]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
coroutine-lock: place CoMutex before CoQueue in header
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n",
46 QEMU_ARCH_ALL)
47 STEXI
48 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
49 @findex -machine
50 Select the emulated machine by @var{name}. Use @code{-machine help} to list
51 available machines. Supported machine properties are:
52 @table @option
53 @item accel=@var{accels1}[:@var{accels2}[:...]]
54 This is used to enable an accelerator. Depending on the target architecture,
55 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
56 than one accelerator specified, the next one is used if the previous one fails
57 to initialize.
58 @item kernel_irqchip=on|off
59 Controls in-kernel irqchip support for the chosen accelerator when available.
60 @item gfx_passthru=on|off
61 Enables IGD GFX passthrough support for the chosen machine when available.
62 @item vmport=on|off|auto
63 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
64 value based on accel. For accel=xen the default is off otherwise the default
65 is on.
66 @item kvm_shadow_mem=size
67 Defines the size of the KVM shadow MMU.
68 @item dump-guest-core=on|off
69 Include guest memory in a core dump. The default is on.
70 @item mem-merge=on|off
71 Enables or disables memory merge support. This feature, when supported by
72 the host, de-duplicates identical memory pages among VMs instances
73 (enabled by default).
74 @item aes-key-wrap=on|off
75 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
76 controls whether AES wrapping keys will be created to allow
77 execution of AES cryptographic functions. The default is on.
78 @item dea-key-wrap=on|off
79 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
80 controls whether DEA wrapping keys will be created to allow
81 execution of DEA cryptographic functions. The default is on.
82 @item nvdimm=on|off
83 Enables or disables NVDIMM support. The default is off.
84 @end table
85 ETEXI
86
87 HXCOMM Deprecated by -machine
88 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
89
90 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
91 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
92 STEXI
93 @item -cpu @var{model}
94 @findex -cpu
95 Select CPU model (@code{-cpu help} for list and additional feature selection)
96 ETEXI
97
98 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
99 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
100 " set the number of CPUs to 'n' [default=1]\n"
101 " maxcpus= maximum number of total cpus, including\n"
102 " offline CPUs for hotplug, etc\n"
103 " cores= number of CPU cores on one socket\n"
104 " threads= number of threads on one CPU core\n"
105 " sockets= number of discrete sockets in the system\n",
106 QEMU_ARCH_ALL)
107 STEXI
108 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
109 @findex -smp
110 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
111 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
112 to 4.
113 For the PC target, the number of @var{cores} per socket, the number
114 of @var{threads} per cores and the total number of @var{sockets} can be
115 specified. Missing values will be computed. If any on the three values is
116 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
117 specifies the maximum number of hotpluggable CPUs.
118 ETEXI
119
120 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
121 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
122 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n", QEMU_ARCH_ALL)
123 STEXI
124 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
125 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
126 @findex -numa
127 Simulate a multi node NUMA system. If @samp{mem}, @samp{memdev}
128 and @samp{cpus} are omitted, resources are split equally. Also, note
129 that the -@option{numa} option doesn't allocate any of the specified
130 resources. That is, it just assigns existing resources to NUMA nodes. This
131 means that one still has to use the @option{-m}, @option{-smp} options
132 to allocate RAM and VCPUs respectively, and possibly @option{-object}
133 to specify the memory backend for the @samp{memdev} suboption.
134
135 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore, if one
136 node uses @samp{memdev}, all of them have to use it.
137 ETEXI
138
139 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
140 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
141 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
142 STEXI
143 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
144 @findex -add-fd
145
146 Add a file descriptor to an fd set. Valid options are:
147
148 @table @option
149 @item fd=@var{fd}
150 This option defines the file descriptor of which a duplicate is added to fd set.
151 The file descriptor cannot be stdin, stdout, or stderr.
152 @item set=@var{set}
153 This option defines the ID of the fd set to add the file descriptor to.
154 @item opaque=@var{opaque}
155 This option defines a free-form string that can be used to describe @var{fd}.
156 @end table
157
158 You can open an image using pre-opened file descriptors from an fd set:
159 @example
160 qemu-system-i386
161 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
162 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
163 -drive file=/dev/fdset/2,index=0,media=disk
164 @end example
165 ETEXI
166
167 DEF("set", HAS_ARG, QEMU_OPTION_set,
168 "-set group.id.arg=value\n"
169 " set <arg> parameter for item <id> of type <group>\n"
170 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
171 STEXI
172 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
173 @findex -set
174 Set parameter @var{arg} for item @var{id} of type @var{group}
175 ETEXI
176
177 DEF("global", HAS_ARG, QEMU_OPTION_global,
178 "-global driver.property=value\n"
179 "-global driver=driver,property=property,value=value\n"
180 " set a global default for a driver property\n",
181 QEMU_ARCH_ALL)
182 STEXI
183 @item -global @var{driver}.@var{prop}=@var{value}
184 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
185 @findex -global
186 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
187
188 @example
189 qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk
190 @end example
191
192 In particular, you can use this to set driver properties for devices which are
193 created automatically by the machine model. To create a device which is not
194 created automatically and set properties on it, use -@option{device}.
195
196 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
197 driver=@var{driver},property=@var{prop},value=@var{value}. The
198 longhand syntax works even when @var{driver} contains a dot.
199 ETEXI
200
201 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
202 "-boot [order=drives][,once=drives][,menu=on|off]\n"
203 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
204 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
205 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
206 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
207 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
208 QEMU_ARCH_ALL)
209 STEXI
210 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
211 @findex -boot
212 Specify boot order @var{drives} as a string of drive letters. Valid
213 drive letters depend on the target architecture. The x86 PC uses: a, b
214 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
215 from network adapter 1-4), hard disk boot is the default. To apply a
216 particular boot order only on the first startup, specify it via
217 @option{once}.
218
219 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
220 as firmware/BIOS supports them. The default is non-interactive boot.
221
222 A splash picture could be passed to bios, enabling user to show it as logo,
223 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
224 supports them. Currently Seabios for X86 system support it.
225 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
226 format(true color). The resolution should be supported by the SVGA mode, so
227 the recommended is 320x240, 640x480, 800x640.
228
229 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
230 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
231 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
232 system support it.
233
234 Do strict boot via @option{strict=on} as far as firmware/BIOS
235 supports it. This only effects when boot priority is changed by
236 bootindex options. The default is non-strict boot.
237
238 @example
239 # try to boot from network first, then from hard disk
240 qemu-system-i386 -boot order=nc
241 # boot from CD-ROM first, switch back to default order after reboot
242 qemu-system-i386 -boot once=d
243 # boot with a splash picture for 5 seconds.
244 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
245 @end example
246
247 Note: The legacy format '-boot @var{drives}' is still supported but its
248 use is discouraged as it may be removed from future versions.
249 ETEXI
250
251 DEF("m", HAS_ARG, QEMU_OPTION_m,
252 "-m [size=]megs[,slots=n,maxmem=size]\n"
253 " configure guest RAM\n"
254 " size: initial amount of guest memory\n"
255 " slots: number of hotplug slots (default: none)\n"
256 " maxmem: maximum amount of guest memory (default: none)\n"
257 "NOTE: Some architectures might enforce a specific granularity\n",
258 QEMU_ARCH_ALL)
259 STEXI
260 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
261 @findex -m
262 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
263 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
264 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
265 could be used to set amount of hotpluggable memory slots and maximum amount of
266 memory. Note that @var{maxmem} must be aligned to the page size.
267
268 For example, the following command-line sets the guest startup RAM size to
269 1GB, creates 3 slots to hotplug additional memory and sets the maximum
270 memory the guest can reach to 4GB:
271
272 @example
273 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
274 @end example
275
276 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
277 be enabled and the guest startup RAM will never increase.
278 ETEXI
279
280 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
281 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
282 STEXI
283 @item -mem-path @var{path}
284 @findex -mem-path
285 Allocate guest RAM from a temporarily created file in @var{path}.
286 ETEXI
287
288 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
289 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
290 QEMU_ARCH_ALL)
291 STEXI
292 @item -mem-prealloc
293 @findex -mem-prealloc
294 Preallocate memory when using -mem-path.
295 ETEXI
296
297 DEF("k", HAS_ARG, QEMU_OPTION_k,
298 "-k language use keyboard layout (for example 'fr' for French)\n",
299 QEMU_ARCH_ALL)
300 STEXI
301 @item -k @var{language}
302 @findex -k
303 Use keyboard layout @var{language} (for example @code{fr} for
304 French). This option is only needed where it is not easy to get raw PC
305 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
306 display). You don't normally need to use it on PC/Linux or PC/Windows
307 hosts.
308
309 The available layouts are:
310 @example
311 ar de-ch es fo fr-ca hu ja mk no pt-br sv
312 da en-gb et fr fr-ch is lt nl pl ru th
313 de en-us fi fr-be hr it lv nl-be pt sl tr
314 @end example
315
316 The default is @code{en-us}.
317 ETEXI
318
319
320 DEF("audio-help", 0, QEMU_OPTION_audio_help,
321 "-audio-help print list of audio drivers and their options\n",
322 QEMU_ARCH_ALL)
323 STEXI
324 @item -audio-help
325 @findex -audio-help
326 Will show the audio subsystem help: list of drivers, tunable
327 parameters.
328 ETEXI
329
330 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
331 "-soundhw c1,... enable audio support\n"
332 " and only specified sound cards (comma separated list)\n"
333 " use '-soundhw help' to get the list of supported cards\n"
334 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
335 STEXI
336 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
337 @findex -soundhw
338 Enable audio and selected sound hardware. Use 'help' to print all
339 available sound hardware.
340
341 @example
342 qemu-system-i386 -soundhw sb16,adlib disk.img
343 qemu-system-i386 -soundhw es1370 disk.img
344 qemu-system-i386 -soundhw ac97 disk.img
345 qemu-system-i386 -soundhw hda disk.img
346 qemu-system-i386 -soundhw all disk.img
347 qemu-system-i386 -soundhw help
348 @end example
349
350 Note that Linux's i810_audio OSS kernel (for AC97) module might
351 require manually specifying clocking.
352
353 @example
354 modprobe i810_audio clocking=48000
355 @end example
356 ETEXI
357
358 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
359 "-balloon none disable balloon device\n"
360 "-balloon virtio[,addr=str]\n"
361 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
362 STEXI
363 @item -balloon none
364 @findex -balloon
365 Disable balloon device.
366 @item -balloon virtio[,addr=@var{addr}]
367 Enable virtio balloon device (default), optionally with PCI address
368 @var{addr}.
369 ETEXI
370
371 DEF("device", HAS_ARG, QEMU_OPTION_device,
372 "-device driver[,prop[=value][,...]]\n"
373 " add device (based on driver)\n"
374 " prop=value,... sets driver properties\n"
375 " use '-device help' to print all possible drivers\n"
376 " use '-device driver,help' to print all possible properties\n",
377 QEMU_ARCH_ALL)
378 STEXI
379 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
380 @findex -device
381 Add device @var{driver}. @var{prop}=@var{value} sets driver
382 properties. Valid properties depend on the driver. To get help on
383 possible drivers and properties, use @code{-device help} and
384 @code{-device @var{driver},help}.
385
386 Some drivers are:
387 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}]
388
389 Add an IPMI BMC. This is a simulation of a hardware management
390 interface processor that normally sits on a system. It provides
391 a watchdog and the ability to reset and power control the system.
392 You need to connect this to an IPMI interface to make it useful
393
394 The IPMI slave address to use for the BMC. The default is 0x20.
395 This address is the BMC's address on the I2C network of management
396 controllers. If you don't know what this means, it is safe to ignore
397 it.
398
399 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
400
401 Add a connection to an external IPMI BMC simulator. Instead of
402 locally emulating the BMC like the above item, instead connect
403 to an external entity that provides the IPMI services.
404
405 A connection is made to an external BMC simulator. If you do this, it
406 is strongly recommended that you use the "reconnect=" chardev option
407 to reconnect to the simulator if the connection is lost. Note that if
408 this is not used carefully, it can be a security issue, as the
409 interface has the ability to send resets, NMIs, and power off the VM.
410 It's best if QEMU makes a connection to an external simulator running
411 on a secure port on localhost, so neither the simulator nor QEMU is
412 exposed to any outside network.
413
414 See the "lanserv/README.vm" file in the OpenIPMI library for more
415 details on the external interface.
416
417 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
418
419 Add a KCS IPMI interafce on the ISA bus. This also adds a
420 corresponding ACPI and SMBIOS entries, if appropriate.
421
422 @table @option
423 @item bmc=@var{id}
424 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
425 @item ioport=@var{val}
426 Define the I/O address of the interface. The default is 0xca0 for KCS.
427 @item irq=@var{val}
428 Define the interrupt to use. The default is 5. To disable interrupts,
429 set this to 0.
430 @end table
431
432 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
433
434 Like the KCS interface, but defines a BT interface. The default port is
435 0xe4 and the default interrupt is 5.
436
437 ETEXI
438
439 DEF("name", HAS_ARG, QEMU_OPTION_name,
440 "-name string1[,process=string2][,debug-threads=on|off]\n"
441 " set the name of the guest\n"
442 " string1 sets the window title and string2 the process name (on Linux)\n"
443 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
444 " NOTE: The thread names are for debugging and not a stable API.\n",
445 QEMU_ARCH_ALL)
446 STEXI
447 @item -name @var{name}
448 @findex -name
449 Sets the @var{name} of the guest.
450 This name will be displayed in the SDL window caption.
451 The @var{name} will also be used for the VNC server.
452 Also optionally set the top visible process name in Linux.
453 Naming of individual threads can also be enabled on Linux to aid debugging.
454 ETEXI
455
456 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
457 "-uuid %08x-%04x-%04x-%04x-%012x\n"
458 " specify machine UUID\n", QEMU_ARCH_ALL)
459 STEXI
460 @item -uuid @var{uuid}
461 @findex -uuid
462 Set system UUID.
463 ETEXI
464
465 STEXI
466 @end table
467 ETEXI
468 DEFHEADING()
469
470 DEFHEADING(Block device options)
471 STEXI
472 @table @option
473 ETEXI
474
475 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
476 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
477 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
478 STEXI
479 @item -fda @var{file}
480 @itemx -fdb @var{file}
481 @findex -fda
482 @findex -fdb
483 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
484 ETEXI
485
486 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
487 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
488 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
489 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
490 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
491 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
492 STEXI
493 @item -hda @var{file}
494 @itemx -hdb @var{file}
495 @itemx -hdc @var{file}
496 @itemx -hdd @var{file}
497 @findex -hda
498 @findex -hdb
499 @findex -hdc
500 @findex -hdd
501 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
502 ETEXI
503
504 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
505 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
506 QEMU_ARCH_ALL)
507 STEXI
508 @item -cdrom @var{file}
509 @findex -cdrom
510 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
511 @option{-cdrom} at the same time). You can use the host CD-ROM by
512 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
513 ETEXI
514
515 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
516 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
517 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
518 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
519 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
520 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
521 " [,readonly=on|off][,copy-on-read=on|off]\n"
522 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
523 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
524 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
525 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
526 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
527 " [[,iops_size=is]]\n"
528 " [[,group=g]]\n"
529 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
530 STEXI
531 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
532 @findex -drive
533
534 Define a new drive. Valid options are:
535
536 @table @option
537 @item file=@var{file}
538 This option defines which disk image (@pxref{disk_images}) to use with
539 this drive. If the filename contains comma, you must double it
540 (for instance, "file=my,,file" to use file "my,file").
541
542 Special files such as iSCSI devices can be specified using protocol
543 specific URLs. See the section for "Device URL Syntax" for more information.
544 @item if=@var{interface}
545 This option defines on which type on interface the drive is connected.
546 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
547 @item bus=@var{bus},unit=@var{unit}
548 These options define where is connected the drive by defining the bus number and
549 the unit id.
550 @item index=@var{index}
551 This option defines where is connected the drive by using an index in the list
552 of available connectors of a given interface type.
553 @item media=@var{media}
554 This option defines the type of the media: disk or cdrom.
555 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
556 These options have the same definition as they have in @option{-hdachs}.
557 @item snapshot=@var{snapshot}
558 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
559 (see @option{-snapshot}).
560 @item cache=@var{cache}
561 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
562 @item aio=@var{aio}
563 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
564 @item discard=@var{discard}
565 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests.
566 @item format=@var{format}
567 Specify which disk @var{format} will be used rather than detecting
568 the format. Can be used to specify format=raw to avoid interpreting
569 an untrusted format header.
570 @item serial=@var{serial}
571 This option specifies the serial number to assign to the device.
572 @item addr=@var{addr}
573 Specify the controller's PCI address (if=virtio only).
574 @item werror=@var{action},rerror=@var{action}
575 Specify which @var{action} to take on write and read errors. Valid actions are:
576 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
577 "report" (report the error to the guest), "enospc" (pause QEMU only if the
578 host disk is full; report the error to the guest otherwise).
579 The default setting is @option{werror=enospc} and @option{rerror=report}.
580 @item readonly
581 Open drive @option{file} as read-only. Guest write attempts will fail.
582 @item copy-on-read=@var{copy-on-read}
583 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
584 file sectors into the image file.
585 @item detect-zeroes=@var{detect-zeroes}
586 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
587 conversion of plain zero writes by the OS to driver specific optimized
588 zero write commands. You may even choose "unmap" if @var{discard} is set
589 to "unmap" to allow a zero write to be converted to an UNMAP operation.
590 @end table
591
592 By default, the @option{cache=writeback} mode is used. It will report data
593 writes as completed as soon as the data is present in the host page cache.
594 This is safe as long as your guest OS makes sure to correctly flush disk caches
595 where needed. If your guest OS does not handle volatile disk write caches
596 correctly and your host crashes or loses power, then the guest may experience
597 data corruption.
598
599 For such guests, you should consider using @option{cache=writethrough}. This
600 means that the host page cache will be used to read and write data, but write
601 notification will be sent to the guest only after QEMU has made sure to flush
602 each write to the disk. Be aware that this has a major impact on performance.
603
604 The host page cache can be avoided entirely with @option{cache=none}. This will
605 attempt to do disk IO directly to the guest's memory. QEMU may still perform
606 an internal copy of the data. Note that this is considered a writeback mode and
607 the guest OS must handle the disk write cache correctly in order to avoid data
608 corruption on host crashes.
609
610 The host page cache can be avoided while only sending write notifications to
611 the guest when the data has been flushed to the disk using
612 @option{cache=directsync}.
613
614 In case you don't care about data integrity over host failures, use
615 @option{cache=unsafe}. This option tells QEMU that it never needs to write any
616 data to the disk but can instead keep things in cache. If anything goes wrong,
617 like your host losing power, the disk storage getting disconnected accidentally,
618 etc. your image will most probably be rendered unusable. When using
619 the @option{-snapshot} option, unsafe caching is always used.
620
621 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
622 useful when the backing file is over a slow network. By default copy-on-read
623 is off.
624
625 Instead of @option{-cdrom} you can use:
626 @example
627 qemu-system-i386 -drive file=file,index=2,media=cdrom
628 @end example
629
630 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
631 use:
632 @example
633 qemu-system-i386 -drive file=file,index=0,media=disk
634 qemu-system-i386 -drive file=file,index=1,media=disk
635 qemu-system-i386 -drive file=file,index=2,media=disk
636 qemu-system-i386 -drive file=file,index=3,media=disk
637 @end example
638
639 You can open an image using pre-opened file descriptors from an fd set:
640 @example
641 qemu-system-i386
642 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
643 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
644 -drive file=/dev/fdset/2,index=0,media=disk
645 @end example
646
647 You can connect a CDROM to the slave of ide0:
648 @example
649 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
650 @end example
651
652 If you don't specify the "file=" argument, you define an empty drive:
653 @example
654 qemu-system-i386 -drive if=ide,index=1,media=cdrom
655 @end example
656
657 You can connect a SCSI disk with unit ID 6 on the bus #0:
658 @example
659 qemu-system-i386 -drive file=file,if=scsi,bus=0,unit=6
660 @end example
661
662 Instead of @option{-fda}, @option{-fdb}, you can use:
663 @example
664 qemu-system-i386 -drive file=file,index=0,if=floppy
665 qemu-system-i386 -drive file=file,index=1,if=floppy
666 @end example
667
668 By default, @var{interface} is "ide" and @var{index} is automatically
669 incremented:
670 @example
671 qemu-system-i386 -drive file=a -drive file=b"
672 @end example
673 is interpreted like:
674 @example
675 qemu-system-i386 -hda a -hdb b
676 @end example
677 ETEXI
678
679 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
680 "-mtdblock file use 'file' as on-board Flash memory image\n",
681 QEMU_ARCH_ALL)
682 STEXI
683 @item -mtdblock @var{file}
684 @findex -mtdblock
685 Use @var{file} as on-board Flash memory image.
686 ETEXI
687
688 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
689 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
690 STEXI
691 @item -sd @var{file}
692 @findex -sd
693 Use @var{file} as SecureDigital card image.
694 ETEXI
695
696 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
697 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
698 STEXI
699 @item -pflash @var{file}
700 @findex -pflash
701 Use @var{file} as a parallel flash image.
702 ETEXI
703
704 DEF("snapshot", 0, QEMU_OPTION_snapshot,
705 "-snapshot write to temporary files instead of disk image files\n",
706 QEMU_ARCH_ALL)
707 STEXI
708 @item -snapshot
709 @findex -snapshot
710 Write to temporary files instead of disk image files. In this case,
711 the raw disk image you use is not written back. You can however force
712 the write back by pressing @key{C-a s} (@pxref{disk_images}).
713 ETEXI
714
715 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
716 "-hdachs c,h,s[,t]\n" \
717 " force hard disk 0 physical geometry and the optional BIOS\n" \
718 " translation (t=none or lba) (usually QEMU can guess them)\n",
719 QEMU_ARCH_ALL)
720 STEXI
721 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
722 @findex -hdachs
723 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
724 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
725 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
726 all those parameters. This option is useful for old MS-DOS disk
727 images.
728 ETEXI
729
730 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
731 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
732 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
733 QEMU_ARCH_ALL)
734
735 STEXI
736
737 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
738 @findex -fsdev
739 Define a new file system device. Valid options are:
740 @table @option
741 @item @var{fsdriver}
742 This option specifies the fs driver backend to use.
743 Currently "local", "handle" and "proxy" file system drivers are supported.
744 @item id=@var{id}
745 Specifies identifier for this device
746 @item path=@var{path}
747 Specifies the export path for the file system device. Files under
748 this path will be available to the 9p client on the guest.
749 @item security_model=@var{security_model}
750 Specifies the security model to be used for this export path.
751 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
752 In "passthrough" security model, files are stored using the same
753 credentials as they are created on the guest. This requires QEMU
754 to run as root. In "mapped-xattr" security model, some of the file
755 attributes like uid, gid, mode bits and link target are stored as
756 file attributes. For "mapped-file" these attributes are stored in the
757 hidden .virtfs_metadata directory. Directories exported by this security model cannot
758 interact with other unix tools. "none" security model is same as
759 passthrough except the sever won't report failures if it fails to
760 set file attributes like ownership. Security model is mandatory
761 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
762 security model as a parameter.
763 @item writeout=@var{writeout}
764 This is an optional argument. The only supported value is "immediate".
765 This means that host page cache will be used to read and write data but
766 write notification will be sent to the guest only when the data has been
767 reported as written by the storage subsystem.
768 @item readonly
769 Enables exporting 9p share as a readonly mount for guests. By default
770 read-write access is given.
771 @item socket=@var{socket}
772 Enables proxy filesystem driver to use passed socket file for communicating
773 with virtfs-proxy-helper
774 @item sock_fd=@var{sock_fd}
775 Enables proxy filesystem driver to use passed socket descriptor for
776 communicating with virtfs-proxy-helper. Usually a helper like libvirt
777 will create socketpair and pass one of the fds as sock_fd
778 @end table
779
780 -fsdev option is used along with -device driver "virtio-9p-pci".
781 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
782 Options for virtio-9p-pci driver are:
783 @table @option
784 @item fsdev=@var{id}
785 Specifies the id value specified along with -fsdev option
786 @item mount_tag=@var{mount_tag}
787 Specifies the tag name to be used by the guest to mount this export point
788 @end table
789
790 ETEXI
791
792 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
793 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
794 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
795 QEMU_ARCH_ALL)
796
797 STEXI
798
799 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
800 @findex -virtfs
801
802 The general form of a Virtual File system pass-through options are:
803 @table @option
804 @item @var{fsdriver}
805 This option specifies the fs driver backend to use.
806 Currently "local", "handle" and "proxy" file system drivers are supported.
807 @item id=@var{id}
808 Specifies identifier for this device
809 @item path=@var{path}
810 Specifies the export path for the file system device. Files under
811 this path will be available to the 9p client on the guest.
812 @item security_model=@var{security_model}
813 Specifies the security model to be used for this export path.
814 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
815 In "passthrough" security model, files are stored using the same
816 credentials as they are created on the guest. This requires QEMU
817 to run as root. In "mapped-xattr" security model, some of the file
818 attributes like uid, gid, mode bits and link target are stored as
819 file attributes. For "mapped-file" these attributes are stored in the
820 hidden .virtfs_metadata directory. Directories exported by this security model cannot
821 interact with other unix tools. "none" security model is same as
822 passthrough except the sever won't report failures if it fails to
823 set file attributes like ownership. Security model is mandatory only
824 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
825 model as a parameter.
826 @item writeout=@var{writeout}
827 This is an optional argument. The only supported value is "immediate".
828 This means that host page cache will be used to read and write data but
829 write notification will be sent to the guest only when the data has been
830 reported as written by the storage subsystem.
831 @item readonly
832 Enables exporting 9p share as a readonly mount for guests. By default
833 read-write access is given.
834 @item socket=@var{socket}
835 Enables proxy filesystem driver to use passed socket file for
836 communicating with virtfs-proxy-helper. Usually a helper like libvirt
837 will create socketpair and pass one of the fds as sock_fd
838 @item sock_fd
839 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
840 descriptor for interfacing with virtfs-proxy-helper
841 @end table
842 ETEXI
843
844 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
845 "-virtfs_synth Create synthetic file system image\n",
846 QEMU_ARCH_ALL)
847 STEXI
848 @item -virtfs_synth
849 @findex -virtfs_synth
850 Create synthetic file system image
851 ETEXI
852
853 STEXI
854 @end table
855 ETEXI
856 DEFHEADING()
857
858 DEFHEADING(USB options)
859 STEXI
860 @table @option
861 ETEXI
862
863 DEF("usb", 0, QEMU_OPTION_usb,
864 "-usb enable the USB driver (will be the default soon)\n",
865 QEMU_ARCH_ALL)
866 STEXI
867 @item -usb
868 @findex -usb
869 Enable the USB driver (will be the default soon)
870 ETEXI
871
872 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
873 "-usbdevice name add the host or guest USB device 'name'\n",
874 QEMU_ARCH_ALL)
875 STEXI
876
877 @item -usbdevice @var{devname}
878 @findex -usbdevice
879 Add the USB device @var{devname}. @xref{usb_devices}.
880
881 @table @option
882
883 @item mouse
884 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
885
886 @item tablet
887 Pointer device that uses absolute coordinates (like a touchscreen). This
888 means QEMU is able to report the mouse position without having to grab the
889 mouse. Also overrides the PS/2 mouse emulation when activated.
890
891 @item disk:[format=@var{format}]:@var{file}
892 Mass storage device based on file. The optional @var{format} argument
893 will be used rather than detecting the format. Can be used to specify
894 @code{format=raw} to avoid interpreting an untrusted format header.
895
896 @item host:@var{bus}.@var{addr}
897 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
898
899 @item host:@var{vendor_id}:@var{product_id}
900 Pass through the host device identified by @var{vendor_id}:@var{product_id}
901 (Linux only).
902
903 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
904 Serial converter to host character device @var{dev}, see @code{-serial} for the
905 available devices.
906
907 @item braille
908 Braille device. This will use BrlAPI to display the braille output on a real
909 or fake device.
910
911 @item net:@var{options}
912 Network adapter that supports CDC ethernet and RNDIS protocols.
913
914 @end table
915 ETEXI
916
917 STEXI
918 @end table
919 ETEXI
920 DEFHEADING()
921
922 DEFHEADING(Display options)
923 STEXI
924 @table @option
925 ETEXI
926
927 DEF("display", HAS_ARG, QEMU_OPTION_display,
928 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
929 " [,window_close=on|off][,gl=on|off]\n"
930 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
931 "-display vnc=<display>[,<optargs>]\n"
932 "-display curses\n"
933 "-display none"
934 " select display type\n"
935 "The default display is equivalent to\n"
936 #if defined(CONFIG_GTK)
937 "\t\"-display gtk\"\n"
938 #elif defined(CONFIG_SDL)
939 "\t\"-display sdl\"\n"
940 #elif defined(CONFIG_COCOA)
941 "\t\"-display cocoa\"\n"
942 #elif defined(CONFIG_VNC)
943 "\t\"-vnc localhost:0,to=99,id=default\"\n"
944 #else
945 "\t\"-display none\"\n"
946 #endif
947 , QEMU_ARCH_ALL)
948 STEXI
949 @item -display @var{type}
950 @findex -display
951 Select type of display to use. This option is a replacement for the
952 old style -sdl/-curses/... options. Valid values for @var{type} are
953 @table @option
954 @item sdl
955 Display video output via SDL (usually in a separate graphics
956 window; see the SDL documentation for other possibilities).
957 @item curses
958 Display video output via curses. For graphics device models which
959 support a text mode, QEMU can display this output using a
960 curses/ncurses interface. Nothing is displayed when the graphics
961 device is in graphical mode or if the graphics device does not support
962 a text mode. Generally only the VGA device models support text mode.
963 @item none
964 Do not display video output. The guest will still see an emulated
965 graphics card, but its output will not be displayed to the QEMU
966 user. This option differs from the -nographic option in that it
967 only affects what is done with video output; -nographic also changes
968 the destination of the serial and parallel port data.
969 @item gtk
970 Display video output in a GTK window. This interface provides drop-down
971 menus and other UI elements to configure and control the VM during
972 runtime.
973 @item vnc
974 Start a VNC server on display <arg>
975 @end table
976 ETEXI
977
978 DEF("nographic", 0, QEMU_OPTION_nographic,
979 "-nographic disable graphical output and redirect serial I/Os to console\n",
980 QEMU_ARCH_ALL)
981 STEXI
982 @item -nographic
983 @findex -nographic
984 Normally, if QEMU is compiled with graphical window support, it displays
985 output such as guest graphics, guest console, and the QEMU monitor in a
986 window. With this option, you can totally disable graphical output so
987 that QEMU is a simple command line application. The emulated serial port
988 is redirected on the console and muxed with the monitor (unless
989 redirected elsewhere explicitly). Therefore, you can still use QEMU to
990 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
991 switching between the console and monitor.
992 ETEXI
993
994 DEF("curses", 0, QEMU_OPTION_curses,
995 "-curses shorthand for -display curses\n",
996 QEMU_ARCH_ALL)
997 STEXI
998 @item -curses
999 @findex -curses
1000 Normally, if QEMU is compiled with graphical window support, it displays
1001 output such as guest graphics, guest console, and the QEMU monitor in a
1002 window. With this option, QEMU can display the VGA output when in text
1003 mode using a curses/ncurses interface. Nothing is displayed in graphical
1004 mode.
1005 ETEXI
1006
1007 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1008 "-no-frame open SDL window without a frame and window decorations\n",
1009 QEMU_ARCH_ALL)
1010 STEXI
1011 @item -no-frame
1012 @findex -no-frame
1013 Do not use decorations for SDL windows and start them using the whole
1014 available screen space. This makes the using QEMU in a dedicated desktop
1015 workspace more convenient.
1016 ETEXI
1017
1018 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1019 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1020 QEMU_ARCH_ALL)
1021 STEXI
1022 @item -alt-grab
1023 @findex -alt-grab
1024 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1025 affects the special keys (for fullscreen, monitor-mode switching, etc).
1026 ETEXI
1027
1028 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1029 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1030 QEMU_ARCH_ALL)
1031 STEXI
1032 @item -ctrl-grab
1033 @findex -ctrl-grab
1034 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1035 affects the special keys (for fullscreen, monitor-mode switching, etc).
1036 ETEXI
1037
1038 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1039 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1040 STEXI
1041 @item -no-quit
1042 @findex -no-quit
1043 Disable SDL window close capability.
1044 ETEXI
1045
1046 DEF("sdl", 0, QEMU_OPTION_sdl,
1047 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1048 STEXI
1049 @item -sdl
1050 @findex -sdl
1051 Enable SDL.
1052 ETEXI
1053
1054 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1055 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1056 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1057 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1058 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1059 " [,tls-ciphers=<list>]\n"
1060 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1061 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1062 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1063 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1064 " [,jpeg-wan-compression=[auto|never|always]]\n"
1065 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1066 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1067 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1068 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1069 " [,gl=[on|off]][,rendernode=<file>]\n"
1070 " enable spice\n"
1071 " at least one of {port, tls-port} is mandatory\n",
1072 QEMU_ARCH_ALL)
1073 STEXI
1074 @item -spice @var{option}[,@var{option}[,...]]
1075 @findex -spice
1076 Enable the spice remote desktop protocol. Valid options are
1077
1078 @table @option
1079
1080 @item port=<nr>
1081 Set the TCP port spice is listening on for plaintext channels.
1082
1083 @item addr=<addr>
1084 Set the IP address spice is listening on. Default is any address.
1085
1086 @item ipv4
1087 @itemx ipv6
1088 @itemx unix
1089 Force using the specified IP version.
1090
1091 @item password=<secret>
1092 Set the password you need to authenticate.
1093
1094 @item sasl
1095 Require that the client use SASL to authenticate with the spice.
1096 The exact choice of authentication method used is controlled from the
1097 system / user's SASL configuration file for the 'qemu' service. This
1098 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1099 unprivileged user, an environment variable SASL_CONF_PATH can be used
1100 to make it search alternate locations for the service config.
1101 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1102 it is recommended that SASL always be combined with the 'tls' and
1103 'x509' settings to enable use of SSL and server certificates. This
1104 ensures a data encryption preventing compromise of authentication
1105 credentials.
1106
1107 @item disable-ticketing
1108 Allow client connects without authentication.
1109
1110 @item disable-copy-paste
1111 Disable copy paste between the client and the guest.
1112
1113 @item disable-agent-file-xfer
1114 Disable spice-vdagent based file-xfer between the client and the guest.
1115
1116 @item tls-port=<nr>
1117 Set the TCP port spice is listening on for encrypted channels.
1118
1119 @item x509-dir=<dir>
1120 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1121
1122 @item x509-key-file=<file>
1123 @itemx x509-key-password=<file>
1124 @itemx x509-cert-file=<file>
1125 @itemx x509-cacert-file=<file>
1126 @itemx x509-dh-key-file=<file>
1127 The x509 file names can also be configured individually.
1128
1129 @item tls-ciphers=<list>
1130 Specify which ciphers to use.
1131
1132 @item tls-channel=[main|display|cursor|inputs|record|playback]
1133 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1134 Force specific channel to be used with or without TLS encryption. The
1135 options can be specified multiple times to configure multiple
1136 channels. The special name "default" can be used to set the default
1137 mode. For channels which are not explicitly forced into one mode the
1138 spice client is allowed to pick tls/plaintext as he pleases.
1139
1140 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1141 Configure image compression (lossless).
1142 Default is auto_glz.
1143
1144 @item jpeg-wan-compression=[auto|never|always]
1145 @itemx zlib-glz-wan-compression=[auto|never|always]
1146 Configure wan image compression (lossy for slow links).
1147 Default is auto.
1148
1149 @item streaming-video=[off|all|filter]
1150 Configure video stream detection. Default is off.
1151
1152 @item agent-mouse=[on|off]
1153 Enable/disable passing mouse events via vdagent. Default is on.
1154
1155 @item playback-compression=[on|off]
1156 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1157
1158 @item seamless-migration=[on|off]
1159 Enable/disable spice seamless migration. Default is off.
1160
1161 @item gl=[on|off]
1162 Enable/disable OpenGL context. Default is off.
1163
1164 @item rendernode=<file>
1165 DRM render node for OpenGL rendering. If not specified, it will pick
1166 the first available. (Since 2.9)
1167
1168 @end table
1169 ETEXI
1170
1171 DEF("portrait", 0, QEMU_OPTION_portrait,
1172 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1173 QEMU_ARCH_ALL)
1174 STEXI
1175 @item -portrait
1176 @findex -portrait
1177 Rotate graphical output 90 deg left (only PXA LCD).
1178 ETEXI
1179
1180 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1181 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1182 QEMU_ARCH_ALL)
1183 STEXI
1184 @item -rotate @var{deg}
1185 @findex -rotate
1186 Rotate graphical output some deg left (only PXA LCD).
1187 ETEXI
1188
1189 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1190 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1191 " select video card type\n", QEMU_ARCH_ALL)
1192 STEXI
1193 @item -vga @var{type}
1194 @findex -vga
1195 Select type of VGA card to emulate. Valid values for @var{type} are
1196 @table @option
1197 @item cirrus
1198 Cirrus Logic GD5446 Video card. All Windows versions starting from
1199 Windows 95 should recognize and use this graphic card. For optimal
1200 performances, use 16 bit color depth in the guest and the host OS.
1201 (This card was the default before QEMU 2.2)
1202 @item std
1203 Standard VGA card with Bochs VBE extensions. If your guest OS
1204 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1205 to use high resolution modes (>= 1280x1024x16) then you should use
1206 this option. (This card is the default since QEMU 2.2)
1207 @item vmware
1208 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1209 recent XFree86/XOrg server or Windows guest with a driver for this
1210 card.
1211 @item qxl
1212 QXL paravirtual graphic card. It is VGA compatible (including VESA
1213 2.0 VBE support). Works best with qxl guest drivers installed though.
1214 Recommended choice when using the spice protocol.
1215 @item tcx
1216 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1217 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1218 fixed resolution of 1024x768.
1219 @item cg3
1220 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1221 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1222 resolutions aimed at people wishing to run older Solaris versions.
1223 @item virtio
1224 Virtio VGA card.
1225 @item none
1226 Disable VGA card.
1227 @end table
1228 ETEXI
1229
1230 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1231 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1232 STEXI
1233 @item -full-screen
1234 @findex -full-screen
1235 Start in full screen.
1236 ETEXI
1237
1238 DEF("g", 1, QEMU_OPTION_g ,
1239 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1240 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1241 STEXI
1242 @item -g @var{width}x@var{height}[x@var{depth}]
1243 @findex -g
1244 Set the initial graphical resolution and depth (PPC, SPARC only).
1245 ETEXI
1246
1247 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1248 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1249 STEXI
1250 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1251 @findex -vnc
1252 Normally, if QEMU is compiled with graphical window support, it displays
1253 output such as guest graphics, guest console, and the QEMU monitor in a
1254 window. With this option, you can have QEMU listen on VNC display
1255 @var{display} and redirect the VGA display over the VNC session. It is
1256 very useful to enable the usb tablet device when using this option
1257 (option @option{-usbdevice tablet}). When using the VNC display, you
1258 must use the @option{-k} parameter to set the keyboard layout if you are
1259 not using en-us. Valid syntax for the @var{display} is
1260
1261 @table @option
1262
1263 @item to=@var{L}
1264
1265 With this option, QEMU will try next available VNC @var{display}s, until the
1266 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1267 available, e.g. port 5900+@var{display} is already used by another
1268 application. By default, to=0.
1269
1270 @item @var{host}:@var{d}
1271
1272 TCP connections will only be allowed from @var{host} on display @var{d}.
1273 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1274 be omitted in which case the server will accept connections from any host.
1275
1276 @item unix:@var{path}
1277
1278 Connections will be allowed over UNIX domain sockets where @var{path} is the
1279 location of a unix socket to listen for connections on.
1280
1281 @item none
1282
1283 VNC is initialized but not started. The monitor @code{change} command
1284 can be used to later start the VNC server.
1285
1286 @end table
1287
1288 Following the @var{display} value there may be one or more @var{option} flags
1289 separated by commas. Valid options are
1290
1291 @table @option
1292
1293 @item reverse
1294
1295 Connect to a listening VNC client via a ``reverse'' connection. The
1296 client is specified by the @var{display}. For reverse network
1297 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1298 is a TCP port number, not a display number.
1299
1300 @item websocket
1301
1302 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1303 If a bare @var{websocket} option is given, the Websocket port is
1304 5700+@var{display}. An alternative port can be specified with the
1305 syntax @code{websocket}=@var{port}.
1306
1307 If @var{host} is specified connections will only be allowed from this host.
1308 It is possible to control the websocket listen address independently, using
1309 the syntax @code{websocket}=@var{host}:@var{port}.
1310
1311 If no TLS credentials are provided, the websocket connection runs in
1312 unencrypted mode. If TLS credentials are provided, the websocket connection
1313 requires encrypted client connections.
1314
1315 @item password
1316
1317 Require that password based authentication is used for client connections.
1318
1319 The password must be set separately using the @code{set_password} command in
1320 the @ref{pcsys_monitor}. The syntax to change your password is:
1321 @code{set_password <protocol> <password>} where <protocol> could be either
1322 "vnc" or "spice".
1323
1324 If you would like to change <protocol> password expiration, you should use
1325 @code{expire_password <protocol> <expiration-time>} where expiration time could
1326 be one of the following options: now, never, +seconds or UNIX time of
1327 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1328 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1329 date and time).
1330
1331 You can also use keywords "now" or "never" for the expiration time to
1332 allow <protocol> password to expire immediately or never expire.
1333
1334 @item tls-creds=@var{ID}
1335
1336 Provides the ID of a set of TLS credentials to use to secure the
1337 VNC server. They will apply to both the normal VNC server socket
1338 and the websocket socket (if enabled). Setting TLS credentials
1339 will cause the VNC server socket to enable the VeNCrypt auth
1340 mechanism. The credentials should have been previously created
1341 using the @option{-object tls-creds} argument.
1342
1343 The @option{tls-creds} parameter obsoletes the @option{tls},
1344 @option{x509}, and @option{x509verify} options, and as such
1345 it is not permitted to set both new and old type options at
1346 the same time.
1347
1348 @item tls
1349
1350 Require that client use TLS when communicating with the VNC server. This
1351 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1352 attack. It is recommended that this option be combined with either the
1353 @option{x509} or @option{x509verify} options.
1354
1355 This option is now deprecated in favor of using the @option{tls-creds}
1356 argument.
1357
1358 @item x509=@var{/path/to/certificate/dir}
1359
1360 Valid if @option{tls} is specified. Require that x509 credentials are used
1361 for negotiating the TLS session. The server will send its x509 certificate
1362 to the client. It is recommended that a password be set on the VNC server
1363 to provide authentication of the client when this is used. The path following
1364 this option specifies where the x509 certificates are to be loaded from.
1365 See the @ref{vnc_security} section for details on generating certificates.
1366
1367 This option is now deprecated in favour of using the @option{tls-creds}
1368 argument.
1369
1370 @item x509verify=@var{/path/to/certificate/dir}
1371
1372 Valid if @option{tls} is specified. Require that x509 credentials are used
1373 for negotiating the TLS session. The server will send its x509 certificate
1374 to the client, and request that the client send its own x509 certificate.
1375 The server will validate the client's certificate against the CA certificate,
1376 and reject clients when validation fails. If the certificate authority is
1377 trusted, this is a sufficient authentication mechanism. You may still wish
1378 to set a password on the VNC server as a second authentication layer. The
1379 path following this option specifies where the x509 certificates are to
1380 be loaded from. See the @ref{vnc_security} section for details on generating
1381 certificates.
1382
1383 This option is now deprecated in favour of using the @option{tls-creds}
1384 argument.
1385
1386 @item sasl
1387
1388 Require that the client use SASL to authenticate with the VNC server.
1389 The exact choice of authentication method used is controlled from the
1390 system / user's SASL configuration file for the 'qemu' service. This
1391 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1392 unprivileged user, an environment variable SASL_CONF_PATH can be used
1393 to make it search alternate locations for the service config.
1394 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1395 it is recommended that SASL always be combined with the 'tls' and
1396 'x509' settings to enable use of SSL and server certificates. This
1397 ensures a data encryption preventing compromise of authentication
1398 credentials. See the @ref{vnc_security} section for details on using
1399 SASL authentication.
1400
1401 @item acl
1402
1403 Turn on access control lists for checking of the x509 client certificate
1404 and SASL party. For x509 certs, the ACL check is made against the
1405 certificate's distinguished name. This is something that looks like
1406 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1407 made against the username, which depending on the SASL plugin, may
1408 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1409 When the @option{acl} flag is set, the initial access list will be
1410 empty, with a @code{deny} policy. Thus no one will be allowed to
1411 use the VNC server until the ACLs have been loaded. This can be
1412 achieved using the @code{acl} monitor command.
1413
1414 @item lossy
1415
1416 Enable lossy compression methods (gradient, JPEG, ...). If this
1417 option is set, VNC client may receive lossy framebuffer updates
1418 depending on its encoding settings. Enabling this option can save
1419 a lot of bandwidth at the expense of quality.
1420
1421 @item non-adaptive
1422
1423 Disable adaptive encodings. Adaptive encodings are enabled by default.
1424 An adaptive encoding will try to detect frequently updated screen regions,
1425 and send updates in these regions using a lossy encoding (like JPEG).
1426 This can be really helpful to save bandwidth when playing videos. Disabling
1427 adaptive encodings restores the original static behavior of encodings
1428 like Tight.
1429
1430 @item share=[allow-exclusive|force-shared|ignore]
1431
1432 Set display sharing policy. 'allow-exclusive' allows clients to ask
1433 for exclusive access. As suggested by the rfb spec this is
1434 implemented by dropping other connections. Connecting multiple
1435 clients in parallel requires all clients asking for a shared session
1436 (vncviewer: -shared switch). This is the default. 'force-shared'
1437 disables exclusive client access. Useful for shared desktop sessions,
1438 where you don't want someone forgetting specify -shared disconnect
1439 everybody else. 'ignore' completely ignores the shared flag and
1440 allows everybody connect unconditionally. Doesn't conform to the rfb
1441 spec but is traditional QEMU behavior.
1442
1443 @item key-delay-ms
1444
1445 Set keyboard delay, for key down and key up events, in milliseconds.
1446 Default is 1. Keyboards are low-bandwidth devices, so this slowdown
1447 can help the device and guest to keep up and not lose events in case
1448 events are arriving in bulk. Possible causes for the latter are flaky
1449 network connections, or scripts for automated testing.
1450
1451 @end table
1452 ETEXI
1453
1454 STEXI
1455 @end table
1456 ETEXI
1457 ARCHHEADING(, QEMU_ARCH_I386)
1458
1459 ARCHHEADING(i386 target only, QEMU_ARCH_I386)
1460 STEXI
1461 @table @option
1462 ETEXI
1463
1464 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1465 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1466 QEMU_ARCH_I386)
1467 STEXI
1468 @item -win2k-hack
1469 @findex -win2k-hack
1470 Use it when installing Windows 2000 to avoid a disk full bug. After
1471 Windows 2000 is installed, you no longer need this option (this option
1472 slows down the IDE transfers).
1473 ETEXI
1474
1475 HXCOMM Deprecated by -rtc
1476 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1477
1478 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1479 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1480 QEMU_ARCH_I386)
1481 STEXI
1482 @item -no-fd-bootchk
1483 @findex -no-fd-bootchk
1484 Disable boot signature checking for floppy disks in BIOS. May
1485 be needed to boot from old floppy disks.
1486 ETEXI
1487
1488 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1489 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1490 STEXI
1491 @item -no-acpi
1492 @findex -no-acpi
1493 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1494 it if your guest OS complains about ACPI problems (PC target machine
1495 only).
1496 ETEXI
1497
1498 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1499 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1500 STEXI
1501 @item -no-hpet
1502 @findex -no-hpet
1503 Disable HPET support.
1504 ETEXI
1505
1506 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1507 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1508 " ACPI table description\n", QEMU_ARCH_I386)
1509 STEXI
1510 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1511 @findex -acpitable
1512 Add ACPI table with specified header fields and context from specified files.
1513 For file=, take whole ACPI table from the specified files, including all
1514 ACPI headers (possible overridden by other options).
1515 For data=, only data
1516 portion of the table is used, all header information is specified in the
1517 command line.
1518 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1519 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1520 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1521 spec.
1522 ETEXI
1523
1524 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1525 "-smbios file=binary\n"
1526 " load SMBIOS entry from binary file\n"
1527 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1528 " [,uefi=on|off]\n"
1529 " specify SMBIOS type 0 fields\n"
1530 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1531 " [,uuid=uuid][,sku=str][,family=str]\n"
1532 " specify SMBIOS type 1 fields\n"
1533 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1534 " [,asset=str][,location=str]\n"
1535 " specify SMBIOS type 2 fields\n"
1536 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1537 " [,sku=str]\n"
1538 " specify SMBIOS type 3 fields\n"
1539 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1540 " [,asset=str][,part=str]\n"
1541 " specify SMBIOS type 4 fields\n"
1542 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1543 " [,asset=str][,part=str][,speed=%d]\n"
1544 " specify SMBIOS type 17 fields\n",
1545 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1546 STEXI
1547 @item -smbios file=@var{binary}
1548 @findex -smbios
1549 Load SMBIOS entry from binary file.
1550
1551 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1552 Specify SMBIOS type 0 fields
1553
1554 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1555 Specify SMBIOS type 1 fields
1556
1557 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1558 Specify SMBIOS type 2 fields
1559
1560 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1561 Specify SMBIOS type 3 fields
1562
1563 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1564 Specify SMBIOS type 4 fields
1565
1566 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1567 Specify SMBIOS type 17 fields
1568 ETEXI
1569
1570 STEXI
1571 @end table
1572 ETEXI
1573 DEFHEADING()
1574
1575 DEFHEADING(Network options)
1576 STEXI
1577 @table @option
1578 ETEXI
1579
1580 HXCOMM Legacy slirp options (now moved to -net user):
1581 #ifdef CONFIG_SLIRP
1582 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1583 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1584 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1585 #ifndef _WIN32
1586 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1587 #endif
1588 #endif
1589
1590 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1591 #ifdef CONFIG_SLIRP
1592 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1593 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1594 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1595 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,tftp=dir]\n"
1596 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1597 #ifndef _WIN32
1598 "[,smb=dir[,smbserver=addr]]\n"
1599 #endif
1600 " configure a user mode network backend with ID 'str',\n"
1601 " its DHCP server and optional services\n"
1602 #endif
1603 #ifdef _WIN32
1604 "-netdev tap,id=str,ifname=name\n"
1605 " configure a host TAP network backend with ID 'str'\n"
1606 #else
1607 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1608 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1609 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1610 " [,poll-us=n]\n"
1611 " configure a host TAP network backend with ID 'str'\n"
1612 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1613 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1614 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1615 " to deconfigure it\n"
1616 " use '[down]script=no' to disable script execution\n"
1617 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1618 " configure it\n"
1619 " use 'fd=h' to connect to an already opened TAP interface\n"
1620 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1621 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1622 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1623 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1624 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1625 " use vhost=on to enable experimental in kernel accelerator\n"
1626 " (only has effect for virtio guests which use MSIX)\n"
1627 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1628 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1629 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1630 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1631 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1632 " spent on busy polling for vhost net\n"
1633 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1634 " configure a host TAP network backend with ID 'str' that is\n"
1635 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1636 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1637 #endif
1638 #ifdef __linux__
1639 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1640 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1641 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1642 " [,rxcookie=rxcookie][,offset=offset]\n"
1643 " configure a network backend with ID 'str' connected to\n"
1644 " an Ethernet over L2TPv3 pseudowire.\n"
1645 " Linux kernel 3.3+ as well as most routers can talk\n"
1646 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1647 " VM to a router and even VM to Host. It is a nearly-universal\n"
1648 " standard (RFC3391). Note - this implementation uses static\n"
1649 " pre-configured tunnels (same as the Linux kernel).\n"
1650 " use 'src=' to specify source address\n"
1651 " use 'dst=' to specify destination address\n"
1652 " use 'udp=on' to specify udp encapsulation\n"
1653 " use 'srcport=' to specify source udp port\n"
1654 " use 'dstport=' to specify destination udp port\n"
1655 " use 'ipv6=on' to force v6\n"
1656 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1657 " well as a weak security measure\n"
1658 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1659 " use 'txcookie=0x012345678' to specify a txcookie\n"
1660 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1661 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1662 " use 'pincounter=on' to work around broken counter handling in peer\n"
1663 " use 'offset=X' to add an extra offset between header and data\n"
1664 #endif
1665 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1666 " configure a network backend to connect to another network\n"
1667 " using a socket connection\n"
1668 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1669 " configure a network backend to connect to a multicast maddr and port\n"
1670 " use 'localaddr=addr' to specify the host address to send packets from\n"
1671 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1672 " configure a network backend to connect to another network\n"
1673 " using an UDP tunnel\n"
1674 #ifdef CONFIG_VDE
1675 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1676 " configure a network backend to connect to port 'n' of a vde switch\n"
1677 " running on host and listening for incoming connections on 'socketpath'.\n"
1678 " Use group 'groupname' and mode 'octalmode' to change default\n"
1679 " ownership and permissions for communication port.\n"
1680 #endif
1681 #ifdef CONFIG_NETMAP
1682 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1683 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1684 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1685 " netmap device, defaults to '/dev/netmap')\n"
1686 #endif
1687 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1688 " configure a vhost-user network, backed by a chardev 'dev'\n"
1689 "-netdev hubport,id=str,hubid=n\n"
1690 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
1691 DEF("net", HAS_ARG, QEMU_OPTION_net,
1692 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1693 " old way to create a new NIC and connect it to VLAN 'n'\n"
1694 " (use the '-device devtype,netdev=str' option if possible instead)\n"
1695 "-net dump[,vlan=n][,file=f][,len=n]\n"
1696 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
1697 "-net none use it alone to have zero network devices. If no -net option\n"
1698 " is provided, the default is '-net nic -net user'\n"
1699 "-net ["
1700 #ifdef CONFIG_SLIRP
1701 "user|"
1702 #endif
1703 "tap|"
1704 "bridge|"
1705 #ifdef CONFIG_VDE
1706 "vde|"
1707 #endif
1708 #ifdef CONFIG_NETMAP
1709 "netmap|"
1710 #endif
1711 "socket][,vlan=n][,option][,option][,...]\n"
1712 " old way to initialize a host network interface\n"
1713 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1714 STEXI
1715 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
1716 @findex -net
1717 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
1718 = 0 is the default). The NIC is an e1000 by default on the PC
1719 target. Optionally, the MAC address can be changed to @var{mac}, the
1720 device address set to @var{addr} (PCI cards only),
1721 and a @var{name} can be assigned for use in monitor commands.
1722 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
1723 that the card should have; this option currently only affects virtio cards; set
1724 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
1725 NIC is created. QEMU can emulate several different models of network card.
1726 Valid values for @var{type} are
1727 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
1728 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
1729 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
1730 Not all devices are supported on all targets. Use @code{-net nic,model=help}
1731 for a list of available devices for your target.
1732
1733 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1734 @findex -netdev
1735 @item -net user[,@var{option}][,@var{option}][,...]
1736 Use the user mode network stack which requires no administrator
1737 privilege to run. Valid options are:
1738
1739 @table @option
1740 @item vlan=@var{n}
1741 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
1742
1743 @item id=@var{id}
1744 @itemx name=@var{name}
1745 Assign symbolic name for use in monitor commands.
1746
1747 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must
1748 be enabled. If neither is specified both protocols are enabled.
1749
1750 @item net=@var{addr}[/@var{mask}]
1751 Set IP network address the guest will see. Optionally specify the netmask,
1752 either in the form a.b.c.d or as number of valid top-most bits. Default is
1753 10.0.2.0/24.
1754
1755 @item host=@var{addr}
1756 Specify the guest-visible address of the host. Default is the 2nd IP in the
1757 guest network, i.e. x.x.x.2.
1758
1759 @item ipv6-net=@var{addr}[/@var{int}]
1760 Set IPv6 network address the guest will see (default is fec0::/64). The
1761 network prefix is given in the usual hexadecimal IPv6 address
1762 notation. The prefix size is optional, and is given as the number of
1763 valid top-most bits (default is 64).
1764
1765 @item ipv6-host=@var{addr}
1766 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
1767 the guest network, i.e. xxxx::2.
1768
1769 @item restrict=on|off
1770 If this option is enabled, the guest will be isolated, i.e. it will not be
1771 able to contact the host and no guest IP packets will be routed over the host
1772 to the outside. This option does not affect any explicitly set forwarding rules.
1773
1774 @item hostname=@var{name}
1775 Specifies the client hostname reported by the built-in DHCP server.
1776
1777 @item dhcpstart=@var{addr}
1778 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
1779 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
1780
1781 @item dns=@var{addr}
1782 Specify the guest-visible address of the virtual nameserver. The address must
1783 be different from the host address. Default is the 3rd IP in the guest network,
1784 i.e. x.x.x.3.
1785
1786 @item ipv6-dns=@var{addr}
1787 Specify the guest-visible address of the IPv6 virtual nameserver. The address
1788 must be different from the host address. Default is the 3rd IP in the guest
1789 network, i.e. xxxx::3.
1790
1791 @item dnssearch=@var{domain}
1792 Provides an entry for the domain-search list sent by the built-in
1793 DHCP server. More than one domain suffix can be transmitted by specifying
1794 this option multiple times. If supported, this will cause the guest to
1795 automatically try to append the given domain suffix(es) in case a domain name
1796 can not be resolved.
1797
1798 Example:
1799 @example
1800 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
1801 @end example
1802
1803 @item tftp=@var{dir}
1804 When using the user mode network stack, activate a built-in TFTP
1805 server. The files in @var{dir} will be exposed as the root of a TFTP server.
1806 The TFTP client on the guest must be configured in binary mode (use the command
1807 @code{bin} of the Unix TFTP client).
1808
1809 @item bootfile=@var{file}
1810 When using the user mode network stack, broadcast @var{file} as the BOOTP
1811 filename. In conjunction with @option{tftp}, this can be used to network boot
1812 a guest from a local directory.
1813
1814 Example (using pxelinux):
1815 @example
1816 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
1817 @end example
1818
1819 @item smb=@var{dir}[,smbserver=@var{addr}]
1820 When using the user mode network stack, activate a built-in SMB
1821 server so that Windows OSes can access to the host files in @file{@var{dir}}
1822 transparently. The IP address of the SMB server can be set to @var{addr}. By
1823 default the 4th IP in the guest network is used, i.e. x.x.x.4.
1824
1825 In the guest Windows OS, the line:
1826 @example
1827 10.0.2.4 smbserver
1828 @end example
1829 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
1830 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
1831
1832 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
1833
1834 Note that a SAMBA server must be installed on the host OS.
1835 QEMU was tested successfully with smbd versions from Red Hat 9,
1836 Fedora Core 3 and OpenSUSE 11.x.
1837
1838 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
1839 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
1840 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
1841 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
1842 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
1843 be bound to a specific host interface. If no connection type is set, TCP is
1844 used. This option can be given multiple times.
1845
1846 For example, to redirect host X11 connection from screen 1 to guest
1847 screen 0, use the following:
1848
1849 @example
1850 # on the host
1851 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
1852 # this host xterm should open in the guest X11 server
1853 xterm -display :1
1854 @end example
1855
1856 To redirect telnet connections from host port 5555 to telnet port on
1857 the guest, use the following:
1858
1859 @example
1860 # on the host
1861 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
1862 telnet localhost 5555
1863 @end example
1864
1865 Then when you use on the host @code{telnet localhost 5555}, you
1866 connect to the guest telnet server.
1867
1868 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
1869 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
1870 Forward guest TCP connections to the IP address @var{server} on port @var{port}
1871 to the character device @var{dev} or to a program executed by @var{cmd:command}
1872 which gets spawned for each connection. This option can be given multiple times.
1873
1874 You can either use a chardev directly and have that one used throughout QEMU's
1875 lifetime, like in the following example:
1876
1877 @example
1878 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
1879 # the guest accesses it
1880 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
1881 @end example
1882
1883 Or you can execute a command on every TCP connection established by the guest,
1884 so that QEMU behaves similar to an inetd process for that virtual server:
1885
1886 @example
1887 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
1888 # and connect the TCP stream to its stdin/stdout
1889 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
1890 @end example
1891
1892 @end table
1893
1894 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
1895 processed and applied to -net user. Mixing them with the new configuration
1896 syntax gives undefined results. Their use for new applications is discouraged
1897 as they will be removed from future versions.
1898
1899 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1900 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1901 Connect the host TAP network interface @var{name} to VLAN @var{n}.
1902
1903 Use the network script @var{file} to configure it and the network script
1904 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
1905 automatically provides one. The default network configure script is
1906 @file{/etc/qemu-ifup} and the default network deconfigure script is
1907 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
1908 to disable script execution.
1909
1910 If running QEMU as an unprivileged user, use the network helper
1911 @var{helper} to configure the TAP interface and attach it to the bridge.
1912 The default network helper executable is @file{/path/to/qemu-bridge-helper}
1913 and the default bridge device is @file{br0}.
1914
1915 @option{fd}=@var{h} can be used to specify the handle of an already
1916 opened host TAP interface.
1917
1918 Examples:
1919
1920 @example
1921 #launch a QEMU instance with the default network script
1922 qemu-system-i386 linux.img -net nic -net tap
1923 @end example
1924
1925 @example
1926 #launch a QEMU instance with two NICs, each one connected
1927 #to a TAP device
1928 qemu-system-i386 linux.img \
1929 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
1930 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
1931 @end example
1932
1933 @example
1934 #launch a QEMU instance with the default network helper to
1935 #connect a TAP device to bridge br0
1936 qemu-system-i386 linux.img \
1937 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
1938 @end example
1939
1940 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
1941 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
1942 Connect a host TAP network interface to a host bridge device.
1943
1944 Use the network helper @var{helper} to configure the TAP interface and
1945 attach it to the bridge. The default network helper executable is
1946 @file{/path/to/qemu-bridge-helper} and the default bridge
1947 device is @file{br0}.
1948
1949 Examples:
1950
1951 @example
1952 #launch a QEMU instance with the default network helper to
1953 #connect a TAP device to bridge br0
1954 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
1955 @end example
1956
1957 @example
1958 #launch a QEMU instance with the default network helper to
1959 #connect a TAP device to bridge qemubr0
1960 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
1961 @end example
1962
1963 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1964 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1965
1966 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
1967 machine using a TCP socket connection. If @option{listen} is
1968 specified, QEMU waits for incoming connections on @var{port}
1969 (@var{host} is optional). @option{connect} is used to connect to
1970 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
1971 specifies an already opened TCP socket.
1972
1973 Example:
1974 @example
1975 # launch a first QEMU instance
1976 qemu-system-i386 linux.img \
1977 -net nic,macaddr=52:54:00:12:34:56 \
1978 -net socket,listen=:1234
1979 # connect the VLAN 0 of this instance to the VLAN 0
1980 # of the first instance
1981 qemu-system-i386 linux.img \
1982 -net nic,macaddr=52:54:00:12:34:57 \
1983 -net socket,connect=127.0.0.1:1234
1984 @end example
1985
1986 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1987 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1988
1989 Create a VLAN @var{n} shared with another QEMU virtual
1990 machines using a UDP multicast socket, effectively making a bus for
1991 every QEMU with same multicast address @var{maddr} and @var{port}.
1992 NOTES:
1993 @enumerate
1994 @item
1995 Several QEMU can be running on different hosts and share same bus (assuming
1996 correct multicast setup for these hosts).
1997 @item
1998 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1999 @url{http://user-mode-linux.sf.net}.
2000 @item
2001 Use @option{fd=h} to specify an already opened UDP multicast socket.
2002 @end enumerate
2003
2004 Example:
2005 @example
2006 # launch one QEMU instance
2007 qemu-system-i386 linux.img \
2008 -net nic,macaddr=52:54:00:12:34:56 \
2009 -net socket,mcast=230.0.0.1:1234
2010 # launch another QEMU instance on same "bus"
2011 qemu-system-i386 linux.img \
2012 -net nic,macaddr=52:54:00:12:34:57 \
2013 -net socket,mcast=230.0.0.1:1234
2014 # launch yet another QEMU instance on same "bus"
2015 qemu-system-i386 linux.img \
2016 -net nic,macaddr=52:54:00:12:34:58 \
2017 -net socket,mcast=230.0.0.1:1234
2018 @end example
2019
2020 Example (User Mode Linux compat.):
2021 @example
2022 # launch QEMU instance (note mcast address selected
2023 # is UML's default)
2024 qemu-system-i386 linux.img \
2025 -net nic,macaddr=52:54:00:12:34:56 \
2026 -net socket,mcast=239.192.168.1:1102
2027 # launch UML
2028 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2029 @end example
2030
2031 Example (send packets from host's 1.2.3.4):
2032 @example
2033 qemu-system-i386 linux.img \
2034 -net nic,macaddr=52:54:00:12:34:56 \
2035 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2036 @end example
2037
2038 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2039 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2040 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
2041 protocol to transport Ethernet (and other Layer 2) data frames between
2042 two systems. It is present in routers, firewalls and the Linux kernel
2043 (from version 3.3 onwards).
2044
2045 This transport allows a VM to communicate to another VM, router or firewall directly.
2046
2047 @item src=@var{srcaddr}
2048 source address (mandatory)
2049 @item dst=@var{dstaddr}
2050 destination address (mandatory)
2051 @item udp
2052 select udp encapsulation (default is ip).
2053 @item srcport=@var{srcport}
2054 source udp port.
2055 @item dstport=@var{dstport}
2056 destination udp port.
2057 @item ipv6
2058 force v6, otherwise defaults to v4.
2059 @item rxcookie=@var{rxcookie}
2060 @itemx txcookie=@var{txcookie}
2061 Cookies are a weak form of security in the l2tpv3 specification.
2062 Their function is mostly to prevent misconfiguration. By default they are 32
2063 bit.
2064 @item cookie64
2065 Set cookie size to 64 bit instead of the default 32
2066 @item counter=off
2067 Force a 'cut-down' L2TPv3 with no counter as in
2068 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2069 @item pincounter=on
2070 Work around broken counter handling in peer. This may also help on
2071 networks which have packet reorder.
2072 @item offset=@var{offset}
2073 Add an extra offset between header and data
2074
2075 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2076 on the remote Linux host 1.2.3.4:
2077 @example
2078 # Setup tunnel on linux host using raw ip as encapsulation
2079 # on 1.2.3.4
2080 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2081 encap udp udp_sport 16384 udp_dport 16384
2082 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2083 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2084 ifconfig vmtunnel0 mtu 1500
2085 ifconfig vmtunnel0 up
2086 brctl addif br-lan vmtunnel0
2087
2088
2089 # on 4.3.2.1
2090 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2091
2092 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2093
2094
2095 @end example
2096
2097 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2098 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2099 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2100 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2101 and MODE @var{octalmode} to change default ownership and permissions for
2102 communication port. This option is only available if QEMU has been compiled
2103 with vde support enabled.
2104
2105 Example:
2106 @example
2107 # launch vde switch
2108 vde_switch -F -sock /tmp/myswitch
2109 # launch QEMU instance
2110 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2111 @end example
2112
2113 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2114
2115 Create a hub port on QEMU "vlan" @var{hubid}.
2116
2117 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2118 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2119 required hub automatically.
2120
2121 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2122
2123 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2124 be a unix domain socket backed one. The vhost-user uses a specifically defined
2125 protocol to pass vhost ioctl replacement messages to an application on the other
2126 end of the socket. On non-MSIX guests, the feature can be forced with
2127 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2128 be created for multiqueue vhost-user.
2129
2130 Example:
2131 @example
2132 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2133 -numa node,memdev=mem \
2134 -chardev socket,path=/path/to/socket \
2135 -netdev type=vhost-user,id=net0,chardev=chr0 \
2136 -device virtio-net-pci,netdev=net0
2137 @end example
2138
2139 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2140 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2141 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2142 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2143 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2144
2145 @item -net none
2146 Indicate that no network devices should be configured. It is used to
2147 override the default configuration (@option{-net nic -net user}) which
2148 is activated if no @option{-net} options are provided.
2149 ETEXI
2150
2151 STEXI
2152 @end table
2153 ETEXI
2154 DEFHEADING()
2155
2156 DEFHEADING(Character device options)
2157 STEXI
2158
2159 The general form of a character device option is:
2160 @table @option
2161 ETEXI
2162
2163 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2164 "-chardev help\n"
2165 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2166 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2167 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2168 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2169 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2170 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2171 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2172 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2173 " [,logfile=PATH][,logappend=on|off]\n"
2174 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2175 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2176 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2177 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2178 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2179 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2180 #ifdef _WIN32
2181 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2182 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2183 #else
2184 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2185 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2186 #endif
2187 #ifdef CONFIG_BRLAPI
2188 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2189 #endif
2190 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2191 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2192 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2193 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2194 #endif
2195 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2196 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2197 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2198 #endif
2199 #if defined(CONFIG_SPICE)
2200 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2201 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2202 #endif
2203 , QEMU_ARCH_ALL
2204 )
2205
2206 STEXI
2207 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2208 @findex -chardev
2209 Backend is one of:
2210 @option{null},
2211 @option{socket},
2212 @option{udp},
2213 @option{msmouse},
2214 @option{vc},
2215 @option{ringbuf},
2216 @option{file},
2217 @option{pipe},
2218 @option{console},
2219 @option{serial},
2220 @option{pty},
2221 @option{stdio},
2222 @option{braille},
2223 @option{tty},
2224 @option{parallel},
2225 @option{parport},
2226 @option{spicevmc}.
2227 @option{spiceport}.
2228 The specific backend will determine the applicable options.
2229
2230 Use "-chardev help" to print all available chardev backend types.
2231
2232 All devices must have an id, which can be any string up to 127 characters long.
2233 It is used to uniquely identify this device in other command line directives.
2234
2235 A character device may be used in multiplexing mode by multiple front-ends.
2236 Specify @option{mux=on} to enable this mode.
2237 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2238 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2239 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2240 create a multiplexer with your specified ID, and you can then configure multiple
2241 front ends to use that chardev ID for their input/output. Up to four different
2242 front ends can be connected to a single multiplexed chardev. (Without
2243 multiplexing enabled, a chardev can only be used by a single front end.)
2244 For instance you could use this to allow a single stdio chardev to be used by
2245 two serial ports and the QEMU monitor:
2246
2247 @example
2248 -chardev stdio,mux=on,id=char0 \
2249 -mon chardev=char0,mode=readline \
2250 -serial chardev:char0 \
2251 -serial chardev:char0
2252 @end example
2253
2254 You can have more than one multiplexer in a system configuration; for instance
2255 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2256 multiplexed between the QEMU monitor and a parallel port:
2257
2258 @example
2259 -chardev stdio,mux=on,id=char0 \
2260 -mon chardev=char0,mode=readline \
2261 -parallel chardev:char0 \
2262 -chardev tcp,...,mux=on,id=char1 \
2263 -serial chardev:char1 \
2264 -serial chardev:char1
2265 @end example
2266
2267 When you're using a multiplexed character device, some escape sequences are
2268 interpreted in the input. @xref{mux_keys, Keys in the character backend
2269 multiplexer}.
2270
2271 Note that some other command line options may implicitly create multiplexed
2272 character backends; for instance @option{-serial mon:stdio} creates a
2273 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2274 and @option{-nographic} also multiplexes the console and the monitor to
2275 stdio.
2276
2277 There is currently no support for multiplexing in the other direction
2278 (where a single QEMU front end takes input and output from multiple chardevs).
2279
2280 Every backend supports the @option{logfile} option, which supplies the path
2281 to a file to record all data transmitted via the backend. The @option{logappend}
2282 option controls whether the log file will be truncated or appended to when
2283 opened.
2284
2285 Further options to each backend are described below.
2286
2287 @item -chardev null ,id=@var{id}
2288 A void device. This device will not emit any data, and will drop any data it
2289 receives. The null backend does not take any options.
2290
2291 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}]
2292
2293 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2294 unix socket will be created if @option{path} is specified. Behaviour is
2295 undefined if TCP options are specified for a unix socket.
2296
2297 @option{server} specifies that the socket shall be a listening socket.
2298
2299 @option{nowait} specifies that QEMU should not block waiting for a client to
2300 connect to a listening socket.
2301
2302 @option{telnet} specifies that traffic on the socket should interpret telnet
2303 escape sequences.
2304
2305 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2306 the remote end goes away. qemu will delay this many seconds and then attempt
2307 to reconnect. Zero disables reconnecting, and is the default.
2308
2309 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2310 and specifies the id of the TLS credentials to use for the handshake. The
2311 credentials must be previously created with the @option{-object tls-creds}
2312 argument.
2313
2314 TCP and unix socket options are given below:
2315
2316 @table @option
2317
2318 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2319
2320 @option{host} for a listening socket specifies the local address to be bound.
2321 For a connecting socket species the remote host to connect to. @option{host} is
2322 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2323
2324 @option{port} for a listening socket specifies the local port to be bound. For a
2325 connecting socket specifies the port on the remote host to connect to.
2326 @option{port} can be given as either a port number or a service name.
2327 @option{port} is required.
2328
2329 @option{to} is only relevant to listening sockets. If it is specified, and
2330 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2331 to and including @option{to} until it succeeds. @option{to} must be specified
2332 as a port number.
2333
2334 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2335 If neither is specified the socket may use either protocol.
2336
2337 @option{nodelay} disables the Nagle algorithm.
2338
2339 @item unix options: path=@var{path}
2340
2341 @option{path} specifies the local path of the unix socket. @option{path} is
2342 required.
2343
2344 @end table
2345
2346 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2347
2348 Sends all traffic from the guest to a remote host over UDP.
2349
2350 @option{host} specifies the remote host to connect to. If not specified it
2351 defaults to @code{localhost}.
2352
2353 @option{port} specifies the port on the remote host to connect to. @option{port}
2354 is required.
2355
2356 @option{localaddr} specifies the local address to bind to. If not specified it
2357 defaults to @code{0.0.0.0}.
2358
2359 @option{localport} specifies the local port to bind to. If not specified any
2360 available local port will be used.
2361
2362 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2363 If neither is specified the device may use either protocol.
2364
2365 @item -chardev msmouse ,id=@var{id}
2366
2367 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2368 take any options.
2369
2370 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2371
2372 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2373 size.
2374
2375 @option{width} and @option{height} specify the width and height respectively of
2376 the console, in pixels.
2377
2378 @option{cols} and @option{rows} specify that the console be sized to fit a text
2379 console with the given dimensions.
2380
2381 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2382
2383 Create a ring buffer with fixed size @option{size}.
2384 @var{size} must be a power of two and defaults to @code{64K}.
2385
2386 @item -chardev file ,id=@var{id} ,path=@var{path}
2387
2388 Log all traffic received from the guest to a file.
2389
2390 @option{path} specifies the path of the file to be opened. This file will be
2391 created if it does not already exist, and overwritten if it does. @option{path}
2392 is required.
2393
2394 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2395
2396 Create a two-way connection to the guest. The behaviour differs slightly between
2397 Windows hosts and other hosts:
2398
2399 On Windows, a single duplex pipe will be created at
2400 @file{\\.pipe\@option{path}}.
2401
2402 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2403 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2404 received by the guest. Data written by the guest can be read from
2405 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2406 be present.
2407
2408 @option{path} forms part of the pipe path as described above. @option{path} is
2409 required.
2410
2411 @item -chardev console ,id=@var{id}
2412
2413 Send traffic from the guest to QEMU's standard output. @option{console} does not
2414 take any options.
2415
2416 @option{console} is only available on Windows hosts.
2417
2418 @item -chardev serial ,id=@var{id} ,path=@option{path}
2419
2420 Send traffic from the guest to a serial device on the host.
2421
2422 On Unix hosts serial will actually accept any tty device,
2423 not only serial lines.
2424
2425 @option{path} specifies the name of the serial device to open.
2426
2427 @item -chardev pty ,id=@var{id}
2428
2429 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2430 not take any options.
2431
2432 @option{pty} is not available on Windows hosts.
2433
2434 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2435 Connect to standard input and standard output of the QEMU process.
2436
2437 @option{signal} controls if signals are enabled on the terminal, that includes
2438 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2439 default, use @option{signal=off} to disable it.
2440
2441 @item -chardev braille ,id=@var{id}
2442
2443 Connect to a local BrlAPI server. @option{braille} does not take any options.
2444
2445 @item -chardev tty ,id=@var{id} ,path=@var{path}
2446
2447 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2448 DragonFlyBSD hosts. It is an alias for @option{serial}.
2449
2450 @option{path} specifies the path to the tty. @option{path} is required.
2451
2452 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2453 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2454
2455 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2456
2457 Connect to a local parallel port.
2458
2459 @option{path} specifies the path to the parallel port device. @option{path} is
2460 required.
2461
2462 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2463
2464 @option{spicevmc} is only available when spice support is built in.
2465
2466 @option{debug} debug level for spicevmc
2467
2468 @option{name} name of spice channel to connect to
2469
2470 Connect to a spice virtual machine channel, such as vdiport.
2471
2472 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2473
2474 @option{spiceport} is only available when spice support is built in.
2475
2476 @option{debug} debug level for spicevmc
2477
2478 @option{name} name of spice port to connect to
2479
2480 Connect to a spice port, allowing a Spice client to handle the traffic
2481 identified by a name (preferably a fqdn).
2482 ETEXI
2483
2484 STEXI
2485 @end table
2486 ETEXI
2487 DEFHEADING()
2488
2489 DEFHEADING(Device URL Syntax)
2490 STEXI
2491
2492 In addition to using normal file images for the emulated storage devices,
2493 QEMU can also use networked resources such as iSCSI devices. These are
2494 specified using a special URL syntax.
2495
2496 @table @option
2497 @item iSCSI
2498 iSCSI support allows QEMU to access iSCSI resources directly and use as
2499 images for the guest storage. Both disk and cdrom images are supported.
2500
2501 Syntax for specifying iSCSI LUNs is
2502 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2503
2504 By default qemu will use the iSCSI initiator-name
2505 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2506 line or a configuration file.
2507
2508 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2509 stalled requests and force a reestablishment of the session. The timeout
2510 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2511 1.15.0 or greater is required for this feature.
2512
2513 Example (without authentication):
2514 @example
2515 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2516 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2517 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2518 @end example
2519
2520 Example (CHAP username/password via URL):
2521 @example
2522 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2523 @end example
2524
2525 Example (CHAP username/password via environment variables):
2526 @example
2527 LIBISCSI_CHAP_USERNAME="user" \
2528 LIBISCSI_CHAP_PASSWORD="password" \
2529 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2530 @end example
2531
2532 iSCSI support is an optional feature of QEMU and only available when
2533 compiled and linked against libiscsi.
2534 ETEXI
2535 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2536 "-iscsi [user=user][,password=password]\n"
2537 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2538 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2539 " [,timeout=timeout]\n"
2540 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2541 STEXI
2542
2543 iSCSI parameters such as username and password can also be specified via
2544 a configuration file. See qemu-doc for more information and examples.
2545
2546 @item NBD
2547 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2548 as Unix Domain Sockets.
2549
2550 Syntax for specifying a NBD device using TCP
2551 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2552
2553 Syntax for specifying a NBD device using Unix Domain Sockets
2554 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2555
2556
2557 Example for TCP
2558 @example
2559 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2560 @end example
2561
2562 Example for Unix Domain Sockets
2563 @example
2564 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2565 @end example
2566
2567 @item SSH
2568 QEMU supports SSH (Secure Shell) access to remote disks.
2569
2570 Examples:
2571 @example
2572 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2573 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2574 @end example
2575
2576 Currently authentication must be done using ssh-agent. Other
2577 authentication methods may be supported in future.
2578
2579 @item Sheepdog
2580 Sheepdog is a distributed storage system for QEMU.
2581 QEMU supports using either local sheepdog devices or remote networked
2582 devices.
2583
2584 Syntax for specifying a sheepdog device
2585 @example
2586 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2587 @end example
2588
2589 Example
2590 @example
2591 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2592 @end example
2593
2594 See also @url{http://http://www.osrg.net/sheepdog/}.
2595
2596 @item GlusterFS
2597 GlusterFS is a user space distributed file system.
2598 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2599 TCP, Unix Domain Sockets and RDMA transport protocols.
2600
2601 Syntax for specifying a VM disk image on GlusterFS volume is
2602 @example
2603
2604 URI:
2605 gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
2606
2607 JSON:
2608 'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
2609 @ "server":[@{"type":"tcp","host":"...","port":"..."@},
2610 @ @{"type":"unix","socket":"..."@}]@}@}'
2611 @end example
2612
2613
2614 Example
2615 @example
2616 URI:
2617 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
2618 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log
2619
2620 JSON:
2621 qemu-system-x86_64 'json:@{"driver":"qcow2",
2622 @ "file":@{"driver":"gluster",
2623 @ "volume":"testvol","path":"a.img",
2624 @ "debug":9,"logfile":"/var/log/qemu-gluster.log",
2625 @ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
2626 @ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
2627 qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
2628 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
2629 @ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
2630 @ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
2631 @end example
2632
2633 See also @url{http://www.gluster.org}.
2634
2635 @item HTTP/HTTPS/FTP/FTPS
2636 QEMU supports read-only access to files accessed over http(s) and ftp(s).
2637
2638 Syntax using a single filename:
2639 @example
2640 <protocol>://[<username>[:<password>]@@]<host>/<path>
2641 @end example
2642
2643 where:
2644 @table @option
2645 @item protocol
2646 'http', 'https', 'ftp', or 'ftps'.
2647
2648 @item username
2649 Optional username for authentication to the remote server.
2650
2651 @item password
2652 Optional password for authentication to the remote server.
2653
2654 @item host
2655 Address of the remote server.
2656
2657 @item path
2658 Path on the remote server, including any query string.
2659 @end table
2660
2661 The following options are also supported:
2662 @table @option
2663 @item url
2664 The full URL when passing options to the driver explicitly.
2665
2666 @item readahead
2667 The amount of data to read ahead with each range request to the remote server.
2668 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
2669 does not have a suffix, it will be assumed to be in bytes. The value must be a
2670 multiple of 512 bytes. It defaults to 256k.
2671
2672 @item sslverify
2673 Whether to verify the remote server's certificate when connecting over SSL. It
2674 can have the value 'on' or 'off'. It defaults to 'on'.
2675
2676 @item cookie
2677 Send this cookie (it can also be a list of cookies separated by ';') with
2678 each outgoing request. Only supported when using protocols such as HTTP
2679 which support cookies, otherwise ignored.
2680
2681 @item timeout
2682 Set the timeout in seconds of the CURL connection. This timeout is the time
2683 that CURL waits for a response from the remote server to get the size of the
2684 image to be downloaded. If not set, the default timeout of 5 seconds is used.
2685 @end table
2686
2687 Note that when passing options to qemu explicitly, @option{driver} is the value
2688 of <protocol>.
2689
2690 Example: boot from a remote Fedora 20 live ISO image
2691 @example
2692 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2693
2694 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2695 @end example
2696
2697 Example: boot from a remote Fedora 20 cloud image using a local overlay for
2698 writes, copy-on-read, and a readahead of 64k
2699 @example
2700 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
2701
2702 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
2703 @end example
2704
2705 Example: boot from an image stored on a VMware vSphere server with a self-signed
2706 certificate using a local overlay for writes, a readahead of 64k and a timeout
2707 of 10 seconds.
2708 @example
2709 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
2710
2711 qemu-system-x86_64 -drive file=/tmp/test.qcow2
2712 @end example
2713 ETEXI
2714
2715 STEXI
2716 @end table
2717 ETEXI
2718
2719 DEFHEADING(Bluetooth(R) options)
2720 STEXI
2721 @table @option
2722 ETEXI
2723
2724 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2725 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2726 "-bt hci,host[:id]\n" \
2727 " use host's HCI with the given name\n" \
2728 "-bt hci[,vlan=n]\n" \
2729 " emulate a standard HCI in virtual scatternet 'n'\n" \
2730 "-bt vhci[,vlan=n]\n" \
2731 " add host computer to virtual scatternet 'n' using VHCI\n" \
2732 "-bt device:dev[,vlan=n]\n" \
2733 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2734 QEMU_ARCH_ALL)
2735 STEXI
2736 @item -bt hci[...]
2737 @findex -bt
2738 Defines the function of the corresponding Bluetooth HCI. -bt options
2739 are matched with the HCIs present in the chosen machine type. For
2740 example when emulating a machine with only one HCI built into it, only
2741 the first @code{-bt hci[...]} option is valid and defines the HCI's
2742 logic. The Transport Layer is decided by the machine type. Currently
2743 the machines @code{n800} and @code{n810} have one HCI and all other
2744 machines have none.
2745
2746 @anchor{bt-hcis}
2747 The following three types are recognized:
2748
2749 @table @option
2750 @item -bt hci,null
2751 (default) The corresponding Bluetooth HCI assumes no internal logic
2752 and will not respond to any HCI commands or emit events.
2753
2754 @item -bt hci,host[:@var{id}]
2755 (@code{bluez} only) The corresponding HCI passes commands / events
2756 to / from the physical HCI identified by the name @var{id} (default:
2757 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2758 capable systems like Linux.
2759
2760 @item -bt hci[,vlan=@var{n}]
2761 Add a virtual, standard HCI that will participate in the Bluetooth
2762 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2763 VLANs, devices inside a bluetooth network @var{n} can only communicate
2764 with other devices in the same network (scatternet).
2765 @end table
2766
2767 @item -bt vhci[,vlan=@var{n}]
2768 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2769 to the host bluetooth stack instead of to the emulated target. This
2770 allows the host and target machines to participate in a common scatternet
2771 and communicate. Requires the Linux @code{vhci} driver installed. Can
2772 be used as following:
2773
2774 @example
2775 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2776 @end example
2777
2778 @item -bt device:@var{dev}[,vlan=@var{n}]
2779 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2780 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2781 currently:
2782
2783 @table @option
2784 @item keyboard
2785 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2786 @end table
2787 ETEXI
2788
2789 STEXI
2790 @end table
2791 ETEXI
2792 DEFHEADING()
2793
2794 #ifdef CONFIG_TPM
2795 DEFHEADING(TPM device options)
2796
2797 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2798 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2799 " use path to provide path to a character device; default is /dev/tpm0\n"
2800 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2801 " not provided it will be searched for in /sys/class/misc/tpm?/device\n",
2802 QEMU_ARCH_ALL)
2803 STEXI
2804
2805 The general form of a TPM device option is:
2806 @table @option
2807
2808 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
2809 @findex -tpmdev
2810 Backend type must be:
2811 @option{passthrough}.
2812
2813 The specific backend type will determine the applicable options.
2814 The @code{-tpmdev} option creates the TPM backend and requires a
2815 @code{-device} option that specifies the TPM frontend interface model.
2816
2817 Options to each backend are described below.
2818
2819 Use 'help' to print all available TPM backend types.
2820 @example
2821 qemu -tpmdev help
2822 @end example
2823
2824 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
2825
2826 (Linux-host only) Enable access to the host's TPM using the passthrough
2827 driver.
2828
2829 @option{path} specifies the path to the host's TPM device, i.e., on
2830 a Linux host this would be @code{/dev/tpm0}.
2831 @option{path} is optional and by default @code{/dev/tpm0} is used.
2832
2833 @option{cancel-path} specifies the path to the host TPM device's sysfs
2834 entry allowing for cancellation of an ongoing TPM command.
2835 @option{cancel-path} is optional and by default QEMU will search for the
2836 sysfs entry to use.
2837
2838 Some notes about using the host's TPM with the passthrough driver:
2839
2840 The TPM device accessed by the passthrough driver must not be
2841 used by any other application on the host.
2842
2843 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2844 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2845 TPM again and may therefore not show a TPM-specific menu that would
2846 otherwise allow the user to configure the TPM, e.g., allow the user to
2847 enable/disable or activate/deactivate the TPM.
2848 Further, if TPM ownership is released from within a VM then the host's TPM
2849 will get disabled and deactivated. To enable and activate the
2850 TPM again afterwards, the host has to be rebooted and the user is
2851 required to enter the firmware's menu to enable and activate the TPM.
2852 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2853
2854 To create a passthrough TPM use the following two options:
2855 @example
2856 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2857 @end example
2858 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2859 @code{tpmdev=tpm0} in the device option.
2860
2861 @end table
2862
2863 ETEXI
2864
2865 DEFHEADING()
2866
2867 #endif
2868
2869 DEFHEADING(Linux/Multiboot boot specific)
2870 STEXI
2871
2872 When using these options, you can use a given Linux or Multiboot
2873 kernel without installing it in the disk image. It can be useful
2874 for easier testing of various kernels.
2875
2876 @table @option
2877 ETEXI
2878
2879 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2880 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2881 STEXI
2882 @item -kernel @var{bzImage}
2883 @findex -kernel
2884 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2885 or in multiboot format.
2886 ETEXI
2887
2888 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2889 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2890 STEXI
2891 @item -append @var{cmdline}
2892 @findex -append
2893 Use @var{cmdline} as kernel command line
2894 ETEXI
2895
2896 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2897 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2898 STEXI
2899 @item -initrd @var{file}
2900 @findex -initrd
2901 Use @var{file} as initial ram disk.
2902
2903 @item -initrd "@var{file1} arg=foo,@var{file2}"
2904
2905 This syntax is only available with multiboot.
2906
2907 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2908 first module.
2909 ETEXI
2910
2911 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2912 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2913 STEXI
2914 @item -dtb @var{file}
2915 @findex -dtb
2916 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2917 on boot.
2918 ETEXI
2919
2920 STEXI
2921 @end table
2922 ETEXI
2923 DEFHEADING()
2924
2925 DEFHEADING(Debug/Expert options)
2926 STEXI
2927 @table @option
2928 ETEXI
2929
2930 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2931 "-fw_cfg [name=]<name>,file=<file>\n"
2932 " add named fw_cfg entry with contents from file\n"
2933 "-fw_cfg [name=]<name>,string=<str>\n"
2934 " add named fw_cfg entry with contents from string\n",
2935 QEMU_ARCH_ALL)
2936 STEXI
2937
2938 @item -fw_cfg [name=]@var{name},file=@var{file}
2939 @findex -fw_cfg
2940 Add named fw_cfg entry with contents from file @var{file}.
2941
2942 @item -fw_cfg [name=]@var{name},string=@var{str}
2943 Add named fw_cfg entry with contents from string @var{str}.
2944
2945 The terminating NUL character of the contents of @var{str} will not be
2946 included as part of the fw_cfg item data. To insert contents with
2947 embedded NUL characters, you have to use the @var{file} parameter.
2948
2949 The fw_cfg entries are passed by QEMU through to the guest.
2950
2951 Example:
2952 @example
2953 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
2954 @end example
2955 creates an fw_cfg entry named opt/com.mycompany/blob with contents
2956 from ./my_blob.bin.
2957
2958 ETEXI
2959
2960 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
2961 "-serial dev redirect the serial port to char device 'dev'\n",
2962 QEMU_ARCH_ALL)
2963 STEXI
2964 @item -serial @var{dev}
2965 @findex -serial
2966 Redirect the virtual serial port to host character device
2967 @var{dev}. The default device is @code{vc} in graphical mode and
2968 @code{stdio} in non graphical mode.
2969
2970 This option can be used several times to simulate up to 4 serial
2971 ports.
2972
2973 Use @code{-serial none} to disable all serial ports.
2974
2975 Available character devices are:
2976 @table @option
2977 @item vc[:@var{W}x@var{H}]
2978 Virtual console. Optionally, a width and height can be given in pixel with
2979 @example
2980 vc:800x600
2981 @end example
2982 It is also possible to specify width or height in characters:
2983 @example
2984 vc:80Cx24C
2985 @end example
2986 @item pty
2987 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
2988 @item none
2989 No device is allocated.
2990 @item null
2991 void device
2992 @item chardev:@var{id}
2993 Use a named character device defined with the @code{-chardev} option.
2994 @item /dev/XXX
2995 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
2996 parameters are set according to the emulated ones.
2997 @item /dev/parport@var{N}
2998 [Linux only, parallel port only] Use host parallel port
2999 @var{N}. Currently SPP and EPP parallel port features can be used.
3000 @item file:@var{filename}
3001 Write output to @var{filename}. No character can be read.
3002 @item stdio
3003 [Unix only] standard input/output
3004 @item pipe:@var{filename}
3005 name pipe @var{filename}
3006 @item COM@var{n}
3007 [Windows only] Use host serial port @var{n}
3008 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3009 This implements UDP Net Console.
3010 When @var{remote_host} or @var{src_ip} are not specified
3011 they default to @code{0.0.0.0}.
3012 When not using a specified @var{src_port} a random port is automatically chosen.
3013
3014 If you just want a simple readonly console you can use @code{netcat} or
3015 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3016 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3017 will appear in the netconsole session.
3018
3019 If you plan to send characters back via netconsole or you want to stop
3020 and start QEMU a lot of times, you should have QEMU use the same
3021 source port each time by using something like @code{-serial
3022 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3023 version of netcat which can listen to a TCP port and send and receive
3024 characters via udp. If you have a patched version of netcat which
3025 activates telnet remote echo and single char transfer, then you can
3026 use the following options to set up a netcat redirector to allow
3027 telnet on port 5555 to access the QEMU port.
3028 @table @code
3029 @item QEMU Options:
3030 -serial udp::4555@@:4556
3031 @item netcat options:
3032 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3033 @item telnet options:
3034 localhost 5555
3035 @end table
3036
3037 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3038 The TCP Net Console has two modes of operation. It can send the serial
3039 I/O to a location or wait for a connection from a location. By default
3040 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3041 the @var{server} option QEMU will wait for a client socket application
3042 to connect to the port before continuing, unless the @code{nowait}
3043 option was specified. The @code{nodelay} option disables the Nagle buffering
3044 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3045 set, if the connection goes down it will attempt to reconnect at the
3046 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3047 one TCP connection at a time is accepted. You can use @code{telnet} to
3048 connect to the corresponding character device.
3049 @table @code
3050 @item Example to send tcp console to 192.168.0.2 port 4444
3051 -serial tcp:192.168.0.2:4444
3052 @item Example to listen and wait on port 4444 for connection
3053 -serial tcp::4444,server
3054 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3055 -serial tcp:192.168.0.100:4444,server,nowait
3056 @end table
3057
3058 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3059 The telnet protocol is used instead of raw tcp sockets. The options
3060 work the same as if you had specified @code{-serial tcp}. The
3061 difference is that the port acts like a telnet server or client using
3062 telnet option negotiation. This will also allow you to send the
3063 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3064 sequence. Typically in unix telnet you do it with Control-] and then
3065 type "send break" followed by pressing the enter key.
3066
3067 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3068 A unix domain socket is used instead of a tcp socket. The option works the
3069 same as if you had specified @code{-serial tcp} except the unix domain socket
3070 @var{path} is used for connections.
3071
3072 @item mon:@var{dev_string}
3073 This is a special option to allow the monitor to be multiplexed onto
3074 another serial port. The monitor is accessed with key sequence of
3075 @key{Control-a} and then pressing @key{c}.
3076 @var{dev_string} should be any one of the serial devices specified
3077 above. An example to multiplex the monitor onto a telnet server
3078 listening on port 4444 would be:
3079 @table @code
3080 @item -serial mon:telnet::4444,server,nowait
3081 @end table
3082 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3083 QEMU any more but will be passed to the guest instead.
3084
3085 @item braille
3086 Braille device. This will use BrlAPI to display the braille output on a real
3087 or fake device.
3088
3089 @item msmouse
3090 Three button serial mouse. Configure the guest to use Microsoft protocol.
3091 @end table
3092 ETEXI
3093
3094 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3095 "-parallel dev redirect the parallel port to char device 'dev'\n",
3096 QEMU_ARCH_ALL)
3097 STEXI
3098 @item -parallel @var{dev}
3099 @findex -parallel
3100 Redirect the virtual parallel port to host device @var{dev} (same
3101 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3102 be used to use hardware devices connected on the corresponding host
3103 parallel port.
3104
3105 This option can be used several times to simulate up to 3 parallel
3106 ports.
3107
3108 Use @code{-parallel none} to disable all parallel ports.
3109 ETEXI
3110
3111 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3112 "-monitor dev redirect the monitor to char device 'dev'\n",
3113 QEMU_ARCH_ALL)
3114 STEXI
3115 @item -monitor @var{dev}
3116 @findex -monitor
3117 Redirect the monitor to host device @var{dev} (same devices as the
3118 serial port).
3119 The default device is @code{vc} in graphical mode and @code{stdio} in
3120 non graphical mode.
3121 Use @code{-monitor none} to disable the default monitor.
3122 ETEXI
3123 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3124 "-qmp dev like -monitor but opens in 'control' mode\n",
3125 QEMU_ARCH_ALL)
3126 STEXI
3127 @item -qmp @var{dev}
3128 @findex -qmp
3129 Like -monitor but opens in 'control' mode.
3130 ETEXI
3131 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3132 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3133 QEMU_ARCH_ALL)
3134 STEXI
3135 @item -qmp-pretty @var{dev}
3136 @findex -qmp-pretty
3137 Like -qmp but uses pretty JSON formatting.
3138 ETEXI
3139
3140 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3141 "-mon [chardev=]name[,mode=readline|control]\n", QEMU_ARCH_ALL)
3142 STEXI
3143 @item -mon [chardev=]name[,mode=readline|control]
3144 @findex -mon
3145 Setup monitor on chardev @var{name}.
3146 ETEXI
3147
3148 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3149 "-debugcon dev redirect the debug console to char device 'dev'\n",
3150 QEMU_ARCH_ALL)
3151 STEXI
3152 @item -debugcon @var{dev}
3153 @findex -debugcon
3154 Redirect the debug console to host device @var{dev} (same devices as the
3155 serial port). The debug console is an I/O port which is typically port
3156 0xe9; writing to that I/O port sends output to this device.
3157 The default device is @code{vc} in graphical mode and @code{stdio} in
3158 non graphical mode.
3159 ETEXI
3160
3161 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3162 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3163 STEXI
3164 @item -pidfile @var{file}
3165 @findex -pidfile
3166 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3167 from a script.
3168 ETEXI
3169
3170 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3171 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3172 STEXI
3173 @item -singlestep
3174 @findex -singlestep
3175 Run the emulation in single step mode.
3176 ETEXI
3177
3178 DEF("S", 0, QEMU_OPTION_S, \
3179 "-S freeze CPU at startup (use 'c' to start execution)\n",
3180 QEMU_ARCH_ALL)
3181 STEXI
3182 @item -S
3183 @findex -S
3184 Do not start CPU at startup (you must type 'c' in the monitor).
3185 ETEXI
3186
3187 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3188 "-realtime [mlock=on|off]\n"
3189 " run qemu with realtime features\n"
3190 " mlock=on|off controls mlock support (default: on)\n",
3191 QEMU_ARCH_ALL)
3192 STEXI
3193 @item -realtime mlock=on|off
3194 @findex -realtime
3195 Run qemu with realtime features.
3196 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3197 (enabled by default).
3198 ETEXI
3199
3200 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3201 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3202 STEXI
3203 @item -gdb @var{dev}
3204 @findex -gdb
3205 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3206 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3207 stdio are reasonable use case. The latter is allowing to start QEMU from
3208 within gdb and establish the connection via a pipe:
3209 @example
3210 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3211 @end example
3212 ETEXI
3213
3214 DEF("s", 0, QEMU_OPTION_s, \
3215 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3216 QEMU_ARCH_ALL)
3217 STEXI
3218 @item -s
3219 @findex -s
3220 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3221 (@pxref{gdb_usage}).
3222 ETEXI
3223
3224 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3225 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3226 QEMU_ARCH_ALL)
3227 STEXI
3228 @item -d @var{item1}[,...]
3229 @findex -d
3230 Enable logging of specified items. Use '-d help' for a list of log items.
3231 ETEXI
3232
3233 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3234 "-D logfile output log to logfile (default stderr)\n",
3235 QEMU_ARCH_ALL)
3236 STEXI
3237 @item -D @var{logfile}
3238 @findex -D
3239 Output log in @var{logfile} instead of to stderr
3240 ETEXI
3241
3242 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3243 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3244 QEMU_ARCH_ALL)
3245 STEXI
3246 @item -dfilter @var{range1}[,...]
3247 @findex -dfilter
3248 Filter debug output to that relevant to a range of target addresses. The filter
3249 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3250 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3251 addresses and sizes required. For example:
3252 @example
3253 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3254 @end example
3255 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3256 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3257 block starting at 0xffffffc00005f000.
3258 ETEXI
3259
3260 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3261 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3262 QEMU_ARCH_ALL)
3263 STEXI
3264 @item -L @var{path}
3265 @findex -L
3266 Set the directory for the BIOS, VGA BIOS and keymaps.
3267
3268 To list all the data directories, use @code{-L help}.
3269 ETEXI
3270
3271 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3272 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3273 STEXI
3274 @item -bios @var{file}
3275 @findex -bios
3276 Set the filename for the BIOS.
3277 ETEXI
3278
3279 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3280 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3281 STEXI
3282 @item -enable-kvm
3283 @findex -enable-kvm
3284 Enable KVM full virtualization support. This option is only available
3285 if KVM support is enabled when compiling.
3286 ETEXI
3287
3288 DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \
3289 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386)
3290 STEXI
3291 @item -enable-hax
3292 @findex -enable-hax
3293 Enable HAX (Hardware-based Acceleration eXecution) support. This option
3294 is only available if HAX support is enabled when compiling. HAX is only
3295 applicable to MAC and Windows platform, and thus does not conflict with
3296 KVM.
3297 ETEXI
3298
3299 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3300 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3301 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3302 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3303 " warning: should not be used when xend is in use\n",
3304 QEMU_ARCH_ALL)
3305 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3306 "-xen-attach attach to existing xen domain\n"
3307 " xend will use this when starting QEMU\n",
3308 QEMU_ARCH_ALL)
3309 STEXI
3310 @item -xen-domid @var{id}
3311 @findex -xen-domid
3312 Specify xen guest domain @var{id} (XEN only).
3313 @item -xen-create
3314 @findex -xen-create
3315 Create domain using xen hypercalls, bypassing xend.
3316 Warning: should not be used when xend is in use (XEN only).
3317 @item -xen-attach
3318 @findex -xen-attach
3319 Attach to existing xen domain.
3320 xend will use this when starting QEMU (XEN only).
3321 ETEXI
3322
3323 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3324 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3325 STEXI
3326 @item -no-reboot
3327 @findex -no-reboot
3328 Exit instead of rebooting.
3329 ETEXI
3330
3331 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3332 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3333 STEXI
3334 @item -no-shutdown
3335 @findex -no-shutdown
3336 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3337 This allows for instance switching to monitor to commit changes to the
3338 disk image.
3339 ETEXI
3340
3341 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3342 "-loadvm [tag|id]\n" \
3343 " start right away with a saved state (loadvm in monitor)\n",
3344 QEMU_ARCH_ALL)
3345 STEXI
3346 @item -loadvm @var{file}
3347 @findex -loadvm
3348 Start right away with a saved state (@code{loadvm} in monitor)
3349 ETEXI
3350
3351 #ifndef _WIN32
3352 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3353 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3354 #endif
3355 STEXI
3356 @item -daemonize
3357 @findex -daemonize
3358 Daemonize the QEMU process after initialization. QEMU will not detach from
3359 standard IO until it is ready to receive connections on any of its devices.
3360 This option is a useful way for external programs to launch QEMU without having
3361 to cope with initialization race conditions.
3362 ETEXI
3363
3364 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3365 "-option-rom rom load a file, rom, into the option ROM space\n",
3366 QEMU_ARCH_ALL)
3367 STEXI
3368 @item -option-rom @var{file}
3369 @findex -option-rom
3370 Load the contents of @var{file} as an option ROM.
3371 This option is useful to load things like EtherBoot.
3372 ETEXI
3373
3374 HXCOMM Silently ignored for compatibility
3375 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3376
3377 HXCOMM Options deprecated by -rtc
3378 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3379 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3380
3381 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3382 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3383 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3384 QEMU_ARCH_ALL)
3385
3386 STEXI
3387
3388 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3389 @findex -rtc
3390 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3391 UTC or local time, respectively. @code{localtime} is required for correct date in
3392 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3393 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3394
3395 By default the RTC is driven by the host system time. This allows using of the
3396 RTC as accurate reference clock inside the guest, specifically if the host
3397 time is smoothly following an accurate external reference clock, e.g. via NTP.
3398 If you want to isolate the guest time from the host, you can set @option{clock}
3399 to @code{rt} instead. To even prevent it from progressing during suspension,
3400 you can set it to @code{vm}.
3401
3402 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3403 specifically with Windows' ACPI HAL. This option will try to figure out how
3404 many timer interrupts were not processed by the Windows guest and will
3405 re-inject them.
3406 ETEXI
3407
3408 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3409 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3410 " enable virtual instruction counter with 2^N clock ticks per\n" \
3411 " instruction, enable aligning the host and virtual clocks\n" \
3412 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3413 STEXI
3414 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3415 @findex -icount
3416 Enable virtual instruction counter. The virtual cpu will execute one
3417 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3418 then the virtual cpu speed will be automatically adjusted to keep virtual
3419 time within a few seconds of real time.
3420
3421 When the virtual cpu is sleeping, the virtual time will advance at default
3422 speed unless @option{sleep=on|off} is specified.
3423 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3424 instantly whenever the virtual cpu goes to sleep mode and will not advance
3425 if no timer is enabled. This behavior give deterministic execution times from
3426 the guest point of view.
3427
3428 Note that while this option can give deterministic behavior, it does not
3429 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3430 order cores with complex cache hierarchies. The number of instructions
3431 executed often has little or no correlation with actual performance.
3432
3433 @option{align=on} will activate the delay algorithm which will try
3434 to synchronise the host clock and the virtual clock. The goal is to
3435 have a guest running at the real frequency imposed by the shift option.
3436 Whenever the guest clock is behind the host clock and if
3437 @option{align=on} is specified then we print a message to the user
3438 to inform about the delay.
3439 Currently this option does not work when @option{shift} is @code{auto}.
3440 Note: The sync algorithm will work for those shift values for which
3441 the guest clock runs ahead of the host clock. Typically this happens
3442 when the shift value is high (how high depends on the host machine).
3443
3444 When @option{rr} option is specified deterministic record/replay is enabled.
3445 Replay log is written into @var{filename} file in record mode and
3446 read from this file in replay mode.
3447
3448 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3449 at the start of execution recording. In replay mode this option is used
3450 to load the initial VM state.
3451 ETEXI
3452
3453 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3454 "-watchdog model\n" \
3455 " enable virtual hardware watchdog [default=none]\n",
3456 QEMU_ARCH_ALL)
3457 STEXI
3458 @item -watchdog @var{model}
3459 @findex -watchdog
3460 Create a virtual hardware watchdog device. Once enabled (by a guest
3461 action), the watchdog must be periodically polled by an agent inside
3462 the guest or else the guest will be restarted. Choose a model for
3463 which your guest has drivers.
3464
3465 The @var{model} is the model of hardware watchdog to emulate. Use
3466 @code{-watchdog help} to list available hardware models. Only one
3467 watchdog can be enabled for a guest.
3468
3469 The following models may be available:
3470 @table @option
3471 @item ib700
3472 iBASE 700 is a very simple ISA watchdog with a single timer.
3473 @item i6300esb
3474 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3475 dual-timer watchdog.
3476 @item diag288
3477 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3478 (currently KVM only).
3479 @end table
3480 ETEXI
3481
3482 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3483 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3484 " action when watchdog fires [default=reset]\n",
3485 QEMU_ARCH_ALL)
3486 STEXI
3487 @item -watchdog-action @var{action}
3488 @findex -watchdog-action
3489
3490 The @var{action} controls what QEMU will do when the watchdog timer
3491 expires.
3492 The default is
3493 @code{reset} (forcefully reset the guest).
3494 Other possible actions are:
3495 @code{shutdown} (attempt to gracefully shutdown the guest),
3496 @code{poweroff} (forcefully poweroff the guest),
3497 @code{pause} (pause the guest),
3498 @code{debug} (print a debug message and continue), or
3499 @code{none} (do nothing).
3500
3501 Note that the @code{shutdown} action requires that the guest responds
3502 to ACPI signals, which it may not be able to do in the sort of
3503 situations where the watchdog would have expired, and thus
3504 @code{-watchdog-action shutdown} is not recommended for production use.
3505
3506 Examples:
3507
3508 @table @code
3509 @item -watchdog i6300esb -watchdog-action pause
3510 @itemx -watchdog ib700
3511 @end table
3512 ETEXI
3513
3514 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3515 "-echr chr set terminal escape character instead of ctrl-a\n",
3516 QEMU_ARCH_ALL)
3517 STEXI
3518
3519 @item -echr @var{numeric_ascii_value}
3520 @findex -echr
3521 Change the escape character used for switching to the monitor when using
3522 monitor and serial sharing. The default is @code{0x01} when using the
3523 @code{-nographic} option. @code{0x01} is equal to pressing
3524 @code{Control-a}. You can select a different character from the ascii
3525 control keys where 1 through 26 map to Control-a through Control-z. For
3526 instance you could use the either of the following to change the escape
3527 character to Control-t.
3528 @table @code
3529 @item -echr 0x14
3530 @itemx -echr 20
3531 @end table
3532 ETEXI
3533
3534 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3535 "-virtioconsole c\n" \
3536 " set virtio console\n", QEMU_ARCH_ALL)
3537 STEXI
3538 @item -virtioconsole @var{c}
3539 @findex -virtioconsole
3540 Set virtio console.
3541
3542 This option is maintained for backward compatibility.
3543
3544 Please use @code{-device virtconsole} for the new way of invocation.
3545 ETEXI
3546
3547 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3548 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3549 STEXI
3550 @item -show-cursor
3551 @findex -show-cursor
3552 Show cursor.
3553 ETEXI
3554
3555 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3556 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3557 STEXI
3558 @item -tb-size @var{n}
3559 @findex -tb-size
3560 Set TB size.
3561 ETEXI
3562
3563 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3564 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3565 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3566 "-incoming unix:socketpath\n" \
3567 " prepare for incoming migration, listen on\n" \
3568 " specified protocol and socket address\n" \
3569 "-incoming fd:fd\n" \
3570 "-incoming exec:cmdline\n" \
3571 " accept incoming migration on given file descriptor\n" \
3572 " or from given external command\n" \
3573 "-incoming defer\n" \
3574 " wait for the URI to be specified via migrate_incoming\n",
3575 QEMU_ARCH_ALL)
3576 STEXI
3577 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3578 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3579 @findex -incoming
3580 Prepare for incoming migration, listen on a given tcp port.
3581
3582 @item -incoming unix:@var{socketpath}
3583 Prepare for incoming migration, listen on a given unix socket.
3584
3585 @item -incoming fd:@var{fd}
3586 Accept incoming migration from a given filedescriptor.
3587
3588 @item -incoming exec:@var{cmdline}
3589 Accept incoming migration as an output from specified external command.
3590
3591 @item -incoming defer
3592 Wait for the URI to be specified via migrate_incoming. The monitor can
3593 be used to change settings (such as migration parameters) prior to issuing
3594 the migrate_incoming to allow the migration to begin.
3595 ETEXI
3596
3597 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3598 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3599 STEXI
3600 @item -only-migratable
3601 @findex -only-migratable
3602 Only allow migratable devices. Devices will not be allowed to enter an
3603 unmigratable state.
3604 ETEXI
3605
3606 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3607 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3608 STEXI
3609 @item -nodefaults
3610 @findex -nodefaults
3611 Don't create default devices. Normally, QEMU sets the default devices like serial
3612 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3613 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3614 default devices.
3615 ETEXI
3616
3617 #ifndef _WIN32
3618 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3619 "-chroot dir chroot to dir just before starting the VM\n",
3620 QEMU_ARCH_ALL)
3621 #endif
3622 STEXI
3623 @item -chroot @var{dir}
3624 @findex -chroot
3625 Immediately before starting guest execution, chroot to the specified
3626 directory. Especially useful in combination with -runas.
3627 ETEXI
3628
3629 #ifndef _WIN32
3630 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3631 "-runas user change to user id user just before starting the VM\n",
3632 QEMU_ARCH_ALL)
3633 #endif
3634 STEXI
3635 @item -runas @var{user}
3636 @findex -runas
3637 Immediately before starting guest execution, drop root privileges, switching
3638 to the specified user.
3639 ETEXI
3640
3641 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3642 "-prom-env variable=value\n"
3643 " set OpenBIOS nvram variables\n",
3644 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3645 STEXI
3646 @item -prom-env @var{variable}=@var{value}
3647 @findex -prom-env
3648 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3649 ETEXI
3650 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3651 "-semihosting semihosting mode\n",
3652 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3653 QEMU_ARCH_MIPS)
3654 STEXI
3655 @item -semihosting
3656 @findex -semihosting
3657 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3658 ETEXI
3659 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3660 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3661 " semihosting configuration\n",
3662 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3663 QEMU_ARCH_MIPS)
3664 STEXI
3665 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3666 @findex -semihosting-config
3667 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3668 @table @option
3669 @item target=@code{native|gdb|auto}
3670 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3671 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3672 during debug sessions and @code{native} otherwise.
3673 @item arg=@var{str1},arg=@var{str2},...
3674 Allows the user to pass input arguments, and can be used multiple times to build
3675 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3676 command line is still supported for backward compatibility. If both the
3677 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3678 specified, the former is passed to semihosting as it always takes precedence.
3679 @end table
3680 ETEXI
3681 DEF("old-param", 0, QEMU_OPTION_old_param,
3682 "-old-param old param mode\n", QEMU_ARCH_ARM)
3683 STEXI
3684 @item -old-param
3685 @findex -old-param (ARM)
3686 Old param mode (ARM only).
3687 ETEXI
3688
3689 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3690 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n",
3691 QEMU_ARCH_ALL)
3692 STEXI
3693 @item -sandbox @var{arg}
3694 @findex -sandbox
3695 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3696 disable it. The default is 'off'.
3697 ETEXI
3698
3699 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3700 "-readconfig <file>\n", QEMU_ARCH_ALL)
3701 STEXI
3702 @item -readconfig @var{file}
3703 @findex -readconfig
3704 Read device configuration from @var{file}. This approach is useful when you want to spawn
3705 QEMU process with many command line options but you don't want to exceed the command line
3706 character limit.
3707 ETEXI
3708 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3709 "-writeconfig <file>\n"
3710 " read/write config file\n", QEMU_ARCH_ALL)
3711 STEXI
3712 @item -writeconfig @var{file}
3713 @findex -writeconfig
3714 Write device configuration to @var{file}. The @var{file} can be either filename to save
3715 command line and device configuration into file or dash @code{-}) character to print the
3716 output to stdout. This can be later used as input file for @code{-readconfig} option.
3717 ETEXI
3718 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig,
3719 "-nodefconfig\n"
3720 " do not load default config files at startup\n",
3721 QEMU_ARCH_ALL)
3722 STEXI
3723 @item -nodefconfig
3724 @findex -nodefconfig
3725 Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup.
3726 The @code{-nodefconfig} option will prevent QEMU from loading any of those config files.
3727 ETEXI
3728 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3729 "-no-user-config\n"
3730 " do not load user-provided config files at startup\n",
3731 QEMU_ARCH_ALL)
3732 STEXI
3733 @item -no-user-config
3734 @findex -no-user-config
3735 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3736 config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config
3737 files from @var{datadir}.
3738 ETEXI
3739 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3740 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3741 " specify tracing options\n",
3742 QEMU_ARCH_ALL)
3743 STEXI
3744 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3745 HXCOMM HX does not support conditional compilation of text.
3746 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3747 @findex -trace
3748 @include qemu-option-trace.texi
3749 ETEXI
3750
3751 HXCOMM Internal use
3752 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3753 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3754
3755 #ifdef __linux__
3756 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3757 "-enable-fips enable FIPS 140-2 compliance\n",
3758 QEMU_ARCH_ALL)
3759 #endif
3760 STEXI
3761 @item -enable-fips
3762 @findex -enable-fips
3763 Enable FIPS 140-2 compliance mode.
3764 ETEXI
3765
3766 HXCOMM Deprecated by -machine accel=tcg property
3767 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3768
3769 HXCOMM Deprecated by kvm-pit driver properties
3770 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
3771 "", QEMU_ARCH_I386)
3772
3773 HXCOMM Deprecated (ignored)
3774 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
3775
3776 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
3777 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
3778
3779 HXCOMM Deprecated (ignored)
3780 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
3781
3782 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3783 "-msg timestamp[=on|off]\n"
3784 " change the format of messages\n"
3785 " on|off controls leading timestamps (default:on)\n",
3786 QEMU_ARCH_ALL)
3787 STEXI
3788 @item -msg timestamp[=on|off]
3789 @findex -msg
3790 prepend a timestamp to each log message.(default:on)
3791 ETEXI
3792
3793 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3794 "-dump-vmstate <file>\n"
3795 " Output vmstate information in JSON format to file.\n"
3796 " Use the scripts/vmstate-static-checker.py file to\n"
3797 " check for possible regressions in migration code\n"
3798 " by comparing two such vmstate dumps.\n",
3799 QEMU_ARCH_ALL)
3800 STEXI
3801 @item -dump-vmstate @var{file}
3802 @findex -dump-vmstate
3803 Dump json-encoded vmstate information for current machine type to file
3804 in @var{file}
3805 ETEXI
3806
3807 STEXI
3808 @end table
3809 ETEXI
3810 DEFHEADING()
3811 DEFHEADING(Generic object creation)
3812 STEXI
3813 @table @option
3814 ETEXI
3815
3816 DEF("object", HAS_ARG, QEMU_OPTION_object,
3817 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3818 " create a new object of type TYPENAME setting properties\n"
3819 " in the order they are specified. Note that the 'id'\n"
3820 " property must be set. These objects are placed in the\n"
3821 " '/objects' path.\n",
3822 QEMU_ARCH_ALL)
3823 STEXI
3824 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3825 @findex -object
3826 Create a new object of type @var{typename} setting properties
3827 in the order they are specified. Note that the 'id'
3828 property must be set. These objects are placed in the
3829 '/objects' path.
3830
3831 @table @option
3832
3833 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off}
3834
3835 Creates a memory file backend object, which can be used to back
3836 the guest RAM with huge pages. The @option{id} parameter is a
3837 unique ID that will be used to reference this memory region
3838 when configuring the @option{-numa} argument. The @option{size}
3839 option provides the size of the memory region, and accepts
3840 common suffixes, eg @option{500M}. The @option{mem-path} provides
3841 the path to either a shared memory or huge page filesystem mount.
3842 The @option{share} boolean option determines whether the memory
3843 region is marked as private to QEMU, or shared. The latter allows
3844 a co-operating external process to access the QEMU memory region.
3845
3846 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
3847
3848 Creates a random number generator backend which obtains entropy from
3849 a device on the host. The @option{id} parameter is a unique ID that
3850 will be used to reference this entropy backend from the @option{virtio-rng}
3851 device. The @option{filename} parameter specifies which file to obtain
3852 entropy from and if omitted defaults to @option{/dev/random}.
3853
3854 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
3855
3856 Creates a random number generator backend which obtains entropy from
3857 an external daemon running on the host. The @option{id} parameter is
3858 a unique ID that will be used to reference this entropy backend from
3859 the @option{virtio-rng} device. The @option{chardev} parameter is
3860 the unique ID of a character device backend that provides the connection
3861 to the RNG daemon.
3862
3863 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
3864
3865 Creates a TLS anonymous credentials object, which can be used to provide
3866 TLS support on network backends. The @option{id} parameter is a unique
3867 ID which network backends will use to access the credentials. The
3868 @option{endpoint} is either @option{server} or @option{client} depending
3869 on whether the QEMU network backend that uses the credentials will be
3870 acting as a client or as a server. If @option{verify-peer} is enabled
3871 (the default) then once the handshake is completed, the peer credentials
3872 will be verified, though this is a no-op for anonymous credentials.
3873
3874 The @var{dir} parameter tells QEMU where to find the credential
3875 files. For server endpoints, this directory may contain a file
3876 @var{dh-params.pem} providing diffie-hellman parameters to use
3877 for the TLS server. If the file is missing, QEMU will generate
3878 a set of DH parameters at startup. This is a computationally
3879 expensive operation that consumes random pool entropy, so it is
3880 recommended that a persistent set of parameters be generated
3881 upfront and saved.
3882
3883 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
3884
3885 Creates a TLS anonymous credentials object, which can be used to provide
3886 TLS support on network backends. The @option{id} parameter is a unique
3887 ID which network backends will use to access the credentials. The
3888 @option{endpoint} is either @option{server} or @option{client} depending
3889 on whether the QEMU network backend that uses the credentials will be
3890 acting as a client or as a server. If @option{verify-peer} is enabled
3891 (the default) then once the handshake is completed, the peer credentials
3892 will be verified. With x509 certificates, this implies that the clients
3893 must be provided with valid client certificates too.
3894
3895 The @var{dir} parameter tells QEMU where to find the credential
3896 files. For server endpoints, this directory may contain a file
3897 @var{dh-params.pem} providing diffie-hellman parameters to use
3898 for the TLS server. If the file is missing, QEMU will generate
3899 a set of DH parameters at startup. This is a computationally
3900 expensive operation that consumes random pool entropy, so it is
3901 recommended that a persistent set of parameters be generated
3902 upfront and saved.
3903
3904 For x509 certificate credentials the directory will contain further files
3905 providing the x509 certificates. The certificates must be stored
3906 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
3907 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
3908 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
3909
3910 For the @var{server-key.pem} and @var{client-key.pem} files which
3911 contain sensitive private keys, it is possible to use an encrypted
3912 version by providing the @var{passwordid} parameter. This provides
3913 the ID of a previously created @code{secret} object containing the
3914 password for decryption.
3915
3916 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
3917
3918 Interval @var{t} can't be 0, this filter batches the packet delivery: all
3919 packets arriving in a given interval on netdev @var{netdevid} are delayed
3920 until the end of the interval. Interval is in microseconds.
3921 @option{status} is optional that indicate whether the netfilter is
3922 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
3923
3924 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
3925
3926 @option{all}: the filter is attached both to the receive and the transmit
3927 queue of the netdev (default).
3928
3929 @option{rx}: the filter is attached to the receive queue of the netdev,
3930 where it will receive packets sent to the netdev.
3931
3932 @option{tx}: the filter is attached to the transmit queue of the netdev,
3933 where it will receive packets sent by the netdev.
3934
3935 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3936
3937 filter-mirror on netdev @var{netdevid},mirror net packet to chardev
3938 @var{chardevid}
3939
3940 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},
3941 outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3942
3943 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
3944 @var{chardevid},and redirect indev's packet to filter.
3945 Create a filter-redirector we need to differ outdev id from indev id, id can not
3946 be the same. we can just use indev or outdev, but at least one of indev or outdev
3947 need to be specified.
3948
3949 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},rewriter-mode=@var{mode}[,queue=@var{all|rx|tx}]
3950
3951 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
3952 secondary from primary to keep secondary tcp connection,and rewrite
3953 tcp packet to primary from secondary make tcp packet can be handled by
3954 client.
3955
3956 usage:
3957 colo secondary:
3958 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
3959 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
3960 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
3961
3962 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
3963
3964 Dump the network traffic on netdev @var{dev} to the file specified by
3965 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
3966 The file format is libpcap, so it can be analyzed with tools such as tcpdump
3967 or Wireshark.
3968
3969 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},
3970 outdev=@var{chardevid}
3971
3972 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
3973 secondary packet. If the packets are same, we will output primary
3974 packet to outdev@var{chardevid}, else we will notify colo-frame
3975 do checkpoint and send primary packet to outdev@var{chardevid}.
3976
3977 we must use it with the help of filter-mirror and filter-redirector.
3978
3979 @example
3980
3981 primary:
3982 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
3983 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
3984 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
3985 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
3986 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
3987 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
3988 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
3989 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
3990 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
3991 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
3992 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
3993 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
3994
3995 secondary:
3996 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
3997 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
3998 -chardev socket,id=red0,host=3.3.3.3,port=9003
3999 -chardev socket,id=red1,host=3.3.3.3,port=9004
4000 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4001 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4002
4003 @end example
4004
4005 If you want to know the detail of above command line, you can read
4006 the colo-compare git log.
4007
4008 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4009
4010 Creates a cryptodev backend which executes crypto opreation from
4011 the QEMU cipher APIS. The @var{id} parameter is
4012 a unique ID that will be used to reference this cryptodev backend from
4013 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4014 which specify the queue number of cryptodev backend, the default of
4015 @var{queues} is 1.
4016
4017 @example
4018
4019 # qemu-system-x86_64 \
4020 [...] \
4021 -object cryptodev-backend-builtin,id=cryptodev0 \
4022 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4023 [...]
4024 @end example
4025
4026 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4027 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4028
4029 Defines a secret to store a password, encryption key, or some other sensitive
4030 data. The sensitive data can either be passed directly via the @var{data}
4031 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4032 parameter is insecure unless the sensitive data is encrypted.
4033
4034 The sensitive data can be provided in raw format (the default), or base64.
4035 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4036 so base64 is recommended for sending binary data. QEMU will convert from
4037 which ever format is provided to the format it needs internally. eg, an
4038 RBD password can be provided in raw format, even though it will be base64
4039 encoded when passed onto the RBD sever.
4040
4041 For added protection, it is possible to encrypt the data associated with
4042 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4043 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4044 parameter provides the ID of a previously defined secret that contains
4045 the AES-256 decryption key. This key should be 32-bytes long and be
4046 base64 encoded. The @var{iv} parameter provides the random initialization
4047 vector used for encryption of this particular secret and should be a
4048 base64 encrypted string of the 16-byte IV.
4049
4050 The simplest (insecure) usage is to provide the secret inline
4051
4052 @example
4053
4054 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4055
4056 @end example
4057
4058 The simplest secure usage is to provide the secret via a file
4059
4060 # echo -n "letmein" > mypasswd.txt
4061 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4062
4063 For greater security, AES-256-CBC should be used. To illustrate usage,
4064 consider the openssl command line tool which can encrypt the data. Note
4065 that when encrypting, the plaintext must be padded to the cipher block
4066 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4067
4068 First a master key needs to be created in base64 encoding:
4069
4070 @example
4071 # openssl rand -base64 32 > key.b64
4072 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4073 @end example
4074
4075 Each secret to be encrypted needs to have a random initialization vector
4076 generated. These do not need to be kept secret
4077
4078 @example
4079 # openssl rand -base64 16 > iv.b64
4080 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4081 @end example
4082
4083 The secret to be defined can now be encrypted, in this case we're
4084 telling openssl to base64 encode the result, but it could be left
4085 as raw bytes if desired.
4086
4087 @example
4088 # SECRET=$(echo -n "letmein" |
4089 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4090 @end example
4091
4092 When launching QEMU, create a master secret pointing to @code{key.b64}
4093 and specify that to be used to decrypt the user password. Pass the
4094 contents of @code{iv.b64} to the second secret
4095
4096 @example
4097 # $QEMU \
4098 -object secret,id=secmaster0,format=base64,file=key.b64 \
4099 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4100 data=$SECRET,iv=$(<iv.b64)
4101 @end example
4102
4103 @end table
4104
4105 ETEXI
4106
4107
4108 HXCOMM This is the last statement. Insert new options before this line!
4109 STEXI
4110 @end table
4111 ETEXI