]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
Merge remote-tracking branch 'remotes/afaerber/tags/qom-cpu-for-peter' into staging
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4
5 @documentlanguage en
6 @documentencoding UTF-8
7
8 @settitle QEMU Emulator User Documentation
9 @exampleindent 0
10 @paragraphindent 0
11 @c %**end of header
12
13 @ifinfo
14 @direntry
15 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16 @end direntry
17 @end ifinfo
18
19 @iftex
20 @titlepage
21 @sp 7
22 @center @titlefont{QEMU Emulator}
23 @sp 1
24 @center @titlefont{User Documentation}
25 @sp 3
26 @end titlepage
27 @end iftex
28
29 @ifnottex
30 @node Top
31 @top
32
33 @menu
34 * Introduction::
35 * Installation::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU User space emulator::
39 * compilation:: Compilation from the sources
40 * License::
41 * Index::
42 @end menu
43 @end ifnottex
44
45 @contents
46
47 @node Introduction
48 @chapter Introduction
49
50 @menu
51 * intro_features:: Features
52 @end menu
53
54 @node intro_features
55 @section Features
56
57 QEMU is a FAST! processor emulator using dynamic translation to
58 achieve good emulation speed.
59
60 QEMU has two operating modes:
61
62 @itemize
63 @cindex operating modes
64
65 @item
66 @cindex system emulation
67 Full system emulation. In this mode, QEMU emulates a full system (for
68 example a PC), including one or several processors and various
69 peripherals. It can be used to launch different Operating Systems
70 without rebooting the PC or to debug system code.
71
72 @item
73 @cindex user mode emulation
74 User mode emulation. In this mode, QEMU can launch
75 processes compiled for one CPU on another CPU. It can be used to
76 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 to ease cross-compilation and cross-debugging.
78
79 @end itemize
80
81 QEMU can run without a host kernel driver and yet gives acceptable
82 performance.
83
84 For system emulation, the following hardware targets are supported:
85 @itemize
86 @cindex emulated target systems
87 @cindex supported target systems
88 @item PC (x86 or x86_64 processor)
89 @item ISA PC (old style PC without PCI bus)
90 @item PREP (PowerPC processor)
91 @item G3 Beige PowerMac (PowerPC processor)
92 @item Mac99 PowerMac (PowerPC processor, in progress)
93 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 @item Malta board (32-bit and 64-bit MIPS processors)
96 @item MIPS Magnum (64-bit MIPS processor)
97 @item ARM Integrator/CP (ARM)
98 @item ARM Versatile baseboard (ARM)
99 @item ARM RealView Emulation/Platform baseboard (ARM)
100 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 @item Freescale MCF5208EVB (ColdFire V2).
104 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 @item Palm Tungsten|E PDA (OMAP310 processor)
106 @item N800 and N810 tablets (OMAP2420 processor)
107 @item MusicPal (MV88W8618 ARM processor)
108 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 @item Siemens SX1 smartphone (OMAP310 processor)
110 @item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111 @item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112 @item Avnet LX60/LX110/LX200 boards (Xtensa)
113 @end itemize
114
115 @cindex supported user mode targets
116 For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119
120 @node Installation
121 @chapter Installation
122
123 If you want to compile QEMU yourself, see @ref{compilation}.
124
125 @menu
126 * install_linux:: Linux
127 * install_windows:: Windows
128 * install_mac:: Macintosh
129 @end menu
130
131 @node install_linux
132 @section Linux
133 @cindex installation (Linux)
134
135 If a precompiled package is available for your distribution - you just
136 have to install it. Otherwise, see @ref{compilation}.
137
138 @node install_windows
139 @section Windows
140 @cindex installation (Windows)
141
142 Download the experimental binary installer at
143 @url{http://www.free.oszoo.org/@/download.html}.
144 TODO (no longer available)
145
146 @node install_mac
147 @section Mac OS X
148
149 Download the experimental binary installer at
150 @url{http://www.free.oszoo.org/@/download.html}.
151 TODO (no longer available)
152
153 @node QEMU PC System emulator
154 @chapter QEMU PC System emulator
155 @cindex system emulation (PC)
156
157 @menu
158 * pcsys_introduction:: Introduction
159 * pcsys_quickstart:: Quick Start
160 * sec_invocation:: Invocation
161 * pcsys_keys:: Keys
162 * pcsys_monitor:: QEMU Monitor
163 * disk_images:: Disk Images
164 * pcsys_network:: Network emulation
165 * pcsys_other_devs:: Other Devices
166 * direct_linux_boot:: Direct Linux Boot
167 * pcsys_usb:: USB emulation
168 * vnc_security:: VNC security
169 * gdb_usage:: GDB usage
170 * pcsys_os_specific:: Target OS specific information
171 @end menu
172
173 @node pcsys_introduction
174 @section Introduction
175
176 @c man begin DESCRIPTION
177
178 The QEMU PC System emulator simulates the
179 following peripherals:
180
181 @itemize @minus
182 @item
183 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184 @item
185 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186 extensions (hardware level, including all non standard modes).
187 @item
188 PS/2 mouse and keyboard
189 @item
190 2 PCI IDE interfaces with hard disk and CD-ROM support
191 @item
192 Floppy disk
193 @item
194 PCI and ISA network adapters
195 @item
196 Serial ports
197 @item
198 Creative SoundBlaster 16 sound card
199 @item
200 ENSONIQ AudioPCI ES1370 sound card
201 @item
202 Intel 82801AA AC97 Audio compatible sound card
203 @item
204 Intel HD Audio Controller and HDA codec
205 @item
206 Adlib (OPL2) - Yamaha YM3812 compatible chip
207 @item
208 Gravis Ultrasound GF1 sound card
209 @item
210 CS4231A compatible sound card
211 @item
212 PCI UHCI USB controller and a virtual USB hub.
213 @end itemize
214
215 SMP is supported with up to 255 CPUs.
216
217 QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
218 VGA BIOS.
219
220 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
222 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
223 by Tibor "TS" Schütz.
224
225 Note that, by default, GUS shares IRQ(7) with parallel ports and so
226 QEMU must be told to not have parallel ports to have working GUS.
227
228 @example
229 qemu-system-i386 dos.img -soundhw gus -parallel none
230 @end example
231
232 Alternatively:
233 @example
234 qemu-system-i386 dos.img -device gus,irq=5
235 @end example
236
237 Or some other unclaimed IRQ.
238
239 CS4231A is the chip used in Windows Sound System and GUSMAX products
240
241 @c man end
242
243 @node pcsys_quickstart
244 @section Quick Start
245 @cindex quick start
246
247 Download and uncompress the linux image (@file{linux.img}) and type:
248
249 @example
250 qemu-system-i386 linux.img
251 @end example
252
253 Linux should boot and give you a prompt.
254
255 @node sec_invocation
256 @section Invocation
257
258 @example
259 @c man begin SYNOPSIS
260 usage: qemu-system-i386 [options] [@var{disk_image}]
261 @c man end
262 @end example
263
264 @c man begin OPTIONS
265 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266 targets do not need a disk image.
267
268 @include qemu-options.texi
269
270 @c man end
271
272 @node pcsys_keys
273 @section Keys
274
275 @c man begin OPTIONS
276
277 During the graphical emulation, you can use special key combinations to change
278 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
282 @table @key
283 @item Ctrl-Alt-f
284 @kindex Ctrl-Alt-f
285 Toggle full screen
286
287 @item Ctrl-Alt-+
288 @kindex Ctrl-Alt-+
289 Enlarge the screen
290
291 @item Ctrl-Alt--
292 @kindex Ctrl-Alt--
293 Shrink the screen
294
295 @item Ctrl-Alt-u
296 @kindex Ctrl-Alt-u
297 Restore the screen's un-scaled dimensions
298
299 @item Ctrl-Alt-n
300 @kindex Ctrl-Alt-n
301 Switch to virtual console 'n'. Standard console mappings are:
302 @table @emph
303 @item 1
304 Target system display
305 @item 2
306 Monitor
307 @item 3
308 Serial port
309 @end table
310
311 @item Ctrl-Alt
312 @kindex Ctrl-Alt
313 Toggle mouse and keyboard grab.
314 @end table
315
316 @kindex Ctrl-Up
317 @kindex Ctrl-Down
318 @kindex Ctrl-PageUp
319 @kindex Ctrl-PageDown
320 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
323 @kindex Ctrl-a h
324 During emulation, if you are using the @option{-nographic} option, use
325 @key{Ctrl-a h} to get terminal commands:
326
327 @table @key
328 @item Ctrl-a h
329 @kindex Ctrl-a h
330 @item Ctrl-a ?
331 @kindex Ctrl-a ?
332 Print this help
333 @item Ctrl-a x
334 @kindex Ctrl-a x
335 Exit emulator
336 @item Ctrl-a s
337 @kindex Ctrl-a s
338 Save disk data back to file (if -snapshot)
339 @item Ctrl-a t
340 @kindex Ctrl-a t
341 Toggle console timestamps
342 @item Ctrl-a b
343 @kindex Ctrl-a b
344 Send break (magic sysrq in Linux)
345 @item Ctrl-a c
346 @kindex Ctrl-a c
347 Switch between console and monitor
348 @item Ctrl-a Ctrl-a
349 @kindex Ctrl-a a
350 Send Ctrl-a
351 @end table
352 @c man end
353
354 @ignore
355
356 @c man begin SEEALSO
357 The HTML documentation of QEMU for more precise information and Linux
358 user mode emulator invocation.
359 @c man end
360
361 @c man begin AUTHOR
362 Fabrice Bellard
363 @c man end
364
365 @end ignore
366
367 @node pcsys_monitor
368 @section QEMU Monitor
369 @cindex QEMU monitor
370
371 The QEMU monitor is used to give complex commands to the QEMU
372 emulator. You can use it to:
373
374 @itemize @minus
375
376 @item
377 Remove or insert removable media images
378 (such as CD-ROM or floppies).
379
380 @item
381 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382 from a disk file.
383
384 @item Inspect the VM state without an external debugger.
385
386 @end itemize
387
388 @subsection Commands
389
390 The following commands are available:
391
392 @include qemu-monitor.texi
393
394 @subsection Integer expressions
395
396 The monitor understands integers expressions for every integer
397 argument. You can use register names to get the value of specifics
398 CPU registers by prefixing them with @emph{$}.
399
400 @node disk_images
401 @section Disk Images
402
403 Since version 0.6.1, QEMU supports many disk image formats, including
404 growable disk images (their size increase as non empty sectors are
405 written), compressed and encrypted disk images. Version 0.8.3 added
406 the new qcow2 disk image format which is essential to support VM
407 snapshots.
408
409 @menu
410 * disk_images_quickstart:: Quick start for disk image creation
411 * disk_images_snapshot_mode:: Snapshot mode
412 * vm_snapshots:: VM snapshots
413 * qemu_img_invocation:: qemu-img Invocation
414 * qemu_nbd_invocation:: qemu-nbd Invocation
415 * disk_images_formats:: Disk image file formats
416 * host_drives:: Using host drives
417 * disk_images_fat_images:: Virtual FAT disk images
418 * disk_images_nbd:: NBD access
419 * disk_images_sheepdog:: Sheepdog disk images
420 * disk_images_iscsi:: iSCSI LUNs
421 * disk_images_gluster:: GlusterFS disk images
422 * disk_images_ssh:: Secure Shell (ssh) disk images
423 @end menu
424
425 @node disk_images_quickstart
426 @subsection Quick start for disk image creation
427
428 You can create a disk image with the command:
429 @example
430 qemu-img create myimage.img mysize
431 @end example
432 where @var{myimage.img} is the disk image filename and @var{mysize} is its
433 size in kilobytes. You can add an @code{M} suffix to give the size in
434 megabytes and a @code{G} suffix for gigabytes.
435
436 See @ref{qemu_img_invocation} for more information.
437
438 @node disk_images_snapshot_mode
439 @subsection Snapshot mode
440
441 If you use the option @option{-snapshot}, all disk images are
442 considered as read only. When sectors in written, they are written in
443 a temporary file created in @file{/tmp}. You can however force the
444 write back to the raw disk images by using the @code{commit} monitor
445 command (or @key{C-a s} in the serial console).
446
447 @node vm_snapshots
448 @subsection VM snapshots
449
450 VM snapshots are snapshots of the complete virtual machine including
451 CPU state, RAM, device state and the content of all the writable
452 disks. In order to use VM snapshots, you must have at least one non
453 removable and writable block device using the @code{qcow2} disk image
454 format. Normally this device is the first virtual hard drive.
455
456 Use the monitor command @code{savevm} to create a new VM snapshot or
457 replace an existing one. A human readable name can be assigned to each
458 snapshot in addition to its numerical ID.
459
460 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461 a VM snapshot. @code{info snapshots} lists the available snapshots
462 with their associated information:
463
464 @example
465 (qemu) info snapshots
466 Snapshot devices: hda
467 Snapshot list (from hda):
468 ID TAG VM SIZE DATE VM CLOCK
469 1 start 41M 2006-08-06 12:38:02 00:00:14.954
470 2 40M 2006-08-06 12:43:29 00:00:18.633
471 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
472 @end example
473
474 A VM snapshot is made of a VM state info (its size is shown in
475 @code{info snapshots}) and a snapshot of every writable disk image.
476 The VM state info is stored in the first @code{qcow2} non removable
477 and writable block device. The disk image snapshots are stored in
478 every disk image. The size of a snapshot in a disk image is difficult
479 to evaluate and is not shown by @code{info snapshots} because the
480 associated disk sectors are shared among all the snapshots to save
481 disk space (otherwise each snapshot would need a full copy of all the
482 disk images).
483
484 When using the (unrelated) @code{-snapshot} option
485 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486 but they are deleted as soon as you exit QEMU.
487
488 VM snapshots currently have the following known limitations:
489 @itemize
490 @item
491 They cannot cope with removable devices if they are removed or
492 inserted after a snapshot is done.
493 @item
494 A few device drivers still have incomplete snapshot support so their
495 state is not saved or restored properly (in particular USB).
496 @end itemize
497
498 @node qemu_img_invocation
499 @subsection @code{qemu-img} Invocation
500
501 @include qemu-img.texi
502
503 @node qemu_nbd_invocation
504 @subsection @code{qemu-nbd} Invocation
505
506 @include qemu-nbd.texi
507
508 @node disk_images_formats
509 @subsection Disk image file formats
510
511 QEMU supports many image file formats that can be used with VMs as well as with
512 any of the tools (like @code{qemu-img}). This includes the preferred formats
513 raw and qcow2 as well as formats that are supported for compatibility with
514 older QEMU versions or other hypervisors.
515
516 Depending on the image format, different options can be passed to
517 @code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518 This section describes each format and the options that are supported for it.
519
520 @table @option
521 @item raw
522
523 Raw disk image format. This format has the advantage of
524 being simple and easily exportable to all other emulators. If your
525 file system supports @emph{holes} (for example in ext2 or ext3 on
526 Linux or NTFS on Windows), then only the written sectors will reserve
527 space. Use @code{qemu-img info} to know the real size used by the
528 image or @code{ls -ls} on Unix/Linux.
529
530 Supported options:
531 @table @code
532 @item preallocation
533 Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
534 @code{falloc} mode preallocates space for image by calling posix_fallocate().
535 @code{full} mode preallocates space for image by writing zeros to underlying
536 storage.
537 @end table
538
539 @item qcow2
540 QEMU image format, the most versatile format. Use it to have smaller
541 images (useful if your filesystem does not supports holes, for example
542 on Windows), optional AES encryption, zlib based compression and
543 support of multiple VM snapshots.
544
545 Supported options:
546 @table @code
547 @item compat
548 Determines the qcow2 version to use. @code{compat=0.10} uses the
549 traditional image format that can be read by any QEMU since 0.10.
550 @code{compat=1.1} enables image format extensions that only QEMU 1.1 and
551 newer understand (this is the default). Amongst others, this includes
552 zero clusters, which allow efficient copy-on-read for sparse images.
553
554 @item backing_file
555 File name of a base image (see @option{create} subcommand)
556 @item backing_fmt
557 Image format of the base image
558 @item encryption
559 If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
560
561 The use of encryption in qcow and qcow2 images is considered to be flawed by
562 modern cryptography standards, suffering from a number of design problems:
563
564 @itemize @minus
565 @item The AES-CBC cipher is used with predictable initialization vectors based
566 on the sector number. This makes it vulnerable to chosen plaintext attacks
567 which can reveal the existence of encrypted data.
568 @item The user passphrase is directly used as the encryption key. A poorly
569 chosen or short passphrase will compromise the security of the encryption.
570 @item In the event of the passphrase being compromised there is no way to
571 change the passphrase to protect data in any qcow images. The files must
572 be cloned, using a different encryption passphrase in the new file. The
573 original file must then be securely erased using a program like shred,
574 though even this is ineffective with many modern storage technologies.
575 @end itemize
576
577 Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
578 recommended to use an alternative encryption technology such as the
579 Linux dm-crypt / LUKS system.
580
581 @item cluster_size
582 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
583 sizes can improve the image file size whereas larger cluster sizes generally
584 provide better performance.
585
586 @item preallocation
587 Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
588 @code{full}). An image with preallocated metadata is initially larger but can
589 improve performance when the image needs to grow. @code{falloc} and @code{full}
590 preallocations are like the same options of @code{raw} format, but sets up
591 metadata also.
592
593 @item lazy_refcounts
594 If this option is set to @code{on}, reference count updates are postponed with
595 the goal of avoiding metadata I/O and improving performance. This is
596 particularly interesting with @option{cache=writethrough} which doesn't batch
597 metadata updates. The tradeoff is that after a host crash, the reference count
598 tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
599 check -r all} is required, which may take some time.
600
601 This option can only be enabled if @code{compat=1.1} is specified.
602
603 @item nocow
604 If this option is set to @code{on}, it will turn off COW of the file. It's only
605 valid on btrfs, no effect on other file systems.
606
607 Btrfs has low performance when hosting a VM image file, even more when the guest
608 on the VM also using btrfs as file system. Turning off COW is a way to mitigate
609 this bad performance. Generally there are two ways to turn off COW on btrfs:
610 a) Disable it by mounting with nodatacow, then all newly created files will be
611 NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
612 does.
613
614 Note: this option is only valid to new or empty files. If there is an existing
615 file which is COW and has data blocks already, it couldn't be changed to NOCOW
616 by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
617 the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
618
619 @end table
620
621 @item qed
622 Old QEMU image format with support for backing files and compact image files
623 (when your filesystem or transport medium does not support holes).
624
625 When converting QED images to qcow2, you might want to consider using the
626 @code{lazy_refcounts=on} option to get a more QED-like behaviour.
627
628 Supported options:
629 @table @code
630 @item backing_file
631 File name of a base image (see @option{create} subcommand).
632 @item backing_fmt
633 Image file format of backing file (optional). Useful if the format cannot be
634 autodetected because it has no header, like some vhd/vpc files.
635 @item cluster_size
636 Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
637 cluster sizes can improve the image file size whereas larger cluster sizes
638 generally provide better performance.
639 @item table_size
640 Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
641 and 16). There is normally no need to change this value but this option can be
642 used for performance benchmarking.
643 @end table
644
645 @item qcow
646 Old QEMU image format with support for backing files, compact image files,
647 encryption and compression.
648
649 Supported options:
650 @table @code
651 @item backing_file
652 File name of a base image (see @option{create} subcommand)
653 @item encryption
654 If this option is set to @code{on}, the image is encrypted.
655 @end table
656
657 @item vdi
658 VirtualBox 1.1 compatible image format.
659 Supported options:
660 @table @code
661 @item static
662 If this option is set to @code{on}, the image is created with metadata
663 preallocation.
664 @end table
665
666 @item vmdk
667 VMware 3 and 4 compatible image format.
668
669 Supported options:
670 @table @code
671 @item backing_file
672 File name of a base image (see @option{create} subcommand).
673 @item compat6
674 Create a VMDK version 6 image (instead of version 4)
675 @item subformat
676 Specifies which VMDK subformat to use. Valid options are
677 @code{monolithicSparse} (default),
678 @code{monolithicFlat},
679 @code{twoGbMaxExtentSparse},
680 @code{twoGbMaxExtentFlat} and
681 @code{streamOptimized}.
682 @end table
683
684 @item vpc
685 VirtualPC compatible image format (VHD).
686 Supported options:
687 @table @code
688 @item subformat
689 Specifies which VHD subformat to use. Valid options are
690 @code{dynamic} (default) and @code{fixed}.
691 @end table
692
693 @item VHDX
694 Hyper-V compatible image format (VHDX).
695 Supported options:
696 @table @code
697 @item subformat
698 Specifies which VHDX subformat to use. Valid options are
699 @code{dynamic} (default) and @code{fixed}.
700 @item block_state_zero
701 Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
702 or @code{off}. When set to @code{off}, new blocks will be created as
703 @code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
704 arbitrary data for those blocks. Do not set to @code{off} when using
705 @code{qemu-img convert} with @code{subformat=dynamic}.
706 @item block_size
707 Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
708 @item log_size
709 Log size; min 1 MB.
710 @end table
711 @end table
712
713 @subsubsection Read-only formats
714 More disk image file formats are supported in a read-only mode.
715 @table @option
716 @item bochs
717 Bochs images of @code{growing} type.
718 @item cloop
719 Linux Compressed Loop image, useful only to reuse directly compressed
720 CD-ROM images present for example in the Knoppix CD-ROMs.
721 @item dmg
722 Apple disk image.
723 @item parallels
724 Parallels disk image format.
725 @end table
726
727
728 @node host_drives
729 @subsection Using host drives
730
731 In addition to disk image files, QEMU can directly access host
732 devices. We describe here the usage for QEMU version >= 0.8.3.
733
734 @subsubsection Linux
735
736 On Linux, you can directly use the host device filename instead of a
737 disk image filename provided you have enough privileges to access
738 it. For example, use @file{/dev/cdrom} to access to the CDROM or
739 @file{/dev/fd0} for the floppy.
740
741 @table @code
742 @item CD
743 You can specify a CDROM device even if no CDROM is loaded. QEMU has
744 specific code to detect CDROM insertion or removal. CDROM ejection by
745 the guest OS is supported. Currently only data CDs are supported.
746 @item Floppy
747 You can specify a floppy device even if no floppy is loaded. Floppy
748 removal is currently not detected accurately (if you change floppy
749 without doing floppy access while the floppy is not loaded, the guest
750 OS will think that the same floppy is loaded).
751 @item Hard disks
752 Hard disks can be used. Normally you must specify the whole disk
753 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
754 see it as a partitioned disk. WARNING: unless you know what you do, it
755 is better to only make READ-ONLY accesses to the hard disk otherwise
756 you may corrupt your host data (use the @option{-snapshot} command
757 line option or modify the device permissions accordingly).
758 @end table
759
760 @subsubsection Windows
761
762 @table @code
763 @item CD
764 The preferred syntax is the drive letter (e.g. @file{d:}). The
765 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
766 supported as an alias to the first CDROM drive.
767
768 Currently there is no specific code to handle removable media, so it
769 is better to use the @code{change} or @code{eject} monitor commands to
770 change or eject media.
771 @item Hard disks
772 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
773 where @var{N} is the drive number (0 is the first hard disk).
774
775 WARNING: unless you know what you do, it is better to only make
776 READ-ONLY accesses to the hard disk otherwise you may corrupt your
777 host data (use the @option{-snapshot} command line so that the
778 modifications are written in a temporary file).
779 @end table
780
781
782 @subsubsection Mac OS X
783
784 @file{/dev/cdrom} is an alias to the first CDROM.
785
786 Currently there is no specific code to handle removable media, so it
787 is better to use the @code{change} or @code{eject} monitor commands to
788 change or eject media.
789
790 @node disk_images_fat_images
791 @subsection Virtual FAT disk images
792
793 QEMU can automatically create a virtual FAT disk image from a
794 directory tree. In order to use it, just type:
795
796 @example
797 qemu-system-i386 linux.img -hdb fat:/my_directory
798 @end example
799
800 Then you access access to all the files in the @file{/my_directory}
801 directory without having to copy them in a disk image or to export
802 them via SAMBA or NFS. The default access is @emph{read-only}.
803
804 Floppies can be emulated with the @code{:floppy:} option:
805
806 @example
807 qemu-system-i386 linux.img -fda fat:floppy:/my_directory
808 @end example
809
810 A read/write support is available for testing (beta stage) with the
811 @code{:rw:} option:
812
813 @example
814 qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
815 @end example
816
817 What you should @emph{never} do:
818 @itemize
819 @item use non-ASCII filenames ;
820 @item use "-snapshot" together with ":rw:" ;
821 @item expect it to work when loadvm'ing ;
822 @item write to the FAT directory on the host system while accessing it with the guest system.
823 @end itemize
824
825 @node disk_images_nbd
826 @subsection NBD access
827
828 QEMU can access directly to block device exported using the Network Block Device
829 protocol.
830
831 @example
832 qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
833 @end example
834
835 If the NBD server is located on the same host, you can use an unix socket instead
836 of an inet socket:
837
838 @example
839 qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
840 @end example
841
842 In this case, the block device must be exported using qemu-nbd:
843
844 @example
845 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
846 @end example
847
848 The use of qemu-nbd allows sharing of a disk between several guests:
849 @example
850 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
851 @end example
852
853 @noindent
854 and then you can use it with two guests:
855 @example
856 qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
857 qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
858 @end example
859
860 If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
861 own embedded NBD server), you must specify an export name in the URI:
862 @example
863 qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
864 qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
865 @end example
866
867 The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
868 also available. Here are some example of the older syntax:
869 @example
870 qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
871 qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
872 qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
873 @end example
874
875 @node disk_images_sheepdog
876 @subsection Sheepdog disk images
877
878 Sheepdog is a distributed storage system for QEMU. It provides highly
879 available block level storage volumes that can be attached to
880 QEMU-based virtual machines.
881
882 You can create a Sheepdog disk image with the command:
883 @example
884 qemu-img create sheepdog:///@var{image} @var{size}
885 @end example
886 where @var{image} is the Sheepdog image name and @var{size} is its
887 size.
888
889 To import the existing @var{filename} to Sheepdog, you can use a
890 convert command.
891 @example
892 qemu-img convert @var{filename} sheepdog:///@var{image}
893 @end example
894
895 You can boot from the Sheepdog disk image with the command:
896 @example
897 qemu-system-i386 sheepdog:///@var{image}
898 @end example
899
900 You can also create a snapshot of the Sheepdog image like qcow2.
901 @example
902 qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
903 @end example
904 where @var{tag} is a tag name of the newly created snapshot.
905
906 To boot from the Sheepdog snapshot, specify the tag name of the
907 snapshot.
908 @example
909 qemu-system-i386 sheepdog:///@var{image}#@var{tag}
910 @end example
911
912 You can create a cloned image from the existing snapshot.
913 @example
914 qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
915 @end example
916 where @var{base} is a image name of the source snapshot and @var{tag}
917 is its tag name.
918
919 You can use an unix socket instead of an inet socket:
920
921 @example
922 qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
923 @end example
924
925 If the Sheepdog daemon doesn't run on the local host, you need to
926 specify one of the Sheepdog servers to connect to.
927 @example
928 qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
929 qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
930 @end example
931
932 @node disk_images_iscsi
933 @subsection iSCSI LUNs
934
935 iSCSI is a popular protocol used to access SCSI devices across a computer
936 network.
937
938 There are two different ways iSCSI devices can be used by QEMU.
939
940 The first method is to mount the iSCSI LUN on the host, and make it appear as
941 any other ordinary SCSI device on the host and then to access this device as a
942 /dev/sd device from QEMU. How to do this differs between host OSes.
943
944 The second method involves using the iSCSI initiator that is built into
945 QEMU. This provides a mechanism that works the same way regardless of which
946 host OS you are running QEMU on. This section will describe this second method
947 of using iSCSI together with QEMU.
948
949 In QEMU, iSCSI devices are described using special iSCSI URLs
950
951 @example
952 URL syntax:
953 iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
954 @end example
955
956 Username and password are optional and only used if your target is set up
957 using CHAP authentication for access control.
958 Alternatively the username and password can also be set via environment
959 variables to have these not show up in the process list
960
961 @example
962 export LIBISCSI_CHAP_USERNAME=<username>
963 export LIBISCSI_CHAP_PASSWORD=<password>
964 iscsi://<host>/<target-iqn-name>/<lun>
965 @end example
966
967 Various session related parameters can be set via special options, either
968 in a configuration file provided via '-readconfig' or directly on the
969 command line.
970
971 If the initiator-name is not specified qemu will use a default name
972 of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
973 virtual machine.
974
975
976 @example
977 Setting a specific initiator name to use when logging in to the target
978 -iscsi initiator-name=iqn.qemu.test:my-initiator
979 @end example
980
981 @example
982 Controlling which type of header digest to negotiate with the target
983 -iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
984 @end example
985
986 These can also be set via a configuration file
987 @example
988 [iscsi]
989 user = "CHAP username"
990 password = "CHAP password"
991 initiator-name = "iqn.qemu.test:my-initiator"
992 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
993 header-digest = "CRC32C"
994 @end example
995
996
997 Setting the target name allows different options for different targets
998 @example
999 [iscsi "iqn.target.name"]
1000 user = "CHAP username"
1001 password = "CHAP password"
1002 initiator-name = "iqn.qemu.test:my-initiator"
1003 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1004 header-digest = "CRC32C"
1005 @end example
1006
1007
1008 Howto use a configuration file to set iSCSI configuration options:
1009 @example
1010 cat >iscsi.conf <<EOF
1011 [iscsi]
1012 user = "me"
1013 password = "my password"
1014 initiator-name = "iqn.qemu.test:my-initiator"
1015 header-digest = "CRC32C"
1016 EOF
1017
1018 qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1019 -readconfig iscsi.conf
1020 @end example
1021
1022
1023 Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1024 @example
1025 This example shows how to set up an iSCSI target with one CDROM and one DISK
1026 using the Linux STGT software target. This target is available on Red Hat based
1027 systems as the package 'scsi-target-utils'.
1028
1029 tgtd --iscsi portal=127.0.0.1:3260
1030 tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1031 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1032 -b /IMAGES/disk.img --device-type=disk
1033 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1034 -b /IMAGES/cd.iso --device-type=cd
1035 tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1036
1037 qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1038 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1039 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1040 @end example
1041
1042 @node disk_images_gluster
1043 @subsection GlusterFS disk images
1044
1045 GlusterFS is an user space distributed file system.
1046
1047 You can boot from the GlusterFS disk image with the command:
1048 @example
1049 qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1050 @end example
1051
1052 @var{gluster} is the protocol.
1053
1054 @var{transport} specifies the transport type used to connect to gluster
1055 management daemon (glusterd). Valid transport types are
1056 tcp, unix and rdma. If a transport type isn't specified, then tcp
1057 type is assumed.
1058
1059 @var{server} specifies the server where the volume file specification for
1060 the given volume resides. This can be either hostname, ipv4 address
1061 or ipv6 address. ipv6 address needs to be within square brackets [ ].
1062 If transport type is unix, then @var{server} field should not be specifed.
1063 Instead @var{socket} field needs to be populated with the path to unix domain
1064 socket.
1065
1066 @var{port} is the port number on which glusterd is listening. This is optional
1067 and if not specified, QEMU will send 0 which will make gluster to use the
1068 default port. If the transport type is unix, then @var{port} should not be
1069 specified.
1070
1071 @var{volname} is the name of the gluster volume which contains the disk image.
1072
1073 @var{image} is the path to the actual disk image that resides on gluster volume.
1074
1075 You can create a GlusterFS disk image with the command:
1076 @example
1077 qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1078 @end example
1079
1080 Examples
1081 @example
1082 qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1083 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1084 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1085 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1086 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1087 qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1088 qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1089 qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1090 @end example
1091
1092 @node disk_images_ssh
1093 @subsection Secure Shell (ssh) disk images
1094
1095 You can access disk images located on a remote ssh server
1096 by using the ssh protocol:
1097
1098 @example
1099 qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1100 @end example
1101
1102 Alternative syntax using properties:
1103
1104 @example
1105 qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1106 @end example
1107
1108 @var{ssh} is the protocol.
1109
1110 @var{user} is the remote user. If not specified, then the local
1111 username is tried.
1112
1113 @var{server} specifies the remote ssh server. Any ssh server can be
1114 used, but it must implement the sftp-server protocol. Most Unix/Linux
1115 systems should work without requiring any extra configuration.
1116
1117 @var{port} is the port number on which sshd is listening. By default
1118 the standard ssh port (22) is used.
1119
1120 @var{path} is the path to the disk image.
1121
1122 The optional @var{host_key_check} parameter controls how the remote
1123 host's key is checked. The default is @code{yes} which means to use
1124 the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1125 turns off known-hosts checking. Or you can check that the host key
1126 matches a specific fingerprint:
1127 @code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1128 (@code{sha1:} can also be used as a prefix, but note that OpenSSH
1129 tools only use MD5 to print fingerprints).
1130
1131 Currently authentication must be done using ssh-agent. Other
1132 authentication methods may be supported in future.
1133
1134 Note: Many ssh servers do not support an @code{fsync}-style operation.
1135 The ssh driver cannot guarantee that disk flush requests are
1136 obeyed, and this causes a risk of disk corruption if the remote
1137 server or network goes down during writes. The driver will
1138 print a warning when @code{fsync} is not supported:
1139
1140 warning: ssh server @code{ssh.example.com:22} does not support fsync
1141
1142 With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1143 supported.
1144
1145 @node pcsys_network
1146 @section Network emulation
1147
1148 QEMU can simulate several network cards (PCI or ISA cards on the PC
1149 target) and can connect them to an arbitrary number of Virtual Local
1150 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1151 VLAN. VLAN can be connected between separate instances of QEMU to
1152 simulate large networks. For simpler usage, a non privileged user mode
1153 network stack can replace the TAP device to have a basic network
1154 connection.
1155
1156 @subsection VLANs
1157
1158 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1159 connection between several network devices. These devices can be for
1160 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1161 (TAP devices).
1162
1163 @subsection Using TAP network interfaces
1164
1165 This is the standard way to connect QEMU to a real network. QEMU adds
1166 a virtual network device on your host (called @code{tapN}), and you
1167 can then configure it as if it was a real ethernet card.
1168
1169 @subsubsection Linux host
1170
1171 As an example, you can download the @file{linux-test-xxx.tar.gz}
1172 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1173 configure properly @code{sudo} so that the command @code{ifconfig}
1174 contained in @file{qemu-ifup} can be executed as root. You must verify
1175 that your host kernel supports the TAP network interfaces: the
1176 device @file{/dev/net/tun} must be present.
1177
1178 See @ref{sec_invocation} to have examples of command lines using the
1179 TAP network interfaces.
1180
1181 @subsubsection Windows host
1182
1183 There is a virtual ethernet driver for Windows 2000/XP systems, called
1184 TAP-Win32. But it is not included in standard QEMU for Windows,
1185 so you will need to get it separately. It is part of OpenVPN package,
1186 so download OpenVPN from : @url{http://openvpn.net/}.
1187
1188 @subsection Using the user mode network stack
1189
1190 By using the option @option{-net user} (default configuration if no
1191 @option{-net} option is specified), QEMU uses a completely user mode
1192 network stack (you don't need root privilege to use the virtual
1193 network). The virtual network configuration is the following:
1194
1195 @example
1196
1197 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1198 | (10.0.2.2)
1199 |
1200 ----> DNS server (10.0.2.3)
1201 |
1202 ----> SMB server (10.0.2.4)
1203 @end example
1204
1205 The QEMU VM behaves as if it was behind a firewall which blocks all
1206 incoming connections. You can use a DHCP client to automatically
1207 configure the network in the QEMU VM. The DHCP server assign addresses
1208 to the hosts starting from 10.0.2.15.
1209
1210 In order to check that the user mode network is working, you can ping
1211 the address 10.0.2.2 and verify that you got an address in the range
1212 10.0.2.x from the QEMU virtual DHCP server.
1213
1214 Note that ICMP traffic in general does not work with user mode networking.
1215 @code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1216 however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1217 ping sockets to allow @code{ping} to the Internet. The host admin has to set
1218 the ping_group_range in order to grant access to those sockets. To allow ping
1219 for GID 100 (usually users group):
1220
1221 @example
1222 echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1223 @end example
1224
1225 When using the built-in TFTP server, the router is also the TFTP
1226 server.
1227
1228 When using the @option{-redir} option, TCP or UDP connections can be
1229 redirected from the host to the guest. It allows for example to
1230 redirect X11, telnet or SSH connections.
1231
1232 @subsection Connecting VLANs between QEMU instances
1233
1234 Using the @option{-net socket} option, it is possible to make VLANs
1235 that span several QEMU instances. See @ref{sec_invocation} to have a
1236 basic example.
1237
1238 @node pcsys_other_devs
1239 @section Other Devices
1240
1241 @subsection Inter-VM Shared Memory device
1242
1243 With KVM enabled on a Linux host, a shared memory device is available. Guests
1244 map a POSIX shared memory region into the guest as a PCI device that enables
1245 zero-copy communication to the application level of the guests. The basic
1246 syntax is:
1247
1248 @example
1249 qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
1250 @end example
1251
1252 If desired, interrupts can be sent between guest VMs accessing the same shared
1253 memory region. Interrupt support requires using a shared memory server and
1254 using a chardev socket to connect to it. The code for the shared memory server
1255 is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1256 memory server is:
1257
1258 @example
1259 qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1260 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1261 qemu-system-i386 -chardev socket,path=<path>,id=<id>
1262 @end example
1263
1264 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1265 using the same server to communicate via interrupts. Guests can read their
1266 VM ID from a device register (see example code). Since receiving the shared
1267 memory region from the server is asynchronous, there is a (small) chance the
1268 guest may boot before the shared memory is attached. To allow an application
1269 to ensure shared memory is attached, the VM ID register will return -1 (an
1270 invalid VM ID) until the memory is attached. Once the shared memory is
1271 attached, the VM ID will return the guest's valid VM ID. With these semantics,
1272 the guest application can check to ensure the shared memory is attached to the
1273 guest before proceeding.
1274
1275 The @option{role} argument can be set to either master or peer and will affect
1276 how the shared memory is migrated. With @option{role=master}, the guest will
1277 copy the shared memory on migration to the destination host. With
1278 @option{role=peer}, the guest will not be able to migrate with the device attached.
1279 With the @option{peer} case, the device should be detached and then reattached
1280 after migration using the PCI hotplug support.
1281
1282 @node direct_linux_boot
1283 @section Direct Linux Boot
1284
1285 This section explains how to launch a Linux kernel inside QEMU without
1286 having to make a full bootable image. It is very useful for fast Linux
1287 kernel testing.
1288
1289 The syntax is:
1290 @example
1291 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1292 @end example
1293
1294 Use @option{-kernel} to provide the Linux kernel image and
1295 @option{-append} to give the kernel command line arguments. The
1296 @option{-initrd} option can be used to provide an INITRD image.
1297
1298 When using the direct Linux boot, a disk image for the first hard disk
1299 @file{hda} is required because its boot sector is used to launch the
1300 Linux kernel.
1301
1302 If you do not need graphical output, you can disable it and redirect
1303 the virtual serial port and the QEMU monitor to the console with the
1304 @option{-nographic} option. The typical command line is:
1305 @example
1306 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1307 -append "root=/dev/hda console=ttyS0" -nographic
1308 @end example
1309
1310 Use @key{Ctrl-a c} to switch between the serial console and the
1311 monitor (@pxref{pcsys_keys}).
1312
1313 @node pcsys_usb
1314 @section USB emulation
1315
1316 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1317 virtual USB devices or real host USB devices (experimental, works only
1318 on Linux hosts). QEMU will automatically create and connect virtual USB hubs
1319 as necessary to connect multiple USB devices.
1320
1321 @menu
1322 * usb_devices::
1323 * host_usb_devices::
1324 @end menu
1325 @node usb_devices
1326 @subsection Connecting USB devices
1327
1328 USB devices can be connected with the @option{-usbdevice} commandline option
1329 or the @code{usb_add} monitor command. Available devices are:
1330
1331 @table @code
1332 @item mouse
1333 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1334 @item tablet
1335 Pointer device that uses absolute coordinates (like a touchscreen).
1336 This means QEMU is able to report the mouse position without having
1337 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1338 @item disk:@var{file}
1339 Mass storage device based on @var{file} (@pxref{disk_images})
1340 @item host:@var{bus.addr}
1341 Pass through the host device identified by @var{bus.addr}
1342 (Linux only)
1343 @item host:@var{vendor_id:product_id}
1344 Pass through the host device identified by @var{vendor_id:product_id}
1345 (Linux only)
1346 @item wacom-tablet
1347 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1348 above but it can be used with the tslib library because in addition to touch
1349 coordinates it reports touch pressure.
1350 @item keyboard
1351 Standard USB keyboard. Will override the PS/2 keyboard (if present).
1352 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1353 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1354 device @var{dev}. The available character devices are the same as for the
1355 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1356 used to override the default 0403:6001. For instance,
1357 @example
1358 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1359 @end example
1360 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1361 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1362 @item braille
1363 Braille device. This will use BrlAPI to display the braille output on a real
1364 or fake device.
1365 @item net:@var{options}
1366 Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1367 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1368 For instance, user-mode networking can be used with
1369 @example
1370 qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1371 @end example
1372 Currently this cannot be used in machines that support PCI NICs.
1373 @item bt[:@var{hci-type}]
1374 Bluetooth dongle whose type is specified in the same format as with
1375 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1376 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1377 This USB device implements the USB Transport Layer of HCI. Example
1378 usage:
1379 @example
1380 qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1381 @end example
1382 @end table
1383
1384 @node host_usb_devices
1385 @subsection Using host USB devices on a Linux host
1386
1387 WARNING: this is an experimental feature. QEMU will slow down when
1388 using it. USB devices requiring real time streaming (i.e. USB Video
1389 Cameras) are not supported yet.
1390
1391 @enumerate
1392 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1393 is actually using the USB device. A simple way to do that is simply to
1394 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1395 to @file{mydriver.o.disabled}.
1396
1397 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1398 @example
1399 ls /proc/bus/usb
1400 001 devices drivers
1401 @end example
1402
1403 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1404 @example
1405 chown -R myuid /proc/bus/usb
1406 @end example
1407
1408 @item Launch QEMU and do in the monitor:
1409 @example
1410 info usbhost
1411 Device 1.2, speed 480 Mb/s
1412 Class 00: USB device 1234:5678, USB DISK
1413 @end example
1414 You should see the list of the devices you can use (Never try to use
1415 hubs, it won't work).
1416
1417 @item Add the device in QEMU by using:
1418 @example
1419 usb_add host:1234:5678
1420 @end example
1421
1422 Normally the guest OS should report that a new USB device is
1423 plugged. You can use the option @option{-usbdevice} to do the same.
1424
1425 @item Now you can try to use the host USB device in QEMU.
1426
1427 @end enumerate
1428
1429 When relaunching QEMU, you may have to unplug and plug again the USB
1430 device to make it work again (this is a bug).
1431
1432 @node vnc_security
1433 @section VNC security
1434
1435 The VNC server capability provides access to the graphical console
1436 of the guest VM across the network. This has a number of security
1437 considerations depending on the deployment scenarios.
1438
1439 @menu
1440 * vnc_sec_none::
1441 * vnc_sec_password::
1442 * vnc_sec_certificate::
1443 * vnc_sec_certificate_verify::
1444 * vnc_sec_certificate_pw::
1445 * vnc_sec_sasl::
1446 * vnc_sec_certificate_sasl::
1447 * vnc_generate_cert::
1448 * vnc_setup_sasl::
1449 @end menu
1450 @node vnc_sec_none
1451 @subsection Without passwords
1452
1453 The simplest VNC server setup does not include any form of authentication.
1454 For this setup it is recommended to restrict it to listen on a UNIX domain
1455 socket only. For example
1456
1457 @example
1458 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1459 @end example
1460
1461 This ensures that only users on local box with read/write access to that
1462 path can access the VNC server. To securely access the VNC server from a
1463 remote machine, a combination of netcat+ssh can be used to provide a secure
1464 tunnel.
1465
1466 @node vnc_sec_password
1467 @subsection With passwords
1468
1469 The VNC protocol has limited support for password based authentication. Since
1470 the protocol limits passwords to 8 characters it should not be considered
1471 to provide high security. The password can be fairly easily brute-forced by
1472 a client making repeat connections. For this reason, a VNC server using password
1473 authentication should be restricted to only listen on the loopback interface
1474 or UNIX domain sockets. Password authentication is not supported when operating
1475 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1476 authentication is requested with the @code{password} option, and then once QEMU
1477 is running the password is set with the monitor. Until the monitor is used to
1478 set the password all clients will be rejected.
1479
1480 @example
1481 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1482 (qemu) change vnc password
1483 Password: ********
1484 (qemu)
1485 @end example
1486
1487 @node vnc_sec_certificate
1488 @subsection With x509 certificates
1489
1490 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1491 TLS for encryption of the session, and x509 certificates for authentication.
1492 The use of x509 certificates is strongly recommended, because TLS on its
1493 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1494 support provides a secure session, but no authentication. This allows any
1495 client to connect, and provides an encrypted session.
1496
1497 @example
1498 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1499 @end example
1500
1501 In the above example @code{/etc/pki/qemu} should contain at least three files,
1502 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1503 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1504 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1505 only be readable by the user owning it.
1506
1507 @node vnc_sec_certificate_verify
1508 @subsection With x509 certificates and client verification
1509
1510 Certificates can also provide a means to authenticate the client connecting.
1511 The server will request that the client provide a certificate, which it will
1512 then validate against the CA certificate. This is a good choice if deploying
1513 in an environment with a private internal certificate authority.
1514
1515 @example
1516 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1517 @end example
1518
1519
1520 @node vnc_sec_certificate_pw
1521 @subsection With x509 certificates, client verification and passwords
1522
1523 Finally, the previous method can be combined with VNC password authentication
1524 to provide two layers of authentication for clients.
1525
1526 @example
1527 qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1528 (qemu) change vnc password
1529 Password: ********
1530 (qemu)
1531 @end example
1532
1533
1534 @node vnc_sec_sasl
1535 @subsection With SASL authentication
1536
1537 The SASL authentication method is a VNC extension, that provides an
1538 easily extendable, pluggable authentication method. This allows for
1539 integration with a wide range of authentication mechanisms, such as
1540 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1541 The strength of the authentication depends on the exact mechanism
1542 configured. If the chosen mechanism also provides a SSF layer, then
1543 it will encrypt the datastream as well.
1544
1545 Refer to the later docs on how to choose the exact SASL mechanism
1546 used for authentication, but assuming use of one supporting SSF,
1547 then QEMU can be launched with:
1548
1549 @example
1550 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1551 @end example
1552
1553 @node vnc_sec_certificate_sasl
1554 @subsection With x509 certificates and SASL authentication
1555
1556 If the desired SASL authentication mechanism does not supported
1557 SSF layers, then it is strongly advised to run it in combination
1558 with TLS and x509 certificates. This provides securely encrypted
1559 data stream, avoiding risk of compromising of the security
1560 credentials. This can be enabled, by combining the 'sasl' option
1561 with the aforementioned TLS + x509 options:
1562
1563 @example
1564 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1565 @end example
1566
1567
1568 @node vnc_generate_cert
1569 @subsection Generating certificates for VNC
1570
1571 The GNU TLS packages provides a command called @code{certtool} which can
1572 be used to generate certificates and keys in PEM format. At a minimum it
1573 is necessary to setup a certificate authority, and issue certificates to
1574 each server. If using certificates for authentication, then each client
1575 will also need to be issued a certificate. The recommendation is for the
1576 server to keep its certificates in either @code{/etc/pki/qemu} or for
1577 unprivileged users in @code{$HOME/.pki/qemu}.
1578
1579 @menu
1580 * vnc_generate_ca::
1581 * vnc_generate_server::
1582 * vnc_generate_client::
1583 @end menu
1584 @node vnc_generate_ca
1585 @subsubsection Setup the Certificate Authority
1586
1587 This step only needs to be performed once per organization / organizational
1588 unit. First the CA needs a private key. This key must be kept VERY secret
1589 and secure. If this key is compromised the entire trust chain of the certificates
1590 issued with it is lost.
1591
1592 @example
1593 # certtool --generate-privkey > ca-key.pem
1594 @end example
1595
1596 A CA needs to have a public certificate. For simplicity it can be a self-signed
1597 certificate, or one issue by a commercial certificate issuing authority. To
1598 generate a self-signed certificate requires one core piece of information, the
1599 name of the organization.
1600
1601 @example
1602 # cat > ca.info <<EOF
1603 cn = Name of your organization
1604 ca
1605 cert_signing_key
1606 EOF
1607 # certtool --generate-self-signed \
1608 --load-privkey ca-key.pem
1609 --template ca.info \
1610 --outfile ca-cert.pem
1611 @end example
1612
1613 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1614 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1615
1616 @node vnc_generate_server
1617 @subsubsection Issuing server certificates
1618
1619 Each server (or host) needs to be issued with a key and certificate. When connecting
1620 the certificate is sent to the client which validates it against the CA certificate.
1621 The core piece of information for a server certificate is the hostname. This should
1622 be the fully qualified hostname that the client will connect with, since the client
1623 will typically also verify the hostname in the certificate. On the host holding the
1624 secure CA private key:
1625
1626 @example
1627 # cat > server.info <<EOF
1628 organization = Name of your organization
1629 cn = server.foo.example.com
1630 tls_www_server
1631 encryption_key
1632 signing_key
1633 EOF
1634 # certtool --generate-privkey > server-key.pem
1635 # certtool --generate-certificate \
1636 --load-ca-certificate ca-cert.pem \
1637 --load-ca-privkey ca-key.pem \
1638 --load-privkey server-key.pem \
1639 --template server.info \
1640 --outfile server-cert.pem
1641 @end example
1642
1643 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1644 to the server for which they were generated. The @code{server-key.pem} is security
1645 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1646
1647 @node vnc_generate_client
1648 @subsubsection Issuing client certificates
1649
1650 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1651 certificates as its authentication mechanism, each client also needs to be issued
1652 a certificate. The client certificate contains enough metadata to uniquely identify
1653 the client, typically organization, state, city, building, etc. On the host holding
1654 the secure CA private key:
1655
1656 @example
1657 # cat > client.info <<EOF
1658 country = GB
1659 state = London
1660 locality = London
1661 organization = Name of your organization
1662 cn = client.foo.example.com
1663 tls_www_client
1664 encryption_key
1665 signing_key
1666 EOF
1667 # certtool --generate-privkey > client-key.pem
1668 # certtool --generate-certificate \
1669 --load-ca-certificate ca-cert.pem \
1670 --load-ca-privkey ca-key.pem \
1671 --load-privkey client-key.pem \
1672 --template client.info \
1673 --outfile client-cert.pem
1674 @end example
1675
1676 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1677 copied to the client for which they were generated.
1678
1679
1680 @node vnc_setup_sasl
1681
1682 @subsection Configuring SASL mechanisms
1683
1684 The following documentation assumes use of the Cyrus SASL implementation on a
1685 Linux host, but the principals should apply to any other SASL impl. When SASL
1686 is enabled, the mechanism configuration will be loaded from system default
1687 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1688 unprivileged user, an environment variable SASL_CONF_PATH can be used
1689 to make it search alternate locations for the service config.
1690
1691 The default configuration might contain
1692
1693 @example
1694 mech_list: digest-md5
1695 sasldb_path: /etc/qemu/passwd.db
1696 @end example
1697
1698 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1699 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1700 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1701 command. While this mechanism is easy to configure and use, it is not
1702 considered secure by modern standards, so only suitable for developers /
1703 ad-hoc testing.
1704
1705 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1706 mechanism
1707
1708 @example
1709 mech_list: gssapi
1710 keytab: /etc/qemu/krb5.tab
1711 @end example
1712
1713 For this to work the administrator of your KDC must generate a Kerberos
1714 principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1715 replacing 'somehost.example.com' with the fully qualified host name of the
1716 machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1717
1718 Other configurations will be left as an exercise for the reader. It should
1719 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1720 encryption. For all other mechanisms, VNC should always be configured to
1721 use TLS and x509 certificates to protect security credentials from snooping.
1722
1723 @node gdb_usage
1724 @section GDB usage
1725
1726 QEMU has a primitive support to work with gdb, so that you can do
1727 'Ctrl-C' while the virtual machine is running and inspect its state.
1728
1729 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1730 gdb connection:
1731 @example
1732 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1733 -append "root=/dev/hda"
1734 Connected to host network interface: tun0
1735 Waiting gdb connection on port 1234
1736 @end example
1737
1738 Then launch gdb on the 'vmlinux' executable:
1739 @example
1740 > gdb vmlinux
1741 @end example
1742
1743 In gdb, connect to QEMU:
1744 @example
1745 (gdb) target remote localhost:1234
1746 @end example
1747
1748 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1749 @example
1750 (gdb) c
1751 @end example
1752
1753 Here are some useful tips in order to use gdb on system code:
1754
1755 @enumerate
1756 @item
1757 Use @code{info reg} to display all the CPU registers.
1758 @item
1759 Use @code{x/10i $eip} to display the code at the PC position.
1760 @item
1761 Use @code{set architecture i8086} to dump 16 bit code. Then use
1762 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1763 @end enumerate
1764
1765 Advanced debugging options:
1766
1767 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1768 @table @code
1769 @item maintenance packet qqemu.sstepbits
1770
1771 This will display the MASK bits used to control the single stepping IE:
1772 @example
1773 (gdb) maintenance packet qqemu.sstepbits
1774 sending: "qqemu.sstepbits"
1775 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1776 @end example
1777 @item maintenance packet qqemu.sstep
1778
1779 This will display the current value of the mask used when single stepping IE:
1780 @example
1781 (gdb) maintenance packet qqemu.sstep
1782 sending: "qqemu.sstep"
1783 received: "0x7"
1784 @end example
1785 @item maintenance packet Qqemu.sstep=HEX_VALUE
1786
1787 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1788 @example
1789 (gdb) maintenance packet Qqemu.sstep=0x5
1790 sending: "qemu.sstep=0x5"
1791 received: "OK"
1792 @end example
1793 @end table
1794
1795 @node pcsys_os_specific
1796 @section Target OS specific information
1797
1798 @subsection Linux
1799
1800 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1801 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1802 color depth in the guest and the host OS.
1803
1804 When using a 2.6 guest Linux kernel, you should add the option
1805 @code{clock=pit} on the kernel command line because the 2.6 Linux
1806 kernels make very strict real time clock checks by default that QEMU
1807 cannot simulate exactly.
1808
1809 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1810 not activated because QEMU is slower with this patch. The QEMU
1811 Accelerator Module is also much slower in this case. Earlier Fedora
1812 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1813 patch by default. Newer kernels don't have it.
1814
1815 @subsection Windows
1816
1817 If you have a slow host, using Windows 95 is better as it gives the
1818 best speed. Windows 2000 is also a good choice.
1819
1820 @subsubsection SVGA graphic modes support
1821
1822 QEMU emulates a Cirrus Logic GD5446 Video
1823 card. All Windows versions starting from Windows 95 should recognize
1824 and use this graphic card. For optimal performances, use 16 bit color
1825 depth in the guest and the host OS.
1826
1827 If you are using Windows XP as guest OS and if you want to use high
1828 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1829 1280x1024x16), then you should use the VESA VBE virtual graphic card
1830 (option @option{-std-vga}).
1831
1832 @subsubsection CPU usage reduction
1833
1834 Windows 9x does not correctly use the CPU HLT
1835 instruction. The result is that it takes host CPU cycles even when
1836 idle. You can install the utility from
1837 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1838 problem. Note that no such tool is needed for NT, 2000 or XP.
1839
1840 @subsubsection Windows 2000 disk full problem
1841
1842 Windows 2000 has a bug which gives a disk full problem during its
1843 installation. When installing it, use the @option{-win2k-hack} QEMU
1844 option to enable a specific workaround. After Windows 2000 is
1845 installed, you no longer need this option (this option slows down the
1846 IDE transfers).
1847
1848 @subsubsection Windows 2000 shutdown
1849
1850 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1851 can. It comes from the fact that Windows 2000 does not automatically
1852 use the APM driver provided by the BIOS.
1853
1854 In order to correct that, do the following (thanks to Struan
1855 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1856 Add/Troubleshoot a device => Add a new device & Next => No, select the
1857 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1858 (again) a few times. Now the driver is installed and Windows 2000 now
1859 correctly instructs QEMU to shutdown at the appropriate moment.
1860
1861 @subsubsection Share a directory between Unix and Windows
1862
1863 See @ref{sec_invocation} about the help of the option @option{-smb}.
1864
1865 @subsubsection Windows XP security problem
1866
1867 Some releases of Windows XP install correctly but give a security
1868 error when booting:
1869 @example
1870 A problem is preventing Windows from accurately checking the
1871 license for this computer. Error code: 0x800703e6.
1872 @end example
1873
1874 The workaround is to install a service pack for XP after a boot in safe
1875 mode. Then reboot, and the problem should go away. Since there is no
1876 network while in safe mode, its recommended to download the full
1877 installation of SP1 or SP2 and transfer that via an ISO or using the
1878 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1879
1880 @subsection MS-DOS and FreeDOS
1881
1882 @subsubsection CPU usage reduction
1883
1884 DOS does not correctly use the CPU HLT instruction. The result is that
1885 it takes host CPU cycles even when idle. You can install the utility
1886 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1887 problem.
1888
1889 @node QEMU System emulator for non PC targets
1890 @chapter QEMU System emulator for non PC targets
1891
1892 QEMU is a generic emulator and it emulates many non PC
1893 machines. Most of the options are similar to the PC emulator. The
1894 differences are mentioned in the following sections.
1895
1896 @menu
1897 * PowerPC System emulator::
1898 * Sparc32 System emulator::
1899 * Sparc64 System emulator::
1900 * MIPS System emulator::
1901 * ARM System emulator::
1902 * ColdFire System emulator::
1903 * Cris System emulator::
1904 * Microblaze System emulator::
1905 * SH4 System emulator::
1906 * Xtensa System emulator::
1907 @end menu
1908
1909 @node PowerPC System emulator
1910 @section PowerPC System emulator
1911 @cindex system emulation (PowerPC)
1912
1913 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1914 or PowerMac PowerPC system.
1915
1916 QEMU emulates the following PowerMac peripherals:
1917
1918 @itemize @minus
1919 @item
1920 UniNorth or Grackle PCI Bridge
1921 @item
1922 PCI VGA compatible card with VESA Bochs Extensions
1923 @item
1924 2 PMAC IDE interfaces with hard disk and CD-ROM support
1925 @item
1926 NE2000 PCI adapters
1927 @item
1928 Non Volatile RAM
1929 @item
1930 VIA-CUDA with ADB keyboard and mouse.
1931 @end itemize
1932
1933 QEMU emulates the following PREP peripherals:
1934
1935 @itemize @minus
1936 @item
1937 PCI Bridge
1938 @item
1939 PCI VGA compatible card with VESA Bochs Extensions
1940 @item
1941 2 IDE interfaces with hard disk and CD-ROM support
1942 @item
1943 Floppy disk
1944 @item
1945 NE2000 network adapters
1946 @item
1947 Serial port
1948 @item
1949 PREP Non Volatile RAM
1950 @item
1951 PC compatible keyboard and mouse.
1952 @end itemize
1953
1954 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1955 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1956
1957 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1958 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1959 v2) portable firmware implementation. The goal is to implement a 100%
1960 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1961
1962 @c man begin OPTIONS
1963
1964 The following options are specific to the PowerPC emulation:
1965
1966 @table @option
1967
1968 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1969
1970 Set the initial VGA graphic mode. The default is 800x600x32.
1971
1972 @item -prom-env @var{string}
1973
1974 Set OpenBIOS variables in NVRAM, for example:
1975
1976 @example
1977 qemu-system-ppc -prom-env 'auto-boot?=false' \
1978 -prom-env 'boot-device=hd:2,\yaboot' \
1979 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1980 @end example
1981
1982 These variables are not used by Open Hack'Ware.
1983
1984 @end table
1985
1986 @c man end
1987
1988
1989 More information is available at
1990 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1991
1992 @node Sparc32 System emulator
1993 @section Sparc32 System emulator
1994 @cindex system emulation (Sparc32)
1995
1996 Use the executable @file{qemu-system-sparc} to simulate the following
1997 Sun4m architecture machines:
1998 @itemize @minus
1999 @item
2000 SPARCstation 4
2001 @item
2002 SPARCstation 5
2003 @item
2004 SPARCstation 10
2005 @item
2006 SPARCstation 20
2007 @item
2008 SPARCserver 600MP
2009 @item
2010 SPARCstation LX
2011 @item
2012 SPARCstation Voyager
2013 @item
2014 SPARCclassic
2015 @item
2016 SPARCbook
2017 @end itemize
2018
2019 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2020 but Linux limits the number of usable CPUs to 4.
2021
2022 QEMU emulates the following sun4m peripherals:
2023
2024 @itemize @minus
2025 @item
2026 IOMMU
2027 @item
2028 TCX or cgthree Frame buffer
2029 @item
2030 Lance (Am7990) Ethernet
2031 @item
2032 Non Volatile RAM M48T02/M48T08
2033 @item
2034 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2035 and power/reset logic
2036 @item
2037 ESP SCSI controller with hard disk and CD-ROM support
2038 @item
2039 Floppy drive (not on SS-600MP)
2040 @item
2041 CS4231 sound device (only on SS-5, not working yet)
2042 @end itemize
2043
2044 The number of peripherals is fixed in the architecture. Maximum
2045 memory size depends on the machine type, for SS-5 it is 256MB and for
2046 others 2047MB.
2047
2048 Since version 0.8.2, QEMU uses OpenBIOS
2049 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2050 firmware implementation. The goal is to implement a 100% IEEE
2051 1275-1994 (referred to as Open Firmware) compliant firmware.
2052
2053 A sample Linux 2.6 series kernel and ram disk image are available on
2054 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2055 most kernel versions work. Please note that currently older Solaris kernels
2056 don't work probably due to interface issues between OpenBIOS and
2057 Solaris.
2058
2059 @c man begin OPTIONS
2060
2061 The following options are specific to the Sparc32 emulation:
2062
2063 @table @option
2064
2065 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
2066
2067 Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2068 option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2069 of 1152x900x8 for people who wish to use OBP.
2070
2071 @item -prom-env @var{string}
2072
2073 Set OpenBIOS variables in NVRAM, for example:
2074
2075 @example
2076 qemu-system-sparc -prom-env 'auto-boot?=false' \
2077 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2078 @end example
2079
2080 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2081
2082 Set the emulated machine type. Default is SS-5.
2083
2084 @end table
2085
2086 @c man end
2087
2088 @node Sparc64 System emulator
2089 @section Sparc64 System emulator
2090 @cindex system emulation (Sparc64)
2091
2092 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2093 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2094 Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2095 able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2096 Sun4v and Niagara emulators are still a work in progress.
2097
2098 QEMU emulates the following peripherals:
2099
2100 @itemize @minus
2101 @item
2102 UltraSparc IIi APB PCI Bridge
2103 @item
2104 PCI VGA compatible card with VESA Bochs Extensions
2105 @item
2106 PS/2 mouse and keyboard
2107 @item
2108 Non Volatile RAM M48T59
2109 @item
2110 PC-compatible serial ports
2111 @item
2112 2 PCI IDE interfaces with hard disk and CD-ROM support
2113 @item
2114 Floppy disk
2115 @end itemize
2116
2117 @c man begin OPTIONS
2118
2119 The following options are specific to the Sparc64 emulation:
2120
2121 @table @option
2122
2123 @item -prom-env @var{string}
2124
2125 Set OpenBIOS variables in NVRAM, for example:
2126
2127 @example
2128 qemu-system-sparc64 -prom-env 'auto-boot?=false'
2129 @end example
2130
2131 @item -M [sun4u|sun4v|Niagara]
2132
2133 Set the emulated machine type. The default is sun4u.
2134
2135 @end table
2136
2137 @c man end
2138
2139 @node MIPS System emulator
2140 @section MIPS System emulator
2141 @cindex system emulation (MIPS)
2142
2143 Four executables cover simulation of 32 and 64-bit MIPS systems in
2144 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2145 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2146 Five different machine types are emulated:
2147
2148 @itemize @minus
2149 @item
2150 A generic ISA PC-like machine "mips"
2151 @item
2152 The MIPS Malta prototype board "malta"
2153 @item
2154 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2155 @item
2156 MIPS emulator pseudo board "mipssim"
2157 @item
2158 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2159 @end itemize
2160
2161 The generic emulation is supported by Debian 'Etch' and is able to
2162 install Debian into a virtual disk image. The following devices are
2163 emulated:
2164
2165 @itemize @minus
2166 @item
2167 A range of MIPS CPUs, default is the 24Kf
2168 @item
2169 PC style serial port
2170 @item
2171 PC style IDE disk
2172 @item
2173 NE2000 network card
2174 @end itemize
2175
2176 The Malta emulation supports the following devices:
2177
2178 @itemize @minus
2179 @item
2180 Core board with MIPS 24Kf CPU and Galileo system controller
2181 @item
2182 PIIX4 PCI/USB/SMbus controller
2183 @item
2184 The Multi-I/O chip's serial device
2185 @item
2186 PCI network cards (PCnet32 and others)
2187 @item
2188 Malta FPGA serial device
2189 @item
2190 Cirrus (default) or any other PCI VGA graphics card
2191 @end itemize
2192
2193 The ACER Pica emulation supports:
2194
2195 @itemize @minus
2196 @item
2197 MIPS R4000 CPU
2198 @item
2199 PC-style IRQ and DMA controllers
2200 @item
2201 PC Keyboard
2202 @item
2203 IDE controller
2204 @end itemize
2205
2206 The mipssim pseudo board emulation provides an environment similar
2207 to what the proprietary MIPS emulator uses for running Linux.
2208 It supports:
2209
2210 @itemize @minus
2211 @item
2212 A range of MIPS CPUs, default is the 24Kf
2213 @item
2214 PC style serial port
2215 @item
2216 MIPSnet network emulation
2217 @end itemize
2218
2219 The MIPS Magnum R4000 emulation supports:
2220
2221 @itemize @minus
2222 @item
2223 MIPS R4000 CPU
2224 @item
2225 PC-style IRQ controller
2226 @item
2227 PC Keyboard
2228 @item
2229 SCSI controller
2230 @item
2231 G364 framebuffer
2232 @end itemize
2233
2234
2235 @node ARM System emulator
2236 @section ARM System emulator
2237 @cindex system emulation (ARM)
2238
2239 Use the executable @file{qemu-system-arm} to simulate a ARM
2240 machine. The ARM Integrator/CP board is emulated with the following
2241 devices:
2242
2243 @itemize @minus
2244 @item
2245 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2246 @item
2247 Two PL011 UARTs
2248 @item
2249 SMC 91c111 Ethernet adapter
2250 @item
2251 PL110 LCD controller
2252 @item
2253 PL050 KMI with PS/2 keyboard and mouse.
2254 @item
2255 PL181 MultiMedia Card Interface with SD card.
2256 @end itemize
2257
2258 The ARM Versatile baseboard is emulated with the following devices:
2259
2260 @itemize @minus
2261 @item
2262 ARM926E, ARM1136 or Cortex-A8 CPU
2263 @item
2264 PL190 Vectored Interrupt Controller
2265 @item
2266 Four PL011 UARTs
2267 @item
2268 SMC 91c111 Ethernet adapter
2269 @item
2270 PL110 LCD controller
2271 @item
2272 PL050 KMI with PS/2 keyboard and mouse.
2273 @item
2274 PCI host bridge. Note the emulated PCI bridge only provides access to
2275 PCI memory space. It does not provide access to PCI IO space.
2276 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2277 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2278 mapped control registers.
2279 @item
2280 PCI OHCI USB controller.
2281 @item
2282 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2283 @item
2284 PL181 MultiMedia Card Interface with SD card.
2285 @end itemize
2286
2287 Several variants of the ARM RealView baseboard are emulated,
2288 including the EB, PB-A8 and PBX-A9. Due to interactions with the
2289 bootloader, only certain Linux kernel configurations work out
2290 of the box on these boards.
2291
2292 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2293 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2294 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2295 disabled and expect 1024M RAM.
2296
2297 The following devices are emulated:
2298
2299 @itemize @minus
2300 @item
2301 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2302 @item
2303 ARM AMBA Generic/Distributed Interrupt Controller
2304 @item
2305 Four PL011 UARTs
2306 @item
2307 SMC 91c111 or SMSC LAN9118 Ethernet adapter
2308 @item
2309 PL110 LCD controller
2310 @item
2311 PL050 KMI with PS/2 keyboard and mouse
2312 @item
2313 PCI host bridge
2314 @item
2315 PCI OHCI USB controller
2316 @item
2317 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2318 @item
2319 PL181 MultiMedia Card Interface with SD card.
2320 @end itemize
2321
2322 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2323 and "Terrier") emulation includes the following peripherals:
2324
2325 @itemize @minus
2326 @item
2327 Intel PXA270 System-on-chip (ARM V5TE core)
2328 @item
2329 NAND Flash memory
2330 @item
2331 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2332 @item
2333 On-chip OHCI USB controller
2334 @item
2335 On-chip LCD controller
2336 @item
2337 On-chip Real Time Clock
2338 @item
2339 TI ADS7846 touchscreen controller on SSP bus
2340 @item
2341 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2342 @item
2343 GPIO-connected keyboard controller and LEDs
2344 @item
2345 Secure Digital card connected to PXA MMC/SD host
2346 @item
2347 Three on-chip UARTs
2348 @item
2349 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2350 @end itemize
2351
2352 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2353 following elements:
2354
2355 @itemize @minus
2356 @item
2357 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2358 @item
2359 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2360 @item
2361 On-chip LCD controller
2362 @item
2363 On-chip Real Time Clock
2364 @item
2365 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2366 CODEC, connected through MicroWire and I@math{^2}S busses
2367 @item
2368 GPIO-connected matrix keypad
2369 @item
2370 Secure Digital card connected to OMAP MMC/SD host
2371 @item
2372 Three on-chip UARTs
2373 @end itemize
2374
2375 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2376 emulation supports the following elements:
2377
2378 @itemize @minus
2379 @item
2380 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2381 @item
2382 RAM and non-volatile OneNAND Flash memories
2383 @item
2384 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2385 display controller and a LS041y3 MIPI DBI-C controller
2386 @item
2387 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2388 driven through SPI bus
2389 @item
2390 National Semiconductor LM8323-controlled qwerty keyboard driven
2391 through I@math{^2}C bus
2392 @item
2393 Secure Digital card connected to OMAP MMC/SD host
2394 @item
2395 Three OMAP on-chip UARTs and on-chip STI debugging console
2396 @item
2397 A Bluetooth(R) transceiver and HCI connected to an UART
2398 @item
2399 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2400 TUSB6010 chip - only USB host mode is supported
2401 @item
2402 TI TMP105 temperature sensor driven through I@math{^2}C bus
2403 @item
2404 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2405 @item
2406 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2407 through CBUS
2408 @end itemize
2409
2410 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2411 devices:
2412
2413 @itemize @minus
2414 @item
2415 Cortex-M3 CPU core.
2416 @item
2417 64k Flash and 8k SRAM.
2418 @item
2419 Timers, UARTs, ADC and I@math{^2}C interface.
2420 @item
2421 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2422 @end itemize
2423
2424 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2425 devices:
2426
2427 @itemize @minus
2428 @item
2429 Cortex-M3 CPU core.
2430 @item
2431 256k Flash and 64k SRAM.
2432 @item
2433 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2434 @item
2435 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2436 @end itemize
2437
2438 The Freecom MusicPal internet radio emulation includes the following
2439 elements:
2440
2441 @itemize @minus
2442 @item
2443 Marvell MV88W8618 ARM core.
2444 @item
2445 32 MB RAM, 256 KB SRAM, 8 MB flash.
2446 @item
2447 Up to 2 16550 UARTs
2448 @item
2449 MV88W8xx8 Ethernet controller
2450 @item
2451 MV88W8618 audio controller, WM8750 CODEC and mixer
2452 @item
2453 128×64 display with brightness control
2454 @item
2455 2 buttons, 2 navigation wheels with button function
2456 @end itemize
2457
2458 The Siemens SX1 models v1 and v2 (default) basic emulation.
2459 The emulation includes the following elements:
2460
2461 @itemize @minus
2462 @item
2463 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2464 @item
2465 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2466 V1
2467 1 Flash of 16MB and 1 Flash of 8MB
2468 V2
2469 1 Flash of 32MB
2470 @item
2471 On-chip LCD controller
2472 @item
2473 On-chip Real Time Clock
2474 @item
2475 Secure Digital card connected to OMAP MMC/SD host
2476 @item
2477 Three on-chip UARTs
2478 @end itemize
2479
2480 A Linux 2.6 test image is available on the QEMU web site. More
2481 information is available in the QEMU mailing-list archive.
2482
2483 @c man begin OPTIONS
2484
2485 The following options are specific to the ARM emulation:
2486
2487 @table @option
2488
2489 @item -semihosting
2490 Enable semihosting syscall emulation.
2491
2492 On ARM this implements the "Angel" interface.
2493
2494 Note that this allows guest direct access to the host filesystem,
2495 so should only be used with trusted guest OS.
2496
2497 @end table
2498
2499 @node ColdFire System emulator
2500 @section ColdFire System emulator
2501 @cindex system emulation (ColdFire)
2502 @cindex system emulation (M68K)
2503
2504 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2505 The emulator is able to boot a uClinux kernel.
2506
2507 The M5208EVB emulation includes the following devices:
2508
2509 @itemize @minus
2510 @item
2511 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2512 @item
2513 Three Two on-chip UARTs.
2514 @item
2515 Fast Ethernet Controller (FEC)
2516 @end itemize
2517
2518 The AN5206 emulation includes the following devices:
2519
2520 @itemize @minus
2521 @item
2522 MCF5206 ColdFire V2 Microprocessor.
2523 @item
2524 Two on-chip UARTs.
2525 @end itemize
2526
2527 @c man begin OPTIONS
2528
2529 The following options are specific to the ColdFire emulation:
2530
2531 @table @option
2532
2533 @item -semihosting
2534 Enable semihosting syscall emulation.
2535
2536 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2537
2538 Note that this allows guest direct access to the host filesystem,
2539 so should only be used with trusted guest OS.
2540
2541 @end table
2542
2543 @node Cris System emulator
2544 @section Cris System emulator
2545 @cindex system emulation (Cris)
2546
2547 TODO
2548
2549 @node Microblaze System emulator
2550 @section Microblaze System emulator
2551 @cindex system emulation (Microblaze)
2552
2553 TODO
2554
2555 @node SH4 System emulator
2556 @section SH4 System emulator
2557 @cindex system emulation (SH4)
2558
2559 TODO
2560
2561 @node Xtensa System emulator
2562 @section Xtensa System emulator
2563 @cindex system emulation (Xtensa)
2564
2565 Two executables cover simulation of both Xtensa endian options,
2566 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2567 Two different machine types are emulated:
2568
2569 @itemize @minus
2570 @item
2571 Xtensa emulator pseudo board "sim"
2572 @item
2573 Avnet LX60/LX110/LX200 board
2574 @end itemize
2575
2576 The sim pseudo board emulation provides an environment similar
2577 to one provided by the proprietary Tensilica ISS.
2578 It supports:
2579
2580 @itemize @minus
2581 @item
2582 A range of Xtensa CPUs, default is the DC232B
2583 @item
2584 Console and filesystem access via semihosting calls
2585 @end itemize
2586
2587 The Avnet LX60/LX110/LX200 emulation supports:
2588
2589 @itemize @minus
2590 @item
2591 A range of Xtensa CPUs, default is the DC232B
2592 @item
2593 16550 UART
2594 @item
2595 OpenCores 10/100 Mbps Ethernet MAC
2596 @end itemize
2597
2598 @c man begin OPTIONS
2599
2600 The following options are specific to the Xtensa emulation:
2601
2602 @table @option
2603
2604 @item -semihosting
2605 Enable semihosting syscall emulation.
2606
2607 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2608 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2609
2610 Note that this allows guest direct access to the host filesystem,
2611 so should only be used with trusted guest OS.
2612
2613 @end table
2614 @node QEMU User space emulator
2615 @chapter QEMU User space emulator
2616
2617 @menu
2618 * Supported Operating Systems ::
2619 * Linux User space emulator::
2620 * BSD User space emulator ::
2621 @end menu
2622
2623 @node Supported Operating Systems
2624 @section Supported Operating Systems
2625
2626 The following OS are supported in user space emulation:
2627
2628 @itemize @minus
2629 @item
2630 Linux (referred as qemu-linux-user)
2631 @item
2632 BSD (referred as qemu-bsd-user)
2633 @end itemize
2634
2635 @node Linux User space emulator
2636 @section Linux User space emulator
2637
2638 @menu
2639 * Quick Start::
2640 * Wine launch::
2641 * Command line options::
2642 * Other binaries::
2643 @end menu
2644
2645 @node Quick Start
2646 @subsection Quick Start
2647
2648 In order to launch a Linux process, QEMU needs the process executable
2649 itself and all the target (x86) dynamic libraries used by it.
2650
2651 @itemize
2652
2653 @item On x86, you can just try to launch any process by using the native
2654 libraries:
2655
2656 @example
2657 qemu-i386 -L / /bin/ls
2658 @end example
2659
2660 @code{-L /} tells that the x86 dynamic linker must be searched with a
2661 @file{/} prefix.
2662
2663 @item Since QEMU is also a linux process, you can launch QEMU with
2664 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2665
2666 @example
2667 qemu-i386 -L / qemu-i386 -L / /bin/ls
2668 @end example
2669
2670 @item On non x86 CPUs, you need first to download at least an x86 glibc
2671 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2672 @code{LD_LIBRARY_PATH} is not set:
2673
2674 @example
2675 unset LD_LIBRARY_PATH
2676 @end example
2677
2678 Then you can launch the precompiled @file{ls} x86 executable:
2679
2680 @example
2681 qemu-i386 tests/i386/ls
2682 @end example
2683 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2684 QEMU is automatically launched by the Linux kernel when you try to
2685 launch x86 executables. It requires the @code{binfmt_misc} module in the
2686 Linux kernel.
2687
2688 @item The x86 version of QEMU is also included. You can try weird things such as:
2689 @example
2690 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2691 /usr/local/qemu-i386/bin/ls-i386
2692 @end example
2693
2694 @end itemize
2695
2696 @node Wine launch
2697 @subsection Wine launch
2698
2699 @itemize
2700
2701 @item Ensure that you have a working QEMU with the x86 glibc
2702 distribution (see previous section). In order to verify it, you must be
2703 able to do:
2704
2705 @example
2706 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2707 @end example
2708
2709 @item Download the binary x86 Wine install
2710 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2711
2712 @item Configure Wine on your account. Look at the provided script
2713 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2714 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2715
2716 @item Then you can try the example @file{putty.exe}:
2717
2718 @example
2719 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2720 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2721 @end example
2722
2723 @end itemize
2724
2725 @node Command line options
2726 @subsection Command line options
2727
2728 @example
2729 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2730 @end example
2731
2732 @table @option
2733 @item -h
2734 Print the help
2735 @item -L path
2736 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2737 @item -s size
2738 Set the x86 stack size in bytes (default=524288)
2739 @item -cpu model
2740 Select CPU model (-cpu help for list and additional feature selection)
2741 @item -E @var{var}=@var{value}
2742 Set environment @var{var} to @var{value}.
2743 @item -U @var{var}
2744 Remove @var{var} from the environment.
2745 @item -B offset
2746 Offset guest address by the specified number of bytes. This is useful when
2747 the address region required by guest applications is reserved on the host.
2748 This option is currently only supported on some hosts.
2749 @item -R size
2750 Pre-allocate a guest virtual address space of the given size (in bytes).
2751 "G", "M", and "k" suffixes may be used when specifying the size.
2752 @end table
2753
2754 Debug options:
2755
2756 @table @option
2757 @item -d item1,...
2758 Activate logging of the specified items (use '-d help' for a list of log items)
2759 @item -p pagesize
2760 Act as if the host page size was 'pagesize' bytes
2761 @item -g port
2762 Wait gdb connection to port
2763 @item -singlestep
2764 Run the emulation in single step mode.
2765 @end table
2766
2767 Environment variables:
2768
2769 @table @env
2770 @item QEMU_STRACE
2771 Print system calls and arguments similar to the 'strace' program
2772 (NOTE: the actual 'strace' program will not work because the user
2773 space emulator hasn't implemented ptrace). At the moment this is
2774 incomplete. All system calls that don't have a specific argument
2775 format are printed with information for six arguments. Many
2776 flag-style arguments don't have decoders and will show up as numbers.
2777 @end table
2778
2779 @node Other binaries
2780 @subsection Other binaries
2781
2782 @cindex user mode (Alpha)
2783 @command{qemu-alpha} TODO.
2784
2785 @cindex user mode (ARM)
2786 @command{qemu-armeb} TODO.
2787
2788 @cindex user mode (ARM)
2789 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2790 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2791 configurations), and arm-uclinux bFLT format binaries.
2792
2793 @cindex user mode (ColdFire)
2794 @cindex user mode (M68K)
2795 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2796 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2797 coldfire uClinux bFLT format binaries.
2798
2799 The binary format is detected automatically.
2800
2801 @cindex user mode (Cris)
2802 @command{qemu-cris} TODO.
2803
2804 @cindex user mode (i386)
2805 @command{qemu-i386} TODO.
2806 @command{qemu-x86_64} TODO.
2807
2808 @cindex user mode (Microblaze)
2809 @command{qemu-microblaze} TODO.
2810
2811 @cindex user mode (MIPS)
2812 @command{qemu-mips} TODO.
2813 @command{qemu-mipsel} TODO.
2814
2815 @cindex user mode (PowerPC)
2816 @command{qemu-ppc64abi32} TODO.
2817 @command{qemu-ppc64} TODO.
2818 @command{qemu-ppc} TODO.
2819
2820 @cindex user mode (SH4)
2821 @command{qemu-sh4eb} TODO.
2822 @command{qemu-sh4} TODO.
2823
2824 @cindex user mode (SPARC)
2825 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2826
2827 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2828 (Sparc64 CPU, 32 bit ABI).
2829
2830 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2831 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2832
2833 @node BSD User space emulator
2834 @section BSD User space emulator
2835
2836 @menu
2837 * BSD Status::
2838 * BSD Quick Start::
2839 * BSD Command line options::
2840 @end menu
2841
2842 @node BSD Status
2843 @subsection BSD Status
2844
2845 @itemize @minus
2846 @item
2847 target Sparc64 on Sparc64: Some trivial programs work.
2848 @end itemize
2849
2850 @node BSD Quick Start
2851 @subsection Quick Start
2852
2853 In order to launch a BSD process, QEMU needs the process executable
2854 itself and all the target dynamic libraries used by it.
2855
2856 @itemize
2857
2858 @item On Sparc64, you can just try to launch any process by using the native
2859 libraries:
2860
2861 @example
2862 qemu-sparc64 /bin/ls
2863 @end example
2864
2865 @end itemize
2866
2867 @node BSD Command line options
2868 @subsection Command line options
2869
2870 @example
2871 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2872 @end example
2873
2874 @table @option
2875 @item -h
2876 Print the help
2877 @item -L path
2878 Set the library root path (default=/)
2879 @item -s size
2880 Set the stack size in bytes (default=524288)
2881 @item -ignore-environment
2882 Start with an empty environment. Without this option,
2883 the initial environment is a copy of the caller's environment.
2884 @item -E @var{var}=@var{value}
2885 Set environment @var{var} to @var{value}.
2886 @item -U @var{var}
2887 Remove @var{var} from the environment.
2888 @item -bsd type
2889 Set the type of the emulated BSD Operating system. Valid values are
2890 FreeBSD, NetBSD and OpenBSD (default).
2891 @end table
2892
2893 Debug options:
2894
2895 @table @option
2896 @item -d item1,...
2897 Activate logging of the specified items (use '-d help' for a list of log items)
2898 @item -p pagesize
2899 Act as if the host page size was 'pagesize' bytes
2900 @item -singlestep
2901 Run the emulation in single step mode.
2902 @end table
2903
2904 @node compilation
2905 @chapter Compilation from the sources
2906
2907 @menu
2908 * Linux/Unix::
2909 * Windows::
2910 * Cross compilation for Windows with Linux::
2911 * Mac OS X::
2912 * Make targets::
2913 @end menu
2914
2915 @node Linux/Unix
2916 @section Linux/Unix
2917
2918 @subsection Compilation
2919
2920 First you must decompress the sources:
2921 @example
2922 cd /tmp
2923 tar zxvf qemu-x.y.z.tar.gz
2924 cd qemu-x.y.z
2925 @end example
2926
2927 Then you configure QEMU and build it (usually no options are needed):
2928 @example
2929 ./configure
2930 make
2931 @end example
2932
2933 Then type as root user:
2934 @example
2935 make install
2936 @end example
2937 to install QEMU in @file{/usr/local}.
2938
2939 @node Windows
2940 @section Windows
2941
2942 @itemize
2943 @item Install the current versions of MSYS and MinGW from
2944 @url{http://www.mingw.org/}. You can find detailed installation
2945 instructions in the download section and the FAQ.
2946
2947 @item Download
2948 the MinGW development library of SDL 1.2.x
2949 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2950 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2951 edit the @file{sdl-config} script so that it gives the
2952 correct SDL directory when invoked.
2953
2954 @item Install the MinGW version of zlib and make sure
2955 @file{zlib.h} and @file{libz.dll.a} are in
2956 MinGW's default header and linker search paths.
2957
2958 @item Extract the current version of QEMU.
2959
2960 @item Start the MSYS shell (file @file{msys.bat}).
2961
2962 @item Change to the QEMU directory. Launch @file{./configure} and
2963 @file{make}. If you have problems using SDL, verify that
2964 @file{sdl-config} can be launched from the MSYS command line.
2965
2966 @item You can install QEMU in @file{Program Files/QEMU} by typing
2967 @file{make install}. Don't forget to copy @file{SDL.dll} in
2968 @file{Program Files/QEMU}.
2969
2970 @end itemize
2971
2972 @node Cross compilation for Windows with Linux
2973 @section Cross compilation for Windows with Linux
2974
2975 @itemize
2976 @item
2977 Install the MinGW cross compilation tools available at
2978 @url{http://www.mingw.org/}.
2979
2980 @item Download
2981 the MinGW development library of SDL 1.2.x
2982 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2983 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2984 edit the @file{sdl-config} script so that it gives the
2985 correct SDL directory when invoked. Set up the @code{PATH} environment
2986 variable so that @file{sdl-config} can be launched by
2987 the QEMU configuration script.
2988
2989 @item Install the MinGW version of zlib and make sure
2990 @file{zlib.h} and @file{libz.dll.a} are in
2991 MinGW's default header and linker search paths.
2992
2993 @item
2994 Configure QEMU for Windows cross compilation:
2995 @example
2996 PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2997 @end example
2998 The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2999 MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
3000 We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
3001 use --cross-prefix to specify the name of the cross compiler.
3002 You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
3003
3004 Under Fedora Linux, you can run:
3005 @example
3006 yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
3007 @end example
3008 to get a suitable cross compilation environment.
3009
3010 @item You can install QEMU in the installation directory by typing
3011 @code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
3012 installation directory.
3013
3014 @end itemize
3015
3016 Wine can be used to launch the resulting qemu-system-i386.exe
3017 and all other qemu-system-@var{target}.exe compiled for Win32.
3018
3019 @node Mac OS X
3020 @section Mac OS X
3021
3022 The Mac OS X patches are not fully merged in QEMU, so you should look
3023 at the QEMU mailing list archive to have all the necessary
3024 information.
3025
3026 @node Make targets
3027 @section Make targets
3028
3029 @table @code
3030
3031 @item make
3032 @item make all
3033 Make everything which is typically needed.
3034
3035 @item install
3036 TODO
3037
3038 @item install-doc
3039 TODO
3040
3041 @item make clean
3042 Remove most files which were built during make.
3043
3044 @item make distclean
3045 Remove everything which was built during make.
3046
3047 @item make dvi
3048 @item make html
3049 @item make info
3050 @item make pdf
3051 Create documentation in dvi, html, info or pdf format.
3052
3053 @item make cscope
3054 TODO
3055
3056 @item make defconfig
3057 (Re-)create some build configuration files.
3058 User made changes will be overwritten.
3059
3060 @item tar
3061 @item tarbin
3062 TODO
3063
3064 @end table
3065
3066 @node License
3067 @appendix License
3068
3069 QEMU is a trademark of Fabrice Bellard.
3070
3071 QEMU is released under the GNU General Public License (TODO: add link).
3072 Parts of QEMU have specific licenses, see file LICENSE.
3073
3074 TODO (refer to file LICENSE, include it, include the GPL?)
3075
3076 @node Index
3077 @appendix Index
3078 @menu
3079 * Concept Index::
3080 * Function Index::
3081 * Keystroke Index::
3082 * Program Index::
3083 * Data Type Index::
3084 * Variable Index::
3085 @end menu
3086
3087 @node Concept Index
3088 @section Concept Index
3089 This is the main index. Should we combine all keywords in one index? TODO
3090 @printindex cp
3091
3092 @node Function Index
3093 @section Function Index
3094 This index could be used for command line options and monitor functions.
3095 @printindex fn
3096
3097 @node Keystroke Index
3098 @section Keystroke Index
3099
3100 This is a list of all keystrokes which have a special function
3101 in system emulation.
3102
3103 @printindex ky
3104
3105 @node Program Index
3106 @section Program Index
3107 @printindex pg
3108
3109 @node Data Type Index
3110 @section Data Type Index
3111
3112 This index could be used for qdev device names and options.
3113
3114 @printindex tp
3115
3116 @node Variable Index
3117 @section Variable Index
3118 @printindex vr
3119
3120 @bye