]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
allow disabling of serial or parallel devices (Stefan Weil)
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU CPU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU CPU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @end itemize
83
84 For user emulation, x86, PowerPC, ARM, MIPS, and Sparc32/64 CPUs are supported.
85
86 @node Installation
87 @chapter Installation
88
89 If you want to compile QEMU yourself, see @ref{compilation}.
90
91 @menu
92 * install_linux:: Linux
93 * install_windows:: Windows
94 * install_mac:: Macintosh
95 @end menu
96
97 @node install_linux
98 @section Linux
99
100 If a precompiled package is available for your distribution - you just
101 have to install it. Otherwise, see @ref{compilation}.
102
103 @node install_windows
104 @section Windows
105
106 Download the experimental binary installer at
107 @url{http://www.free.oszoo.org/@/download.html}.
108
109 @node install_mac
110 @section Mac OS X
111
112 Download the experimental binary installer at
113 @url{http://www.free.oszoo.org/@/download.html}.
114
115 @node QEMU PC System emulator
116 @chapter QEMU PC System emulator
117
118 @menu
119 * pcsys_introduction:: Introduction
120 * pcsys_quickstart:: Quick Start
121 * sec_invocation:: Invocation
122 * pcsys_keys:: Keys
123 * pcsys_monitor:: QEMU Monitor
124 * disk_images:: Disk Images
125 * pcsys_network:: Network emulation
126 * direct_linux_boot:: Direct Linux Boot
127 * pcsys_usb:: USB emulation
128 * gdb_usage:: GDB usage
129 * pcsys_os_specific:: Target OS specific information
130 @end menu
131
132 @node pcsys_introduction
133 @section Introduction
134
135 @c man begin DESCRIPTION
136
137 The QEMU PC System emulator simulates the
138 following peripherals:
139
140 @itemize @minus
141 @item
142 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143 @item
144 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145 extensions (hardware level, including all non standard modes).
146 @item
147 PS/2 mouse and keyboard
148 @item
149 2 PCI IDE interfaces with hard disk and CD-ROM support
150 @item
151 Floppy disk
152 @item
153 NE2000 PCI network adapters
154 @item
155 Serial ports
156 @item
157 Creative SoundBlaster 16 sound card
158 @item
159 ENSONIQ AudioPCI ES1370 sound card
160 @item
161 Adlib(OPL2) - Yamaha YM3812 compatible chip
162 @item
163 PCI UHCI USB controller and a virtual USB hub.
164 @end itemize
165
166 SMP is supported with up to 255 CPUs.
167
168 Note that adlib is only available when QEMU was configured with
169 -enable-adlib
170
171 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172 VGA BIOS.
173
174 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175
176 @c man end
177
178 @node pcsys_quickstart
179 @section Quick Start
180
181 Download and uncompress the linux image (@file{linux.img}) and type:
182
183 @example
184 qemu linux.img
185 @end example
186
187 Linux should boot and give you a prompt.
188
189 @node sec_invocation
190 @section Invocation
191
192 @example
193 @c man begin SYNOPSIS
194 usage: qemu [options] [disk_image]
195 @c man end
196 @end example
197
198 @c man begin OPTIONS
199 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
200
201 General options:
202 @table @option
203 @item -M machine
204 Select the emulated machine (@code{-M ?} for list)
205
206 @item -fda file
207 @item -fdb file
208 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
210
211 @item -hda file
212 @item -hdb file
213 @item -hdc file
214 @item -hdd file
215 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216
217 @item -cdrom file
218 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219 @option{-cdrom} at the same time). You can use the host CD-ROM by
220 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
221
222 @item -boot [a|c|d]
223 Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224 the default.
225
226 @item -snapshot
227 Write to temporary files instead of disk image files. In this case,
228 the raw disk image you use is not written back. You can however force
229 the write back by pressing @key{C-a s} (@pxref{disk_images}).
230
231 @item -no-fd-bootchk
232 Disable boot signature checking for floppy disks in Bochs BIOS. It may
233 be needed to boot from old floppy disks.
234
235 @item -m megs
236 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
237
238 @item -smp n
239 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 CPUs are supported.
241
242 @item -nographic
243
244 Normally, QEMU uses SDL to display the VGA output. With this option,
245 you can totally disable graphical output so that QEMU is a simple
246 command line application. The emulated serial port is redirected on
247 the console. Therefore, you can still use QEMU to debug a Linux kernel
248 with a serial console.
249
250 @item -vnc d
251
252 Normally, QEMU uses SDL to display the VGA output. With this option,
253 you can have QEMU listen on VNC display @var{d} and redirect the VGA
254 display over the VNC session. It is very useful to enable the usb
255 tablet device when using this option (option @option{-usbdevice
256 tablet}). When using the VNC display, you must use the @option{-k}
257 option to set the keyboard layout.
258
259 @item -k language
260
261 Use keyboard layout @var{language} (for example @code{fr} for
262 French). This option is only needed where it is not easy to get raw PC
263 keycodes (e.g. on Macs, with some X11 servers or with a VNC
264 display). You don't normally need to use it on PC/Linux or PC/Windows
265 hosts.
266
267 The available layouts are:
268 @example
269 ar de-ch es fo fr-ca hu ja mk no pt-br sv
270 da en-gb et fr fr-ch is lt nl pl ru th
271 de en-us fi fr-be hr it lv nl-be pt sl tr
272 @end example
273
274 The default is @code{en-us}.
275
276 @item -audio-help
277
278 Will show the audio subsystem help: list of drivers, tunable
279 parameters.
280
281 @item -soundhw card1,card2,... or -soundhw all
282
283 Enable audio and selected sound hardware. Use ? to print all
284 available sound hardware.
285
286 @example
287 qemu -soundhw sb16,adlib hda
288 qemu -soundhw es1370 hda
289 qemu -soundhw all hda
290 qemu -soundhw ?
291 @end example
292
293 @item -localtime
294 Set the real time clock to local time (the default is to UTC
295 time). This option is needed to have correct date in MS-DOS or
296 Windows.
297
298 @item -full-screen
299 Start in full screen.
300
301 @item -pidfile file
302 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
303 from a script.
304
305 @item -win2k-hack
306 Use it when installing Windows 2000 to avoid a disk full bug. After
307 Windows 2000 is installed, you no longer need this option (this option
308 slows down the IDE transfers).
309
310 @end table
311
312 USB options:
313 @table @option
314
315 @item -usb
316 Enable the USB driver (will be the default soon)
317
318 @item -usbdevice devname
319 Add the USB device @var{devname}. @xref{usb_devices}.
320 @end table
321
322 Network options:
323
324 @table @option
325
326 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
327 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
328 = 0 is the default). The NIC is currently an NE2000 on the PC
329 target. Optionally, the MAC address can be changed. If no
330 @option{-net} option is specified, a single NIC is created.
331 Qemu can emulate several different models of network card. Valid values for
332 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
333 @code{smc91c111} and @code{lance}. Not all devices are supported on all
334 targets.
335
336 @item -net user[,vlan=n][,hostname=name]
337 Use the user mode network stack which requires no administrator
338 priviledge to run. @option{hostname=name} can be used to specify the client
339 hostname reported by the builtin DHCP server.
340
341 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
342 Connect the host TAP network interface @var{name} to VLAN @var{n} and
343 use the network script @var{file} to configure it. The default
344 network script is @file{/etc/qemu-ifup}. If @var{name} is not
345 provided, the OS automatically provides one. @option{fd=h} can be
346 used to specify the handle of an already opened host TAP interface. Example:
347
348 @example
349 qemu linux.img -net nic -net tap
350 @end example
351
352 More complicated example (two NICs, each one connected to a TAP device)
353 @example
354 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
355 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
356 @end example
357
358
359 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
360
361 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
362 machine using a TCP socket connection. If @option{listen} is
363 specified, QEMU waits for incoming connections on @var{port}
364 (@var{host} is optional). @option{connect} is used to connect to
365 another QEMU instance using the @option{listen} option. @option{fd=h}
366 specifies an already opened TCP socket.
367
368 Example:
369 @example
370 # launch a first QEMU instance
371 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
372 -net socket,listen=:1234
373 # connect the VLAN 0 of this instance to the VLAN 0
374 # of the first instance
375 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
376 -net socket,connect=127.0.0.1:1234
377 @end example
378
379 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
380
381 Create a VLAN @var{n} shared with another QEMU virtual
382 machines using a UDP multicast socket, effectively making a bus for
383 every QEMU with same multicast address @var{maddr} and @var{port}.
384 NOTES:
385 @enumerate
386 @item
387 Several QEMU can be running on different hosts and share same bus (assuming
388 correct multicast setup for these hosts).
389 @item
390 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
391 @url{http://user-mode-linux.sf.net}.
392 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
393 @end enumerate
394
395 Example:
396 @example
397 # launch one QEMU instance
398 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
399 -net socket,mcast=230.0.0.1:1234
400 # launch another QEMU instance on same "bus"
401 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
402 -net socket,mcast=230.0.0.1:1234
403 # launch yet another QEMU instance on same "bus"
404 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
405 -net socket,mcast=230.0.0.1:1234
406 @end example
407
408 Example (User Mode Linux compat.):
409 @example
410 # launch QEMU instance (note mcast address selected
411 # is UML's default)
412 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
413 -net socket,mcast=239.192.168.1:1102
414 # launch UML
415 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
416 @end example
417
418 @item -net none
419 Indicate that no network devices should be configured. It is used to
420 override the default configuration (@option{-net nic -net user}) which
421 is activated if no @option{-net} options are provided.
422
423 @item -tftp prefix
424 When using the user mode network stack, activate a built-in TFTP
425 server. All filenames beginning with @var{prefix} can be downloaded
426 from the host to the guest using a TFTP client. The TFTP client on the
427 guest must be configured in binary mode (use the command @code{bin} of
428 the Unix TFTP client). The host IP address on the guest is as usual
429 10.0.2.2.
430
431 @item -smb dir
432 When using the user mode network stack, activate a built-in SMB
433 server so that Windows OSes can access to the host files in @file{dir}
434 transparently.
435
436 In the guest Windows OS, the line:
437 @example
438 10.0.2.4 smbserver
439 @end example
440 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
441 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
442
443 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
444
445 Note that a SAMBA server must be installed on the host OS in
446 @file{/usr/sbin/smbd}. QEMU was tested succesfully with smbd version
447 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
448
449 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
450
451 When using the user mode network stack, redirect incoming TCP or UDP
452 connections to the host port @var{host-port} to the guest
453 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
454 is not specified, its value is 10.0.2.15 (default address given by the
455 built-in DHCP server).
456
457 For example, to redirect host X11 connection from screen 1 to guest
458 screen 0, use the following:
459
460 @example
461 # on the host
462 qemu -redir tcp:6001::6000 [...]
463 # this host xterm should open in the guest X11 server
464 xterm -display :1
465 @end example
466
467 To redirect telnet connections from host port 5555 to telnet port on
468 the guest, use the following:
469
470 @example
471 # on the host
472 qemu -redir tcp:5555::23 [...]
473 telnet localhost 5555
474 @end example
475
476 Then when you use on the host @code{telnet localhost 5555}, you
477 connect to the guest telnet server.
478
479 @end table
480
481 Linux boot specific: When using these options, you can use a given
482 Linux kernel without installing it in the disk image. It can be useful
483 for easier testing of various kernels.
484
485 @table @option
486
487 @item -kernel bzImage
488 Use @var{bzImage} as kernel image.
489
490 @item -append cmdline
491 Use @var{cmdline} as kernel command line
492
493 @item -initrd file
494 Use @var{file} as initial ram disk.
495
496 @end table
497
498 Debug/Expert options:
499 @table @option
500
501 @item -serial dev
502 Redirect the virtual serial port to host character device
503 @var{dev}. The default device is @code{vc} in graphical mode and
504 @code{stdio} in non graphical mode.
505
506 This option can be used several times to simulate up to 4 serials
507 ports.
508
509 Use @code{-serial none} to disable all serial ports.
510
511 Available character devices are:
512 @table @code
513 @item vc
514 Virtual console
515 @item pty
516 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
517 @item none
518 No device is allocated.
519 @item null
520 void device
521 @item /dev/XXX
522 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
523 parameters are set according to the emulated ones.
524 @item /dev/parportN
525 [Linux only, parallel port only] Use host parallel port
526 @var{N}. Currently only SPP parallel port features can be used.
527 @item file:filename
528 Write output to filename. No character can be read.
529 @item stdio
530 [Unix only] standard input/output
531 @item pipe:filename
532 name pipe @var{filename}
533 @item COMn
534 [Windows only] Use host serial port @var{n}
535 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
536 This implements UDP Net Console. When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}. When not using a specifed @var{src_port} a random port is automatically chosen.
537
538 If you just want a simple readonly console you can use @code{netcat} or
539 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
540 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
541 will appear in the netconsole session.
542
543 If you plan to send characters back via netconsole or you want to stop
544 and start qemu a lot of times, you should have qemu use the same
545 source port each time by using something like @code{-serial
546 udp::4555@@:4556} to qemu. Another approach is to use a patched
547 version of netcat which can listen to a TCP port and send and receive
548 characters via udp. If you have a patched version of netcat which
549 activates telnet remote echo and single char transfer, then you can
550 use the following options to step up a netcat redirector to allow
551 telnet on port 5555 to access the qemu port.
552 @table @code
553 @item Qemu Options:
554 -serial udp::4555@@:4556
555 @item netcat options:
556 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
557 @item telnet options:
558 localhost 5555
559 @end table
560
561
562 @item tcp:[host]:port[,server][,nowait]
563 The TCP Net Console has two modes of operation. It can send the serial
564 I/O to a location or wait for a connection from a location. By default
565 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
566 the @var{server} option QEMU will wait for a client socket application
567 to connect to the port before continuing, unless the @code{nowait}
568 option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
569 one TCP connection at a time is accepted. You can use @code{telnet} to
570 connect to the corresponding character device.
571 @table @code
572 @item Example to send tcp console to 192.168.0.2 port 4444
573 -serial tcp:192.168.0.2:4444
574 @item Example to listen and wait on port 4444 for connection
575 -serial tcp::4444,server
576 @item Example to not wait and listen on ip 192.168.0.100 port 4444
577 -serial tcp:192.168.0.100:4444,server,nowait
578 @end table
579
580 @item telnet:host:port[,server][,nowait]
581 The telnet protocol is used instead of raw tcp sockets. The options
582 work the same as if you had specified @code{-serial tcp}. The
583 difference is that the port acts like a telnet server or client using
584 telnet option negotiation. This will also allow you to send the
585 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
586 sequence. Typically in unix telnet you do it with Control-] and then
587 type "send break" followed by pressing the enter key.
588
589 @end table
590
591 @item -parallel dev
592 Redirect the virtual parallel port to host device @var{dev} (same
593 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
594 be used to use hardware devices connected on the corresponding host
595 parallel port.
596
597 This option can be used several times to simulate up to 3 parallel
598 ports.
599
600 Use @code{-parallel none} to disable all parallel ports.
601
602 @item -monitor dev
603 Redirect the monitor to host device @var{dev} (same devices as the
604 serial port).
605 The default device is @code{vc} in graphical mode and @code{stdio} in
606 non graphical mode.
607
608 @item -s
609 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
610 @item -p port
611 Change gdb connection port.
612 @item -S
613 Do not start CPU at startup (you must type 'c' in the monitor).
614 @item -d
615 Output log in /tmp/qemu.log
616 @item -hdachs c,h,s,[,t]
617 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
618 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
619 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
620 all thoses parameters. This option is useful for old MS-DOS disk
621 images.
622
623 @item -L path
624 Set the directory for the BIOS, VGA BIOS and keymaps.
625
626 @item -std-vga
627 Simulate a standard VGA card with Bochs VBE extensions (default is
628 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
629 VBE extensions (e.g. Windows XP) and if you want to use high
630 resolution modes (>= 1280x1024x16) then you should use this option.
631
632 @item -no-acpi
633 Disable ACPI (Advanced Configuration and Power Interface) support. Use
634 it if your guest OS complains about ACPI problems (PC target machine
635 only).
636
637 @item -loadvm file
638 Start right away with a saved state (@code{loadvm} in monitor)
639 @end table
640
641 @c man end
642
643 @node pcsys_keys
644 @section Keys
645
646 @c man begin OPTIONS
647
648 During the graphical emulation, you can use the following keys:
649 @table @key
650 @item Ctrl-Alt-f
651 Toggle full screen
652
653 @item Ctrl-Alt-n
654 Switch to virtual console 'n'. Standard console mappings are:
655 @table @emph
656 @item 1
657 Target system display
658 @item 2
659 Monitor
660 @item 3
661 Serial port
662 @end table
663
664 @item Ctrl-Alt
665 Toggle mouse and keyboard grab.
666 @end table
667
668 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
669 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
670
671 During emulation, if you are using the @option{-nographic} option, use
672 @key{Ctrl-a h} to get terminal commands:
673
674 @table @key
675 @item Ctrl-a h
676 Print this help
677 @item Ctrl-a x
678 Exit emulatior
679 @item Ctrl-a s
680 Save disk data back to file (if -snapshot)
681 @item Ctrl-a b
682 Send break (magic sysrq in Linux)
683 @item Ctrl-a c
684 Switch between console and monitor
685 @item Ctrl-a Ctrl-a
686 Send Ctrl-a
687 @end table
688 @c man end
689
690 @ignore
691
692 @c man begin SEEALSO
693 The HTML documentation of QEMU for more precise information and Linux
694 user mode emulator invocation.
695 @c man end
696
697 @c man begin AUTHOR
698 Fabrice Bellard
699 @c man end
700
701 @end ignore
702
703 @node pcsys_monitor
704 @section QEMU Monitor
705
706 The QEMU monitor is used to give complex commands to the QEMU
707 emulator. You can use it to:
708
709 @itemize @minus
710
711 @item
712 Remove or insert removable medias images
713 (such as CD-ROM or floppies)
714
715 @item
716 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
717 from a disk file.
718
719 @item Inspect the VM state without an external debugger.
720
721 @end itemize
722
723 @subsection Commands
724
725 The following commands are available:
726
727 @table @option
728
729 @item help or ? [cmd]
730 Show the help for all commands or just for command @var{cmd}.
731
732 @item commit
733 Commit changes to the disk images (if -snapshot is used)
734
735 @item info subcommand
736 show various information about the system state
737
738 @table @option
739 @item info network
740 show the various VLANs and the associated devices
741 @item info block
742 show the block devices
743 @item info registers
744 show the cpu registers
745 @item info history
746 show the command line history
747 @item info pci
748 show emulated PCI device
749 @item info usb
750 show USB devices plugged on the virtual USB hub
751 @item info usbhost
752 show all USB host devices
753 @item info capture
754 show information about active capturing
755 @item info snapshots
756 show list of VM snapshots
757 @end table
758
759 @item q or quit
760 Quit the emulator.
761
762 @item eject [-f] device
763 Eject a removable media (use -f to force it).
764
765 @item change device filename
766 Change a removable media.
767
768 @item screendump filename
769 Save screen into PPM image @var{filename}.
770
771 @item wavcapture filename [frequency [bits [channels]]]
772 Capture audio into @var{filename}. Using sample rate @var{frequency}
773 bits per sample @var{bits} and number of channels @var{channels}.
774
775 Defaults:
776 @itemize @minus
777 @item Sample rate = 44100 Hz - CD quality
778 @item Bits = 16
779 @item Number of channels = 2 - Stereo
780 @end itemize
781
782 @item stopcapture index
783 Stop capture with a given @var{index}, index can be obtained with
784 @example
785 info capture
786 @end example
787
788 @item log item1[,...]
789 Activate logging of the specified items to @file{/tmp/qemu.log}.
790
791 @item savevm [tag|id]
792 Create a snapshot of the whole virtual machine. If @var{tag} is
793 provided, it is used as human readable identifier. If there is already
794 a snapshot with the same tag or ID, it is replaced. More info at
795 @ref{vm_snapshots}.
796
797 @item loadvm tag|id
798 Set the whole virtual machine to the snapshot identified by the tag
799 @var{tag} or the unique snapshot ID @var{id}.
800
801 @item delvm tag|id
802 Delete the snapshot identified by @var{tag} or @var{id}.
803
804 @item stop
805 Stop emulation.
806
807 @item c or cont
808 Resume emulation.
809
810 @item gdbserver [port]
811 Start gdbserver session (default port=1234)
812
813 @item x/fmt addr
814 Virtual memory dump starting at @var{addr}.
815
816 @item xp /fmt addr
817 Physical memory dump starting at @var{addr}.
818
819 @var{fmt} is a format which tells the command how to format the
820 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
821
822 @table @var
823 @item count
824 is the number of items to be dumped.
825
826 @item format
827 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
828 c (char) or i (asm instruction).
829
830 @item size
831 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
832 @code{h} or @code{w} can be specified with the @code{i} format to
833 respectively select 16 or 32 bit code instruction size.
834
835 @end table
836
837 Examples:
838 @itemize
839 @item
840 Dump 10 instructions at the current instruction pointer:
841 @example
842 (qemu) x/10i $eip
843 0x90107063: ret
844 0x90107064: sti
845 0x90107065: lea 0x0(%esi,1),%esi
846 0x90107069: lea 0x0(%edi,1),%edi
847 0x90107070: ret
848 0x90107071: jmp 0x90107080
849 0x90107073: nop
850 0x90107074: nop
851 0x90107075: nop
852 0x90107076: nop
853 @end example
854
855 @item
856 Dump 80 16 bit values at the start of the video memory.
857 @smallexample
858 (qemu) xp/80hx 0xb8000
859 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
860 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
861 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
862 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
863 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
864 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
865 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
866 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
867 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
868 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
869 @end smallexample
870 @end itemize
871
872 @item p or print/fmt expr
873
874 Print expression value. Only the @var{format} part of @var{fmt} is
875 used.
876
877 @item sendkey keys
878
879 Send @var{keys} to the emulator. Use @code{-} to press several keys
880 simultaneously. Example:
881 @example
882 sendkey ctrl-alt-f1
883 @end example
884
885 This command is useful to send keys that your graphical user interface
886 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
887
888 @item system_reset
889
890 Reset the system.
891
892 @item usb_add devname
893
894 Add the USB device @var{devname}. For details of available devices see
895 @ref{usb_devices}
896
897 @item usb_del devname
898
899 Remove the USB device @var{devname} from the QEMU virtual USB
900 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
901 command @code{info usb} to see the devices you can remove.
902
903 @end table
904
905 @subsection Integer expressions
906
907 The monitor understands integers expressions for every integer
908 argument. You can use register names to get the value of specifics
909 CPU registers by prefixing them with @emph{$}.
910
911 @node disk_images
912 @section Disk Images
913
914 Since version 0.6.1, QEMU supports many disk image formats, including
915 growable disk images (their size increase as non empty sectors are
916 written), compressed and encrypted disk images. Version 0.8.3 added
917 the new qcow2 disk image format which is essential to support VM
918 snapshots.
919
920 @menu
921 * disk_images_quickstart:: Quick start for disk image creation
922 * disk_images_snapshot_mode:: Snapshot mode
923 * vm_snapshots:: VM snapshots
924 * qemu_img_invocation:: qemu-img Invocation
925 * host_drives:: Using host drives
926 * disk_images_fat_images:: Virtual FAT disk images
927 @end menu
928
929 @node disk_images_quickstart
930 @subsection Quick start for disk image creation
931
932 You can create a disk image with the command:
933 @example
934 qemu-img create myimage.img mysize
935 @end example
936 where @var{myimage.img} is the disk image filename and @var{mysize} is its
937 size in kilobytes. You can add an @code{M} suffix to give the size in
938 megabytes and a @code{G} suffix for gigabytes.
939
940 See @ref{qemu_img_invocation} for more information.
941
942 @node disk_images_snapshot_mode
943 @subsection Snapshot mode
944
945 If you use the option @option{-snapshot}, all disk images are
946 considered as read only. When sectors in written, they are written in
947 a temporary file created in @file{/tmp}. You can however force the
948 write back to the raw disk images by using the @code{commit} monitor
949 command (or @key{C-a s} in the serial console).
950
951 @node vm_snapshots
952 @subsection VM snapshots
953
954 VM snapshots are snapshots of the complete virtual machine including
955 CPU state, RAM, device state and the content of all the writable
956 disks. In order to use VM snapshots, you must have at least one non
957 removable and writable block device using the @code{qcow2} disk image
958 format. Normally this device is the first virtual hard drive.
959
960 Use the monitor command @code{savevm} to create a new VM snapshot or
961 replace an existing one. A human readable name can be assigned to each
962 snapshot in addition to its numerical ID.
963
964 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
965 a VM snapshot. @code{info snapshots} lists the available snapshots
966 with their associated information:
967
968 @example
969 (qemu) info snapshots
970 Snapshot devices: hda
971 Snapshot list (from hda):
972 ID TAG VM SIZE DATE VM CLOCK
973 1 start 41M 2006-08-06 12:38:02 00:00:14.954
974 2 40M 2006-08-06 12:43:29 00:00:18.633
975 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
976 @end example
977
978 A VM snapshot is made of a VM state info (its size is shown in
979 @code{info snapshots}) and a snapshot of every writable disk image.
980 The VM state info is stored in the first @code{qcow2} non removable
981 and writable block device. The disk image snapshots are stored in
982 every disk image. The size of a snapshot in a disk image is difficult
983 to evaluate and is not shown by @code{info snapshots} because the
984 associated disk sectors are shared among all the snapshots to save
985 disk space (otherwise each snapshot would need a full copy of all the
986 disk images).
987
988 When using the (unrelated) @code{-snapshot} option
989 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
990 but they are deleted as soon as you exit QEMU.
991
992 VM snapshots currently have the following known limitations:
993 @itemize
994 @item
995 They cannot cope with removable devices if they are removed or
996 inserted after a snapshot is done.
997 @item
998 A few device drivers still have incomplete snapshot support so their
999 state is not saved or restored properly (in particular USB).
1000 @end itemize
1001
1002 @node qemu_img_invocation
1003 @subsection @code{qemu-img} Invocation
1004
1005 @include qemu-img.texi
1006
1007 @node host_drives
1008 @subsection Using host drives
1009
1010 In addition to disk image files, QEMU can directly access host
1011 devices. We describe here the usage for QEMU version >= 0.8.3.
1012
1013 @subsubsection Linux
1014
1015 On Linux, you can directly use the host device filename instead of a
1016 disk image filename provided you have enough proviledge to access
1017 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1018 @file{/dev/fd0} for the floppy.
1019
1020 @table @code
1021 @item CD
1022 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1023 specific code to detect CDROM insertion or removal. CDROM ejection by
1024 the guest OS is supported. Currently only data CDs are supported.
1025 @item Floppy
1026 You can specify a floppy device even if no floppy is loaded. Floppy
1027 removal is currently not detected accurately (if you change floppy
1028 without doing floppy access while the floppy is not loaded, the guest
1029 OS will think that the same floppy is loaded).
1030 @item Hard disks
1031 Hard disks can be used. Normally you must specify the whole disk
1032 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1033 see it as a partitioned disk. WARNING: unless you know what you do, it
1034 is better to only make READ-ONLY accesses to the hard disk otherwise
1035 you may corrupt your host data (use the @option{-snapshot} command
1036 line option or modify the device permissions accordingly).
1037 @end table
1038
1039 @subsubsection Windows
1040
1041 On Windows you can use any host drives as QEMU drive. The prefered
1042 syntax is the driver letter (e.g. @file{d:}). The alternate syntax
1043 @file{\\.\d:} is supported. @file{/dev/cdrom} is supported as an alias
1044 to the first CDROM drive.
1045
1046 Currently there is no specific code to handle removable medias, so it
1047 is better to use the @code{change} or @code{eject} monitor commands to
1048 change or eject media.
1049
1050 @subsubsection Mac OS X
1051
1052 @file{/dev/cdrom} is an alias to the first CDROM.
1053
1054 Currently there is no specific code to handle removable medias, so it
1055 is better to use the @code{change} or @code{eject} monitor commands to
1056 change or eject media.
1057
1058 @node disk_images_fat_images
1059 @subsection Virtual FAT disk images
1060
1061 QEMU can automatically create a virtual FAT disk image from a
1062 directory tree. In order to use it, just type:
1063
1064 @example
1065 qemu linux.img -hdb fat:/my_directory
1066 @end example
1067
1068 Then you access access to all the files in the @file{/my_directory}
1069 directory without having to copy them in a disk image or to export
1070 them via SAMBA or NFS. The default access is @emph{read-only}.
1071
1072 Floppies can be emulated with the @code{:floppy:} option:
1073
1074 @example
1075 qemu linux.img -fda fat:floppy:/my_directory
1076 @end example
1077
1078 A read/write support is available for testing (beta stage) with the
1079 @code{:rw:} option:
1080
1081 @example
1082 qemu linux.img -fda fat:floppy:rw:/my_directory
1083 @end example
1084
1085 What you should @emph{never} do:
1086 @itemize
1087 @item use non-ASCII filenames ;
1088 @item use "-snapshot" together with ":rw:" ;
1089 @item expect it to work when loadvm'ing ;
1090 @item write to the FAT directory on the host system while accessing it with the guest system.
1091 @end itemize
1092
1093 @node pcsys_network
1094 @section Network emulation
1095
1096 QEMU can simulate several networks cards (NE2000 boards on the PC
1097 target) and can connect them to an arbitrary number of Virtual Local
1098 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1099 VLAN. VLAN can be connected between separate instances of QEMU to
1100 simulate large networks. For simpler usage, a non priviledged user mode
1101 network stack can replace the TAP device to have a basic network
1102 connection.
1103
1104 @subsection VLANs
1105
1106 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1107 connection between several network devices. These devices can be for
1108 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1109 (TAP devices).
1110
1111 @subsection Using TAP network interfaces
1112
1113 This is the standard way to connect QEMU to a real network. QEMU adds
1114 a virtual network device on your host (called @code{tapN}), and you
1115 can then configure it as if it was a real ethernet card.
1116
1117 As an example, you can download the @file{linux-test-xxx.tar.gz}
1118 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1119 configure properly @code{sudo} so that the command @code{ifconfig}
1120 contained in @file{qemu-ifup} can be executed as root. You must verify
1121 that your host kernel supports the TAP network interfaces: the
1122 device @file{/dev/net/tun} must be present.
1123
1124 See @ref{sec_invocation} to have examples of command lines using the
1125 TAP network interfaces.
1126
1127 @subsection Using the user mode network stack
1128
1129 By using the option @option{-net user} (default configuration if no
1130 @option{-net} option is specified), QEMU uses a completely user mode
1131 network stack (you don't need root priviledge to use the virtual
1132 network). The virtual network configuration is the following:
1133
1134 @example
1135
1136 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1137 | (10.0.2.2)
1138 |
1139 ----> DNS server (10.0.2.3)
1140 |
1141 ----> SMB server (10.0.2.4)
1142 @end example
1143
1144 The QEMU VM behaves as if it was behind a firewall which blocks all
1145 incoming connections. You can use a DHCP client to automatically
1146 configure the network in the QEMU VM. The DHCP server assign addresses
1147 to the hosts starting from 10.0.2.15.
1148
1149 In order to check that the user mode network is working, you can ping
1150 the address 10.0.2.2 and verify that you got an address in the range
1151 10.0.2.x from the QEMU virtual DHCP server.
1152
1153 Note that @code{ping} is not supported reliably to the internet as it
1154 would require root priviledges. It means you can only ping the local
1155 router (10.0.2.2).
1156
1157 When using the built-in TFTP server, the router is also the TFTP
1158 server.
1159
1160 When using the @option{-redir} option, TCP or UDP connections can be
1161 redirected from the host to the guest. It allows for example to
1162 redirect X11, telnet or SSH connections.
1163
1164 @subsection Connecting VLANs between QEMU instances
1165
1166 Using the @option{-net socket} option, it is possible to make VLANs
1167 that span several QEMU instances. See @ref{sec_invocation} to have a
1168 basic example.
1169
1170 @node direct_linux_boot
1171 @section Direct Linux Boot
1172
1173 This section explains how to launch a Linux kernel inside QEMU without
1174 having to make a full bootable image. It is very useful for fast Linux
1175 kernel testing.
1176
1177 The syntax is:
1178 @example
1179 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1180 @end example
1181
1182 Use @option{-kernel} to provide the Linux kernel image and
1183 @option{-append} to give the kernel command line arguments. The
1184 @option{-initrd} option can be used to provide an INITRD image.
1185
1186 When using the direct Linux boot, a disk image for the first hard disk
1187 @file{hda} is required because its boot sector is used to launch the
1188 Linux kernel.
1189
1190 If you do not need graphical output, you can disable it and redirect
1191 the virtual serial port and the QEMU monitor to the console with the
1192 @option{-nographic} option. The typical command line is:
1193 @example
1194 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1195 -append "root=/dev/hda console=ttyS0" -nographic
1196 @end example
1197
1198 Use @key{Ctrl-a c} to switch between the serial console and the
1199 monitor (@pxref{pcsys_keys}).
1200
1201 @node pcsys_usb
1202 @section USB emulation
1203
1204 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1205 virtual USB devices or real host USB devices (experimental, works only
1206 on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1207 as necessary to connect multiple USB devices.
1208
1209 @menu
1210 * usb_devices::
1211 * host_usb_devices::
1212 @end menu
1213 @node usb_devices
1214 @subsection Connecting USB devices
1215
1216 USB devices can be connected with the @option{-usbdevice} commandline option
1217 or the @code{usb_add} monitor command. Available devices are:
1218
1219 @table @var
1220 @item @code{mouse}
1221 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1222 @item @code{tablet}
1223 Pointer device that uses abolsute coordinates (like a touchscreen).
1224 This means qemu is able to report the mouse position without having
1225 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1226 @item @code{disk:file}
1227 Mass storage device based on @var{file} (@pxref{disk_images})
1228 @item @code{host:bus.addr}
1229 Pass through the host device identified by @var{bus.addr}
1230 (Linux only)
1231 @item @code{host:vendor_id:product_id}
1232 Pass through the host device identified by @var{vendor_id:product_id}
1233 (Linux only)
1234 @end table
1235
1236 @node host_usb_devices
1237 @subsection Using host USB devices on a Linux host
1238
1239 WARNING: this is an experimental feature. QEMU will slow down when
1240 using it. USB devices requiring real time streaming (i.e. USB Video
1241 Cameras) are not supported yet.
1242
1243 @enumerate
1244 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1245 is actually using the USB device. A simple way to do that is simply to
1246 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1247 to @file{mydriver.o.disabled}.
1248
1249 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1250 @example
1251 ls /proc/bus/usb
1252 001 devices drivers
1253 @end example
1254
1255 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1256 @example
1257 chown -R myuid /proc/bus/usb
1258 @end example
1259
1260 @item Launch QEMU and do in the monitor:
1261 @example
1262 info usbhost
1263 Device 1.2, speed 480 Mb/s
1264 Class 00: USB device 1234:5678, USB DISK
1265 @end example
1266 You should see the list of the devices you can use (Never try to use
1267 hubs, it won't work).
1268
1269 @item Add the device in QEMU by using:
1270 @example
1271 usb_add host:1234:5678
1272 @end example
1273
1274 Normally the guest OS should report that a new USB device is
1275 plugged. You can use the option @option{-usbdevice} to do the same.
1276
1277 @item Now you can try to use the host USB device in QEMU.
1278
1279 @end enumerate
1280
1281 When relaunching QEMU, you may have to unplug and plug again the USB
1282 device to make it work again (this is a bug).
1283
1284 @node gdb_usage
1285 @section GDB usage
1286
1287 QEMU has a primitive support to work with gdb, so that you can do
1288 'Ctrl-C' while the virtual machine is running and inspect its state.
1289
1290 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1291 gdb connection:
1292 @example
1293 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1294 -append "root=/dev/hda"
1295 Connected to host network interface: tun0
1296 Waiting gdb connection on port 1234
1297 @end example
1298
1299 Then launch gdb on the 'vmlinux' executable:
1300 @example
1301 > gdb vmlinux
1302 @end example
1303
1304 In gdb, connect to QEMU:
1305 @example
1306 (gdb) target remote localhost:1234
1307 @end example
1308
1309 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1310 @example
1311 (gdb) c
1312 @end example
1313
1314 Here are some useful tips in order to use gdb on system code:
1315
1316 @enumerate
1317 @item
1318 Use @code{info reg} to display all the CPU registers.
1319 @item
1320 Use @code{x/10i $eip} to display the code at the PC position.
1321 @item
1322 Use @code{set architecture i8086} to dump 16 bit code. Then use
1323 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1324 @end enumerate
1325
1326 @node pcsys_os_specific
1327 @section Target OS specific information
1328
1329 @subsection Linux
1330
1331 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1332 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1333 color depth in the guest and the host OS.
1334
1335 When using a 2.6 guest Linux kernel, you should add the option
1336 @code{clock=pit} on the kernel command line because the 2.6 Linux
1337 kernels make very strict real time clock checks by default that QEMU
1338 cannot simulate exactly.
1339
1340 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1341 not activated because QEMU is slower with this patch. The QEMU
1342 Accelerator Module is also much slower in this case. Earlier Fedora
1343 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1344 patch by default. Newer kernels don't have it.
1345
1346 @subsection Windows
1347
1348 If you have a slow host, using Windows 95 is better as it gives the
1349 best speed. Windows 2000 is also a good choice.
1350
1351 @subsubsection SVGA graphic modes support
1352
1353 QEMU emulates a Cirrus Logic GD5446 Video
1354 card. All Windows versions starting from Windows 95 should recognize
1355 and use this graphic card. For optimal performances, use 16 bit color
1356 depth in the guest and the host OS.
1357
1358 If you are using Windows XP as guest OS and if you want to use high
1359 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1360 1280x1024x16), then you should use the VESA VBE virtual graphic card
1361 (option @option{-std-vga}).
1362
1363 @subsubsection CPU usage reduction
1364
1365 Windows 9x does not correctly use the CPU HLT
1366 instruction. The result is that it takes host CPU cycles even when
1367 idle. You can install the utility from
1368 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1369 problem. Note that no such tool is needed for NT, 2000 or XP.
1370
1371 @subsubsection Windows 2000 disk full problem
1372
1373 Windows 2000 has a bug which gives a disk full problem during its
1374 installation. When installing it, use the @option{-win2k-hack} QEMU
1375 option to enable a specific workaround. After Windows 2000 is
1376 installed, you no longer need this option (this option slows down the
1377 IDE transfers).
1378
1379 @subsubsection Windows 2000 shutdown
1380
1381 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1382 can. It comes from the fact that Windows 2000 does not automatically
1383 use the APM driver provided by the BIOS.
1384
1385 In order to correct that, do the following (thanks to Struan
1386 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1387 Add/Troubleshoot a device => Add a new device & Next => No, select the
1388 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1389 (again) a few times. Now the driver is installed and Windows 2000 now
1390 correctly instructs QEMU to shutdown at the appropriate moment.
1391
1392 @subsubsection Share a directory between Unix and Windows
1393
1394 See @ref{sec_invocation} about the help of the option @option{-smb}.
1395
1396 @subsubsection Windows XP security problem
1397
1398 Some releases of Windows XP install correctly but give a security
1399 error when booting:
1400 @example
1401 A problem is preventing Windows from accurately checking the
1402 license for this computer. Error code: 0x800703e6.
1403 @end example
1404
1405 The workaround is to install a service pack for XP after a boot in safe
1406 mode. Then reboot, and the problem should go away. Since there is no
1407 network while in safe mode, its recommended to download the full
1408 installation of SP1 or SP2 and transfer that via an ISO or using the
1409 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1410
1411 @subsection MS-DOS and FreeDOS
1412
1413 @subsubsection CPU usage reduction
1414
1415 DOS does not correctly use the CPU HLT instruction. The result is that
1416 it takes host CPU cycles even when idle. You can install the utility
1417 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1418 problem.
1419
1420 @node QEMU System emulator for non PC targets
1421 @chapter QEMU System emulator for non PC targets
1422
1423 QEMU is a generic emulator and it emulates many non PC
1424 machines. Most of the options are similar to the PC emulator. The
1425 differences are mentionned in the following sections.
1426
1427 @menu
1428 * QEMU PowerPC System emulator::
1429 * Sparc32 System emulator invocation::
1430 * Sparc64 System emulator invocation::
1431 * MIPS System emulator invocation::
1432 * ARM System emulator invocation::
1433 @end menu
1434
1435 @node QEMU PowerPC System emulator
1436 @section QEMU PowerPC System emulator
1437
1438 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1439 or PowerMac PowerPC system.
1440
1441 QEMU emulates the following PowerMac peripherals:
1442
1443 @itemize @minus
1444 @item
1445 UniNorth PCI Bridge
1446 @item
1447 PCI VGA compatible card with VESA Bochs Extensions
1448 @item
1449 2 PMAC IDE interfaces with hard disk and CD-ROM support
1450 @item
1451 NE2000 PCI adapters
1452 @item
1453 Non Volatile RAM
1454 @item
1455 VIA-CUDA with ADB keyboard and mouse.
1456 @end itemize
1457
1458 QEMU emulates the following PREP peripherals:
1459
1460 @itemize @minus
1461 @item
1462 PCI Bridge
1463 @item
1464 PCI VGA compatible card with VESA Bochs Extensions
1465 @item
1466 2 IDE interfaces with hard disk and CD-ROM support
1467 @item
1468 Floppy disk
1469 @item
1470 NE2000 network adapters
1471 @item
1472 Serial port
1473 @item
1474 PREP Non Volatile RAM
1475 @item
1476 PC compatible keyboard and mouse.
1477 @end itemize
1478
1479 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1480 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1481
1482 @c man begin OPTIONS
1483
1484 The following options are specific to the PowerPC emulation:
1485
1486 @table @option
1487
1488 @item -g WxH[xDEPTH]
1489
1490 Set the initial VGA graphic mode. The default is 800x600x15.
1491
1492 @end table
1493
1494 @c man end
1495
1496
1497 More information is available at
1498 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1499
1500 @node Sparc32 System emulator invocation
1501 @section Sparc32 System emulator invocation
1502
1503 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1504 (sun4m architecture). The emulation is somewhat complete.
1505
1506 QEMU emulates the following sun4m peripherals:
1507
1508 @itemize @minus
1509 @item
1510 IOMMU
1511 @item
1512 TCX Frame buffer
1513 @item
1514 Lance (Am7990) Ethernet
1515 @item
1516 Non Volatile RAM M48T08
1517 @item
1518 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1519 and power/reset logic
1520 @item
1521 ESP SCSI controller with hard disk and CD-ROM support
1522 @item
1523 Floppy drive
1524 @end itemize
1525
1526 The number of peripherals is fixed in the architecture.
1527
1528 Since version 0.8.2, QEMU uses OpenBIOS
1529 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1530 firmware implementation. The goal is to implement a 100% IEEE
1531 1275-1994 (referred to as Open Firmware) compliant firmware.
1532
1533 A sample Linux 2.6 series kernel and ram disk image are available on
1534 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1535 Solaris kernels don't work.
1536
1537 @c man begin OPTIONS
1538
1539 The following options are specific to the Sparc emulation:
1540
1541 @table @option
1542
1543 @item -g WxH
1544
1545 Set the initial TCX graphic mode. The default is 1024x768.
1546
1547 @end table
1548
1549 @c man end
1550
1551 @node Sparc64 System emulator invocation
1552 @section Sparc64 System emulator invocation
1553
1554 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1555 The emulator is not usable for anything yet.
1556
1557 QEMU emulates the following sun4u peripherals:
1558
1559 @itemize @minus
1560 @item
1561 UltraSparc IIi APB PCI Bridge
1562 @item
1563 PCI VGA compatible card with VESA Bochs Extensions
1564 @item
1565 Non Volatile RAM M48T59
1566 @item
1567 PC-compatible serial ports
1568 @end itemize
1569
1570 @node MIPS System emulator invocation
1571 @section MIPS System emulator invocation
1572
1573 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1574 The emulator is able to boot a Linux kernel and to run a Linux Debian
1575 installation from NFS. The following devices are emulated:
1576
1577 @itemize @minus
1578 @item
1579 MIPS R4K CPU
1580 @item
1581 PC style serial port
1582 @item
1583 NE2000 network card
1584 @end itemize
1585
1586 More information is available in the QEMU mailing-list archive.
1587
1588 @node ARM System emulator invocation
1589 @section ARM System emulator invocation
1590
1591 Use the executable @file{qemu-system-arm} to simulate a ARM
1592 machine. The ARM Integrator/CP board is emulated with the following
1593 devices:
1594
1595 @itemize @minus
1596 @item
1597 ARM926E or ARM1026E CPU
1598 @item
1599 Two PL011 UARTs
1600 @item
1601 SMC 91c111 Ethernet adapter
1602 @item
1603 PL110 LCD controller
1604 @item
1605 PL050 KMI with PS/2 keyboard and mouse.
1606 @end itemize
1607
1608 The ARM Versatile baseboard is emulated with the following devices:
1609
1610 @itemize @minus
1611 @item
1612 ARM926E CPU
1613 @item
1614 PL190 Vectored Interrupt Controller
1615 @item
1616 Four PL011 UARTs
1617 @item
1618 SMC 91c111 Ethernet adapter
1619 @item
1620 PL110 LCD controller
1621 @item
1622 PL050 KMI with PS/2 keyboard and mouse.
1623 @item
1624 PCI host bridge. Note the emulated PCI bridge only provides access to
1625 PCI memory space. It does not provide access to PCI IO space.
1626 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1627 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1628 mapped control registers.
1629 @item
1630 PCI OHCI USB controller.
1631 @item
1632 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1633 @end itemize
1634
1635 A Linux 2.6 test image is available on the QEMU web site. More
1636 information is available in the QEMU mailing-list archive.
1637
1638 @node QEMU Linux User space emulator
1639 @chapter QEMU Linux User space emulator
1640
1641 @menu
1642 * Quick Start::
1643 * Wine launch::
1644 * Command line options::
1645 * Other binaries::
1646 @end menu
1647
1648 @node Quick Start
1649 @section Quick Start
1650
1651 In order to launch a Linux process, QEMU needs the process executable
1652 itself and all the target (x86) dynamic libraries used by it.
1653
1654 @itemize
1655
1656 @item On x86, you can just try to launch any process by using the native
1657 libraries:
1658
1659 @example
1660 qemu-i386 -L / /bin/ls
1661 @end example
1662
1663 @code{-L /} tells that the x86 dynamic linker must be searched with a
1664 @file{/} prefix.
1665
1666 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1667
1668 @example
1669 qemu-i386 -L / qemu-i386 -L / /bin/ls
1670 @end example
1671
1672 @item On non x86 CPUs, you need first to download at least an x86 glibc
1673 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1674 @code{LD_LIBRARY_PATH} is not set:
1675
1676 @example
1677 unset LD_LIBRARY_PATH
1678 @end example
1679
1680 Then you can launch the precompiled @file{ls} x86 executable:
1681
1682 @example
1683 qemu-i386 tests/i386/ls
1684 @end example
1685 You can look at @file{qemu-binfmt-conf.sh} so that
1686 QEMU is automatically launched by the Linux kernel when you try to
1687 launch x86 executables. It requires the @code{binfmt_misc} module in the
1688 Linux kernel.
1689
1690 @item The x86 version of QEMU is also included. You can try weird things such as:
1691 @example
1692 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1693 /usr/local/qemu-i386/bin/ls-i386
1694 @end example
1695
1696 @end itemize
1697
1698 @node Wine launch
1699 @section Wine launch
1700
1701 @itemize
1702
1703 @item Ensure that you have a working QEMU with the x86 glibc
1704 distribution (see previous section). In order to verify it, you must be
1705 able to do:
1706
1707 @example
1708 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1709 @end example
1710
1711 @item Download the binary x86 Wine install
1712 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
1713
1714 @item Configure Wine on your account. Look at the provided script
1715 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1716 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1717
1718 @item Then you can try the example @file{putty.exe}:
1719
1720 @example
1721 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1722 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1723 @end example
1724
1725 @end itemize
1726
1727 @node Command line options
1728 @section Command line options
1729
1730 @example
1731 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1732 @end example
1733
1734 @table @option
1735 @item -h
1736 Print the help
1737 @item -L path
1738 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1739 @item -s size
1740 Set the x86 stack size in bytes (default=524288)
1741 @end table
1742
1743 Debug options:
1744
1745 @table @option
1746 @item -d
1747 Activate log (logfile=/tmp/qemu.log)
1748 @item -p pagesize
1749 Act as if the host page size was 'pagesize' bytes
1750 @end table
1751
1752 @node Other binaries
1753 @section Other binaries
1754
1755 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1756 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1757 configurations), and arm-uclinux bFLT format binaries.
1758
1759 The binary format is detected automatically.
1760
1761 @node compilation
1762 @chapter Compilation from the sources
1763
1764 @menu
1765 * Linux/Unix::
1766 * Windows::
1767 * Cross compilation for Windows with Linux::
1768 * Mac OS X::
1769 @end menu
1770
1771 @node Linux/Unix
1772 @section Linux/Unix
1773
1774 @subsection Compilation
1775
1776 First you must decompress the sources:
1777 @example
1778 cd /tmp
1779 tar zxvf qemu-x.y.z.tar.gz
1780 cd qemu-x.y.z
1781 @end example
1782
1783 Then you configure QEMU and build it (usually no options are needed):
1784 @example
1785 ./configure
1786 make
1787 @end example
1788
1789 Then type as root user:
1790 @example
1791 make install
1792 @end example
1793 to install QEMU in @file{/usr/local}.
1794
1795 @subsection Tested tool versions
1796
1797 In order to compile QEMU succesfully, it is very important that you
1798 have the right tools. The most important one is gcc. I cannot guaranty
1799 that QEMU works if you do not use a tested gcc version. Look at
1800 'configure' and 'Makefile' if you want to make a different gcc
1801 version work.
1802
1803 @example
1804 host gcc binutils glibc linux distribution
1805 ----------------------------------------------------------------------
1806 x86 3.2 2.13.2 2.1.3 2.4.18
1807 2.96 2.11.93.0.2 2.2.5 2.4.18 Red Hat 7.3
1808 3.2.2 2.13.90.0.18 2.3.2 2.4.20 Red Hat 9
1809
1810 PowerPC 3.3 [4] 2.13.90.0.18 2.3.1 2.4.20briq
1811 3.2
1812
1813 Alpha 3.3 [1] 2.14.90.0.4 2.2.5 2.2.20 [2] Debian 3.0
1814
1815 Sparc32 2.95.4 2.12.90.0.1 2.2.5 2.4.18 Debian 3.0
1816
1817 ARM 2.95.4 2.12.90.0.1 2.2.5 2.4.9 [3] Debian 3.0
1818
1819 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1820 for gcc version >= 3.3.
1821 [2] Linux >= 2.4.20 is necessary for precise exception support
1822 (untested).
1823 [3] 2.4.9-ac10-rmk2-np1-cerf2
1824
1825 [4] gcc 2.95.x generates invalid code when using too many register
1826 variables. You must use gcc 3.x on PowerPC.
1827 @end example
1828
1829 @node Windows
1830 @section Windows
1831
1832 @itemize
1833 @item Install the current versions of MSYS and MinGW from
1834 @url{http://www.mingw.org/}. You can find detailed installation
1835 instructions in the download section and the FAQ.
1836
1837 @item Download
1838 the MinGW development library of SDL 1.2.x
1839 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1840 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1841 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1842 directory. Edit the @file{sdl-config} script so that it gives the
1843 correct SDL directory when invoked.
1844
1845 @item Extract the current version of QEMU.
1846
1847 @item Start the MSYS shell (file @file{msys.bat}).
1848
1849 @item Change to the QEMU directory. Launch @file{./configure} and
1850 @file{make}. If you have problems using SDL, verify that
1851 @file{sdl-config} can be launched from the MSYS command line.
1852
1853 @item You can install QEMU in @file{Program Files/Qemu} by typing
1854 @file{make install}. Don't forget to copy @file{SDL.dll} in
1855 @file{Program Files/Qemu}.
1856
1857 @end itemize
1858
1859 @node Cross compilation for Windows with Linux
1860 @section Cross compilation for Windows with Linux
1861
1862 @itemize
1863 @item
1864 Install the MinGW cross compilation tools available at
1865 @url{http://www.mingw.org/}.
1866
1867 @item
1868 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1869 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1870 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1871 the QEMU configuration script.
1872
1873 @item
1874 Configure QEMU for Windows cross compilation:
1875 @example
1876 ./configure --enable-mingw32
1877 @end example
1878 If necessary, you can change the cross-prefix according to the prefix
1879 choosen for the MinGW tools with --cross-prefix. You can also use
1880 --prefix to set the Win32 install path.
1881
1882 @item You can install QEMU in the installation directory by typing
1883 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1884 installation directory.
1885
1886 @end itemize
1887
1888 Note: Currently, Wine does not seem able to launch
1889 QEMU for Win32.
1890
1891 @node Mac OS X
1892 @section Mac OS X
1893
1894 The Mac OS X patches are not fully merged in QEMU, so you should look
1895 at the QEMU mailing list archive to have all the necessary
1896 information.
1897
1898 @node Index
1899 @chapter Index
1900 @printindex cp
1901
1902 @bye