]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
Revert "block: Remove deprecated -drive geometry options"
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
46 " s390-squash-mcss=on|off (deprecated) controls support for squashing into default css (default=off)\n"
47 " memory-encryption=@var{} memory encryption object to use (default=none)\n",
48 QEMU_ARCH_ALL)
49 STEXI
50 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
51 @findex -machine
52 Select the emulated machine by @var{name}. Use @code{-machine help} to list
53 available machines.
54
55 For architectures which aim to support live migration compatibility
56 across releases, each release will introduce a new versioned machine
57 type. For example, the 2.8.0 release introduced machine types
58 ``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures.
59
60 To allow live migration of guests from QEMU version 2.8.0, to QEMU
61 version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8''
62 and ``pc-q35-2.8'' machines too. To allow users live migrating VMs
63 to skip multiple intermediate releases when upgrading, new releases
64 of QEMU will support machine types from many previous versions.
65
66 Supported machine properties are:
67 @table @option
68 @item accel=@var{accels1}[:@var{accels2}[:...]]
69 This is used to enable an accelerator. Depending on the target architecture,
70 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
71 more than one accelerator specified, the next one is used if the previous one
72 fails to initialize.
73 @item kernel_irqchip=on|off
74 Controls in-kernel irqchip support for the chosen accelerator when available.
75 @item gfx_passthru=on|off
76 Enables IGD GFX passthrough support for the chosen machine when available.
77 @item vmport=on|off|auto
78 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
79 value based on accel. For accel=xen the default is off otherwise the default
80 is on.
81 @item kvm_shadow_mem=size
82 Defines the size of the KVM shadow MMU.
83 @item dump-guest-core=on|off
84 Include guest memory in a core dump. The default is on.
85 @item mem-merge=on|off
86 Enables or disables memory merge support. This feature, when supported by
87 the host, de-duplicates identical memory pages among VMs instances
88 (enabled by default).
89 @item aes-key-wrap=on|off
90 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
91 controls whether AES wrapping keys will be created to allow
92 execution of AES cryptographic functions. The default is on.
93 @item dea-key-wrap=on|off
94 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
95 controls whether DEA wrapping keys will be created to allow
96 execution of DEA cryptographic functions. The default is on.
97 @item nvdimm=on|off
98 Enables or disables NVDIMM support. The default is off.
99 @item s390-squash-mcss=on|off
100 Enables or disables squashing subchannels into the default css.
101 The default is off.
102 NOTE: This property is deprecated and will be removed in future releases.
103 The ``s390-squash-mcss=on`` property has been obsoleted by allowing the
104 cssid to be chosen freely. Instead of squashing subchannels into the
105 default channel subsystem image for guests that do not support multiple
106 channel subsystems, all devices can be put into the default channel
107 subsystem image.
108 @item enforce-config-section=on|off
109 If @option{enforce-config-section} is set to @var{on}, force migration
110 code to send configuration section even if the machine-type sets the
111 @option{migration.send-configuration} property to @var{off}.
112 NOTE: this parameter is deprecated. Please use @option{-global}
113 @option{migration.send-configuration}=@var{on|off} instead.
114 @item memory-encryption=@var{}
115 Memory encryption object to use. The default is none.
116 @end table
117 ETEXI
118
119 HXCOMM Deprecated by -machine
120 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
121
122 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
123 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
124 STEXI
125 @item -cpu @var{model}
126 @findex -cpu
127 Select CPU model (@code{-cpu help} for list and additional feature selection)
128 ETEXI
129
130 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
131 "-accel [accel=]accelerator[,thread=single|multi]\n"
132 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
133 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
134 STEXI
135 @item -accel @var{name}[,prop=@var{value}[,...]]
136 @findex -accel
137 This is used to enable an accelerator. Depending on the target architecture,
138 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
139 more than one accelerator specified, the next one is used if the previous one
140 fails to initialize.
141 @table @option
142 @item thread=single|multi
143 Controls number of TCG threads. When the TCG is multi-threaded there will be one
144 thread per vCPU therefor taking advantage of additional host cores. The default
145 is to enable multi-threading where both the back-end and front-ends support it and
146 no incompatible TCG features have been enabled (e.g. icount/replay).
147 @end table
148 ETEXI
149
150 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
151 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
152 " set the number of CPUs to 'n' [default=1]\n"
153 " maxcpus= maximum number of total cpus, including\n"
154 " offline CPUs for hotplug, etc\n"
155 " cores= number of CPU cores on one socket\n"
156 " threads= number of threads on one CPU core\n"
157 " sockets= number of discrete sockets in the system\n",
158 QEMU_ARCH_ALL)
159 STEXI
160 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
161 @findex -smp
162 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
163 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
164 to 4.
165 For the PC target, the number of @var{cores} per socket, the number
166 of @var{threads} per cores and the total number of @var{sockets} can be
167 specified. Missing values will be computed. If any on the three values is
168 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
169 specifies the maximum number of hotpluggable CPUs.
170 ETEXI
171
172 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
173 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
174 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
175 "-numa dist,src=source,dst=destination,val=distance\n"
176 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n",
177 QEMU_ARCH_ALL)
178 STEXI
179 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
180 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
181 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
182 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
183 @findex -numa
184 Define a NUMA node and assign RAM and VCPUs to it.
185 Set the NUMA distance from a source node to a destination node.
186
187 Legacy VCPU assignment uses @samp{cpus} option where
188 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
189 @samp{cpus} option represent a contiguous range of CPU indexes
190 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
191 set of VCPUs can be represented by providing multiple @samp{cpus}
192 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
193 split between them.
194
195 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
196 a NUMA node:
197 @example
198 -numa node,cpus=0-2,cpus=5
199 @end example
200
201 @samp{cpu} option is a new alternative to @samp{cpus} option
202 which uses @samp{socket-id|core-id|thread-id} properties to assign
203 CPU objects to a @var{node} using topology layout properties of CPU.
204 The set of properties is machine specific, and depends on used
205 machine type/@samp{smp} options. It could be queried with
206 @samp{hotpluggable-cpus} monitor command.
207 @samp{node-id} property specifies @var{node} to which CPU object
208 will be assigned, it's required for @var{node} to be declared
209 with @samp{node} option before it's used with @samp{cpu} option.
210
211 For example:
212 @example
213 -M pc \
214 -smp 1,sockets=2,maxcpus=2 \
215 -numa node,nodeid=0 -numa node,nodeid=1 \
216 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
217 @end example
218
219 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
220 assigns RAM from a given memory backend device to a node. If
221 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
222 split equally between them.
223
224 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
225 if one node uses @samp{memdev}, all of them have to use it.
226
227 @var{source} and @var{destination} are NUMA node IDs.
228 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
229 The distance from a node to itself is always 10. If any pair of nodes is
230 given a distance, then all pairs must be given distances. Although, when
231 distances are only given in one direction for each pair of nodes, then
232 the distances in the opposite directions are assumed to be the same. If,
233 however, an asymmetrical pair of distances is given for even one node
234 pair, then all node pairs must be provided distance values for both
235 directions, even when they are symmetrical. When a node is unreachable
236 from another node, set the pair's distance to 255.
237
238 Note that the -@option{numa} option doesn't allocate any of the
239 specified resources, it just assigns existing resources to NUMA
240 nodes. This means that one still has to use the @option{-m},
241 @option{-smp} options to allocate RAM and VCPUs respectively.
242
243 ETEXI
244
245 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
246 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
247 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
248 STEXI
249 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
250 @findex -add-fd
251
252 Add a file descriptor to an fd set. Valid options are:
253
254 @table @option
255 @item fd=@var{fd}
256 This option defines the file descriptor of which a duplicate is added to fd set.
257 The file descriptor cannot be stdin, stdout, or stderr.
258 @item set=@var{set}
259 This option defines the ID of the fd set to add the file descriptor to.
260 @item opaque=@var{opaque}
261 This option defines a free-form string that can be used to describe @var{fd}.
262 @end table
263
264 You can open an image using pre-opened file descriptors from an fd set:
265 @example
266 qemu-system-i386
267 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
268 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
269 -drive file=/dev/fdset/2,index=0,media=disk
270 @end example
271 ETEXI
272
273 DEF("set", HAS_ARG, QEMU_OPTION_set,
274 "-set group.id.arg=value\n"
275 " set <arg> parameter for item <id> of type <group>\n"
276 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
277 STEXI
278 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
279 @findex -set
280 Set parameter @var{arg} for item @var{id} of type @var{group}
281 ETEXI
282
283 DEF("global", HAS_ARG, QEMU_OPTION_global,
284 "-global driver.property=value\n"
285 "-global driver=driver,property=property,value=value\n"
286 " set a global default for a driver property\n",
287 QEMU_ARCH_ALL)
288 STEXI
289 @item -global @var{driver}.@var{prop}=@var{value}
290 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
291 @findex -global
292 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
293
294 @example
295 qemu-system-i386 -global ide-hd.physical_block_size=4096 disk-image.img
296 @end example
297
298 In particular, you can use this to set driver properties for devices which are
299 created automatically by the machine model. To create a device which is not
300 created automatically and set properties on it, use -@option{device}.
301
302 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
303 driver=@var{driver},property=@var{prop},value=@var{value}. The
304 longhand syntax works even when @var{driver} contains a dot.
305 ETEXI
306
307 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
308 "-boot [order=drives][,once=drives][,menu=on|off]\n"
309 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
310 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
311 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
312 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
313 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
314 QEMU_ARCH_ALL)
315 STEXI
316 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
317 @findex -boot
318 Specify boot order @var{drives} as a string of drive letters. Valid
319 drive letters depend on the target architecture. The x86 PC uses: a, b
320 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
321 from network adapter 1-4), hard disk boot is the default. To apply a
322 particular boot order only on the first startup, specify it via
323 @option{once}. Note that the @option{order} or @option{once} parameter
324 should not be used together with the @option{bootindex} property of
325 devices, since the firmware implementations normally do not support both
326 at the same time.
327
328 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
329 as firmware/BIOS supports them. The default is non-interactive boot.
330
331 A splash picture could be passed to bios, enabling user to show it as logo,
332 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
333 supports them. Currently Seabios for X86 system support it.
334 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
335 format(true color). The resolution should be supported by the SVGA mode, so
336 the recommended is 320x240, 640x480, 800x640.
337
338 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
339 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
340 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
341 system support it.
342
343 Do strict boot via @option{strict=on} as far as firmware/BIOS
344 supports it. This only effects when boot priority is changed by
345 bootindex options. The default is non-strict boot.
346
347 @example
348 # try to boot from network first, then from hard disk
349 qemu-system-i386 -boot order=nc
350 # boot from CD-ROM first, switch back to default order after reboot
351 qemu-system-i386 -boot once=d
352 # boot with a splash picture for 5 seconds.
353 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
354 @end example
355
356 Note: The legacy format '-boot @var{drives}' is still supported but its
357 use is discouraged as it may be removed from future versions.
358 ETEXI
359
360 DEF("m", HAS_ARG, QEMU_OPTION_m,
361 "-m [size=]megs[,slots=n,maxmem=size]\n"
362 " configure guest RAM\n"
363 " size: initial amount of guest memory\n"
364 " slots: number of hotplug slots (default: none)\n"
365 " maxmem: maximum amount of guest memory (default: none)\n"
366 "NOTE: Some architectures might enforce a specific granularity\n",
367 QEMU_ARCH_ALL)
368 STEXI
369 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
370 @findex -m
371 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
372 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
373 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
374 could be used to set amount of hotpluggable memory slots and maximum amount of
375 memory. Note that @var{maxmem} must be aligned to the page size.
376
377 For example, the following command-line sets the guest startup RAM size to
378 1GB, creates 3 slots to hotplug additional memory and sets the maximum
379 memory the guest can reach to 4GB:
380
381 @example
382 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
383 @end example
384
385 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
386 be enabled and the guest startup RAM will never increase.
387 ETEXI
388
389 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
390 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
391 STEXI
392 @item -mem-path @var{path}
393 @findex -mem-path
394 Allocate guest RAM from a temporarily created file in @var{path}.
395 ETEXI
396
397 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
398 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
399 QEMU_ARCH_ALL)
400 STEXI
401 @item -mem-prealloc
402 @findex -mem-prealloc
403 Preallocate memory when using -mem-path.
404 ETEXI
405
406 DEF("k", HAS_ARG, QEMU_OPTION_k,
407 "-k language use keyboard layout (for example 'fr' for French)\n",
408 QEMU_ARCH_ALL)
409 STEXI
410 @item -k @var{language}
411 @findex -k
412 Use keyboard layout @var{language} (for example @code{fr} for
413 French). This option is only needed where it is not easy to get raw PC
414 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
415 display). You don't normally need to use it on PC/Linux or PC/Windows
416 hosts.
417
418 The available layouts are:
419 @example
420 ar de-ch es fo fr-ca hu ja mk no pt-br sv
421 da en-gb et fr fr-ch is lt nl pl ru th
422 de en-us fi fr-be hr it lv nl-be pt sl tr
423 @end example
424
425 The default is @code{en-us}.
426 ETEXI
427
428
429 DEF("audio-help", 0, QEMU_OPTION_audio_help,
430 "-audio-help print list of audio drivers and their options\n",
431 QEMU_ARCH_ALL)
432 STEXI
433 @item -audio-help
434 @findex -audio-help
435 Will show the audio subsystem help: list of drivers, tunable
436 parameters.
437 ETEXI
438
439 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
440 "-soundhw c1,... enable audio support\n"
441 " and only specified sound cards (comma separated list)\n"
442 " use '-soundhw help' to get the list of supported cards\n"
443 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
444 STEXI
445 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
446 @findex -soundhw
447 Enable audio and selected sound hardware. Use 'help' to print all
448 available sound hardware.
449
450 @example
451 qemu-system-i386 -soundhw sb16,adlib disk.img
452 qemu-system-i386 -soundhw es1370 disk.img
453 qemu-system-i386 -soundhw ac97 disk.img
454 qemu-system-i386 -soundhw hda disk.img
455 qemu-system-i386 -soundhw all disk.img
456 qemu-system-i386 -soundhw help
457 @end example
458
459 Note that Linux's i810_audio OSS kernel (for AC97) module might
460 require manually specifying clocking.
461
462 @example
463 modprobe i810_audio clocking=48000
464 @end example
465 ETEXI
466
467 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
468 "-balloon virtio[,addr=str]\n"
469 " enable virtio balloon device (deprecated)\n", QEMU_ARCH_ALL)
470 STEXI
471 @item -balloon virtio[,addr=@var{addr}]
472 @findex -balloon
473 Enable virtio balloon device, optionally with PCI address @var{addr}. This
474 option is deprecated, use @option{--device virtio-balloon} instead.
475 ETEXI
476
477 DEF("device", HAS_ARG, QEMU_OPTION_device,
478 "-device driver[,prop[=value][,...]]\n"
479 " add device (based on driver)\n"
480 " prop=value,... sets driver properties\n"
481 " use '-device help' to print all possible drivers\n"
482 " use '-device driver,help' to print all possible properties\n",
483 QEMU_ARCH_ALL)
484 STEXI
485 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
486 @findex -device
487 Add device @var{driver}. @var{prop}=@var{value} sets driver
488 properties. Valid properties depend on the driver. To get help on
489 possible drivers and properties, use @code{-device help} and
490 @code{-device @var{driver},help}.
491
492 Some drivers are:
493 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}]
494
495 Add an IPMI BMC. This is a simulation of a hardware management
496 interface processor that normally sits on a system. It provides
497 a watchdog and the ability to reset and power control the system.
498 You need to connect this to an IPMI interface to make it useful
499
500 The IPMI slave address to use for the BMC. The default is 0x20.
501 This address is the BMC's address on the I2C network of management
502 controllers. If you don't know what this means, it is safe to ignore
503 it.
504
505 @table @option
506 @item bmc=@var{id}
507 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
508 @item slave_addr=@var{val}
509 Define slave address to use for the BMC. The default is 0x20.
510 @item sdrfile=@var{file}
511 file containing raw Sensor Data Records (SDR) data. The default is none.
512 @item fruareasize=@var{val}
513 size of a Field Replaceable Unit (FRU) area. The default is 1024.
514 @item frudatafile=@var{file}
515 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
516 @end table
517
518 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
519
520 Add a connection to an external IPMI BMC simulator. Instead of
521 locally emulating the BMC like the above item, instead connect
522 to an external entity that provides the IPMI services.
523
524 A connection is made to an external BMC simulator. If you do this, it
525 is strongly recommended that you use the "reconnect=" chardev option
526 to reconnect to the simulator if the connection is lost. Note that if
527 this is not used carefully, it can be a security issue, as the
528 interface has the ability to send resets, NMIs, and power off the VM.
529 It's best if QEMU makes a connection to an external simulator running
530 on a secure port on localhost, so neither the simulator nor QEMU is
531 exposed to any outside network.
532
533 See the "lanserv/README.vm" file in the OpenIPMI library for more
534 details on the external interface.
535
536 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
537
538 Add a KCS IPMI interafce on the ISA bus. This also adds a
539 corresponding ACPI and SMBIOS entries, if appropriate.
540
541 @table @option
542 @item bmc=@var{id}
543 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
544 @item ioport=@var{val}
545 Define the I/O address of the interface. The default is 0xca0 for KCS.
546 @item irq=@var{val}
547 Define the interrupt to use. The default is 5. To disable interrupts,
548 set this to 0.
549 @end table
550
551 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
552
553 Like the KCS interface, but defines a BT interface. The default port is
554 0xe4 and the default interrupt is 5.
555
556 ETEXI
557
558 DEF("name", HAS_ARG, QEMU_OPTION_name,
559 "-name string1[,process=string2][,debug-threads=on|off]\n"
560 " set the name of the guest\n"
561 " string1 sets the window title and string2 the process name (on Linux)\n"
562 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
563 " NOTE: The thread names are for debugging and not a stable API.\n",
564 QEMU_ARCH_ALL)
565 STEXI
566 @item -name @var{name}
567 @findex -name
568 Sets the @var{name} of the guest.
569 This name will be displayed in the SDL window caption.
570 The @var{name} will also be used for the VNC server.
571 Also optionally set the top visible process name in Linux.
572 Naming of individual threads can also be enabled on Linux to aid debugging.
573 ETEXI
574
575 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
576 "-uuid %08x-%04x-%04x-%04x-%012x\n"
577 " specify machine UUID\n", QEMU_ARCH_ALL)
578 STEXI
579 @item -uuid @var{uuid}
580 @findex -uuid
581 Set system UUID.
582 ETEXI
583
584 STEXI
585 @end table
586 ETEXI
587 DEFHEADING()
588
589 DEFHEADING(Block device options:)
590 STEXI
591 @table @option
592 ETEXI
593
594 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
595 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
596 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
597 STEXI
598 @item -fda @var{file}
599 @itemx -fdb @var{file}
600 @findex -fda
601 @findex -fdb
602 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
603 ETEXI
604
605 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
606 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
607 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
608 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
609 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
610 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
611 STEXI
612 @item -hda @var{file}
613 @itemx -hdb @var{file}
614 @itemx -hdc @var{file}
615 @itemx -hdd @var{file}
616 @findex -hda
617 @findex -hdb
618 @findex -hdc
619 @findex -hdd
620 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
621 ETEXI
622
623 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
624 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
625 QEMU_ARCH_ALL)
626 STEXI
627 @item -cdrom @var{file}
628 @findex -cdrom
629 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
630 @option{-cdrom} at the same time). You can use the host CD-ROM by
631 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
632 ETEXI
633
634 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
635 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
636 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
637 " [,read-only=on|off][,detect-zeroes=on|off|unmap]\n"
638 " [,driver specific parameters...]\n"
639 " configure a block backend\n", QEMU_ARCH_ALL)
640 STEXI
641 @item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]]
642 @findex -blockdev
643
644 Define a new block driver node. Some of the options apply to all block drivers,
645 other options are only accepted for a specific block driver. See below for a
646 list of generic options and options for the most common block drivers.
647
648 Options that expect a reference to another node (e.g. @code{file}) can be
649 given in two ways. Either you specify the node name of an already existing node
650 (file=@var{node-name}), or you define a new node inline, adding options
651 for the referenced node after a dot (file.filename=@var{path},file.aio=native).
652
653 A block driver node created with @option{-blockdev} can be used for a guest
654 device by specifying its node name for the @code{drive} property in a
655 @option{-device} argument that defines a block device.
656
657 @table @option
658 @item Valid options for any block driver node:
659
660 @table @code
661 @item driver
662 Specifies the block driver to use for the given node.
663 @item node-name
664 This defines the name of the block driver node by which it will be referenced
665 later. The name must be unique, i.e. it must not match the name of a different
666 block driver node, or (if you use @option{-drive} as well) the ID of a drive.
667
668 If no node name is specified, it is automatically generated. The generated node
669 name is not intended to be predictable and changes between QEMU invocations.
670 For the top level, an explicit node name must be specified.
671 @item read-only
672 Open the node read-only. Guest write attempts will fail.
673 @item cache.direct
674 The host page cache can be avoided with @option{cache.direct=on}. This will
675 attempt to do disk IO directly to the guest's memory. QEMU may still perform an
676 internal copy of the data.
677 @item cache.no-flush
678 In case you don't care about data integrity over host failures, you can use
679 @option{cache.no-flush=on}. This option tells QEMU that it never needs to write
680 any data to the disk but can instead keep things in cache. If anything goes
681 wrong, like your host losing power, the disk storage getting disconnected
682 accidentally, etc. your image will most probably be rendered unusable.
683 @item discard=@var{discard}
684 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls
685 whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are
686 ignored or passed to the filesystem. Some machine types may not support
687 discard requests.
688 @item detect-zeroes=@var{detect-zeroes}
689 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
690 conversion of plain zero writes by the OS to driver specific optimized
691 zero write commands. You may even choose "unmap" if @var{discard} is set
692 to "unmap" to allow a zero write to be converted to an @code{unmap} operation.
693 @end table
694
695 @item Driver-specific options for @code{file}
696
697 This is the protocol-level block driver for accessing regular files.
698
699 @table @code
700 @item filename
701 The path to the image file in the local filesystem
702 @item aio
703 Specifies the AIO backend (threads/native, default: threads)
704 @item locking
705 Specifies whether the image file is protected with Linux OFD / POSIX locks. The
706 default is to use the Linux Open File Descriptor API if available, otherwise no
707 lock is applied. (auto/on/off, default: auto)
708 @end table
709 Example:
710 @example
711 -blockdev driver=file,node-name=disk,filename=disk.img
712 @end example
713
714 @item Driver-specific options for @code{raw}
715
716 This is the image format block driver for raw images. It is usually
717 stacked on top of a protocol level block driver such as @code{file}.
718
719 @table @code
720 @item file
721 Reference to or definition of the data source block driver node
722 (e.g. a @code{file} driver node)
723 @end table
724 Example 1:
725 @example
726 -blockdev driver=file,node-name=disk_file,filename=disk.img
727 -blockdev driver=raw,node-name=disk,file=disk_file
728 @end example
729 Example 2:
730 @example
731 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
732 @end example
733
734 @item Driver-specific options for @code{qcow2}
735
736 This is the image format block driver for qcow2 images. It is usually
737 stacked on top of a protocol level block driver such as @code{file}.
738
739 @table @code
740 @item file
741 Reference to or definition of the data source block driver node
742 (e.g. a @code{file} driver node)
743
744 @item backing
745 Reference to or definition of the backing file block device (default is taken
746 from the image file). It is allowed to pass @code{null} here in order to disable
747 the default backing file.
748
749 @item lazy-refcounts
750 Whether to enable the lazy refcounts feature (on/off; default is taken from the
751 image file)
752
753 @item cache-size
754 The maximum total size of the L2 table and refcount block caches in bytes
755 (default: 1048576 bytes or 8 clusters, whichever is larger)
756
757 @item l2-cache-size
758 The maximum size of the L2 table cache in bytes
759 (default: 4/5 of the total cache size)
760
761 @item refcount-cache-size
762 The maximum size of the refcount block cache in bytes
763 (default: 1/5 of the total cache size)
764
765 @item cache-clean-interval
766 Clean unused entries in the L2 and refcount caches. The interval is in seconds.
767 The default value is 0 and it disables this feature.
768
769 @item pass-discard-request
770 Whether discard requests to the qcow2 device should be forwarded to the data
771 source (on/off; default: on if discard=unmap is specified, off otherwise)
772
773 @item pass-discard-snapshot
774 Whether discard requests for the data source should be issued when a snapshot
775 operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off;
776 default: on)
777
778 @item pass-discard-other
779 Whether discard requests for the data source should be issued on other
780 occasions where a cluster gets freed (on/off; default: off)
781
782 @item overlap-check
783 Which overlap checks to perform for writes to the image
784 (none/constant/cached/all; default: cached). For details or finer
785 granularity control refer to the QAPI documentation of @code{blockdev-add}.
786 @end table
787
788 Example 1:
789 @example
790 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
791 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
792 @end example
793 Example 2:
794 @example
795 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
796 @end example
797
798 @item Driver-specific options for other drivers
799 Please refer to the QAPI documentation of the @code{blockdev-add} QMP command.
800
801 @end table
802
803 ETEXI
804
805 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
806 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
807 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
808 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
809 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
810 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
811 " [,readonly=on|off][,copy-on-read=on|off]\n"
812 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
813 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
814 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
815 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
816 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
817 " [[,iops_size=is]]\n"
818 " [[,group=g]]\n"
819 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
820 STEXI
821 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
822 @findex -drive
823
824 Define a new drive. This includes creating a block driver node (the backend) as
825 well as a guest device, and is mostly a shortcut for defining the corresponding
826 @option{-blockdev} and @option{-device} options.
827
828 @option{-drive} accepts all options that are accepted by @option{-blockdev}. In
829 addition, it knows the following options:
830
831 @table @option
832 @item file=@var{file}
833 This option defines which disk image (@pxref{disk_images}) to use with
834 this drive. If the filename contains comma, you must double it
835 (for instance, "file=my,,file" to use file "my,file").
836
837 Special files such as iSCSI devices can be specified using protocol
838 specific URLs. See the section for "Device URL Syntax" for more information.
839 @item if=@var{interface}
840 This option defines on which type on interface the drive is connected.
841 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
842 @item bus=@var{bus},unit=@var{unit}
843 These options define where is connected the drive by defining the bus number and
844 the unit id.
845 @item index=@var{index}
846 This option defines where is connected the drive by using an index in the list
847 of available connectors of a given interface type.
848 @item media=@var{media}
849 This option defines the type of the media: disk or cdrom.
850 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
851 Force disk physical geometry and the optional BIOS translation (trans=none or
852 lba). These parameters are deprecated, use the corresponding parameters
853 of @code{-device} instead.
854 @item snapshot=@var{snapshot}
855 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
856 (see @option{-snapshot}).
857 @item cache=@var{cache}
858 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough"
859 and controls how the host cache is used to access block data. This is a
860 shortcut that sets the @option{cache.direct} and @option{cache.no-flush}
861 options (as in @option{-blockdev}), and additionally @option{cache.writeback},
862 which provides a default for the @option{write-cache} option of block guest
863 devices (as in @option{-device}). The modes correspond to the following
864 settings:
865
866 @c Our texi2pod.pl script doesn't support @multitable, so fall back to using
867 @c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage
868 @c and the HTML output.
869 @example
870 @ │ cache.writeback cache.direct cache.no-flush
871 ─────────────┼─────────────────────────────────────────────────
872 writeback │ on off off
873 none │ on on off
874 writethrough │ off off off
875 directsync │ off on off
876 unsafe │ on off on
877 @end example
878
879 The default mode is @option{cache=writeback}.
880
881 @item aio=@var{aio}
882 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
883 @item format=@var{format}
884 Specify which disk @var{format} will be used rather than detecting
885 the format. Can be used to specify format=raw to avoid interpreting
886 an untrusted format header.
887 @item serial=@var{serial}
888 This option specifies the serial number to assign to the device. This
889 parameter is deprecated, use the corresponding parameter of @code{-device}
890 instead.
891 @item addr=@var{addr}
892 Specify the controller's PCI address (if=virtio only). This parameter is
893 deprecated, use the corresponding parameter of @code{-device} instead.
894 @item werror=@var{action},rerror=@var{action}
895 Specify which @var{action} to take on write and read errors. Valid actions are:
896 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
897 "report" (report the error to the guest), "enospc" (pause QEMU only if the
898 host disk is full; report the error to the guest otherwise).
899 The default setting is @option{werror=enospc} and @option{rerror=report}.
900 @item copy-on-read=@var{copy-on-read}
901 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
902 file sectors into the image file.
903 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
904 Specify bandwidth throttling limits in bytes per second, either for all request
905 types or for reads or writes only. Small values can lead to timeouts or hangs
906 inside the guest. A safe minimum for disks is 2 MB/s.
907 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
908 Specify bursts in bytes per second, either for all request types or for reads
909 or writes only. Bursts allow the guest I/O to spike above the limit
910 temporarily.
911 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
912 Specify request rate limits in requests per second, either for all request
913 types or for reads or writes only.
914 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
915 Specify bursts in requests per second, either for all request types or for reads
916 or writes only. Bursts allow the guest I/O to spike above the limit
917 temporarily.
918 @item iops_size=@var{is}
919 Let every @var{is} bytes of a request count as a new request for iops
920 throttling purposes. Use this option to prevent guests from circumventing iops
921 limits by sending fewer but larger requests.
922 @item group=@var{g}
923 Join a throttling quota group with given name @var{g}. All drives that are
924 members of the same group are accounted for together. Use this option to
925 prevent guests from circumventing throttling limits by using many small disks
926 instead of a single larger disk.
927 @end table
928
929 By default, the @option{cache.writeback=on} mode is used. It will report data
930 writes as completed as soon as the data is present in the host page cache.
931 This is safe as long as your guest OS makes sure to correctly flush disk caches
932 where needed. If your guest OS does not handle volatile disk write caches
933 correctly and your host crashes or loses power, then the guest may experience
934 data corruption.
935
936 For such guests, you should consider using @option{cache.writeback=off}. This
937 means that the host page cache will be used to read and write data, but write
938 notification will be sent to the guest only after QEMU has made sure to flush
939 each write to the disk. Be aware that this has a major impact on performance.
940
941 When using the @option{-snapshot} option, unsafe caching is always used.
942
943 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
944 useful when the backing file is over a slow network. By default copy-on-read
945 is off.
946
947 Instead of @option{-cdrom} you can use:
948 @example
949 qemu-system-i386 -drive file=file,index=2,media=cdrom
950 @end example
951
952 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
953 use:
954 @example
955 qemu-system-i386 -drive file=file,index=0,media=disk
956 qemu-system-i386 -drive file=file,index=1,media=disk
957 qemu-system-i386 -drive file=file,index=2,media=disk
958 qemu-system-i386 -drive file=file,index=3,media=disk
959 @end example
960
961 You can open an image using pre-opened file descriptors from an fd set:
962 @example
963 qemu-system-i386
964 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
965 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
966 -drive file=/dev/fdset/2,index=0,media=disk
967 @end example
968
969 You can connect a CDROM to the slave of ide0:
970 @example
971 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
972 @end example
973
974 If you don't specify the "file=" argument, you define an empty drive:
975 @example
976 qemu-system-i386 -drive if=ide,index=1,media=cdrom
977 @end example
978
979 Instead of @option{-fda}, @option{-fdb}, you can use:
980 @example
981 qemu-system-i386 -drive file=file,index=0,if=floppy
982 qemu-system-i386 -drive file=file,index=1,if=floppy
983 @end example
984
985 By default, @var{interface} is "ide" and @var{index} is automatically
986 incremented:
987 @example
988 qemu-system-i386 -drive file=a -drive file=b"
989 @end example
990 is interpreted like:
991 @example
992 qemu-system-i386 -hda a -hdb b
993 @end example
994 ETEXI
995
996 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
997 "-mtdblock file use 'file' as on-board Flash memory image\n",
998 QEMU_ARCH_ALL)
999 STEXI
1000 @item -mtdblock @var{file}
1001 @findex -mtdblock
1002 Use @var{file} as on-board Flash memory image.
1003 ETEXI
1004
1005 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
1006 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
1007 STEXI
1008 @item -sd @var{file}
1009 @findex -sd
1010 Use @var{file} as SecureDigital card image.
1011 ETEXI
1012
1013 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
1014 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
1015 STEXI
1016 @item -pflash @var{file}
1017 @findex -pflash
1018 Use @var{file} as a parallel flash image.
1019 ETEXI
1020
1021 DEF("snapshot", 0, QEMU_OPTION_snapshot,
1022 "-snapshot write to temporary files instead of disk image files\n",
1023 QEMU_ARCH_ALL)
1024 STEXI
1025 @item -snapshot
1026 @findex -snapshot
1027 Write to temporary files instead of disk image files. In this case,
1028 the raw disk image you use is not written back. You can however force
1029 the write back by pressing @key{C-a s} (@pxref{disk_images}).
1030 ETEXI
1031
1032 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1033 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
1034 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n"
1035 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1036 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1037 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1038 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1039 " [[,throttling.iops-size=is]]\n",
1040 QEMU_ARCH_ALL)
1041
1042 STEXI
1043
1044 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1045 @findex -fsdev
1046 Define a new file system device. Valid options are:
1047 @table @option
1048 @item @var{fsdriver}
1049 This option specifies the fs driver backend to use.
1050 Currently "local", "handle" and "proxy" file system drivers are supported.
1051 @item id=@var{id}
1052 Specifies identifier for this device
1053 @item path=@var{path}
1054 Specifies the export path for the file system device. Files under
1055 this path will be available to the 9p client on the guest.
1056 @item security_model=@var{security_model}
1057 Specifies the security model to be used for this export path.
1058 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1059 In "passthrough" security model, files are stored using the same
1060 credentials as they are created on the guest. This requires QEMU
1061 to run as root. In "mapped-xattr" security model, some of the file
1062 attributes like uid, gid, mode bits and link target are stored as
1063 file attributes. For "mapped-file" these attributes are stored in the
1064 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1065 interact with other unix tools. "none" security model is same as
1066 passthrough except the sever won't report failures if it fails to
1067 set file attributes like ownership. Security model is mandatory
1068 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
1069 security model as a parameter.
1070 @item writeout=@var{writeout}
1071 This is an optional argument. The only supported value is "immediate".
1072 This means that host page cache will be used to read and write data but
1073 write notification will be sent to the guest only when the data has been
1074 reported as written by the storage subsystem.
1075 @item readonly
1076 Enables exporting 9p share as a readonly mount for guests. By default
1077 read-write access is given.
1078 @item socket=@var{socket}
1079 Enables proxy filesystem driver to use passed socket file for communicating
1080 with virtfs-proxy-helper
1081 @item sock_fd=@var{sock_fd}
1082 Enables proxy filesystem driver to use passed socket descriptor for
1083 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1084 will create socketpair and pass one of the fds as sock_fd
1085 @item fmode=@var{fmode}
1086 Specifies the default mode for newly created files on the host. Works only
1087 with security models "mapped-xattr" and "mapped-file".
1088 @item dmode=@var{dmode}
1089 Specifies the default mode for newly created directories on the host. Works
1090 only with security models "mapped-xattr" and "mapped-file".
1091 @end table
1092
1093 -fsdev option is used along with -device driver "virtio-9p-pci".
1094 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
1095 Options for virtio-9p-pci driver are:
1096 @table @option
1097 @item fsdev=@var{id}
1098 Specifies the id value specified along with -fsdev option
1099 @item mount_tag=@var{mount_tag}
1100 Specifies the tag name to be used by the guest to mount this export point
1101 @end table
1102
1103 ETEXI
1104
1105 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1106 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
1107 " [,id=id][,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n",
1108 QEMU_ARCH_ALL)
1109
1110 STEXI
1111
1112 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1113 @findex -virtfs
1114
1115 The general form of a Virtual File system pass-through options are:
1116 @table @option
1117 @item @var{fsdriver}
1118 This option specifies the fs driver backend to use.
1119 Currently "local", "handle" and "proxy" file system drivers are supported.
1120 @item id=@var{id}
1121 Specifies identifier for this device
1122 @item path=@var{path}
1123 Specifies the export path for the file system device. Files under
1124 this path will be available to the 9p client on the guest.
1125 @item security_model=@var{security_model}
1126 Specifies the security model to be used for this export path.
1127 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1128 In "passthrough" security model, files are stored using the same
1129 credentials as they are created on the guest. This requires QEMU
1130 to run as root. In "mapped-xattr" security model, some of the file
1131 attributes like uid, gid, mode bits and link target are stored as
1132 file attributes. For "mapped-file" these attributes are stored in the
1133 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1134 interact with other unix tools. "none" security model is same as
1135 passthrough except the sever won't report failures if it fails to
1136 set file attributes like ownership. Security model is mandatory only
1137 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
1138 model as a parameter.
1139 @item writeout=@var{writeout}
1140 This is an optional argument. The only supported value is "immediate".
1141 This means that host page cache will be used to read and write data but
1142 write notification will be sent to the guest only when the data has been
1143 reported as written by the storage subsystem.
1144 @item readonly
1145 Enables exporting 9p share as a readonly mount for guests. By default
1146 read-write access is given.
1147 @item socket=@var{socket}
1148 Enables proxy filesystem driver to use passed socket file for
1149 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1150 will create socketpair and pass one of the fds as sock_fd
1151 @item sock_fd
1152 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
1153 descriptor for interfacing with virtfs-proxy-helper
1154 @item fmode=@var{fmode}
1155 Specifies the default mode for newly created files on the host. Works only
1156 with security models "mapped-xattr" and "mapped-file".
1157 @item dmode=@var{dmode}
1158 Specifies the default mode for newly created directories on the host. Works
1159 only with security models "mapped-xattr" and "mapped-file".
1160 @end table
1161 ETEXI
1162
1163 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
1164 "-virtfs_synth Create synthetic file system image\n",
1165 QEMU_ARCH_ALL)
1166 STEXI
1167 @item -virtfs_synth
1168 @findex -virtfs_synth
1169 Create synthetic file system image
1170 ETEXI
1171
1172 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1173 "-iscsi [user=user][,password=password]\n"
1174 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1175 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1176 " [,timeout=timeout]\n"
1177 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1178
1179 STEXI
1180 @item -iscsi
1181 @findex -iscsi
1182 Configure iSCSI session parameters.
1183 ETEXI
1184
1185 STEXI
1186 @end table
1187 ETEXI
1188 DEFHEADING()
1189
1190 DEFHEADING(USB options:)
1191 STEXI
1192 @table @option
1193 ETEXI
1194
1195 DEF("usb", 0, QEMU_OPTION_usb,
1196 "-usb enable the USB driver (if it is not used by default yet)\n",
1197 QEMU_ARCH_ALL)
1198 STEXI
1199 @item -usb
1200 @findex -usb
1201 Enable the USB driver (if it is not used by default yet).
1202 ETEXI
1203
1204 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1205 "-usbdevice name add the host or guest USB device 'name'\n",
1206 QEMU_ARCH_ALL)
1207 STEXI
1208
1209 @item -usbdevice @var{devname}
1210 @findex -usbdevice
1211 Add the USB device @var{devname}. Note that this option is deprecated,
1212 please use @code{-device usb-...} instead. @xref{usb_devices}.
1213
1214 @table @option
1215
1216 @item mouse
1217 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1218
1219 @item tablet
1220 Pointer device that uses absolute coordinates (like a touchscreen). This
1221 means QEMU is able to report the mouse position without having to grab the
1222 mouse. Also overrides the PS/2 mouse emulation when activated.
1223
1224 @item braille
1225 Braille device. This will use BrlAPI to display the braille output on a real
1226 or fake device.
1227
1228 @end table
1229 ETEXI
1230
1231 STEXI
1232 @end table
1233 ETEXI
1234 DEFHEADING()
1235
1236 DEFHEADING(Display options:)
1237 STEXI
1238 @table @option
1239 ETEXI
1240
1241 DEF("display", HAS_ARG, QEMU_OPTION_display,
1242 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
1243 " [,window_close=on|off][,gl=on|core|es|off]\n"
1244 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1245 "-display vnc=<display>[,<optargs>]\n"
1246 "-display curses\n"
1247 "-display none"
1248 " select display type\n"
1249 "The default display is equivalent to\n"
1250 #if defined(CONFIG_GTK)
1251 "\t\"-display gtk\"\n"
1252 #elif defined(CONFIG_SDL)
1253 "\t\"-display sdl\"\n"
1254 #elif defined(CONFIG_COCOA)
1255 "\t\"-display cocoa\"\n"
1256 #elif defined(CONFIG_VNC)
1257 "\t\"-vnc localhost:0,to=99,id=default\"\n"
1258 #else
1259 "\t\"-display none\"\n"
1260 #endif
1261 , QEMU_ARCH_ALL)
1262 STEXI
1263 @item -display @var{type}
1264 @findex -display
1265 Select type of display to use. This option is a replacement for the
1266 old style -sdl/-curses/... options. Valid values for @var{type} are
1267 @table @option
1268 @item sdl
1269 Display video output via SDL (usually in a separate graphics
1270 window; see the SDL documentation for other possibilities).
1271 @item curses
1272 Display video output via curses. For graphics device models which
1273 support a text mode, QEMU can display this output using a
1274 curses/ncurses interface. Nothing is displayed when the graphics
1275 device is in graphical mode or if the graphics device does not support
1276 a text mode. Generally only the VGA device models support text mode.
1277 @item none
1278 Do not display video output. The guest will still see an emulated
1279 graphics card, but its output will not be displayed to the QEMU
1280 user. This option differs from the -nographic option in that it
1281 only affects what is done with video output; -nographic also changes
1282 the destination of the serial and parallel port data.
1283 @item gtk
1284 Display video output in a GTK window. This interface provides drop-down
1285 menus and other UI elements to configure and control the VM during
1286 runtime.
1287 @item vnc
1288 Start a VNC server on display <arg>
1289 @end table
1290 ETEXI
1291
1292 DEF("nographic", 0, QEMU_OPTION_nographic,
1293 "-nographic disable graphical output and redirect serial I/Os to console\n",
1294 QEMU_ARCH_ALL)
1295 STEXI
1296 @item -nographic
1297 @findex -nographic
1298 Normally, if QEMU is compiled with graphical window support, it displays
1299 output such as guest graphics, guest console, and the QEMU monitor in a
1300 window. With this option, you can totally disable graphical output so
1301 that QEMU is a simple command line application. The emulated serial port
1302 is redirected on the console and muxed with the monitor (unless
1303 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1304 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1305 switching between the console and monitor.
1306 ETEXI
1307
1308 DEF("curses", 0, QEMU_OPTION_curses,
1309 "-curses shorthand for -display curses\n",
1310 QEMU_ARCH_ALL)
1311 STEXI
1312 @item -curses
1313 @findex -curses
1314 Normally, if QEMU is compiled with graphical window support, it displays
1315 output such as guest graphics, guest console, and the QEMU monitor in a
1316 window. With this option, QEMU can display the VGA output when in text
1317 mode using a curses/ncurses interface. Nothing is displayed in graphical
1318 mode.
1319 ETEXI
1320
1321 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1322 "-no-frame open SDL window without a frame and window decorations\n",
1323 QEMU_ARCH_ALL)
1324 STEXI
1325 @item -no-frame
1326 @findex -no-frame
1327 Do not use decorations for SDL windows and start them using the whole
1328 available screen space. This makes the using QEMU in a dedicated desktop
1329 workspace more convenient.
1330 ETEXI
1331
1332 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1333 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1334 QEMU_ARCH_ALL)
1335 STEXI
1336 @item -alt-grab
1337 @findex -alt-grab
1338 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1339 affects the special keys (for fullscreen, monitor-mode switching, etc).
1340 ETEXI
1341
1342 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1343 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1344 QEMU_ARCH_ALL)
1345 STEXI
1346 @item -ctrl-grab
1347 @findex -ctrl-grab
1348 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1349 affects the special keys (for fullscreen, monitor-mode switching, etc).
1350 ETEXI
1351
1352 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1353 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1354 STEXI
1355 @item -no-quit
1356 @findex -no-quit
1357 Disable SDL window close capability.
1358 ETEXI
1359
1360 DEF("sdl", 0, QEMU_OPTION_sdl,
1361 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1362 STEXI
1363 @item -sdl
1364 @findex -sdl
1365 Enable SDL.
1366 ETEXI
1367
1368 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1369 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1370 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1371 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1372 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1373 " [,tls-ciphers=<list>]\n"
1374 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1375 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1376 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1377 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1378 " [,jpeg-wan-compression=[auto|never|always]]\n"
1379 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1380 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1381 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1382 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1383 " [,gl=[on|off]][,rendernode=<file>]\n"
1384 " enable spice\n"
1385 " at least one of {port, tls-port} is mandatory\n",
1386 QEMU_ARCH_ALL)
1387 STEXI
1388 @item -spice @var{option}[,@var{option}[,...]]
1389 @findex -spice
1390 Enable the spice remote desktop protocol. Valid options are
1391
1392 @table @option
1393
1394 @item port=<nr>
1395 Set the TCP port spice is listening on for plaintext channels.
1396
1397 @item addr=<addr>
1398 Set the IP address spice is listening on. Default is any address.
1399
1400 @item ipv4
1401 @itemx ipv6
1402 @itemx unix
1403 Force using the specified IP version.
1404
1405 @item password=<secret>
1406 Set the password you need to authenticate.
1407
1408 @item sasl
1409 Require that the client use SASL to authenticate with the spice.
1410 The exact choice of authentication method used is controlled from the
1411 system / user's SASL configuration file for the 'qemu' service. This
1412 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1413 unprivileged user, an environment variable SASL_CONF_PATH can be used
1414 to make it search alternate locations for the service config.
1415 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1416 it is recommended that SASL always be combined with the 'tls' and
1417 'x509' settings to enable use of SSL and server certificates. This
1418 ensures a data encryption preventing compromise of authentication
1419 credentials.
1420
1421 @item disable-ticketing
1422 Allow client connects without authentication.
1423
1424 @item disable-copy-paste
1425 Disable copy paste between the client and the guest.
1426
1427 @item disable-agent-file-xfer
1428 Disable spice-vdagent based file-xfer between the client and the guest.
1429
1430 @item tls-port=<nr>
1431 Set the TCP port spice is listening on for encrypted channels.
1432
1433 @item x509-dir=<dir>
1434 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1435
1436 @item x509-key-file=<file>
1437 @itemx x509-key-password=<file>
1438 @itemx x509-cert-file=<file>
1439 @itemx x509-cacert-file=<file>
1440 @itemx x509-dh-key-file=<file>
1441 The x509 file names can also be configured individually.
1442
1443 @item tls-ciphers=<list>
1444 Specify which ciphers to use.
1445
1446 @item tls-channel=[main|display|cursor|inputs|record|playback]
1447 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1448 Force specific channel to be used with or without TLS encryption. The
1449 options can be specified multiple times to configure multiple
1450 channels. The special name "default" can be used to set the default
1451 mode. For channels which are not explicitly forced into one mode the
1452 spice client is allowed to pick tls/plaintext as he pleases.
1453
1454 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1455 Configure image compression (lossless).
1456 Default is auto_glz.
1457
1458 @item jpeg-wan-compression=[auto|never|always]
1459 @itemx zlib-glz-wan-compression=[auto|never|always]
1460 Configure wan image compression (lossy for slow links).
1461 Default is auto.
1462
1463 @item streaming-video=[off|all|filter]
1464 Configure video stream detection. Default is off.
1465
1466 @item agent-mouse=[on|off]
1467 Enable/disable passing mouse events via vdagent. Default is on.
1468
1469 @item playback-compression=[on|off]
1470 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1471
1472 @item seamless-migration=[on|off]
1473 Enable/disable spice seamless migration. Default is off.
1474
1475 @item gl=[on|off]
1476 Enable/disable OpenGL context. Default is off.
1477
1478 @item rendernode=<file>
1479 DRM render node for OpenGL rendering. If not specified, it will pick
1480 the first available. (Since 2.9)
1481
1482 @end table
1483 ETEXI
1484
1485 DEF("portrait", 0, QEMU_OPTION_portrait,
1486 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1487 QEMU_ARCH_ALL)
1488 STEXI
1489 @item -portrait
1490 @findex -portrait
1491 Rotate graphical output 90 deg left (only PXA LCD).
1492 ETEXI
1493
1494 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1495 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1496 QEMU_ARCH_ALL)
1497 STEXI
1498 @item -rotate @var{deg}
1499 @findex -rotate
1500 Rotate graphical output some deg left (only PXA LCD).
1501 ETEXI
1502
1503 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1504 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1505 " select video card type\n", QEMU_ARCH_ALL)
1506 STEXI
1507 @item -vga @var{type}
1508 @findex -vga
1509 Select type of VGA card to emulate. Valid values for @var{type} are
1510 @table @option
1511 @item cirrus
1512 Cirrus Logic GD5446 Video card. All Windows versions starting from
1513 Windows 95 should recognize and use this graphic card. For optimal
1514 performances, use 16 bit color depth in the guest and the host OS.
1515 (This card was the default before QEMU 2.2)
1516 @item std
1517 Standard VGA card with Bochs VBE extensions. If your guest OS
1518 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1519 to use high resolution modes (>= 1280x1024x16) then you should use
1520 this option. (This card is the default since QEMU 2.2)
1521 @item vmware
1522 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1523 recent XFree86/XOrg server or Windows guest with a driver for this
1524 card.
1525 @item qxl
1526 QXL paravirtual graphic card. It is VGA compatible (including VESA
1527 2.0 VBE support). Works best with qxl guest drivers installed though.
1528 Recommended choice when using the spice protocol.
1529 @item tcx
1530 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1531 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1532 fixed resolution of 1024x768.
1533 @item cg3
1534 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1535 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1536 resolutions aimed at people wishing to run older Solaris versions.
1537 @item virtio
1538 Virtio VGA card.
1539 @item none
1540 Disable VGA card.
1541 @end table
1542 ETEXI
1543
1544 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1545 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1546 STEXI
1547 @item -full-screen
1548 @findex -full-screen
1549 Start in full screen.
1550 ETEXI
1551
1552 DEF("g", 1, QEMU_OPTION_g ,
1553 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1554 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1555 STEXI
1556 @item -g @var{width}x@var{height}[x@var{depth}]
1557 @findex -g
1558 Set the initial graphical resolution and depth (PPC, SPARC only).
1559 ETEXI
1560
1561 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1562 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1563 STEXI
1564 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1565 @findex -vnc
1566 Normally, if QEMU is compiled with graphical window support, it displays
1567 output such as guest graphics, guest console, and the QEMU monitor in a
1568 window. With this option, you can have QEMU listen on VNC display
1569 @var{display} and redirect the VGA display over the VNC session. It is
1570 very useful to enable the usb tablet device when using this option
1571 (option @option{-device usb-tablet}). When using the VNC display, you
1572 must use the @option{-k} parameter to set the keyboard layout if you are
1573 not using en-us. Valid syntax for the @var{display} is
1574
1575 @table @option
1576
1577 @item to=@var{L}
1578
1579 With this option, QEMU will try next available VNC @var{display}s, until the
1580 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1581 available, e.g. port 5900+@var{display} is already used by another
1582 application. By default, to=0.
1583
1584 @item @var{host}:@var{d}
1585
1586 TCP connections will only be allowed from @var{host} on display @var{d}.
1587 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1588 be omitted in which case the server will accept connections from any host.
1589
1590 @item unix:@var{path}
1591
1592 Connections will be allowed over UNIX domain sockets where @var{path} is the
1593 location of a unix socket to listen for connections on.
1594
1595 @item none
1596
1597 VNC is initialized but not started. The monitor @code{change} command
1598 can be used to later start the VNC server.
1599
1600 @end table
1601
1602 Following the @var{display} value there may be one or more @var{option} flags
1603 separated by commas. Valid options are
1604
1605 @table @option
1606
1607 @item reverse
1608
1609 Connect to a listening VNC client via a ``reverse'' connection. The
1610 client is specified by the @var{display}. For reverse network
1611 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1612 is a TCP port number, not a display number.
1613
1614 @item websocket
1615
1616 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1617 If a bare @var{websocket} option is given, the Websocket port is
1618 5700+@var{display}. An alternative port can be specified with the
1619 syntax @code{websocket}=@var{port}.
1620
1621 If @var{host} is specified connections will only be allowed from this host.
1622 It is possible to control the websocket listen address independently, using
1623 the syntax @code{websocket}=@var{host}:@var{port}.
1624
1625 If no TLS credentials are provided, the websocket connection runs in
1626 unencrypted mode. If TLS credentials are provided, the websocket connection
1627 requires encrypted client connections.
1628
1629 @item password
1630
1631 Require that password based authentication is used for client connections.
1632
1633 The password must be set separately using the @code{set_password} command in
1634 the @ref{pcsys_monitor}. The syntax to change your password is:
1635 @code{set_password <protocol> <password>} where <protocol> could be either
1636 "vnc" or "spice".
1637
1638 If you would like to change <protocol> password expiration, you should use
1639 @code{expire_password <protocol> <expiration-time>} where expiration time could
1640 be one of the following options: now, never, +seconds or UNIX time of
1641 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1642 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1643 date and time).
1644
1645 You can also use keywords "now" or "never" for the expiration time to
1646 allow <protocol> password to expire immediately or never expire.
1647
1648 @item tls-creds=@var{ID}
1649
1650 Provides the ID of a set of TLS credentials to use to secure the
1651 VNC server. They will apply to both the normal VNC server socket
1652 and the websocket socket (if enabled). Setting TLS credentials
1653 will cause the VNC server socket to enable the VeNCrypt auth
1654 mechanism. The credentials should have been previously created
1655 using the @option{-object tls-creds} argument.
1656
1657 The @option{tls-creds} parameter obsoletes the @option{tls},
1658 @option{x509}, and @option{x509verify} options, and as such
1659 it is not permitted to set both new and old type options at
1660 the same time.
1661
1662 @item tls
1663
1664 Require that client use TLS when communicating with the VNC server. This
1665 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1666 attack. It is recommended that this option be combined with either the
1667 @option{x509} or @option{x509verify} options.
1668
1669 This option is now deprecated in favor of using the @option{tls-creds}
1670 argument.
1671
1672 @item x509=@var{/path/to/certificate/dir}
1673
1674 Valid if @option{tls} is specified. Require that x509 credentials are used
1675 for negotiating the TLS session. The server will send its x509 certificate
1676 to the client. It is recommended that a password be set on the VNC server
1677 to provide authentication of the client when this is used. The path following
1678 this option specifies where the x509 certificates are to be loaded from.
1679 See the @ref{vnc_security} section for details on generating certificates.
1680
1681 This option is now deprecated in favour of using the @option{tls-creds}
1682 argument.
1683
1684 @item x509verify=@var{/path/to/certificate/dir}
1685
1686 Valid if @option{tls} is specified. Require that x509 credentials are used
1687 for negotiating the TLS session. The server will send its x509 certificate
1688 to the client, and request that the client send its own x509 certificate.
1689 The server will validate the client's certificate against the CA certificate,
1690 and reject clients when validation fails. If the certificate authority is
1691 trusted, this is a sufficient authentication mechanism. You may still wish
1692 to set a password on the VNC server as a second authentication layer. The
1693 path following this option specifies where the x509 certificates are to
1694 be loaded from. See the @ref{vnc_security} section for details on generating
1695 certificates.
1696
1697 This option is now deprecated in favour of using the @option{tls-creds}
1698 argument.
1699
1700 @item sasl
1701
1702 Require that the client use SASL to authenticate with the VNC server.
1703 The exact choice of authentication method used is controlled from the
1704 system / user's SASL configuration file for the 'qemu' service. This
1705 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1706 unprivileged user, an environment variable SASL_CONF_PATH can be used
1707 to make it search alternate locations for the service config.
1708 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1709 it is recommended that SASL always be combined with the 'tls' and
1710 'x509' settings to enable use of SSL and server certificates. This
1711 ensures a data encryption preventing compromise of authentication
1712 credentials. See the @ref{vnc_security} section for details on using
1713 SASL authentication.
1714
1715 @item acl
1716
1717 Turn on access control lists for checking of the x509 client certificate
1718 and SASL party. For x509 certs, the ACL check is made against the
1719 certificate's distinguished name. This is something that looks like
1720 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1721 made against the username, which depending on the SASL plugin, may
1722 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1723 When the @option{acl} flag is set, the initial access list will be
1724 empty, with a @code{deny} policy. Thus no one will be allowed to
1725 use the VNC server until the ACLs have been loaded. This can be
1726 achieved using the @code{acl} monitor command.
1727
1728 @item lossy
1729
1730 Enable lossy compression methods (gradient, JPEG, ...). If this
1731 option is set, VNC client may receive lossy framebuffer updates
1732 depending on its encoding settings. Enabling this option can save
1733 a lot of bandwidth at the expense of quality.
1734
1735 @item non-adaptive
1736
1737 Disable adaptive encodings. Adaptive encodings are enabled by default.
1738 An adaptive encoding will try to detect frequently updated screen regions,
1739 and send updates in these regions using a lossy encoding (like JPEG).
1740 This can be really helpful to save bandwidth when playing videos. Disabling
1741 adaptive encodings restores the original static behavior of encodings
1742 like Tight.
1743
1744 @item share=[allow-exclusive|force-shared|ignore]
1745
1746 Set display sharing policy. 'allow-exclusive' allows clients to ask
1747 for exclusive access. As suggested by the rfb spec this is
1748 implemented by dropping other connections. Connecting multiple
1749 clients in parallel requires all clients asking for a shared session
1750 (vncviewer: -shared switch). This is the default. 'force-shared'
1751 disables exclusive client access. Useful for shared desktop sessions,
1752 where you don't want someone forgetting specify -shared disconnect
1753 everybody else. 'ignore' completely ignores the shared flag and
1754 allows everybody connect unconditionally. Doesn't conform to the rfb
1755 spec but is traditional QEMU behavior.
1756
1757 @item key-delay-ms
1758
1759 Set keyboard delay, for key down and key up events, in milliseconds.
1760 Default is 10. Keyboards are low-bandwidth devices, so this slowdown
1761 can help the device and guest to keep up and not lose events in case
1762 events are arriving in bulk. Possible causes for the latter are flaky
1763 network connections, or scripts for automated testing.
1764
1765 @end table
1766 ETEXI
1767
1768 STEXI
1769 @end table
1770 ETEXI
1771 ARCHHEADING(, QEMU_ARCH_I386)
1772
1773 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1774 STEXI
1775 @table @option
1776 ETEXI
1777
1778 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1779 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1780 QEMU_ARCH_I386)
1781 STEXI
1782 @item -win2k-hack
1783 @findex -win2k-hack
1784 Use it when installing Windows 2000 to avoid a disk full bug. After
1785 Windows 2000 is installed, you no longer need this option (this option
1786 slows down the IDE transfers).
1787 ETEXI
1788
1789 HXCOMM Deprecated by -rtc
1790 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1791
1792 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1793 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1794 QEMU_ARCH_I386)
1795 STEXI
1796 @item -no-fd-bootchk
1797 @findex -no-fd-bootchk
1798 Disable boot signature checking for floppy disks in BIOS. May
1799 be needed to boot from old floppy disks.
1800 ETEXI
1801
1802 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1803 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1804 STEXI
1805 @item -no-acpi
1806 @findex -no-acpi
1807 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1808 it if your guest OS complains about ACPI problems (PC target machine
1809 only).
1810 ETEXI
1811
1812 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1813 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1814 STEXI
1815 @item -no-hpet
1816 @findex -no-hpet
1817 Disable HPET support.
1818 ETEXI
1819
1820 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1821 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1822 " ACPI table description\n", QEMU_ARCH_I386)
1823 STEXI
1824 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1825 @findex -acpitable
1826 Add ACPI table with specified header fields and context from specified files.
1827 For file=, take whole ACPI table from the specified files, including all
1828 ACPI headers (possible overridden by other options).
1829 For data=, only data
1830 portion of the table is used, all header information is specified in the
1831 command line.
1832 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1833 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1834 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1835 spec.
1836 ETEXI
1837
1838 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1839 "-smbios file=binary\n"
1840 " load SMBIOS entry from binary file\n"
1841 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1842 " [,uefi=on|off]\n"
1843 " specify SMBIOS type 0 fields\n"
1844 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1845 " [,uuid=uuid][,sku=str][,family=str]\n"
1846 " specify SMBIOS type 1 fields\n"
1847 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1848 " [,asset=str][,location=str]\n"
1849 " specify SMBIOS type 2 fields\n"
1850 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1851 " [,sku=str]\n"
1852 " specify SMBIOS type 3 fields\n"
1853 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1854 " [,asset=str][,part=str]\n"
1855 " specify SMBIOS type 4 fields\n"
1856 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1857 " [,asset=str][,part=str][,speed=%d]\n"
1858 " specify SMBIOS type 17 fields\n",
1859 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1860 STEXI
1861 @item -smbios file=@var{binary}
1862 @findex -smbios
1863 Load SMBIOS entry from binary file.
1864
1865 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1866 Specify SMBIOS type 0 fields
1867
1868 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1869 Specify SMBIOS type 1 fields
1870
1871 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1872 Specify SMBIOS type 2 fields
1873
1874 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1875 Specify SMBIOS type 3 fields
1876
1877 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1878 Specify SMBIOS type 4 fields
1879
1880 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1881 Specify SMBIOS type 17 fields
1882 ETEXI
1883
1884 STEXI
1885 @end table
1886 ETEXI
1887 DEFHEADING()
1888
1889 DEFHEADING(Network options:)
1890 STEXI
1891 @table @option
1892 ETEXI
1893
1894 HXCOMM Legacy slirp options (now moved to -net user):
1895 #ifdef CONFIG_SLIRP
1896 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1897 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1898 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1899 #ifndef _WIN32
1900 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1901 #endif
1902 #endif
1903
1904 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1905 #ifdef CONFIG_SLIRP
1906 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1907 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1908 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1909 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
1910 " [,tftp=dir][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1911 #ifndef _WIN32
1912 "[,smb=dir[,smbserver=addr]]\n"
1913 #endif
1914 " configure a user mode network backend with ID 'str',\n"
1915 " its DHCP server and optional services\n"
1916 #endif
1917 #ifdef _WIN32
1918 "-netdev tap,id=str,ifname=name\n"
1919 " configure a host TAP network backend with ID 'str'\n"
1920 #else
1921 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1922 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1923 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1924 " [,poll-us=n]\n"
1925 " configure a host TAP network backend with ID 'str'\n"
1926 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1927 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1928 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1929 " to deconfigure it\n"
1930 " use '[down]script=no' to disable script execution\n"
1931 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1932 " configure it\n"
1933 " use 'fd=h' to connect to an already opened TAP interface\n"
1934 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1935 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1936 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1937 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1938 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1939 " use vhost=on to enable experimental in kernel accelerator\n"
1940 " (only has effect for virtio guests which use MSIX)\n"
1941 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1942 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1943 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1944 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1945 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1946 " spent on busy polling for vhost net\n"
1947 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1948 " configure a host TAP network backend with ID 'str' that is\n"
1949 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1950 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1951 #endif
1952 #ifdef __linux__
1953 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1954 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1955 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1956 " [,rxcookie=rxcookie][,offset=offset]\n"
1957 " configure a network backend with ID 'str' connected to\n"
1958 " an Ethernet over L2TPv3 pseudowire.\n"
1959 " Linux kernel 3.3+ as well as most routers can talk\n"
1960 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1961 " VM to a router and even VM to Host. It is a nearly-universal\n"
1962 " standard (RFC3391). Note - this implementation uses static\n"
1963 " pre-configured tunnels (same as the Linux kernel).\n"
1964 " use 'src=' to specify source address\n"
1965 " use 'dst=' to specify destination address\n"
1966 " use 'udp=on' to specify udp encapsulation\n"
1967 " use 'srcport=' to specify source udp port\n"
1968 " use 'dstport=' to specify destination udp port\n"
1969 " use 'ipv6=on' to force v6\n"
1970 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1971 " well as a weak security measure\n"
1972 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1973 " use 'txcookie=0x012345678' to specify a txcookie\n"
1974 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1975 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1976 " use 'pincounter=on' to work around broken counter handling in peer\n"
1977 " use 'offset=X' to add an extra offset between header and data\n"
1978 #endif
1979 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1980 " configure a network backend to connect to another network\n"
1981 " using a socket connection\n"
1982 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1983 " configure a network backend to connect to a multicast maddr and port\n"
1984 " use 'localaddr=addr' to specify the host address to send packets from\n"
1985 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1986 " configure a network backend to connect to another network\n"
1987 " using an UDP tunnel\n"
1988 #ifdef CONFIG_VDE
1989 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1990 " configure a network backend to connect to port 'n' of a vde switch\n"
1991 " running on host and listening for incoming connections on 'socketpath'.\n"
1992 " Use group 'groupname' and mode 'octalmode' to change default\n"
1993 " ownership and permissions for communication port.\n"
1994 #endif
1995 #ifdef CONFIG_NETMAP
1996 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1997 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1998 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1999 " netmap device, defaults to '/dev/netmap')\n"
2000 #endif
2001 #ifdef CONFIG_POSIX
2002 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2003 " configure a vhost-user network, backed by a chardev 'dev'\n"
2004 #endif
2005 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
2006 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL)
2007 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
2008 "--nic [tap|bridge|"
2009 #ifdef CONFIG_SLIRP
2010 "user|"
2011 #endif
2012 #ifdef __linux__
2013 "l2tpv3|"
2014 #endif
2015 #ifdef CONFIG_VDE
2016 "vde|"
2017 #endif
2018 #ifdef CONFIG_NETMAP
2019 "netmap|"
2020 #endif
2021 #ifdef CONFIG_POSIX
2022 "vhost-user|"
2023 #endif
2024 "socket][,option][,...][mac=macaddr]\n"
2025 " initialize an on-board / default host NIC (using MAC address\n"
2026 " macaddr) and connect it to the given host network backend\n"
2027 "--nic none use it alone to have zero network devices (the default is to\n"
2028 " provided a 'user' network connection)\n",
2029 QEMU_ARCH_ALL)
2030 DEF("net", HAS_ARG, QEMU_OPTION_net,
2031 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2032 " configure or create an on-board (or machine default) NIC and\n"
2033 " connect it to hub 0 (please use -nic unless you need a hub)\n"
2034 "-net ["
2035 #ifdef CONFIG_SLIRP
2036 "user|"
2037 #endif
2038 "tap|"
2039 "bridge|"
2040 #ifdef CONFIG_VDE
2041 "vde|"
2042 #endif
2043 #ifdef CONFIG_NETMAP
2044 "netmap|"
2045 #endif
2046 "socket][,option][,option][,...]\n"
2047 " old way to initialize a host network interface\n"
2048 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2049 STEXI
2050 @item -nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]
2051 @findex -nic
2052 This option is a shortcut for configuring both the on-board (default) guest
2053 NIC hardware and the host network backend in one go. The host backend options
2054 are the same as with the corresponding @option{-netdev} options below.
2055 The guest NIC model can be set with @option{model=@var{modelname}}.
2056 Use @option{model=help} to list the available device types.
2057 The hardware MAC address can be set with @option{mac=@var{macaddr}}.
2058
2059 The following two example do exactly the same, to show how @option{-nic} can
2060 be used to shorten the command line length (note that the e1000 is the default
2061 on i386, so the @option{model=e1000} parameter could even be omitted here, too):
2062 @example
2063 qemu-system-i386 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
2064 qemu-system-i386 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
2065 @end example
2066
2067 @item -nic none
2068 Indicate that no network devices should be configured. It is used to override
2069 the default configuration (default NIC with ``user'' host network backend)
2070 which is activated if no other networking options are provided.
2071
2072 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
2073 @findex -netdev
2074 Configure user mode host network backend which requires no administrator
2075 privilege to run. Valid options are:
2076
2077 @table @option
2078 @item id=@var{id}
2079 Assign symbolic name for use in monitor commands.
2080
2081 @item ipv4=on|off and ipv6=on|off
2082 Specify that either IPv4 or IPv6 must be enabled. If neither is specified
2083 both protocols are enabled.
2084
2085 @item net=@var{addr}[/@var{mask}]
2086 Set IP network address the guest will see. Optionally specify the netmask,
2087 either in the form a.b.c.d or as number of valid top-most bits. Default is
2088 10.0.2.0/24.
2089
2090 @item host=@var{addr}
2091 Specify the guest-visible address of the host. Default is the 2nd IP in the
2092 guest network, i.e. x.x.x.2.
2093
2094 @item ipv6-net=@var{addr}[/@var{int}]
2095 Set IPv6 network address the guest will see (default is fec0::/64). The
2096 network prefix is given in the usual hexadecimal IPv6 address
2097 notation. The prefix size is optional, and is given as the number of
2098 valid top-most bits (default is 64).
2099
2100 @item ipv6-host=@var{addr}
2101 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
2102 the guest network, i.e. xxxx::2.
2103
2104 @item restrict=on|off
2105 If this option is enabled, the guest will be isolated, i.e. it will not be
2106 able to contact the host and no guest IP packets will be routed over the host
2107 to the outside. This option does not affect any explicitly set forwarding rules.
2108
2109 @item hostname=@var{name}
2110 Specifies the client hostname reported by the built-in DHCP server.
2111
2112 @item dhcpstart=@var{addr}
2113 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
2114 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
2115
2116 @item dns=@var{addr}
2117 Specify the guest-visible address of the virtual nameserver. The address must
2118 be different from the host address. Default is the 3rd IP in the guest network,
2119 i.e. x.x.x.3.
2120
2121 @item ipv6-dns=@var{addr}
2122 Specify the guest-visible address of the IPv6 virtual nameserver. The address
2123 must be different from the host address. Default is the 3rd IP in the guest
2124 network, i.e. xxxx::3.
2125
2126 @item dnssearch=@var{domain}
2127 Provides an entry for the domain-search list sent by the built-in
2128 DHCP server. More than one domain suffix can be transmitted by specifying
2129 this option multiple times. If supported, this will cause the guest to
2130 automatically try to append the given domain suffix(es) in case a domain name
2131 can not be resolved.
2132
2133 Example:
2134 @example
2135 qemu-system-i386 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2136 @end example
2137
2138 @item domainname=@var{domain}
2139 Specifies the client domain name reported by the built-in DHCP server.
2140
2141 @item tftp=@var{dir}
2142 When using the user mode network stack, activate a built-in TFTP
2143 server. The files in @var{dir} will be exposed as the root of a TFTP server.
2144 The TFTP client on the guest must be configured in binary mode (use the command
2145 @code{bin} of the Unix TFTP client).
2146
2147 @item bootfile=@var{file}
2148 When using the user mode network stack, broadcast @var{file} as the BOOTP
2149 filename. In conjunction with @option{tftp}, this can be used to network boot
2150 a guest from a local directory.
2151
2152 Example (using pxelinux):
2153 @example
2154 qemu-system-i386 -hda linux.img -boot n -device e1000,netdev=n1 \
2155 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2156 @end example
2157
2158 @item smb=@var{dir}[,smbserver=@var{addr}]
2159 When using the user mode network stack, activate a built-in SMB
2160 server so that Windows OSes can access to the host files in @file{@var{dir}}
2161 transparently. The IP address of the SMB server can be set to @var{addr}. By
2162 default the 4th IP in the guest network is used, i.e. x.x.x.4.
2163
2164 In the guest Windows OS, the line:
2165 @example
2166 10.0.2.4 smbserver
2167 @end example
2168 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
2169 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
2170
2171 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2172
2173 Note that a SAMBA server must be installed on the host OS.
2174
2175 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
2176 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
2177 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
2178 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
2179 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
2180 be bound to a specific host interface. If no connection type is set, TCP is
2181 used. This option can be given multiple times.
2182
2183 For example, to redirect host X11 connection from screen 1 to guest
2184 screen 0, use the following:
2185
2186 @example
2187 # on the host
2188 qemu-system-i386 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2189 # this host xterm should open in the guest X11 server
2190 xterm -display :1
2191 @end example
2192
2193 To redirect telnet connections from host port 5555 to telnet port on
2194 the guest, use the following:
2195
2196 @example
2197 # on the host
2198 qemu-system-i386 -nic user,hostfwd=tcp::5555-:23
2199 telnet localhost 5555
2200 @end example
2201
2202 Then when you use on the host @code{telnet localhost 5555}, you
2203 connect to the guest telnet server.
2204
2205 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
2206 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
2207 Forward guest TCP connections to the IP address @var{server} on port @var{port}
2208 to the character device @var{dev} or to a program executed by @var{cmd:command}
2209 which gets spawned for each connection. This option can be given multiple times.
2210
2211 You can either use a chardev directly and have that one used throughout QEMU's
2212 lifetime, like in the following example:
2213
2214 @example
2215 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2216 # the guest accesses it
2217 qemu-system-i386 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
2218 @end example
2219
2220 Or you can execute a command on every TCP connection established by the guest,
2221 so that QEMU behaves similar to an inetd process for that virtual server:
2222
2223 @example
2224 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2225 # and connect the TCP stream to its stdin/stdout
2226 qemu-system-i386 -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2227 @end example
2228
2229 @end table
2230
2231 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
2232 processed and applied to -net user. Mixing them with the new configuration
2233 syntax gives undefined results. Their use for new applications is discouraged
2234 as they will be removed from future versions.
2235
2236 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2237 Configure a host TAP network backend with ID @var{id}.
2238
2239 Use the network script @var{file} to configure it and the network script
2240 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2241 automatically provides one. The default network configure script is
2242 @file{/etc/qemu-ifup} and the default network deconfigure script is
2243 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2244 to disable script execution.
2245
2246 If running QEMU as an unprivileged user, use the network helper
2247 @var{helper} to configure the TAP interface and attach it to the bridge.
2248 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2249 and the default bridge device is @file{br0}.
2250
2251 @option{fd}=@var{h} can be used to specify the handle of an already
2252 opened host TAP interface.
2253
2254 Examples:
2255
2256 @example
2257 #launch a QEMU instance with the default network script
2258 qemu-system-i386 linux.img -nic tap
2259 @end example
2260
2261 @example
2262 #launch a QEMU instance with two NICs, each one connected
2263 #to a TAP device
2264 qemu-system-i386 linux.img \
2265 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \
2266 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
2267 @end example
2268
2269 @example
2270 #launch a QEMU instance with the default network helper to
2271 #connect a TAP device to bridge br0
2272 qemu-system-i386 linux.img -device virtio-net-pci,netdev=n1 \
2273 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
2274 @end example
2275
2276 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2277 Connect a host TAP network interface to a host bridge device.
2278
2279 Use the network helper @var{helper} to configure the TAP interface and
2280 attach it to the bridge. The default network helper executable is
2281 @file{/path/to/qemu-bridge-helper} and the default bridge
2282 device is @file{br0}.
2283
2284 Examples:
2285
2286 @example
2287 #launch a QEMU instance with the default network helper to
2288 #connect a TAP device to bridge br0
2289 qemu-system-i386 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
2290 @end example
2291
2292 @example
2293 #launch a QEMU instance with the default network helper to
2294 #connect a TAP device to bridge qemubr0
2295 qemu-system-i386 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
2296 @end example
2297
2298 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2299
2300 This host network backend can be used to connect the guest's network to
2301 another QEMU virtual machine using a TCP socket connection. If @option{listen}
2302 is specified, QEMU waits for incoming connections on @var{port}
2303 (@var{host} is optional). @option{connect} is used to connect to
2304 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2305 specifies an already opened TCP socket.
2306
2307 Example:
2308 @example
2309 # launch a first QEMU instance
2310 qemu-system-i386 linux.img \
2311 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2312 -netdev socket,id=n1,listen=:1234
2313 # connect the network of this instance to the network of the first instance
2314 qemu-system-i386 linux.img \
2315 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2316 -netdev socket,id=n2,connect=127.0.0.1:1234
2317 @end example
2318
2319 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2320
2321 Configure a socket host network backend to share the guest's network traffic
2322 with another QEMU virtual machines using a UDP multicast socket, effectively
2323 making a bus for every QEMU with same multicast address @var{maddr} and @var{port}.
2324 NOTES:
2325 @enumerate
2326 @item
2327 Several QEMU can be running on different hosts and share same bus (assuming
2328 correct multicast setup for these hosts).
2329 @item
2330 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2331 @url{http://user-mode-linux.sf.net}.
2332 @item
2333 Use @option{fd=h} to specify an already opened UDP multicast socket.
2334 @end enumerate
2335
2336 Example:
2337 @example
2338 # launch one QEMU instance
2339 qemu-system-i386 linux.img \
2340 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2341 -netdev socket,id=n1,mcast=230.0.0.1:1234
2342 # launch another QEMU instance on same "bus"
2343 qemu-system-i386 linux.img \
2344 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2345 -netdev socket,id=n2,mcast=230.0.0.1:1234
2346 # launch yet another QEMU instance on same "bus"
2347 qemu-system-i386 linux.img \
2348 -device e1000,netdev=n3,macaddr=52:54:00:12:34:58 \
2349 -netdev socket,id=n3,mcast=230.0.0.1:1234
2350 @end example
2351
2352 Example (User Mode Linux compat.):
2353 @example
2354 # launch QEMU instance (note mcast address selected is UML's default)
2355 qemu-system-i386 linux.img \
2356 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2357 -netdev socket,id=n1,mcast=239.192.168.1:1102
2358 # launch UML
2359 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2360 @end example
2361
2362 Example (send packets from host's 1.2.3.4):
2363 @example
2364 qemu-system-i386 linux.img \
2365 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2366 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2367 @end example
2368
2369 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2370 Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a
2371 popular protocol to transport Ethernet (and other Layer 2) data frames between
2372 two systems. It is present in routers, firewalls and the Linux kernel
2373 (from version 3.3 onwards).
2374
2375 This transport allows a VM to communicate to another VM, router or firewall directly.
2376
2377 @table @option
2378 @item src=@var{srcaddr}
2379 source address (mandatory)
2380 @item dst=@var{dstaddr}
2381 destination address (mandatory)
2382 @item udp
2383 select udp encapsulation (default is ip).
2384 @item srcport=@var{srcport}
2385 source udp port.
2386 @item dstport=@var{dstport}
2387 destination udp port.
2388 @item ipv6
2389 force v6, otherwise defaults to v4.
2390 @item rxcookie=@var{rxcookie}
2391 @itemx txcookie=@var{txcookie}
2392 Cookies are a weak form of security in the l2tpv3 specification.
2393 Their function is mostly to prevent misconfiguration. By default they are 32
2394 bit.
2395 @item cookie64
2396 Set cookie size to 64 bit instead of the default 32
2397 @item counter=off
2398 Force a 'cut-down' L2TPv3 with no counter as in
2399 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2400 @item pincounter=on
2401 Work around broken counter handling in peer. This may also help on
2402 networks which have packet reorder.
2403 @item offset=@var{offset}
2404 Add an extra offset between header and data
2405 @end table
2406
2407 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2408 on the remote Linux host 1.2.3.4:
2409 @example
2410 # Setup tunnel on linux host using raw ip as encapsulation
2411 # on 1.2.3.4
2412 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2413 encap udp udp_sport 16384 udp_dport 16384
2414 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2415 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2416 ifconfig vmtunnel0 mtu 1500
2417 ifconfig vmtunnel0 up
2418 brctl addif br-lan vmtunnel0
2419
2420
2421 # on 4.3.2.1
2422 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2423
2424 qemu-system-i386 linux.img -device e1000,netdev=n1 \
2425 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2426
2427 @end example
2428
2429 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2430 Configure VDE backend to connect to PORT @var{n} of a vde switch running on host and
2431 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2432 and MODE @var{octalmode} to change default ownership and permissions for
2433 communication port. This option is only available if QEMU has been compiled
2434 with vde support enabled.
2435
2436 Example:
2437 @example
2438 # launch vde switch
2439 vde_switch -F -sock /tmp/myswitch
2440 # launch QEMU instance
2441 qemu-system-i386 linux.img -nic vde,sock=/tmp/myswitch
2442 @end example
2443
2444 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2445
2446 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2447 be a unix domain socket backed one. The vhost-user uses a specifically defined
2448 protocol to pass vhost ioctl replacement messages to an application on the other
2449 end of the socket. On non-MSIX guests, the feature can be forced with
2450 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2451 be created for multiqueue vhost-user.
2452
2453 Example:
2454 @example
2455 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2456 -numa node,memdev=mem \
2457 -chardev socket,id=chr0,path=/path/to/socket \
2458 -netdev type=vhost-user,id=net0,chardev=chr0 \
2459 -device virtio-net-pci,netdev=net0
2460 @end example
2461
2462 @item -netdev hubport,id=@var{id},hubid=@var{hubid}[,netdev=@var{nd}]
2463
2464 Create a hub port on the emulated hub with ID @var{hubid}.
2465
2466 The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a
2467 single netdev. Alternatively, you can also connect the hubport to another
2468 netdev with ID @var{nd} by using the @option{netdev=@var{nd}} option.
2469
2470 @item -net nic[,netdev=@var{nd}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
2471 @findex -net
2472 Legacy option to configure or create an on-board (or machine default) Network
2473 Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e.
2474 the default hub), or to the netdev @var{nd}.
2475 The NIC is an e1000 by default on the PC target. Optionally, the MAC address
2476 can be changed to @var{mac}, the device address set to @var{addr} (PCI cards
2477 only), and a @var{name} can be assigned for use in monitor commands.
2478 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
2479 that the card should have; this option currently only affects virtio cards; set
2480 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
2481 NIC is created. QEMU can emulate several different models of network card.
2482 Use @code{-net nic,model=help} for a list of available devices for your target.
2483
2484 @item -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=@var{name}]
2485 Configure a host network backend (with the options corresponding to the same
2486 @option{-netdev} option) and connect it to the emulated hub 0 (the default
2487 hub). Use @var{name} to specify the name of the hub port.
2488 ETEXI
2489
2490 STEXI
2491 @end table
2492 ETEXI
2493 DEFHEADING()
2494
2495 DEFHEADING(Character device options:)
2496
2497 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2498 "-chardev help\n"
2499 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2500 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2501 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2502 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2503 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2504 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2505 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2506 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2507 " [,logfile=PATH][,logappend=on|off]\n"
2508 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2509 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2510 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2511 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2512 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2513 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2514 #ifdef _WIN32
2515 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2516 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2517 #else
2518 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2519 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2520 #endif
2521 #ifdef CONFIG_BRLAPI
2522 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2523 #endif
2524 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2525 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2526 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2527 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2528 #endif
2529 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2530 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2531 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2532 #endif
2533 #if defined(CONFIG_SPICE)
2534 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2535 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2536 #endif
2537 , QEMU_ARCH_ALL
2538 )
2539
2540 STEXI
2541
2542 The general form of a character device option is:
2543 @table @option
2544 @item -chardev @var{backend},id=@var{id}[,mux=on|off][,@var{options}]
2545 @findex -chardev
2546 Backend is one of:
2547 @option{null},
2548 @option{socket},
2549 @option{udp},
2550 @option{msmouse},
2551 @option{vc},
2552 @option{ringbuf},
2553 @option{file},
2554 @option{pipe},
2555 @option{console},
2556 @option{serial},
2557 @option{pty},
2558 @option{stdio},
2559 @option{braille},
2560 @option{tty},
2561 @option{parallel},
2562 @option{parport},
2563 @option{spicevmc},
2564 @option{spiceport}.
2565 The specific backend will determine the applicable options.
2566
2567 Use @code{-chardev help} to print all available chardev backend types.
2568
2569 All devices must have an id, which can be any string up to 127 characters long.
2570 It is used to uniquely identify this device in other command line directives.
2571
2572 A character device may be used in multiplexing mode by multiple front-ends.
2573 Specify @option{mux=on} to enable this mode.
2574 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2575 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2576 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2577 create a multiplexer with your specified ID, and you can then configure multiple
2578 front ends to use that chardev ID for their input/output. Up to four different
2579 front ends can be connected to a single multiplexed chardev. (Without
2580 multiplexing enabled, a chardev can only be used by a single front end.)
2581 For instance you could use this to allow a single stdio chardev to be used by
2582 two serial ports and the QEMU monitor:
2583
2584 @example
2585 -chardev stdio,mux=on,id=char0 \
2586 -mon chardev=char0,mode=readline \
2587 -serial chardev:char0 \
2588 -serial chardev:char0
2589 @end example
2590
2591 You can have more than one multiplexer in a system configuration; for instance
2592 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2593 multiplexed between the QEMU monitor and a parallel port:
2594
2595 @example
2596 -chardev stdio,mux=on,id=char0 \
2597 -mon chardev=char0,mode=readline \
2598 -parallel chardev:char0 \
2599 -chardev tcp,...,mux=on,id=char1 \
2600 -serial chardev:char1 \
2601 -serial chardev:char1
2602 @end example
2603
2604 When you're using a multiplexed character device, some escape sequences are
2605 interpreted in the input. @xref{mux_keys, Keys in the character backend
2606 multiplexer}.
2607
2608 Note that some other command line options may implicitly create multiplexed
2609 character backends; for instance @option{-serial mon:stdio} creates a
2610 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2611 and @option{-nographic} also multiplexes the console and the monitor to
2612 stdio.
2613
2614 There is currently no support for multiplexing in the other direction
2615 (where a single QEMU front end takes input and output from multiple chardevs).
2616
2617 Every backend supports the @option{logfile} option, which supplies the path
2618 to a file to record all data transmitted via the backend. The @option{logappend}
2619 option controls whether the log file will be truncated or appended to when
2620 opened.
2621
2622 @end table
2623
2624 The available backends are:
2625
2626 @table @option
2627 @item -chardev null,id=@var{id}
2628 A void device. This device will not emit any data, and will drop any data it
2629 receives. The null backend does not take any options.
2630
2631 @item -chardev socket,id=@var{id}[,@var{TCP options} or @var{unix options}][,server][,nowait][,telnet][,reconnect=@var{seconds}][,tls-creds=@var{id}]
2632
2633 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2634 unix socket will be created if @option{path} is specified. Behaviour is
2635 undefined if TCP options are specified for a unix socket.
2636
2637 @option{server} specifies that the socket shall be a listening socket.
2638
2639 @option{nowait} specifies that QEMU should not block waiting for a client to
2640 connect to a listening socket.
2641
2642 @option{telnet} specifies that traffic on the socket should interpret telnet
2643 escape sequences.
2644
2645 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2646 the remote end goes away. qemu will delay this many seconds and then attempt
2647 to reconnect. Zero disables reconnecting, and is the default.
2648
2649 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2650 and specifies the id of the TLS credentials to use for the handshake. The
2651 credentials must be previously created with the @option{-object tls-creds}
2652 argument.
2653
2654 TCP and unix socket options are given below:
2655
2656 @table @option
2657
2658 @item TCP options: port=@var{port}[,host=@var{host}][,to=@var{to}][,ipv4][,ipv6][,nodelay]
2659
2660 @option{host} for a listening socket specifies the local address to be bound.
2661 For a connecting socket species the remote host to connect to. @option{host} is
2662 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2663
2664 @option{port} for a listening socket specifies the local port to be bound. For a
2665 connecting socket specifies the port on the remote host to connect to.
2666 @option{port} can be given as either a port number or a service name.
2667 @option{port} is required.
2668
2669 @option{to} is only relevant to listening sockets. If it is specified, and
2670 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2671 to and including @option{to} until it succeeds. @option{to} must be specified
2672 as a port number.
2673
2674 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2675 If neither is specified the socket may use either protocol.
2676
2677 @option{nodelay} disables the Nagle algorithm.
2678
2679 @item unix options: path=@var{path}
2680
2681 @option{path} specifies the local path of the unix socket. @option{path} is
2682 required.
2683
2684 @end table
2685
2686 @item -chardev udp,id=@var{id}[,host=@var{host}],port=@var{port}[,localaddr=@var{localaddr}][,localport=@var{localport}][,ipv4][,ipv6]
2687
2688 Sends all traffic from the guest to a remote host over UDP.
2689
2690 @option{host} specifies the remote host to connect to. If not specified it
2691 defaults to @code{localhost}.
2692
2693 @option{port} specifies the port on the remote host to connect to. @option{port}
2694 is required.
2695
2696 @option{localaddr} specifies the local address to bind to. If not specified it
2697 defaults to @code{0.0.0.0}.
2698
2699 @option{localport} specifies the local port to bind to. If not specified any
2700 available local port will be used.
2701
2702 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2703 If neither is specified the device may use either protocol.
2704
2705 @item -chardev msmouse,id=@var{id}
2706
2707 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2708 take any options.
2709
2710 @item -chardev vc,id=@var{id}[[,width=@var{width}][,height=@var{height}]][[,cols=@var{cols}][,rows=@var{rows}]]
2711
2712 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2713 size.
2714
2715 @option{width} and @option{height} specify the width and height respectively of
2716 the console, in pixels.
2717
2718 @option{cols} and @option{rows} specify that the console be sized to fit a text
2719 console with the given dimensions.
2720
2721 @item -chardev ringbuf,id=@var{id}[,size=@var{size}]
2722
2723 Create a ring buffer with fixed size @option{size}.
2724 @var{size} must be a power of two and defaults to @code{64K}.
2725
2726 @item -chardev file,id=@var{id},path=@var{path}
2727
2728 Log all traffic received from the guest to a file.
2729
2730 @option{path} specifies the path of the file to be opened. This file will be
2731 created if it does not already exist, and overwritten if it does. @option{path}
2732 is required.
2733
2734 @item -chardev pipe,id=@var{id},path=@var{path}
2735
2736 Create a two-way connection to the guest. The behaviour differs slightly between
2737 Windows hosts and other hosts:
2738
2739 On Windows, a single duplex pipe will be created at
2740 @file{\\.pipe\@option{path}}.
2741
2742 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2743 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2744 received by the guest. Data written by the guest can be read from
2745 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2746 be present.
2747
2748 @option{path} forms part of the pipe path as described above. @option{path} is
2749 required.
2750
2751 @item -chardev console,id=@var{id}
2752
2753 Send traffic from the guest to QEMU's standard output. @option{console} does not
2754 take any options.
2755
2756 @option{console} is only available on Windows hosts.
2757
2758 @item -chardev serial,id=@var{id},path=@option{path}
2759
2760 Send traffic from the guest to a serial device on the host.
2761
2762 On Unix hosts serial will actually accept any tty device,
2763 not only serial lines.
2764
2765 @option{path} specifies the name of the serial device to open.
2766
2767 @item -chardev pty,id=@var{id}
2768
2769 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2770 not take any options.
2771
2772 @option{pty} is not available on Windows hosts.
2773
2774 @item -chardev stdio,id=@var{id}[,signal=on|off]
2775 Connect to standard input and standard output of the QEMU process.
2776
2777 @option{signal} controls if signals are enabled on the terminal, that includes
2778 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2779 default, use @option{signal=off} to disable it.
2780
2781 @item -chardev braille,id=@var{id}
2782
2783 Connect to a local BrlAPI server. @option{braille} does not take any options.
2784
2785 @item -chardev tty,id=@var{id},path=@var{path}
2786
2787 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2788 DragonFlyBSD hosts. It is an alias for @option{serial}.
2789
2790 @option{path} specifies the path to the tty. @option{path} is required.
2791
2792 @item -chardev parallel,id=@var{id},path=@var{path}
2793 @itemx -chardev parport,id=@var{id},path=@var{path}
2794
2795 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2796
2797 Connect to a local parallel port.
2798
2799 @option{path} specifies the path to the parallel port device. @option{path} is
2800 required.
2801
2802 @item -chardev spicevmc,id=@var{id},debug=@var{debug},name=@var{name}
2803
2804 @option{spicevmc} is only available when spice support is built in.
2805
2806 @option{debug} debug level for spicevmc
2807
2808 @option{name} name of spice channel to connect to
2809
2810 Connect to a spice virtual machine channel, such as vdiport.
2811
2812 @item -chardev spiceport,id=@var{id},debug=@var{debug},name=@var{name}
2813
2814 @option{spiceport} is only available when spice support is built in.
2815
2816 @option{debug} debug level for spicevmc
2817
2818 @option{name} name of spice port to connect to
2819
2820 Connect to a spice port, allowing a Spice client to handle the traffic
2821 identified by a name (preferably a fqdn).
2822 ETEXI
2823
2824 STEXI
2825 @end table
2826 ETEXI
2827 DEFHEADING()
2828
2829 DEFHEADING(Bluetooth(R) options:)
2830 STEXI
2831 @table @option
2832 ETEXI
2833
2834 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2835 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2836 "-bt hci,host[:id]\n" \
2837 " use host's HCI with the given name\n" \
2838 "-bt hci[,vlan=n]\n" \
2839 " emulate a standard HCI in virtual scatternet 'n'\n" \
2840 "-bt vhci[,vlan=n]\n" \
2841 " add host computer to virtual scatternet 'n' using VHCI\n" \
2842 "-bt device:dev[,vlan=n]\n" \
2843 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2844 QEMU_ARCH_ALL)
2845 STEXI
2846 @item -bt hci[...]
2847 @findex -bt
2848 Defines the function of the corresponding Bluetooth HCI. -bt options
2849 are matched with the HCIs present in the chosen machine type. For
2850 example when emulating a machine with only one HCI built into it, only
2851 the first @code{-bt hci[...]} option is valid and defines the HCI's
2852 logic. The Transport Layer is decided by the machine type. Currently
2853 the machines @code{n800} and @code{n810} have one HCI and all other
2854 machines have none.
2855
2856 @anchor{bt-hcis}
2857 The following three types are recognized:
2858
2859 @table @option
2860 @item -bt hci,null
2861 (default) The corresponding Bluetooth HCI assumes no internal logic
2862 and will not respond to any HCI commands or emit events.
2863
2864 @item -bt hci,host[:@var{id}]
2865 (@code{bluez} only) The corresponding HCI passes commands / events
2866 to / from the physical HCI identified by the name @var{id} (default:
2867 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2868 capable systems like Linux.
2869
2870 @item -bt hci[,vlan=@var{n}]
2871 Add a virtual, standard HCI that will participate in the Bluetooth
2872 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2873 VLANs, devices inside a bluetooth network @var{n} can only communicate
2874 with other devices in the same network (scatternet).
2875 @end table
2876
2877 @item -bt vhci[,vlan=@var{n}]
2878 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2879 to the host bluetooth stack instead of to the emulated target. This
2880 allows the host and target machines to participate in a common scatternet
2881 and communicate. Requires the Linux @code{vhci} driver installed. Can
2882 be used as following:
2883
2884 @example
2885 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2886 @end example
2887
2888 @item -bt device:@var{dev}[,vlan=@var{n}]
2889 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2890 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2891 currently:
2892
2893 @table @option
2894 @item keyboard
2895 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2896 @end table
2897 ETEXI
2898
2899 STEXI
2900 @end table
2901 ETEXI
2902 DEFHEADING()
2903
2904 #ifdef CONFIG_TPM
2905 DEFHEADING(TPM device options:)
2906
2907 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2908 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2909 " use path to provide path to a character device; default is /dev/tpm0\n"
2910 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2911 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
2912 "-tpmdev emulator,id=id,chardev=dev\n"
2913 " configure the TPM device using chardev backend\n",
2914 QEMU_ARCH_ALL)
2915 STEXI
2916
2917 The general form of a TPM device option is:
2918 @table @option
2919
2920 @item -tpmdev @var{backend},id=@var{id}[,@var{options}]
2921 @findex -tpmdev
2922
2923 The specific backend type will determine the applicable options.
2924 The @code{-tpmdev} option creates the TPM backend and requires a
2925 @code{-device} option that specifies the TPM frontend interface model.
2926
2927 Use @code{-tpmdev help} to print all available TPM backend types.
2928
2929 @end table
2930
2931 The available backends are:
2932
2933 @table @option
2934
2935 @item -tpmdev passthrough,id=@var{id},path=@var{path},cancel-path=@var{cancel-path}
2936
2937 (Linux-host only) Enable access to the host's TPM using the passthrough
2938 driver.
2939
2940 @option{path} specifies the path to the host's TPM device, i.e., on
2941 a Linux host this would be @code{/dev/tpm0}.
2942 @option{path} is optional and by default @code{/dev/tpm0} is used.
2943
2944 @option{cancel-path} specifies the path to the host TPM device's sysfs
2945 entry allowing for cancellation of an ongoing TPM command.
2946 @option{cancel-path} is optional and by default QEMU will search for the
2947 sysfs entry to use.
2948
2949 Some notes about using the host's TPM with the passthrough driver:
2950
2951 The TPM device accessed by the passthrough driver must not be
2952 used by any other application on the host.
2953
2954 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2955 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2956 TPM again and may therefore not show a TPM-specific menu that would
2957 otherwise allow the user to configure the TPM, e.g., allow the user to
2958 enable/disable or activate/deactivate the TPM.
2959 Further, if TPM ownership is released from within a VM then the host's TPM
2960 will get disabled and deactivated. To enable and activate the
2961 TPM again afterwards, the host has to be rebooted and the user is
2962 required to enter the firmware's menu to enable and activate the TPM.
2963 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2964
2965 To create a passthrough TPM use the following two options:
2966 @example
2967 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2968 @end example
2969 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2970 @code{tpmdev=tpm0} in the device option.
2971
2972 @item -tpmdev emulator,id=@var{id},chardev=@var{dev}
2973
2974 (Linux-host only) Enable access to a TPM emulator using Unix domain socket based
2975 chardev backend.
2976
2977 @option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server.
2978
2979 To create a TPM emulator backend device with chardev socket backend:
2980 @example
2981
2982 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
2983
2984 @end example
2985
2986 ETEXI
2987
2988 STEXI
2989 @end table
2990 ETEXI
2991 DEFHEADING()
2992
2993 #endif
2994
2995 DEFHEADING(Linux/Multiboot boot specific:)
2996 STEXI
2997
2998 When using these options, you can use a given Linux or Multiboot
2999 kernel without installing it in the disk image. It can be useful
3000 for easier testing of various kernels.
3001
3002 @table @option
3003 ETEXI
3004
3005 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
3006 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
3007 STEXI
3008 @item -kernel @var{bzImage}
3009 @findex -kernel
3010 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
3011 or in multiboot format.
3012 ETEXI
3013
3014 DEF("append", HAS_ARG, QEMU_OPTION_append, \
3015 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
3016 STEXI
3017 @item -append @var{cmdline}
3018 @findex -append
3019 Use @var{cmdline} as kernel command line
3020 ETEXI
3021
3022 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
3023 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
3024 STEXI
3025 @item -initrd @var{file}
3026 @findex -initrd
3027 Use @var{file} as initial ram disk.
3028
3029 @item -initrd "@var{file1} arg=foo,@var{file2}"
3030
3031 This syntax is only available with multiboot.
3032
3033 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
3034 first module.
3035 ETEXI
3036
3037 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
3038 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
3039 STEXI
3040 @item -dtb @var{file}
3041 @findex -dtb
3042 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
3043 on boot.
3044 ETEXI
3045
3046 STEXI
3047 @end table
3048 ETEXI
3049 DEFHEADING()
3050
3051 DEFHEADING(Debug/Expert options:)
3052 STEXI
3053 @table @option
3054 ETEXI
3055
3056 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
3057 "-fw_cfg [name=]<name>,file=<file>\n"
3058 " add named fw_cfg entry with contents from file\n"
3059 "-fw_cfg [name=]<name>,string=<str>\n"
3060 " add named fw_cfg entry with contents from string\n",
3061 QEMU_ARCH_ALL)
3062 STEXI
3063
3064 @item -fw_cfg [name=]@var{name},file=@var{file}
3065 @findex -fw_cfg
3066 Add named fw_cfg entry with contents from file @var{file}.
3067
3068 @item -fw_cfg [name=]@var{name},string=@var{str}
3069 Add named fw_cfg entry with contents from string @var{str}.
3070
3071 The terminating NUL character of the contents of @var{str} will not be
3072 included as part of the fw_cfg item data. To insert contents with
3073 embedded NUL characters, you have to use the @var{file} parameter.
3074
3075 The fw_cfg entries are passed by QEMU through to the guest.
3076
3077 Example:
3078 @example
3079 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3080 @end example
3081 creates an fw_cfg entry named opt/com.mycompany/blob with contents
3082 from ./my_blob.bin.
3083
3084 ETEXI
3085
3086 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3087 "-serial dev redirect the serial port to char device 'dev'\n",
3088 QEMU_ARCH_ALL)
3089 STEXI
3090 @item -serial @var{dev}
3091 @findex -serial
3092 Redirect the virtual serial port to host character device
3093 @var{dev}. The default device is @code{vc} in graphical mode and
3094 @code{stdio} in non graphical mode.
3095
3096 This option can be used several times to simulate up to 4 serial
3097 ports.
3098
3099 Use @code{-serial none} to disable all serial ports.
3100
3101 Available character devices are:
3102 @table @option
3103 @item vc[:@var{W}x@var{H}]
3104 Virtual console. Optionally, a width and height can be given in pixel with
3105 @example
3106 vc:800x600
3107 @end example
3108 It is also possible to specify width or height in characters:
3109 @example
3110 vc:80Cx24C
3111 @end example
3112 @item pty
3113 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3114 @item none
3115 No device is allocated.
3116 @item null
3117 void device
3118 @item chardev:@var{id}
3119 Use a named character device defined with the @code{-chardev} option.
3120 @item /dev/XXX
3121 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3122 parameters are set according to the emulated ones.
3123 @item /dev/parport@var{N}
3124 [Linux only, parallel port only] Use host parallel port
3125 @var{N}. Currently SPP and EPP parallel port features can be used.
3126 @item file:@var{filename}
3127 Write output to @var{filename}. No character can be read.
3128 @item stdio
3129 [Unix only] standard input/output
3130 @item pipe:@var{filename}
3131 name pipe @var{filename}
3132 @item COM@var{n}
3133 [Windows only] Use host serial port @var{n}
3134 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3135 This implements UDP Net Console.
3136 When @var{remote_host} or @var{src_ip} are not specified
3137 they default to @code{0.0.0.0}.
3138 When not using a specified @var{src_port} a random port is automatically chosen.
3139
3140 If you just want a simple readonly console you can use @code{netcat} or
3141 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3142 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3143 will appear in the netconsole session.
3144
3145 If you plan to send characters back via netconsole or you want to stop
3146 and start QEMU a lot of times, you should have QEMU use the same
3147 source port each time by using something like @code{-serial
3148 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3149 version of netcat which can listen to a TCP port and send and receive
3150 characters via udp. If you have a patched version of netcat which
3151 activates telnet remote echo and single char transfer, then you can
3152 use the following options to set up a netcat redirector to allow
3153 telnet on port 5555 to access the QEMU port.
3154 @table @code
3155 @item QEMU Options:
3156 -serial udp::4555@@:4556
3157 @item netcat options:
3158 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3159 @item telnet options:
3160 localhost 5555
3161 @end table
3162
3163 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3164 The TCP Net Console has two modes of operation. It can send the serial
3165 I/O to a location or wait for a connection from a location. By default
3166 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3167 the @var{server} option QEMU will wait for a client socket application
3168 to connect to the port before continuing, unless the @code{nowait}
3169 option was specified. The @code{nodelay} option disables the Nagle buffering
3170 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3171 set, if the connection goes down it will attempt to reconnect at the
3172 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3173 one TCP connection at a time is accepted. You can use @code{telnet} to
3174 connect to the corresponding character device.
3175 @table @code
3176 @item Example to send tcp console to 192.168.0.2 port 4444
3177 -serial tcp:192.168.0.2:4444
3178 @item Example to listen and wait on port 4444 for connection
3179 -serial tcp::4444,server
3180 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3181 -serial tcp:192.168.0.100:4444,server,nowait
3182 @end table
3183
3184 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3185 The telnet protocol is used instead of raw tcp sockets. The options
3186 work the same as if you had specified @code{-serial tcp}. The
3187 difference is that the port acts like a telnet server or client using
3188 telnet option negotiation. This will also allow you to send the
3189 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3190 sequence. Typically in unix telnet you do it with Control-] and then
3191 type "send break" followed by pressing the enter key.
3192
3193 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3194 A unix domain socket is used instead of a tcp socket. The option works the
3195 same as if you had specified @code{-serial tcp} except the unix domain socket
3196 @var{path} is used for connections.
3197
3198 @item mon:@var{dev_string}
3199 This is a special option to allow the monitor to be multiplexed onto
3200 another serial port. The monitor is accessed with key sequence of
3201 @key{Control-a} and then pressing @key{c}.
3202 @var{dev_string} should be any one of the serial devices specified
3203 above. An example to multiplex the monitor onto a telnet server
3204 listening on port 4444 would be:
3205 @table @code
3206 @item -serial mon:telnet::4444,server,nowait
3207 @end table
3208 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3209 QEMU any more but will be passed to the guest instead.
3210
3211 @item braille
3212 Braille device. This will use BrlAPI to display the braille output on a real
3213 or fake device.
3214
3215 @item msmouse
3216 Three button serial mouse. Configure the guest to use Microsoft protocol.
3217 @end table
3218 ETEXI
3219
3220 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3221 "-parallel dev redirect the parallel port to char device 'dev'\n",
3222 QEMU_ARCH_ALL)
3223 STEXI
3224 @item -parallel @var{dev}
3225 @findex -parallel
3226 Redirect the virtual parallel port to host device @var{dev} (same
3227 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3228 be used to use hardware devices connected on the corresponding host
3229 parallel port.
3230
3231 This option can be used several times to simulate up to 3 parallel
3232 ports.
3233
3234 Use @code{-parallel none} to disable all parallel ports.
3235 ETEXI
3236
3237 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3238 "-monitor dev redirect the monitor to char device 'dev'\n",
3239 QEMU_ARCH_ALL)
3240 STEXI
3241 @item -monitor @var{dev}
3242 @findex -monitor
3243 Redirect the monitor to host device @var{dev} (same devices as the
3244 serial port).
3245 The default device is @code{vc} in graphical mode and @code{stdio} in
3246 non graphical mode.
3247 Use @code{-monitor none} to disable the default monitor.
3248 ETEXI
3249 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3250 "-qmp dev like -monitor but opens in 'control' mode\n",
3251 QEMU_ARCH_ALL)
3252 STEXI
3253 @item -qmp @var{dev}
3254 @findex -qmp
3255 Like -monitor but opens in 'control' mode.
3256 ETEXI
3257 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3258 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3259 QEMU_ARCH_ALL)
3260 STEXI
3261 @item -qmp-pretty @var{dev}
3262 @findex -qmp-pretty
3263 Like -qmp but uses pretty JSON formatting.
3264 ETEXI
3265
3266 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3267 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3268 STEXI
3269 @item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
3270 @findex -mon
3271 Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing
3272 easing human reading and debugging.
3273 ETEXI
3274
3275 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3276 "-debugcon dev redirect the debug console to char device 'dev'\n",
3277 QEMU_ARCH_ALL)
3278 STEXI
3279 @item -debugcon @var{dev}
3280 @findex -debugcon
3281 Redirect the debug console to host device @var{dev} (same devices as the
3282 serial port). The debug console is an I/O port which is typically port
3283 0xe9; writing to that I/O port sends output to this device.
3284 The default device is @code{vc} in graphical mode and @code{stdio} in
3285 non graphical mode.
3286 ETEXI
3287
3288 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3289 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3290 STEXI
3291 @item -pidfile @var{file}
3292 @findex -pidfile
3293 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3294 from a script.
3295 ETEXI
3296
3297 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3298 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3299 STEXI
3300 @item -singlestep
3301 @findex -singlestep
3302 Run the emulation in single step mode.
3303 ETEXI
3304
3305 DEF("preconfig", 0, QEMU_OPTION_preconfig, \
3306 "--preconfig pause QEMU before machine is initialized\n",
3307 QEMU_ARCH_ALL)
3308 STEXI
3309 @item --preconfig
3310 @findex --preconfig
3311 Pause QEMU for interactive configuration before the machine is created,
3312 which allows querying and configuring properties that will affect
3313 machine initialization. Use the QMP command 'exit-preconfig' to exit
3314 the preconfig state and move to the next state (ie. run guest if -S
3315 isn't used or pause the second time if -S is used).
3316 ETEXI
3317
3318 DEF("S", 0, QEMU_OPTION_S, \
3319 "-S freeze CPU at startup (use 'c' to start execution)\n",
3320 QEMU_ARCH_ALL)
3321 STEXI
3322 @item -S
3323 @findex -S
3324 Do not start CPU at startup (you must type 'c' in the monitor).
3325 ETEXI
3326
3327 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3328 "-realtime [mlock=on|off]\n"
3329 " run qemu with realtime features\n"
3330 " mlock=on|off controls mlock support (default: on)\n",
3331 QEMU_ARCH_ALL)
3332 STEXI
3333 @item -realtime mlock=on|off
3334 @findex -realtime
3335 Run qemu with realtime features.
3336 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3337 (enabled by default).
3338 ETEXI
3339
3340 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3341 "--overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3342 " run qemu with overcommit hints\n"
3343 " mem-lock=on|off controls memory lock support (default: off)\n"
3344 " cpu-pm=on|off controls cpu power management (default: off)\n",
3345 QEMU_ARCH_ALL)
3346 STEXI
3347 @item -overcommit mem-lock=on|off
3348 @item -overcommit cpu-pm=on|off
3349 @findex -overcommit
3350 Run qemu with hints about host resource overcommit. The default is
3351 to assume that host overcommits all resources.
3352
3353 Locking qemu and guest memory can be enabled via @option{mem-lock=on} (disabled
3354 by default). This works when host memory is not overcommitted and reduces the
3355 worst-case latency for guest. This is equivalent to @option{realtime}.
3356
3357 Guest ability to manage power state of host cpus (increasing latency for other
3358 processes on the same host cpu, but decreasing latency for guest) can be
3359 enabled via @option{cpu-pm=on} (disabled by default). This works best when
3360 host CPU is not overcommitted. When used, host estimates of CPU cycle and power
3361 utilization will be incorrect, not taking into account guest idle time.
3362 ETEXI
3363
3364 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3365 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3366 STEXI
3367 @item -gdb @var{dev}
3368 @findex -gdb
3369 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3370 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3371 stdio are reasonable use case. The latter is allowing to start QEMU from
3372 within gdb and establish the connection via a pipe:
3373 @example
3374 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3375 @end example
3376 ETEXI
3377
3378 DEF("s", 0, QEMU_OPTION_s, \
3379 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3380 QEMU_ARCH_ALL)
3381 STEXI
3382 @item -s
3383 @findex -s
3384 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3385 (@pxref{gdb_usage}).
3386 ETEXI
3387
3388 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3389 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3390 QEMU_ARCH_ALL)
3391 STEXI
3392 @item -d @var{item1}[,...]
3393 @findex -d
3394 Enable logging of specified items. Use '-d help' for a list of log items.
3395 ETEXI
3396
3397 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3398 "-D logfile output log to logfile (default stderr)\n",
3399 QEMU_ARCH_ALL)
3400 STEXI
3401 @item -D @var{logfile}
3402 @findex -D
3403 Output log in @var{logfile} instead of to stderr
3404 ETEXI
3405
3406 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3407 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3408 QEMU_ARCH_ALL)
3409 STEXI
3410 @item -dfilter @var{range1}[,...]
3411 @findex -dfilter
3412 Filter debug output to that relevant to a range of target addresses. The filter
3413 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3414 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3415 addresses and sizes required. For example:
3416 @example
3417 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3418 @end example
3419 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3420 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3421 block starting at 0xffffffc00005f000.
3422 ETEXI
3423
3424 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3425 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3426 QEMU_ARCH_ALL)
3427 STEXI
3428 @item -L @var{path}
3429 @findex -L
3430 Set the directory for the BIOS, VGA BIOS and keymaps.
3431
3432 To list all the data directories, use @code{-L help}.
3433 ETEXI
3434
3435 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3436 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3437 STEXI
3438 @item -bios @var{file}
3439 @findex -bios
3440 Set the filename for the BIOS.
3441 ETEXI
3442
3443 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3444 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3445 STEXI
3446 @item -enable-kvm
3447 @findex -enable-kvm
3448 Enable KVM full virtualization support. This option is only available
3449 if KVM support is enabled when compiling.
3450 ETEXI
3451
3452 DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \
3453 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386)
3454 STEXI
3455 @item -enable-hax
3456 @findex -enable-hax
3457 Enable HAX (Hardware-based Acceleration eXecution) support. This option
3458 is only available if HAX support is enabled when compiling. HAX is only
3459 applicable to MAC and Windows platform, and thus does not conflict with
3460 KVM. This option is deprecated, use @option{-accel hax} instead.
3461 ETEXI
3462
3463 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3464 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3465 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3466 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3467 " warning: should not be used when xend is in use\n",
3468 QEMU_ARCH_ALL)
3469 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3470 "-xen-attach attach to existing xen domain\n"
3471 " xend will use this when starting QEMU\n",
3472 QEMU_ARCH_ALL)
3473 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3474 "-xen-domid-restrict restrict set of available xen operations\n"
3475 " to specified domain id. (Does not affect\n"
3476 " xenpv machine type).\n",
3477 QEMU_ARCH_ALL)
3478 STEXI
3479 @item -xen-domid @var{id}
3480 @findex -xen-domid
3481 Specify xen guest domain @var{id} (XEN only).
3482 @item -xen-create
3483 @findex -xen-create
3484 Create domain using xen hypercalls, bypassing xend.
3485 Warning: should not be used when xend is in use (XEN only).
3486 @item -xen-attach
3487 @findex -xen-attach
3488 Attach to existing xen domain.
3489 xend will use this when starting QEMU (XEN only).
3490 @findex -xen-domid-restrict
3491 Restrict set of available xen operations to specified domain id (XEN only).
3492 ETEXI
3493
3494 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3495 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3496 STEXI
3497 @item -no-reboot
3498 @findex -no-reboot
3499 Exit instead of rebooting.
3500 ETEXI
3501
3502 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3503 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3504 STEXI
3505 @item -no-shutdown
3506 @findex -no-shutdown
3507 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3508 This allows for instance switching to monitor to commit changes to the
3509 disk image.
3510 ETEXI
3511
3512 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3513 "-loadvm [tag|id]\n" \
3514 " start right away with a saved state (loadvm in monitor)\n",
3515 QEMU_ARCH_ALL)
3516 STEXI
3517 @item -loadvm @var{file}
3518 @findex -loadvm
3519 Start right away with a saved state (@code{loadvm} in monitor)
3520 ETEXI
3521
3522 #ifndef _WIN32
3523 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3524 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3525 #endif
3526 STEXI
3527 @item -daemonize
3528 @findex -daemonize
3529 Daemonize the QEMU process after initialization. QEMU will not detach from
3530 standard IO until it is ready to receive connections on any of its devices.
3531 This option is a useful way for external programs to launch QEMU without having
3532 to cope with initialization race conditions.
3533 ETEXI
3534
3535 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3536 "-option-rom rom load a file, rom, into the option ROM space\n",
3537 QEMU_ARCH_ALL)
3538 STEXI
3539 @item -option-rom @var{file}
3540 @findex -option-rom
3541 Load the contents of @var{file} as an option ROM.
3542 This option is useful to load things like EtherBoot.
3543 ETEXI
3544
3545 HXCOMM Silently ignored for compatibility
3546 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3547
3548 HXCOMM Options deprecated by -rtc
3549 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3550 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3551
3552 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3553 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3554 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3555 QEMU_ARCH_ALL)
3556
3557 STEXI
3558
3559 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3560 @findex -rtc
3561 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3562 UTC or local time, respectively. @code{localtime} is required for correct date in
3563 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3564 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3565
3566 By default the RTC is driven by the host system time. This allows using of the
3567 RTC as accurate reference clock inside the guest, specifically if the host
3568 time is smoothly following an accurate external reference clock, e.g. via NTP.
3569 If you want to isolate the guest time from the host, you can set @option{clock}
3570 to @code{rt} instead. To even prevent it from progressing during suspension,
3571 you can set it to @code{vm}.
3572
3573 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3574 specifically with Windows' ACPI HAL. This option will try to figure out how
3575 many timer interrupts were not processed by the Windows guest and will
3576 re-inject them.
3577 ETEXI
3578
3579 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3580 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3581 " enable virtual instruction counter with 2^N clock ticks per\n" \
3582 " instruction, enable aligning the host and virtual clocks\n" \
3583 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3584 STEXI
3585 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3586 @findex -icount
3587 Enable virtual instruction counter. The virtual cpu will execute one
3588 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3589 then the virtual cpu speed will be automatically adjusted to keep virtual
3590 time within a few seconds of real time.
3591
3592 When the virtual cpu is sleeping, the virtual time will advance at default
3593 speed unless @option{sleep=on|off} is specified.
3594 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3595 instantly whenever the virtual cpu goes to sleep mode and will not advance
3596 if no timer is enabled. This behavior give deterministic execution times from
3597 the guest point of view.
3598
3599 Note that while this option can give deterministic behavior, it does not
3600 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3601 order cores with complex cache hierarchies. The number of instructions
3602 executed often has little or no correlation with actual performance.
3603
3604 @option{align=on} will activate the delay algorithm which will try
3605 to synchronise the host clock and the virtual clock. The goal is to
3606 have a guest running at the real frequency imposed by the shift option.
3607 Whenever the guest clock is behind the host clock and if
3608 @option{align=on} is specified then we print a message to the user
3609 to inform about the delay.
3610 Currently this option does not work when @option{shift} is @code{auto}.
3611 Note: The sync algorithm will work for those shift values for which
3612 the guest clock runs ahead of the host clock. Typically this happens
3613 when the shift value is high (how high depends on the host machine).
3614
3615 When @option{rr} option is specified deterministic record/replay is enabled.
3616 Replay log is written into @var{filename} file in record mode and
3617 read from this file in replay mode.
3618
3619 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3620 at the start of execution recording. In replay mode this option is used
3621 to load the initial VM state.
3622 ETEXI
3623
3624 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3625 "-watchdog model\n" \
3626 " enable virtual hardware watchdog [default=none]\n",
3627 QEMU_ARCH_ALL)
3628 STEXI
3629 @item -watchdog @var{model}
3630 @findex -watchdog
3631 Create a virtual hardware watchdog device. Once enabled (by a guest
3632 action), the watchdog must be periodically polled by an agent inside
3633 the guest or else the guest will be restarted. Choose a model for
3634 which your guest has drivers.
3635
3636 The @var{model} is the model of hardware watchdog to emulate. Use
3637 @code{-watchdog help} to list available hardware models. Only one
3638 watchdog can be enabled for a guest.
3639
3640 The following models may be available:
3641 @table @option
3642 @item ib700
3643 iBASE 700 is a very simple ISA watchdog with a single timer.
3644 @item i6300esb
3645 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3646 dual-timer watchdog.
3647 @item diag288
3648 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3649 (currently KVM only).
3650 @end table
3651 ETEXI
3652
3653 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3654 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
3655 " action when watchdog fires [default=reset]\n",
3656 QEMU_ARCH_ALL)
3657 STEXI
3658 @item -watchdog-action @var{action}
3659 @findex -watchdog-action
3660
3661 The @var{action} controls what QEMU will do when the watchdog timer
3662 expires.
3663 The default is
3664 @code{reset} (forcefully reset the guest).
3665 Other possible actions are:
3666 @code{shutdown} (attempt to gracefully shutdown the guest),
3667 @code{poweroff} (forcefully poweroff the guest),
3668 @code{inject-nmi} (inject a NMI into the guest),
3669 @code{pause} (pause the guest),
3670 @code{debug} (print a debug message and continue), or
3671 @code{none} (do nothing).
3672
3673 Note that the @code{shutdown} action requires that the guest responds
3674 to ACPI signals, which it may not be able to do in the sort of
3675 situations where the watchdog would have expired, and thus
3676 @code{-watchdog-action shutdown} is not recommended for production use.
3677
3678 Examples:
3679
3680 @table @code
3681 @item -watchdog i6300esb -watchdog-action pause
3682 @itemx -watchdog ib700
3683 @end table
3684 ETEXI
3685
3686 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3687 "-echr chr set terminal escape character instead of ctrl-a\n",
3688 QEMU_ARCH_ALL)
3689 STEXI
3690
3691 @item -echr @var{numeric_ascii_value}
3692 @findex -echr
3693 Change the escape character used for switching to the monitor when using
3694 monitor and serial sharing. The default is @code{0x01} when using the
3695 @code{-nographic} option. @code{0x01} is equal to pressing
3696 @code{Control-a}. You can select a different character from the ascii
3697 control keys where 1 through 26 map to Control-a through Control-z. For
3698 instance you could use the either of the following to change the escape
3699 character to Control-t.
3700 @table @code
3701 @item -echr 0x14
3702 @itemx -echr 20
3703 @end table
3704 ETEXI
3705
3706 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3707 "-virtioconsole c\n" \
3708 " set virtio console\n", QEMU_ARCH_ALL)
3709 STEXI
3710 @item -virtioconsole @var{c}
3711 @findex -virtioconsole
3712 Set virtio console.
3713 This option is deprecated, please use @option{-device virtconsole} instead.
3714 ETEXI
3715
3716 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3717 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3718 STEXI
3719 @item -show-cursor
3720 @findex -show-cursor
3721 Show cursor.
3722 ETEXI
3723
3724 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3725 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3726 STEXI
3727 @item -tb-size @var{n}
3728 @findex -tb-size
3729 Set TB size.
3730 ETEXI
3731
3732 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3733 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3734 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3735 "-incoming unix:socketpath\n" \
3736 " prepare for incoming migration, listen on\n" \
3737 " specified protocol and socket address\n" \
3738 "-incoming fd:fd\n" \
3739 "-incoming exec:cmdline\n" \
3740 " accept incoming migration on given file descriptor\n" \
3741 " or from given external command\n" \
3742 "-incoming defer\n" \
3743 " wait for the URI to be specified via migrate_incoming\n",
3744 QEMU_ARCH_ALL)
3745 STEXI
3746 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3747 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3748 @findex -incoming
3749 Prepare for incoming migration, listen on a given tcp port.
3750
3751 @item -incoming unix:@var{socketpath}
3752 Prepare for incoming migration, listen on a given unix socket.
3753
3754 @item -incoming fd:@var{fd}
3755 Accept incoming migration from a given filedescriptor.
3756
3757 @item -incoming exec:@var{cmdline}
3758 Accept incoming migration as an output from specified external command.
3759
3760 @item -incoming defer
3761 Wait for the URI to be specified via migrate_incoming. The monitor can
3762 be used to change settings (such as migration parameters) prior to issuing
3763 the migrate_incoming to allow the migration to begin.
3764 ETEXI
3765
3766 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3767 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3768 STEXI
3769 @item -only-migratable
3770 @findex -only-migratable
3771 Only allow migratable devices. Devices will not be allowed to enter an
3772 unmigratable state.
3773 ETEXI
3774
3775 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3776 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3777 STEXI
3778 @item -nodefaults
3779 @findex -nodefaults
3780 Don't create default devices. Normally, QEMU sets the default devices like serial
3781 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3782 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3783 default devices.
3784 ETEXI
3785
3786 #ifndef _WIN32
3787 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3788 "-chroot dir chroot to dir just before starting the VM\n",
3789 QEMU_ARCH_ALL)
3790 #endif
3791 STEXI
3792 @item -chroot @var{dir}
3793 @findex -chroot
3794 Immediately before starting guest execution, chroot to the specified
3795 directory. Especially useful in combination with -runas.
3796 ETEXI
3797
3798 #ifndef _WIN32
3799 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3800 "-runas user change to user id user just before starting the VM\n" \
3801 " user can be numeric uid:gid instead\n",
3802 QEMU_ARCH_ALL)
3803 #endif
3804 STEXI
3805 @item -runas @var{user}
3806 @findex -runas
3807 Immediately before starting guest execution, drop root privileges, switching
3808 to the specified user.
3809 ETEXI
3810
3811 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3812 "-prom-env variable=value\n"
3813 " set OpenBIOS nvram variables\n",
3814 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3815 STEXI
3816 @item -prom-env @var{variable}=@var{value}
3817 @findex -prom-env
3818 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3819 ETEXI
3820 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3821 "-semihosting semihosting mode\n",
3822 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3823 QEMU_ARCH_MIPS)
3824 STEXI
3825 @item -semihosting
3826 @findex -semihosting
3827 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3828 ETEXI
3829 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3830 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3831 " semihosting configuration\n",
3832 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3833 QEMU_ARCH_MIPS)
3834 STEXI
3835 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3836 @findex -semihosting-config
3837 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3838 @table @option
3839 @item target=@code{native|gdb|auto}
3840 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3841 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3842 during debug sessions and @code{native} otherwise.
3843 @item arg=@var{str1},arg=@var{str2},...
3844 Allows the user to pass input arguments, and can be used multiple times to build
3845 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3846 command line is still supported for backward compatibility. If both the
3847 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3848 specified, the former is passed to semihosting as it always takes precedence.
3849 @end table
3850 ETEXI
3851 DEF("old-param", 0, QEMU_OPTION_old_param,
3852 "-old-param old param mode\n", QEMU_ARCH_ARM)
3853 STEXI
3854 @item -old-param
3855 @findex -old-param (ARM)
3856 Old param mode (ARM only).
3857 ETEXI
3858
3859 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3860 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
3861 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
3862 " Enable seccomp mode 2 system call filter (default 'off').\n" \
3863 " use 'obsolete' to allow obsolete system calls that are provided\n" \
3864 " by the kernel, but typically no longer used by modern\n" \
3865 " C library implementations.\n" \
3866 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \
3867 " its privileges by blacklisting all set*uid|gid system calls.\n" \
3868 " The value 'children' will deny set*uid|gid system calls for\n" \
3869 " main QEMU process but will allow forks and execves to run unprivileged\n" \
3870 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
3871 " blacklisting *fork and execve\n" \
3872 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
3873 QEMU_ARCH_ALL)
3874 STEXI
3875 @item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}]
3876 @findex -sandbox
3877 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3878 disable it. The default is 'off'.
3879 @table @option
3880 @item obsolete=@var{string}
3881 Enable Obsolete system calls
3882 @item elevateprivileges=@var{string}
3883 Disable set*uid|gid system calls
3884 @item spawn=@var{string}
3885 Disable *fork and execve
3886 @item resourcecontrol=@var{string}
3887 Disable process affinity and schedular priority
3888 @end table
3889 ETEXI
3890
3891 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3892 "-readconfig <file>\n", QEMU_ARCH_ALL)
3893 STEXI
3894 @item -readconfig @var{file}
3895 @findex -readconfig
3896 Read device configuration from @var{file}. This approach is useful when you want to spawn
3897 QEMU process with many command line options but you don't want to exceed the command line
3898 character limit.
3899 ETEXI
3900 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3901 "-writeconfig <file>\n"
3902 " read/write config file\n", QEMU_ARCH_ALL)
3903 STEXI
3904 @item -writeconfig @var{file}
3905 @findex -writeconfig
3906 Write device configuration to @var{file}. The @var{file} can be either filename to save
3907 command line and device configuration into file or dash @code{-}) character to print the
3908 output to stdout. This can be later used as input file for @code{-readconfig} option.
3909 ETEXI
3910 HXCOMM Deprecated, same as -no-user-config
3911 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig, "", QEMU_ARCH_ALL)
3912 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3913 "-no-user-config\n"
3914 " do not load default user-provided config files at startup\n",
3915 QEMU_ARCH_ALL)
3916 STEXI
3917 @item -no-user-config
3918 @findex -no-user-config
3919 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3920 config files on @var{sysconfdir}.
3921 ETEXI
3922 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3923 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3924 " specify tracing options\n",
3925 QEMU_ARCH_ALL)
3926 STEXI
3927 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3928 HXCOMM HX does not support conditional compilation of text.
3929 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3930 @findex -trace
3931 @include qemu-option-trace.texi
3932 ETEXI
3933
3934 HXCOMM Internal use
3935 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3936 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3937
3938 #ifdef __linux__
3939 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3940 "-enable-fips enable FIPS 140-2 compliance\n",
3941 QEMU_ARCH_ALL)
3942 #endif
3943 STEXI
3944 @item -enable-fips
3945 @findex -enable-fips
3946 Enable FIPS 140-2 compliance mode.
3947 ETEXI
3948
3949 HXCOMM Deprecated by -machine accel=tcg property
3950 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3951
3952 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3953 "-msg timestamp[=on|off]\n"
3954 " change the format of messages\n"
3955 " on|off controls leading timestamps (default:on)\n",
3956 QEMU_ARCH_ALL)
3957 STEXI
3958 @item -msg timestamp[=on|off]
3959 @findex -msg
3960 prepend a timestamp to each log message.(default:on)
3961 ETEXI
3962
3963 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3964 "-dump-vmstate <file>\n"
3965 " Output vmstate information in JSON format to file.\n"
3966 " Use the scripts/vmstate-static-checker.py file to\n"
3967 " check for possible regressions in migration code\n"
3968 " by comparing two such vmstate dumps.\n",
3969 QEMU_ARCH_ALL)
3970 STEXI
3971 @item -dump-vmstate @var{file}
3972 @findex -dump-vmstate
3973 Dump json-encoded vmstate information for current machine type to file
3974 in @var{file}
3975 ETEXI
3976
3977 STEXI
3978 @end table
3979 ETEXI
3980 DEFHEADING()
3981
3982 DEFHEADING(Generic object creation:)
3983 STEXI
3984 @table @option
3985 ETEXI
3986
3987 DEF("object", HAS_ARG, QEMU_OPTION_object,
3988 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3989 " create a new object of type TYPENAME setting properties\n"
3990 " in the order they are specified. Note that the 'id'\n"
3991 " property must be set. These objects are placed in the\n"
3992 " '/objects' path.\n",
3993 QEMU_ARCH_ALL)
3994 STEXI
3995 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3996 @findex -object
3997 Create a new object of type @var{typename} setting properties
3998 in the order they are specified. Note that the 'id'
3999 property must be set. These objects are placed in the
4000 '/objects' path.
4001
4002 @table @option
4003
4004 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},align=@var{align}
4005
4006 Creates a memory file backend object, which can be used to back
4007 the guest RAM with huge pages.
4008
4009 The @option{id} parameter is a unique ID that will be used to reference this
4010 memory region when configuring the @option{-numa} argument.
4011
4012 The @option{size} option provides the size of the memory region, and accepts
4013 common suffixes, eg @option{500M}.
4014
4015 The @option{mem-path} provides the path to either a shared memory or huge page
4016 filesystem mount.
4017
4018 The @option{share} boolean option determines whether the memory
4019 region is marked as private to QEMU, or shared. The latter allows
4020 a co-operating external process to access the QEMU memory region.
4021
4022 The @option{share} is also required for pvrdma devices due to
4023 limitations in the RDMA API provided by Linux.
4024
4025 Setting share=on might affect the ability to configure NUMA
4026 bindings for the memory backend under some circumstances, see
4027 Documentation/vm/numa_memory_policy.txt on the Linux kernel
4028 source tree for additional details.
4029
4030 Setting the @option{discard-data} boolean option to @var{on}
4031 indicates that file contents can be destroyed when QEMU exits,
4032 to avoid unnecessarily flushing data to the backing file. Note
4033 that @option{discard-data} is only an optimization, and QEMU
4034 might not discard file contents if it aborts unexpectedly or is
4035 terminated using SIGKILL.
4036
4037 The @option{merge} boolean option enables memory merge, also known as
4038 MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for
4039 memory deduplication.
4040
4041 Setting the @option{dump} boolean option to @var{off} excludes the memory from
4042 core dumps. This feature is also known as MADV_DONTDUMP.
4043
4044 The @option{prealloc} boolean option enables memory preallocation.
4045
4046 The @option{host-nodes} option binds the memory range to a list of NUMA host
4047 nodes.
4048
4049 The @option{policy} option sets the NUMA policy to one of the following values:
4050
4051 @table @option
4052 @item @var{default}
4053 default host policy
4054
4055 @item @var{preferred}
4056 prefer the given host node list for allocation
4057
4058 @item @var{bind}
4059 restrict memory allocation to the given host node list
4060
4061 @item @var{interleave}
4062 interleave memory allocations across the given host node list
4063 @end table
4064
4065 The @option{align} option specifies the base address alignment when
4066 QEMU mmap(2) @option{mem-path}, and accepts common suffixes, eg
4067 @option{2M}. Some backend store specified by @option{mem-path}
4068 requires an alignment different than the default one used by QEMU, eg
4069 the device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
4070 such cases, users can specify the required alignment via this option.
4071
4072 @item -object memory-backend-ram,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave}
4073
4074 Creates a memory backend object, which can be used to back the guest RAM.
4075 Memory backend objects offer more control than the @option{-m} option that is
4076 traditionally used to define guest RAM. Please refer to
4077 @option{memory-backend-file} for a description of the options.
4078
4079 @item -object memory-backend-memfd,id=@var{id},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},seal=@var{on|off},hugetlb=@var{on|off},hugetlbsize=@var{size}
4080
4081 Creates an anonymous memory file backend object, which allows QEMU to
4082 share the memory with an external process (e.g. when using
4083 vhost-user). The memory is allocated with memfd and optional
4084 sealing. (Linux only)
4085
4086 The @option{seal} option creates a sealed-file, that will block
4087 further resizing the memory ('on' by default).
4088
4089 The @option{hugetlb} option specify the file to be created resides in
4090 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction with
4091 the @option{hugetlb} option, the @option{hugetlbsize} option specify
4092 the hugetlb page size on systems that support multiple hugetlb page
4093 sizes (it must be a power of 2 value supported by the system).
4094
4095 In some versions of Linux, the @option{hugetlb} option is incompatible
4096 with the @option{seal} option (requires at least Linux 4.16).
4097
4098 Please refer to @option{memory-backend-file} for a description of the
4099 other options.
4100
4101 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
4102
4103 Creates a random number generator backend which obtains entropy from
4104 a device on the host. The @option{id} parameter is a unique ID that
4105 will be used to reference this entropy backend from the @option{virtio-rng}
4106 device. The @option{filename} parameter specifies which file to obtain
4107 entropy from and if omitted defaults to @option{/dev/random}.
4108
4109 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
4110
4111 Creates a random number generator backend which obtains entropy from
4112 an external daemon running on the host. The @option{id} parameter is
4113 a unique ID that will be used to reference this entropy backend from
4114 the @option{virtio-rng} device. The @option{chardev} parameter is
4115 the unique ID of a character device backend that provides the connection
4116 to the RNG daemon.
4117
4118 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
4119
4120 Creates a TLS anonymous credentials object, which can be used to provide
4121 TLS support on network backends. The @option{id} parameter is a unique
4122 ID which network backends will use to access the credentials. The
4123 @option{endpoint} is either @option{server} or @option{client} depending
4124 on whether the QEMU network backend that uses the credentials will be
4125 acting as a client or as a server. If @option{verify-peer} is enabled
4126 (the default) then once the handshake is completed, the peer credentials
4127 will be verified, though this is a no-op for anonymous credentials.
4128
4129 The @var{dir} parameter tells QEMU where to find the credential
4130 files. For server endpoints, this directory may contain a file
4131 @var{dh-params.pem} providing diffie-hellman parameters to use
4132 for the TLS server. If the file is missing, QEMU will generate
4133 a set of DH parameters at startup. This is a computationally
4134 expensive operation that consumes random pool entropy, so it is
4135 recommended that a persistent set of parameters be generated
4136 upfront and saved.
4137
4138 @item -object tls-creds-psk,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/keys/dir}[,username=@var{username}]
4139
4140 Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide
4141 TLS support on network backends. The @option{id} parameter is a unique
4142 ID which network backends will use to access the credentials. The
4143 @option{endpoint} is either @option{server} or @option{client} depending
4144 on whether the QEMU network backend that uses the credentials will be
4145 acting as a client or as a server. For clients only, @option{username}
4146 is the username which will be sent to the server. If omitted
4147 it defaults to ``qemu''.
4148
4149 The @var{dir} parameter tells QEMU where to find the keys file.
4150 It is called ``@var{dir}/keys.psk'' and contains ``username:key''
4151 pairs. This file can most easily be created using the GnuTLS
4152 @code{psktool} program.
4153
4154 For server endpoints, @var{dir} may also contain a file
4155 @var{dh-params.pem} providing diffie-hellman parameters to use
4156 for the TLS server. If the file is missing, QEMU will generate
4157 a set of DH parameters at startup. This is a computationally
4158 expensive operation that consumes random pool entropy, so it is
4159 recommended that a persistent set of parameters be generated
4160 up front and saved.
4161
4162 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},priority=@var{priority},verify-peer=@var{on|off},passwordid=@var{id}
4163
4164 Creates a TLS anonymous credentials object, which can be used to provide
4165 TLS support on network backends. The @option{id} parameter is a unique
4166 ID which network backends will use to access the credentials. The
4167 @option{endpoint} is either @option{server} or @option{client} depending
4168 on whether the QEMU network backend that uses the credentials will be
4169 acting as a client or as a server. If @option{verify-peer} is enabled
4170 (the default) then once the handshake is completed, the peer credentials
4171 will be verified. With x509 certificates, this implies that the clients
4172 must be provided with valid client certificates too.
4173
4174 The @var{dir} parameter tells QEMU where to find the credential
4175 files. For server endpoints, this directory may contain a file
4176 @var{dh-params.pem} providing diffie-hellman parameters to use
4177 for the TLS server. If the file is missing, QEMU will generate
4178 a set of DH parameters at startup. This is a computationally
4179 expensive operation that consumes random pool entropy, so it is
4180 recommended that a persistent set of parameters be generated
4181 upfront and saved.
4182
4183 For x509 certificate credentials the directory will contain further files
4184 providing the x509 certificates. The certificates must be stored
4185 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4186 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4187 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4188
4189 For the @var{server-key.pem} and @var{client-key.pem} files which
4190 contain sensitive private keys, it is possible to use an encrypted
4191 version by providing the @var{passwordid} parameter. This provides
4192 the ID of a previously created @code{secret} object containing the
4193 password for decryption.
4194
4195 The @var{priority} parameter allows to override the global default
4196 priority used by gnutls. This can be useful if the system administrator
4197 needs to use a weaker set of crypto priorities for QEMU without
4198 potentially forcing the weakness onto all applications. Or conversely
4199 if one wants wants a stronger default for QEMU than for all other
4200 applications, they can do this through this parameter. Its format is
4201 a gnutls priority string as described at
4202 @url{https://gnutls.org/manual/html_node/Priority-Strings.html}.
4203
4204 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4205
4206 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4207 packets arriving in a given interval on netdev @var{netdevid} are delayed
4208 until the end of the interval. Interval is in microseconds.
4209 @option{status} is optional that indicate whether the netfilter is
4210 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4211
4212 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4213
4214 @option{all}: the filter is attached both to the receive and the transmit
4215 queue of the netdev (default).
4216
4217 @option{rx}: the filter is attached to the receive queue of the netdev,
4218 where it will receive packets sent to the netdev.
4219
4220 @option{tx}: the filter is attached to the transmit queue of the netdev,
4221 where it will receive packets sent by the netdev.
4222
4223 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4224
4225 filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.
4226
4227 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4228
4229 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4230 @var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag,
4231 filter-redirector will redirect packet with vnet_hdr_len.
4232 Create a filter-redirector we need to differ outdev id from indev id, id can not
4233 be the same. we can just use indev or outdev, but at least one of indev or outdev
4234 need to be specified.
4235
4236 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support]
4237
4238 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4239 secondary from primary to keep secondary tcp connection,and rewrite
4240 tcp packet to primary from secondary make tcp packet can be handled by
4241 client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.
4242
4243 usage:
4244 colo secondary:
4245 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4246 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4247 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4248
4249 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4250
4251 Dump the network traffic on netdev @var{dev} to the file specified by
4252 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4253 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4254 or Wireshark.
4255
4256 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid}[,vnet_hdr_support]
4257
4258 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4259 secondary packet. If the packets are same, we will output primary
4260 packet to outdev@var{chardevid}, else we will notify colo-frame
4261 do checkpoint and send primary packet to outdev@var{chardevid}.
4262 if it has the vnet_hdr_support flag, colo compare will send/recv packet with vnet_hdr_len.
4263
4264 we must use it with the help of filter-mirror and filter-redirector.
4265
4266 @example
4267
4268 primary:
4269 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4270 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4271 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4272 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4273 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4274 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4275 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4276 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4277 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4278 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4279 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4280 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
4281
4282 secondary:
4283 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4284 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4285 -chardev socket,id=red0,host=3.3.3.3,port=9003
4286 -chardev socket,id=red1,host=3.3.3.3,port=9004
4287 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4288 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4289
4290 @end example
4291
4292 If you want to know the detail of above command line, you can read
4293 the colo-compare git log.
4294
4295 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4296
4297 Creates a cryptodev backend which executes crypto opreation from
4298 the QEMU cipher APIS. The @var{id} parameter is
4299 a unique ID that will be used to reference this cryptodev backend from
4300 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4301 which specify the queue number of cryptodev backend, the default of
4302 @var{queues} is 1.
4303
4304 @example
4305
4306 # qemu-system-x86_64 \
4307 [...] \
4308 -object cryptodev-backend-builtin,id=cryptodev0 \
4309 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4310 [...]
4311 @end example
4312
4313 @item -object cryptodev-vhost-user,id=@var{id},chardev=@var{chardevid}[,queues=@var{queues}]
4314
4315 Creates a vhost-user cryptodev backend, backed by a chardev @var{chardevid}.
4316 The @var{id} parameter is a unique ID that will be used to reference this
4317 cryptodev backend from the @option{virtio-crypto} device.
4318 The chardev should be a unix domain socket backed one. The vhost-user uses
4319 a specifically defined protocol to pass vhost ioctl replacement messages
4320 to an application on the other end of the socket.
4321 The @var{queues} parameter is optional, which specify the queue number
4322 of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1.
4323
4324 @example
4325
4326 # qemu-system-x86_64 \
4327 [...] \
4328 -chardev socket,id=chardev0,path=/path/to/socket \
4329 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
4330 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4331 [...]
4332 @end example
4333
4334 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4335 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4336
4337 Defines a secret to store a password, encryption key, or some other sensitive
4338 data. The sensitive data can either be passed directly via the @var{data}
4339 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4340 parameter is insecure unless the sensitive data is encrypted.
4341
4342 The sensitive data can be provided in raw format (the default), or base64.
4343 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4344 so base64 is recommended for sending binary data. QEMU will convert from
4345 which ever format is provided to the format it needs internally. eg, an
4346 RBD password can be provided in raw format, even though it will be base64
4347 encoded when passed onto the RBD sever.
4348
4349 For added protection, it is possible to encrypt the data associated with
4350 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4351 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4352 parameter provides the ID of a previously defined secret that contains
4353 the AES-256 decryption key. This key should be 32-bytes long and be
4354 base64 encoded. The @var{iv} parameter provides the random initialization
4355 vector used for encryption of this particular secret and should be a
4356 base64 encrypted string of the 16-byte IV.
4357
4358 The simplest (insecure) usage is to provide the secret inline
4359
4360 @example
4361
4362 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4363
4364 @end example
4365
4366 The simplest secure usage is to provide the secret via a file
4367
4368 # printf "letmein" > mypasswd.txt
4369 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4370
4371 For greater security, AES-256-CBC should be used. To illustrate usage,
4372 consider the openssl command line tool which can encrypt the data. Note
4373 that when encrypting, the plaintext must be padded to the cipher block
4374 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4375
4376 First a master key needs to be created in base64 encoding:
4377
4378 @example
4379 # openssl rand -base64 32 > key.b64
4380 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4381 @end example
4382
4383 Each secret to be encrypted needs to have a random initialization vector
4384 generated. These do not need to be kept secret
4385
4386 @example
4387 # openssl rand -base64 16 > iv.b64
4388 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4389 @end example
4390
4391 The secret to be defined can now be encrypted, in this case we're
4392 telling openssl to base64 encode the result, but it could be left
4393 as raw bytes if desired.
4394
4395 @example
4396 # SECRET=$(printf "letmein" |
4397 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4398 @end example
4399
4400 When launching QEMU, create a master secret pointing to @code{key.b64}
4401 and specify that to be used to decrypt the user password. Pass the
4402 contents of @code{iv.b64} to the second secret
4403
4404 @example
4405 # $QEMU \
4406 -object secret,id=secmaster0,format=base64,file=key.b64 \
4407 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4408 data=$SECRET,iv=$(<iv.b64)
4409 @end example
4410
4411 @item -object sev-guest,id=@var{id},cbitpos=@var{cbitpos},reduced-phys-bits=@var{val},[sev-device=@var{string},policy=@var{policy},handle=@var{handle},dh-cert-file=@var{file},session-file=@var{file}]
4412
4413 Create a Secure Encrypted Virtualization (SEV) guest object, which can be used
4414 to provide the guest memory encryption support on AMD processors.
4415
4416 When memory encryption is enabled, one of the physical address bit (aka the
4417 C-bit) is utilized to mark if a memory page is protected. The @option{cbitpos}
4418 is used to provide the C-bit position. The C-bit position is Host family dependent
4419 hence user must provide this value. On EPYC, the value should be 47.
4420
4421 When memory encryption is enabled, we loose certain bits in physical address space.
4422 The @option{reduced-phys-bits} is used to provide the number of bits we loose in
4423 physical address space. Similar to C-bit, the value is Host family dependent.
4424 On EPYC, the value should be 5.
4425
4426 The @option{sev-device} provides the device file to use for communicating with
4427 the SEV firmware running inside AMD Secure Processor. The default device is
4428 '/dev/sev'. If hardware supports memory encryption then /dev/sev devices are
4429 created by CCP driver.
4430
4431 The @option{policy} provides the guest policy to be enforced by the SEV firmware
4432 and restrict what configuration and operational commands can be performed on this
4433 guest by the hypervisor. The policy should be provided by the guest owner and is
4434 bound to the guest and cannot be changed throughout the lifetime of the guest.
4435 The default is 0.
4436
4437 If guest @option{policy} allows sharing the key with another SEV guest then
4438 @option{handle} can be use to provide handle of the guest from which to share
4439 the key.
4440
4441 The @option{dh-cert-file} and @option{session-file} provides the guest owner's
4442 Public Diffie-Hillman key defined in SEV spec. The PDH and session parameters
4443 are used for establishing a cryptographic session with the guest owner to
4444 negotiate keys used for attestation. The file must be encoded in base64.
4445
4446 e.g to launch a SEV guest
4447 @example
4448 # $QEMU \
4449 ......
4450 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
4451 -machine ...,memory-encryption=sev0
4452 .....
4453
4454 @end example
4455 @end table
4456
4457 ETEXI
4458
4459
4460 HXCOMM This is the last statement. Insert new options before this line!
4461 STEXI
4462 @end table
4463 ETEXI