]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n",
46 QEMU_ARCH_ALL)
47 STEXI
48 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
49 @findex -machine
50 Select the emulated machine by @var{name}. Use @code{-machine help} to list
51 available machines. Supported machine properties are:
52 @table @option
53 @item accel=@var{accels1}[:@var{accels2}[:...]]
54 This is used to enable an accelerator. Depending on the target architecture,
55 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
56 than one accelerator specified, the next one is used if the previous one fails
57 to initialize.
58 @item kernel_irqchip=on|off
59 Controls in-kernel irqchip support for the chosen accelerator when available.
60 @item gfx_passthru=on|off
61 Enables IGD GFX passthrough support for the chosen machine when available.
62 @item vmport=on|off|auto
63 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
64 value based on accel. For accel=xen the default is off otherwise the default
65 is on.
66 @item kvm_shadow_mem=size
67 Defines the size of the KVM shadow MMU.
68 @item dump-guest-core=on|off
69 Include guest memory in a core dump. The default is on.
70 @item mem-merge=on|off
71 Enables or disables memory merge support. This feature, when supported by
72 the host, de-duplicates identical memory pages among VMs instances
73 (enabled by default).
74 @item aes-key-wrap=on|off
75 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
76 controls whether AES wrapping keys will be created to allow
77 execution of AES cryptographic functions. The default is on.
78 @item dea-key-wrap=on|off
79 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
80 controls whether DEA wrapping keys will be created to allow
81 execution of DEA cryptographic functions. The default is on.
82 @item nvdimm=on|off
83 Enables or disables NVDIMM support. The default is off.
84 @end table
85 ETEXI
86
87 HXCOMM Deprecated by -machine
88 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
89
90 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
91 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
92 STEXI
93 @item -cpu @var{model}
94 @findex -cpu
95 Select CPU model (@code{-cpu help} for list and additional feature selection)
96 ETEXI
97
98 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
99 "-accel [accel=]accelerator[,thread=single|multi]\n"
100 " select accelerator ('-accel help for list')\n"
101 " thread=single|multi (enable multi-threaded TCG)", QEMU_ARCH_ALL)
102 STEXI
103 @item -accel @var{name}[,prop=@var{value}[,...]]
104 @findex -accel
105 This is used to enable an accelerator. Depending on the target architecture,
106 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
107 than one accelerator specified, the next one is used if the previous one fails
108 to initialize.
109 @table @option
110 @item thread=single|multi
111 Controls number of TCG threads. When the TCG is multi-threaded there will be one
112 thread per vCPU therefor taking advantage of additional host cores. The default
113 is to enable multi-threading where both the back-end and front-ends support it and
114 no incompatible TCG features have been enabled (e.g. icount/replay).
115 @end table
116 ETEXI
117
118 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
119 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
120 " set the number of CPUs to 'n' [default=1]\n"
121 " maxcpus= maximum number of total cpus, including\n"
122 " offline CPUs for hotplug, etc\n"
123 " cores= number of CPU cores on one socket\n"
124 " threads= number of threads on one CPU core\n"
125 " sockets= number of discrete sockets in the system\n",
126 QEMU_ARCH_ALL)
127 STEXI
128 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
129 @findex -smp
130 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
131 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
132 to 4.
133 For the PC target, the number of @var{cores} per socket, the number
134 of @var{threads} per cores and the total number of @var{sockets} can be
135 specified. Missing values will be computed. If any on the three values is
136 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
137 specifies the maximum number of hotpluggable CPUs.
138 ETEXI
139
140 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
141 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
142 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n", QEMU_ARCH_ALL)
143 STEXI
144 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
145 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
146 @findex -numa
147 Define a NUMA node and assign RAM and VCPUs to it.
148
149 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
150 @samp{cpus} option represent a contiguous range of CPU indexes
151 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
152 set of VCPUs can be represented by providing multiple @samp{cpus}
153 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
154 split between them.
155
156 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
157 a NUMA node:
158 @example
159 -numa node,cpus=0-2,cpus=5
160 @end example
161
162 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
163 assigns RAM from a given memory backend device to a node. If
164 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
165 split equally between them.
166
167 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
168 if one node uses @samp{memdev}, all of them have to use it.
169
170 Note that the -@option{numa} option doesn't allocate any of the
171 specified resources, it just assigns existing resources to NUMA
172 nodes. This means that one still has to use the @option{-m},
173 @option{-smp} options to allocate RAM and VCPUs respectively.
174
175 ETEXI
176
177 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
178 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
179 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
180 STEXI
181 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
182 @findex -add-fd
183
184 Add a file descriptor to an fd set. Valid options are:
185
186 @table @option
187 @item fd=@var{fd}
188 This option defines the file descriptor of which a duplicate is added to fd set.
189 The file descriptor cannot be stdin, stdout, or stderr.
190 @item set=@var{set}
191 This option defines the ID of the fd set to add the file descriptor to.
192 @item opaque=@var{opaque}
193 This option defines a free-form string that can be used to describe @var{fd}.
194 @end table
195
196 You can open an image using pre-opened file descriptors from an fd set:
197 @example
198 qemu-system-i386
199 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
200 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
201 -drive file=/dev/fdset/2,index=0,media=disk
202 @end example
203 ETEXI
204
205 DEF("set", HAS_ARG, QEMU_OPTION_set,
206 "-set group.id.arg=value\n"
207 " set <arg> parameter for item <id> of type <group>\n"
208 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
209 STEXI
210 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
211 @findex -set
212 Set parameter @var{arg} for item @var{id} of type @var{group}
213 ETEXI
214
215 DEF("global", HAS_ARG, QEMU_OPTION_global,
216 "-global driver.property=value\n"
217 "-global driver=driver,property=property,value=value\n"
218 " set a global default for a driver property\n",
219 QEMU_ARCH_ALL)
220 STEXI
221 @item -global @var{driver}.@var{prop}=@var{value}
222 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
223 @findex -global
224 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
225
226 @example
227 qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk
228 @end example
229
230 In particular, you can use this to set driver properties for devices which are
231 created automatically by the machine model. To create a device which is not
232 created automatically and set properties on it, use -@option{device}.
233
234 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
235 driver=@var{driver},property=@var{prop},value=@var{value}. The
236 longhand syntax works even when @var{driver} contains a dot.
237 ETEXI
238
239 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
240 "-boot [order=drives][,once=drives][,menu=on|off]\n"
241 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
242 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
243 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
244 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
245 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
246 QEMU_ARCH_ALL)
247 STEXI
248 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
249 @findex -boot
250 Specify boot order @var{drives} as a string of drive letters. Valid
251 drive letters depend on the target architecture. The x86 PC uses: a, b
252 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
253 from network adapter 1-4), hard disk boot is the default. To apply a
254 particular boot order only on the first startup, specify it via
255 @option{once}.
256
257 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
258 as firmware/BIOS supports them. The default is non-interactive boot.
259
260 A splash picture could be passed to bios, enabling user to show it as logo,
261 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
262 supports them. Currently Seabios for X86 system support it.
263 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
264 format(true color). The resolution should be supported by the SVGA mode, so
265 the recommended is 320x240, 640x480, 800x640.
266
267 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
268 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
269 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
270 system support it.
271
272 Do strict boot via @option{strict=on} as far as firmware/BIOS
273 supports it. This only effects when boot priority is changed by
274 bootindex options. The default is non-strict boot.
275
276 @example
277 # try to boot from network first, then from hard disk
278 qemu-system-i386 -boot order=nc
279 # boot from CD-ROM first, switch back to default order after reboot
280 qemu-system-i386 -boot once=d
281 # boot with a splash picture for 5 seconds.
282 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
283 @end example
284
285 Note: The legacy format '-boot @var{drives}' is still supported but its
286 use is discouraged as it may be removed from future versions.
287 ETEXI
288
289 DEF("m", HAS_ARG, QEMU_OPTION_m,
290 "-m [size=]megs[,slots=n,maxmem=size]\n"
291 " configure guest RAM\n"
292 " size: initial amount of guest memory\n"
293 " slots: number of hotplug slots (default: none)\n"
294 " maxmem: maximum amount of guest memory (default: none)\n"
295 "NOTE: Some architectures might enforce a specific granularity\n",
296 QEMU_ARCH_ALL)
297 STEXI
298 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
299 @findex -m
300 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
301 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
302 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
303 could be used to set amount of hotpluggable memory slots and maximum amount of
304 memory. Note that @var{maxmem} must be aligned to the page size.
305
306 For example, the following command-line sets the guest startup RAM size to
307 1GB, creates 3 slots to hotplug additional memory and sets the maximum
308 memory the guest can reach to 4GB:
309
310 @example
311 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
312 @end example
313
314 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
315 be enabled and the guest startup RAM will never increase.
316 ETEXI
317
318 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
319 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
320 STEXI
321 @item -mem-path @var{path}
322 @findex -mem-path
323 Allocate guest RAM from a temporarily created file in @var{path}.
324 ETEXI
325
326 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
327 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
328 QEMU_ARCH_ALL)
329 STEXI
330 @item -mem-prealloc
331 @findex -mem-prealloc
332 Preallocate memory when using -mem-path.
333 ETEXI
334
335 DEF("k", HAS_ARG, QEMU_OPTION_k,
336 "-k language use keyboard layout (for example 'fr' for French)\n",
337 QEMU_ARCH_ALL)
338 STEXI
339 @item -k @var{language}
340 @findex -k
341 Use keyboard layout @var{language} (for example @code{fr} for
342 French). This option is only needed where it is not easy to get raw PC
343 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
344 display). You don't normally need to use it on PC/Linux or PC/Windows
345 hosts.
346
347 The available layouts are:
348 @example
349 ar de-ch es fo fr-ca hu ja mk no pt-br sv
350 da en-gb et fr fr-ch is lt nl pl ru th
351 de en-us fi fr-be hr it lv nl-be pt sl tr
352 @end example
353
354 The default is @code{en-us}.
355 ETEXI
356
357
358 DEF("audio-help", 0, QEMU_OPTION_audio_help,
359 "-audio-help print list of audio drivers and their options\n",
360 QEMU_ARCH_ALL)
361 STEXI
362 @item -audio-help
363 @findex -audio-help
364 Will show the audio subsystem help: list of drivers, tunable
365 parameters.
366 ETEXI
367
368 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
369 "-soundhw c1,... enable audio support\n"
370 " and only specified sound cards (comma separated list)\n"
371 " use '-soundhw help' to get the list of supported cards\n"
372 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
373 STEXI
374 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
375 @findex -soundhw
376 Enable audio and selected sound hardware. Use 'help' to print all
377 available sound hardware.
378
379 @example
380 qemu-system-i386 -soundhw sb16,adlib disk.img
381 qemu-system-i386 -soundhw es1370 disk.img
382 qemu-system-i386 -soundhw ac97 disk.img
383 qemu-system-i386 -soundhw hda disk.img
384 qemu-system-i386 -soundhw all disk.img
385 qemu-system-i386 -soundhw help
386 @end example
387
388 Note that Linux's i810_audio OSS kernel (for AC97) module might
389 require manually specifying clocking.
390
391 @example
392 modprobe i810_audio clocking=48000
393 @end example
394 ETEXI
395
396 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
397 "-balloon none disable balloon device\n"
398 "-balloon virtio[,addr=str]\n"
399 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
400 STEXI
401 @item -balloon none
402 @findex -balloon
403 Disable balloon device.
404 @item -balloon virtio[,addr=@var{addr}]
405 Enable virtio balloon device (default), optionally with PCI address
406 @var{addr}.
407 ETEXI
408
409 DEF("device", HAS_ARG, QEMU_OPTION_device,
410 "-device driver[,prop[=value][,...]]\n"
411 " add device (based on driver)\n"
412 " prop=value,... sets driver properties\n"
413 " use '-device help' to print all possible drivers\n"
414 " use '-device driver,help' to print all possible properties\n",
415 QEMU_ARCH_ALL)
416 STEXI
417 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
418 @findex -device
419 Add device @var{driver}. @var{prop}=@var{value} sets driver
420 properties. Valid properties depend on the driver. To get help on
421 possible drivers and properties, use @code{-device help} and
422 @code{-device @var{driver},help}.
423
424 Some drivers are:
425 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}]
426
427 Add an IPMI BMC. This is a simulation of a hardware management
428 interface processor that normally sits on a system. It provides
429 a watchdog and the ability to reset and power control the system.
430 You need to connect this to an IPMI interface to make it useful
431
432 The IPMI slave address to use for the BMC. The default is 0x20.
433 This address is the BMC's address on the I2C network of management
434 controllers. If you don't know what this means, it is safe to ignore
435 it.
436
437 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
438
439 Add a connection to an external IPMI BMC simulator. Instead of
440 locally emulating the BMC like the above item, instead connect
441 to an external entity that provides the IPMI services.
442
443 A connection is made to an external BMC simulator. If you do this, it
444 is strongly recommended that you use the "reconnect=" chardev option
445 to reconnect to the simulator if the connection is lost. Note that if
446 this is not used carefully, it can be a security issue, as the
447 interface has the ability to send resets, NMIs, and power off the VM.
448 It's best if QEMU makes a connection to an external simulator running
449 on a secure port on localhost, so neither the simulator nor QEMU is
450 exposed to any outside network.
451
452 See the "lanserv/README.vm" file in the OpenIPMI library for more
453 details on the external interface.
454
455 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
456
457 Add a KCS IPMI interafce on the ISA bus. This also adds a
458 corresponding ACPI and SMBIOS entries, if appropriate.
459
460 @table @option
461 @item bmc=@var{id}
462 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
463 @item ioport=@var{val}
464 Define the I/O address of the interface. The default is 0xca0 for KCS.
465 @item irq=@var{val}
466 Define the interrupt to use. The default is 5. To disable interrupts,
467 set this to 0.
468 @end table
469
470 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
471
472 Like the KCS interface, but defines a BT interface. The default port is
473 0xe4 and the default interrupt is 5.
474
475 ETEXI
476
477 DEF("name", HAS_ARG, QEMU_OPTION_name,
478 "-name string1[,process=string2][,debug-threads=on|off]\n"
479 " set the name of the guest\n"
480 " string1 sets the window title and string2 the process name (on Linux)\n"
481 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
482 " NOTE: The thread names are for debugging and not a stable API.\n",
483 QEMU_ARCH_ALL)
484 STEXI
485 @item -name @var{name}
486 @findex -name
487 Sets the @var{name} of the guest.
488 This name will be displayed in the SDL window caption.
489 The @var{name} will also be used for the VNC server.
490 Also optionally set the top visible process name in Linux.
491 Naming of individual threads can also be enabled on Linux to aid debugging.
492 ETEXI
493
494 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
495 "-uuid %08x-%04x-%04x-%04x-%012x\n"
496 " specify machine UUID\n", QEMU_ARCH_ALL)
497 STEXI
498 @item -uuid @var{uuid}
499 @findex -uuid
500 Set system UUID.
501 ETEXI
502
503 STEXI
504 @end table
505 ETEXI
506 DEFHEADING()
507
508 DEFHEADING(Block device options)
509 STEXI
510 @table @option
511 ETEXI
512
513 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
514 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
515 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
516 STEXI
517 @item -fda @var{file}
518 @itemx -fdb @var{file}
519 @findex -fda
520 @findex -fdb
521 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
522 ETEXI
523
524 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
525 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
526 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
527 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
528 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
529 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
530 STEXI
531 @item -hda @var{file}
532 @itemx -hdb @var{file}
533 @itemx -hdc @var{file}
534 @itemx -hdd @var{file}
535 @findex -hda
536 @findex -hdb
537 @findex -hdc
538 @findex -hdd
539 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
540 ETEXI
541
542 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
543 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
544 QEMU_ARCH_ALL)
545 STEXI
546 @item -cdrom @var{file}
547 @findex -cdrom
548 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
549 @option{-cdrom} at the same time). You can use the host CD-ROM by
550 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
551 ETEXI
552
553 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
554 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
555 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
556 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
557 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
558 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
559 " [,readonly=on|off][,copy-on-read=on|off]\n"
560 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
561 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
562 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
563 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
564 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
565 " [[,iops_size=is]]\n"
566 " [[,group=g]]\n"
567 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
568 STEXI
569 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
570 @findex -drive
571
572 Define a new drive. Valid options are:
573
574 @table @option
575 @item file=@var{file}
576 This option defines which disk image (@pxref{disk_images}) to use with
577 this drive. If the filename contains comma, you must double it
578 (for instance, "file=my,,file" to use file "my,file").
579
580 Special files such as iSCSI devices can be specified using protocol
581 specific URLs. See the section for "Device URL Syntax" for more information.
582 @item if=@var{interface}
583 This option defines on which type on interface the drive is connected.
584 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
585 @item bus=@var{bus},unit=@var{unit}
586 These options define where is connected the drive by defining the bus number and
587 the unit id.
588 @item index=@var{index}
589 This option defines where is connected the drive by using an index in the list
590 of available connectors of a given interface type.
591 @item media=@var{media}
592 This option defines the type of the media: disk or cdrom.
593 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
594 These options have the same definition as they have in @option{-hdachs}.
595 @item snapshot=@var{snapshot}
596 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
597 (see @option{-snapshot}).
598 @item cache=@var{cache}
599 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
600 @item aio=@var{aio}
601 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
602 @item discard=@var{discard}
603 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests.
604 @item format=@var{format}
605 Specify which disk @var{format} will be used rather than detecting
606 the format. Can be used to specify format=raw to avoid interpreting
607 an untrusted format header.
608 @item serial=@var{serial}
609 This option specifies the serial number to assign to the device.
610 @item addr=@var{addr}
611 Specify the controller's PCI address (if=virtio only).
612 @item werror=@var{action},rerror=@var{action}
613 Specify which @var{action} to take on write and read errors. Valid actions are:
614 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
615 "report" (report the error to the guest), "enospc" (pause QEMU only if the
616 host disk is full; report the error to the guest otherwise).
617 The default setting is @option{werror=enospc} and @option{rerror=report}.
618 @item readonly
619 Open drive @option{file} as read-only. Guest write attempts will fail.
620 @item copy-on-read=@var{copy-on-read}
621 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
622 file sectors into the image file.
623 @item detect-zeroes=@var{detect-zeroes}
624 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
625 conversion of plain zero writes by the OS to driver specific optimized
626 zero write commands. You may even choose "unmap" if @var{discard} is set
627 to "unmap" to allow a zero write to be converted to an UNMAP operation.
628 @end table
629
630 By default, the @option{cache=writeback} mode is used. It will report data
631 writes as completed as soon as the data is present in the host page cache.
632 This is safe as long as your guest OS makes sure to correctly flush disk caches
633 where needed. If your guest OS does not handle volatile disk write caches
634 correctly and your host crashes or loses power, then the guest may experience
635 data corruption.
636
637 For such guests, you should consider using @option{cache=writethrough}. This
638 means that the host page cache will be used to read and write data, but write
639 notification will be sent to the guest only after QEMU has made sure to flush
640 each write to the disk. Be aware that this has a major impact on performance.
641
642 The host page cache can be avoided entirely with @option{cache=none}. This will
643 attempt to do disk IO directly to the guest's memory. QEMU may still perform
644 an internal copy of the data. Note that this is considered a writeback mode and
645 the guest OS must handle the disk write cache correctly in order to avoid data
646 corruption on host crashes.
647
648 The host page cache can be avoided while only sending write notifications to
649 the guest when the data has been flushed to the disk using
650 @option{cache=directsync}.
651
652 In case you don't care about data integrity over host failures, use
653 @option{cache=unsafe}. This option tells QEMU that it never needs to write any
654 data to the disk but can instead keep things in cache. If anything goes wrong,
655 like your host losing power, the disk storage getting disconnected accidentally,
656 etc. your image will most probably be rendered unusable. When using
657 the @option{-snapshot} option, unsafe caching is always used.
658
659 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
660 useful when the backing file is over a slow network. By default copy-on-read
661 is off.
662
663 Instead of @option{-cdrom} you can use:
664 @example
665 qemu-system-i386 -drive file=file,index=2,media=cdrom
666 @end example
667
668 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
669 use:
670 @example
671 qemu-system-i386 -drive file=file,index=0,media=disk
672 qemu-system-i386 -drive file=file,index=1,media=disk
673 qemu-system-i386 -drive file=file,index=2,media=disk
674 qemu-system-i386 -drive file=file,index=3,media=disk
675 @end example
676
677 You can open an image using pre-opened file descriptors from an fd set:
678 @example
679 qemu-system-i386
680 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
681 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
682 -drive file=/dev/fdset/2,index=0,media=disk
683 @end example
684
685 You can connect a CDROM to the slave of ide0:
686 @example
687 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
688 @end example
689
690 If you don't specify the "file=" argument, you define an empty drive:
691 @example
692 qemu-system-i386 -drive if=ide,index=1,media=cdrom
693 @end example
694
695 Instead of @option{-fda}, @option{-fdb}, you can use:
696 @example
697 qemu-system-i386 -drive file=file,index=0,if=floppy
698 qemu-system-i386 -drive file=file,index=1,if=floppy
699 @end example
700
701 By default, @var{interface} is "ide" and @var{index} is automatically
702 incremented:
703 @example
704 qemu-system-i386 -drive file=a -drive file=b"
705 @end example
706 is interpreted like:
707 @example
708 qemu-system-i386 -hda a -hdb b
709 @end example
710 ETEXI
711
712 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
713 "-mtdblock file use 'file' as on-board Flash memory image\n",
714 QEMU_ARCH_ALL)
715 STEXI
716 @item -mtdblock @var{file}
717 @findex -mtdblock
718 Use @var{file} as on-board Flash memory image.
719 ETEXI
720
721 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
722 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
723 STEXI
724 @item -sd @var{file}
725 @findex -sd
726 Use @var{file} as SecureDigital card image.
727 ETEXI
728
729 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
730 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
731 STEXI
732 @item -pflash @var{file}
733 @findex -pflash
734 Use @var{file} as a parallel flash image.
735 ETEXI
736
737 DEF("snapshot", 0, QEMU_OPTION_snapshot,
738 "-snapshot write to temporary files instead of disk image files\n",
739 QEMU_ARCH_ALL)
740 STEXI
741 @item -snapshot
742 @findex -snapshot
743 Write to temporary files instead of disk image files. In this case,
744 the raw disk image you use is not written back. You can however force
745 the write back by pressing @key{C-a s} (@pxref{disk_images}).
746 ETEXI
747
748 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
749 "-hdachs c,h,s[,t]\n" \
750 " force hard disk 0 physical geometry and the optional BIOS\n" \
751 " translation (t=none or lba) (usually QEMU can guess them)\n",
752 QEMU_ARCH_ALL)
753 STEXI
754 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
755 @findex -hdachs
756 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
757 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
758 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
759 all those parameters. This option is useful for old MS-DOS disk
760 images.
761 ETEXI
762
763 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
764 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
765 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n"
766 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
767 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
768 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
769 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
770 " [[,throttling.iops-size=is]]\n",
771 QEMU_ARCH_ALL)
772
773 STEXI
774
775 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
776 @findex -fsdev
777 Define a new file system device. Valid options are:
778 @table @option
779 @item @var{fsdriver}
780 This option specifies the fs driver backend to use.
781 Currently "local", "handle" and "proxy" file system drivers are supported.
782 @item id=@var{id}
783 Specifies identifier for this device
784 @item path=@var{path}
785 Specifies the export path for the file system device. Files under
786 this path will be available to the 9p client on the guest.
787 @item security_model=@var{security_model}
788 Specifies the security model to be used for this export path.
789 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
790 In "passthrough" security model, files are stored using the same
791 credentials as they are created on the guest. This requires QEMU
792 to run as root. In "mapped-xattr" security model, some of the file
793 attributes like uid, gid, mode bits and link target are stored as
794 file attributes. For "mapped-file" these attributes are stored in the
795 hidden .virtfs_metadata directory. Directories exported by this security model cannot
796 interact with other unix tools. "none" security model is same as
797 passthrough except the sever won't report failures if it fails to
798 set file attributes like ownership. Security model is mandatory
799 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
800 security model as a parameter.
801 @item writeout=@var{writeout}
802 This is an optional argument. The only supported value is "immediate".
803 This means that host page cache will be used to read and write data but
804 write notification will be sent to the guest only when the data has been
805 reported as written by the storage subsystem.
806 @item readonly
807 Enables exporting 9p share as a readonly mount for guests. By default
808 read-write access is given.
809 @item socket=@var{socket}
810 Enables proxy filesystem driver to use passed socket file for communicating
811 with virtfs-proxy-helper
812 @item sock_fd=@var{sock_fd}
813 Enables proxy filesystem driver to use passed socket descriptor for
814 communicating with virtfs-proxy-helper. Usually a helper like libvirt
815 will create socketpair and pass one of the fds as sock_fd
816 @end table
817
818 -fsdev option is used along with -device driver "virtio-9p-pci".
819 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
820 Options for virtio-9p-pci driver are:
821 @table @option
822 @item fsdev=@var{id}
823 Specifies the id value specified along with -fsdev option
824 @item mount_tag=@var{mount_tag}
825 Specifies the tag name to be used by the guest to mount this export point
826 @end table
827
828 ETEXI
829
830 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
831 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
832 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
833 QEMU_ARCH_ALL)
834
835 STEXI
836
837 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
838 @findex -virtfs
839
840 The general form of a Virtual File system pass-through options are:
841 @table @option
842 @item @var{fsdriver}
843 This option specifies the fs driver backend to use.
844 Currently "local", "handle" and "proxy" file system drivers are supported.
845 @item id=@var{id}
846 Specifies identifier for this device
847 @item path=@var{path}
848 Specifies the export path for the file system device. Files under
849 this path will be available to the 9p client on the guest.
850 @item security_model=@var{security_model}
851 Specifies the security model to be used for this export path.
852 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
853 In "passthrough" security model, files are stored using the same
854 credentials as they are created on the guest. This requires QEMU
855 to run as root. In "mapped-xattr" security model, some of the file
856 attributes like uid, gid, mode bits and link target are stored as
857 file attributes. For "mapped-file" these attributes are stored in the
858 hidden .virtfs_metadata directory. Directories exported by this security model cannot
859 interact with other unix tools. "none" security model is same as
860 passthrough except the sever won't report failures if it fails to
861 set file attributes like ownership. Security model is mandatory only
862 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
863 model as a parameter.
864 @item writeout=@var{writeout}
865 This is an optional argument. The only supported value is "immediate".
866 This means that host page cache will be used to read and write data but
867 write notification will be sent to the guest only when the data has been
868 reported as written by the storage subsystem.
869 @item readonly
870 Enables exporting 9p share as a readonly mount for guests. By default
871 read-write access is given.
872 @item socket=@var{socket}
873 Enables proxy filesystem driver to use passed socket file for
874 communicating with virtfs-proxy-helper. Usually a helper like libvirt
875 will create socketpair and pass one of the fds as sock_fd
876 @item sock_fd
877 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
878 descriptor for interfacing with virtfs-proxy-helper
879 @end table
880 ETEXI
881
882 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
883 "-virtfs_synth Create synthetic file system image\n",
884 QEMU_ARCH_ALL)
885 STEXI
886 @item -virtfs_synth
887 @findex -virtfs_synth
888 Create synthetic file system image
889 ETEXI
890
891 STEXI
892 @end table
893 ETEXI
894 DEFHEADING()
895
896 DEFHEADING(USB options)
897 STEXI
898 @table @option
899 ETEXI
900
901 DEF("usb", 0, QEMU_OPTION_usb,
902 "-usb enable the USB driver (will be the default soon)\n",
903 QEMU_ARCH_ALL)
904 STEXI
905 @item -usb
906 @findex -usb
907 Enable the USB driver (will be the default soon)
908 ETEXI
909
910 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
911 "-usbdevice name add the host or guest USB device 'name'\n",
912 QEMU_ARCH_ALL)
913 STEXI
914
915 @item -usbdevice @var{devname}
916 @findex -usbdevice
917 Add the USB device @var{devname}. @xref{usb_devices}.
918
919 @table @option
920
921 @item mouse
922 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
923
924 @item tablet
925 Pointer device that uses absolute coordinates (like a touchscreen). This
926 means QEMU is able to report the mouse position without having to grab the
927 mouse. Also overrides the PS/2 mouse emulation when activated.
928
929 @item disk:[format=@var{format}]:@var{file}
930 Mass storage device based on file. The optional @var{format} argument
931 will be used rather than detecting the format. Can be used to specify
932 @code{format=raw} to avoid interpreting an untrusted format header.
933
934 @item host:@var{bus}.@var{addr}
935 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
936
937 @item host:@var{vendor_id}:@var{product_id}
938 Pass through the host device identified by @var{vendor_id}:@var{product_id}
939 (Linux only).
940
941 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
942 Serial converter to host character device @var{dev}, see @code{-serial} for the
943 available devices.
944
945 @item braille
946 Braille device. This will use BrlAPI to display the braille output on a real
947 or fake device.
948
949 @item net:@var{options}
950 Network adapter that supports CDC ethernet and RNDIS protocols.
951
952 @end table
953 ETEXI
954
955 STEXI
956 @end table
957 ETEXI
958 DEFHEADING()
959
960 DEFHEADING(Display options)
961 STEXI
962 @table @option
963 ETEXI
964
965 DEF("display", HAS_ARG, QEMU_OPTION_display,
966 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
967 " [,window_close=on|off][,gl=on|off]\n"
968 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
969 "-display vnc=<display>[,<optargs>]\n"
970 "-display curses\n"
971 "-display none"
972 " select display type\n"
973 "The default display is equivalent to\n"
974 #if defined(CONFIG_GTK)
975 "\t\"-display gtk\"\n"
976 #elif defined(CONFIG_SDL)
977 "\t\"-display sdl\"\n"
978 #elif defined(CONFIG_COCOA)
979 "\t\"-display cocoa\"\n"
980 #elif defined(CONFIG_VNC)
981 "\t\"-vnc localhost:0,to=99,id=default\"\n"
982 #else
983 "\t\"-display none\"\n"
984 #endif
985 , QEMU_ARCH_ALL)
986 STEXI
987 @item -display @var{type}
988 @findex -display
989 Select type of display to use. This option is a replacement for the
990 old style -sdl/-curses/... options. Valid values for @var{type} are
991 @table @option
992 @item sdl
993 Display video output via SDL (usually in a separate graphics
994 window; see the SDL documentation for other possibilities).
995 @item curses
996 Display video output via curses. For graphics device models which
997 support a text mode, QEMU can display this output using a
998 curses/ncurses interface. Nothing is displayed when the graphics
999 device is in graphical mode or if the graphics device does not support
1000 a text mode. Generally only the VGA device models support text mode.
1001 @item none
1002 Do not display video output. The guest will still see an emulated
1003 graphics card, but its output will not be displayed to the QEMU
1004 user. This option differs from the -nographic option in that it
1005 only affects what is done with video output; -nographic also changes
1006 the destination of the serial and parallel port data.
1007 @item gtk
1008 Display video output in a GTK window. This interface provides drop-down
1009 menus and other UI elements to configure and control the VM during
1010 runtime.
1011 @item vnc
1012 Start a VNC server on display <arg>
1013 @end table
1014 ETEXI
1015
1016 DEF("nographic", 0, QEMU_OPTION_nographic,
1017 "-nographic disable graphical output and redirect serial I/Os to console\n",
1018 QEMU_ARCH_ALL)
1019 STEXI
1020 @item -nographic
1021 @findex -nographic
1022 Normally, if QEMU is compiled with graphical window support, it displays
1023 output such as guest graphics, guest console, and the QEMU monitor in a
1024 window. With this option, you can totally disable graphical output so
1025 that QEMU is a simple command line application. The emulated serial port
1026 is redirected on the console and muxed with the monitor (unless
1027 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1028 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1029 switching between the console and monitor.
1030 ETEXI
1031
1032 DEF("curses", 0, QEMU_OPTION_curses,
1033 "-curses shorthand for -display curses\n",
1034 QEMU_ARCH_ALL)
1035 STEXI
1036 @item -curses
1037 @findex -curses
1038 Normally, if QEMU is compiled with graphical window support, it displays
1039 output such as guest graphics, guest console, and the QEMU monitor in a
1040 window. With this option, QEMU can display the VGA output when in text
1041 mode using a curses/ncurses interface. Nothing is displayed in graphical
1042 mode.
1043 ETEXI
1044
1045 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1046 "-no-frame open SDL window without a frame and window decorations\n",
1047 QEMU_ARCH_ALL)
1048 STEXI
1049 @item -no-frame
1050 @findex -no-frame
1051 Do not use decorations for SDL windows and start them using the whole
1052 available screen space. This makes the using QEMU in a dedicated desktop
1053 workspace more convenient.
1054 ETEXI
1055
1056 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1057 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1058 QEMU_ARCH_ALL)
1059 STEXI
1060 @item -alt-grab
1061 @findex -alt-grab
1062 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1063 affects the special keys (for fullscreen, monitor-mode switching, etc).
1064 ETEXI
1065
1066 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1067 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1068 QEMU_ARCH_ALL)
1069 STEXI
1070 @item -ctrl-grab
1071 @findex -ctrl-grab
1072 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1073 affects the special keys (for fullscreen, monitor-mode switching, etc).
1074 ETEXI
1075
1076 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1077 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1078 STEXI
1079 @item -no-quit
1080 @findex -no-quit
1081 Disable SDL window close capability.
1082 ETEXI
1083
1084 DEF("sdl", 0, QEMU_OPTION_sdl,
1085 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1086 STEXI
1087 @item -sdl
1088 @findex -sdl
1089 Enable SDL.
1090 ETEXI
1091
1092 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1093 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1094 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1095 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1096 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1097 " [,tls-ciphers=<list>]\n"
1098 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1099 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1100 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1101 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1102 " [,jpeg-wan-compression=[auto|never|always]]\n"
1103 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1104 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1105 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1106 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1107 " [,gl=[on|off]][,rendernode=<file>]\n"
1108 " enable spice\n"
1109 " at least one of {port, tls-port} is mandatory\n",
1110 QEMU_ARCH_ALL)
1111 STEXI
1112 @item -spice @var{option}[,@var{option}[,...]]
1113 @findex -spice
1114 Enable the spice remote desktop protocol. Valid options are
1115
1116 @table @option
1117
1118 @item port=<nr>
1119 Set the TCP port spice is listening on for plaintext channels.
1120
1121 @item addr=<addr>
1122 Set the IP address spice is listening on. Default is any address.
1123
1124 @item ipv4
1125 @itemx ipv6
1126 @itemx unix
1127 Force using the specified IP version.
1128
1129 @item password=<secret>
1130 Set the password you need to authenticate.
1131
1132 @item sasl
1133 Require that the client use SASL to authenticate with the spice.
1134 The exact choice of authentication method used is controlled from the
1135 system / user's SASL configuration file for the 'qemu' service. This
1136 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1137 unprivileged user, an environment variable SASL_CONF_PATH can be used
1138 to make it search alternate locations for the service config.
1139 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1140 it is recommended that SASL always be combined with the 'tls' and
1141 'x509' settings to enable use of SSL and server certificates. This
1142 ensures a data encryption preventing compromise of authentication
1143 credentials.
1144
1145 @item disable-ticketing
1146 Allow client connects without authentication.
1147
1148 @item disable-copy-paste
1149 Disable copy paste between the client and the guest.
1150
1151 @item disable-agent-file-xfer
1152 Disable spice-vdagent based file-xfer between the client and the guest.
1153
1154 @item tls-port=<nr>
1155 Set the TCP port spice is listening on for encrypted channels.
1156
1157 @item x509-dir=<dir>
1158 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1159
1160 @item x509-key-file=<file>
1161 @itemx x509-key-password=<file>
1162 @itemx x509-cert-file=<file>
1163 @itemx x509-cacert-file=<file>
1164 @itemx x509-dh-key-file=<file>
1165 The x509 file names can also be configured individually.
1166
1167 @item tls-ciphers=<list>
1168 Specify which ciphers to use.
1169
1170 @item tls-channel=[main|display|cursor|inputs|record|playback]
1171 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1172 Force specific channel to be used with or without TLS encryption. The
1173 options can be specified multiple times to configure multiple
1174 channels. The special name "default" can be used to set the default
1175 mode. For channels which are not explicitly forced into one mode the
1176 spice client is allowed to pick tls/plaintext as he pleases.
1177
1178 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1179 Configure image compression (lossless).
1180 Default is auto_glz.
1181
1182 @item jpeg-wan-compression=[auto|never|always]
1183 @itemx zlib-glz-wan-compression=[auto|never|always]
1184 Configure wan image compression (lossy for slow links).
1185 Default is auto.
1186
1187 @item streaming-video=[off|all|filter]
1188 Configure video stream detection. Default is off.
1189
1190 @item agent-mouse=[on|off]
1191 Enable/disable passing mouse events via vdagent. Default is on.
1192
1193 @item playback-compression=[on|off]
1194 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1195
1196 @item seamless-migration=[on|off]
1197 Enable/disable spice seamless migration. Default is off.
1198
1199 @item gl=[on|off]
1200 Enable/disable OpenGL context. Default is off.
1201
1202 @item rendernode=<file>
1203 DRM render node for OpenGL rendering. If not specified, it will pick
1204 the first available. (Since 2.9)
1205
1206 @end table
1207 ETEXI
1208
1209 DEF("portrait", 0, QEMU_OPTION_portrait,
1210 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1211 QEMU_ARCH_ALL)
1212 STEXI
1213 @item -portrait
1214 @findex -portrait
1215 Rotate graphical output 90 deg left (only PXA LCD).
1216 ETEXI
1217
1218 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1219 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1220 QEMU_ARCH_ALL)
1221 STEXI
1222 @item -rotate @var{deg}
1223 @findex -rotate
1224 Rotate graphical output some deg left (only PXA LCD).
1225 ETEXI
1226
1227 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1228 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1229 " select video card type\n", QEMU_ARCH_ALL)
1230 STEXI
1231 @item -vga @var{type}
1232 @findex -vga
1233 Select type of VGA card to emulate. Valid values for @var{type} are
1234 @table @option
1235 @item cirrus
1236 Cirrus Logic GD5446 Video card. All Windows versions starting from
1237 Windows 95 should recognize and use this graphic card. For optimal
1238 performances, use 16 bit color depth in the guest and the host OS.
1239 (This card was the default before QEMU 2.2)
1240 @item std
1241 Standard VGA card with Bochs VBE extensions. If your guest OS
1242 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1243 to use high resolution modes (>= 1280x1024x16) then you should use
1244 this option. (This card is the default since QEMU 2.2)
1245 @item vmware
1246 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1247 recent XFree86/XOrg server or Windows guest with a driver for this
1248 card.
1249 @item qxl
1250 QXL paravirtual graphic card. It is VGA compatible (including VESA
1251 2.0 VBE support). Works best with qxl guest drivers installed though.
1252 Recommended choice when using the spice protocol.
1253 @item tcx
1254 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1255 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1256 fixed resolution of 1024x768.
1257 @item cg3
1258 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1259 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1260 resolutions aimed at people wishing to run older Solaris versions.
1261 @item virtio
1262 Virtio VGA card.
1263 @item none
1264 Disable VGA card.
1265 @end table
1266 ETEXI
1267
1268 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1269 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1270 STEXI
1271 @item -full-screen
1272 @findex -full-screen
1273 Start in full screen.
1274 ETEXI
1275
1276 DEF("g", 1, QEMU_OPTION_g ,
1277 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1278 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1279 STEXI
1280 @item -g @var{width}x@var{height}[x@var{depth}]
1281 @findex -g
1282 Set the initial graphical resolution and depth (PPC, SPARC only).
1283 ETEXI
1284
1285 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1286 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1287 STEXI
1288 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1289 @findex -vnc
1290 Normally, if QEMU is compiled with graphical window support, it displays
1291 output such as guest graphics, guest console, and the QEMU monitor in a
1292 window. With this option, you can have QEMU listen on VNC display
1293 @var{display} and redirect the VGA display over the VNC session. It is
1294 very useful to enable the usb tablet device when using this option
1295 (option @option{-usbdevice tablet}). When using the VNC display, you
1296 must use the @option{-k} parameter to set the keyboard layout if you are
1297 not using en-us. Valid syntax for the @var{display} is
1298
1299 @table @option
1300
1301 @item to=@var{L}
1302
1303 With this option, QEMU will try next available VNC @var{display}s, until the
1304 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1305 available, e.g. port 5900+@var{display} is already used by another
1306 application. By default, to=0.
1307
1308 @item @var{host}:@var{d}
1309
1310 TCP connections will only be allowed from @var{host} on display @var{d}.
1311 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1312 be omitted in which case the server will accept connections from any host.
1313
1314 @item unix:@var{path}
1315
1316 Connections will be allowed over UNIX domain sockets where @var{path} is the
1317 location of a unix socket to listen for connections on.
1318
1319 @item none
1320
1321 VNC is initialized but not started. The monitor @code{change} command
1322 can be used to later start the VNC server.
1323
1324 @end table
1325
1326 Following the @var{display} value there may be one or more @var{option} flags
1327 separated by commas. Valid options are
1328
1329 @table @option
1330
1331 @item reverse
1332
1333 Connect to a listening VNC client via a ``reverse'' connection. The
1334 client is specified by the @var{display}. For reverse network
1335 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1336 is a TCP port number, not a display number.
1337
1338 @item websocket
1339
1340 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1341 If a bare @var{websocket} option is given, the Websocket port is
1342 5700+@var{display}. An alternative port can be specified with the
1343 syntax @code{websocket}=@var{port}.
1344
1345 If @var{host} is specified connections will only be allowed from this host.
1346 It is possible to control the websocket listen address independently, using
1347 the syntax @code{websocket}=@var{host}:@var{port}.
1348
1349 If no TLS credentials are provided, the websocket connection runs in
1350 unencrypted mode. If TLS credentials are provided, the websocket connection
1351 requires encrypted client connections.
1352
1353 @item password
1354
1355 Require that password based authentication is used for client connections.
1356
1357 The password must be set separately using the @code{set_password} command in
1358 the @ref{pcsys_monitor}. The syntax to change your password is:
1359 @code{set_password <protocol> <password>} where <protocol> could be either
1360 "vnc" or "spice".
1361
1362 If you would like to change <protocol> password expiration, you should use
1363 @code{expire_password <protocol> <expiration-time>} where expiration time could
1364 be one of the following options: now, never, +seconds or UNIX time of
1365 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1366 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1367 date and time).
1368
1369 You can also use keywords "now" or "never" for the expiration time to
1370 allow <protocol> password to expire immediately or never expire.
1371
1372 @item tls-creds=@var{ID}
1373
1374 Provides the ID of a set of TLS credentials to use to secure the
1375 VNC server. They will apply to both the normal VNC server socket
1376 and the websocket socket (if enabled). Setting TLS credentials
1377 will cause the VNC server socket to enable the VeNCrypt auth
1378 mechanism. The credentials should have been previously created
1379 using the @option{-object tls-creds} argument.
1380
1381 The @option{tls-creds} parameter obsoletes the @option{tls},
1382 @option{x509}, and @option{x509verify} options, and as such
1383 it is not permitted to set both new and old type options at
1384 the same time.
1385
1386 @item tls
1387
1388 Require that client use TLS when communicating with the VNC server. This
1389 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1390 attack. It is recommended that this option be combined with either the
1391 @option{x509} or @option{x509verify} options.
1392
1393 This option is now deprecated in favor of using the @option{tls-creds}
1394 argument.
1395
1396 @item x509=@var{/path/to/certificate/dir}
1397
1398 Valid if @option{tls} is specified. Require that x509 credentials are used
1399 for negotiating the TLS session. The server will send its x509 certificate
1400 to the client. It is recommended that a password be set on the VNC server
1401 to provide authentication of the client when this is used. The path following
1402 this option specifies where the x509 certificates are to be loaded from.
1403 See the @ref{vnc_security} section for details on generating certificates.
1404
1405 This option is now deprecated in favour of using the @option{tls-creds}
1406 argument.
1407
1408 @item x509verify=@var{/path/to/certificate/dir}
1409
1410 Valid if @option{tls} is specified. Require that x509 credentials are used
1411 for negotiating the TLS session. The server will send its x509 certificate
1412 to the client, and request that the client send its own x509 certificate.
1413 The server will validate the client's certificate against the CA certificate,
1414 and reject clients when validation fails. If the certificate authority is
1415 trusted, this is a sufficient authentication mechanism. You may still wish
1416 to set a password on the VNC server as a second authentication layer. The
1417 path following this option specifies where the x509 certificates are to
1418 be loaded from. See the @ref{vnc_security} section for details on generating
1419 certificates.
1420
1421 This option is now deprecated in favour of using the @option{tls-creds}
1422 argument.
1423
1424 @item sasl
1425
1426 Require that the client use SASL to authenticate with the VNC server.
1427 The exact choice of authentication method used is controlled from the
1428 system / user's SASL configuration file for the 'qemu' service. This
1429 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1430 unprivileged user, an environment variable SASL_CONF_PATH can be used
1431 to make it search alternate locations for the service config.
1432 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1433 it is recommended that SASL always be combined with the 'tls' and
1434 'x509' settings to enable use of SSL and server certificates. This
1435 ensures a data encryption preventing compromise of authentication
1436 credentials. See the @ref{vnc_security} section for details on using
1437 SASL authentication.
1438
1439 @item acl
1440
1441 Turn on access control lists for checking of the x509 client certificate
1442 and SASL party. For x509 certs, the ACL check is made against the
1443 certificate's distinguished name. This is something that looks like
1444 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1445 made against the username, which depending on the SASL plugin, may
1446 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1447 When the @option{acl} flag is set, the initial access list will be
1448 empty, with a @code{deny} policy. Thus no one will be allowed to
1449 use the VNC server until the ACLs have been loaded. This can be
1450 achieved using the @code{acl} monitor command.
1451
1452 @item lossy
1453
1454 Enable lossy compression methods (gradient, JPEG, ...). If this
1455 option is set, VNC client may receive lossy framebuffer updates
1456 depending on its encoding settings. Enabling this option can save
1457 a lot of bandwidth at the expense of quality.
1458
1459 @item non-adaptive
1460
1461 Disable adaptive encodings. Adaptive encodings are enabled by default.
1462 An adaptive encoding will try to detect frequently updated screen regions,
1463 and send updates in these regions using a lossy encoding (like JPEG).
1464 This can be really helpful to save bandwidth when playing videos. Disabling
1465 adaptive encodings restores the original static behavior of encodings
1466 like Tight.
1467
1468 @item share=[allow-exclusive|force-shared|ignore]
1469
1470 Set display sharing policy. 'allow-exclusive' allows clients to ask
1471 for exclusive access. As suggested by the rfb spec this is
1472 implemented by dropping other connections. Connecting multiple
1473 clients in parallel requires all clients asking for a shared session
1474 (vncviewer: -shared switch). This is the default. 'force-shared'
1475 disables exclusive client access. Useful for shared desktop sessions,
1476 where you don't want someone forgetting specify -shared disconnect
1477 everybody else. 'ignore' completely ignores the shared flag and
1478 allows everybody connect unconditionally. Doesn't conform to the rfb
1479 spec but is traditional QEMU behavior.
1480
1481 @item key-delay-ms
1482
1483 Set keyboard delay, for key down and key up events, in milliseconds.
1484 Default is 1. Keyboards are low-bandwidth devices, so this slowdown
1485 can help the device and guest to keep up and not lose events in case
1486 events are arriving in bulk. Possible causes for the latter are flaky
1487 network connections, or scripts for automated testing.
1488
1489 @end table
1490 ETEXI
1491
1492 STEXI
1493 @end table
1494 ETEXI
1495 ARCHHEADING(, QEMU_ARCH_I386)
1496
1497 ARCHHEADING(i386 target only, QEMU_ARCH_I386)
1498 STEXI
1499 @table @option
1500 ETEXI
1501
1502 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1503 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1504 QEMU_ARCH_I386)
1505 STEXI
1506 @item -win2k-hack
1507 @findex -win2k-hack
1508 Use it when installing Windows 2000 to avoid a disk full bug. After
1509 Windows 2000 is installed, you no longer need this option (this option
1510 slows down the IDE transfers).
1511 ETEXI
1512
1513 HXCOMM Deprecated by -rtc
1514 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1515
1516 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1517 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1518 QEMU_ARCH_I386)
1519 STEXI
1520 @item -no-fd-bootchk
1521 @findex -no-fd-bootchk
1522 Disable boot signature checking for floppy disks in BIOS. May
1523 be needed to boot from old floppy disks.
1524 ETEXI
1525
1526 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1527 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1528 STEXI
1529 @item -no-acpi
1530 @findex -no-acpi
1531 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1532 it if your guest OS complains about ACPI problems (PC target machine
1533 only).
1534 ETEXI
1535
1536 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1537 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1538 STEXI
1539 @item -no-hpet
1540 @findex -no-hpet
1541 Disable HPET support.
1542 ETEXI
1543
1544 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1545 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1546 " ACPI table description\n", QEMU_ARCH_I386)
1547 STEXI
1548 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1549 @findex -acpitable
1550 Add ACPI table with specified header fields and context from specified files.
1551 For file=, take whole ACPI table from the specified files, including all
1552 ACPI headers (possible overridden by other options).
1553 For data=, only data
1554 portion of the table is used, all header information is specified in the
1555 command line.
1556 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1557 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1558 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1559 spec.
1560 ETEXI
1561
1562 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1563 "-smbios file=binary\n"
1564 " load SMBIOS entry from binary file\n"
1565 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1566 " [,uefi=on|off]\n"
1567 " specify SMBIOS type 0 fields\n"
1568 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1569 " [,uuid=uuid][,sku=str][,family=str]\n"
1570 " specify SMBIOS type 1 fields\n"
1571 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1572 " [,asset=str][,location=str]\n"
1573 " specify SMBIOS type 2 fields\n"
1574 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1575 " [,sku=str]\n"
1576 " specify SMBIOS type 3 fields\n"
1577 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1578 " [,asset=str][,part=str]\n"
1579 " specify SMBIOS type 4 fields\n"
1580 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1581 " [,asset=str][,part=str][,speed=%d]\n"
1582 " specify SMBIOS type 17 fields\n",
1583 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1584 STEXI
1585 @item -smbios file=@var{binary}
1586 @findex -smbios
1587 Load SMBIOS entry from binary file.
1588
1589 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1590 Specify SMBIOS type 0 fields
1591
1592 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1593 Specify SMBIOS type 1 fields
1594
1595 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1596 Specify SMBIOS type 2 fields
1597
1598 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1599 Specify SMBIOS type 3 fields
1600
1601 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1602 Specify SMBIOS type 4 fields
1603
1604 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1605 Specify SMBIOS type 17 fields
1606 ETEXI
1607
1608 STEXI
1609 @end table
1610 ETEXI
1611 DEFHEADING()
1612
1613 DEFHEADING(Network options)
1614 STEXI
1615 @table @option
1616 ETEXI
1617
1618 HXCOMM Legacy slirp options (now moved to -net user):
1619 #ifdef CONFIG_SLIRP
1620 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1621 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1622 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1623 #ifndef _WIN32
1624 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1625 #endif
1626 #endif
1627
1628 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1629 #ifdef CONFIG_SLIRP
1630 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1631 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1632 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1633 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,tftp=dir]\n"
1634 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1635 #ifndef _WIN32
1636 "[,smb=dir[,smbserver=addr]]\n"
1637 #endif
1638 " configure a user mode network backend with ID 'str',\n"
1639 " its DHCP server and optional services\n"
1640 #endif
1641 #ifdef _WIN32
1642 "-netdev tap,id=str,ifname=name\n"
1643 " configure a host TAP network backend with ID 'str'\n"
1644 #else
1645 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1646 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1647 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1648 " [,poll-us=n]\n"
1649 " configure a host TAP network backend with ID 'str'\n"
1650 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1651 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1652 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1653 " to deconfigure it\n"
1654 " use '[down]script=no' to disable script execution\n"
1655 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1656 " configure it\n"
1657 " use 'fd=h' to connect to an already opened TAP interface\n"
1658 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1659 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1660 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1661 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1662 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1663 " use vhost=on to enable experimental in kernel accelerator\n"
1664 " (only has effect for virtio guests which use MSIX)\n"
1665 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1666 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1667 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1668 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1669 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1670 " spent on busy polling for vhost net\n"
1671 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1672 " configure a host TAP network backend with ID 'str' that is\n"
1673 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1674 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1675 #endif
1676 #ifdef __linux__
1677 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1678 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1679 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1680 " [,rxcookie=rxcookie][,offset=offset]\n"
1681 " configure a network backend with ID 'str' connected to\n"
1682 " an Ethernet over L2TPv3 pseudowire.\n"
1683 " Linux kernel 3.3+ as well as most routers can talk\n"
1684 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1685 " VM to a router and even VM to Host. It is a nearly-universal\n"
1686 " standard (RFC3391). Note - this implementation uses static\n"
1687 " pre-configured tunnels (same as the Linux kernel).\n"
1688 " use 'src=' to specify source address\n"
1689 " use 'dst=' to specify destination address\n"
1690 " use 'udp=on' to specify udp encapsulation\n"
1691 " use 'srcport=' to specify source udp port\n"
1692 " use 'dstport=' to specify destination udp port\n"
1693 " use 'ipv6=on' to force v6\n"
1694 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1695 " well as a weak security measure\n"
1696 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1697 " use 'txcookie=0x012345678' to specify a txcookie\n"
1698 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1699 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1700 " use 'pincounter=on' to work around broken counter handling in peer\n"
1701 " use 'offset=X' to add an extra offset between header and data\n"
1702 #endif
1703 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1704 " configure a network backend to connect to another network\n"
1705 " using a socket connection\n"
1706 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1707 " configure a network backend to connect to a multicast maddr and port\n"
1708 " use 'localaddr=addr' to specify the host address to send packets from\n"
1709 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1710 " configure a network backend to connect to another network\n"
1711 " using an UDP tunnel\n"
1712 #ifdef CONFIG_VDE
1713 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1714 " configure a network backend to connect to port 'n' of a vde switch\n"
1715 " running on host and listening for incoming connections on 'socketpath'.\n"
1716 " Use group 'groupname' and mode 'octalmode' to change default\n"
1717 " ownership and permissions for communication port.\n"
1718 #endif
1719 #ifdef CONFIG_NETMAP
1720 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1721 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1722 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1723 " netmap device, defaults to '/dev/netmap')\n"
1724 #endif
1725 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1726 " configure a vhost-user network, backed by a chardev 'dev'\n"
1727 "-netdev hubport,id=str,hubid=n\n"
1728 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
1729 DEF("net", HAS_ARG, QEMU_OPTION_net,
1730 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1731 " old way to create a new NIC and connect it to VLAN 'n'\n"
1732 " (use the '-device devtype,netdev=str' option if possible instead)\n"
1733 "-net dump[,vlan=n][,file=f][,len=n]\n"
1734 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
1735 "-net none use it alone to have zero network devices. If no -net option\n"
1736 " is provided, the default is '-net nic -net user'\n"
1737 "-net ["
1738 #ifdef CONFIG_SLIRP
1739 "user|"
1740 #endif
1741 "tap|"
1742 "bridge|"
1743 #ifdef CONFIG_VDE
1744 "vde|"
1745 #endif
1746 #ifdef CONFIG_NETMAP
1747 "netmap|"
1748 #endif
1749 "socket][,vlan=n][,option][,option][,...]\n"
1750 " old way to initialize a host network interface\n"
1751 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1752 STEXI
1753 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
1754 @findex -net
1755 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
1756 = 0 is the default). The NIC is an e1000 by default on the PC
1757 target. Optionally, the MAC address can be changed to @var{mac}, the
1758 device address set to @var{addr} (PCI cards only),
1759 and a @var{name} can be assigned for use in monitor commands.
1760 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
1761 that the card should have; this option currently only affects virtio cards; set
1762 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
1763 NIC is created. QEMU can emulate several different models of network card.
1764 Valid values for @var{type} are
1765 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
1766 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
1767 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
1768 Not all devices are supported on all targets. Use @code{-net nic,model=help}
1769 for a list of available devices for your target.
1770
1771 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1772 @findex -netdev
1773 @item -net user[,@var{option}][,@var{option}][,...]
1774 Use the user mode network stack which requires no administrator
1775 privilege to run. Valid options are:
1776
1777 @table @option
1778 @item vlan=@var{n}
1779 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
1780
1781 @item id=@var{id}
1782 @itemx name=@var{name}
1783 Assign symbolic name for use in monitor commands.
1784
1785 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must
1786 be enabled. If neither is specified both protocols are enabled.
1787
1788 @item net=@var{addr}[/@var{mask}]
1789 Set IP network address the guest will see. Optionally specify the netmask,
1790 either in the form a.b.c.d or as number of valid top-most bits. Default is
1791 10.0.2.0/24.
1792
1793 @item host=@var{addr}
1794 Specify the guest-visible address of the host. Default is the 2nd IP in the
1795 guest network, i.e. x.x.x.2.
1796
1797 @item ipv6-net=@var{addr}[/@var{int}]
1798 Set IPv6 network address the guest will see (default is fec0::/64). The
1799 network prefix is given in the usual hexadecimal IPv6 address
1800 notation. The prefix size is optional, and is given as the number of
1801 valid top-most bits (default is 64).
1802
1803 @item ipv6-host=@var{addr}
1804 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
1805 the guest network, i.e. xxxx::2.
1806
1807 @item restrict=on|off
1808 If this option is enabled, the guest will be isolated, i.e. it will not be
1809 able to contact the host and no guest IP packets will be routed over the host
1810 to the outside. This option does not affect any explicitly set forwarding rules.
1811
1812 @item hostname=@var{name}
1813 Specifies the client hostname reported by the built-in DHCP server.
1814
1815 @item dhcpstart=@var{addr}
1816 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
1817 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
1818
1819 @item dns=@var{addr}
1820 Specify the guest-visible address of the virtual nameserver. The address must
1821 be different from the host address. Default is the 3rd IP in the guest network,
1822 i.e. x.x.x.3.
1823
1824 @item ipv6-dns=@var{addr}
1825 Specify the guest-visible address of the IPv6 virtual nameserver. The address
1826 must be different from the host address. Default is the 3rd IP in the guest
1827 network, i.e. xxxx::3.
1828
1829 @item dnssearch=@var{domain}
1830 Provides an entry for the domain-search list sent by the built-in
1831 DHCP server. More than one domain suffix can be transmitted by specifying
1832 this option multiple times. If supported, this will cause the guest to
1833 automatically try to append the given domain suffix(es) in case a domain name
1834 can not be resolved.
1835
1836 Example:
1837 @example
1838 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
1839 @end example
1840
1841 @item tftp=@var{dir}
1842 When using the user mode network stack, activate a built-in TFTP
1843 server. The files in @var{dir} will be exposed as the root of a TFTP server.
1844 The TFTP client on the guest must be configured in binary mode (use the command
1845 @code{bin} of the Unix TFTP client).
1846
1847 @item bootfile=@var{file}
1848 When using the user mode network stack, broadcast @var{file} as the BOOTP
1849 filename. In conjunction with @option{tftp}, this can be used to network boot
1850 a guest from a local directory.
1851
1852 Example (using pxelinux):
1853 @example
1854 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
1855 @end example
1856
1857 @item smb=@var{dir}[,smbserver=@var{addr}]
1858 When using the user mode network stack, activate a built-in SMB
1859 server so that Windows OSes can access to the host files in @file{@var{dir}}
1860 transparently. The IP address of the SMB server can be set to @var{addr}. By
1861 default the 4th IP in the guest network is used, i.e. x.x.x.4.
1862
1863 In the guest Windows OS, the line:
1864 @example
1865 10.0.2.4 smbserver
1866 @end example
1867 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
1868 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
1869
1870 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
1871
1872 Note that a SAMBA server must be installed on the host OS.
1873 QEMU was tested successfully with smbd versions from Red Hat 9,
1874 Fedora Core 3 and OpenSUSE 11.x.
1875
1876 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
1877 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
1878 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
1879 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
1880 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
1881 be bound to a specific host interface. If no connection type is set, TCP is
1882 used. This option can be given multiple times.
1883
1884 For example, to redirect host X11 connection from screen 1 to guest
1885 screen 0, use the following:
1886
1887 @example
1888 # on the host
1889 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
1890 # this host xterm should open in the guest X11 server
1891 xterm -display :1
1892 @end example
1893
1894 To redirect telnet connections from host port 5555 to telnet port on
1895 the guest, use the following:
1896
1897 @example
1898 # on the host
1899 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
1900 telnet localhost 5555
1901 @end example
1902
1903 Then when you use on the host @code{telnet localhost 5555}, you
1904 connect to the guest telnet server.
1905
1906 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
1907 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
1908 Forward guest TCP connections to the IP address @var{server} on port @var{port}
1909 to the character device @var{dev} or to a program executed by @var{cmd:command}
1910 which gets spawned for each connection. This option can be given multiple times.
1911
1912 You can either use a chardev directly and have that one used throughout QEMU's
1913 lifetime, like in the following example:
1914
1915 @example
1916 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
1917 # the guest accesses it
1918 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
1919 @end example
1920
1921 Or you can execute a command on every TCP connection established by the guest,
1922 so that QEMU behaves similar to an inetd process for that virtual server:
1923
1924 @example
1925 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
1926 # and connect the TCP stream to its stdin/stdout
1927 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
1928 @end example
1929
1930 @end table
1931
1932 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
1933 processed and applied to -net user. Mixing them with the new configuration
1934 syntax gives undefined results. Their use for new applications is discouraged
1935 as they will be removed from future versions.
1936
1937 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1938 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1939 Connect the host TAP network interface @var{name} to VLAN @var{n}.
1940
1941 Use the network script @var{file} to configure it and the network script
1942 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
1943 automatically provides one. The default network configure script is
1944 @file{/etc/qemu-ifup} and the default network deconfigure script is
1945 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
1946 to disable script execution.
1947
1948 If running QEMU as an unprivileged user, use the network helper
1949 @var{helper} to configure the TAP interface and attach it to the bridge.
1950 The default network helper executable is @file{/path/to/qemu-bridge-helper}
1951 and the default bridge device is @file{br0}.
1952
1953 @option{fd}=@var{h} can be used to specify the handle of an already
1954 opened host TAP interface.
1955
1956 Examples:
1957
1958 @example
1959 #launch a QEMU instance with the default network script
1960 qemu-system-i386 linux.img -net nic -net tap
1961 @end example
1962
1963 @example
1964 #launch a QEMU instance with two NICs, each one connected
1965 #to a TAP device
1966 qemu-system-i386 linux.img \
1967 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
1968 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
1969 @end example
1970
1971 @example
1972 #launch a QEMU instance with the default network helper to
1973 #connect a TAP device to bridge br0
1974 qemu-system-i386 linux.img \
1975 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
1976 @end example
1977
1978 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
1979 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
1980 Connect a host TAP network interface to a host bridge device.
1981
1982 Use the network helper @var{helper} to configure the TAP interface and
1983 attach it to the bridge. The default network helper executable is
1984 @file{/path/to/qemu-bridge-helper} and the default bridge
1985 device is @file{br0}.
1986
1987 Examples:
1988
1989 @example
1990 #launch a QEMU instance with the default network helper to
1991 #connect a TAP device to bridge br0
1992 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
1993 @end example
1994
1995 @example
1996 #launch a QEMU instance with the default network helper to
1997 #connect a TAP device to bridge qemubr0
1998 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
1999 @end example
2000
2001 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2002 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2003
2004 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
2005 machine using a TCP socket connection. If @option{listen} is
2006 specified, QEMU waits for incoming connections on @var{port}
2007 (@var{host} is optional). @option{connect} is used to connect to
2008 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2009 specifies an already opened TCP socket.
2010
2011 Example:
2012 @example
2013 # launch a first QEMU instance
2014 qemu-system-i386 linux.img \
2015 -net nic,macaddr=52:54:00:12:34:56 \
2016 -net socket,listen=:1234
2017 # connect the VLAN 0 of this instance to the VLAN 0
2018 # of the first instance
2019 qemu-system-i386 linux.img \
2020 -net nic,macaddr=52:54:00:12:34:57 \
2021 -net socket,connect=127.0.0.1:1234
2022 @end example
2023
2024 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2025 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2026
2027 Create a VLAN @var{n} shared with another QEMU virtual
2028 machines using a UDP multicast socket, effectively making a bus for
2029 every QEMU with same multicast address @var{maddr} and @var{port}.
2030 NOTES:
2031 @enumerate
2032 @item
2033 Several QEMU can be running on different hosts and share same bus (assuming
2034 correct multicast setup for these hosts).
2035 @item
2036 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2037 @url{http://user-mode-linux.sf.net}.
2038 @item
2039 Use @option{fd=h} to specify an already opened UDP multicast socket.
2040 @end enumerate
2041
2042 Example:
2043 @example
2044 # launch one QEMU instance
2045 qemu-system-i386 linux.img \
2046 -net nic,macaddr=52:54:00:12:34:56 \
2047 -net socket,mcast=230.0.0.1:1234
2048 # launch another QEMU instance on same "bus"
2049 qemu-system-i386 linux.img \
2050 -net nic,macaddr=52:54:00:12:34:57 \
2051 -net socket,mcast=230.0.0.1:1234
2052 # launch yet another QEMU instance on same "bus"
2053 qemu-system-i386 linux.img \
2054 -net nic,macaddr=52:54:00:12:34:58 \
2055 -net socket,mcast=230.0.0.1:1234
2056 @end example
2057
2058 Example (User Mode Linux compat.):
2059 @example
2060 # launch QEMU instance (note mcast address selected
2061 # is UML's default)
2062 qemu-system-i386 linux.img \
2063 -net nic,macaddr=52:54:00:12:34:56 \
2064 -net socket,mcast=239.192.168.1:1102
2065 # launch UML
2066 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2067 @end example
2068
2069 Example (send packets from host's 1.2.3.4):
2070 @example
2071 qemu-system-i386 linux.img \
2072 -net nic,macaddr=52:54:00:12:34:56 \
2073 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2074 @end example
2075
2076 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2077 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2078 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
2079 protocol to transport Ethernet (and other Layer 2) data frames between
2080 two systems. It is present in routers, firewalls and the Linux kernel
2081 (from version 3.3 onwards).
2082
2083 This transport allows a VM to communicate to another VM, router or firewall directly.
2084
2085 @item src=@var{srcaddr}
2086 source address (mandatory)
2087 @item dst=@var{dstaddr}
2088 destination address (mandatory)
2089 @item udp
2090 select udp encapsulation (default is ip).
2091 @item srcport=@var{srcport}
2092 source udp port.
2093 @item dstport=@var{dstport}
2094 destination udp port.
2095 @item ipv6
2096 force v6, otherwise defaults to v4.
2097 @item rxcookie=@var{rxcookie}
2098 @itemx txcookie=@var{txcookie}
2099 Cookies are a weak form of security in the l2tpv3 specification.
2100 Their function is mostly to prevent misconfiguration. By default they are 32
2101 bit.
2102 @item cookie64
2103 Set cookie size to 64 bit instead of the default 32
2104 @item counter=off
2105 Force a 'cut-down' L2TPv3 with no counter as in
2106 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2107 @item pincounter=on
2108 Work around broken counter handling in peer. This may also help on
2109 networks which have packet reorder.
2110 @item offset=@var{offset}
2111 Add an extra offset between header and data
2112
2113 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2114 on the remote Linux host 1.2.3.4:
2115 @example
2116 # Setup tunnel on linux host using raw ip as encapsulation
2117 # on 1.2.3.4
2118 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2119 encap udp udp_sport 16384 udp_dport 16384
2120 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2121 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2122 ifconfig vmtunnel0 mtu 1500
2123 ifconfig vmtunnel0 up
2124 brctl addif br-lan vmtunnel0
2125
2126
2127 # on 4.3.2.1
2128 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2129
2130 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2131
2132
2133 @end example
2134
2135 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2136 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2137 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2138 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2139 and MODE @var{octalmode} to change default ownership and permissions for
2140 communication port. This option is only available if QEMU has been compiled
2141 with vde support enabled.
2142
2143 Example:
2144 @example
2145 # launch vde switch
2146 vde_switch -F -sock /tmp/myswitch
2147 # launch QEMU instance
2148 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2149 @end example
2150
2151 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2152
2153 Create a hub port on QEMU "vlan" @var{hubid}.
2154
2155 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2156 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2157 required hub automatically.
2158
2159 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2160
2161 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2162 be a unix domain socket backed one. The vhost-user uses a specifically defined
2163 protocol to pass vhost ioctl replacement messages to an application on the other
2164 end of the socket. On non-MSIX guests, the feature can be forced with
2165 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2166 be created for multiqueue vhost-user.
2167
2168 Example:
2169 @example
2170 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2171 -numa node,memdev=mem \
2172 -chardev socket,id=chr0,path=/path/to/socket \
2173 -netdev type=vhost-user,id=net0,chardev=chr0 \
2174 -device virtio-net-pci,netdev=net0
2175 @end example
2176
2177 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2178 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2179 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2180 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2181 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2182
2183 @item -net none
2184 Indicate that no network devices should be configured. It is used to
2185 override the default configuration (@option{-net nic -net user}) which
2186 is activated if no @option{-net} options are provided.
2187 ETEXI
2188
2189 STEXI
2190 @end table
2191 ETEXI
2192 DEFHEADING()
2193
2194 DEFHEADING(Character device options)
2195 STEXI
2196
2197 The general form of a character device option is:
2198 @table @option
2199 ETEXI
2200
2201 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2202 "-chardev help\n"
2203 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2204 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2205 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2206 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2207 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2208 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2209 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2210 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2211 " [,logfile=PATH][,logappend=on|off]\n"
2212 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2213 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2214 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2215 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2216 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2217 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2218 #ifdef _WIN32
2219 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2220 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2221 #else
2222 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2223 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2224 #endif
2225 #ifdef CONFIG_BRLAPI
2226 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2227 #endif
2228 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2229 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2230 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2231 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2232 #endif
2233 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2234 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2235 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2236 #endif
2237 #if defined(CONFIG_SPICE)
2238 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2239 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2240 #endif
2241 , QEMU_ARCH_ALL
2242 )
2243
2244 STEXI
2245 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2246 @findex -chardev
2247 Backend is one of:
2248 @option{null},
2249 @option{socket},
2250 @option{udp},
2251 @option{msmouse},
2252 @option{vc},
2253 @option{ringbuf},
2254 @option{file},
2255 @option{pipe},
2256 @option{console},
2257 @option{serial},
2258 @option{pty},
2259 @option{stdio},
2260 @option{braille},
2261 @option{tty},
2262 @option{parallel},
2263 @option{parport},
2264 @option{spicevmc}.
2265 @option{spiceport}.
2266 The specific backend will determine the applicable options.
2267
2268 Use "-chardev help" to print all available chardev backend types.
2269
2270 All devices must have an id, which can be any string up to 127 characters long.
2271 It is used to uniquely identify this device in other command line directives.
2272
2273 A character device may be used in multiplexing mode by multiple front-ends.
2274 Specify @option{mux=on} to enable this mode.
2275 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2276 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2277 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2278 create a multiplexer with your specified ID, and you can then configure multiple
2279 front ends to use that chardev ID for their input/output. Up to four different
2280 front ends can be connected to a single multiplexed chardev. (Without
2281 multiplexing enabled, a chardev can only be used by a single front end.)
2282 For instance you could use this to allow a single stdio chardev to be used by
2283 two serial ports and the QEMU monitor:
2284
2285 @example
2286 -chardev stdio,mux=on,id=char0 \
2287 -mon chardev=char0,mode=readline \
2288 -serial chardev:char0 \
2289 -serial chardev:char0
2290 @end example
2291
2292 You can have more than one multiplexer in a system configuration; for instance
2293 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2294 multiplexed between the QEMU monitor and a parallel port:
2295
2296 @example
2297 -chardev stdio,mux=on,id=char0 \
2298 -mon chardev=char0,mode=readline \
2299 -parallel chardev:char0 \
2300 -chardev tcp,...,mux=on,id=char1 \
2301 -serial chardev:char1 \
2302 -serial chardev:char1
2303 @end example
2304
2305 When you're using a multiplexed character device, some escape sequences are
2306 interpreted in the input. @xref{mux_keys, Keys in the character backend
2307 multiplexer}.
2308
2309 Note that some other command line options may implicitly create multiplexed
2310 character backends; for instance @option{-serial mon:stdio} creates a
2311 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2312 and @option{-nographic} also multiplexes the console and the monitor to
2313 stdio.
2314
2315 There is currently no support for multiplexing in the other direction
2316 (where a single QEMU front end takes input and output from multiple chardevs).
2317
2318 Every backend supports the @option{logfile} option, which supplies the path
2319 to a file to record all data transmitted via the backend. The @option{logappend}
2320 option controls whether the log file will be truncated or appended to when
2321 opened.
2322
2323 Further options to each backend are described below.
2324
2325 @item -chardev null ,id=@var{id}
2326 A void device. This device will not emit any data, and will drop any data it
2327 receives. The null backend does not take any options.
2328
2329 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}]
2330
2331 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2332 unix socket will be created if @option{path} is specified. Behaviour is
2333 undefined if TCP options are specified for a unix socket.
2334
2335 @option{server} specifies that the socket shall be a listening socket.
2336
2337 @option{nowait} specifies that QEMU should not block waiting for a client to
2338 connect to a listening socket.
2339
2340 @option{telnet} specifies that traffic on the socket should interpret telnet
2341 escape sequences.
2342
2343 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2344 the remote end goes away. qemu will delay this many seconds and then attempt
2345 to reconnect. Zero disables reconnecting, and is the default.
2346
2347 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2348 and specifies the id of the TLS credentials to use for the handshake. The
2349 credentials must be previously created with the @option{-object tls-creds}
2350 argument.
2351
2352 TCP and unix socket options are given below:
2353
2354 @table @option
2355
2356 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2357
2358 @option{host} for a listening socket specifies the local address to be bound.
2359 For a connecting socket species the remote host to connect to. @option{host} is
2360 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2361
2362 @option{port} for a listening socket specifies the local port to be bound. For a
2363 connecting socket specifies the port on the remote host to connect to.
2364 @option{port} can be given as either a port number or a service name.
2365 @option{port} is required.
2366
2367 @option{to} is only relevant to listening sockets. If it is specified, and
2368 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2369 to and including @option{to} until it succeeds. @option{to} must be specified
2370 as a port number.
2371
2372 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2373 If neither is specified the socket may use either protocol.
2374
2375 @option{nodelay} disables the Nagle algorithm.
2376
2377 @item unix options: path=@var{path}
2378
2379 @option{path} specifies the local path of the unix socket. @option{path} is
2380 required.
2381
2382 @end table
2383
2384 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2385
2386 Sends all traffic from the guest to a remote host over UDP.
2387
2388 @option{host} specifies the remote host to connect to. If not specified it
2389 defaults to @code{localhost}.
2390
2391 @option{port} specifies the port on the remote host to connect to. @option{port}
2392 is required.
2393
2394 @option{localaddr} specifies the local address to bind to. If not specified it
2395 defaults to @code{0.0.0.0}.
2396
2397 @option{localport} specifies the local port to bind to. If not specified any
2398 available local port will be used.
2399
2400 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2401 If neither is specified the device may use either protocol.
2402
2403 @item -chardev msmouse ,id=@var{id}
2404
2405 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2406 take any options.
2407
2408 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2409
2410 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2411 size.
2412
2413 @option{width} and @option{height} specify the width and height respectively of
2414 the console, in pixels.
2415
2416 @option{cols} and @option{rows} specify that the console be sized to fit a text
2417 console with the given dimensions.
2418
2419 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2420
2421 Create a ring buffer with fixed size @option{size}.
2422 @var{size} must be a power of two and defaults to @code{64K}.
2423
2424 @item -chardev file ,id=@var{id} ,path=@var{path}
2425
2426 Log all traffic received from the guest to a file.
2427
2428 @option{path} specifies the path of the file to be opened. This file will be
2429 created if it does not already exist, and overwritten if it does. @option{path}
2430 is required.
2431
2432 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2433
2434 Create a two-way connection to the guest. The behaviour differs slightly between
2435 Windows hosts and other hosts:
2436
2437 On Windows, a single duplex pipe will be created at
2438 @file{\\.pipe\@option{path}}.
2439
2440 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2441 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2442 received by the guest. Data written by the guest can be read from
2443 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2444 be present.
2445
2446 @option{path} forms part of the pipe path as described above. @option{path} is
2447 required.
2448
2449 @item -chardev console ,id=@var{id}
2450
2451 Send traffic from the guest to QEMU's standard output. @option{console} does not
2452 take any options.
2453
2454 @option{console} is only available on Windows hosts.
2455
2456 @item -chardev serial ,id=@var{id} ,path=@option{path}
2457
2458 Send traffic from the guest to a serial device on the host.
2459
2460 On Unix hosts serial will actually accept any tty device,
2461 not only serial lines.
2462
2463 @option{path} specifies the name of the serial device to open.
2464
2465 @item -chardev pty ,id=@var{id}
2466
2467 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2468 not take any options.
2469
2470 @option{pty} is not available on Windows hosts.
2471
2472 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2473 Connect to standard input and standard output of the QEMU process.
2474
2475 @option{signal} controls if signals are enabled on the terminal, that includes
2476 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2477 default, use @option{signal=off} to disable it.
2478
2479 @item -chardev braille ,id=@var{id}
2480
2481 Connect to a local BrlAPI server. @option{braille} does not take any options.
2482
2483 @item -chardev tty ,id=@var{id} ,path=@var{path}
2484
2485 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2486 DragonFlyBSD hosts. It is an alias for @option{serial}.
2487
2488 @option{path} specifies the path to the tty. @option{path} is required.
2489
2490 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2491 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2492
2493 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2494
2495 Connect to a local parallel port.
2496
2497 @option{path} specifies the path to the parallel port device. @option{path} is
2498 required.
2499
2500 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2501
2502 @option{spicevmc} is only available when spice support is built in.
2503
2504 @option{debug} debug level for spicevmc
2505
2506 @option{name} name of spice channel to connect to
2507
2508 Connect to a spice virtual machine channel, such as vdiport.
2509
2510 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2511
2512 @option{spiceport} is only available when spice support is built in.
2513
2514 @option{debug} debug level for spicevmc
2515
2516 @option{name} name of spice port to connect to
2517
2518 Connect to a spice port, allowing a Spice client to handle the traffic
2519 identified by a name (preferably a fqdn).
2520 ETEXI
2521
2522 STEXI
2523 @end table
2524 ETEXI
2525 DEFHEADING()
2526
2527 DEFHEADING(Device URL Syntax)
2528 STEXI
2529
2530 In addition to using normal file images for the emulated storage devices,
2531 QEMU can also use networked resources such as iSCSI devices. These are
2532 specified using a special URL syntax.
2533
2534 @table @option
2535 @item iSCSI
2536 iSCSI support allows QEMU to access iSCSI resources directly and use as
2537 images for the guest storage. Both disk and cdrom images are supported.
2538
2539 Syntax for specifying iSCSI LUNs is
2540 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2541
2542 By default qemu will use the iSCSI initiator-name
2543 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2544 line or a configuration file.
2545
2546 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2547 stalled requests and force a reestablishment of the session. The timeout
2548 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2549 1.15.0 or greater is required for this feature.
2550
2551 Example (without authentication):
2552 @example
2553 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2554 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2555 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2556 @end example
2557
2558 Example (CHAP username/password via URL):
2559 @example
2560 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2561 @end example
2562
2563 Example (CHAP username/password via environment variables):
2564 @example
2565 LIBISCSI_CHAP_USERNAME="user" \
2566 LIBISCSI_CHAP_PASSWORD="password" \
2567 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2568 @end example
2569
2570 iSCSI support is an optional feature of QEMU and only available when
2571 compiled and linked against libiscsi.
2572 ETEXI
2573 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2574 "-iscsi [user=user][,password=password]\n"
2575 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2576 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2577 " [,timeout=timeout]\n"
2578 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2579 STEXI
2580
2581 iSCSI parameters such as username and password can also be specified via
2582 a configuration file. See qemu-doc for more information and examples.
2583
2584 @item NBD
2585 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2586 as Unix Domain Sockets.
2587
2588 Syntax for specifying a NBD device using TCP
2589 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2590
2591 Syntax for specifying a NBD device using Unix Domain Sockets
2592 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2593
2594
2595 Example for TCP
2596 @example
2597 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2598 @end example
2599
2600 Example for Unix Domain Sockets
2601 @example
2602 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2603 @end example
2604
2605 @item SSH
2606 QEMU supports SSH (Secure Shell) access to remote disks.
2607
2608 Examples:
2609 @example
2610 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2611 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2612 @end example
2613
2614 Currently authentication must be done using ssh-agent. Other
2615 authentication methods may be supported in future.
2616
2617 @item Sheepdog
2618 Sheepdog is a distributed storage system for QEMU.
2619 QEMU supports using either local sheepdog devices or remote networked
2620 devices.
2621
2622 Syntax for specifying a sheepdog device
2623 @example
2624 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2625 @end example
2626
2627 Example
2628 @example
2629 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2630 @end example
2631
2632 See also @url{https://sheepdog.github.io/sheepdog/}.
2633
2634 @item GlusterFS
2635 GlusterFS is a user space distributed file system.
2636 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2637 TCP, Unix Domain Sockets and RDMA transport protocols.
2638
2639 Syntax for specifying a VM disk image on GlusterFS volume is
2640 @example
2641
2642 URI:
2643 gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
2644
2645 JSON:
2646 'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
2647 @ "server":[@{"type":"tcp","host":"...","port":"..."@},
2648 @ @{"type":"unix","socket":"..."@}]@}@}'
2649 @end example
2650
2651
2652 Example
2653 @example
2654 URI:
2655 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
2656 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log
2657
2658 JSON:
2659 qemu-system-x86_64 'json:@{"driver":"qcow2",
2660 @ "file":@{"driver":"gluster",
2661 @ "volume":"testvol","path":"a.img",
2662 @ "debug":9,"logfile":"/var/log/qemu-gluster.log",
2663 @ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
2664 @ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
2665 qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
2666 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
2667 @ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
2668 @ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
2669 @end example
2670
2671 See also @url{http://www.gluster.org}.
2672
2673 @item HTTP/HTTPS/FTP/FTPS
2674 QEMU supports read-only access to files accessed over http(s) and ftp(s).
2675
2676 Syntax using a single filename:
2677 @example
2678 <protocol>://[<username>[:<password>]@@]<host>/<path>
2679 @end example
2680
2681 where:
2682 @table @option
2683 @item protocol
2684 'http', 'https', 'ftp', or 'ftps'.
2685
2686 @item username
2687 Optional username for authentication to the remote server.
2688
2689 @item password
2690 Optional password for authentication to the remote server.
2691
2692 @item host
2693 Address of the remote server.
2694
2695 @item path
2696 Path on the remote server, including any query string.
2697 @end table
2698
2699 The following options are also supported:
2700 @table @option
2701 @item url
2702 The full URL when passing options to the driver explicitly.
2703
2704 @item readahead
2705 The amount of data to read ahead with each range request to the remote server.
2706 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
2707 does not have a suffix, it will be assumed to be in bytes. The value must be a
2708 multiple of 512 bytes. It defaults to 256k.
2709
2710 @item sslverify
2711 Whether to verify the remote server's certificate when connecting over SSL. It
2712 can have the value 'on' or 'off'. It defaults to 'on'.
2713
2714 @item cookie
2715 Send this cookie (it can also be a list of cookies separated by ';') with
2716 each outgoing request. Only supported when using protocols such as HTTP
2717 which support cookies, otherwise ignored.
2718
2719 @item timeout
2720 Set the timeout in seconds of the CURL connection. This timeout is the time
2721 that CURL waits for a response from the remote server to get the size of the
2722 image to be downloaded. If not set, the default timeout of 5 seconds is used.
2723 @end table
2724
2725 Note that when passing options to qemu explicitly, @option{driver} is the value
2726 of <protocol>.
2727
2728 Example: boot from a remote Fedora 20 live ISO image
2729 @example
2730 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2731
2732 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2733 @end example
2734
2735 Example: boot from a remote Fedora 20 cloud image using a local overlay for
2736 writes, copy-on-read, and a readahead of 64k
2737 @example
2738 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
2739
2740 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
2741 @end example
2742
2743 Example: boot from an image stored on a VMware vSphere server with a self-signed
2744 certificate using a local overlay for writes, a readahead of 64k and a timeout
2745 of 10 seconds.
2746 @example
2747 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
2748
2749 qemu-system-x86_64 -drive file=/tmp/test.qcow2
2750 @end example
2751 ETEXI
2752
2753 STEXI
2754 @end table
2755 ETEXI
2756
2757 DEFHEADING(Bluetooth(R) options)
2758 STEXI
2759 @table @option
2760 ETEXI
2761
2762 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2763 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2764 "-bt hci,host[:id]\n" \
2765 " use host's HCI with the given name\n" \
2766 "-bt hci[,vlan=n]\n" \
2767 " emulate a standard HCI in virtual scatternet 'n'\n" \
2768 "-bt vhci[,vlan=n]\n" \
2769 " add host computer to virtual scatternet 'n' using VHCI\n" \
2770 "-bt device:dev[,vlan=n]\n" \
2771 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2772 QEMU_ARCH_ALL)
2773 STEXI
2774 @item -bt hci[...]
2775 @findex -bt
2776 Defines the function of the corresponding Bluetooth HCI. -bt options
2777 are matched with the HCIs present in the chosen machine type. For
2778 example when emulating a machine with only one HCI built into it, only
2779 the first @code{-bt hci[...]} option is valid and defines the HCI's
2780 logic. The Transport Layer is decided by the machine type. Currently
2781 the machines @code{n800} and @code{n810} have one HCI and all other
2782 machines have none.
2783
2784 @anchor{bt-hcis}
2785 The following three types are recognized:
2786
2787 @table @option
2788 @item -bt hci,null
2789 (default) The corresponding Bluetooth HCI assumes no internal logic
2790 and will not respond to any HCI commands or emit events.
2791
2792 @item -bt hci,host[:@var{id}]
2793 (@code{bluez} only) The corresponding HCI passes commands / events
2794 to / from the physical HCI identified by the name @var{id} (default:
2795 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2796 capable systems like Linux.
2797
2798 @item -bt hci[,vlan=@var{n}]
2799 Add a virtual, standard HCI that will participate in the Bluetooth
2800 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2801 VLANs, devices inside a bluetooth network @var{n} can only communicate
2802 with other devices in the same network (scatternet).
2803 @end table
2804
2805 @item -bt vhci[,vlan=@var{n}]
2806 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2807 to the host bluetooth stack instead of to the emulated target. This
2808 allows the host and target machines to participate in a common scatternet
2809 and communicate. Requires the Linux @code{vhci} driver installed. Can
2810 be used as following:
2811
2812 @example
2813 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2814 @end example
2815
2816 @item -bt device:@var{dev}[,vlan=@var{n}]
2817 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2818 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2819 currently:
2820
2821 @table @option
2822 @item keyboard
2823 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2824 @end table
2825 ETEXI
2826
2827 STEXI
2828 @end table
2829 ETEXI
2830 DEFHEADING()
2831
2832 #ifdef CONFIG_TPM
2833 DEFHEADING(TPM device options)
2834
2835 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2836 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2837 " use path to provide path to a character device; default is /dev/tpm0\n"
2838 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2839 " not provided it will be searched for in /sys/class/misc/tpm?/device\n",
2840 QEMU_ARCH_ALL)
2841 STEXI
2842
2843 The general form of a TPM device option is:
2844 @table @option
2845
2846 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
2847 @findex -tpmdev
2848 Backend type must be:
2849 @option{passthrough}.
2850
2851 The specific backend type will determine the applicable options.
2852 The @code{-tpmdev} option creates the TPM backend and requires a
2853 @code{-device} option that specifies the TPM frontend interface model.
2854
2855 Options to each backend are described below.
2856
2857 Use 'help' to print all available TPM backend types.
2858 @example
2859 qemu -tpmdev help
2860 @end example
2861
2862 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
2863
2864 (Linux-host only) Enable access to the host's TPM using the passthrough
2865 driver.
2866
2867 @option{path} specifies the path to the host's TPM device, i.e., on
2868 a Linux host this would be @code{/dev/tpm0}.
2869 @option{path} is optional and by default @code{/dev/tpm0} is used.
2870
2871 @option{cancel-path} specifies the path to the host TPM device's sysfs
2872 entry allowing for cancellation of an ongoing TPM command.
2873 @option{cancel-path} is optional and by default QEMU will search for the
2874 sysfs entry to use.
2875
2876 Some notes about using the host's TPM with the passthrough driver:
2877
2878 The TPM device accessed by the passthrough driver must not be
2879 used by any other application on the host.
2880
2881 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2882 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2883 TPM again and may therefore not show a TPM-specific menu that would
2884 otherwise allow the user to configure the TPM, e.g., allow the user to
2885 enable/disable or activate/deactivate the TPM.
2886 Further, if TPM ownership is released from within a VM then the host's TPM
2887 will get disabled and deactivated. To enable and activate the
2888 TPM again afterwards, the host has to be rebooted and the user is
2889 required to enter the firmware's menu to enable and activate the TPM.
2890 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2891
2892 To create a passthrough TPM use the following two options:
2893 @example
2894 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2895 @end example
2896 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2897 @code{tpmdev=tpm0} in the device option.
2898
2899 @end table
2900
2901 ETEXI
2902
2903 DEFHEADING()
2904
2905 #endif
2906
2907 DEFHEADING(Linux/Multiboot boot specific)
2908 STEXI
2909
2910 When using these options, you can use a given Linux or Multiboot
2911 kernel without installing it in the disk image. It can be useful
2912 for easier testing of various kernels.
2913
2914 @table @option
2915 ETEXI
2916
2917 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2918 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2919 STEXI
2920 @item -kernel @var{bzImage}
2921 @findex -kernel
2922 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2923 or in multiboot format.
2924 ETEXI
2925
2926 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2927 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2928 STEXI
2929 @item -append @var{cmdline}
2930 @findex -append
2931 Use @var{cmdline} as kernel command line
2932 ETEXI
2933
2934 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2935 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2936 STEXI
2937 @item -initrd @var{file}
2938 @findex -initrd
2939 Use @var{file} as initial ram disk.
2940
2941 @item -initrd "@var{file1} arg=foo,@var{file2}"
2942
2943 This syntax is only available with multiboot.
2944
2945 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2946 first module.
2947 ETEXI
2948
2949 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2950 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2951 STEXI
2952 @item -dtb @var{file}
2953 @findex -dtb
2954 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2955 on boot.
2956 ETEXI
2957
2958 STEXI
2959 @end table
2960 ETEXI
2961 DEFHEADING()
2962
2963 DEFHEADING(Debug/Expert options)
2964 STEXI
2965 @table @option
2966 ETEXI
2967
2968 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2969 "-fw_cfg [name=]<name>,file=<file>\n"
2970 " add named fw_cfg entry with contents from file\n"
2971 "-fw_cfg [name=]<name>,string=<str>\n"
2972 " add named fw_cfg entry with contents from string\n",
2973 QEMU_ARCH_ALL)
2974 STEXI
2975
2976 @item -fw_cfg [name=]@var{name},file=@var{file}
2977 @findex -fw_cfg
2978 Add named fw_cfg entry with contents from file @var{file}.
2979
2980 @item -fw_cfg [name=]@var{name},string=@var{str}
2981 Add named fw_cfg entry with contents from string @var{str}.
2982
2983 The terminating NUL character of the contents of @var{str} will not be
2984 included as part of the fw_cfg item data. To insert contents with
2985 embedded NUL characters, you have to use the @var{file} parameter.
2986
2987 The fw_cfg entries are passed by QEMU through to the guest.
2988
2989 Example:
2990 @example
2991 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
2992 @end example
2993 creates an fw_cfg entry named opt/com.mycompany/blob with contents
2994 from ./my_blob.bin.
2995
2996 ETEXI
2997
2998 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
2999 "-serial dev redirect the serial port to char device 'dev'\n",
3000 QEMU_ARCH_ALL)
3001 STEXI
3002 @item -serial @var{dev}
3003 @findex -serial
3004 Redirect the virtual serial port to host character device
3005 @var{dev}. The default device is @code{vc} in graphical mode and
3006 @code{stdio} in non graphical mode.
3007
3008 This option can be used several times to simulate up to 4 serial
3009 ports.
3010
3011 Use @code{-serial none} to disable all serial ports.
3012
3013 Available character devices are:
3014 @table @option
3015 @item vc[:@var{W}x@var{H}]
3016 Virtual console. Optionally, a width and height can be given in pixel with
3017 @example
3018 vc:800x600
3019 @end example
3020 It is also possible to specify width or height in characters:
3021 @example
3022 vc:80Cx24C
3023 @end example
3024 @item pty
3025 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3026 @item none
3027 No device is allocated.
3028 @item null
3029 void device
3030 @item chardev:@var{id}
3031 Use a named character device defined with the @code{-chardev} option.
3032 @item /dev/XXX
3033 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3034 parameters are set according to the emulated ones.
3035 @item /dev/parport@var{N}
3036 [Linux only, parallel port only] Use host parallel port
3037 @var{N}. Currently SPP and EPP parallel port features can be used.
3038 @item file:@var{filename}
3039 Write output to @var{filename}. No character can be read.
3040 @item stdio
3041 [Unix only] standard input/output
3042 @item pipe:@var{filename}
3043 name pipe @var{filename}
3044 @item COM@var{n}
3045 [Windows only] Use host serial port @var{n}
3046 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3047 This implements UDP Net Console.
3048 When @var{remote_host} or @var{src_ip} are not specified
3049 they default to @code{0.0.0.0}.
3050 When not using a specified @var{src_port} a random port is automatically chosen.
3051
3052 If you just want a simple readonly console you can use @code{netcat} or
3053 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3054 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3055 will appear in the netconsole session.
3056
3057 If you plan to send characters back via netconsole or you want to stop
3058 and start QEMU a lot of times, you should have QEMU use the same
3059 source port each time by using something like @code{-serial
3060 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3061 version of netcat which can listen to a TCP port and send and receive
3062 characters via udp. If you have a patched version of netcat which
3063 activates telnet remote echo and single char transfer, then you can
3064 use the following options to set up a netcat redirector to allow
3065 telnet on port 5555 to access the QEMU port.
3066 @table @code
3067 @item QEMU Options:
3068 -serial udp::4555@@:4556
3069 @item netcat options:
3070 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3071 @item telnet options:
3072 localhost 5555
3073 @end table
3074
3075 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3076 The TCP Net Console has two modes of operation. It can send the serial
3077 I/O to a location or wait for a connection from a location. By default
3078 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3079 the @var{server} option QEMU will wait for a client socket application
3080 to connect to the port before continuing, unless the @code{nowait}
3081 option was specified. The @code{nodelay} option disables the Nagle buffering
3082 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3083 set, if the connection goes down it will attempt to reconnect at the
3084 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3085 one TCP connection at a time is accepted. You can use @code{telnet} to
3086 connect to the corresponding character device.
3087 @table @code
3088 @item Example to send tcp console to 192.168.0.2 port 4444
3089 -serial tcp:192.168.0.2:4444
3090 @item Example to listen and wait on port 4444 for connection
3091 -serial tcp::4444,server
3092 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3093 -serial tcp:192.168.0.100:4444,server,nowait
3094 @end table
3095
3096 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3097 The telnet protocol is used instead of raw tcp sockets. The options
3098 work the same as if you had specified @code{-serial tcp}. The
3099 difference is that the port acts like a telnet server or client using
3100 telnet option negotiation. This will also allow you to send the
3101 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3102 sequence. Typically in unix telnet you do it with Control-] and then
3103 type "send break" followed by pressing the enter key.
3104
3105 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3106 A unix domain socket is used instead of a tcp socket. The option works the
3107 same as if you had specified @code{-serial tcp} except the unix domain socket
3108 @var{path} is used for connections.
3109
3110 @item mon:@var{dev_string}
3111 This is a special option to allow the monitor to be multiplexed onto
3112 another serial port. The monitor is accessed with key sequence of
3113 @key{Control-a} and then pressing @key{c}.
3114 @var{dev_string} should be any one of the serial devices specified
3115 above. An example to multiplex the monitor onto a telnet server
3116 listening on port 4444 would be:
3117 @table @code
3118 @item -serial mon:telnet::4444,server,nowait
3119 @end table
3120 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3121 QEMU any more but will be passed to the guest instead.
3122
3123 @item braille
3124 Braille device. This will use BrlAPI to display the braille output on a real
3125 or fake device.
3126
3127 @item msmouse
3128 Three button serial mouse. Configure the guest to use Microsoft protocol.
3129 @end table
3130 ETEXI
3131
3132 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3133 "-parallel dev redirect the parallel port to char device 'dev'\n",
3134 QEMU_ARCH_ALL)
3135 STEXI
3136 @item -parallel @var{dev}
3137 @findex -parallel
3138 Redirect the virtual parallel port to host device @var{dev} (same
3139 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3140 be used to use hardware devices connected on the corresponding host
3141 parallel port.
3142
3143 This option can be used several times to simulate up to 3 parallel
3144 ports.
3145
3146 Use @code{-parallel none} to disable all parallel ports.
3147 ETEXI
3148
3149 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3150 "-monitor dev redirect the monitor to char device 'dev'\n",
3151 QEMU_ARCH_ALL)
3152 STEXI
3153 @item -monitor @var{dev}
3154 @findex -monitor
3155 Redirect the monitor to host device @var{dev} (same devices as the
3156 serial port).
3157 The default device is @code{vc} in graphical mode and @code{stdio} in
3158 non graphical mode.
3159 Use @code{-monitor none} to disable the default monitor.
3160 ETEXI
3161 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3162 "-qmp dev like -monitor but opens in 'control' mode\n",
3163 QEMU_ARCH_ALL)
3164 STEXI
3165 @item -qmp @var{dev}
3166 @findex -qmp
3167 Like -monitor but opens in 'control' mode.
3168 ETEXI
3169 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3170 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3171 QEMU_ARCH_ALL)
3172 STEXI
3173 @item -qmp-pretty @var{dev}
3174 @findex -qmp-pretty
3175 Like -qmp but uses pretty JSON formatting.
3176 ETEXI
3177
3178 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3179 "-mon [chardev=]name[,mode=readline|control]\n", QEMU_ARCH_ALL)
3180 STEXI
3181 @item -mon [chardev=]name[,mode=readline|control]
3182 @findex -mon
3183 Setup monitor on chardev @var{name}.
3184 ETEXI
3185
3186 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3187 "-debugcon dev redirect the debug console to char device 'dev'\n",
3188 QEMU_ARCH_ALL)
3189 STEXI
3190 @item -debugcon @var{dev}
3191 @findex -debugcon
3192 Redirect the debug console to host device @var{dev} (same devices as the
3193 serial port). The debug console is an I/O port which is typically port
3194 0xe9; writing to that I/O port sends output to this device.
3195 The default device is @code{vc} in graphical mode and @code{stdio} in
3196 non graphical mode.
3197 ETEXI
3198
3199 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3200 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3201 STEXI
3202 @item -pidfile @var{file}
3203 @findex -pidfile
3204 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3205 from a script.
3206 ETEXI
3207
3208 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3209 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3210 STEXI
3211 @item -singlestep
3212 @findex -singlestep
3213 Run the emulation in single step mode.
3214 ETEXI
3215
3216 DEF("S", 0, QEMU_OPTION_S, \
3217 "-S freeze CPU at startup (use 'c' to start execution)\n",
3218 QEMU_ARCH_ALL)
3219 STEXI
3220 @item -S
3221 @findex -S
3222 Do not start CPU at startup (you must type 'c' in the monitor).
3223 ETEXI
3224
3225 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3226 "-realtime [mlock=on|off]\n"
3227 " run qemu with realtime features\n"
3228 " mlock=on|off controls mlock support (default: on)\n",
3229 QEMU_ARCH_ALL)
3230 STEXI
3231 @item -realtime mlock=on|off
3232 @findex -realtime
3233 Run qemu with realtime features.
3234 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3235 (enabled by default).
3236 ETEXI
3237
3238 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3239 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3240 STEXI
3241 @item -gdb @var{dev}
3242 @findex -gdb
3243 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3244 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3245 stdio are reasonable use case. The latter is allowing to start QEMU from
3246 within gdb and establish the connection via a pipe:
3247 @example
3248 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3249 @end example
3250 ETEXI
3251
3252 DEF("s", 0, QEMU_OPTION_s, \
3253 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3254 QEMU_ARCH_ALL)
3255 STEXI
3256 @item -s
3257 @findex -s
3258 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3259 (@pxref{gdb_usage}).
3260 ETEXI
3261
3262 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3263 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3264 QEMU_ARCH_ALL)
3265 STEXI
3266 @item -d @var{item1}[,...]
3267 @findex -d
3268 Enable logging of specified items. Use '-d help' for a list of log items.
3269 ETEXI
3270
3271 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3272 "-D logfile output log to logfile (default stderr)\n",
3273 QEMU_ARCH_ALL)
3274 STEXI
3275 @item -D @var{logfile}
3276 @findex -D
3277 Output log in @var{logfile} instead of to stderr
3278 ETEXI
3279
3280 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3281 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3282 QEMU_ARCH_ALL)
3283 STEXI
3284 @item -dfilter @var{range1}[,...]
3285 @findex -dfilter
3286 Filter debug output to that relevant to a range of target addresses. The filter
3287 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3288 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3289 addresses and sizes required. For example:
3290 @example
3291 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3292 @end example
3293 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3294 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3295 block starting at 0xffffffc00005f000.
3296 ETEXI
3297
3298 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3299 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3300 QEMU_ARCH_ALL)
3301 STEXI
3302 @item -L @var{path}
3303 @findex -L
3304 Set the directory for the BIOS, VGA BIOS and keymaps.
3305
3306 To list all the data directories, use @code{-L help}.
3307 ETEXI
3308
3309 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3310 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3311 STEXI
3312 @item -bios @var{file}
3313 @findex -bios
3314 Set the filename for the BIOS.
3315 ETEXI
3316
3317 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3318 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3319 STEXI
3320 @item -enable-kvm
3321 @findex -enable-kvm
3322 Enable KVM full virtualization support. This option is only available
3323 if KVM support is enabled when compiling.
3324 ETEXI
3325
3326 DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \
3327 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386)
3328 STEXI
3329 @item -enable-hax
3330 @findex -enable-hax
3331 Enable HAX (Hardware-based Acceleration eXecution) support. This option
3332 is only available if HAX support is enabled when compiling. HAX is only
3333 applicable to MAC and Windows platform, and thus does not conflict with
3334 KVM.
3335 ETEXI
3336
3337 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3338 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3339 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3340 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3341 " warning: should not be used when xend is in use\n",
3342 QEMU_ARCH_ALL)
3343 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3344 "-xen-attach attach to existing xen domain\n"
3345 " xend will use this when starting QEMU\n",
3346 QEMU_ARCH_ALL)
3347 STEXI
3348 @item -xen-domid @var{id}
3349 @findex -xen-domid
3350 Specify xen guest domain @var{id} (XEN only).
3351 @item -xen-create
3352 @findex -xen-create
3353 Create domain using xen hypercalls, bypassing xend.
3354 Warning: should not be used when xend is in use (XEN only).
3355 @item -xen-attach
3356 @findex -xen-attach
3357 Attach to existing xen domain.
3358 xend will use this when starting QEMU (XEN only).
3359 ETEXI
3360
3361 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3362 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3363 STEXI
3364 @item -no-reboot
3365 @findex -no-reboot
3366 Exit instead of rebooting.
3367 ETEXI
3368
3369 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3370 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3371 STEXI
3372 @item -no-shutdown
3373 @findex -no-shutdown
3374 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3375 This allows for instance switching to monitor to commit changes to the
3376 disk image.
3377 ETEXI
3378
3379 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3380 "-loadvm [tag|id]\n" \
3381 " start right away with a saved state (loadvm in monitor)\n",
3382 QEMU_ARCH_ALL)
3383 STEXI
3384 @item -loadvm @var{file}
3385 @findex -loadvm
3386 Start right away with a saved state (@code{loadvm} in monitor)
3387 ETEXI
3388
3389 #ifndef _WIN32
3390 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3391 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3392 #endif
3393 STEXI
3394 @item -daemonize
3395 @findex -daemonize
3396 Daemonize the QEMU process after initialization. QEMU will not detach from
3397 standard IO until it is ready to receive connections on any of its devices.
3398 This option is a useful way for external programs to launch QEMU without having
3399 to cope with initialization race conditions.
3400 ETEXI
3401
3402 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3403 "-option-rom rom load a file, rom, into the option ROM space\n",
3404 QEMU_ARCH_ALL)
3405 STEXI
3406 @item -option-rom @var{file}
3407 @findex -option-rom
3408 Load the contents of @var{file} as an option ROM.
3409 This option is useful to load things like EtherBoot.
3410 ETEXI
3411
3412 HXCOMM Silently ignored for compatibility
3413 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3414
3415 HXCOMM Options deprecated by -rtc
3416 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3417 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3418
3419 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3420 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3421 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3422 QEMU_ARCH_ALL)
3423
3424 STEXI
3425
3426 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3427 @findex -rtc
3428 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3429 UTC or local time, respectively. @code{localtime} is required for correct date in
3430 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3431 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3432
3433 By default the RTC is driven by the host system time. This allows using of the
3434 RTC as accurate reference clock inside the guest, specifically if the host
3435 time is smoothly following an accurate external reference clock, e.g. via NTP.
3436 If you want to isolate the guest time from the host, you can set @option{clock}
3437 to @code{rt} instead. To even prevent it from progressing during suspension,
3438 you can set it to @code{vm}.
3439
3440 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3441 specifically with Windows' ACPI HAL. This option will try to figure out how
3442 many timer interrupts were not processed by the Windows guest and will
3443 re-inject them.
3444 ETEXI
3445
3446 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3447 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3448 " enable virtual instruction counter with 2^N clock ticks per\n" \
3449 " instruction, enable aligning the host and virtual clocks\n" \
3450 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3451 STEXI
3452 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3453 @findex -icount
3454 Enable virtual instruction counter. The virtual cpu will execute one
3455 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3456 then the virtual cpu speed will be automatically adjusted to keep virtual
3457 time within a few seconds of real time.
3458
3459 When the virtual cpu is sleeping, the virtual time will advance at default
3460 speed unless @option{sleep=on|off} is specified.
3461 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3462 instantly whenever the virtual cpu goes to sleep mode and will not advance
3463 if no timer is enabled. This behavior give deterministic execution times from
3464 the guest point of view.
3465
3466 Note that while this option can give deterministic behavior, it does not
3467 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3468 order cores with complex cache hierarchies. The number of instructions
3469 executed often has little or no correlation with actual performance.
3470
3471 @option{align=on} will activate the delay algorithm which will try
3472 to synchronise the host clock and the virtual clock. The goal is to
3473 have a guest running at the real frequency imposed by the shift option.
3474 Whenever the guest clock is behind the host clock and if
3475 @option{align=on} is specified then we print a message to the user
3476 to inform about the delay.
3477 Currently this option does not work when @option{shift} is @code{auto}.
3478 Note: The sync algorithm will work for those shift values for which
3479 the guest clock runs ahead of the host clock. Typically this happens
3480 when the shift value is high (how high depends on the host machine).
3481
3482 When @option{rr} option is specified deterministic record/replay is enabled.
3483 Replay log is written into @var{filename} file in record mode and
3484 read from this file in replay mode.
3485
3486 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3487 at the start of execution recording. In replay mode this option is used
3488 to load the initial VM state.
3489 ETEXI
3490
3491 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3492 "-watchdog model\n" \
3493 " enable virtual hardware watchdog [default=none]\n",
3494 QEMU_ARCH_ALL)
3495 STEXI
3496 @item -watchdog @var{model}
3497 @findex -watchdog
3498 Create a virtual hardware watchdog device. Once enabled (by a guest
3499 action), the watchdog must be periodically polled by an agent inside
3500 the guest or else the guest will be restarted. Choose a model for
3501 which your guest has drivers.
3502
3503 The @var{model} is the model of hardware watchdog to emulate. Use
3504 @code{-watchdog help} to list available hardware models. Only one
3505 watchdog can be enabled for a guest.
3506
3507 The following models may be available:
3508 @table @option
3509 @item ib700
3510 iBASE 700 is a very simple ISA watchdog with a single timer.
3511 @item i6300esb
3512 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3513 dual-timer watchdog.
3514 @item diag288
3515 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3516 (currently KVM only).
3517 @end table
3518 ETEXI
3519
3520 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3521 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3522 " action when watchdog fires [default=reset]\n",
3523 QEMU_ARCH_ALL)
3524 STEXI
3525 @item -watchdog-action @var{action}
3526 @findex -watchdog-action
3527
3528 The @var{action} controls what QEMU will do when the watchdog timer
3529 expires.
3530 The default is
3531 @code{reset} (forcefully reset the guest).
3532 Other possible actions are:
3533 @code{shutdown} (attempt to gracefully shutdown the guest),
3534 @code{poweroff} (forcefully poweroff the guest),
3535 @code{pause} (pause the guest),
3536 @code{debug} (print a debug message and continue), or
3537 @code{none} (do nothing).
3538
3539 Note that the @code{shutdown} action requires that the guest responds
3540 to ACPI signals, which it may not be able to do in the sort of
3541 situations where the watchdog would have expired, and thus
3542 @code{-watchdog-action shutdown} is not recommended for production use.
3543
3544 Examples:
3545
3546 @table @code
3547 @item -watchdog i6300esb -watchdog-action pause
3548 @itemx -watchdog ib700
3549 @end table
3550 ETEXI
3551
3552 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3553 "-echr chr set terminal escape character instead of ctrl-a\n",
3554 QEMU_ARCH_ALL)
3555 STEXI
3556
3557 @item -echr @var{numeric_ascii_value}
3558 @findex -echr
3559 Change the escape character used for switching to the monitor when using
3560 monitor and serial sharing. The default is @code{0x01} when using the
3561 @code{-nographic} option. @code{0x01} is equal to pressing
3562 @code{Control-a}. You can select a different character from the ascii
3563 control keys where 1 through 26 map to Control-a through Control-z. For
3564 instance you could use the either of the following to change the escape
3565 character to Control-t.
3566 @table @code
3567 @item -echr 0x14
3568 @itemx -echr 20
3569 @end table
3570 ETEXI
3571
3572 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3573 "-virtioconsole c\n" \
3574 " set virtio console\n", QEMU_ARCH_ALL)
3575 STEXI
3576 @item -virtioconsole @var{c}
3577 @findex -virtioconsole
3578 Set virtio console.
3579
3580 This option is maintained for backward compatibility.
3581
3582 Please use @code{-device virtconsole} for the new way of invocation.
3583 ETEXI
3584
3585 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3586 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3587 STEXI
3588 @item -show-cursor
3589 @findex -show-cursor
3590 Show cursor.
3591 ETEXI
3592
3593 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3594 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3595 STEXI
3596 @item -tb-size @var{n}
3597 @findex -tb-size
3598 Set TB size.
3599 ETEXI
3600
3601 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3602 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3603 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3604 "-incoming unix:socketpath\n" \
3605 " prepare for incoming migration, listen on\n" \
3606 " specified protocol and socket address\n" \
3607 "-incoming fd:fd\n" \
3608 "-incoming exec:cmdline\n" \
3609 " accept incoming migration on given file descriptor\n" \
3610 " or from given external command\n" \
3611 "-incoming defer\n" \
3612 " wait for the URI to be specified via migrate_incoming\n",
3613 QEMU_ARCH_ALL)
3614 STEXI
3615 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3616 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3617 @findex -incoming
3618 Prepare for incoming migration, listen on a given tcp port.
3619
3620 @item -incoming unix:@var{socketpath}
3621 Prepare for incoming migration, listen on a given unix socket.
3622
3623 @item -incoming fd:@var{fd}
3624 Accept incoming migration from a given filedescriptor.
3625
3626 @item -incoming exec:@var{cmdline}
3627 Accept incoming migration as an output from specified external command.
3628
3629 @item -incoming defer
3630 Wait for the URI to be specified via migrate_incoming. The monitor can
3631 be used to change settings (such as migration parameters) prior to issuing
3632 the migrate_incoming to allow the migration to begin.
3633 ETEXI
3634
3635 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3636 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3637 STEXI
3638 @item -only-migratable
3639 @findex -only-migratable
3640 Only allow migratable devices. Devices will not be allowed to enter an
3641 unmigratable state.
3642 ETEXI
3643
3644 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3645 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3646 STEXI
3647 @item -nodefaults
3648 @findex -nodefaults
3649 Don't create default devices. Normally, QEMU sets the default devices like serial
3650 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3651 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3652 default devices.
3653 ETEXI
3654
3655 #ifndef _WIN32
3656 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3657 "-chroot dir chroot to dir just before starting the VM\n",
3658 QEMU_ARCH_ALL)
3659 #endif
3660 STEXI
3661 @item -chroot @var{dir}
3662 @findex -chroot
3663 Immediately before starting guest execution, chroot to the specified
3664 directory. Especially useful in combination with -runas.
3665 ETEXI
3666
3667 #ifndef _WIN32
3668 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3669 "-runas user change to user id user just before starting the VM\n",
3670 QEMU_ARCH_ALL)
3671 #endif
3672 STEXI
3673 @item -runas @var{user}
3674 @findex -runas
3675 Immediately before starting guest execution, drop root privileges, switching
3676 to the specified user.
3677 ETEXI
3678
3679 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3680 "-prom-env variable=value\n"
3681 " set OpenBIOS nvram variables\n",
3682 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3683 STEXI
3684 @item -prom-env @var{variable}=@var{value}
3685 @findex -prom-env
3686 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3687 ETEXI
3688 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3689 "-semihosting semihosting mode\n",
3690 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3691 QEMU_ARCH_MIPS)
3692 STEXI
3693 @item -semihosting
3694 @findex -semihosting
3695 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3696 ETEXI
3697 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3698 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3699 " semihosting configuration\n",
3700 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3701 QEMU_ARCH_MIPS)
3702 STEXI
3703 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3704 @findex -semihosting-config
3705 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3706 @table @option
3707 @item target=@code{native|gdb|auto}
3708 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3709 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3710 during debug sessions and @code{native} otherwise.
3711 @item arg=@var{str1},arg=@var{str2},...
3712 Allows the user to pass input arguments, and can be used multiple times to build
3713 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3714 command line is still supported for backward compatibility. If both the
3715 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3716 specified, the former is passed to semihosting as it always takes precedence.
3717 @end table
3718 ETEXI
3719 DEF("old-param", 0, QEMU_OPTION_old_param,
3720 "-old-param old param mode\n", QEMU_ARCH_ARM)
3721 STEXI
3722 @item -old-param
3723 @findex -old-param (ARM)
3724 Old param mode (ARM only).
3725 ETEXI
3726
3727 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3728 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n",
3729 QEMU_ARCH_ALL)
3730 STEXI
3731 @item -sandbox @var{arg}
3732 @findex -sandbox
3733 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3734 disable it. The default is 'off'.
3735 ETEXI
3736
3737 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3738 "-readconfig <file>\n", QEMU_ARCH_ALL)
3739 STEXI
3740 @item -readconfig @var{file}
3741 @findex -readconfig
3742 Read device configuration from @var{file}. This approach is useful when you want to spawn
3743 QEMU process with many command line options but you don't want to exceed the command line
3744 character limit.
3745 ETEXI
3746 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3747 "-writeconfig <file>\n"
3748 " read/write config file\n", QEMU_ARCH_ALL)
3749 STEXI
3750 @item -writeconfig @var{file}
3751 @findex -writeconfig
3752 Write device configuration to @var{file}. The @var{file} can be either filename to save
3753 command line and device configuration into file or dash @code{-}) character to print the
3754 output to stdout. This can be later used as input file for @code{-readconfig} option.
3755 ETEXI
3756 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig,
3757 "-nodefconfig\n"
3758 " do not load default config files at startup\n",
3759 QEMU_ARCH_ALL)
3760 STEXI
3761 @item -nodefconfig
3762 @findex -nodefconfig
3763 Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup.
3764 The @code{-nodefconfig} option will prevent QEMU from loading any of those config files.
3765 ETEXI
3766 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3767 "-no-user-config\n"
3768 " do not load user-provided config files at startup\n",
3769 QEMU_ARCH_ALL)
3770 STEXI
3771 @item -no-user-config
3772 @findex -no-user-config
3773 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3774 config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config
3775 files from @var{datadir}.
3776 ETEXI
3777 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3778 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3779 " specify tracing options\n",
3780 QEMU_ARCH_ALL)
3781 STEXI
3782 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3783 HXCOMM HX does not support conditional compilation of text.
3784 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3785 @findex -trace
3786 @include qemu-option-trace.texi
3787 ETEXI
3788
3789 HXCOMM Internal use
3790 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3791 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3792
3793 #ifdef __linux__
3794 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3795 "-enable-fips enable FIPS 140-2 compliance\n",
3796 QEMU_ARCH_ALL)
3797 #endif
3798 STEXI
3799 @item -enable-fips
3800 @findex -enable-fips
3801 Enable FIPS 140-2 compliance mode.
3802 ETEXI
3803
3804 HXCOMM Deprecated by -machine accel=tcg property
3805 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3806
3807 HXCOMM Deprecated by kvm-pit driver properties
3808 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
3809 "", QEMU_ARCH_I386)
3810
3811 HXCOMM Deprecated (ignored)
3812 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
3813
3814 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
3815 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
3816
3817 HXCOMM Deprecated (ignored)
3818 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
3819
3820 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3821 "-msg timestamp[=on|off]\n"
3822 " change the format of messages\n"
3823 " on|off controls leading timestamps (default:on)\n",
3824 QEMU_ARCH_ALL)
3825 STEXI
3826 @item -msg timestamp[=on|off]
3827 @findex -msg
3828 prepend a timestamp to each log message.(default:on)
3829 ETEXI
3830
3831 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3832 "-dump-vmstate <file>\n"
3833 " Output vmstate information in JSON format to file.\n"
3834 " Use the scripts/vmstate-static-checker.py file to\n"
3835 " check for possible regressions in migration code\n"
3836 " by comparing two such vmstate dumps.\n",
3837 QEMU_ARCH_ALL)
3838 STEXI
3839 @item -dump-vmstate @var{file}
3840 @findex -dump-vmstate
3841 Dump json-encoded vmstate information for current machine type to file
3842 in @var{file}
3843 ETEXI
3844
3845 STEXI
3846 @end table
3847 ETEXI
3848 DEFHEADING()
3849 DEFHEADING(Generic object creation)
3850 STEXI
3851 @table @option
3852 ETEXI
3853
3854 DEF("object", HAS_ARG, QEMU_OPTION_object,
3855 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3856 " create a new object of type TYPENAME setting properties\n"
3857 " in the order they are specified. Note that the 'id'\n"
3858 " property must be set. These objects are placed in the\n"
3859 " '/objects' path.\n",
3860 QEMU_ARCH_ALL)
3861 STEXI
3862 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3863 @findex -object
3864 Create a new object of type @var{typename} setting properties
3865 in the order they are specified. Note that the 'id'
3866 property must be set. These objects are placed in the
3867 '/objects' path.
3868
3869 @table @option
3870
3871 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off}
3872
3873 Creates a memory file backend object, which can be used to back
3874 the guest RAM with huge pages. The @option{id} parameter is a
3875 unique ID that will be used to reference this memory region
3876 when configuring the @option{-numa} argument. The @option{size}
3877 option provides the size of the memory region, and accepts
3878 common suffixes, eg @option{500M}. The @option{mem-path} provides
3879 the path to either a shared memory or huge page filesystem mount.
3880 The @option{share} boolean option determines whether the memory
3881 region is marked as private to QEMU, or shared. The latter allows
3882 a co-operating external process to access the QEMU memory region.
3883
3884 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
3885
3886 Creates a random number generator backend which obtains entropy from
3887 a device on the host. The @option{id} parameter is a unique ID that
3888 will be used to reference this entropy backend from the @option{virtio-rng}
3889 device. The @option{filename} parameter specifies which file to obtain
3890 entropy from and if omitted defaults to @option{/dev/random}.
3891
3892 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
3893
3894 Creates a random number generator backend which obtains entropy from
3895 an external daemon running on the host. The @option{id} parameter is
3896 a unique ID that will be used to reference this entropy backend from
3897 the @option{virtio-rng} device. The @option{chardev} parameter is
3898 the unique ID of a character device backend that provides the connection
3899 to the RNG daemon.
3900
3901 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
3902
3903 Creates a TLS anonymous credentials object, which can be used to provide
3904 TLS support on network backends. The @option{id} parameter is a unique
3905 ID which network backends will use to access the credentials. The
3906 @option{endpoint} is either @option{server} or @option{client} depending
3907 on whether the QEMU network backend that uses the credentials will be
3908 acting as a client or as a server. If @option{verify-peer} is enabled
3909 (the default) then once the handshake is completed, the peer credentials
3910 will be verified, though this is a no-op for anonymous credentials.
3911
3912 The @var{dir} parameter tells QEMU where to find the credential
3913 files. For server endpoints, this directory may contain a file
3914 @var{dh-params.pem} providing diffie-hellman parameters to use
3915 for the TLS server. If the file is missing, QEMU will generate
3916 a set of DH parameters at startup. This is a computationally
3917 expensive operation that consumes random pool entropy, so it is
3918 recommended that a persistent set of parameters be generated
3919 upfront and saved.
3920
3921 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
3922
3923 Creates a TLS anonymous credentials object, which can be used to provide
3924 TLS support on network backends. The @option{id} parameter is a unique
3925 ID which network backends will use to access the credentials. The
3926 @option{endpoint} is either @option{server} or @option{client} depending
3927 on whether the QEMU network backend that uses the credentials will be
3928 acting as a client or as a server. If @option{verify-peer} is enabled
3929 (the default) then once the handshake is completed, the peer credentials
3930 will be verified. With x509 certificates, this implies that the clients
3931 must be provided with valid client certificates too.
3932
3933 The @var{dir} parameter tells QEMU where to find the credential
3934 files. For server endpoints, this directory may contain a file
3935 @var{dh-params.pem} providing diffie-hellman parameters to use
3936 for the TLS server. If the file is missing, QEMU will generate
3937 a set of DH parameters at startup. This is a computationally
3938 expensive operation that consumes random pool entropy, so it is
3939 recommended that a persistent set of parameters be generated
3940 upfront and saved.
3941
3942 For x509 certificate credentials the directory will contain further files
3943 providing the x509 certificates. The certificates must be stored
3944 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
3945 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
3946 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
3947
3948 For the @var{server-key.pem} and @var{client-key.pem} files which
3949 contain sensitive private keys, it is possible to use an encrypted
3950 version by providing the @var{passwordid} parameter. This provides
3951 the ID of a previously created @code{secret} object containing the
3952 password for decryption.
3953
3954 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
3955
3956 Interval @var{t} can't be 0, this filter batches the packet delivery: all
3957 packets arriving in a given interval on netdev @var{netdevid} are delayed
3958 until the end of the interval. Interval is in microseconds.
3959 @option{status} is optional that indicate whether the netfilter is
3960 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
3961
3962 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
3963
3964 @option{all}: the filter is attached both to the receive and the transmit
3965 queue of the netdev (default).
3966
3967 @option{rx}: the filter is attached to the receive queue of the netdev,
3968 where it will receive packets sent to the netdev.
3969
3970 @option{tx}: the filter is attached to the transmit queue of the netdev,
3971 where it will receive packets sent by the netdev.
3972
3973 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3974
3975 filter-mirror on netdev @var{netdevid},mirror net packet to chardev
3976 @var{chardevid}
3977
3978 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},
3979 outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3980
3981 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
3982 @var{chardevid},and redirect indev's packet to filter.
3983 Create a filter-redirector we need to differ outdev id from indev id, id can not
3984 be the same. we can just use indev or outdev, but at least one of indev or outdev
3985 need to be specified.
3986
3987 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},rewriter-mode=@var{mode}[,queue=@var{all|rx|tx}]
3988
3989 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
3990 secondary from primary to keep secondary tcp connection,and rewrite
3991 tcp packet to primary from secondary make tcp packet can be handled by
3992 client.
3993
3994 usage:
3995 colo secondary:
3996 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
3997 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
3998 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
3999
4000 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4001
4002 Dump the network traffic on netdev @var{dev} to the file specified by
4003 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4004 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4005 or Wireshark.
4006
4007 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},
4008 outdev=@var{chardevid}
4009
4010 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4011 secondary packet. If the packets are same, we will output primary
4012 packet to outdev@var{chardevid}, else we will notify colo-frame
4013 do checkpoint and send primary packet to outdev@var{chardevid}.
4014
4015 we must use it with the help of filter-mirror and filter-redirector.
4016
4017 @example
4018
4019 primary:
4020 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4021 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4022 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4023 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4024 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4025 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4026 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4027 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4028 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4029 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4030 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4031 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
4032
4033 secondary:
4034 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4035 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4036 -chardev socket,id=red0,host=3.3.3.3,port=9003
4037 -chardev socket,id=red1,host=3.3.3.3,port=9004
4038 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4039 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4040
4041 @end example
4042
4043 If you want to know the detail of above command line, you can read
4044 the colo-compare git log.
4045
4046 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4047
4048 Creates a cryptodev backend which executes crypto opreation from
4049 the QEMU cipher APIS. The @var{id} parameter is
4050 a unique ID that will be used to reference this cryptodev backend from
4051 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4052 which specify the queue number of cryptodev backend, the default of
4053 @var{queues} is 1.
4054
4055 @example
4056
4057 # qemu-system-x86_64 \
4058 [...] \
4059 -object cryptodev-backend-builtin,id=cryptodev0 \
4060 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4061 [...]
4062 @end example
4063
4064 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4065 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4066
4067 Defines a secret to store a password, encryption key, or some other sensitive
4068 data. The sensitive data can either be passed directly via the @var{data}
4069 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4070 parameter is insecure unless the sensitive data is encrypted.
4071
4072 The sensitive data can be provided in raw format (the default), or base64.
4073 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4074 so base64 is recommended for sending binary data. QEMU will convert from
4075 which ever format is provided to the format it needs internally. eg, an
4076 RBD password can be provided in raw format, even though it will be base64
4077 encoded when passed onto the RBD sever.
4078
4079 For added protection, it is possible to encrypt the data associated with
4080 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4081 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4082 parameter provides the ID of a previously defined secret that contains
4083 the AES-256 decryption key. This key should be 32-bytes long and be
4084 base64 encoded. The @var{iv} parameter provides the random initialization
4085 vector used for encryption of this particular secret and should be a
4086 base64 encrypted string of the 16-byte IV.
4087
4088 The simplest (insecure) usage is to provide the secret inline
4089
4090 @example
4091
4092 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4093
4094 @end example
4095
4096 The simplest secure usage is to provide the secret via a file
4097
4098 # echo -n "letmein" > mypasswd.txt
4099 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4100
4101 For greater security, AES-256-CBC should be used. To illustrate usage,
4102 consider the openssl command line tool which can encrypt the data. Note
4103 that when encrypting, the plaintext must be padded to the cipher block
4104 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4105
4106 First a master key needs to be created in base64 encoding:
4107
4108 @example
4109 # openssl rand -base64 32 > key.b64
4110 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4111 @end example
4112
4113 Each secret to be encrypted needs to have a random initialization vector
4114 generated. These do not need to be kept secret
4115
4116 @example
4117 # openssl rand -base64 16 > iv.b64
4118 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4119 @end example
4120
4121 The secret to be defined can now be encrypted, in this case we're
4122 telling openssl to base64 encode the result, but it could be left
4123 as raw bytes if desired.
4124
4125 @example
4126 # SECRET=$(echo -n "letmein" |
4127 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4128 @end example
4129
4130 When launching QEMU, create a master secret pointing to @code{key.b64}
4131 and specify that to be used to decrypt the user password. Pass the
4132 contents of @code{iv.b64} to the second secret
4133
4134 @example
4135 # $QEMU \
4136 -object secret,id=secmaster0,format=base64,file=key.b64 \
4137 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4138 data=$SECRET,iv=$(<iv.b64)
4139 @end example
4140
4141 @end table
4142
4143 ETEXI
4144
4145
4146 HXCOMM This is the last statement. Insert new options before this line!
4147 STEXI
4148 @end table
4149 ETEXI