]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
Merge remote-tracking branch 'remotes/awilliam/tags/vfio-update-20160328.0' into...
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, tcg (default: tcg)\n"
35 " kernel_irqchip=on|off controls accelerated irqchip support\n"
36 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
37 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
38 " kvm_shadow_mem=size of KVM shadow MMU\n"
39 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
40 " mem-merge=on|off controls memory merge support (default: on)\n"
41 " iommu=on|off controls emulated Intel IOMMU (VT-d) support (default=off)\n"
42 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
43 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
44 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
45 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
46 " nvdimm=on|off controls NVDIMM support (default=off)\n"
47 " enforce-config-section=on|off enforce configuration section migration (default=off)\n",
48 QEMU_ARCH_ALL)
49 STEXI
50 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
51 @findex -machine
52 Select the emulated machine by @var{name}. Use @code{-machine help} to list
53 available machines. Supported machine properties are:
54 @table @option
55 @item accel=@var{accels1}[:@var{accels2}[:...]]
56 This is used to enable an accelerator. Depending on the target architecture,
57 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
58 than one accelerator specified, the next one is used if the previous one fails
59 to initialize.
60 @item kernel_irqchip=on|off
61 Controls in-kernel irqchip support for the chosen accelerator when available.
62 @item gfx_passthru=on|off
63 Enables IGD GFX passthrough support for the chosen machine when available.
64 @item vmport=on|off|auto
65 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
66 value based on accel. For accel=xen the default is off otherwise the default
67 is on.
68 @item kvm_shadow_mem=size
69 Defines the size of the KVM shadow MMU.
70 @item dump-guest-core=on|off
71 Include guest memory in a core dump. The default is on.
72 @item mem-merge=on|off
73 Enables or disables memory merge support. This feature, when supported by
74 the host, de-duplicates identical memory pages among VMs instances
75 (enabled by default).
76 @item iommu=on|off
77 Enables or disables emulated Intel IOMMU (VT-d) support. The default is off.
78 @item aes-key-wrap=on|off
79 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
80 controls whether AES wrapping keys will be created to allow
81 execution of AES cryptographic functions. The default is on.
82 @item dea-key-wrap=on|off
83 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
84 controls whether DEA wrapping keys will be created to allow
85 execution of DEA cryptographic functions. The default is on.
86 @item nvdimm=on|off
87 Enables or disables NVDIMM support. The default is off.
88 @end table
89 ETEXI
90
91 HXCOMM Deprecated by -machine
92 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
93
94 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
95 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
96 STEXI
97 @item -cpu @var{model}
98 @findex -cpu
99 Select CPU model (@code{-cpu help} for list and additional feature selection)
100 ETEXI
101
102 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
103 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
104 " set the number of CPUs to 'n' [default=1]\n"
105 " maxcpus= maximum number of total cpus, including\n"
106 " offline CPUs for hotplug, etc\n"
107 " cores= number of CPU cores on one socket\n"
108 " threads= number of threads on one CPU core\n"
109 " sockets= number of discrete sockets in the system\n",
110 QEMU_ARCH_ALL)
111 STEXI
112 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
113 @findex -smp
114 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
115 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
116 to 4.
117 For the PC target, the number of @var{cores} per socket, the number
118 of @var{threads} per cores and the total number of @var{sockets} can be
119 specified. Missing values will be computed. If any on the three values is
120 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
121 specifies the maximum number of hotpluggable CPUs.
122 ETEXI
123
124 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
125 "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n"
126 "-numa node[,memdev=id][,cpus=cpu[-cpu]][,nodeid=node]\n", QEMU_ARCH_ALL)
127 STEXI
128 @item -numa node[,mem=@var{size}][,cpus=@var{cpu[-cpu]}][,nodeid=@var{node}]
129 @itemx -numa node[,memdev=@var{id}][,cpus=@var{cpu[-cpu]}][,nodeid=@var{node}]
130 @findex -numa
131 Simulate a multi node NUMA system. If @samp{mem}, @samp{memdev}
132 and @samp{cpus} are omitted, resources are split equally. Also, note
133 that the -@option{numa} option doesn't allocate any of the specified
134 resources. That is, it just assigns existing resources to NUMA nodes. This
135 means that one still has to use the @option{-m}, @option{-smp} options
136 to allocate RAM and VCPUs respectively, and possibly @option{-object}
137 to specify the memory backend for the @samp{memdev} suboption.
138
139 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore, if one
140 node uses @samp{memdev}, all of them have to use it.
141 ETEXI
142
143 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
144 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
145 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
146 STEXI
147 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
148 @findex -add-fd
149
150 Add a file descriptor to an fd set. Valid options are:
151
152 @table @option
153 @item fd=@var{fd}
154 This option defines the file descriptor of which a duplicate is added to fd set.
155 The file descriptor cannot be stdin, stdout, or stderr.
156 @item set=@var{set}
157 This option defines the ID of the fd set to add the file descriptor to.
158 @item opaque=@var{opaque}
159 This option defines a free-form string that can be used to describe @var{fd}.
160 @end table
161
162 You can open an image using pre-opened file descriptors from an fd set:
163 @example
164 qemu-system-i386
165 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
166 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
167 -drive file=/dev/fdset/2,index=0,media=disk
168 @end example
169 ETEXI
170
171 DEF("set", HAS_ARG, QEMU_OPTION_set,
172 "-set group.id.arg=value\n"
173 " set <arg> parameter for item <id> of type <group>\n"
174 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
175 STEXI
176 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
177 @findex -set
178 Set parameter @var{arg} for item @var{id} of type @var{group}\n"
179 ETEXI
180
181 DEF("global", HAS_ARG, QEMU_OPTION_global,
182 "-global driver.property=value\n"
183 "-global driver=driver,property=property,value=value\n"
184 " set a global default for a driver property\n",
185 QEMU_ARCH_ALL)
186 STEXI
187 @item -global @var{driver}.@var{prop}=@var{value}
188 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
189 @findex -global
190 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
191
192 @example
193 qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk
194 @end example
195
196 In particular, you can use this to set driver properties for devices which are
197 created automatically by the machine model. To create a device which is not
198 created automatically and set properties on it, use -@option{device}.
199
200 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
201 driver=@var{driver},property=@var{prop},value=@var{value}. The
202 longhand syntax works even when @var{driver} contains a dot.
203 ETEXI
204
205 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
206 "-boot [order=drives][,once=drives][,menu=on|off]\n"
207 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
208 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
209 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
210 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
211 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
212 QEMU_ARCH_ALL)
213 STEXI
214 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
215 @findex -boot
216 Specify boot order @var{drives} as a string of drive letters. Valid
217 drive letters depend on the target architecture. The x86 PC uses: a, b
218 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
219 from network adapter 1-4), hard disk boot is the default. To apply a
220 particular boot order only on the first startup, specify it via
221 @option{once}.
222
223 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
224 as firmware/BIOS supports them. The default is non-interactive boot.
225
226 A splash picture could be passed to bios, enabling user to show it as logo,
227 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
228 supports them. Currently Seabios for X86 system support it.
229 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
230 format(true color). The resolution should be supported by the SVGA mode, so
231 the recommended is 320x240, 640x480, 800x640.
232
233 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
234 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
235 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
236 system support it.
237
238 Do strict boot via @option{strict=on} as far as firmware/BIOS
239 supports it. This only effects when boot priority is changed by
240 bootindex options. The default is non-strict boot.
241
242 @example
243 # try to boot from network first, then from hard disk
244 qemu-system-i386 -boot order=nc
245 # boot from CD-ROM first, switch back to default order after reboot
246 qemu-system-i386 -boot once=d
247 # boot with a splash picture for 5 seconds.
248 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
249 @end example
250
251 Note: The legacy format '-boot @var{drives}' is still supported but its
252 use is discouraged as it may be removed from future versions.
253 ETEXI
254
255 DEF("m", HAS_ARG, QEMU_OPTION_m,
256 "-m[emory] [size=]megs[,slots=n,maxmem=size]\n"
257 " configure guest RAM\n"
258 " size: initial amount of guest memory\n"
259 " slots: number of hotplug slots (default: none)\n"
260 " maxmem: maximum amount of guest memory (default: none)\n"
261 "NOTE: Some architectures might enforce a specific granularity\n",
262 QEMU_ARCH_ALL)
263 STEXI
264 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
265 @findex -m
266 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
267 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
268 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
269 could be used to set amount of hotpluggable memory slots and maximum amount of
270 memory. Note that @var{maxmem} must be aligned to the page size.
271
272 For example, the following command-line sets the guest startup RAM size to
273 1GB, creates 3 slots to hotplug additional memory and sets the maximum
274 memory the guest can reach to 4GB:
275
276 @example
277 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
278 @end example
279
280 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
281 be enabled and the guest startup RAM will never increase.
282 ETEXI
283
284 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
285 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
286 STEXI
287 @item -mem-path @var{path}
288 @findex -mem-path
289 Allocate guest RAM from a temporarily created file in @var{path}.
290 ETEXI
291
292 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
293 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
294 QEMU_ARCH_ALL)
295 STEXI
296 @item -mem-prealloc
297 @findex -mem-prealloc
298 Preallocate memory when using -mem-path.
299 ETEXI
300
301 DEF("k", HAS_ARG, QEMU_OPTION_k,
302 "-k language use keyboard layout (for example 'fr' for French)\n",
303 QEMU_ARCH_ALL)
304 STEXI
305 @item -k @var{language}
306 @findex -k
307 Use keyboard layout @var{language} (for example @code{fr} for
308 French). This option is only needed where it is not easy to get raw PC
309 keycodes (e.g. on Macs, with some X11 servers or with a VNC
310 display). You don't normally need to use it on PC/Linux or PC/Windows
311 hosts.
312
313 The available layouts are:
314 @example
315 ar de-ch es fo fr-ca hu ja mk no pt-br sv
316 da en-gb et fr fr-ch is lt nl pl ru th
317 de en-us fi fr-be hr it lv nl-be pt sl tr
318 @end example
319
320 The default is @code{en-us}.
321 ETEXI
322
323
324 DEF("audio-help", 0, QEMU_OPTION_audio_help,
325 "-audio-help print list of audio drivers and their options\n",
326 QEMU_ARCH_ALL)
327 STEXI
328 @item -audio-help
329 @findex -audio-help
330 Will show the audio subsystem help: list of drivers, tunable
331 parameters.
332 ETEXI
333
334 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
335 "-soundhw c1,... enable audio support\n"
336 " and only specified sound cards (comma separated list)\n"
337 " use '-soundhw help' to get the list of supported cards\n"
338 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
339 STEXI
340 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
341 @findex -soundhw
342 Enable audio and selected sound hardware. Use 'help' to print all
343 available sound hardware.
344
345 @example
346 qemu-system-i386 -soundhw sb16,adlib disk.img
347 qemu-system-i386 -soundhw es1370 disk.img
348 qemu-system-i386 -soundhw ac97 disk.img
349 qemu-system-i386 -soundhw hda disk.img
350 qemu-system-i386 -soundhw all disk.img
351 qemu-system-i386 -soundhw help
352 @end example
353
354 Note that Linux's i810_audio OSS kernel (for AC97) module might
355 require manually specifying clocking.
356
357 @example
358 modprobe i810_audio clocking=48000
359 @end example
360 ETEXI
361
362 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
363 "-balloon none disable balloon device\n"
364 "-balloon virtio[,addr=str]\n"
365 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
366 STEXI
367 @item -balloon none
368 @findex -balloon
369 Disable balloon device.
370 @item -balloon virtio[,addr=@var{addr}]
371 Enable virtio balloon device (default), optionally with PCI address
372 @var{addr}.
373 ETEXI
374
375 DEF("device", HAS_ARG, QEMU_OPTION_device,
376 "-device driver[,prop[=value][,...]]\n"
377 " add device (based on driver)\n"
378 " prop=value,... sets driver properties\n"
379 " use '-device help' to print all possible drivers\n"
380 " use '-device driver,help' to print all possible properties\n",
381 QEMU_ARCH_ALL)
382 STEXI
383 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
384 @findex -device
385 Add device @var{driver}. @var{prop}=@var{value} sets driver
386 properties. Valid properties depend on the driver. To get help on
387 possible drivers and properties, use @code{-device help} and
388 @code{-device @var{driver},help}.
389
390 Some drivers are:
391 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}]
392
393 Add an IPMI BMC. This is a simulation of a hardware management
394 interface processor that normally sits on a system. It provides
395 a watchdog and the ability to reset and power control the system.
396 You need to connect this to an IPMI interface to make it useful
397
398 The IPMI slave address to use for the BMC. The default is 0x20.
399 This address is the BMC's address on the I2C network of management
400 controllers. If you don't know what this means, it is safe to ignore
401 it.
402
403 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
404
405 Add a connection to an external IPMI BMC simulator. Instead of
406 locally emulating the BMC like the above item, instead connect
407 to an external entity that provides the IPMI services.
408
409 A connection is made to an external BMC simulator. If you do this, it
410 is strongly recommended that you use the "reconnect=" chardev option
411 to reconnect to the simulator if the connection is lost. Note that if
412 this is not used carefully, it can be a security issue, as the
413 interface has the ability to send resets, NMIs, and power off the VM.
414 It's best if QEMU makes a connection to an external simulator running
415 on a secure port on localhost, so neither the simulator nor QEMU is
416 exposed to any outside network.
417
418 See the "lanserv/README.vm" file in the OpenIPMI library for more
419 details on the external interface.
420
421 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
422
423 Add a KCS IPMI interafce on the ISA bus. This also adds a
424 corresponding ACPI and SMBIOS entries, if appropriate.
425
426 @table @option
427 @item bmc=@var{id}
428 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
429 @item ioport=@var{val}
430 Define the I/O address of the interface. The default is 0xca0 for KCS.
431 @item irq=@var{val}
432 Define the interrupt to use. The default is 5. To disable interrupts,
433 set this to 0.
434 @end table
435
436 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
437
438 Like the KCS interface, but defines a BT interface. The default port is
439 0xe4 and the default interrupt is 5.
440
441 ETEXI
442
443 DEF("name", HAS_ARG, QEMU_OPTION_name,
444 "-name string1[,process=string2][,debug-threads=on|off]\n"
445 " set the name of the guest\n"
446 " string1 sets the window title and string2 the process name (on Linux)\n"
447 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
448 " NOTE: The thread names are for debugging and not a stable API.\n",
449 QEMU_ARCH_ALL)
450 STEXI
451 @item -name @var{name}
452 @findex -name
453 Sets the @var{name} of the guest.
454 This name will be displayed in the SDL window caption.
455 The @var{name} will also be used for the VNC server.
456 Also optionally set the top visible process name in Linux.
457 Naming of individual threads can also be enabled on Linux to aid debugging.
458 ETEXI
459
460 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
461 "-uuid %08x-%04x-%04x-%04x-%012x\n"
462 " specify machine UUID\n", QEMU_ARCH_ALL)
463 STEXI
464 @item -uuid @var{uuid}
465 @findex -uuid
466 Set system UUID.
467 ETEXI
468
469 STEXI
470 @end table
471 ETEXI
472 DEFHEADING()
473
474 DEFHEADING(Block device options:)
475 STEXI
476 @table @option
477 ETEXI
478
479 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
480 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
481 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
482 STEXI
483 @item -fda @var{file}
484 @itemx -fdb @var{file}
485 @findex -fda
486 @findex -fdb
487 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
488 ETEXI
489
490 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
491 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
492 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
493 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
494 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
495 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
496 STEXI
497 @item -hda @var{file}
498 @itemx -hdb @var{file}
499 @itemx -hdc @var{file}
500 @itemx -hdd @var{file}
501 @findex -hda
502 @findex -hdb
503 @findex -hdc
504 @findex -hdd
505 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
506 ETEXI
507
508 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
509 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
510 QEMU_ARCH_ALL)
511 STEXI
512 @item -cdrom @var{file}
513 @findex -cdrom
514 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
515 @option{-cdrom} at the same time). You can use the host CD-ROM by
516 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
517 ETEXI
518
519 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
520 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
521 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
522 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
523 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
524 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
525 " [,readonly=on|off][,copy-on-read=on|off]\n"
526 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
527 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
528 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
529 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
530 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
531 " [[,iops_size=is]]\n"
532 " [[,group=g]]\n"
533 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
534 STEXI
535 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
536 @findex -drive
537
538 Define a new drive. Valid options are:
539
540 @table @option
541 @item file=@var{file}
542 This option defines which disk image (@pxref{disk_images}) to use with
543 this drive. If the filename contains comma, you must double it
544 (for instance, "file=my,,file" to use file "my,file").
545
546 Special files such as iSCSI devices can be specified using protocol
547 specific URLs. See the section for "Device URL Syntax" for more information.
548 @item if=@var{interface}
549 This option defines on which type on interface the drive is connected.
550 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
551 @item bus=@var{bus},unit=@var{unit}
552 These options define where is connected the drive by defining the bus number and
553 the unit id.
554 @item index=@var{index}
555 This option defines where is connected the drive by using an index in the list
556 of available connectors of a given interface type.
557 @item media=@var{media}
558 This option defines the type of the media: disk or cdrom.
559 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
560 These options have the same definition as they have in @option{-hdachs}.
561 @item snapshot=@var{snapshot}
562 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
563 (see @option{-snapshot}).
564 @item cache=@var{cache}
565 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
566 @item aio=@var{aio}
567 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
568 @item discard=@var{discard}
569 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests.
570 @item format=@var{format}
571 Specify which disk @var{format} will be used rather than detecting
572 the format. Can be used to specifiy format=raw to avoid interpreting
573 an untrusted format header.
574 @item serial=@var{serial}
575 This option specifies the serial number to assign to the device.
576 @item addr=@var{addr}
577 Specify the controller's PCI address (if=virtio only).
578 @item werror=@var{action},rerror=@var{action}
579 Specify which @var{action} to take on write and read errors. Valid actions are:
580 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
581 "report" (report the error to the guest), "enospc" (pause QEMU only if the
582 host disk is full; report the error to the guest otherwise).
583 The default setting is @option{werror=enospc} and @option{rerror=report}.
584 @item readonly
585 Open drive @option{file} as read-only. Guest write attempts will fail.
586 @item copy-on-read=@var{copy-on-read}
587 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
588 file sectors into the image file.
589 @item detect-zeroes=@var{detect-zeroes}
590 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
591 conversion of plain zero writes by the OS to driver specific optimized
592 zero write commands. You may even choose "unmap" if @var{discard} is set
593 to "unmap" to allow a zero write to be converted to an UNMAP operation.
594 @end table
595
596 By default, the @option{cache=writeback} mode is used. It will report data
597 writes as completed as soon as the data is present in the host page cache.
598 This is safe as long as your guest OS makes sure to correctly flush disk caches
599 where needed. If your guest OS does not handle volatile disk write caches
600 correctly and your host crashes or loses power, then the guest may experience
601 data corruption.
602
603 For such guests, you should consider using @option{cache=writethrough}. This
604 means that the host page cache will be used to read and write data, but write
605 notification will be sent to the guest only after QEMU has made sure to flush
606 each write to the disk. Be aware that this has a major impact on performance.
607
608 The host page cache can be avoided entirely with @option{cache=none}. This will
609 attempt to do disk IO directly to the guest's memory. QEMU may still perform
610 an internal copy of the data. Note that this is considered a writeback mode and
611 the guest OS must handle the disk write cache correctly in order to avoid data
612 corruption on host crashes.
613
614 The host page cache can be avoided while only sending write notifications to
615 the guest when the data has been flushed to the disk using
616 @option{cache=directsync}.
617
618 In case you don't care about data integrity over host failures, use
619 @option{cache=unsafe}. This option tells QEMU that it never needs to write any
620 data to the disk but can instead keep things in cache. If anything goes wrong,
621 like your host losing power, the disk storage getting disconnected accidentally,
622 etc. your image will most probably be rendered unusable. When using
623 the @option{-snapshot} option, unsafe caching is always used.
624
625 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
626 useful when the backing file is over a slow network. By default copy-on-read
627 is off.
628
629 Instead of @option{-cdrom} you can use:
630 @example
631 qemu-system-i386 -drive file=file,index=2,media=cdrom
632 @end example
633
634 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
635 use:
636 @example
637 qemu-system-i386 -drive file=file,index=0,media=disk
638 qemu-system-i386 -drive file=file,index=1,media=disk
639 qemu-system-i386 -drive file=file,index=2,media=disk
640 qemu-system-i386 -drive file=file,index=3,media=disk
641 @end example
642
643 You can open an image using pre-opened file descriptors from an fd set:
644 @example
645 qemu-system-i386
646 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
647 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
648 -drive file=/dev/fdset/2,index=0,media=disk
649 @end example
650
651 You can connect a CDROM to the slave of ide0:
652 @example
653 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
654 @end example
655
656 If you don't specify the "file=" argument, you define an empty drive:
657 @example
658 qemu-system-i386 -drive if=ide,index=1,media=cdrom
659 @end example
660
661 You can connect a SCSI disk with unit ID 6 on the bus #0:
662 @example
663 qemu-system-i386 -drive file=file,if=scsi,bus=0,unit=6
664 @end example
665
666 Instead of @option{-fda}, @option{-fdb}, you can use:
667 @example
668 qemu-system-i386 -drive file=file,index=0,if=floppy
669 qemu-system-i386 -drive file=file,index=1,if=floppy
670 @end example
671
672 By default, @var{interface} is "ide" and @var{index} is automatically
673 incremented:
674 @example
675 qemu-system-i386 -drive file=a -drive file=b"
676 @end example
677 is interpreted like:
678 @example
679 qemu-system-i386 -hda a -hdb b
680 @end example
681 ETEXI
682
683 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
684 "-mtdblock file use 'file' as on-board Flash memory image\n",
685 QEMU_ARCH_ALL)
686 STEXI
687 @item -mtdblock @var{file}
688 @findex -mtdblock
689 Use @var{file} as on-board Flash memory image.
690 ETEXI
691
692 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
693 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
694 STEXI
695 @item -sd @var{file}
696 @findex -sd
697 Use @var{file} as SecureDigital card image.
698 ETEXI
699
700 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
701 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
702 STEXI
703 @item -pflash @var{file}
704 @findex -pflash
705 Use @var{file} as a parallel flash image.
706 ETEXI
707
708 DEF("snapshot", 0, QEMU_OPTION_snapshot,
709 "-snapshot write to temporary files instead of disk image files\n",
710 QEMU_ARCH_ALL)
711 STEXI
712 @item -snapshot
713 @findex -snapshot
714 Write to temporary files instead of disk image files. In this case,
715 the raw disk image you use is not written back. You can however force
716 the write back by pressing @key{C-a s} (@pxref{disk_images}).
717 ETEXI
718
719 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
720 "-hdachs c,h,s[,t]\n" \
721 " force hard disk 0 physical geometry and the optional BIOS\n" \
722 " translation (t=none or lba) (usually QEMU can guess them)\n",
723 QEMU_ARCH_ALL)
724 STEXI
725 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
726 @findex -hdachs
727 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
728 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
729 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
730 all those parameters. This option is useful for old MS-DOS disk
731 images.
732 ETEXI
733
734 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
735 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
736 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
737 QEMU_ARCH_ALL)
738
739 STEXI
740
741 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
742 @findex -fsdev
743 Define a new file system device. Valid options are:
744 @table @option
745 @item @var{fsdriver}
746 This option specifies the fs driver backend to use.
747 Currently "local", "handle" and "proxy" file system drivers are supported.
748 @item id=@var{id}
749 Specifies identifier for this device
750 @item path=@var{path}
751 Specifies the export path for the file system device. Files under
752 this path will be available to the 9p client on the guest.
753 @item security_model=@var{security_model}
754 Specifies the security model to be used for this export path.
755 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
756 In "passthrough" security model, files are stored using the same
757 credentials as they are created on the guest. This requires QEMU
758 to run as root. In "mapped-xattr" security model, some of the file
759 attributes like uid, gid, mode bits and link target are stored as
760 file attributes. For "mapped-file" these attributes are stored in the
761 hidden .virtfs_metadata directory. Directories exported by this security model cannot
762 interact with other unix tools. "none" security model is same as
763 passthrough except the sever won't report failures if it fails to
764 set file attributes like ownership. Security model is mandatory
765 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
766 security model as a parameter.
767 @item writeout=@var{writeout}
768 This is an optional argument. The only supported value is "immediate".
769 This means that host page cache will be used to read and write data but
770 write notification will be sent to the guest only when the data has been
771 reported as written by the storage subsystem.
772 @item readonly
773 Enables exporting 9p share as a readonly mount for guests. By default
774 read-write access is given.
775 @item socket=@var{socket}
776 Enables proxy filesystem driver to use passed socket file for communicating
777 with virtfs-proxy-helper
778 @item sock_fd=@var{sock_fd}
779 Enables proxy filesystem driver to use passed socket descriptor for
780 communicating with virtfs-proxy-helper. Usually a helper like libvirt
781 will create socketpair and pass one of the fds as sock_fd
782 @end table
783
784 -fsdev option is used along with -device driver "virtio-9p-pci".
785 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
786 Options for virtio-9p-pci driver are:
787 @table @option
788 @item fsdev=@var{id}
789 Specifies the id value specified along with -fsdev option
790 @item mount_tag=@var{mount_tag}
791 Specifies the tag name to be used by the guest to mount this export point
792 @end table
793
794 ETEXI
795
796 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
797 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
798 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
799 QEMU_ARCH_ALL)
800
801 STEXI
802
803 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
804 @findex -virtfs
805
806 The general form of a Virtual File system pass-through options are:
807 @table @option
808 @item @var{fsdriver}
809 This option specifies the fs driver backend to use.
810 Currently "local", "handle" and "proxy" file system drivers are supported.
811 @item id=@var{id}
812 Specifies identifier for this device
813 @item path=@var{path}
814 Specifies the export path for the file system device. Files under
815 this path will be available to the 9p client on the guest.
816 @item security_model=@var{security_model}
817 Specifies the security model to be used for this export path.
818 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
819 In "passthrough" security model, files are stored using the same
820 credentials as they are created on the guest. This requires QEMU
821 to run as root. In "mapped-xattr" security model, some of the file
822 attributes like uid, gid, mode bits and link target are stored as
823 file attributes. For "mapped-file" these attributes are stored in the
824 hidden .virtfs_metadata directory. Directories exported by this security model cannot
825 interact with other unix tools. "none" security model is same as
826 passthrough except the sever won't report failures if it fails to
827 set file attributes like ownership. Security model is mandatory only
828 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
829 model as a parameter.
830 @item writeout=@var{writeout}
831 This is an optional argument. The only supported value is "immediate".
832 This means that host page cache will be used to read and write data but
833 write notification will be sent to the guest only when the data has been
834 reported as written by the storage subsystem.
835 @item readonly
836 Enables exporting 9p share as a readonly mount for guests. By default
837 read-write access is given.
838 @item socket=@var{socket}
839 Enables proxy filesystem driver to use passed socket file for
840 communicating with virtfs-proxy-helper. Usually a helper like libvirt
841 will create socketpair and pass one of the fds as sock_fd
842 @item sock_fd
843 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
844 descriptor for interfacing with virtfs-proxy-helper
845 @end table
846 ETEXI
847
848 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
849 "-virtfs_synth Create synthetic file system image\n",
850 QEMU_ARCH_ALL)
851 STEXI
852 @item -virtfs_synth
853 @findex -virtfs_synth
854 Create synthetic file system image
855 ETEXI
856
857 STEXI
858 @end table
859 ETEXI
860 DEFHEADING()
861
862 DEFHEADING(USB options:)
863 STEXI
864 @table @option
865 ETEXI
866
867 DEF("usb", 0, QEMU_OPTION_usb,
868 "-usb enable the USB driver (will be the default soon)\n",
869 QEMU_ARCH_ALL)
870 STEXI
871 @item -usb
872 @findex -usb
873 Enable the USB driver (will be the default soon)
874 ETEXI
875
876 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
877 "-usbdevice name add the host or guest USB device 'name'\n",
878 QEMU_ARCH_ALL)
879 STEXI
880
881 @item -usbdevice @var{devname}
882 @findex -usbdevice
883 Add the USB device @var{devname}. @xref{usb_devices}.
884
885 @table @option
886
887 @item mouse
888 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
889
890 @item tablet
891 Pointer device that uses absolute coordinates (like a touchscreen). This
892 means QEMU is able to report the mouse position without having to grab the
893 mouse. Also overrides the PS/2 mouse emulation when activated.
894
895 @item disk:[format=@var{format}]:@var{file}
896 Mass storage device based on file. The optional @var{format} argument
897 will be used rather than detecting the format. Can be used to specifiy
898 @code{format=raw} to avoid interpreting an untrusted format header.
899
900 @item host:@var{bus}.@var{addr}
901 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
902
903 @item host:@var{vendor_id}:@var{product_id}
904 Pass through the host device identified by @var{vendor_id}:@var{product_id}
905 (Linux only).
906
907 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
908 Serial converter to host character device @var{dev}, see @code{-serial} for the
909 available devices.
910
911 @item braille
912 Braille device. This will use BrlAPI to display the braille output on a real
913 or fake device.
914
915 @item net:@var{options}
916 Network adapter that supports CDC ethernet and RNDIS protocols.
917
918 @end table
919 ETEXI
920
921 STEXI
922 @end table
923 ETEXI
924 DEFHEADING()
925
926 DEFHEADING(Display options:)
927 STEXI
928 @table @option
929 ETEXI
930
931 DEF("display", HAS_ARG, QEMU_OPTION_display,
932 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
933 " [,window_close=on|off]|curses|none|\n"
934 " gtk[,grab_on_hover=on|off]|\n"
935 " vnc=<display>[,<optargs>]\n"
936 " select display type\n", QEMU_ARCH_ALL)
937 STEXI
938 @item -display @var{type}
939 @findex -display
940 Select type of display to use. This option is a replacement for the
941 old style -sdl/-curses/... options. Valid values for @var{type} are
942 @table @option
943 @item sdl
944 Display video output via SDL (usually in a separate graphics
945 window; see the SDL documentation for other possibilities).
946 @item curses
947 Display video output via curses. For graphics device models which
948 support a text mode, QEMU can display this output using a
949 curses/ncurses interface. Nothing is displayed when the graphics
950 device is in graphical mode or if the graphics device does not support
951 a text mode. Generally only the VGA device models support text mode.
952 @item none
953 Do not display video output. The guest will still see an emulated
954 graphics card, but its output will not be displayed to the QEMU
955 user. This option differs from the -nographic option in that it
956 only affects what is done with video output; -nographic also changes
957 the destination of the serial and parallel port data.
958 @item gtk
959 Display video output in a GTK window. This interface provides drop-down
960 menus and other UI elements to configure and control the VM during
961 runtime.
962 @item vnc
963 Start a VNC server on display <arg>
964 @end table
965 ETEXI
966
967 DEF("nographic", 0, QEMU_OPTION_nographic,
968 "-nographic disable graphical output and redirect serial I/Os to console\n",
969 QEMU_ARCH_ALL)
970 STEXI
971 @item -nographic
972 @findex -nographic
973 Normally, QEMU uses SDL to display the VGA output. With this option,
974 you can totally disable graphical output so that QEMU is a simple
975 command line application. The emulated serial port is redirected on
976 the console and muxed with the monitor (unless redirected elsewhere
977 explicitly). Therefore, you can still use QEMU to debug a Linux kernel
978 with a serial console. Use @key{C-a h} for help on switching between
979 the console and monitor.
980 ETEXI
981
982 DEF("curses", 0, QEMU_OPTION_curses,
983 "-curses use a curses/ncurses interface instead of SDL\n",
984 QEMU_ARCH_ALL)
985 STEXI
986 @item -curses
987 @findex -curses
988 Normally, QEMU uses SDL to display the VGA output. With this option,
989 QEMU can display the VGA output when in text mode using a
990 curses/ncurses interface. Nothing is displayed in graphical mode.
991 ETEXI
992
993 DEF("no-frame", 0, QEMU_OPTION_no_frame,
994 "-no-frame open SDL window without a frame and window decorations\n",
995 QEMU_ARCH_ALL)
996 STEXI
997 @item -no-frame
998 @findex -no-frame
999 Do not use decorations for SDL windows and start them using the whole
1000 available screen space. This makes the using QEMU in a dedicated desktop
1001 workspace more convenient.
1002 ETEXI
1003
1004 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1005 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1006 QEMU_ARCH_ALL)
1007 STEXI
1008 @item -alt-grab
1009 @findex -alt-grab
1010 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1011 affects the special keys (for fullscreen, monitor-mode switching, etc).
1012 ETEXI
1013
1014 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1015 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1016 QEMU_ARCH_ALL)
1017 STEXI
1018 @item -ctrl-grab
1019 @findex -ctrl-grab
1020 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1021 affects the special keys (for fullscreen, monitor-mode switching, etc).
1022 ETEXI
1023
1024 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1025 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1026 STEXI
1027 @item -no-quit
1028 @findex -no-quit
1029 Disable SDL window close capability.
1030 ETEXI
1031
1032 DEF("sdl", 0, QEMU_OPTION_sdl,
1033 "-sdl enable SDL\n", QEMU_ARCH_ALL)
1034 STEXI
1035 @item -sdl
1036 @findex -sdl
1037 Enable SDL.
1038 ETEXI
1039
1040 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1041 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1042 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1043 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1044 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1045 " [,tls-ciphers=<list>]\n"
1046 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1047 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1048 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1049 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1050 " [,jpeg-wan-compression=[auto|never|always]]\n"
1051 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1052 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1053 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1054 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1055 " [,gl=[on|off]]\n"
1056 " enable spice\n"
1057 " at least one of {port, tls-port} is mandatory\n",
1058 QEMU_ARCH_ALL)
1059 STEXI
1060 @item -spice @var{option}[,@var{option}[,...]]
1061 @findex -spice
1062 Enable the spice remote desktop protocol. Valid options are
1063
1064 @table @option
1065
1066 @item port=<nr>
1067 Set the TCP port spice is listening on for plaintext channels.
1068
1069 @item addr=<addr>
1070 Set the IP address spice is listening on. Default is any address.
1071
1072 @item ipv4
1073 @itemx ipv6
1074 @itemx unix
1075 Force using the specified IP version.
1076
1077 @item password=<secret>
1078 Set the password you need to authenticate.
1079
1080 @item sasl
1081 Require that the client use SASL to authenticate with the spice.
1082 The exact choice of authentication method used is controlled from the
1083 system / user's SASL configuration file for the 'qemu' service. This
1084 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1085 unprivileged user, an environment variable SASL_CONF_PATH can be used
1086 to make it search alternate locations for the service config.
1087 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1088 it is recommended that SASL always be combined with the 'tls' and
1089 'x509' settings to enable use of SSL and server certificates. This
1090 ensures a data encryption preventing compromise of authentication
1091 credentials.
1092
1093 @item disable-ticketing
1094 Allow client connects without authentication.
1095
1096 @item disable-copy-paste
1097 Disable copy paste between the client and the guest.
1098
1099 @item disable-agent-file-xfer
1100 Disable spice-vdagent based file-xfer between the client and the guest.
1101
1102 @item tls-port=<nr>
1103 Set the TCP port spice is listening on for encrypted channels.
1104
1105 @item x509-dir=<dir>
1106 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1107
1108 @item x509-key-file=<file>
1109 @itemx x509-key-password=<file>
1110 @itemx x509-cert-file=<file>
1111 @itemx x509-cacert-file=<file>
1112 @itemx x509-dh-key-file=<file>
1113 The x509 file names can also be configured individually.
1114
1115 @item tls-ciphers=<list>
1116 Specify which ciphers to use.
1117
1118 @item tls-channel=[main|display|cursor|inputs|record|playback]
1119 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1120 Force specific channel to be used with or without TLS encryption. The
1121 options can be specified multiple times to configure multiple
1122 channels. The special name "default" can be used to set the default
1123 mode. For channels which are not explicitly forced into one mode the
1124 spice client is allowed to pick tls/plaintext as he pleases.
1125
1126 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1127 Configure image compression (lossless).
1128 Default is auto_glz.
1129
1130 @item jpeg-wan-compression=[auto|never|always]
1131 @itemx zlib-glz-wan-compression=[auto|never|always]
1132 Configure wan image compression (lossy for slow links).
1133 Default is auto.
1134
1135 @item streaming-video=[off|all|filter]
1136 Configure video stream detection. Default is filter.
1137
1138 @item agent-mouse=[on|off]
1139 Enable/disable passing mouse events via vdagent. Default is on.
1140
1141 @item playback-compression=[on|off]
1142 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1143
1144 @item seamless-migration=[on|off]
1145 Enable/disable spice seamless migration. Default is off.
1146
1147 @item gl=[on|off]
1148 Enable/disable OpenGL context. Default is off.
1149
1150 @end table
1151 ETEXI
1152
1153 DEF("portrait", 0, QEMU_OPTION_portrait,
1154 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1155 QEMU_ARCH_ALL)
1156 STEXI
1157 @item -portrait
1158 @findex -portrait
1159 Rotate graphical output 90 deg left (only PXA LCD).
1160 ETEXI
1161
1162 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1163 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1164 QEMU_ARCH_ALL)
1165 STEXI
1166 @item -rotate @var{deg}
1167 @findex -rotate
1168 Rotate graphical output some deg left (only PXA LCD).
1169 ETEXI
1170
1171 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1172 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1173 " select video card type\n", QEMU_ARCH_ALL)
1174 STEXI
1175 @item -vga @var{type}
1176 @findex -vga
1177 Select type of VGA card to emulate. Valid values for @var{type} are
1178 @table @option
1179 @item cirrus
1180 Cirrus Logic GD5446 Video card. All Windows versions starting from
1181 Windows 95 should recognize and use this graphic card. For optimal
1182 performances, use 16 bit color depth in the guest and the host OS.
1183 (This one is the default)
1184 @item std
1185 Standard VGA card with Bochs VBE extensions. If your guest OS
1186 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1187 to use high resolution modes (>= 1280x1024x16) then you should use
1188 this option.
1189 @item vmware
1190 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1191 recent XFree86/XOrg server or Windows guest with a driver for this
1192 card.
1193 @item qxl
1194 QXL paravirtual graphic card. It is VGA compatible (including VESA
1195 2.0 VBE support). Works best with qxl guest drivers installed though.
1196 Recommended choice when using the spice protocol.
1197 @item tcx
1198 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1199 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1200 fixed resolution of 1024x768.
1201 @item cg3
1202 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1203 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1204 resolutions aimed at people wishing to run older Solaris versions.
1205 @item virtio
1206 Virtio VGA card.
1207 @item none
1208 Disable VGA card.
1209 @end table
1210 ETEXI
1211
1212 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1213 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1214 STEXI
1215 @item -full-screen
1216 @findex -full-screen
1217 Start in full screen.
1218 ETEXI
1219
1220 DEF("g", 1, QEMU_OPTION_g ,
1221 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1222 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1223 STEXI
1224 @item -g @var{width}x@var{height}[x@var{depth}]
1225 @findex -g
1226 Set the initial graphical resolution and depth (PPC, SPARC only).
1227 ETEXI
1228
1229 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1230 "-vnc display start a VNC server on display\n", QEMU_ARCH_ALL)
1231 STEXI
1232 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1233 @findex -vnc
1234 Normally, QEMU uses SDL to display the VGA output. With this option,
1235 you can have QEMU listen on VNC display @var{display} and redirect the VGA
1236 display over the VNC session. It is very useful to enable the usb
1237 tablet device when using this option (option @option{-usbdevice
1238 tablet}). When using the VNC display, you must use the @option{-k}
1239 parameter to set the keyboard layout if you are not using en-us. Valid
1240 syntax for the @var{display} is
1241
1242 @table @option
1243
1244 @item @var{host}:@var{d}
1245
1246 TCP connections will only be allowed from @var{host} on display @var{d}.
1247 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1248 be omitted in which case the server will accept connections from any host.
1249
1250 @item unix:@var{path}
1251
1252 Connections will be allowed over UNIX domain sockets where @var{path} is the
1253 location of a unix socket to listen for connections on.
1254
1255 @item none
1256
1257 VNC is initialized but not started. The monitor @code{change} command
1258 can be used to later start the VNC server.
1259
1260 @end table
1261
1262 Following the @var{display} value there may be one or more @var{option} flags
1263 separated by commas. Valid options are
1264
1265 @table @option
1266
1267 @item reverse
1268
1269 Connect to a listening VNC client via a ``reverse'' connection. The
1270 client is specified by the @var{display}. For reverse network
1271 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1272 is a TCP port number, not a display number.
1273
1274 @item websocket
1275
1276 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1277 By definition the Websocket port is 5700+@var{display}. If @var{host} is
1278 specified connections will only be allowed from this host.
1279 As an alternative the Websocket port could be specified by using
1280 @code{websocket}=@var{port}.
1281 If no TLS credentials are provided, the websocket connection runs in
1282 unencrypted mode. If TLS credentials are provided, the websocket connection
1283 requires encrypted client connections.
1284
1285 @item password
1286
1287 Require that password based authentication is used for client connections.
1288
1289 The password must be set separately using the @code{set_password} command in
1290 the @ref{pcsys_monitor}. The syntax to change your password is:
1291 @code{set_password <protocol> <password>} where <protocol> could be either
1292 "vnc" or "spice".
1293
1294 If you would like to change <protocol> password expiration, you should use
1295 @code{expire_password <protocol> <expiration-time>} where expiration time could
1296 be one of the following options: now, never, +seconds or UNIX time of
1297 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1298 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1299 date and time).
1300
1301 You can also use keywords "now" or "never" for the expiration time to
1302 allow <protocol> password to expire immediately or never expire.
1303
1304 @item tls-creds=@var{ID}
1305
1306 Provides the ID of a set of TLS credentials to use to secure the
1307 VNC server. They will apply to both the normal VNC server socket
1308 and the websocket socket (if enabled). Setting TLS credentials
1309 will cause the VNC server socket to enable the VeNCrypt auth
1310 mechanism. The credentials should have been previously created
1311 using the @option{-object tls-creds} argument.
1312
1313 The @option{tls-creds} parameter obsoletes the @option{tls},
1314 @option{x509}, and @option{x509verify} options, and as such
1315 it is not permitted to set both new and old type options at
1316 the same time.
1317
1318 @item tls
1319
1320 Require that client use TLS when communicating with the VNC server. This
1321 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1322 attack. It is recommended that this option be combined with either the
1323 @option{x509} or @option{x509verify} options.
1324
1325 This option is now deprecated in favor of using the @option{tls-creds}
1326 argument.
1327
1328 @item x509=@var{/path/to/certificate/dir}
1329
1330 Valid if @option{tls} is specified. Require that x509 credentials are used
1331 for negotiating the TLS session. The server will send its x509 certificate
1332 to the client. It is recommended that a password be set on the VNC server
1333 to provide authentication of the client when this is used. The path following
1334 this option specifies where the x509 certificates are to be loaded from.
1335 See the @ref{vnc_security} section for details on generating certificates.
1336
1337 This option is now deprecated in favour of using the @option{tls-creds}
1338 argument.
1339
1340 @item x509verify=@var{/path/to/certificate/dir}
1341
1342 Valid if @option{tls} is specified. Require that x509 credentials are used
1343 for negotiating the TLS session. The server will send its x509 certificate
1344 to the client, and request that the client send its own x509 certificate.
1345 The server will validate the client's certificate against the CA certificate,
1346 and reject clients when validation fails. If the certificate authority is
1347 trusted, this is a sufficient authentication mechanism. You may still wish
1348 to set a password on the VNC server as a second authentication layer. The
1349 path following this option specifies where the x509 certificates are to
1350 be loaded from. See the @ref{vnc_security} section for details on generating
1351 certificates.
1352
1353 This option is now deprecated in favour of using the @option{tls-creds}
1354 argument.
1355
1356 @item sasl
1357
1358 Require that the client use SASL to authenticate with the VNC server.
1359 The exact choice of authentication method used is controlled from the
1360 system / user's SASL configuration file for the 'qemu' service. This
1361 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1362 unprivileged user, an environment variable SASL_CONF_PATH can be used
1363 to make it search alternate locations for the service config.
1364 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1365 it is recommended that SASL always be combined with the 'tls' and
1366 'x509' settings to enable use of SSL and server certificates. This
1367 ensures a data encryption preventing compromise of authentication
1368 credentials. See the @ref{vnc_security} section for details on using
1369 SASL authentication.
1370
1371 @item acl
1372
1373 Turn on access control lists for checking of the x509 client certificate
1374 and SASL party. For x509 certs, the ACL check is made against the
1375 certificate's distinguished name. This is something that looks like
1376 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1377 made against the username, which depending on the SASL plugin, may
1378 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1379 When the @option{acl} flag is set, the initial access list will be
1380 empty, with a @code{deny} policy. Thus no one will be allowed to
1381 use the VNC server until the ACLs have been loaded. This can be
1382 achieved using the @code{acl} monitor command.
1383
1384 @item lossy
1385
1386 Enable lossy compression methods (gradient, JPEG, ...). If this
1387 option is set, VNC client may receive lossy framebuffer updates
1388 depending on its encoding settings. Enabling this option can save
1389 a lot of bandwidth at the expense of quality.
1390
1391 @item non-adaptive
1392
1393 Disable adaptive encodings. Adaptive encodings are enabled by default.
1394 An adaptive encoding will try to detect frequently updated screen regions,
1395 and send updates in these regions using a lossy encoding (like JPEG).
1396 This can be really helpful to save bandwidth when playing videos. Disabling
1397 adaptive encodings restores the original static behavior of encodings
1398 like Tight.
1399
1400 @item share=[allow-exclusive|force-shared|ignore]
1401
1402 Set display sharing policy. 'allow-exclusive' allows clients to ask
1403 for exclusive access. As suggested by the rfb spec this is
1404 implemented by dropping other connections. Connecting multiple
1405 clients in parallel requires all clients asking for a shared session
1406 (vncviewer: -shared switch). This is the default. 'force-shared'
1407 disables exclusive client access. Useful for shared desktop sessions,
1408 where you don't want someone forgetting specify -shared disconnect
1409 everybody else. 'ignore' completely ignores the shared flag and
1410 allows everybody connect unconditionally. Doesn't conform to the rfb
1411 spec but is traditional QEMU behavior.
1412
1413 @end table
1414 ETEXI
1415
1416 STEXI
1417 @end table
1418 ETEXI
1419 ARCHHEADING(, QEMU_ARCH_I386)
1420
1421 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1422 STEXI
1423 @table @option
1424 ETEXI
1425
1426 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1427 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1428 QEMU_ARCH_I386)
1429 STEXI
1430 @item -win2k-hack
1431 @findex -win2k-hack
1432 Use it when installing Windows 2000 to avoid a disk full bug. After
1433 Windows 2000 is installed, you no longer need this option (this option
1434 slows down the IDE transfers).
1435 ETEXI
1436
1437 HXCOMM Deprecated by -rtc
1438 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1439
1440 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1441 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1442 QEMU_ARCH_I386)
1443 STEXI
1444 @item -no-fd-bootchk
1445 @findex -no-fd-bootchk
1446 Disable boot signature checking for floppy disks in BIOS. May
1447 be needed to boot from old floppy disks.
1448 ETEXI
1449
1450 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1451 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1452 STEXI
1453 @item -no-acpi
1454 @findex -no-acpi
1455 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1456 it if your guest OS complains about ACPI problems (PC target machine
1457 only).
1458 ETEXI
1459
1460 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1461 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1462 STEXI
1463 @item -no-hpet
1464 @findex -no-hpet
1465 Disable HPET support.
1466 ETEXI
1467
1468 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1469 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1470 " ACPI table description\n", QEMU_ARCH_I386)
1471 STEXI
1472 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1473 @findex -acpitable
1474 Add ACPI table with specified header fields and context from specified files.
1475 For file=, take whole ACPI table from the specified files, including all
1476 ACPI headers (possible overridden by other options).
1477 For data=, only data
1478 portion of the table is used, all header information is specified in the
1479 command line.
1480 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1481 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1482 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1483 spec.
1484 ETEXI
1485
1486 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1487 "-smbios file=binary\n"
1488 " load SMBIOS entry from binary file\n"
1489 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1490 " [,uefi=on|off]\n"
1491 " specify SMBIOS type 0 fields\n"
1492 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1493 " [,uuid=uuid][,sku=str][,family=str]\n"
1494 " specify SMBIOS type 1 fields\n"
1495 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1496 " [,asset=str][,location=str]\n"
1497 " specify SMBIOS type 2 fields\n"
1498 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1499 " [,sku=str]\n"
1500 " specify SMBIOS type 3 fields\n"
1501 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1502 " [,asset=str][,part=str]\n"
1503 " specify SMBIOS type 4 fields\n"
1504 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1505 " [,asset=str][,part=str][,speed=%d]\n"
1506 " specify SMBIOS type 17 fields\n",
1507 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1508 STEXI
1509 @item -smbios file=@var{binary}
1510 @findex -smbios
1511 Load SMBIOS entry from binary file.
1512
1513 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1514 Specify SMBIOS type 0 fields
1515
1516 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1517 Specify SMBIOS type 1 fields
1518
1519 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1520 Specify SMBIOS type 2 fields
1521
1522 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1523 Specify SMBIOS type 3 fields
1524
1525 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1526 Specify SMBIOS type 4 fields
1527
1528 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1529 Specify SMBIOS type 17 fields
1530 ETEXI
1531
1532 STEXI
1533 @end table
1534 ETEXI
1535 DEFHEADING()
1536
1537 DEFHEADING(Network options:)
1538 STEXI
1539 @table @option
1540 ETEXI
1541
1542 HXCOMM Legacy slirp options (now moved to -net user):
1543 #ifdef CONFIG_SLIRP
1544 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1545 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1546 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1547 #ifndef _WIN32
1548 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1549 #endif
1550 #endif
1551
1552 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1553 #ifdef CONFIG_SLIRP
1554 "-netdev user,id=str[,net=addr[/mask]][,host=addr][,ip6-net=addr[/int]]\n"
1555 " [,ip6-host=addr][,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1556 " [,dns=addr][,ip6-dns=addr][,dnssearch=domain][,tftp=dir]\n"
1557 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1558 #ifndef _WIN32
1559 "[,smb=dir[,smbserver=addr]]\n"
1560 #endif
1561 " configure a user mode network backend with ID 'str',\n"
1562 " its DHCP server and optional services\n"
1563 #endif
1564 #ifdef _WIN32
1565 "-netdev tap,id=str,ifname=name\n"
1566 " configure a host TAP network backend with ID 'str'\n"
1567 #else
1568 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1569 " [,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1570 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1571 " configure a host TAP network backend with ID 'str'\n"
1572 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1573 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1574 " to deconfigure it\n"
1575 " use '[down]script=no' to disable script execution\n"
1576 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1577 " configure it\n"
1578 " use 'fd=h' to connect to an already opened TAP interface\n"
1579 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1580 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1581 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1582 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1583 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1584 " use vhost=on to enable experimental in kernel accelerator\n"
1585 " (only has effect for virtio guests which use MSIX)\n"
1586 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1587 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1588 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1589 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1590 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1591 " configure a host TAP network backend with ID 'str' that is\n"
1592 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1593 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1594 #endif
1595 #ifdef __linux__
1596 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1597 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1598 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1599 " [,rxcookie=rxcookie][,offset=offset]\n"
1600 " configure a network backend with ID 'str' connected to\n"
1601 " an Ethernet over L2TPv3 pseudowire.\n"
1602 " Linux kernel 3.3+ as well as most routers can talk\n"
1603 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1604 " VM to a router and even VM to Host. It is a nearly-universal\n"
1605 " standard (RFC3391). Note - this implementation uses static\n"
1606 " pre-configured tunnels (same as the Linux kernel).\n"
1607 " use 'src=' to specify source address\n"
1608 " use 'dst=' to specify destination address\n"
1609 " use 'udp=on' to specify udp encapsulation\n"
1610 " use 'srcport=' to specify source udp port\n"
1611 " use 'dstport=' to specify destination udp port\n"
1612 " use 'ipv6=on' to force v6\n"
1613 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1614 " well as a weak security measure\n"
1615 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1616 " use 'txcookie=0x012345678' to specify a txcookie\n"
1617 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1618 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1619 " use 'pincounter=on' to work around broken counter handling in peer\n"
1620 " use 'offset=X' to add an extra offset between header and data\n"
1621 #endif
1622 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1623 " configure a network backend to connect to another network\n"
1624 " using a socket connection\n"
1625 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1626 " configure a network backend to connect to a multicast maddr and port\n"
1627 " use 'localaddr=addr' to specify the host address to send packets from\n"
1628 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1629 " configure a network backend to connect to another network\n"
1630 " using an UDP tunnel\n"
1631 #ifdef CONFIG_VDE
1632 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1633 " configure a network backend to connect to port 'n' of a vde switch\n"
1634 " running on host and listening for incoming connections on 'socketpath'.\n"
1635 " Use group 'groupname' and mode 'octalmode' to change default\n"
1636 " ownership and permissions for communication port.\n"
1637 #endif
1638 #ifdef CONFIG_NETMAP
1639 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1640 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1641 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1642 " netmap device, defaults to '/dev/netmap')\n"
1643 #endif
1644 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1645 " configure a vhost-user network, backed by a chardev 'dev'\n"
1646 "-netdev hubport,id=str,hubid=n\n"
1647 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
1648 DEF("net", HAS_ARG, QEMU_OPTION_net,
1649 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1650 " old way to create a new NIC and connect it to VLAN 'n'\n"
1651 " (use the '-device devtype,netdev=str' option if possible instead)\n"
1652 "-net dump[,vlan=n][,file=f][,len=n]\n"
1653 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
1654 "-net none use it alone to have zero network devices. If no -net option\n"
1655 " is provided, the default is '-net nic -net user'\n"
1656 "-net ["
1657 #ifdef CONFIG_SLIRP
1658 "user|"
1659 #endif
1660 "tap|"
1661 "bridge|"
1662 #ifdef CONFIG_VDE
1663 "vde|"
1664 #endif
1665 #ifdef CONFIG_NETMAP
1666 "netmap|"
1667 #endif
1668 "socket][,vlan=n][,option][,option][,...]\n"
1669 " old way to initialize a host network interface\n"
1670 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1671 STEXI
1672 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
1673 @findex -net
1674 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
1675 = 0 is the default). The NIC is an e1000 by default on the PC
1676 target. Optionally, the MAC address can be changed to @var{mac}, the
1677 device address set to @var{addr} (PCI cards only),
1678 and a @var{name} can be assigned for use in monitor commands.
1679 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
1680 that the card should have; this option currently only affects virtio cards; set
1681 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
1682 NIC is created. QEMU can emulate several different models of network card.
1683 Valid values for @var{type} are
1684 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
1685 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
1686 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
1687 Not all devices are supported on all targets. Use @code{-net nic,model=help}
1688 for a list of available devices for your target.
1689
1690 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1691 @findex -netdev
1692 @item -net user[,@var{option}][,@var{option}][,...]
1693 Use the user mode network stack which requires no administrator
1694 privilege to run. Valid options are:
1695
1696 @table @option
1697 @item vlan=@var{n}
1698 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
1699
1700 @item id=@var{id}
1701 @itemx name=@var{name}
1702 Assign symbolic name for use in monitor commands.
1703
1704 @item net=@var{addr}[/@var{mask}]
1705 Set IP network address the guest will see. Optionally specify the netmask,
1706 either in the form a.b.c.d or as number of valid top-most bits. Default is
1707 10.0.2.0/24.
1708
1709 @item host=@var{addr}
1710 Specify the guest-visible address of the host. Default is the 2nd IP in the
1711 guest network, i.e. x.x.x.2.
1712
1713 @item ip6-net=@var{addr}[/@var{int}]
1714 Set IPv6 network address the guest will see. Optionally specify the prefix
1715 size, as number of valid top-most bits. Default is fec0::/64.
1716
1717 @item ip6-host=@var{addr}
1718 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
1719 the guest network, i.e. xxxx::2.
1720
1721 @item restrict=on|off
1722 If this option is enabled, the guest will be isolated, i.e. it will not be
1723 able to contact the host and no guest IP packets will be routed over the host
1724 to the outside. This option does not affect any explicitly set forwarding rules.
1725
1726 @item hostname=@var{name}
1727 Specifies the client hostname reported by the built-in DHCP server.
1728
1729 @item dhcpstart=@var{addr}
1730 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
1731 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
1732
1733 @item dns=@var{addr}
1734 Specify the guest-visible address of the virtual nameserver. The address must
1735 be different from the host address. Default is the 3rd IP in the guest network,
1736 i.e. x.x.x.3.
1737
1738 @item ip6-dns=@var{addr}
1739 Specify the guest-visible address of the IPv6 virtual nameserver. The address
1740 must be different from the host address. Default is the 3rd IP in the guest
1741 network, i.e. xxxx::3.
1742
1743 @item dnssearch=@var{domain}
1744 Provides an entry for the domain-search list sent by the built-in
1745 DHCP server. More than one domain suffix can be transmitted by specifying
1746 this option multiple times. If supported, this will cause the guest to
1747 automatically try to append the given domain suffix(es) in case a domain name
1748 can not be resolved.
1749
1750 Example:
1751 @example
1752 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
1753 @end example
1754
1755 @item tftp=@var{dir}
1756 When using the user mode network stack, activate a built-in TFTP
1757 server. The files in @var{dir} will be exposed as the root of a TFTP server.
1758 The TFTP client on the guest must be configured in binary mode (use the command
1759 @code{bin} of the Unix TFTP client).
1760
1761 @item bootfile=@var{file}
1762 When using the user mode network stack, broadcast @var{file} as the BOOTP
1763 filename. In conjunction with @option{tftp}, this can be used to network boot
1764 a guest from a local directory.
1765
1766 Example (using pxelinux):
1767 @example
1768 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
1769 @end example
1770
1771 @item smb=@var{dir}[,smbserver=@var{addr}]
1772 When using the user mode network stack, activate a built-in SMB
1773 server so that Windows OSes can access to the host files in @file{@var{dir}}
1774 transparently. The IP address of the SMB server can be set to @var{addr}. By
1775 default the 4th IP in the guest network is used, i.e. x.x.x.4.
1776
1777 In the guest Windows OS, the line:
1778 @example
1779 10.0.2.4 smbserver
1780 @end example
1781 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
1782 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
1783
1784 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
1785
1786 Note that a SAMBA server must be installed on the host OS.
1787 QEMU was tested successfully with smbd versions from Red Hat 9,
1788 Fedora Core 3 and OpenSUSE 11.x.
1789
1790 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
1791 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
1792 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
1793 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
1794 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
1795 be bound to a specific host interface. If no connection type is set, TCP is
1796 used. This option can be given multiple times.
1797
1798 For example, to redirect host X11 connection from screen 1 to guest
1799 screen 0, use the following:
1800
1801 @example
1802 # on the host
1803 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
1804 # this host xterm should open in the guest X11 server
1805 xterm -display :1
1806 @end example
1807
1808 To redirect telnet connections from host port 5555 to telnet port on
1809 the guest, use the following:
1810
1811 @example
1812 # on the host
1813 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
1814 telnet localhost 5555
1815 @end example
1816
1817 Then when you use on the host @code{telnet localhost 5555}, you
1818 connect to the guest telnet server.
1819
1820 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
1821 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
1822 Forward guest TCP connections to the IP address @var{server} on port @var{port}
1823 to the character device @var{dev} or to a program executed by @var{cmd:command}
1824 which gets spawned for each connection. This option can be given multiple times.
1825
1826 You can either use a chardev directly and have that one used throughout QEMU's
1827 lifetime, like in the following example:
1828
1829 @example
1830 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
1831 # the guest accesses it
1832 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
1833 @end example
1834
1835 Or you can execute a command on every TCP connection established by the guest,
1836 so that QEMU behaves similar to an inetd process for that virtual server:
1837
1838 @example
1839 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
1840 # and connect the TCP stream to its stdin/stdout
1841 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
1842 @end example
1843
1844 @end table
1845
1846 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
1847 processed and applied to -net user. Mixing them with the new configuration
1848 syntax gives undefined results. Their use for new applications is discouraged
1849 as they will be removed from future versions.
1850
1851 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,helper=@var{helper}]
1852 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,helper=@var{helper}]
1853 Connect the host TAP network interface @var{name} to VLAN @var{n}.
1854
1855 Use the network script @var{file} to configure it and the network script
1856 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
1857 automatically provides one. The default network configure script is
1858 @file{/etc/qemu-ifup} and the default network deconfigure script is
1859 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
1860 to disable script execution.
1861
1862 If running QEMU as an unprivileged user, use the network helper
1863 @var{helper} to configure the TAP interface. The default network
1864 helper executable is @file{/path/to/qemu-bridge-helper}.
1865
1866 @option{fd}=@var{h} can be used to specify the handle of an already
1867 opened host TAP interface.
1868
1869 Examples:
1870
1871 @example
1872 #launch a QEMU instance with the default network script
1873 qemu-system-i386 linux.img -net nic -net tap
1874 @end example
1875
1876 @example
1877 #launch a QEMU instance with two NICs, each one connected
1878 #to a TAP device
1879 qemu-system-i386 linux.img \
1880 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
1881 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
1882 @end example
1883
1884 @example
1885 #launch a QEMU instance with the default network helper to
1886 #connect a TAP device to bridge br0
1887 qemu-system-i386 linux.img \
1888 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
1889 @end example
1890
1891 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
1892 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
1893 Connect a host TAP network interface to a host bridge device.
1894
1895 Use the network helper @var{helper} to configure the TAP interface and
1896 attach it to the bridge. The default network helper executable is
1897 @file{/path/to/qemu-bridge-helper} and the default bridge
1898 device is @file{br0}.
1899
1900 Examples:
1901
1902 @example
1903 #launch a QEMU instance with the default network helper to
1904 #connect a TAP device to bridge br0
1905 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
1906 @end example
1907
1908 @example
1909 #launch a QEMU instance with the default network helper to
1910 #connect a TAP device to bridge qemubr0
1911 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
1912 @end example
1913
1914 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1915 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1916
1917 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
1918 machine using a TCP socket connection. If @option{listen} is
1919 specified, QEMU waits for incoming connections on @var{port}
1920 (@var{host} is optional). @option{connect} is used to connect to
1921 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
1922 specifies an already opened TCP socket.
1923
1924 Example:
1925 @example
1926 # launch a first QEMU instance
1927 qemu-system-i386 linux.img \
1928 -net nic,macaddr=52:54:00:12:34:56 \
1929 -net socket,listen=:1234
1930 # connect the VLAN 0 of this instance to the VLAN 0
1931 # of the first instance
1932 qemu-system-i386 linux.img \
1933 -net nic,macaddr=52:54:00:12:34:57 \
1934 -net socket,connect=127.0.0.1:1234
1935 @end example
1936
1937 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1938 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1939
1940 Create a VLAN @var{n} shared with another QEMU virtual
1941 machines using a UDP multicast socket, effectively making a bus for
1942 every QEMU with same multicast address @var{maddr} and @var{port}.
1943 NOTES:
1944 @enumerate
1945 @item
1946 Several QEMU can be running on different hosts and share same bus (assuming
1947 correct multicast setup for these hosts).
1948 @item
1949 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1950 @url{http://user-mode-linux.sf.net}.
1951 @item
1952 Use @option{fd=h} to specify an already opened UDP multicast socket.
1953 @end enumerate
1954
1955 Example:
1956 @example
1957 # launch one QEMU instance
1958 qemu-system-i386 linux.img \
1959 -net nic,macaddr=52:54:00:12:34:56 \
1960 -net socket,mcast=230.0.0.1:1234
1961 # launch another QEMU instance on same "bus"
1962 qemu-system-i386 linux.img \
1963 -net nic,macaddr=52:54:00:12:34:57 \
1964 -net socket,mcast=230.0.0.1:1234
1965 # launch yet another QEMU instance on same "bus"
1966 qemu-system-i386 linux.img \
1967 -net nic,macaddr=52:54:00:12:34:58 \
1968 -net socket,mcast=230.0.0.1:1234
1969 @end example
1970
1971 Example (User Mode Linux compat.):
1972 @example
1973 # launch QEMU instance (note mcast address selected
1974 # is UML's default)
1975 qemu-system-i386 linux.img \
1976 -net nic,macaddr=52:54:00:12:34:56 \
1977 -net socket,mcast=239.192.168.1:1102
1978 # launch UML
1979 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
1980 @end example
1981
1982 Example (send packets from host's 1.2.3.4):
1983 @example
1984 qemu-system-i386 linux.img \
1985 -net nic,macaddr=52:54:00:12:34:56 \
1986 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
1987 @end example
1988
1989 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
1990 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
1991 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
1992 protocol to transport Ethernet (and other Layer 2) data frames between
1993 two systems. It is present in routers, firewalls and the Linux kernel
1994 (from version 3.3 onwards).
1995
1996 This transport allows a VM to communicate to another VM, router or firewall directly.
1997
1998 @item src=@var{srcaddr}
1999 source address (mandatory)
2000 @item dst=@var{dstaddr}
2001 destination address (mandatory)
2002 @item udp
2003 select udp encapsulation (default is ip).
2004 @item srcport=@var{srcport}
2005 source udp port.
2006 @item dstport=@var{dstport}
2007 destination udp port.
2008 @item ipv6
2009 force v6, otherwise defaults to v4.
2010 @item rxcookie=@var{rxcookie}
2011 @itemx txcookie=@var{txcookie}
2012 Cookies are a weak form of security in the l2tpv3 specification.
2013 Their function is mostly to prevent misconfiguration. By default they are 32
2014 bit.
2015 @item cookie64
2016 Set cookie size to 64 bit instead of the default 32
2017 @item counter=off
2018 Force a 'cut-down' L2TPv3 with no counter as in
2019 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2020 @item pincounter=on
2021 Work around broken counter handling in peer. This may also help on
2022 networks which have packet reorder.
2023 @item offset=@var{offset}
2024 Add an extra offset between header and data
2025
2026 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2027 on the remote Linux host 1.2.3.4:
2028 @example
2029 # Setup tunnel on linux host using raw ip as encapsulation
2030 # on 1.2.3.4
2031 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2032 encap udp udp_sport 16384 udp_dport 16384
2033 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2034 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2035 ifconfig vmtunnel0 mtu 1500
2036 ifconfig vmtunnel0 up
2037 brctl addif br-lan vmtunnel0
2038
2039
2040 # on 4.3.2.1
2041 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2042
2043 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2044
2045
2046 @end example
2047
2048 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2049 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2050 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2051 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2052 and MODE @var{octalmode} to change default ownership and permissions for
2053 communication port. This option is only available if QEMU has been compiled
2054 with vde support enabled.
2055
2056 Example:
2057 @example
2058 # launch vde switch
2059 vde_switch -F -sock /tmp/myswitch
2060 # launch QEMU instance
2061 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2062 @end example
2063
2064 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2065
2066 Create a hub port on QEMU "vlan" @var{hubid}.
2067
2068 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2069 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2070 required hub automatically.
2071
2072 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2073
2074 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2075 be a unix domain socket backed one. The vhost-user uses a specifically defined
2076 protocol to pass vhost ioctl replacement messages to an application on the other
2077 end of the socket. On non-MSIX guests, the feature can be forced with
2078 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2079 be created for multiqueue vhost-user.
2080
2081 Example:
2082 @example
2083 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2084 -numa node,memdev=mem \
2085 -chardev socket,path=/path/to/socket \
2086 -netdev type=vhost-user,id=net0,chardev=chr0 \
2087 -device virtio-net-pci,netdev=net0
2088 @end example
2089
2090 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2091 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2092 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2093 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2094 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2095
2096 @item -net none
2097 Indicate that no network devices should be configured. It is used to
2098 override the default configuration (@option{-net nic -net user}) which
2099 is activated if no @option{-net} options are provided.
2100 ETEXI
2101
2102 STEXI
2103 @end table
2104 ETEXI
2105 DEFHEADING()
2106
2107 DEFHEADING(Character device options:)
2108 STEXI
2109
2110 The general form of a character device option is:
2111 @table @option
2112 ETEXI
2113
2114 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2115 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2116 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2117 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2118 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2119 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2120 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2121 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2122 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2123 " [,logfile=PATH][,logappend=on|off]\n"
2124 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2125 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2126 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2127 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2128 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2129 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2130 #ifdef _WIN32
2131 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2132 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2133 #else
2134 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2135 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2136 #endif
2137 #ifdef CONFIG_BRLAPI
2138 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2139 #endif
2140 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2141 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2142 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2143 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2144 #endif
2145 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2146 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2147 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2148 #endif
2149 #if defined(CONFIG_SPICE)
2150 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2151 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2152 #endif
2153 , QEMU_ARCH_ALL
2154 )
2155
2156 STEXI
2157 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2158 @findex -chardev
2159 Backend is one of:
2160 @option{null},
2161 @option{socket},
2162 @option{udp},
2163 @option{msmouse},
2164 @option{vc},
2165 @option{ringbuf},
2166 @option{file},
2167 @option{pipe},
2168 @option{console},
2169 @option{serial},
2170 @option{pty},
2171 @option{stdio},
2172 @option{braille},
2173 @option{tty},
2174 @option{parallel},
2175 @option{parport},
2176 @option{spicevmc}.
2177 @option{spiceport}.
2178 The specific backend will determine the applicable options.
2179
2180 All devices must have an id, which can be any string up to 127 characters long.
2181 It is used to uniquely identify this device in other command line directives.
2182
2183 A character device may be used in multiplexing mode by multiple front-ends.
2184 Specify @option{mux=on} to enable this mode.
2185 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2186 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2187 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2188 create a multiplexer with your specified ID, and you can then configure multiple
2189 front ends to use that chardev ID for their input/output. Up to four different
2190 front ends can be connected to a single multiplexed chardev. (Without
2191 multiplexing enabled, a chardev can only be used by a single front end.)
2192 For instance you could use this to allow a single stdio chardev to be used by
2193 two serial ports and the QEMU monitor:
2194
2195 @example
2196 -chardev stdio,mux=on,id=char0 \
2197 -mon chardev=char0,mode=readline,default \
2198 -serial chardev:char0 \
2199 -serial chardev:char0
2200 @end example
2201
2202 You can have more than one multiplexer in a system configuration; for instance
2203 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2204 multiplexed between the QEMU monitor and a parallel port:
2205
2206 @example
2207 -chardev stdio,mux=on,id=char0 \
2208 -mon chardev=char0,mode=readline,default \
2209 -parallel chardev:char0 \
2210 -chardev tcp,...,mux=on,id=char1 \
2211 -serial chardev:char1 \
2212 -serial chardev:char1
2213 @end example
2214
2215 When you're using a multiplexed character device, some escape sequences are
2216 interpreted in the input. @xref{mux_keys, Keys in the character backend
2217 multiplexer}.
2218
2219 Note that some other command line options may implicitly create multiplexed
2220 character backends; for instance @option{-serial mon:stdio} creates a
2221 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2222 and @option{-nographic} also multiplexes the console and the monitor to
2223 stdio.
2224
2225 There is currently no support for multiplexing in the other direction
2226 (where a single QEMU front end takes input and output from multiple chardevs).
2227
2228 Every backend supports the @option{logfile} option, which supplies the path
2229 to a file to record all data transmitted via the backend. The @option{logappend}
2230 option controls whether the log file will be truncated or appended to when
2231 opened.
2232
2233 Further options to each backend are described below.
2234
2235 @item -chardev null ,id=@var{id}
2236 A void device. This device will not emit any data, and will drop any data it
2237 receives. The null backend does not take any options.
2238
2239 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}]
2240
2241 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2242 unix socket will be created if @option{path} is specified. Behaviour is
2243 undefined if TCP options are specified for a unix socket.
2244
2245 @option{server} specifies that the socket shall be a listening socket.
2246
2247 @option{nowait} specifies that QEMU should not block waiting for a client to
2248 connect to a listening socket.
2249
2250 @option{telnet} specifies that traffic on the socket should interpret telnet
2251 escape sequences.
2252
2253 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2254 the remote end goes away. qemu will delay this many seconds and then attempt
2255 to reconnect. Zero disables reconnecting, and is the default.
2256
2257 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2258 and specifies the id of the TLS credentials to use for the handshake. The
2259 credentials must be previously created with the @option{-object tls-creds}
2260 argument.
2261
2262 TCP and unix socket options are given below:
2263
2264 @table @option
2265
2266 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2267
2268 @option{host} for a listening socket specifies the local address to be bound.
2269 For a connecting socket species the remote host to connect to. @option{host} is
2270 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2271
2272 @option{port} for a listening socket specifies the local port to be bound. For a
2273 connecting socket specifies the port on the remote host to connect to.
2274 @option{port} can be given as either a port number or a service name.
2275 @option{port} is required.
2276
2277 @option{to} is only relevant to listening sockets. If it is specified, and
2278 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2279 to and including @option{to} until it succeeds. @option{to} must be specified
2280 as a port number.
2281
2282 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2283 If neither is specified the socket may use either protocol.
2284
2285 @option{nodelay} disables the Nagle algorithm.
2286
2287 @item unix options: path=@var{path}
2288
2289 @option{path} specifies the local path of the unix socket. @option{path} is
2290 required.
2291
2292 @end table
2293
2294 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2295
2296 Sends all traffic from the guest to a remote host over UDP.
2297
2298 @option{host} specifies the remote host to connect to. If not specified it
2299 defaults to @code{localhost}.
2300
2301 @option{port} specifies the port on the remote host to connect to. @option{port}
2302 is required.
2303
2304 @option{localaddr} specifies the local address to bind to. If not specified it
2305 defaults to @code{0.0.0.0}.
2306
2307 @option{localport} specifies the local port to bind to. If not specified any
2308 available local port will be used.
2309
2310 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2311 If neither is specified the device may use either protocol.
2312
2313 @item -chardev msmouse ,id=@var{id}
2314
2315 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2316 take any options.
2317
2318 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2319
2320 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2321 size.
2322
2323 @option{width} and @option{height} specify the width and height respectively of
2324 the console, in pixels.
2325
2326 @option{cols} and @option{rows} specify that the console be sized to fit a text
2327 console with the given dimensions.
2328
2329 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2330
2331 Create a ring buffer with fixed size @option{size}.
2332 @var{size} must be a power of two, and defaults to @code{64K}).
2333
2334 @item -chardev file ,id=@var{id} ,path=@var{path}
2335
2336 Log all traffic received from the guest to a file.
2337
2338 @option{path} specifies the path of the file to be opened. This file will be
2339 created if it does not already exist, and overwritten if it does. @option{path}
2340 is required.
2341
2342 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2343
2344 Create a two-way connection to the guest. The behaviour differs slightly between
2345 Windows hosts and other hosts:
2346
2347 On Windows, a single duplex pipe will be created at
2348 @file{\\.pipe\@option{path}}.
2349
2350 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2351 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2352 received by the guest. Data written by the guest can be read from
2353 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2354 be present.
2355
2356 @option{path} forms part of the pipe path as described above. @option{path} is
2357 required.
2358
2359 @item -chardev console ,id=@var{id}
2360
2361 Send traffic from the guest to QEMU's standard output. @option{console} does not
2362 take any options.
2363
2364 @option{console} is only available on Windows hosts.
2365
2366 @item -chardev serial ,id=@var{id} ,path=@option{path}
2367
2368 Send traffic from the guest to a serial device on the host.
2369
2370 On Unix hosts serial will actually accept any tty device,
2371 not only serial lines.
2372
2373 @option{path} specifies the name of the serial device to open.
2374
2375 @item -chardev pty ,id=@var{id}
2376
2377 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2378 not take any options.
2379
2380 @option{pty} is not available on Windows hosts.
2381
2382 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2383 Connect to standard input and standard output of the QEMU process.
2384
2385 @option{signal} controls if signals are enabled on the terminal, that includes
2386 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2387 default, use @option{signal=off} to disable it.
2388
2389 @option{stdio} is not available on Windows hosts.
2390
2391 @item -chardev braille ,id=@var{id}
2392
2393 Connect to a local BrlAPI server. @option{braille} does not take any options.
2394
2395 @item -chardev tty ,id=@var{id} ,path=@var{path}
2396
2397 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2398 DragonFlyBSD hosts. It is an alias for @option{serial}.
2399
2400 @option{path} specifies the path to the tty. @option{path} is required.
2401
2402 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2403 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2404
2405 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2406
2407 Connect to a local parallel port.
2408
2409 @option{path} specifies the path to the parallel port device. @option{path} is
2410 required.
2411
2412 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2413
2414 @option{spicevmc} is only available when spice support is built in.
2415
2416 @option{debug} debug level for spicevmc
2417
2418 @option{name} name of spice channel to connect to
2419
2420 Connect to a spice virtual machine channel, such as vdiport.
2421
2422 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2423
2424 @option{spiceport} is only available when spice support is built in.
2425
2426 @option{debug} debug level for spicevmc
2427
2428 @option{name} name of spice port to connect to
2429
2430 Connect to a spice port, allowing a Spice client to handle the traffic
2431 identified by a name (preferably a fqdn).
2432 ETEXI
2433
2434 STEXI
2435 @end table
2436 ETEXI
2437 DEFHEADING()
2438
2439 DEFHEADING(Device URL Syntax:)
2440 STEXI
2441
2442 In addition to using normal file images for the emulated storage devices,
2443 QEMU can also use networked resources such as iSCSI devices. These are
2444 specified using a special URL syntax.
2445
2446 @table @option
2447 @item iSCSI
2448 iSCSI support allows QEMU to access iSCSI resources directly and use as
2449 images for the guest storage. Both disk and cdrom images are supported.
2450
2451 Syntax for specifying iSCSI LUNs is
2452 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2453
2454 By default qemu will use the iSCSI initiator-name
2455 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2456 line or a configuration file.
2457
2458 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2459 stalled requests and force a reestablishment of the session. The timeout
2460 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2461 1.15.0 or greater is required for this feature.
2462
2463 Example (without authentication):
2464 @example
2465 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2466 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2467 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2468 @end example
2469
2470 Example (CHAP username/password via URL):
2471 @example
2472 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2473 @end example
2474
2475 Example (CHAP username/password via environment variables):
2476 @example
2477 LIBISCSI_CHAP_USERNAME="user" \
2478 LIBISCSI_CHAP_PASSWORD="password" \
2479 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2480 @end example
2481
2482 iSCSI support is an optional feature of QEMU and only available when
2483 compiled and linked against libiscsi.
2484 ETEXI
2485 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2486 "-iscsi [user=user][,password=password]\n"
2487 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2488 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2489 " [,timeout=timeout]\n"
2490 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2491 STEXI
2492
2493 iSCSI parameters such as username and password can also be specified via
2494 a configuration file. See qemu-doc for more information and examples.
2495
2496 @item NBD
2497 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2498 as Unix Domain Sockets.
2499
2500 Syntax for specifying a NBD device using TCP
2501 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2502
2503 Syntax for specifying a NBD device using Unix Domain Sockets
2504 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2505
2506
2507 Example for TCP
2508 @example
2509 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2510 @end example
2511
2512 Example for Unix Domain Sockets
2513 @example
2514 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2515 @end example
2516
2517 @item SSH
2518 QEMU supports SSH (Secure Shell) access to remote disks.
2519
2520 Examples:
2521 @example
2522 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2523 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2524 @end example
2525
2526 Currently authentication must be done using ssh-agent. Other
2527 authentication methods may be supported in future.
2528
2529 @item Sheepdog
2530 Sheepdog is a distributed storage system for QEMU.
2531 QEMU supports using either local sheepdog devices or remote networked
2532 devices.
2533
2534 Syntax for specifying a sheepdog device
2535 @example
2536 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2537 @end example
2538
2539 Example
2540 @example
2541 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2542 @end example
2543
2544 See also @url{http://http://www.osrg.net/sheepdog/}.
2545
2546 @item GlusterFS
2547 GlusterFS is an user space distributed file system.
2548 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2549 TCP, Unix Domain Sockets and RDMA transport protocols.
2550
2551 Syntax for specifying a VM disk image on GlusterFS volume is
2552 @example
2553 gluster[+transport]://[server[:port]]/volname/image[?socket=...]
2554 @end example
2555
2556
2557 Example
2558 @example
2559 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img
2560 @end example
2561
2562 See also @url{http://www.gluster.org}.
2563
2564 @item HTTP/HTTPS/FTP/FTPS/TFTP
2565 QEMU supports read-only access to files accessed over http(s), ftp(s) and tftp.
2566
2567 Syntax using a single filename:
2568 @example
2569 <protocol>://[<username>[:<password>]@@]<host>/<path>
2570 @end example
2571
2572 where:
2573 @table @option
2574 @item protocol
2575 'http', 'https', 'ftp', 'ftps', or 'tftp'.
2576
2577 @item username
2578 Optional username for authentication to the remote server.
2579
2580 @item password
2581 Optional password for authentication to the remote server.
2582
2583 @item host
2584 Address of the remote server.
2585
2586 @item path
2587 Path on the remote server, including any query string.
2588 @end table
2589
2590 The following options are also supported:
2591 @table @option
2592 @item url
2593 The full URL when passing options to the driver explicitly.
2594
2595 @item readahead
2596 The amount of data to read ahead with each range request to the remote server.
2597 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
2598 does not have a suffix, it will be assumed to be in bytes. The value must be a
2599 multiple of 512 bytes. It defaults to 256k.
2600
2601 @item sslverify
2602 Whether to verify the remote server's certificate when connecting over SSL. It
2603 can have the value 'on' or 'off'. It defaults to 'on'.
2604
2605 @item cookie
2606 Send this cookie (it can also be a list of cookies separated by ';') with
2607 each outgoing request. Only supported when using protocols such as HTTP
2608 which support cookies, otherwise ignored.
2609
2610 @item timeout
2611 Set the timeout in seconds of the CURL connection. This timeout is the time
2612 that CURL waits for a response from the remote server to get the size of the
2613 image to be downloaded. If not set, the default timeout of 5 seconds is used.
2614 @end table
2615
2616 Note that when passing options to qemu explicitly, @option{driver} is the value
2617 of <protocol>.
2618
2619 Example: boot from a remote Fedora 20 live ISO image
2620 @example
2621 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2622
2623 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2624 @end example
2625
2626 Example: boot from a remote Fedora 20 cloud image using a local overlay for
2627 writes, copy-on-read, and a readahead of 64k
2628 @example
2629 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
2630
2631 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
2632 @end example
2633
2634 Example: boot from an image stored on a VMware vSphere server with a self-signed
2635 certificate using a local overlay for writes, a readahead of 64k and a timeout
2636 of 10 seconds.
2637 @example
2638 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
2639
2640 qemu-system-x86_64 -drive file=/tmp/test.qcow2
2641 @end example
2642 ETEXI
2643
2644 STEXI
2645 @end table
2646 ETEXI
2647
2648 DEFHEADING(Bluetooth(R) options:)
2649 STEXI
2650 @table @option
2651 ETEXI
2652
2653 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2654 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2655 "-bt hci,host[:id]\n" \
2656 " use host's HCI with the given name\n" \
2657 "-bt hci[,vlan=n]\n" \
2658 " emulate a standard HCI in virtual scatternet 'n'\n" \
2659 "-bt vhci[,vlan=n]\n" \
2660 " add host computer to virtual scatternet 'n' using VHCI\n" \
2661 "-bt device:dev[,vlan=n]\n" \
2662 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2663 QEMU_ARCH_ALL)
2664 STEXI
2665 @item -bt hci[...]
2666 @findex -bt
2667 Defines the function of the corresponding Bluetooth HCI. -bt options
2668 are matched with the HCIs present in the chosen machine type. For
2669 example when emulating a machine with only one HCI built into it, only
2670 the first @code{-bt hci[...]} option is valid and defines the HCI's
2671 logic. The Transport Layer is decided by the machine type. Currently
2672 the machines @code{n800} and @code{n810} have one HCI and all other
2673 machines have none.
2674
2675 @anchor{bt-hcis}
2676 The following three types are recognized:
2677
2678 @table @option
2679 @item -bt hci,null
2680 (default) The corresponding Bluetooth HCI assumes no internal logic
2681 and will not respond to any HCI commands or emit events.
2682
2683 @item -bt hci,host[:@var{id}]
2684 (@code{bluez} only) The corresponding HCI passes commands / events
2685 to / from the physical HCI identified by the name @var{id} (default:
2686 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2687 capable systems like Linux.
2688
2689 @item -bt hci[,vlan=@var{n}]
2690 Add a virtual, standard HCI that will participate in the Bluetooth
2691 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2692 VLANs, devices inside a bluetooth network @var{n} can only communicate
2693 with other devices in the same network (scatternet).
2694 @end table
2695
2696 @item -bt vhci[,vlan=@var{n}]
2697 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2698 to the host bluetooth stack instead of to the emulated target. This
2699 allows the host and target machines to participate in a common scatternet
2700 and communicate. Requires the Linux @code{vhci} driver installed. Can
2701 be used as following:
2702
2703 @example
2704 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2705 @end example
2706
2707 @item -bt device:@var{dev}[,vlan=@var{n}]
2708 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2709 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2710 currently:
2711
2712 @table @option
2713 @item keyboard
2714 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2715 @end table
2716 ETEXI
2717
2718 STEXI
2719 @end table
2720 ETEXI
2721 DEFHEADING()
2722
2723 #ifdef CONFIG_TPM
2724 DEFHEADING(TPM device options:)
2725
2726 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2727 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2728 " use path to provide path to a character device; default is /dev/tpm0\n"
2729 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2730 " not provided it will be searched for in /sys/class/misc/tpm?/device\n",
2731 QEMU_ARCH_ALL)
2732 STEXI
2733
2734 The general form of a TPM device option is:
2735 @table @option
2736
2737 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
2738 @findex -tpmdev
2739 Backend type must be:
2740 @option{passthrough}.
2741
2742 The specific backend type will determine the applicable options.
2743 The @code{-tpmdev} option creates the TPM backend and requires a
2744 @code{-device} option that specifies the TPM frontend interface model.
2745
2746 Options to each backend are described below.
2747
2748 Use 'help' to print all available TPM backend types.
2749 @example
2750 qemu -tpmdev help
2751 @end example
2752
2753 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
2754
2755 (Linux-host only) Enable access to the host's TPM using the passthrough
2756 driver.
2757
2758 @option{path} specifies the path to the host's TPM device, i.e., on
2759 a Linux host this would be @code{/dev/tpm0}.
2760 @option{path} is optional and by default @code{/dev/tpm0} is used.
2761
2762 @option{cancel-path} specifies the path to the host TPM device's sysfs
2763 entry allowing for cancellation of an ongoing TPM command.
2764 @option{cancel-path} is optional and by default QEMU will search for the
2765 sysfs entry to use.
2766
2767 Some notes about using the host's TPM with the passthrough driver:
2768
2769 The TPM device accessed by the passthrough driver must not be
2770 used by any other application on the host.
2771
2772 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2773 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2774 TPM again and may therefore not show a TPM-specific menu that would
2775 otherwise allow the user to configure the TPM, e.g., allow the user to
2776 enable/disable or activate/deactivate the TPM.
2777 Further, if TPM ownership is released from within a VM then the host's TPM
2778 will get disabled and deactivated. To enable and activate the
2779 TPM again afterwards, the host has to be rebooted and the user is
2780 required to enter the firmware's menu to enable and activate the TPM.
2781 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2782
2783 To create a passthrough TPM use the following two options:
2784 @example
2785 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2786 @end example
2787 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2788 @code{tpmdev=tpm0} in the device option.
2789
2790 @end table
2791
2792 ETEXI
2793
2794 DEFHEADING()
2795
2796 #endif
2797
2798 DEFHEADING(Linux/Multiboot boot specific:)
2799 STEXI
2800
2801 When using these options, you can use a given Linux or Multiboot
2802 kernel without installing it in the disk image. It can be useful
2803 for easier testing of various kernels.
2804
2805 @table @option
2806 ETEXI
2807
2808 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2809 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2810 STEXI
2811 @item -kernel @var{bzImage}
2812 @findex -kernel
2813 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2814 or in multiboot format.
2815 ETEXI
2816
2817 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2818 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2819 STEXI
2820 @item -append @var{cmdline}
2821 @findex -append
2822 Use @var{cmdline} as kernel command line
2823 ETEXI
2824
2825 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2826 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2827 STEXI
2828 @item -initrd @var{file}
2829 @findex -initrd
2830 Use @var{file} as initial ram disk.
2831
2832 @item -initrd "@var{file1} arg=foo,@var{file2}"
2833
2834 This syntax is only available with multiboot.
2835
2836 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2837 first module.
2838 ETEXI
2839
2840 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2841 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2842 STEXI
2843 @item -dtb @var{file}
2844 @findex -dtb
2845 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2846 on boot.
2847 ETEXI
2848
2849 STEXI
2850 @end table
2851 ETEXI
2852 DEFHEADING()
2853
2854 DEFHEADING(Debug/Expert options:)
2855 STEXI
2856 @table @option
2857 ETEXI
2858
2859 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2860 "-fw_cfg [name=]<name>,file=<file>\n"
2861 " add named fw_cfg entry from file\n"
2862 "-fw_cfg [name=]<name>,string=<str>\n"
2863 " add named fw_cfg entry from string\n",
2864 QEMU_ARCH_ALL)
2865 STEXI
2866 @item -fw_cfg [name=]@var{name},file=@var{file}
2867 @findex -fw_cfg
2868 Add named fw_cfg entry from file. @var{name} determines the name of
2869 the entry in the fw_cfg file directory exposed to the guest.
2870
2871 @item -fw_cfg [name=]@var{name},string=@var{str}
2872 Add named fw_cfg entry from string.
2873 ETEXI
2874
2875 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
2876 "-serial dev redirect the serial port to char device 'dev'\n",
2877 QEMU_ARCH_ALL)
2878 STEXI
2879 @item -serial @var{dev}
2880 @findex -serial
2881 Redirect the virtual serial port to host character device
2882 @var{dev}. The default device is @code{vc} in graphical mode and
2883 @code{stdio} in non graphical mode.
2884
2885 This option can be used several times to simulate up to 4 serial
2886 ports.
2887
2888 Use @code{-serial none} to disable all serial ports.
2889
2890 Available character devices are:
2891 @table @option
2892 @item vc[:@var{W}x@var{H}]
2893 Virtual console. Optionally, a width and height can be given in pixel with
2894 @example
2895 vc:800x600
2896 @end example
2897 It is also possible to specify width or height in characters:
2898 @example
2899 vc:80Cx24C
2900 @end example
2901 @item pty
2902 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
2903 @item none
2904 No device is allocated.
2905 @item null
2906 void device
2907 @item chardev:@var{id}
2908 Use a named character device defined with the @code{-chardev} option.
2909 @item /dev/XXX
2910 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
2911 parameters are set according to the emulated ones.
2912 @item /dev/parport@var{N}
2913 [Linux only, parallel port only] Use host parallel port
2914 @var{N}. Currently SPP and EPP parallel port features can be used.
2915 @item file:@var{filename}
2916 Write output to @var{filename}. No character can be read.
2917 @item stdio
2918 [Unix only] standard input/output
2919 @item pipe:@var{filename}
2920 name pipe @var{filename}
2921 @item COM@var{n}
2922 [Windows only] Use host serial port @var{n}
2923 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
2924 This implements UDP Net Console.
2925 When @var{remote_host} or @var{src_ip} are not specified
2926 they default to @code{0.0.0.0}.
2927 When not using a specified @var{src_port} a random port is automatically chosen.
2928
2929 If you just want a simple readonly console you can use @code{netcat} or
2930 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
2931 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
2932 will appear in the netconsole session.
2933
2934 If you plan to send characters back via netconsole or you want to stop
2935 and start QEMU a lot of times, you should have QEMU use the same
2936 source port each time by using something like @code{-serial
2937 udp::4555@@:4556} to QEMU. Another approach is to use a patched
2938 version of netcat which can listen to a TCP port and send and receive
2939 characters via udp. If you have a patched version of netcat which
2940 activates telnet remote echo and single char transfer, then you can
2941 use the following options to step up a netcat redirector to allow
2942 telnet on port 5555 to access the QEMU port.
2943 @table @code
2944 @item QEMU Options:
2945 -serial udp::4555@@:4556
2946 @item netcat options:
2947 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
2948 @item telnet options:
2949 localhost 5555
2950 @end table
2951
2952 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
2953 The TCP Net Console has two modes of operation. It can send the serial
2954 I/O to a location or wait for a connection from a location. By default
2955 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
2956 the @var{server} option QEMU will wait for a client socket application
2957 to connect to the port before continuing, unless the @code{nowait}
2958 option was specified. The @code{nodelay} option disables the Nagle buffering
2959 algorithm. The @code{reconnect} option only applies if @var{noserver} is
2960 set, if the connection goes down it will attempt to reconnect at the
2961 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
2962 one TCP connection at a time is accepted. You can use @code{telnet} to
2963 connect to the corresponding character device.
2964 @table @code
2965 @item Example to send tcp console to 192.168.0.2 port 4444
2966 -serial tcp:192.168.0.2:4444
2967 @item Example to listen and wait on port 4444 for connection
2968 -serial tcp::4444,server
2969 @item Example to not wait and listen on ip 192.168.0.100 port 4444
2970 -serial tcp:192.168.0.100:4444,server,nowait
2971 @end table
2972
2973 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
2974 The telnet protocol is used instead of raw tcp sockets. The options
2975 work the same as if you had specified @code{-serial tcp}. The
2976 difference is that the port acts like a telnet server or client using
2977 telnet option negotiation. This will also allow you to send the
2978 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
2979 sequence. Typically in unix telnet you do it with Control-] and then
2980 type "send break" followed by pressing the enter key.
2981
2982 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
2983 A unix domain socket is used instead of a tcp socket. The option works the
2984 same as if you had specified @code{-serial tcp} except the unix domain socket
2985 @var{path} is used for connections.
2986
2987 @item mon:@var{dev_string}
2988 This is a special option to allow the monitor to be multiplexed onto
2989 another serial port. The monitor is accessed with key sequence of
2990 @key{Control-a} and then pressing @key{c}.
2991 @var{dev_string} should be any one of the serial devices specified
2992 above. An example to multiplex the monitor onto a telnet server
2993 listening on port 4444 would be:
2994 @table @code
2995 @item -serial mon:telnet::4444,server,nowait
2996 @end table
2997 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
2998 QEMU any more but will be passed to the guest instead.
2999
3000 @item braille
3001 Braille device. This will use BrlAPI to display the braille output on a real
3002 or fake device.
3003
3004 @item msmouse
3005 Three button serial mouse. Configure the guest to use Microsoft protocol.
3006 @end table
3007 ETEXI
3008
3009 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3010 "-parallel dev redirect the parallel port to char device 'dev'\n",
3011 QEMU_ARCH_ALL)
3012 STEXI
3013 @item -parallel @var{dev}
3014 @findex -parallel
3015 Redirect the virtual parallel port to host device @var{dev} (same
3016 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3017 be used to use hardware devices connected on the corresponding host
3018 parallel port.
3019
3020 This option can be used several times to simulate up to 3 parallel
3021 ports.
3022
3023 Use @code{-parallel none} to disable all parallel ports.
3024 ETEXI
3025
3026 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3027 "-monitor dev redirect the monitor to char device 'dev'\n",
3028 QEMU_ARCH_ALL)
3029 STEXI
3030 @item -monitor @var{dev}
3031 @findex -monitor
3032 Redirect the monitor to host device @var{dev} (same devices as the
3033 serial port).
3034 The default device is @code{vc} in graphical mode and @code{stdio} in
3035 non graphical mode.
3036 Use @code{-monitor none} to disable the default monitor.
3037 ETEXI
3038 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3039 "-qmp dev like -monitor but opens in 'control' mode\n",
3040 QEMU_ARCH_ALL)
3041 STEXI
3042 @item -qmp @var{dev}
3043 @findex -qmp
3044 Like -monitor but opens in 'control' mode.
3045 ETEXI
3046 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3047 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3048 QEMU_ARCH_ALL)
3049 STEXI
3050 @item -qmp-pretty @var{dev}
3051 @findex -qmp-pretty
3052 Like -qmp but uses pretty JSON formatting.
3053 ETEXI
3054
3055 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3056 "-mon [chardev=]name[,mode=readline|control][,default]\n", QEMU_ARCH_ALL)
3057 STEXI
3058 @item -mon [chardev=]name[,mode=readline|control][,default]
3059 @findex -mon
3060 Setup monitor on chardev @var{name}.
3061 ETEXI
3062
3063 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3064 "-debugcon dev redirect the debug console to char device 'dev'\n",
3065 QEMU_ARCH_ALL)
3066 STEXI
3067 @item -debugcon @var{dev}
3068 @findex -debugcon
3069 Redirect the debug console to host device @var{dev} (same devices as the
3070 serial port). The debug console is an I/O port which is typically port
3071 0xe9; writing to that I/O port sends output to this device.
3072 The default device is @code{vc} in graphical mode and @code{stdio} in
3073 non graphical mode.
3074 ETEXI
3075
3076 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3077 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3078 STEXI
3079 @item -pidfile @var{file}
3080 @findex -pidfile
3081 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3082 from a script.
3083 ETEXI
3084
3085 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3086 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3087 STEXI
3088 @item -singlestep
3089 @findex -singlestep
3090 Run the emulation in single step mode.
3091 ETEXI
3092
3093 DEF("S", 0, QEMU_OPTION_S, \
3094 "-S freeze CPU at startup (use 'c' to start execution)\n",
3095 QEMU_ARCH_ALL)
3096 STEXI
3097 @item -S
3098 @findex -S
3099 Do not start CPU at startup (you must type 'c' in the monitor).
3100 ETEXI
3101
3102 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3103 "-realtime [mlock=on|off]\n"
3104 " run qemu with realtime features\n"
3105 " mlock=on|off controls mlock support (default: on)\n",
3106 QEMU_ARCH_ALL)
3107 STEXI
3108 @item -realtime mlock=on|off
3109 @findex -realtime
3110 Run qemu with realtime features.
3111 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3112 (enabled by default).
3113 ETEXI
3114
3115 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3116 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3117 STEXI
3118 @item -gdb @var{dev}
3119 @findex -gdb
3120 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3121 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3122 stdio are reasonable use case. The latter is allowing to start QEMU from
3123 within gdb and establish the connection via a pipe:
3124 @example
3125 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3126 @end example
3127 ETEXI
3128
3129 DEF("s", 0, QEMU_OPTION_s, \
3130 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3131 QEMU_ARCH_ALL)
3132 STEXI
3133 @item -s
3134 @findex -s
3135 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3136 (@pxref{gdb_usage}).
3137 ETEXI
3138
3139 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3140 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3141 QEMU_ARCH_ALL)
3142 STEXI
3143 @item -d @var{item1}[,...]
3144 @findex -d
3145 Enable logging of specified items. Use '-d help' for a list of log items.
3146 ETEXI
3147
3148 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3149 "-D logfile output log to logfile (default stderr)\n",
3150 QEMU_ARCH_ALL)
3151 STEXI
3152 @item -D @var{logfile}
3153 @findex -D
3154 Output log in @var{logfile} instead of to stderr
3155 ETEXI
3156
3157 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3158 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3159 QEMU_ARCH_ALL)
3160 STEXI
3161 @item -dfilter @var{range1}[,...]
3162 @findex -dfilter
3163 Filter debug output to that relevant to a range of target addresses. The filter
3164 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3165 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3166 addresses and sizes required. For example:
3167 @example
3168 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3169 @end example
3170 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3171 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3172 block starting at 0xffffffc00005f000.
3173 ETEXI
3174
3175 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3176 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3177 QEMU_ARCH_ALL)
3178 STEXI
3179 @item -L @var{path}
3180 @findex -L
3181 Set the directory for the BIOS, VGA BIOS and keymaps.
3182 ETEXI
3183
3184 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3185 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3186 STEXI
3187 @item -bios @var{file}
3188 @findex -bios
3189 Set the filename for the BIOS.
3190 ETEXI
3191
3192 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3193 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3194 STEXI
3195 @item -enable-kvm
3196 @findex -enable-kvm
3197 Enable KVM full virtualization support. This option is only available
3198 if KVM support is enabled when compiling.
3199 ETEXI
3200
3201 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3202 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3203 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3204 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3205 " warning: should not be used when xend is in use\n",
3206 QEMU_ARCH_ALL)
3207 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3208 "-xen-attach attach to existing xen domain\n"
3209 " xend will use this when starting QEMU\n",
3210 QEMU_ARCH_ALL)
3211 STEXI
3212 @item -xen-domid @var{id}
3213 @findex -xen-domid
3214 Specify xen guest domain @var{id} (XEN only).
3215 @item -xen-create
3216 @findex -xen-create
3217 Create domain using xen hypercalls, bypassing xend.
3218 Warning: should not be used when xend is in use (XEN only).
3219 @item -xen-attach
3220 @findex -xen-attach
3221 Attach to existing xen domain.
3222 xend will use this when starting QEMU (XEN only).
3223 ETEXI
3224
3225 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3226 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3227 STEXI
3228 @item -no-reboot
3229 @findex -no-reboot
3230 Exit instead of rebooting.
3231 ETEXI
3232
3233 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3234 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3235 STEXI
3236 @item -no-shutdown
3237 @findex -no-shutdown
3238 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3239 This allows for instance switching to monitor to commit changes to the
3240 disk image.
3241 ETEXI
3242
3243 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3244 "-loadvm [tag|id]\n" \
3245 " start right away with a saved state (loadvm in monitor)\n",
3246 QEMU_ARCH_ALL)
3247 STEXI
3248 @item -loadvm @var{file}
3249 @findex -loadvm
3250 Start right away with a saved state (@code{loadvm} in monitor)
3251 ETEXI
3252
3253 #ifndef _WIN32
3254 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3255 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3256 #endif
3257 STEXI
3258 @item -daemonize
3259 @findex -daemonize
3260 Daemonize the QEMU process after initialization. QEMU will not detach from
3261 standard IO until it is ready to receive connections on any of its devices.
3262 This option is a useful way for external programs to launch QEMU without having
3263 to cope with initialization race conditions.
3264 ETEXI
3265
3266 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3267 "-option-rom rom load a file, rom, into the option ROM space\n",
3268 QEMU_ARCH_ALL)
3269 STEXI
3270 @item -option-rom @var{file}
3271 @findex -option-rom
3272 Load the contents of @var{file} as an option ROM.
3273 This option is useful to load things like EtherBoot.
3274 ETEXI
3275
3276 HXCOMM Silently ignored for compatibility
3277 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3278
3279 HXCOMM Options deprecated by -rtc
3280 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3281 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3282
3283 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3284 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3285 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3286 QEMU_ARCH_ALL)
3287
3288 STEXI
3289
3290 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3291 @findex -rtc
3292 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3293 UTC or local time, respectively. @code{localtime} is required for correct date in
3294 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3295 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3296
3297 By default the RTC is driven by the host system time. This allows using of the
3298 RTC as accurate reference clock inside the guest, specifically if the host
3299 time is smoothly following an accurate external reference clock, e.g. via NTP.
3300 If you want to isolate the guest time from the host, you can set @option{clock}
3301 to @code{rt} instead. To even prevent it from progressing during suspension,
3302 you can set it to @code{vm}.
3303
3304 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3305 specifically with Windows' ACPI HAL. This option will try to figure out how
3306 many timer interrupts were not processed by the Windows guest and will
3307 re-inject them.
3308 ETEXI
3309
3310 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3311 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>]\n" \
3312 " enable virtual instruction counter with 2^N clock ticks per\n" \
3313 " instruction, enable aligning the host and virtual clocks\n" \
3314 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3315 STEXI
3316 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename}]
3317 @findex -icount
3318 Enable virtual instruction counter. The virtual cpu will execute one
3319 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3320 then the virtual cpu speed will be automatically adjusted to keep virtual
3321 time within a few seconds of real time.
3322
3323 When the virtual cpu is sleeping, the virtual time will advance at default
3324 speed unless @option{sleep=on|off} is specified.
3325 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3326 instantly whenever the virtual cpu goes to sleep mode and will not advance
3327 if no timer is enabled. This behavior give deterministic execution times from
3328 the guest point of view.
3329
3330 Note that while this option can give deterministic behavior, it does not
3331 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3332 order cores with complex cache hierarchies. The number of instructions
3333 executed often has little or no correlation with actual performance.
3334
3335 @option{align=on} will activate the delay algorithm which will try
3336 to synchronise the host clock and the virtual clock. The goal is to
3337 have a guest running at the real frequency imposed by the shift option.
3338 Whenever the guest clock is behind the host clock and if
3339 @option{align=on} is specified then we print a message to the user
3340 to inform about the delay.
3341 Currently this option does not work when @option{shift} is @code{auto}.
3342 Note: The sync algorithm will work for those shift values for which
3343 the guest clock runs ahead of the host clock. Typically this happens
3344 when the shift value is high (how high depends on the host machine).
3345
3346 When @option{rr} option is specified deterministic record/replay is enabled.
3347 Replay log is written into @var{filename} file in record mode and
3348 read from this file in replay mode.
3349 ETEXI
3350
3351 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3352 "-watchdog model\n" \
3353 " enable virtual hardware watchdog [default=none]\n",
3354 QEMU_ARCH_ALL)
3355 STEXI
3356 @item -watchdog @var{model}
3357 @findex -watchdog
3358 Create a virtual hardware watchdog device. Once enabled (by a guest
3359 action), the watchdog must be periodically polled by an agent inside
3360 the guest or else the guest will be restarted. Choose a model for
3361 which your guest has drivers.
3362
3363 The @var{model} is the model of hardware watchdog to emulate. Use
3364 @code{-watchdog help} to list available hardware models. Only one
3365 watchdog can be enabled for a guest.
3366
3367 The following models may be available:
3368 @table @option
3369 @item ib700
3370 iBASE 700 is a very simple ISA watchdog with a single timer.
3371 @item i6300esb
3372 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3373 dual-timer watchdog.
3374 @item diag288
3375 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3376 (currently KVM only).
3377 @end table
3378 ETEXI
3379
3380 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3381 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3382 " action when watchdog fires [default=reset]\n",
3383 QEMU_ARCH_ALL)
3384 STEXI
3385 @item -watchdog-action @var{action}
3386 @findex -watchdog-action
3387
3388 The @var{action} controls what QEMU will do when the watchdog timer
3389 expires.
3390 The default is
3391 @code{reset} (forcefully reset the guest).
3392 Other possible actions are:
3393 @code{shutdown} (attempt to gracefully shutdown the guest),
3394 @code{poweroff} (forcefully poweroff the guest),
3395 @code{pause} (pause the guest),
3396 @code{debug} (print a debug message and continue), or
3397 @code{none} (do nothing).
3398
3399 Note that the @code{shutdown} action requires that the guest responds
3400 to ACPI signals, which it may not be able to do in the sort of
3401 situations where the watchdog would have expired, and thus
3402 @code{-watchdog-action shutdown} is not recommended for production use.
3403
3404 Examples:
3405
3406 @table @code
3407 @item -watchdog i6300esb -watchdog-action pause
3408 @itemx -watchdog ib700
3409 @end table
3410 ETEXI
3411
3412 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3413 "-echr chr set terminal escape character instead of ctrl-a\n",
3414 QEMU_ARCH_ALL)
3415 STEXI
3416
3417 @item -echr @var{numeric_ascii_value}
3418 @findex -echr
3419 Change the escape character used for switching to the monitor when using
3420 monitor and serial sharing. The default is @code{0x01} when using the
3421 @code{-nographic} option. @code{0x01} is equal to pressing
3422 @code{Control-a}. You can select a different character from the ascii
3423 control keys where 1 through 26 map to Control-a through Control-z. For
3424 instance you could use the either of the following to change the escape
3425 character to Control-t.
3426 @table @code
3427 @item -echr 0x14
3428 @itemx -echr 20
3429 @end table
3430 ETEXI
3431
3432 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3433 "-virtioconsole c\n" \
3434 " set virtio console\n", QEMU_ARCH_ALL)
3435 STEXI
3436 @item -virtioconsole @var{c}
3437 @findex -virtioconsole
3438 Set virtio console.
3439
3440 This option is maintained for backward compatibility.
3441
3442 Please use @code{-device virtconsole} for the new way of invocation.
3443 ETEXI
3444
3445 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3446 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3447 STEXI
3448 @item -show-cursor
3449 @findex -show-cursor
3450 Show cursor.
3451 ETEXI
3452
3453 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3454 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3455 STEXI
3456 @item -tb-size @var{n}
3457 @findex -tb-size
3458 Set TB size.
3459 ETEXI
3460
3461 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3462 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3463 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3464 "-incoming unix:socketpath\n" \
3465 " prepare for incoming migration, listen on\n" \
3466 " specified protocol and socket address\n" \
3467 "-incoming fd:fd\n" \
3468 "-incoming exec:cmdline\n" \
3469 " accept incoming migration on given file descriptor\n" \
3470 " or from given external command\n" \
3471 "-incoming defer\n" \
3472 " wait for the URI to be specified via migrate_incoming\n",
3473 QEMU_ARCH_ALL)
3474 STEXI
3475 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3476 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3477 @findex -incoming
3478 Prepare for incoming migration, listen on a given tcp port.
3479
3480 @item -incoming unix:@var{socketpath}
3481 Prepare for incoming migration, listen on a given unix socket.
3482
3483 @item -incoming fd:@var{fd}
3484 Accept incoming migration from a given filedescriptor.
3485
3486 @item -incoming exec:@var{cmdline}
3487 Accept incoming migration as an output from specified external command.
3488
3489 @item -incoming defer
3490 Wait for the URI to be specified via migrate_incoming. The monitor can
3491 be used to change settings (such as migration parameters) prior to issuing
3492 the migrate_incoming to allow the migration to begin.
3493 ETEXI
3494
3495 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3496 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3497 STEXI
3498 @item -nodefaults
3499 @findex -nodefaults
3500 Don't create default devices. Normally, QEMU sets the default devices like serial
3501 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3502 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3503 default devices.
3504 ETEXI
3505
3506 #ifndef _WIN32
3507 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3508 "-chroot dir chroot to dir just before starting the VM\n",
3509 QEMU_ARCH_ALL)
3510 #endif
3511 STEXI
3512 @item -chroot @var{dir}
3513 @findex -chroot
3514 Immediately before starting guest execution, chroot to the specified
3515 directory. Especially useful in combination with -runas.
3516 ETEXI
3517
3518 #ifndef _WIN32
3519 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3520 "-runas user change to user id user just before starting the VM\n",
3521 QEMU_ARCH_ALL)
3522 #endif
3523 STEXI
3524 @item -runas @var{user}
3525 @findex -runas
3526 Immediately before starting guest execution, drop root privileges, switching
3527 to the specified user.
3528 ETEXI
3529
3530 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3531 "-prom-env variable=value\n"
3532 " set OpenBIOS nvram variables\n",
3533 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3534 STEXI
3535 @item -prom-env @var{variable}=@var{value}
3536 @findex -prom-env
3537 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3538 ETEXI
3539 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3540 "-semihosting semihosting mode\n",
3541 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3542 QEMU_ARCH_MIPS)
3543 STEXI
3544 @item -semihosting
3545 @findex -semihosting
3546 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3547 ETEXI
3548 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3549 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3550 " semihosting configuration\n",
3551 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3552 QEMU_ARCH_MIPS)
3553 STEXI
3554 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3555 @findex -semihosting-config
3556 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3557 @table @option
3558 @item target=@code{native|gdb|auto}
3559 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3560 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3561 during debug sessions and @code{native} otherwise.
3562 @item arg=@var{str1},arg=@var{str2},...
3563 Allows the user to pass input arguments, and can be used multiple times to build
3564 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3565 command line is still supported for backward compatibility. If both the
3566 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3567 specified, the former is passed to semihosting as it always takes precedence.
3568 @end table
3569 ETEXI
3570 DEF("old-param", 0, QEMU_OPTION_old_param,
3571 "-old-param old param mode\n", QEMU_ARCH_ARM)
3572 STEXI
3573 @item -old-param
3574 @findex -old-param (ARM)
3575 Old param mode (ARM only).
3576 ETEXI
3577
3578 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3579 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n",
3580 QEMU_ARCH_ALL)
3581 STEXI
3582 @item -sandbox @var{arg}
3583 @findex -sandbox
3584 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3585 disable it. The default is 'off'.
3586 ETEXI
3587
3588 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3589 "-readconfig <file>\n", QEMU_ARCH_ALL)
3590 STEXI
3591 @item -readconfig @var{file}
3592 @findex -readconfig
3593 Read device configuration from @var{file}. This approach is useful when you want to spawn
3594 QEMU process with many command line options but you don't want to exceed the command line
3595 character limit.
3596 ETEXI
3597 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3598 "-writeconfig <file>\n"
3599 " read/write config file\n", QEMU_ARCH_ALL)
3600 STEXI
3601 @item -writeconfig @var{file}
3602 @findex -writeconfig
3603 Write device configuration to @var{file}. The @var{file} can be either filename to save
3604 command line and device configuration into file or dash @code{-}) character to print the
3605 output to stdout. This can be later used as input file for @code{-readconfig} option.
3606 ETEXI
3607 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig,
3608 "-nodefconfig\n"
3609 " do not load default config files at startup\n",
3610 QEMU_ARCH_ALL)
3611 STEXI
3612 @item -nodefconfig
3613 @findex -nodefconfig
3614 Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup.
3615 The @code{-nodefconfig} option will prevent QEMU from loading any of those config files.
3616 ETEXI
3617 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3618 "-no-user-config\n"
3619 " do not load user-provided config files at startup\n",
3620 QEMU_ARCH_ALL)
3621 STEXI
3622 @item -no-user-config
3623 @findex -no-user-config
3624 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3625 config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config
3626 files from @var{datadir}.
3627 ETEXI
3628 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3629 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3630 " specify tracing options\n",
3631 QEMU_ARCH_ALL)
3632 STEXI
3633 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3634 HXCOMM HX does not support conditional compilation of text.
3635 @item -trace [events=@var{file}][,file=@var{file}]
3636 @findex -trace
3637
3638 Specify tracing options.
3639
3640 @table @option
3641 @item [enable=]@var{pattern}
3642 Immediately enable events matching @var{pattern}.
3643 The file must contain one event name (as listed in the @file{trace-events} file)
3644 per line; globbing patterns are accepted too. This option is only
3645 available if QEMU has been compiled with the @var{simple}, @var{stderr}
3646 or @var{ftrace} tracing backend. To specify multiple events or patterns,
3647 specify the @option{-trace} option multiple times.
3648
3649 Use @code{-trace help} to print a list of names of trace points.
3650
3651 @item events=@var{file}
3652 Immediately enable events listed in @var{file}.
3653 The file must contain one event name (as listed in the @file{trace-events} file)
3654 per line; globbing patterns are accepted too. This option is only
3655 available if QEMU has been compiled with the @var{simple}, @var{stderr} or
3656 @var{ftrace} tracing backend.
3657
3658 @item file=@var{file}
3659 Log output traces to @var{file}.
3660 This option is only available if QEMU has been compiled with
3661 the @var{simple} tracing backend.
3662 @end table
3663 ETEXI
3664
3665 HXCOMM Internal use
3666 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3667 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3668
3669 #ifdef __linux__
3670 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3671 "-enable-fips enable FIPS 140-2 compliance\n",
3672 QEMU_ARCH_ALL)
3673 #endif
3674 STEXI
3675 @item -enable-fips
3676 @findex -enable-fips
3677 Enable FIPS 140-2 compliance mode.
3678 ETEXI
3679
3680 HXCOMM Deprecated by -machine accel=tcg property
3681 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3682
3683 HXCOMM Deprecated by kvm-pit driver properties
3684 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
3685 "", QEMU_ARCH_I386)
3686
3687 HXCOMM Deprecated (ignored)
3688 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
3689
3690 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
3691 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
3692
3693 HXCOMM Deprecated (ignored)
3694 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
3695
3696 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3697 "-msg timestamp[=on|off]\n"
3698 " change the format of messages\n"
3699 " on|off controls leading timestamps (default:on)\n",
3700 QEMU_ARCH_ALL)
3701 STEXI
3702 @item -msg timestamp[=on|off]
3703 @findex -msg
3704 prepend a timestamp to each log message.(default:on)
3705 ETEXI
3706
3707 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3708 "-dump-vmstate <file>\n"
3709 " Output vmstate information in JSON format to file.\n"
3710 " Use the scripts/vmstate-static-checker.py file to\n"
3711 " check for possible regressions in migration code\n"
3712 " by comparing two such vmstate dumps.\n",
3713 QEMU_ARCH_ALL)
3714 STEXI
3715 @item -dump-vmstate @var{file}
3716 @findex -dump-vmstate
3717 Dump json-encoded vmstate information for current machine type to file
3718 in @var{file}
3719 ETEXI
3720
3721 DEFHEADING(Generic object creation)
3722
3723 DEF("object", HAS_ARG, QEMU_OPTION_object,
3724 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3725 " create a new object of type TYPENAME setting properties\n"
3726 " in the order they are specified. Note that the 'id'\n"
3727 " property must be set. These objects are placed in the\n"
3728 " '/objects' path.\n",
3729 QEMU_ARCH_ALL)
3730 STEXI
3731 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3732 @findex -object
3733 Create a new object of type @var{typename} setting properties
3734 in the order they are specified. Note that the 'id'
3735 property must be set. These objects are placed in the
3736 '/objects' path.
3737
3738 @table @option
3739
3740 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off}
3741
3742 Creates a memory file backend object, which can be used to back
3743 the guest RAM with huge pages. The @option{id} parameter is a
3744 unique ID that will be used to reference this memory region
3745 when configuring the @option{-numa} argument. The @option{size}
3746 option provides the size of the memory region, and accepts
3747 common suffixes, eg @option{500M}. The @option{mem-path} provides
3748 the path to either a shared memory or huge page filesystem mount.
3749 The @option{share} boolean option determines whether the memory
3750 region is marked as private to QEMU, or shared. The latter allows
3751 a co-operating external process to access the QEMU memory region.
3752
3753 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
3754
3755 Creates a random number generator backend which obtains entropy from
3756 a device on the host. The @option{id} parameter is a unique ID that
3757 will be used to reference this entropy backend from the @option{virtio-rng}
3758 device. The @option{filename} parameter specifies which file to obtain
3759 entropy from and if omitted defaults to @option{/dev/random}.
3760
3761 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
3762
3763 Creates a random number generator backend which obtains entropy from
3764 an external daemon running on the host. The @option{id} parameter is
3765 a unique ID that will be used to reference this entropy backend from
3766 the @option{virtio-rng} device. The @option{chardev} parameter is
3767 the unique ID of a character device backend that provides the connection
3768 to the RNG daemon.
3769
3770 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
3771
3772 Creates a TLS anonymous credentials object, which can be used to provide
3773 TLS support on network backends. The @option{id} parameter is a unique
3774 ID which network backends will use to access the credentials. The
3775 @option{endpoint} is either @option{server} or @option{client} depending
3776 on whether the QEMU network backend that uses the credentials will be
3777 acting as a client or as a server. If @option{verify-peer} is enabled
3778 (the default) then once the handshake is completed, the peer credentials
3779 will be verified, though this is a no-op for anonymous credentials.
3780
3781 The @var{dir} parameter tells QEMU where to find the credential
3782 files. For server endpoints, this directory may contain a file
3783 @var{dh-params.pem} providing diffie-hellman parameters to use
3784 for the TLS server. If the file is missing, QEMU will generate
3785 a set of DH parameters at startup. This is a computationally
3786 expensive operation that consumes random pool entropy, so it is
3787 recommended that a persistent set of parameters be generated
3788 upfront and saved.
3789
3790 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
3791
3792 Creates a TLS anonymous credentials object, which can be used to provide
3793 TLS support on network backends. The @option{id} parameter is a unique
3794 ID which network backends will use to access the credentials. The
3795 @option{endpoint} is either @option{server} or @option{client} depending
3796 on whether the QEMU network backend that uses the credentials will be
3797 acting as a client or as a server. If @option{verify-peer} is enabled
3798 (the default) then once the handshake is completed, the peer credentials
3799 will be verified. With x509 certificates, this implies that the clients
3800 must be provided with valid client certificates too.
3801
3802 The @var{dir} parameter tells QEMU where to find the credential
3803 files. For server endpoints, this directory may contain a file
3804 @var{dh-params.pem} providing diffie-hellman parameters to use
3805 for the TLS server. If the file is missing, QEMU will generate
3806 a set of DH parameters at startup. This is a computationally
3807 expensive operation that consumes random pool entropy, so it is
3808 recommended that a persistent set of parameters be generated
3809 upfront and saved.
3810
3811 For x509 certificate credentials the directory will contain further files
3812 providing the x509 certificates. The certificates must be stored
3813 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
3814 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
3815 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
3816
3817 For the @var{server-key.pem} and @var{client-key.pem} files which
3818 contain sensitive private keys, it is possible to use an encrypted
3819 version by providing the @var{passwordid} parameter. This provides
3820 the ID of a previously created @code{secret} object containing the
3821 password for decryption.
3822
3823 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
3824
3825 Interval @var{t} can't be 0, this filter batches the packet delivery: all
3826 packets arriving in a given interval on netdev @var{netdevid} are delayed
3827 until the end of the interval. Interval is in microseconds.
3828 @option{status} is optional that indicate whether the netfilter is
3829 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
3830
3831 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
3832
3833 @option{all}: the filter is attached both to the receive and the transmit
3834 queue of the netdev (default).
3835
3836 @option{rx}: the filter is attached to the receive queue of the netdev,
3837 where it will receive packets sent to the netdev.
3838
3839 @option{tx}: the filter is attached to the transmit queue of the netdev,
3840 where it will receive packets sent by the netdev.
3841
3842 @item -object filter-dump,id=@var{id},netdev=@var{dev},file=@var{filename}][,maxlen=@var{len}]
3843
3844 Dump the network traffic on netdev @var{dev} to the file specified by
3845 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
3846 The file format is libpcap, so it can be analyzed with tools such as tcpdump
3847 or Wireshark.
3848
3849 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
3850 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
3851
3852 Defines a secret to store a password, encryption key, or some other sensitive
3853 data. The sensitive data can either be passed directly via the @var{data}
3854 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
3855 parameter is insecure unless the sensitive data is encrypted.
3856
3857 The sensitive data can be provided in raw format (the default), or base64.
3858 When encoded as JSON, the raw format only supports valid UTF-8 characters,
3859 so base64 is recommended for sending binary data. QEMU will convert from
3860 which ever format is provided to the format it needs internally. eg, an
3861 RBD password can be provided in raw format, even though it will be base64
3862 encoded when passed onto the RBD sever.
3863
3864 For added protection, it is possible to encrypt the data associated with
3865 a secret using the AES-256-CBC cipher. Use of encryption is indicated
3866 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
3867 parameter provides the ID of a previously defined secret that contains
3868 the AES-256 decryption key. This key should be 32-bytes long and be
3869 base64 encoded. The @var{iv} parameter provides the random initialization
3870 vector used for encryption of this particular secret and should be a
3871 base64 encrypted string of the 32-byte IV.
3872
3873 The simplest (insecure) usage is to provide the secret inline
3874
3875 @example
3876
3877 # $QEMU -object secret,id=sec0,data=letmein,format=raw
3878
3879 @end example
3880
3881 The simplest secure usage is to provide the secret via a file
3882
3883 # echo -n "letmein" > mypasswd.txt
3884 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
3885
3886 For greater security, AES-256-CBC should be used. To illustrate usage,
3887 consider the openssl command line tool which can encrypt the data. Note
3888 that when encrypting, the plaintext must be padded to the cipher block
3889 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
3890
3891 First a master key needs to be created in base64 encoding:
3892
3893 @example
3894 # openssl rand -base64 32 > key.b64
3895 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
3896 @end example
3897
3898 Each secret to be encrypted needs to have a random initialization vector
3899 generated. These do not need to be kept secret
3900
3901 @example
3902 # openssl rand -base64 16 > iv.b64
3903 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
3904 @end example
3905
3906 The secret to be defined can now be encrypted, in this case we're
3907 telling openssl to base64 encode the result, but it could be left
3908 as raw bytes if desired.
3909
3910 @example
3911 # SECRET=$(echo -n "letmein" |
3912 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
3913 @end example
3914
3915 When launching QEMU, create a master secret pointing to @code{key.b64}
3916 and specify that to be used to decrypt the user password. Pass the
3917 contents of @code{iv.b64} to the second secret
3918
3919 @example
3920 # $QEMU \
3921 -object secret,id=secmaster0,format=base64,file=key.b64 \
3922 -object secret,id=sec0,keyid=secmaster0,format=base64,\
3923 data=$SECRET,iv=$(<iv.b64)
3924 @end example
3925
3926 @end table
3927
3928 ETEXI
3929
3930
3931 HXCOMM This is the last statement. Insert new options before this line!
3932 STEXI
3933 @end table
3934 ETEXI