu.sstep=0x5"
1803 received: "OK"
1804 @end example
1805 @end table
1806
1807 @node pcsys_os_specific
1808 @section Target OS specific information
1809
1810 @subsection Linux
1811
1812 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1813 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1814 color depth in the guest and the host OS.
1815
1816 When using a 2.6 guest Linux kernel, you should add the option
1817 @code{clock=pit} on the kernel command line because the 2.6 Linux
1818 kernels make very strict real time clock checks by default that QEMU
1819 cannot simulate exactly.
1820
1821 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1822 not activated because QEMU is slower with this patch. The QEMU
1823 Accelerator Module is also much slower in this case. Earlier Fedora
1824 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1825 patch by default. Newer kernels don't have it.
1826
1827 @subsection Windows
1828
1829 If you have a slow host, using Windows 95 is better as it gives the
1830 best speed. Windows 2000 is also a good choice.
1831
1832 @subsubsection SVGA graphic modes support
1833
1834 QEMU emulates a Cirrus Logic GD5446 Video
1835 card. All Windows versions starting from Windows 95 should recognize
1836 and use this graphic card. For optimal performances, use 16 bit color
1837 depth in the guest and the host OS.
1838
1839 If you are using Windows XP as guest OS and if you want to use high
1840 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1841 1280x1024x16), then you should use the VESA VBE virtual graphic card
1842 (option @option{-std-vga}).
1843
1844 @subsubsection CPU usage reduction
1845
1846 Windows 9x does not correctly use the CPU HLT
1847 instruction. The result is that it takes host CPU cycles even when
1848 idle. You can install the utility from
1849 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1850 problem. Note that no such tool is needed for NT, 2000 or XP.
1851
1852 @subsubsection Windows 2000 disk full problem
1853
1854 Windows 2000 has a bug which gives a disk full problem during its
1855 installation. When installing it, use the @option{-win2k-hack} QEMU
1856 option to enable a specific workaround. After Windows 2000 is
1857 installed, you no longer need this option (this option slows down the
1858 IDE transfers).
1859
1860 @subsubsection Windows 2000 shutdown
1861
1862 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1863 can. It comes from the fact that Windows 2000 does not automatically
1864 use the APM driver provided by the BIOS.
1865
1866 In order to correct that, do the following (thanks to Struan
1867 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1868 Add/Troubleshoot a device => Add a new device & Next => No, select the
1869 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1870 (again) a few times. Now the driver is installed and Windows 2000 now
1871 correctly instructs QEMU to shutdown at the appropriate moment.
1872
1873 @subsubsection Share a directory between Unix and Windows
1874
1875 See @ref{sec_invocation} about the help of the option
1876 @option{'-netdev user,smb=...'}.
1877
1878 @subsubsection Windows XP security problem
1879
1880 Some releases of Windows XP install correctly but give a security
1881 error when booting:
1882 @example
1883 A problem is preventing Windows from accurately checking the
1884 license for this computer. Error code: 0x800703e6.
1885 @end example
1886
1887 The workaround is to install a service pack for XP after a boot in safe
1888 mode. Then reboot, and the problem should go away. Since there is no
1889 network while in safe mode, its recommended to download the full
1890 installation of SP1 or SP2 and transfer that via an ISO or using the
1891 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1892
1893 @subsection MS-DOS and FreeDOS
1894
1895 @subsubsection CPU usage reduction
1896
1897 DOS does not correctly use the CPU HLT instruction. The result is that
1898 it takes host CPU cycles even when idle. You can install the utility
1899 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1900 problem.
1901
1902 @node QEMU System emulator for non PC targets
1903 @chapter QEMU System emulator for non PC targets
1904
1905 QEMU is a generic emulator and it emulates many non PC
1906 machines. Most of the options are similar to the PC emulator. The
1907 differences are mentioned in the following sections.
1908
1909 @menu
1910 * PowerPC System emulator::
1911 * Sparc32 System emulator::
1912 * Sparc64 System emulator::
1913 * MIPS System emulator::
1914 * ARM System emulator::
1915 * ColdFire System emulator::
1916 * Cris System emulator::
1917 * Microblaze System emulator::
1918 * SH4 System emulator::
1919 * Xtensa System emulator::
1920 @end menu
1921
1922 @node PowerPC System emulator
1923 @section PowerPC System emulator
1924 @cindex system emulation (PowerPC)
1925
1926 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1927 or PowerMac PowerPC system.
1928
1929 QEMU emulates the following PowerMac peripherals:
1930
1931 @itemize @minus
1932 @item
1933 UniNorth or Grackle PCI Bridge
1934 @item
1935 PCI VGA compatible card with VESA Bochs Extensions
1936 @item
1937 2 PMAC IDE interfaces with hard disk and CD-ROM support
1938 @item
1939 NE2000 PCI adapters
1940 @item
1941 Non Volatile RAM
1942 @item
1943 VIA-CUDA with ADB keyboard and mouse.
1944 @end itemize
1945
1946 QEMU emulates the following PREP peripherals:
1947
1948 @itemize @minus
1949 @item
1950 PCI Bridge
1951 @item
1952 PCI VGA compatible card with VESA Bochs Extensions
1953 @item
1954 2 IDE interfaces with hard disk and CD-ROM support
1955 @item
1956 Floppy disk
1957 @item
1958 NE2000 network adapters
1959 @item
1960 Serial port
1961 @item
1962 PREP Non Volatile RAM
1963 @item
1964 PC compatible keyboard and mouse.
1965 @end itemize
1966
1967 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1968 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1969
1970 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1971 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1972 v2) portable firmware implementation. The goal is to implement a 100%
1973 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1974
1975 @c man begin OPTIONS
1976
1977 The following options are specific to the PowerPC emulation:
1978
1979 @table @option
1980
1981 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1982
1983 Set the initial VGA graphic mode. The default is 800x600x32.
1984
1985 @item -prom-env @var{string}
1986
1987 Set OpenBIOS variables in NVRAM, for example:
1988
1989 @example
1990 qemu-system-ppc -prom-env 'auto-boot?=false' \
1991 -prom-env 'boot-device=hd:2,\yaboot' \
1992 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1993 @end example
1994
1995 These variables are not used by Open Hack'Ware.
1996
1997 @end table
1998
1999 @c man end
2000
2001
2002 More information is available at
2003 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2004
2005 @node Sparc32 System emulator
2006 @section Sparc32 System emulator
2007 @cindex system emulation (Sparc32)
2008
2009 Use the executable @file{qemu-system-sparc} to simulate the following
2010 Sun4m architecture machines:
2011 @itemize @minus
2012 @item
2013 SPARCstation 4
2014 @item
2015 SPARCstation 5
2016 @item
2017 SPARCstation 10
2018 @item
2019 SPARCstation 20
2020 @item
2021 SPARCserver 600MP
2022 @item
2023 SPARCstation LX
2024 @item
2025 SPARCstation Voyager
2026 @item
2027 SPARCclassic
2028 @item
2029 SPARCbook
2030 @end itemize
2031
2032 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2033 but Linux limits the number of usable CPUs to 4.
2034
2035 QEMU emulates the following sun4m peripherals:
2036
2037 @itemize @minus
2038 @item
2039 IOMMU
2040 @item
2041 TCX or cgthree Frame buffer
2042 @item
2043 Lance (Am7990) Ethernet
2044 @item
2045 Non Volatile RAM M48T02/M48T08
2046 @item
2047 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2048 and power/reset logic
2049 @item
2050 ESP SCSI controller with hard disk and CD-ROM support
2051 @item
2052 Floppy drive (not on SS-600MP)
2053 @item
2054 CS4231 sound device (only on SS-5, not working yet)
2055 @end itemize
2056
2057 The number of peripherals is fixed in the architecture. Maximum
2058 memory size depends on the machine type, for SS-5 it is 256MB and for
2059 others 2047MB.
2060
2061 Since version 0.8.2, QEMU uses OpenBIOS
2062 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2063 firmware implementation. The goal is to implement a 100% IEEE
2064 1275-1994 (referred to as Open Firmware) compliant firmware.
2065
2066 A sample Linux 2.6 series kernel and ram disk image are available on
2067 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2068 most kernel versions work. Please note that currently older Solaris kernels
2069 don't work probably due to interface issues between OpenBIOS and
2070 Solaris.
2071
2072 @c man begin OPTIONS
2073
2074 The following options are specific to the Sparc32 emulation:
2075
2076 @table @option
2077
2078 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
2079
2080 Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2081 option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2082 of 1152x900x8 for people who wish to use OBP.
2083
2084 @item -prom-env @var{string}
2085
2086 Set OpenBIOS variables in NVRAM, for example:
2087
2088 @example
2089 qemu-system-sparc -prom-env 'auto-boot?=false' \
2090 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2091 @end example
2092
2093 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2094
2095 Set the emulated machine type. Default is SS-5.
2096
2097 @end table
2098
2099 @c man end
2100
2101 @node Sparc64 System emulator
2102 @section Sparc64 System emulator
2103 @cindex system emulation (Sparc64)
2104
2105 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2106 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2107 Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2108 able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2109 Sun4v and Niagara emulators are still a work in progress.
2110
2111 QEMU emulates the following peripherals:
2112
2113 @itemize @minus
2114 @item
2115 UltraSparc IIi APB PCI Bridge
2116 @item
2117 PCI VGA compatible card with VESA Bochs Extensions
2118 @item
2119 PS/2 mouse and keyboard
2120 @item
2121 Non Volatile RAM M48T59
2122 @item
2123 PC-compatible serial ports
2124 @item
2125 2 PCI IDE interfaces with hard disk and CD-ROM support
2126 @item
2127 Floppy disk
2128 @end itemize
2129
2130 @c man begin OPTIONS
2131
2132 The following options are specific to the Sparc64 emulation:
2133
2134 @table @option
2135
2136 @item -prom-env @var{string}
2137
2138 Set OpenBIOS variables in NVRAM, for example:
2139
2140 @example
2141 qemu-system-sparc64 -prom-env 'auto-boot?=false'
2142 @end example
2143
2144 @item -M [sun4u|sun4v|Niagara]
2145
2146 Set the emulated machine type. The default is sun4u.
2147
2148 @end table
2149
2150 @c man end
2151
2152 @node MIPS System emulator
2153 @section MIPS System emulator
2154 @cindex system emulation (MIPS)
2155
2156 Four executables cover simulation of 32 and 64-bit MIPS systems in
2157 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2158 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2159 Five different machine types are emulated:
2160
2161 @itemize @minus
2162 @item
2163 A generic ISA PC-like machine "mips"
2164 @item
2165 The MIPS Malta prototype board "malta"
2166 @item
2167 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2168 @item
2169 MIPS emulator pseudo board "mipssim"
2170 @item
2171 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2172 @end itemize
2173
2174 The generic emulation is supported by Debian 'Etch' and is able to
2175 install Debian into a virtual disk image. The following devices are
2176 emulated:
2177
2178 @itemize @minus
2179 @item
2180 A range of MIPS CPUs, default is the 24Kf
2181 @item
2182 PC style serial port
2183 @item
2184 PC style IDE disk
2185 @item
2186 NE2000 network card
2187 @end itemize
2188
2189 The Malta emulation supports the following devices:
2190
2191 @itemize @minus
2192 @item
2193 Core board with MIPS 24Kf CPU and Galileo system controller
2194 @item
2195 PIIX4 PCI/USB/SMbus controller
2196 @item
2197 The Multi-I/O chip's serial device
2198 @item
2199 PCI network cards (PCnet32 and others)
2200 @item
2201 Malta FPGA serial device
2202 @item
2203 Cirrus (default) or any other PCI VGA graphics card
2204 @end itemize
2205
2206 The ACER Pica emulation supports:
2207
2208 @itemize @minus
2209 @item
2210 MIPS R4000 CPU
2211 @item
2212 PC-style IRQ and DMA controllers
2213 @item
2214 PC Keyboard
2215 @item
2216 IDE controller
2217 @end itemize
2218
2219 The mipssim pseudo board emulation provides an environment similar
2220 to what the proprietary MIPS emulator uses for running Linux.
2221 It supports:
2222
2223 @itemize @minus
2224 @item
2225 A range of MIPS CPUs, default is the 24Kf
2226 @item
2227 PC style serial port
2228 @item
2229 MIPSnet network emulation
2230 @end itemize
2231
2232 The MIPS Magnum R4000 emulation supports:
2233
2234 @itemize @minus
2235 @item
2236 MIPS R4000 CPU
2237 @item
2238 PC-style IRQ controller
2239 @item
2240 PC Keyboard
2241 @item
2242 SCSI controller
2243 @item
2244 G364 framebuffer
2245 @end itemize
2246
2247
2248 @node ARM System emulator
2249 @section ARM System emulator
2250 @cindex system emulation (ARM)
2251
2252 Use the executable @file{qemu-system-arm} to simulate a ARM
2253 machine. The ARM Integrator/CP board is emulated with the following
2254 devices:
2255
2256 @itemize @minus
2257 @item
2258 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2259 @item
2260 Two PL011 UARTs
2261 @item
2262 SMC 91c111 Ethernet adapter
2263 @item
2264 PL110 LCD controller
2265 @item
2266 PL050 KMI with PS/2 keyboard and mouse.
2267 @item
2268 PL181 MultiMedia Card Interface with SD card.
2269 @end itemize
2270
2271 The ARM Versatile baseboard is emulated with the following devices:
2272
2273 @itemize @minus
2274 @item
2275 ARM926E, ARM1136 or Cortex-A8 CPU
2276 @item
2277 PL190 Vectored Interrupt Controller
2278 @item
2279 Four PL011 UARTs
2280 @item
2281 SMC 91c111 Ethernet adapter
2282 @item
2283 PL110 LCD controller
2284 @item
2285 PL050 KMI with PS/2 keyboard and mouse.
2286 @item
2287 PCI host bridge. Note the emulated PCI bridge only provides access to
2288 PCI memory space. It does not provide access to PCI IO space.
2289 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2290 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2291 mapped control registers.
2292 @item
2293 PCI OHCI USB controller.
2294 @item
2295 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2296 @item
2297 PL181 MultiMedia Card Interface with SD card.
2298 @end itemize
2299
2300 Several variants of the ARM RealView baseboard are emulated,
2301 including the EB, PB-A8 and PBX-A9. Due to interactions with the
2302 bootloader, only certain Linux kernel configurations work out
2303 of the box on these boards.
2304
2305 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2306 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2307 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2308 disabled and expect 1024M RAM.
2309
2310 The following devices are emulated:
2311
2312 @itemize @minus
2313 @item
2314 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2315 @item
2316 ARM AMBA Generic/Distributed Interrupt Controller
2317 @item
2318 Four PL011 UARTs
2319 @item
2320 SMC 91c111 or SMSC LAN9118 Ethernet adapter
2321 @item
2322 PL110 LCD controller
2323 @item
2324 PL050 KMI with PS/2 keyboard and mouse
2325 @item
2326 PCI host bridge
2327 @item
2328 PCI OHCI USB controller
2329 @item
2330 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2331 @item
2332 PL181 MultiMedia Card Interface with SD card.
2333 @end itemize
2334
2335 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2336 and "Terrier") emulation includes the following peripherals:
2337
2338 @itemize @minus
2339 @item
2340 Intel PXA270 System-on-chip (ARM V5TE core)
2341 @item
2342 NAND Flash memory
2343 @item
2344 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2345 @item
2346 On-chip OHCI USB controller
2347 @item
2348 On-chip LCD controller
2349 @item
2350 On-chip Real Time Clock
2351 @item
2352 TI ADS7846 touchscreen controller on SSP bus
2353 @item
2354 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2355 @item
2356 GPIO-connected keyboard controller and LEDs
2357 @item
2358 Secure Digital card connected to PXA MMC/SD host
2359 @item
2360 Three on-chip UARTs
2361 @item
2362 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2363 @end itemize
2364
2365 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2366 following elements:
2367
2368 @itemize @minus
2369 @item
2370 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2371 @item
2372 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2373 @item
2374 On-chip LCD controller
2375 @item
2376 On-chip Real Time Clock
2377 @item
2378 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2379 CODEC, connected through MicroWire and I@math{^2}S busses
2380 @item
2381 GPIO-connected matrix keypad
2382 @item
2383 Secure Digital card connected to OMAP MMC/SD host
2384 @item
2385 Three on-chip UARTs
2386 @end itemize
2387
2388 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2389 emulation supports the following elements:
2390
2391 @itemize @minus
2392 @item
2393 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2394 @item
2395 RAM and non-volatile OneNAND Flash memories
2396 @item
2397 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2398 display controller and a LS041y3 MIPI DBI-C controller
2399 @item
2400 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2401 driven through SPI bus
2402 @item
2403 National Semiconductor LM8323-controlled qwerty keyboard driven
2404 through I@math{^2}C bus
2405 @item
2406 Secure Digital card connected to OMAP MMC/SD host
2407 @item
2408 Three OMAP on-chip UARTs and on-chip STI debugging console
2409 @item
2410 A Bluetooth(R) transceiver and HCI connected to an UART
2411 @item
2412 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2413 TUSB6010 chip - only USB host mode is supported
2414 @item
2415 TI TMP105 temperature sensor driven through I@math{^2}C bus
2416 @item
2417 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2418 @item
2419 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2420 through CBUS
2421 @end itemize
2422
2423 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2424 devices:
2425
2426 @itemize @minus
2427 @item
2428 Cortex-M3 CPU core.
2429 @item
2430 64k Flash and 8k SRAM.
2431 @item
2432 Timers, UARTs, ADC and I@math{^2}C interface.
2433 @item
2434 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2435 @end itemize
2436
2437 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2438 devices:
2439
2440 @itemize @minus
2441 @item
2442 Cortex-M3 CPU core.
2443 @item
2444 256k Flash and 64k SRAM.
2445 @item
2446 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2447 @item
2448 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2449 @end itemize
2450
2451 The Freecom MusicPal internet radio emulation includes the following
2452 elements:
2453
2454 @itemize @minus
2455 @item
2456 Marvell MV88W8618 ARM core.
2457 @item
2458 32 MB RAM, 256 KB SRAM, 8 MB flash.
2459 @item
2460 Up to 2 16550 UARTs
2461 @item
2462 MV88W8xx8 Ethernet controller
2463 @item
2464 MV88W8618 audio controller, WM8750 CODEC and mixer
2465 @item
2466 128×64 display with brightness control
2467 @item
2468 2 buttons, 2 navigation wheels with button function
2469 @end itemize
2470
2471 The Siemens SX1 models v1 and v2 (default) basic emulation.
2472 The emulation includes the following elements:
2473
2474 @itemize @minus
2475 @item
2476 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2477 @item
2478 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2479 V1
2480 1 Flash of 16MB and 1 Flash of 8MB
2481 V2
2482 1 Flash of 32MB
2483 @item
2484 On-chip LCD controller
2485 @item
2486 On-chip Real Time Clock
2487 @item
2488 Secure Digital card connected to OMAP MMC/SD host
2489 @item
2490 Three on-chip UARTs
2491 @end itemize
2492
2493 A Linux 2.6 test image is available on the QEMU web site. More
2494 information is available in the QEMU mailing-list archive.
2495
2496 @c man begin OPTIONS
2497
2498 The following options are specific to the ARM emulation:
2499
2500 @table @option
2501
2502 @item -semihosting
2503 Enable semihosting syscall emulation.
2504
2505 On ARM this implements the "Angel" interface.
2506
2507 Note that this allows guest direct access to the host filesystem,
2508 so should only be used with trusted guest OS.
2509
2510 @end table
2511
2512 @node ColdFire System emulator
2513 @section ColdFire System emulator
2514 @cindex system emulation (ColdFire)
2515 @cindex system emulation (M68K)
2516
2517 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2518 The emulator is able to boot a uClinux kernel.
2519
2520 The M5208EVB emulation includes the following devices:
2521
2522 @itemize @minus
2523 @item
2524 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2525 @item
2526 Three Two on-chip UARTs.
2527 @item
2528 Fast Ethernet Controller (FEC)
2529 @end itemize
2530
2531 The AN5206 emulation includes the following devices:
2532
2533 @itemize @minus
2534 @item
2535 MCF5206 ColdFire V2 Microprocessor.
2536 @item
2537 Two on-chip UARTs.
2538 @end itemize
2539
2540 @c man begin OPTIONS
2541
2542 The following options are specific to the ColdFire emulation:
2543
2544 @table @option
2545
2546 @item -semihosting
2547 Enable semihosting syscall emulation.
2548
2549 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2550
2551 Note that this allows guest direct access to the host filesystem,
2552 so should only be used with trusted guest OS.
2553
2554 @end table
2555
2556 @node Cris System emulator
2557 @section Cris System emulator
2558 @cindex system emulation (Cris)
2559
2560 TODO
2561
2562 @node Microblaze System emulator
2563 @section Microblaze System emulator
2564 @cindex system emulation (Microblaze)
2565
2566 TODO
2567
2568 @node SH4 System emulator
2569 @section SH4 System emulator
2570 @cindex system emulation (SH4)
2571
2572 TODO
2573
2574 @node Xtensa System emulator
2575 @section Xtensa System emulator
2576 @cindex system emulation (Xtensa)
2577
2578 Two executables cover simulation of both Xtensa endian options,
2579 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2580 Two different machine types are emulated:
2581
2582 @itemize @minus
2583 @item
2584 Xtensa emulator pseudo board "sim"
2585 @item
2586 Avnet LX60/LX110/LX200 board
2587 @end itemize
2588
2589 The sim pseudo board emulation provides an environment similar
2590 to one provided by the proprietary Tensilica ISS.
2591 It supports:
2592
2593 @itemize @minus
2594 @item
2595 A range of Xtensa CPUs, default is the DC232B
2596 @item
2597 Console and filesystem access via semihosting calls
2598 @end itemize
2599
2600 The Avnet LX60/LX110/LX200 emulation supports:
2601
2602 @itemize @minus
2603 @item
2604 A range of Xtensa CPUs, default is the DC232B
2605 @item
2606 16550 UART
2607 @item
2608 OpenCores 10/100 Mbps Ethernet MAC
2609 @end itemize
2610
2611 @c man begin OPTIONS
2612
2613 The following options are specific to the Xtensa emulation:
2614
2615 @table @option
2616
2617 @item -semihosting
2618 Enable semihosting syscall emulation.
2619
2620 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2621 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2622
2623 Note that this allows guest direct access to the host filesystem,
2624 so should only be used with trusted guest OS.
2625
2626 @end table
2627 @node QEMU User space emulator
2628 @chapter QEMU User space emulator
2629
2630 @menu
2631 * Supported Operating Systems ::
2632 * Linux User space emulator::
2633 * BSD User space emulator ::
2634 @end menu
2635
2636 @node Supported Operating Systems
2637 @section Supported Operating Systems
2638
2639 The following OS are supported in user space emulation:
2640
2641 @itemize @minus
2642 @item
2643 Linux (referred as qemu-linux-user)
2644 @item
2645 BSD (referred as qemu-bsd-user)
2646 @end itemize
2647
2648 @node Linux User space emulator
2649 @section Linux User space emulator
2650
2651 @menu
2652 * Quick Start::
2653 * Wine launch::
2654 * Command line options::
2655 * Other binaries::
2656 @end menu
2657
2658 @node Quick Start
2659 @subsection Quick Start
2660
2661 In order to launch a Linux process, QEMU needs the process executable
2662 itself and all the target (x86) dynamic libraries used by it.
2663
2664 @itemize
2665
2666 @item On x86, you can just try to launch any process by using the native
2667 libraries:
2668
2669 @example
2670 qemu-i386 -L / /bin/ls
2671 @end example
2672
2673 @code{-L /} tells that the x86 dynamic linker must be searched with a
2674 @file{/} prefix.
2675
2676 @item Since QEMU is also a linux process, you can launch QEMU with
2677 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2678
2679 @example
2680 qemu-i386 -L / qemu-i386 -L / /bin/ls
2681 @end example
2682
2683 @item On non x86 CPUs, you need first to download at least an x86 glibc
2684 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2685 @code{LD_LIBRARY_PATH} is not set:
2686
2687 @example
2688 unset LD_LIBRARY_PATH
2689 @end example
2690
2691 Then you can launch the precompiled @file{ls} x86 executable:
2692
2693 @example
2694 qemu-i386 tests/i386/ls
2695 @end example
2696 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2697 QEMU is automatically launched by the Linux kernel when you try to
2698 launch x86 executables. It requires the @code{binfmt_misc} module in the
2699 Linux kernel.
2700
2701 @item The x86 version of QEMU is also included. You can try weird things such as:
2702 @example
2703 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2704 /usr/local/qemu-i386/bin/ls-i386
2705 @end example
2706
2707 @end itemize
2708
2709 @node Wine launch
2710 @subsection Wine launch
2711
2712 @itemize
2713
2714 @item Ensure that you have a working QEMU with the x86 glibc
2715 distribution (see previous section). In order to verify it, you must be
2716 able to do:
2717
2718 @example
2719 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2720 @end example
2721
2722 @item Download the binary x86 Wine install
2723 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2724
2725 @item Configure Wine on your account. Look at the provided script
2726 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2727 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2728
2729 @item Then you can try the example @file{putty.exe}:
2730
2731 @example
2732 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2733 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2734 @end example
2735
2736 @end itemize
2737
2738 @node Command line options
2739 @subsection Command line options
2740
2741 @example
2742 @command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2743 @end example
2744
2745 @table @option
2746 @item -h
2747 Print the help
2748 @item -L path
2749 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2750 @item -s size
2751 Set the x86 stack size in bytes (default=524288)
2752 @item -cpu model
2753 Select CPU model (-cpu help for list and additional feature selection)
2754 @item -E @var{var}=@var{value}
2755 Set environment @var{var} to @var{value}.
2756 @item -U @var{var}
2757 Remove @var{var} from the environment.
2758 @item -B offset
2759 Offset guest address by the specified number of bytes. This is useful when
2760 the address region required by guest applications is reserved on the host.
2761 This option is currently only supported on some hosts.
2762 @item -R size
2763 Pre-allocate a guest virtual address space of the given size (in bytes).
2764 "G", "M", and "k" suffixes may be used when specifying the size.
2765 @end table
2766
2767 Debug options:
2768
2769 @table @option
2770 @item -d item1,...
2771 Activate logging of the specified items (use '-d help' for a list of log items)
2772 @item -p pagesize
2773 Act as if the host page size was 'pagesize' bytes
2774 @item -g port
2775 Wait gdb connection to port
2776 @item -singlestep
2777 Run the emulation in single step mode.
2778 @end table
2779
2780 Environment variables:
2781
2782 @table @env
2783 @item QEMU_STRACE
2784 Print system calls and arguments similar to the 'strace' program
2785 (NOTE: the actual 'strace' program will not work because the user
2786 space emulator hasn't implemented ptrace). At the moment this is
2787 incomplete. All system calls that don't have a specific argument
2788 format are printed with information for six arguments. Many
2789 flag-style arguments don't have decoders and will show up as numbers.
2790 @end table
2791
2792 @node Other binaries
2793 @subsection Other binaries
2794
2795 @cindex user mode (Alpha)
2796 @command{qemu-alpha} TODO.
2797
2798 @cindex user mode (ARM)
2799 @command{qemu-armeb} TODO.
2800
2801 @cindex user mode (ARM)
2802 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2803 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2804 configurations), and arm-uclinux bFLT format binaries.
2805
2806 @cindex user mode (ColdFire)
2807 @cindex user mode (M68K)
2808 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2809 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2810 coldfire uClinux bFLT format binaries.
2811
2812 The binary format is detected automatically.
2813
2814 @cindex user mode (Cris)
2815 @command{qemu-cris} TODO.
2816
2817 @cindex user mode (i386)
2818 @command{qemu-i386} TODO.
2819 @command{qemu-x86_64} TODO.
2820
2821 @cindex user mode (Microblaze)
2822 @command{qemu-microblaze} TODO.
2823
2824 @cindex user mode (MIPS)
2825 @command{qemu-mips} TODO.
2826 @command{qemu-mipsel} TODO.
2827
2828 @cindex user mode (PowerPC)
2829 @command{qemu-ppc64abi32} TODO.
2830 @command{qemu-ppc64} TODO.
2831 @command{qemu-ppc} TODO.
2832
2833 @cindex user mode (SH4)
2834 @command{qemu-sh4eb} TODO.
2835 @command{qemu-sh4} TODO.
2836
2837 @cindex user mode (SPARC)
2838 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2839
2840 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2841 (Sparc64 CPU, 32 bit ABI).
2842
2843 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2844 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2845
2846 @node BSD User space emulator
2847 @section BSD User space emulator
2848
2849 @menu
2850 * BSD Status::
2851 * BSD Quick Start::
2852 * BSD Command line options::
2853 @end menu
2854
2855 @node BSD Status
2856 @subsection BSD Status
2857
2858 @itemize @minus
2859 @item
2860 target Sparc64 on Sparc64: Some trivial programs work.
2861 @end itemize
2862
2863 @node BSD Quick Start
2864 @subsection Quick Start
2865
2866 In order to launch a BSD process, QEMU needs the process executable
2867 itself and all the target dynamic libraries used by it.
2868
2869 @itemize
2870
2871 @item On Sparc64, you can just try to launch any process by using the native
2872 libraries:
2873
2874 @example
2875 qemu-sparc64 /bin/ls
2876 @end example
2877
2878 @end itemize
2879
2880 @node BSD Command line options
2881 @subsection Command line options
2882
2883 @example
2884 @command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2885 @end example
2886
2887 @table @option
2888 @item -h
2889 Print the help
2890 @item -L path
2891 Set the library root path (default=/)
2892 @item -s size
2893 Set the stack size in bytes (default=524288)
2894 @item -ignore-environment
2895 Start with an empty environment. Without this option,
2896 the initial environment is a copy of the caller's environment.
2897 @item -E @var{var}=@var{value}
2898 Set environment @var{var} to @var{value}.
2899 @item -U @var{var}
2900 Remove @var{var} from the environment.
2901 @item -bsd type
2902 Set the type of the emulated BSD Operating system. Valid values are
2903 FreeBSD, NetBSD and OpenBSD (default).
2904 @end table
2905
2906 Debug options:
2907
2908 @table @option
2909 @item -d item1,...
2910 Activate logging of the specified items (use '-d help' for a list of log items)
2911 @item -p pagesize
2912 Act as if the host page size was 'pagesize' bytes
2913 @item -singlestep
2914 Run the emulation in single step mode.
2915 @end table
2916
2917
2918 @node License
2919 @appendix License
2920
2921 QEMU is a trademark of Fabrice Bellard.
2922
2923 QEMU is released under the GNU General Public License (TODO: add link).
2924 Parts of QEMU have specific licenses, see file LICENSE.
2925
2926 TODO (refer to file LICENSE, include it, include the GPL?)
2927
2928 @node Index
2929 @appendix Index
2930 @menu
2931 * Concept Index::
2932 * Function Index::
2933 * Keystroke Index::
2934 * Program Index::
2935 * Data Type Index::
2936 * Variable Index::
2937 @end menu
2938
2939 @node Concept Index
2940 @section Concept Index
2941 This is the main index. Should we combine all keywords in one index? TODO
2942 @printindex cp
2943
2944 @node Function Index
2945 @section Function Index
2946 This index could be used for command line options and monitor functions.
2947 @printindex fn
2948
2949 @node Keystroke Index
2950 @section Keystroke Index
2951
2952 This is a list of all keystrokes which have a special function
2953 in system emulation.
2954
2955 @printindex ky
2956
2957 @node Program Index
2958 @section Program Index
2959 @printindex pg
2960
2961 @node Data Type Index
2962 @section Data Type Index
2963
2964 This index could be used for qdev device names and options.
2965
2966 @printindex tp
2967
2968 @node Variable Index
2969 @section Variable Index
2970 @printindex vr
2971
2972 @bye